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ABSTRACT

OPTIMAL AEROELASTIC VEHICLE SENSOR PLACEMENT FOR 
ROOT MIGRATION FLIGHT CONTROL APPLICATIONS

Abdul Ghafoor Al-Shehabi 
Old Dominion University, August 2001 

Director: Dr. Brett Newman

An important step in control design for elastic systems is the determination of the 

number and location of control system components, namely sensors. The number and 

placement o f sensors can be critical to the robust functioning of active control systems, 

especially when the system of interest is a large high-speed aeroelastic vehicle. The 

position o f the sensors affects not only system stability, but also the performance of the 

closed-loop system. In this dissertation, a new approach for sensor placement in the 

integrated rigid and vibrational control of flexible aircraft structures is developed. 

Traditional rigid-body augmentation objectives are addressed indirectly through input- 

output pair and compensation selection. Aeroelastic control suppression objectives are 

addressed directly through sensor placement. A nonlinear programming problem is posed 

to minimize a cost function with specified constraints, where the cost function terms are 

multiplied by appropriate weighting factors. Cost function criteria are based on complex 

frequency domain geometric pole-zero structures in order to gain stabilize or phase 

stabilize the aeroelastic modes. Specifically, these criteria are based on dipole magnitude 

and complementary departure angle. In turn, the control design approach utilizes one of 

the classical methods known as Evans root migration to exploit the pole-zero structures 

resulting from sensor placement. Desirable complementary departure angles can lead to
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significant aeroelastic damping improvement as loop gain is increased, while favorable 

dipole magnitudes can virtually eliminate the effects o f aeroelastics in a feedback loop. 

Appropriate constraints include minimum phase aeroelastic zeros to avoid common 

problems associated with right-half plane zeros. To achieve desirable flight control 

system characteristics via optimal sensor locations, different kinds of blending filters for 

multiple sensors are investigated. Static filters, as well as dynamic filters with fixed or 

variable parameters and fixed or variable com pensator parameters, are considered. For 

every cost function, there are several local minima indicating many distributions of the 

sensors are available. By evaluating the cost for each minimum, the global optimum can 

then be found.
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CHAPTER 1 

INTRODUCTION

1.1 Problem Motivation

Commercial flight studies1’2 indicate the existence of potential markets for a long 

range, high-speed, high capacity vehicle to link global centers of business activity. 

International cooperation and/or competition on such a vehicle is currently underway. 

This class o f vehicle must be environmentally friendly and economically efficient if it is 

to be a viable concept. Utilization of new but affordable technologies such as advanced 

materials, boundary layer augmentation, multi-cycle engines, active control, and 

synthetic vision are key to the economic success o f this second generation supersonic 

transport.3'4

The high speeds of this vehicle, coupled with the use of lightweight composite 

materials for the primary structure and overall minimal structural mass, will make the 

vehicle highly flexible with many low frequency structural modes. Such design 

characteristics will lead to significant interactions between the rigid-body and structural 

dynamics. These interactions occur through cause and effect inertial, structural and 

aerodynamic mechanisms between structural deflections and rigid-body motions, and 

vice versa. This interaction is further aggravated by the use o f a high-bandwidth/high- 

authority flight control system. Such a flight control system may incorporate stability 

augmentation logic to stabilize possibly multi-axis relaxed stability characteristics, or to 

The journal model for this work is the Journal o f  Guidance, Control, and Dynamics.
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increase damping levels in key motions such as the short period and dutch-roll modes, as 

well as command augmentation logic to reshape the motion responses for desired 

handling qualities. Additionally, the flight control system may incorporate structural 

mode control system strategies to dampen vibrational motions. Traditionally, independent 

control systems have been used to augment the rigid-body and structural dynamics. In the 

high-speed transport arena, the highly coupled motions will not allow this design 

freedom. Therefore, control of rigid-body and aeroelastic motions, and their interactions, 

must be considered with an integrated control strategy.

An important step in the design of flight control systems for high-speed, highly 

flexible vehicles is feedback sensor placement. From a traditional rigid-body stability 

augmentation perspective, sensor signals containing key information appropriate for 

augmenting oscillatory pitch and yaw motions are sought. Further, these feedback signals 

should not be contaminated with high frequency structural vibration content, which may 

destabilize the control loop or drive the actuator excessively. On the other hand, from a  

pure structural mode control perspective, sensor signals that facilitate considerable 

leverage on mode damping are sought. These signals should avoid passing rigid-body 

rotational motion content to circumvent unwanted excitation of the structural dynamics 

during desired overall rotational motions and to avoid impacting the characteristics of 

these rigid-body motions. With an integrated flight control system, the sensor signal 

should be optimized for both rigid-body and aeroelastic content, appropriate for the 

control objectives. On an even more fundamental level, feedback sensor signal content 

must be consistent with the design objective. If the sensor does not provide useful
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information, then no amount of gain adjustment or filtering on this signal will lead to 

acceptable closed-loop results.

The importance of optimal sensor placement for aeroelastic vehicle flight control 

applications is thus underscored. One approach to systematic and efficient optimal sensor 

placement, as opposed to manual placement strategies, is application of theoretical and 

applied optimization concepts. A critical step in such methodologies is identification of 

relevant objective functions with applicable constraints that have direct bearing on the 

control design strategy. This dissertation focuses on such optimal sensor placement 

strategies. The objectives of this dissertation include the following: 1) formulation of 

candidate sensor placement criteria tailored for application to conventional-based root 

migration flight control design techniques, 2) application of theoretic principles and 

numeric algorithms for the minimization o f such criteria for optimal sensor placement, 

and 3) utilization of these optimal sensor locations in flight control design.

1.2 Literature Survey and Problem Definition

One critical issue in flight control system design for elastic vehicles is 

determination of the number and location of actuation and sensory components. The 

primary function of these components is to implement feedback control strategies. 

Actuators and sensors also play a key role in reliability monitoring and fault detection 

systems and for real-time model identification systems. In high-speed atmospheric flight 

applications, minimal drag objectives and design architecture cost constraints fix the 

number of aerodynamic control surfaces or actuators to a small number. Further, these 

control input devices are typically constrained to lie near the aft region of the vehicle and
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on the trailing edge of lifting surfaces. On the other hand, a large number o f sensors, and 

a wide range of feasible locations for these sensors, are available since these components, 

for the most part, are internally or flush mounted elements and are relatively cheap from 

an architectural perspective. This dissertation will focus exclusively on sensor placement 

problems, although review o f both sensor and actuator placement literature provides a 

broad foundation to draw upon.

Traditional approaches for manually distributing flight control feedback sensors 

and actuators throughout the interior and exterior regions o f  a flight vehicle are based on 

linear transfer function or state space models of the relevant dynamics. Such analytically 

based approaches provide key insight into desirable sensor locations and further reveal 

the mechanisms that lead to these desirable locations and associated characteristics. In the 

case o f vehicles whose characteristics can be sufficiendy modeled as a rigid system, 

placement of accelerometer sensors to approximate angle o f attack or side slip angle 

feedback is a well-known classic problem.5 Recall that an accelerometer senses pure 

translational motion, as well as effective translational motion arising from rotational 

motion acting through a moment arm separating the sensor and vehicle mass center. The 

acceleration feedback signal best approximates the aerodynamic angle feedback signal 

when the accelerometer is located at the center of rotation. At this special point, 

translational and rotational motions precisely cancel. References 5-6 document 

acceleration transfer function dependencies on sensor location.

For true acceleration command systems, the accelerometer location can lead to 

undesirable response reversal if  not properly positioned relative to the mass center.7 

Reference 7 discusses such behavior and implies that, at least for small agile vehicles, the
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accelerometer sensor should be located well in front of the mass center, near the cockpit. 

Reference 8 discusses how the accelerometer sensor location in a blended pitch rate- 

normal acceleration control system can desensitize the closed-loop behavior to flight 

condition changes. Theoretically, for a rigid aircraft, dynamic characteristics are invariant 

to rate gyro sensor location, since all points on the vehicle possess the same angular rate. 

However, Reference 7 and 9 indicate that care must also be given to rate gyro sensor 

placement due to the pick up of localized structural vibrations that can degrade or even 

destabilize the associated control loop.

Sensor placement for vehicle characteristics that require flexible body or 

aeroelastic descriptions is a considerably more difficult problem. In this situation, 

accelerometers are sensitive to not only the rigid-body translational and rotational 

motions, but also to translational structural deflections. Under such situations, the 

accelerometer output signal is proportional to the second temporal derivative o f the 

dominant generalized structural deflection coordinate where the proportionality constant 

is the characteristic deflection mode shape value at the sensor mounting location. In the 

case of a rate gyro instrument, the sensor is excited by rotational structural deflections. 

Here, the rate gyro output is proportional to generalized structural deflection rate. The 

proportionality constant is the mode slope value at the sensor location. Note that the 

deflection mode shape and mode slope values depend on location within the vehicle. This 

feature brings an entirely new dimension and difficulty to the sensor placement problem. 

Such difficulties are a central part o f the dissertation research.

References 10-18 illustrate the difficulties and various techniques associated with 

manual sensor/actuator placement and control system design for flexible flight vehicles
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based on transfer function analysis. In References 10-12. approximate factored transfer 

functions in symbolic form are derived in terms of basic vehicle parameters for various 

flexible configurations including a high-speed bank to tum missile, subsonic transport, 

and supersonic fighter. Basic parameters describing inertial, aerodynamic, structural, and 

design properties include stability and control derivatives, modal vibration damping, 

frequency and mode shape coefficients, sensor and actuator locations, and flight 

condition variables. Various analytical and numerical sensitivity studies are conducted 

with these transfer functions. For the sensor placement focus in this dissertation, such 

transfer functions reveal how sensor location affects open-loop airframe numerator 

factors associated with short period, dutch-roll, and Ist fuselage or wing bending modes, 

for example. Recall the numerator polynomial roots or zeros, relative to the poles, are 

important in determining the contribution of each mode to the overall motion in the input- 

output channel of interest. Zeros associated with rigid-body dynamics can influence 

vehicle handling qualities and time response behaviors in many different ways including 

apparent overshoot, drop back, time delay, and even response reversal in extreme cases. 

Note that many flying quality metrics explicitly depend on transfer function zeros.19 

Aeroelastic pole-zero combinations, when located close to the imaginary axis, can 

significantly impact the response characteristics with high frequency residual 

contamination, undesirable aeroelastic-to-aeroelastic or aeroelastic-to-rigid modal 

phasing, and response reversal. 20~22

In References 13-18, consideration is given to loop closure around the sensor 

dependent flexible vehicle transfer functions. Basic stability augmentation loops, such as 

pitch and yaw dampers, are investigated. As discussed above, sensor location influences
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the numerator roots which, in turn, influences closed-loop pole augmentation. For 

example, with a root locus or root migration based design technique, the zeros have a 

strong influence on the closed-loop pole migration paths. Zeros influence the initial 

migration direction, the migration path while transitioning between the initial and 

terminal points, and the terminal points themselves. Aeroelastic pole-zero factors, or 

dipoles, are especially critical in these loop closures. Depending upon specific control 

objectives, sensor locations are sought, which yield tight dipole structure (near pole-zero 

elimination), or a dipole with proper direction (desirable pole-zero orientation). 

Destabilizing dipole orientations, or loose dipole structures with one right-half and one 

left-half plane real axis zero, are to be avoided. Further, the sensor locations should not 

significantly degrade the rigid-body augmentation features. For a system with only one or 

two significant aeroelastic modes, References 13-18 develop correlation between mode 

shape/slope values at the sensor location and the resulting numerator loop closure 

features. With this understanding, flight control engineers have a priori knowledge on 

where to place sensors so that when math models are generated and loops are closed, the 

resulting dynamics are as expected, the design iteration effort is lessened, and the key 

tradeoffs are clearly evident.

An important paradigm discovered in the actuator and sensor placement discipline 

for elastic systems is documented in References 15-16 and 23-28. This paradigm is often 

referred to as a “collocated actuator and sensor.” For an undamped elastic body such as 

an idealized spacecraft model, placement of an actuator and sensor at the same location 

will result in a guaranteed transfer function pole-zero structure that is highly desirable for 

feedback control. The resulting transfer function will have alternating or interlaced poles
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and zeros along the imaginary axis. The significance of actuator and sensor collocation is 

that all rigid-body and all vibrational modes can be simultaneously stabilized and damped 

with a single negative rate feedback signal. Root locus formulas can be used to show that 

for co-location, angles of departure and angles o f arrival are ±180 deg indicating superior 

augmented damping behavior. To exploit this paradigm, the actuator and sensor must be 

compatible in the sense that both instruments are translational derives or rotational 

devices, but not mixed. In other words, a force actuator and rate gyro sensor, or a torque 

actuator and accelerometer sensor, will not theoretically guarantee the desired transfer 

properties. Reference 27 gives an application of this technique to the Solar Electric 

Propulsion spacecraft. Unfortunately for atmospheric vehicle applications, aerodynamic 

stiffness and damping violate the necessary assumptions of an in vacuo environment. 

Nevertheless, References 15-16 document significant success with this technique as 

applied to the XB-70 aircraft. The vehicle o f interest in the dissertation research 

significantly violates necessary assumptions required for a simple collocated actuator

sensor solution strategy.

The techniques described in References 10-12 are primarily based on ad hoc 

procedures, and calculations were considered well before the availability of high- 

performance desktop computing. References 29-31 revisited these techniques with 

updated tools and concepts. These references reformulated the procedure for obtaining 

symbolic transfer function factors with a sound theoretical framework and applied 

modem computers and software in the calculations. The improved technique has been 

used to develop analytical relationships for transfer function poles and zeros of a fourth 

order, large high-speed flexible airframe in terms of basic parameters such as stability
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and control derivatives, modal vibration parameters, and sensor location. Relatively 

simple and accurate analytical expressions conducive to obtaining insight into the vehicle 

physics have been obtained. For example, an analytical expression for the right-half plane 

zero associated with the l "  fuselage bending mode in the elevator to cockpit pitch rate 

dynamics mathematically reveals the competing effects o f rigid and elastic pitch as a 

function of sensor location or mode slope.30 These competing pitch mechanisms 

ultimately determine the zero location. Such information is highly relevant for manual 

sensor placement tasks. Other literature in this area that provides applicable knowledge 

useful for actuator/sensor placement activities in open-loop and closed-loop scenarios 

includes References 32-39.

With the exception of Reference 14 and 17, the flexible vehicle models studied in 

References 10-18 and 29-39 either have rigid-flexible bandwidth separation of 8 to 10 

rad/s and above, or the number of significant low frequency flexible modes below 30 

rad/s is on the order of 4  or less. Such characteristics are not the case for design models 

approximating current high-speed transport configurations of interest.40 These current 

models are considerably more modally dense and flexible (approximately 8 significant 

modes below 30 rad/s and rigid-elastic frequency separation of 5-7 rad/s). Such 

characteristics present a significantly more difficult control and sensor placement 

challenge, which is the primary focus of this dissertation research.

References 41-45 document conventional based control development activities for 

these newer high-speed transport configurations. Primary control objectives are to 

artificially supply the stability inherently lacking in the airframe, augment key 

pilot/passenger centered responses leading to crisp well damped behavior, and suppress

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited w ithout perm iss ion .



10

aeroelastic motion in all responses, all with minimal use of architecture. Considerable 

effort is devoted to achieving these objectives with a predefined single input control 

structure (i.e., the elevator). Thus, a critical task in the development work dealt with 

identifying desirable regions for feedback sensors, which result in favorable transfer 

functions for loop closure consistent with the design objectives. Reference 45 is 

particularly important in motivating the dissertation research topic and is discussed 

further.

A modified version of the numerical model from Reference 17 provides the basis 

for the vehicle model utilized in Reference 45. The dynamic model includes 40 state 

variables accounting for rigid longitudinal relaxed stability motion and 18 lightly damped 

symmetric aeroelastic modes. Based on advantages associated with the so called 

“superaugmented pitch loop” architecture,46'47 rate gyro based feedback signals are 

exclusively considered. By manual inspection o f the characteristic deflection shapes as a 

function of fuselage centerline position for all 18 modes, candidate sensor locations with 

projected transfer characteristics beneficial to control are highlighted for further detail 

investigation. In this inspection process, fuselage stations corresponding to near zero 

mode slope, or finite mode slope that is in-phase with the rigid pitch motion, 

simultaneously for many modes, are sought. Such locations tend to yield favorable 

aeroelastic dipole structures and rigid-body characteristics. After a few necessary, manual 

sensor placement iterations on the complete model with all aerodynamic coupling terms 

present, the process yields transfer functions with the approximate desired features.

Unfortunately, serious conflicts exist between several key aeroelastic modes. 

Sensor locations desirable for some aeroelastic dipoles and the rigid-body mode are
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undesirable for other modes, and vice versa. The ultimate conclusion in Reference 45 is 

that for high-speed transports with high levels o f  instability and flexibility, a single- 

surface/single-sensor control architecture is not feasible for meeting the design 

objectives. These results motivated investigation o f a blended sensor architecture. Two 

rate gyro signals are blended in such a way to preserve the desirable signal content of 

both, while simultaneously eliminating the undesirable signal content. Blending filter 

logic and associated parameters increase the problem dimensionality. Based on problem 

insight, simple blending logic is selected and improved transfer characteristics for loop 

closure result. However, the improvements still were lacking in certain respects. Thus, 

References 41 and 43 also considered formal optimization as a means to conduct 

efficient, automatic blended sensor placement. Some further improvements are 

demonstrated, but limited resources prevented a thorough investigation of the subject. 

Optimal, auto sensor placement strategies and techniques per References 41, 43, and 45 

are prim ary to this dissertation research subject.

This dissertation will investigate and explore a methodology and strategy for 

optimal placement of feedback sensors to be utilized in conjunction with conventional 

root migration flight control design techniques applied to flexible atmospheric flight
to C I

vehicles. All numerical sensor placement calculations in this dissertation are 

conducted with a large, high-speed aeroelastic transport dynamic model. This numerical 

model is identical to that used in References 41, 43, and 45. This vehicle is characterized 

as highly flexible and modally dense with very little frequency separation between rigid- 

body and structural dynamics and many important low frequency structural modes, with 

significant aeroelastic contributions existing in all vehicle motions. With such
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characteristics, the transfer function numerator roots for loop closure will be highly 

dependent on sensor mounting location, thus fostering a rich and challenging sensor 

placement problem. Significant aerodynamic coupling also rules out the potential for 

collocated actuator-sensor placement solutions due to violation o f the necessary 

assumptions.

This dissertation will take the perspective that sensor placement and loop closure 

efforts should remain, for the most part, separate design steps in the overall closed-loop 

synthesis procedure. Such a two step strategy may ultimately limit the achievable closed- 

loop stability and performance to some extent. However, such partitioning is initially 

prudent when considering optimization-based methodologies, which tend to exploit 

unknown and often undesirable regions of the solution space. Further, releasing the 

sensor placement step to an optimizer while retaining the loop closure step for the 

engineer provides an attractive balance between automatic and manual functions. Even 

under this perspective, a few exploratory investigations involving coupled sensor 

placement and loop closure optimization are considered in this body of research. The 

conventional Evans root migration technique is exclusively considered in this dissertation 

for designing the closed-loop systems. At this time, production flight control systems are 

still primarily designed with conventional techniques for multiple reasons, and the 

dissertation is consistent with this trend. The reader should not interpret this to mean 

conventional control design techniques are superior to contemporary techniques, rather 

the reader should understand the selected design technique is amply sufficient for the 

dissertation focus. The dissertation research also exclusively considers angular rate 

feedback control architectures because of their effectiveness in this application. In other
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words, only rate gyro sensor placement is addressed in this research effort, accelerometer 

sensors are not considered.

A key focus o f the dissertation research involves formulating and identifying 

sensor placement criteria and objective functionals for optimization, which are tightly 

coupled to important closed-loop dynamic characteristics and the chosen control design 

technique that can leverage these characteristics effectively. Therefore, objective 

functions based on open-loop transfer function pole-zero geometric features in the 

complex frequency plane are of great importance to this dissertation. Various sensor 

placement criteria based on rigid-body mode and aeroelastic dipole root structures are 

investigated. In particular for aeroelastic dipoles, gain, phase, and mixed gain-phase, 

stabilization criteria are addressed. Appropriate constraint functions such as restrictions 

against nonminimum phase numerator roots or off-body sensor locations are also utilized. 

Primary decision variables for optimization include multi-sensor locations, while 

blending filter and control compensation parameters are secondary decision variables 

used in a limited fashion. The sensor placement research problem is formulated and 

posed within the rigorous framework of parameter optimization theory. Numerical search 

algorithms utilized in the dissertation research are based on low order, reduced 

convergence rate, gradient methods. These algorithms provide a stable and reliable 

solution at the expense of higher computational burdens. Higher order, multi-strategy 

algorithms available in commercial engineering software applications were considered, 

but ultimately were found to be unworkable for this complex application. The 

optimization problem is computationally intensive, requiring implicit gradient 

construction and generation of a high dimensional root locus solution involving
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polynomial factoring and root sorting for each independent hyper-direction and at each 

iteration step.

Although engineering judgment and manual analysis are quite often used to 

determine favorable locations for flight control actuators and sensors (as discussed in 

Reference 45), there have been numerous attempts (other than in References 41 and 43) 

to develop systematic means for identifying optimal locations in non-flight control 

aerospace applications. A literature search for various actuator and sensor placement 

methods yielded a large number of publications from widely different engineering 

applications. For example. Reference 52 contains over 50 internal references on the 

subject matter alone. Some of the major applications include large flexible spacecraft 

vibration control,53'63 aircraft panel and lifting surface flutter control,64'68 vehicle exterior 

flow control,69'74 mechanical structural control,75'91 model identification/fault detection,92' 

102 and interior cabin structural acoustic control.103' 109

These existing techniques appearing in the literature for optimal auto sensor 

placement are related to the dissertation topic, but in many instances are not directly 

applicable. Majority of reported studies has focused on either

• Open-loop criteria such as controllability, observability, and transmission zeros,

• Closed-loop criteria such as quadratic metrics inherently tied to contemporary design,

• Unconstrained flexible space vehicles or constrained elastic terrestrial systems, or

• Vibrating structural or fluidic systems not strongly tied to free vehicle motion.

These studies often lack key aspects of the dissertation research topic. For example, state 

space controllablity and observability metrics, and contemporary design quadratic 

performance metrics, are not easily traceable to individual transfer function aeroelastic
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dipole structures, and often do not capture critical phasing information. As another 

example, seldom will sufficient control bandwidth exist to relocate closed-loop poles near 

the transmission zeros. Unconstrained space vehicles and constrained terrestrial systems 

are undamped structures that do not have airflow pressure as the single most important 

load influencing the motion. Finally, pure vibrating systems lack the complexities 

associated with integrated flight control involving tightly coupled rigid motions and 

structural dynamics. A brief review of a few selected past works in these areas, and their 

contrast to the dissertation research, is given next.

In Reference 53, criteria for determining the optimal actuator and sensor locations 

is based on open-loop controllability and observability levels associated with a variably 

located actuator-sensor pair. The application is pure vibrational control o f flexible space 

structures. The vehicle dynamics are modeled as a linear, vector second-order dynamical 

system. Based on this model structure, the controllable and observable subspaces, and 

their intersection subspace, are defined. An initial objective function based on the degree 

or size o f the intersection subspace is considered. Actuator and sensor locations 

corresponding to large values for the objective function will yield a large number of 

states that can be broadly affected through feedback. A second, refined objective function 

based on the weighted projection of selected structural modes into the controllable- 

observable intersection subspace is introduced. Controllability and observability 

grammians are used to weigh the projection of these selected modes. Actuator and sensor 

locations corresponding to large values for this refined objective function will yield 

selected modes that can be efficiently augmented with feedback. The proposed search 

technique evaluates a given set o f actuator-sensor positions for determining the best
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locations, rather than finding the best actuator-sensor locations given a continuous region 

o f feasible positions. The proposed technique is highly attractive but does not fit well to 

the dissetation research. The underlying objective in Reference 53 is maximum 

controllability-observability. Such a characteristic, while generally a desirable feature for 

any control scheme, oversimplifies the control problem. Formulating relationships 

between high levels of controllability-observability and desirable pole-zero structures, 

and in particular the phase relastionship between aeroelastic-to-aeroelastic and 

aeroelastic-to-rigid coupling, is difficult. Additionally, such objectives ignore rigid 

motion control objectives. Finally, most control design techniques do not directly utilize 

these measures.

Reference 54 also develops a method to place the sensors and actuators for active 

control o f flexible space structures. Two placement metrics are considered for the 

optimization. The metrics are chosen such that, when optimized, the transmission zeros 

o f the open-loop system are relocated farther to the left of the imaginary axis. The metrics 

are constructed around the real part o f the system ’s transmission zeros. A nonlinear 

programming problem is posed to minimize the metrics. Sensor and actuator locations 

that yield transmission zeros deep within the left-half plane are desirable because the 

closed-loop poles migrate towards these locations for a high overall multivariable gain 

value. This proposed technique is highly attractive and is the most relevant work (other 

than References 41, 43, and 45) to the dissertation topic. However, this technique is also 

lacking in certain respects. Seldom is sufficient gain available to relocate the closed-loop 

poles to the transmission zeros. Further, individual input-output responses are not easily 

tailored with an overall system approach. Nevertheless, utilization of the concepts from
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Reference 54 to relocate selected zeros to more favorable locations in individual channels 

benefits the dissertation research.

Reference 56 presents an algorithm that solves the problem o f selecting a limited 

number o f sensor and actuator locations from a given set to best achieve closed-loop 

output specifications with minimal input actuator power. The application is again for 

large space structures. Since the solution to this kind of problem requires a specific 

closed-loop control law structure, a technique for closed-loop control that is readily 

adjusted to meet the output specification with minimal power usage, and which allows 

assessment of sensor and actuator configurations in achieving these requirements, is 

needed. A Linear Quadratic Gaussian (LQG) controller is thus selected. This controller 

is extremely powerful with high utility for attacking the sensor-actuator selection 

problem. The algorithm involves no gradient or costly calculation beyond the LQG 

controller and can be used to adjust weight matrices to achieve the output specifications 

with minimal power. The effectiveness o f each sensor and actuator is assessed through 

their contribution to the closed-loop LQG cost functional. Sensors and actuators with 

small effectiveness are eliminated. Appealing as this procedure is, some difficulties are 

encountered when applied to the dissertation research topic. LQG and other 

contemporary design methods based on cost function minimization, although quite 

suitable for regulation and vibration suppression, are not well suited for aeroelastic flight 

control where tailoring o f the transient response due to commands, or shaping closed- 

loop pole-zero features in specific channels, is often required. Further, algorithm cost 

functions are not tightly coupled to the complex frequency domain design objectives.
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Recasting the standard LQG regulation framework into a model following or model 

tracking framework may circumvent some of these difficulties, however.

Finally in Reference 64, the effectiveness of individual piezoceramic actuators, or 

groups of actuators, in terms of their contribution to joint controllability and observability 

levels, is investigated and examined from a flutter control design perspective. Joint 

controllablity and obsevability is quantified by the Hankel singular values. For given sets 

o f candidate actuators, selection methodology is based on determining the relative 

effectiveness of these candidate actuators by decomposing this metric as a sum of 

contributions from each actuator. The goal of this strategy is to maximize the weighted 

Hankel singular value metric across the candidate actuators. The degree of participation 

o f individual structural modes in the flutter control problem is used to weight the actuator 

selection metric. By decomposing the placement metric into contributions from 

individual actuators, a priori  specification of the number o f actuators is not required. In 

fact, by inspection o f the decomposition, the optimum number of actuators can be 

determined. This approach is highly attractive for avoiding computational burdens 

associated with other methods involving combinational or optimizational searches. 

However, for the dissertation research topic, controllability, observability, and singular 

values are not easily traceable to detail transfer function pole-zero structures. Also, the 

Reference 64 technique is applied to a constrained lifting surface, which ignores the 

difficulties associated with dynamics and control o f unconstrained flexible lifting 

surfaces or bodies.
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1.3 Contributions of the Research

A new systematic methodology and strategy to determine optimal feedback sensor 

positions for a highly flexible atmospheric vehicle is developed. Overall control 

objectives are to supply artificial stability to the airframe, tailor key handling and ride 

quality responses, and to suppress aeroelastic motions. These first two objectives are 

considered indirectly, while the aeroelastic suppression objective is treated directly 

through sensor placement. Gain and phase stabilization placement criteria are utilized to 

achieve this later objective via Evans control design. This methodology and strategy is 

implemented with a numerical optimization software tool and demonstrated on an 

example large high-speed elastic airframe model. The theoretical formulation and 

numerical application has resulted in a new and systematic process which takes an initial 

flight control system with given augmentation characteristics and transforms this into a 

new system with improved augmentation characteristics by relocating the feedback 

sensors to more desirable locations. This contribution is significant and has practical 

application to important problems.

1.4 Dissertation Outline

Chapter 2 is a preliminary chapter that contains development of the equations of 

motion for non-rigid or aeroelastic vehicles and an associated numerical model used 

throughout the dissertation, as well as the flight control design strategy based on 

conventional theory. In particular, the Evans root locus or root migration technique is 

given attention, with particular emphasis directed towards key features to be considered 

in optimal sensor placement objective functionals. The importance o f sensor location on
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the resulting vehicle dynamics and flight control design effort are underscored and 

manual sensor placement results are reviewed and expanded. In Chapter 3, the theoretical 

framework for parameter optimization is laid out. The steepest descent or gradient 

method is explained for optimal numerical solutions. Attention is given to unconstrained, 

equality constrained, and inequality constrained problems. Various sensor placement 

objective functions with relevant constraints that have direct bearing on the control 

design strategy and objectives are defined.

The main body o f the dissertation revolves around Chapters 4, 5, and 6, each 

dedicated to a class o f objective functions used for optimally locating feedback sensors. 

In Chapter 4, objective functions based on dipole magnitude are investigated using two 

sensors. Such criteria are useful for gain stabilization of aeroelastic modes. Static and 

dynamic blending filters with fixed or variable parameters are investigated. In Chapter 5, 

objective functions based on complementary departure angle are investigated using two 

sensors. This class of criteria is used to stabilize the phase of aeroelastic modes. Fixed 

and variable static, and fixed and variable dynamic sensor blend filters are considered. In 

Chapter 6, both the dipole magnitude and complementary departure angle are used 

together to form a new class o f objective functions. Criteria o f this type allow for a mixed 

gain-phase stabilization control strategy. Two sensors are again considered with fixed and 

variable static and dynamic blend filtering. Additional cases with a variable 

compensation parameter are also investigated. A summary o f these optimal sensor 

placement strategies is shown in Table 1.1. Finally, in Chapter 7, conclusions and 

recommendations are outlined.
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Table 1.1 Summary of Optimal Sensor Placement Strategies

Cost Strategy 

Blending/Compesating

Gain
Stabilization

w iMi

Phase
Stabilization

Gain-Phase
Stabilization

w u i

Fixed Static Blending 
h /(s ) = I 
h2(s) — I 

Fixed Compensating
k(s)=kk(s+zt)/s

Section 4.2
Xsh xs2

Zk=I rad/s

Section 5.2
Xsh xs2

Zk=2 rad/s

Section 6.2
Xsh xs2

Zk=l rad/s  
Zk—2 rad/s

Variable Static Blending 
h ,(s )=  c, 
h2 (s)=  1 

Fixed Compensating 
k(s)=kk(s+ zk)/s

Section 4.3
X% 1, Xj?, Ci

Zk=l rcid/s

Section 5.3
Xsh Xs2, C,

Zk-2 rad/s

Section 6.3
Xsh Xs2, Cl

Zk=I rad/s  
Zk—2 rad/s

Fixed Dynamic Blending 

hx(s)  =  I
5 + 3

Section 4.4
Xsh xs2

Section 5.4
Xsh XS2

Section 6.4
Xsh Xs2

M * ) = 7 —
5 + 3

Fixed Compensating 
k(s)=kk(s+zk)/s

Zk=I rad/s Zk=2 rad/s Zk=l rad/s  
Zk=2 rad/s

Variable Dynamic Blending

/l, (5) = 1
s  +  a

Section 4.5
Xsh Xs2, a

Section 5.5
Xsh xS2, a

Section 6.5
Xsh Xs2, ci

h-, (s)  =  2 a — - —  
s  +  a

Fixed Compensating 
k(s)=kk(s+Zk)/s

Zk=l rad/s Zk—2 rad/s Zk—1 rad/s  
Zk=2 rad/s

Variable Compensating 
k(s )= kk(s+Zk)/s 

Fixed Static Blending 
h/(s) = I 
hi(s) = 1 

or
Fixed Dynamic Blending

Section 6.6
Xsh Xs2, Zk

/ l , ( 5 ) - l
5 + 3

h,{s)  -  7
5 + 3

R e p ro d u c e d  with pe rm iss ion  of th e  copyright ow ner .  F u r the r  reproduction  prohibited w ithout perm iss ion .



CHAPTER 2

MODELING, CONTROL, AND MANUAL SENSOR PLACEMENT

2.1 Introduction

This chapter deals with development of aeroelastic vehicle dynamics, flight 

control design for such dynamics, and manual sensor placement, which impacts both the 

vehicle dynamics and control system characteristics. Mathematical descriptions of 

aeroelastic dynamics are described and incorporated into traditional nonlinear aircraft 

equations of motion. A. linearized model describing symmetric motion with numerical 

data is provided. Unacceptable dynamic characteristics are noted and motivate the need 

for feedback augmentation. Control of these dynamics is considered using a conventional 

method, namely the Evans root locus or root migration technique. Emphasis is given to 

the control objectives and how to leverage these objectives with the chosen design 

technique. The operation of an aircraft flight control system is greatly influenced by 

feedback sensor locations. The position of the sensors affect not only the stability of the 

closed-loop system, but also the attainable system performance. Selecting the number and 

the location of sensors is a very important design step, especially when the system of 

interest is a large aeroelastic vehicle. Manual sensor placement to facilitate desirable 

characteristics is also investigated.
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2.2 Aeroelastic Vehicle Modeling

The current design and mission requirements for commercial and military high

speed transport aircraft are such that the resulting configurations require the use of thin 

lifting surfaces, long slender fuselages, low mass fraction structures, and high design 

stress levels. In turn, these features have resulted in aircraft that are structurally light and 

flexible. Such aircraft can exhibit large values of displacement, rate, and acceleration 

resulting from structural deformations, in addition to the components of displacement, 

rate, and acceleration arising from rigid-body motion o f the aircraft. Such transients may 

occur as a result o f aircraft maneuvers, which have been commanded by the pilot, or as a 

result o f  the aircraft’s passage through turbulent air. W hen the amplitude o f the elastic 

response is such that it compares with that o f rigid-body motion, there can be an 

interchange between the rigid-body energy and the elastic energy to the detriment of the 

flying qualities o f the aircraft. In addition, aircraft motion o f this kind can result in a 

reduction o f the structural life o f the airframe due to large amplitude, high frequency 

cyclic loading.

W hen significant aeroelastic effects occur, they must be taken into account in the 

dynamic model. In these situations, it becomes necessary to augment the aircraft rigid- 

body equations o f motion with a set of vibrational equations associated with the bending 

and torsional modes of the overall airframe. These bending and torsional modes are the 

normal modes in traditional vibration theory. For a continuous structural model, an 

infinite number of vibrational modes theoretically exist. When using finite element 

methods to model the structure, a finite but large number o f  vibration modes result.

R e p ro d u c e d  with p e rm iss ion  of th e  copyrigh t ow ner.  F u r th e r  rep roduction  prohibited without perm iss ion .



24

Usually only a small set o f significant modes are retained for the flight dynamics model. 

Conventional notation orders these modes with increasing natural frequency.

References 110-116 outline procedures for generating such models based on 

fundamental governing principles. Figure 2.1 illustrates the modeling framework. In this 

figure, XYZ  and xyz denote inertial and body reference frames, respectively. Note the 

body frame is attached to the vehicle mass center, which does not correspond to any fixed 

mass particle within the vehicle. The “rigid’-’ motion of the vehicle is described by the 

translational velocity vector V , the translational position vector/?, the angular velocity

vector Q. , and the angular positions 4* , 0  and O (Euler angles). These variables track 

the complete motion o f the body frame with respect to inertial space. The “flexible” 

motion of the vehicle, or the motion of the mass particles relative to the body frame, are 

described by the translational position vector r . This vector is split into the constant 

equilibrium position vector p  and the time dependent deformation position vector q , 

which is defined with respect to the static equilibrium deformation shape. This 

deformation vector can be further decomposed into a summation of products involving

the mode shape vectors <f>t and generalized structural deflection coordinates £ .  By

applying fundamental mechanics principles to a small infinitesimal mass dm , multiplying 

the governing expressions by both rigid and structural mode shapes, and integrating over 

the total vehicle mass, a set o f governing expressions for the vehicle motion can be 

generated.
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Figure 2.1 Aeroelastic Modeling Framework

The complete set of equations of motion are derived by W aszak in Reference 113, 

and are given in Equation (2.1). In the Waszak derivation, the structural deformation is 

considered small, the elastic deformation and rate are nearly collinear so their cross 

product is negligible, and the inertia tensor is assumed constant. Note inertial and 

structural coupling have been neglected in Equation (2 .1).116 Nevertheless, this 

dissertation is using Equation (2.1) as the basis for the vehicle dynamic model. Equation

(2.1) contains three translational kinetic equations and three rotational kinetic equations 

that describe the “rigid” motion of an arbitrary aircraft in the body reference coordinate 

system and a set o f n kinetic equations that describe the “flexible” motion relative to the 

body axes. Additionally, there are six translational and rotational kinematic equations for 

the rigid motion. In Equation (2.1), dynamic variables include translational velocity 

components U, V  and W; rotational velocity components P , Q and R ; translational

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



26

position components X, Y and H  (-Z)\ rotational position components 0 ,  0  and and 

generalized structural deflection <5 for the ilh aeroelastic mode. Aerodynamic and 

propulsive forces and moments for the kinetic equations include Qx, Qy, Qh, Q o, Q&. Qw 

and Q$. Additional parameters o f interest in Equation (2.1) include total mass m . inertia 

moment /y, gravity g , modal mass m„ structural damping structural natural frequency 

<q, and number o f aeroelastic modes n.

m[U  — R V  + Q W  + g  sin 0 ]  = Q  v 

m [V + R U  — P W  — g  sin <l> cos Q] — Q Y 

m [W  — Q U  +  P V  — g  cos 0  cos 0 ]  =  Q H 

1 *yQ + 1 XZR) + U -  - / Vv)<2/ ? +  ( / tv/ ? - / t : G ) / > +  / v; ( / ? 2 - Q 2 ) =  ^  

I „ Q - V „ P  + I KR )  + V a - I :z) P R + a ^ P - l „ R ) Q  + f xz( P 2 - R 2) = Q e  

M  ~  (!<;?  + )P Q  +  U k Q - I K P ) R  + I n ( Q 2 - P 2) = Q v

p  = 0  -  *¥ sin ©

<2 = 0  cos <I> + 4* cos © sin 0  

R = *¥ cos 0  cos d>—0  sin 0  

X  =  U cosGcos^F+ V(—cosO sin 'F+ sinOsinGcos^F) +  VF(sin0sinvF + cosOsinGcos'F)

Y=U  co sG sin 'F + V C cos^cosT + sinO sinG cos^O  +  W{—s in 0 c o s vF + co sO sin Q sin 'F )

H = U sin 0  -  F sin O  cos © — W cos 0  cos 0

f ,  +  2 £  iO ) ,? ;  + C O fZ .  = ( — ) Q
m  ,

/= /, 2 n (2.1)
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Underlying assumptions in the development o f Equation (2.1) include a flat Earth 

and constant gravity model, a single body vehicle with no internal motion due to spinning 

rotors or fluid slosh and neglection of inertia changes due to control surface movement, a 

constant mass vehicle, and small structural deformation. Under these assumptions, note 

the governing expressions in Equation (2.1) appear to be a direct union o f traditional 

rigid-body equations o f motion and traditional vibrational equations of motion. In 

particular, there is no direct inertial or structural coupling present in Equation (2.1). 

Significant rigid-flexible coupling will exist, however, in the aerodynamic and propulsive 

load terms. In Equation (2.1), also note the structural dynamics description has already 

been transformed from physical coordinates to generalized or modal coordinates.

Equation (2.2) shows a typical expansion of aerodynamic forces and moments in 

terms of nondimensional aerodynamic coefficients. In these expressions, a  denotes angle 

o f attack, (5 denotes side slip angle, A, denotes the f l control surface deflection, nA 

denotes the number o f control inputs, p  denotes atmospheric density, VT denotes total 

velocity, S  denotes reference area, c denotes reference chord, b denotes reference span, 

Cjj denotes aerodynamic coefficient, and Ti denotes a propulsive load. These forces and 

moments completely describe the coupling which exists between the rigid-body and 

elastic degrees o f freedom. For example, a structural deflection can lead to a pitch 

moment Q& due to the aerodynamic coefficient C w. . Likewise, a pitch rate Q can lead to

a generalized or modal structural load Qc due the aerodynamic coefficient C\ .
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e , + c x a + c X'P+*£Jc t  + £ c v, i , ) + ^ ( c , / + c , , je + c , i R + j c I i ; ,)+ r v
“ / = > /=' ^  y=l

0k = ^ ^ - { C Ya + C Ya  + CY' P  + ^ C Yi A, + £ c , .  ^ ; ) + ^ ( C r/  + C Kiie  + C , /?  + X c ,  £ , )  + 7V 
Z /=■ / = ! ' •+ / = !

Qh ~  _ +C’//„a + C '//„^  + X CWA, + X C«4^ / ) + T (C//,^> + ^wt,0  + C’//,^  + X C’//, £ , )  + Th
Z  /=> /=!  ^  , = l  ' *

e „  = £ ^ c c t , + c 1_ a + c tjJ8 + | ; c lj A, + j ; c Li f , ) + ^ H L ( C t, P + C ^ 2 + C 1.R  + X c t , f , ) + r .
/=! >=I /=|

=  d + C v, G r  +  C Wa^  +  ^ ( C Wi A ; + £ C . i , i £ , ) + — ^  ( C W(i P +  C v,t 0  +  C Wj P +  £  C Ut £ , )  + Te
-  i=i y=i 4 /=i ’'

Qv = P Y jJt(C(V + c Smor + CStP +  £ C.Vj A , + £ C Vi<f,)  + -̂ 5* ~ ( C V, P + C.Vu0  + C v,R + t , C sJ , )  + Tv
~ 1=1 / = ! ^ / = l ’'

2 {, - ^ ^ ( C * ,  + c 4, a + c \ I, £ + £ c fc A, + X c 4, i n ^ S - i c ^ p + C f s e + c 4, «  + X C i.  £ > + r 4
^ ;=1 ;=i ^ y=i ”

(2.2)

Analysis of aeroelastic vehicle dynamics often requires information pertaining to 

the translational acceleration and rotational velocity at various points throughout the 

airframe. Starting with the former, the translational acceleration o f infinitesimal mass dm 

in Figure 2.1 is

A = ^ — {R + T) (2.3)
d r

where d(-)/dt denotes a derivative in the inertial frame. Upon expanding Equation (2.3J 

with basic principles, the acceleration becomes

A = ^ - ( V + ^ - )  + n x ( V + ^ )  (2.4)
dt dt dt

where <?(•)/ dt denotes a derivative in the body frame. Further expansion of Equation (2.4)

yields

7 .7 32<y - da dQ. _A = —  + Q.XV + — ^ -+ 2 Q x ^ L  + —- x ( p  + q) + n x ( n x ( p  + q)) (2.5)
dt dt~ dt dt
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If the body frame components of A are denoted as

A = A xi + A vj  + A:k  (2.6)

then expressions for the component accelerations are 

Ax = U + Q W - R V + t q+2(QZ'i -Ry’'t)+Q(zp + zil) - R ( y p+yq) - ( &  + R2Kxp+xq) + P a y p +>\) + PR(zp + zlf) 

A ^= V  + R U - P W + y ti+2aii if-P zv) + R(xp +xtl) - P ( z p + Z'l) - ( P 2+R2)(yp + y<,) + P a x p +xii) + R a z r +ztl) 

A.  = W + P V - Q U + z q +2(Pvq -Qxq) + P(yp + yq) -Q (xp +xq) - ( P 2 + Q2)(zp + zq) + PRLxp +xq) + QRyp + yq)

(2.7)

where

n

x « = ( = i

-VV = X ^ v .^ , (2'8)
1 =  1

Note these acceleration expressions are dependent on the measurement location explicitly 

through x, y  and z and implicitly through <px (x, y, z ) , <py (x, y ,  z ) , and <f>. (.r, y, z ) .

In similar fashion, expressions for the rotational velocity depend on the

measurement location but only implicitly through deflection shape. Considering a general 

deformation state for the infinitesimal mass dm in Figure 2.1, the rotational velocity is

Cl' = Cl + ̂ -(curl(q))  (2.9)
dt

This general expression accounts for significant modal deflection in all three body axes.

If the body frame components o f £2'are denoted as

Cl' =  P't + Q'j + R'k ( 2 . 1 0 )
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then the expressions for the component velocities are

r = l 1 dy dz

d<p_

dz dx

, ^ v , f y . . ,
' dx dy

Equations (2.7) and (2.11) describe auxiliary equations for extracting additional 

information from the complete model.

Equations (2.1), (2.7) and (2.11) are typically recast into first order state space 

form to facilitate their solution. For example, consider the equation of motion for the 

aeroelastic mode in Equation (2.1). This equation is a second order differenential 

equation which can be represented by two first order, differential equations. If one 

introduces the notation xj and x2 for the generalized deflection and rate, or

*2  = (2.12)

then the i,h aeroelastic mode equation o f motion can be represented in state space form as

x  , = x  2

* i  =  “ 2 ~ 0 ) f x y + ( — ) Q f  (2.13)
m ,

Reformulating the governing equations for U, V  and W  is accomplished by simple 

division and rearrangement. Equations for P, Q and R and 0,  <9 and V'are more involved. 

These equations are coupled at the first derivative level and must be simultaneously

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



31

manipulated to achieve the state space form. Equations for X, Y and H  are already in state 

space form. After this process, the nonlinear state space model can be represented as

Elements o f the vectors X, U and Y  denote the state variables, inputs and outputs, 

respectively. Also, the functions /  and g denote the nonlinear structure of the aircraft 

motion equations. Finally, nA and rin denote the number of translational acceleration and 

angular velocity output sets, respectively.

To perform synthesis o f conventional control systems for an aircraft, linear 

equations are required. Various linearization techniques including numerical and 

analytical approaches are available for generating linear models. Two main reasons for 

using an analytical approach exist. First, linear stability and control derivatives can be 

estimated well before nonlinear aerodynamic data becomes available. The analytical 

model provides a framework for these early models. Second, the symbolic small 

perturbation equations provide a great deal o f insight into the relative importance of the 

various stability and control derivatives under different flight conditions and into their 

effect on the stability and performance of the aircraft motion. Analytical linearization 

using a small perturbation approach first considers all variables to be given by the 

addition of a reference value and a perturbation value. The reference values correspond to

X ( t )  =  f ( X { t ) , U ( t ) )  

Y (t) =  g ( X  ( t ) , U (t))
(2.14)

where

X = [ U V W P Q R X Y H < P O ' ? £ i •• ]r

(2.15)
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an equilibrium solution of the nonlinear equations. After substituting these expanded 

values into the nonlinear equations, canceling the reference solution, and neglecting the

nonlinear terms, the linear model is obtained. To illustrate this method, the governing

equation for U in Equation (2.1) will be explicitly linearized.

The governing equation for U is

U = R V  — Q W  — g  sin 0  + Q x /  m (2.16)

The equilibrium solution to this equation is denoted by subscript “0” , or

Uo =  — QqWq — g  s in 0 O +  Qx / m  (2.17)

Returning to Equation (2.16), consider each variable as consisting o f a reference value 

plus a perturbation value, or

UQ =  +r)(K0 + v )-(Q , +q)(W0 + w )-g s in (0 o +0) + (fi*„ +qx) lm  (2.18)

Expanding this equation yields

UQ+u = (%yo+/^v+V^r+rv)—(QjV^+QjW+M^r+^H)—g(sirfi|jCOS0+co‘E^sin^)+(<2Vo +qx)lm (2.19)

For small perturbation values, ignore multiplication terms involving perturbation values 

and consider the small angle approximations

sin 0  ~ 0
(2.20)

cos 6  = 1

This process results in

UQ +«=(/^V 0 -Q)W0 - £ s in 0 o +QXo / n^ + ̂ v  + Var-Q ^w-W ^q-gcosB0d + q x / m) (2.21)

After canceling the reference solution, Equation (2.21) thus reduces to the following 

linear form:

u = Rov + Vor - Q Qw —Woq — gcosQQ0  + qx /m  (2.22)
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Note the lower case notation represents perturbation values, while upper case notation 

denotes the full values. Similar steps are applied to the other equations.

After this process, the linear state space model can be represented as

.r ( t ) = Ax  ( t ) + Bu ( / )
(2.23)

>’ ( t ) =  Cx ( t )  +  Du ( t )

where

x  = [u v vv p  q r x  y  h <p 0 Iff •••£ ,]r

«=[<*. " A J T (2-24)

y = [a„ • • • a T<< av, • • • a a . • • • a^ p\- - q[- -q'ar'-■ ■ f

The elements o f vectors x, u and _y are also termed the state variables, inputs and outputs, 

respectively. Additionally, A  is the state dynamics matrix, B is the input driving matrix, C

is the output sensing matrix, and D is the direct feed through matrix.

The linear model at this stage is very general, encompassing many features. For 

the dissertation research, a specialized model is considered. The equilibrium solution 

corresponds to a wing-level, level rectilinear flight condition. Only longitudinal or 

symmetric motion will be considered, and the vehicle is assumed to exhibit strictly 

symmetric aerodynamic, structural, and propulsive behavior. Translational kinematics 

states are o f no interest here and will be neglected. Structural deformations in the x  axis 

are negligible and dropped. The number of aeroelastic modes retained in the simplified 

model is 18. A single input corresponding to elevator deflection is considered (nA= l ), and 

no acceleration output variables are considered (n.A=0). The output variable consists 

entirely o f angular velocity signals corresponding to points along the fuselage centerline.

Under these conditions, the state and output equations represented by Equation 

(2.23) become
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u  =  X u i i  +  X B w  +  ( - W +  X q ) q - g  c o s O d +  Y ,  X 4 i 4 ,  +  £  X i , +  X 6 , S e
,=i ,=i

vir = z „" +  z uH' + (*/ + Z , )? -  5 sin 0 0  + £  Z , +  £  Z .( + Z ^ S E
/= 1  1 / = !

18 18

q  =  M u u  +  M w \ v  +  M l l q  +  ' £ M '  + M s f S e

/ = !  ’ /=1

0  = <7 (2.25)

IS 18
w + F ^ q  + 2 F tJ ,  + ( /^  - 2 ^ £ + £ / ^ / + ( ^  - c o ; ) l + F , StS E

K

/*»

a/
■ = £  ( i=I,2,  ... 18)

18 3 0 .

<7,' = 4 ,- £ - T 7 ^ >  0'=A2.......... «n)
/=! O.V

Here the state, input and output vectors are

x  = [u vv q  0  £  •••£lJ r

« = [ ^ £ ]r (2.26) 

y  =  [<7 , ' - - < ] r

In Equation (2.25), the parameters Zp Mp FtJ with j = u ,  w, q, S E are

dimensional stability and control derivatives having their origin in the aerodynamic

30.
coefficients in Equation (2.2). Also, in Equation (2.25), the term s— — are referred to as

dx

mode slopes and will be denoted by 0 '.

The control design technique considered in this dissertation lies in the complex 

frequency domain. To convert the linear state space model in Equation (2.23) from the 

time domain to the frequency domain, application of Laplace transform theory is
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considered. At a fundamental level, the Laplace transform replaces differential equations 

with algebraic equations, which are more amenable to dynamic analysis and control 

design. Application of the transform to Equation (2.23) yields

y(s) = G(s)u(s)  (2.27)

where

G ( s )  = C  ( s i  -  A ) ~ l B  + D  (2.28)

G(s) denotes the transfer function matrix and s represents complex frequency. The

relationship between the i'h output y, and the f h input Uj is

nx (s)
y ,(s ) = g,j(s)u (s) =  "  ---- u t (s) (2.29)

d g (j)

where gifs)  is the ij element of G(s) with numerator and denominator polynomials kKIJ 

n„ (s) and d r ( s ) .
S  i/ .**

2.3 Numerical Model

Reference 17 contains numerical data consistent with the linear model structure

given in Equation (2.25). A modified version of this data is documented in the Appendix

for utilization in this dissertation. This data corresponds to a large high-speed transport 

whose three-view drawing is given in Figure A .I. The vehicle is characterized by a 

slender fuselage and cranked arrow wing with a conventional tail. The data corresponds 

to an ascent condition at weight 730,000 Ibf, Mach 0.6 and altitude 6,500ft . The original 

model from Reference 17 is awkward in that coupling existed at the w, vv, q , £  , S E

level. Elimination of this coupling by algebraic manipulation of the governing equations 

was first implemented. Second, Reference 17 indicated a discrepancy in the imbedded
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actuator model. To eliminate validity concerns, the supplied actuator dynamics were 

residualized out of the model. Finally, the stability derivative M w was adjusted to bring 

the static margin from a value of 7.3 % stable to 10 % unstable. With the listed 

modifications, the numerical data corresponds precisely to the model in Equation (2.25) 

and represents behavior exhibited by current high-speed transport configurations under 

study. The numerical model in the Appendix is identical to that used in Reference 45.

The original mode shape data from Reference 17 is of a graphical nature, i.e., 

plots of fuselage centerline mode shape deflection vs. fuselage centerline station number. 

This information was converted to a numerical format by utilization of a graphics tablet 

input device with computer interface. Mode shape plots of this raw data were judged to 

be excessively rough for direct use in sensor placement studies. Therefore, polynomial 

curve fits to the raw data have been generated. Mode shape plots generated from the 

polynomial functions compare closely with the original information from Reference 17. 

The polynomial fits provide a significant capability and benefit, that being a smooth and 

continuous transfer function behavior during optimal sensor placement studies. The 

model in the Appendix is o f  such form that sensors can be placed anywhere along the 

fuselage centerline, and the corresponding model characteristics are easily generated. 

High order polynomials with /6-digit precision are used in the fits. Readers are warned 

that truncation of the 16 digit information can lead to inaccurate mode shape 

representations. The results in Reference 45 utilized the full /6-digit information but 

unfortunately only documented truncated mode shape information (4 digits). The 

Appendix documents the full 16 digit information.
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Figure 2.2 shows the aeroelastic mode shape data that will be critical during 

optimal sensor placement and control system development. In this Figure. xs and zs denote 

the structural axes indicated in Figure 2.1. In Figure 2.2. the nose and the tail o f the 

vehicle are at xs—I20  in and xs=3,640 in, respectively. The vehicle mass center is located 

at xs=2,364 in, although not associated with any specific mass particle. These modes 

represent free-free fuselage bending modes. Note the I st and 3rd modes are similar to the 

first two modes o f a free-free vibrating beam, but the 2nd mode appears similar to a 

cantilevered beam bending mode. At a given value of xs, note that the corresponding 

mode slope <f>' directly influences the measured pitch rate signal (see Equation (2.25)).
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Figure 2.2a Aeroelastic Mode Shapes / ” -  9th
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Figure 2.2b Aeroelastic Mode Shapes ICfh -  18,h

Table 2.1 lists the vehicle transfer function poles and zeros for two rate gyro 

sensors located near the mass center (xs = 2,364 in) and near the cockpit (xs = 470 in), 

both excited by the elevator. Further, Figures 2.3 and 2.4 show this same information 

graphically in a pole-zero plot. Examination of the vehicle poles in Table 2.1 and Figure 

2.3-2.4 reveals a slow and fast rigid-body mode consisting o f real roots at s=+0.10 rad/s 

and s=-1.2 rad/s. Note the slow mode is unstable. An additional mid frequency, 

moderately damped rigid-body mode referred to as the mid period mode, exists. This root 

structure is common for relaxed stability airframes. Another key denominator feature to 

note from Table 2.1 and Figure 2.3-2.4 is the 1st aeroelastic mode (s = -0.48±6.6i rad/s) 

encroachment upon the rigid-body modes. The frequency separation is on the order of 5
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rad/s ( 1/r, = 1.2 rad I s vs. 69, = 6 .6  rad/s) .  Also note the low damping values 

associated with all aeroelastic modes. For example, the / "  mode damping ratio is 

Ch = 0 .072.

Table 2.1 Pitch Rate to Elevator Transfer Function Roots

Pole Location 

(rad/s)

Zero Location (rad/s) Description

xs = 470 in 

Near Cockpit

xs= 2,364 in 

Near Mass Center

0.1024 0.0000 0.0000 Slow Mode, Pitch “Rate"

-0.1347±0.1093i -0.0077 -0.0080 Mid Period Mode, I /  Tgx

-1.2131 -0.9375 -0.8211 Fast Mode, 1/ re2

-0.4810±6.6284i 5.6026, -6.3884 -0.2403±4.5713i 1st Aeroelastic Mode

-1.9880±11.5569i -2.3033 ±  11.7474i -2 .1131±11.56881 2nd Aeroelastic Mode

-1.4348±14.7947i -0.8283±16.7504i -I.1452±16.3948i 3rd Aeroelastic Mode

-0.2287± 16.4596i -0.4480±23.7592i -0.2708±l6.9802i 4th Aeroelastic Mode

-0.6288±23.3865i -0.2041±27.450 li -0.5570+23.5419i 5'*1 Aeroelastic Mode

-0.6680±26.0989i -0.7510±30.2251 i -25.0609, 25.9264 6th Aeroelastic Mode

-1.9759±28.6077i -3.2524±29.1919i -0.5456±26.8727i 7th Aeroelastic Mode

-0.5698±30.2615i -0.978 l±32.9799i -2.1659±28.6276i 8th Aeroelastic Mode

-0.7014±32.1397i -1 1.8388±l9.9198i -0.6405±30.3500i 9th Aeroelastic Mode

-2.189 l±34.0659i -0.9128±35.6675i -0.5182±32.6955i 10,h Aeroelastic Mode
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-0.9040±35.6531i 11.5102=t 19.2991 i -2 .4196±34.8419i 11Ih Aeroelastic Mode

-1.0334±37.6964i I.7893±40.1607i -0.7639±35.6178i 12th Aeroelastic Mode

-2.0190±40.0829i -4.0517±40.4330i -0.9334±39.1756i 13th Aeroelastic Mode

-0.9878±42.3940i -0.7905±43.0678i -0.9681±41.7 5 15i 14th Aeroelastic Mode

-1.1154±44.0400i -0.8519±44.4465i -1.2387±43.8843i 15lh Aeroelastic Mode

-0.9673±45.2972i -0.7497±47.0483i -1.0067±44.9968i I6lh Aeroelastic Mode

-2.7348±46.5602i -2.8929±47.2543i -2.7105±46.3I99i 17lh Aeroelastic Mode

-1.0438±47.2865i -55.2341,65.5153 -0.8922±47.4450i 18lh Aeroelastic Mode
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Figure 2.4 Pole-Zero Locations for xs=2,364 in

Figures 2.5 and 2.6 show the q ' l S E frequency responses for xs=470 in and 

xs=2,364 in. Observe the limited frequency separation between the fast rigid and 1st 

aeroelastic modes near 1 and 6 rad/s. Low aeroelastic mode damping is also evidenced in 

Figures 2.5-2.6 by the many sharp peaks in the magnitude responses. The presence of 

these large peaks indicate significant aeroelastic participation in, and contamination of, 

the pitch rate signals. This information is also observable from Table 2.1. For example, 

the mass center numerator roots s=-0.24±4.6i rad/s do not sufficiently “cover” the I st 

aeroelastic poles at s=-0.48±6.6i rad/s, which corresponds to the large valley and peak 

near 6 rad/s in Figure 2.6. Finally, observe the phase roll off in the cockpit sensor
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frequency response near 6 rad/s. This phase loss is a direct result of the absence of a 

complex numerator root for the I st aeroelastic mode (see Table 2.1 for x,=470 in). In fact, 

the corresponding zeros are real with s=+5.6 rad/s and s=-6.4 rad/s. Note one of these 

roots is the strongly nonminimum phase. This contrasting numerator information 

illustrates the point that sensor location strongly influences the resulting dynamics.
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Figure 2.5 Frequency Response iox xs—470 in

R e p ro d u c e d  with p e rm iss ion  of th e  copyrigh t ow ner.  F u r th e r  rep roduction  prohibited w ithout perm iss ion .



43

_Q
T3

T3?0
CO

TJ
05

CD■o3
'E
0 5
CO

0 5
CD73.
CD
CO
CO

-40 r

•> 1010 10 10 10

Frequency ( rad / s )

Figure 2.6 Frequency Response for xs=2,364 in

Figures 2.7 and 2.8 show the corresponding time responses for a nose up 0.01 rad  

elevator step command. For a moderately flexible vehicle, a rate gyro sensor placed near 

the mass center will typically yield an acceptable response. In this case, the response in 

Figure 2.8 is unsatisfactory due to the unstable airframe divergence and oscillatory 

aeroelastic motions. Also note the initial short duration response reversal due to the right- 

half plane zero at s=+25.9 rad/s (see Table 2.1). Matters are even worse for xs=470 in. 

Due to the extreme levels o f flexibility in the vehicle structure and the location of the 

crew station relative to the input device, the cockpit pitch rate response in Figure 2.7 

exhibits a harsh high frequency vibration environment with strong response reversal. This
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nonminimum phase characteristic can be traced directly to the s= + 5 .6  rad/s zero in Table 

2.1. In summary, the airframe dynamics are unacceptable for manual control by the pilot, 

and flight control augmentation is necessary.
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Figure 2.7 Step Response iov xs=.470 in
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Figure 2.8 Step Response for x<=2,364 in

2.4 Aeroelastic Flight Control

At this time, production flight control systems are still primarily designed with 

conventional techniques. Widely available and highly attractive contemporary techniques 

developed over the last quarter century are being considered for such applications, yet 

conventional techniques still hold a prominent position in the practice of flight control. 

Several important factors contribute to this longevity. Conventional methods are based on 

direct, explicit, and often graphical frameworks that link the relevant closed-loop features 

to the design freedoms. These attributes foster insight and confidence in the control law’s 

stabilization and/or augmentation of the vehicle. The role each feedback loop plays in
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leveraging specific plant modes, or the effect of individual compensation parameters on 

key closed-loop traits, is transparent. Such methods yield low order, minimal architecture 

solutions that are amenable to modification during test and development. As with any 

design method, conventional techniques also have weaknesses, the major ones being an 

inability to fully address multivariable systems and parametric uncertainty.

Based on these observations, the Evans root migration technique is selected for 

aeroelastic flight control development in this dissertation. Even with this design 

technique, a precursory step is to identify suitable feedback sensor locations. For if the 

vehicle transfer dynamics are not suitable, then no amount o f gain adjustment or filter 

equalization with the Evans technique will yield satisfactory results. Optimal sensor 

placement is the primary dissertation focus, but before considering that topic, 

familiarization with the design technique and the desired objectives must be briefly 

reviewed.

Consider a 2x1 system (see Equation (2.27)) whose dynamics are to be augmented 

with feedback, such as an aircraft with inherent deficiencies, or

y, (s)
_y2 (s)_ _£2|(J )_

In this development, the output signals are generic. However, in the high-speed transport 

application, y/ and y2 could represent pitch rate measurements from two gyro sensors, 

while u may represent elevator deflection. Suppose the to u loop is closed with forward 

path compensation. The feedback control law is
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u(s) = k(s)(y, (s) -  y, (s )) (2.3 I )

where k(s) denotes the compensator transfer function and y/t- is the command signal 

entering the loop. Figure 2.9 shows the corresponding block diagram. The compensator 

k(s) is further expressed with numerator and denominator polynomials kknk(s) and dk(s), 

where nk(s) is monic. The purpose of this loop might be to augment damping or quicken 

the response of important modes or to stabilize inherent airframe instabilities, for 

example. Substituting Equation (2.31) into Equation (2.30) yields the closed-loop system, 

or

v f 7 ' k{s)gn (s)
>|(J) ~ . >u-Xs )

1 + k(s)g l l (s)

In Equation (2.32), note the denominator polynomial is strongly influenced by the 

feedback, while the original numerator polynomials are preserved and combined with 

compensation numerator terms.

y l c

~  V^ ----------------- kCs)   1 G (s)

Figure 2.9 Closed-Loop System with One Feedback
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For a given plant ( k  n ( s ) . d l!{s)) and compensation (nk(s), dk(s)), the Evans

root locus technique is used to relocate the closed-loop denominator roots for various 

values o f kk. 117118 The characteristic equation from Equation (2.32) can be written as

l + k ( s ) g „ ( s ) = 0  (2.33)

The root locus method provides a graphical means of evaluating the roots o f Equation

(2.33) as kk varies. To develop a few key design guidelines for this method, Equation

(2.33) is rewritten as a magnitude and phase condition, or

I k ( s ) g u ( s )  1= 1 (2.34)

Z k ( s ) g u (s) = 180" ± 3 6 0 V  (2.35)

where r  denotes any integer. If the combined plant-compensator polynomials are factored 

as

(2.36)
n  k  ( -v )  n  K  „  (  J  )  =  (  5  +  s  i ) (  5  +  z 2 )  ■ ■ ■  (  5  +  z m - )

d k ( s ) d K ( s ) =  ( s  +  p  , ) (  5  +  p  , ) • • •  ( 5  +  p  n. ) 

then the magnitude and phase conditions become

n 15 + p >1
I |= -------------   (2.37)

i * , „  i n  i 5 + c, i
/*1

nt n
Z k t + Z k Su + ^ Z s  + z , - ^ Z s  + p , =  ISO" ±360°r (2.38)

/=i i=i

In Equations (2.37)-(2.38), r i and m denote the number of poles and zeros in the 

combined plant-compensator or open-loop system. Any point in the Laplace plane that 

satisfies the above two conditions is a possible closed-loop pole location for some value 

of**.
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From Equation (2.37), note that for a value of s equal to one of the poles {s=-p,), 

the gain kk is null (IAr*I=0). On the other hand, for a value of s equal to one of the zeros 

(s=-zt), or an infinite value (151=00) for n > m  , the gain kk is infinite (|&A.|=oo). Therefore, 

the first guideline is the closed-loop pole migration paths initiate at the open-loop poles 

for \kk\=0 and terminate at the open-loop zeros, or at infinity, for \kk\=°°. Figure 2.10 

illustrates this guideline. As the compensator gain is increased, the closed-loop poles will 

move away from the open-loop poles and towards the open-loop zeros. This guideline is 

a fundamental rule that is useful when trying to shape the migration paths with either 

filter equalization or sensor placement.

S lu 1 -0 1 ico

/
^ ~ Z 2

lkkl==° lkkl=0 x J lkkl= 0
N

o
P4 - P .

—P-

Figure 2.10 Guideline for Initial and Terminal Points
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In Equation (2.38), consider the stabilizing case when k* is chosen to have the 

same sign as & To satisfy the right-hand side of this expression, the left-hand side must

lead to an integer multiple of 180 deg. For a given value of s on the real axis (s=C7). 

Equation (2.38) requires the total phase from the polynomial factor terms to also equal an 

integer multiple of 180 deg. The only condition leading to this equality is when an odd 

number of poles and zeros lie to the right of the s  value location. Due to symmetry about 

the real axis, when counting the number o f open-loop poles and zeros to the right o f the s 

point, one only needs to consider poles and zeros on the real axis. Therefore, a second 

guideline is the closed-loop pole migration path will lie on the real axis only in the region 

where they are to the left of an odd number o f open-loop poles and zeros. Figure 2.11 

illustrates this guideline. This guideline is another fundamental and well known rule that 

is useful when designing the closed-loop system with this technique.

ICO

X

S+Zi

s a

X
2.11 Guideline for Real Axis Segments
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Reconsider Equation (2.38) again with kk and k having the same sign. Now 

consider a value of s located very close to the f x open-loop complex pole (s=-pj+e , 

Ifl—>0 along the migration path). The angle o f departure is defined as the angle between 

the real axis and the tangent line to the migration path at the initial point corresponding to 

Ikk\=0. Mathematically, this angle is defined as

° d ' =  S S o  P j ^ s — p ^ e  (2.39)
a l tm ^  ItK t

and with Equation (2.38), an expression for this departure angle is

0Jj= i ^ s + z , ) \ ss_p - I Z(s + Pl ) \^_p +180" ± 3 6 0 "r  (2.40)
/=! f  r=l '

' * /

-Pa

^ico

s + Z ! | s = _ P j  -   / v f S  \
/  /

—z
, S +Z il S+ >̂l*s= —P;

s+ ,+ = - p . /
7 - Z i w  a

s+ ^ ls=-p, 7 S+Pils=_p,1

—  Z 3

- pX -p3

Figure 2.12 Guideline for Departure Angles
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Therefore, a third and final guideline is the closed-loop pole migration path initially 

departs from the open-loop complex pole location with an angle governed by Equation

(2.40). Note this departure angle is completely determined by the open-loop root 

locations. Figure 2.12 illustrates this guideline. This guideline is also a fundamental rule 

that is useful in Evans control design. There are many other guidelines developed in 

References 117-118, but these highlighted results are particularly useful here.

General objectives of the flight control system are to supply artificial stability, 

which is inherently lacking in the bare airframe, to reshape key pilot or passenger 

centered responses to satisfy handling and ride requirements, and to suppress aeroelastic 

motions in all responses. Specifically, the control system should stabilize the unstable 

slow mode in Table 2.1 and should do so in a manner which leads to conventional 

response types with appropriate behavior. Simultaneously, the control system must 

stabilize and suppress the aeroelastic modes in Figures 2.3-2.4 by either gain stabilization 

(approximate mode cancellation) or phase stabilization (increased damping) strategies. 

Note that gain stabilization here in an Evans context has a slightly different connotation 

than in a Bode sense (e.g., attenuation or lk(/£U)g,,(i£y)l «  1).

First, consider the low frequency, rigid airframe stabilization and handling-ride 

quality objectives. Careful examination of the low frequency pole-zero root structure in 

Table 2.1, coupled with Evans design rules mentioned previously, reveals that a 

proportional plus integral feedback of pith rate, or

* <  * ,  = * * < * + * .  > (2.4D
5
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results in 1) stabilization and suppression of the unstable slow mode by driving it into the 

1/ Tgi zero, 2) suppression of the stable fast mode by driving it into the l / r e, zero, and 3) 

augmentation of the mid period mode by relocating it to a more desirable region in the 

complex frequency plane. Figure 2.13 illustrates these key features of the control loop. 

For sufficient control gain kk, the slow and fast modes are essentially eliminated from the 

dynamics, and the mid period mode is converted into the dominant oscillatory pitch mode 

with desirable damping and frequency. As this latter root migration path wraps around 

the compensator zero -zt, the pitch mode damping and frequency can be easily and 

directly tailored with parameters kk and zt- Note the open-loop system is not rigorously 

Type /  because the pitch “rate” zero precisely cancels the integral action in Equation

(2.41). However, the augmented slow mode will lie close to the origin, and the closed- 

loop system will thus behave similar to a pitch rate command system over the initial 

duration o f interest. This response type is consistent with the short period approximation. 

This control architecture has been referred to as a “superaugmented pitch loop” and is 

highly attractive.45'47 Alternative feedback signals can be used to stabilize this type of 

airframe,7 but these possibilities are not considered here.
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Figure 2.13 Low Frequency Augmentation

Now consider the high frequency, flexible airframe stabilization and suppression 

objectives. Close examination of the high frequency pole-zero structure in Table 2.1 or 

Figures 2.3-2.4 reveals that in most cases a lightly damped flexible mode lying near the 

imaginary axis is accompanied by an associated zero. Typically, the zero lies near the 

pole, but in some cases the zero can be far removed from the pole. This lightly damped 

pole-zero pair is commonly referred to as a dipole, and the location of the zero, relative to 

the pole, is critical for influencing closed-loop behavior. Using the Evans design 

guidelines developed previously. Figure 2.14 illustrates the various closed-loop 

possibilities. If the zero is very close to the pole (i.e., a tight dipole structure), the root 

migration path is constrained to lie within a small region near the dipole. In this situation, 

the aeroelastic mode is gain stabilized and the mode is essentially removed from the 

corresponding closed-loop input-output channel. O f course, for a different input-output
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channel, the mode may not be similarly suppressed. The pole-zero separation (dipole 

magnitude) is critical here.

In contrast, if the zero is distanced from the pole (i.e., a loose dipole structure), 

the root migration path can be significantly displaced from the initial point, allowing the 

potential for increased damping. The pole-zero orientation (dipole phase), and thus the 

angle of departure, is critical here. Using Equation (2.40) in the pitch control loop, 

favorable departure angles (e.g., Gd =180 cleg) occur when the zero lies below the pole.

This condition is referred to as phase stabilization. If the zero lies above the pole, a 

potentially disastrous condition can occur where the mode is destabilized or made less 

stable (e.g., Gd ~ 0  deg). In extreme cases, the zero can even lie on the real axis, with

minimum phase conditions being acceptable and nonminimum phase conditions being 

totally unacceptable. With this suppression logic, all input-output channels will see the 

increased damping. However, increased damping may actually lead to a degraded time 

response, due to the closed-loop dipole being more loose than its open-loop counterpart. 

Control of highly flexible vehicles typically boils down to a careful balance of aeroelastic 

gain and phase stabilization while augmenting the rigid dynamics.
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Figure 2.14 High Frequency Augmentation

As an example control design, consider closing the pitch rate loop with a sensor 

located near the mass center ( xs=2,364 in). The compensator root parameter is chosen as 

Zk=2 rad/s. Figure 2.15 shows the corresponding Evans root migration plot. In the low 

frequency, rigid dynamics region, note the similarities between Figures 2.15 and 2.13. 

The real axis modes are stabilized and suppressed, while the complex mode is 

transformed into a dominant pitch mode with desirable frequency and damping levels. 

These desirable low frequency traits are directly traceable to the selected feedback signal 

type and the compensation filter structure. In particular, the contribution o f q in Equation

(2.25) to q ' and proportional plus integral structure in Equation (2.41) are key. In the

high frequency, flexible dynamics region, note the similarities between Figures 2.15 and 

2.14. Aeroelastic mode I  is phase stabilized with potential for significant damping 

increase. However, the closed-loop dipole would be more loose than the open-loop
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dipole, possibly leading to a worse condition. Aeroelastic mode 5 is gain stabilized and 

effectively removed from the input-output channel. However, the damping is unaltered 

and the implications o f this may appear in other channels. Mode 4 is destabilized and 

unacceptable. Also note mode 12 most likely has an associated nonminimum phase real 

axis zero (see Table 2.1), again leading to an undesirable augmentation behavior. Overall, 

the augmentation features portrayed in Figure 2.15 are undesirable and/or unacceptable 

(due to the high frequency problems). These objectionable high frequency traits are 

influenced and affected primarily by the <p't (x) £ y(f) contribution terms in Equation

(2.25). Further, the mode slope terms are a direct function of sensor location (see Figure 

2.2). Thus, feedback of pitch rate measured near the mass center is not appropriate, and a 

more careful placement o f the gyro sensor is required.
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Figure 2 .15a Root Locus Plot for xs=2,364 in
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2.5 Manual Sensor Placement

Obtaining desirable features in the Evans plot for the large high-speed, highly 

flexible transport application is largely dependent on feedback sensor location, and in 

particular the mode slopes at the sensor mounting location (see Equation (2.25)). These 

slope values determine the aeroelastic content and characteristics in the feedback signal. 

Tailoring this signal content by manual sensor placement is “standard” practice. Such 

strategy is based on understanding and/or correlation between the mode slope 

characteristics at the sensor location (Figure 2.2) and the resulting transfer function 

dipole structures (Figure 2.15). The sensor is located to increase or decrease the effects 

from signal contamination on the feedback system. Aeroelastic contamination is 

minimized to reduce coupling and instability tendencies (gain stabilization), while it is 

maximized to actively control structural modes (phase stabilization).

To simplify the discussion, consider the mode shape schematic given in Figure 

2.16, which shows only the rigid-body, 1st aeroelastic, and 3rd aeroelastic mode 

deflections from the full set in Figure 2.2. Figure 2.16 can be thought o f as the initial time 

dependent deflection state immediately following a nose down elevator input. Note the 

rigid-body motion response is a nose down rotation. The upwards tail force deforms the 

fuselage such that modes I  and 3 undergo tail up deflections leading to a mode 1 nose up 

rotation and a mode 3 nose down rotation. Suppose a sensor could be theoretically placed 

on the mass center (position 0). In this case, all mode slope values are zero ( 0 ' = 0 ), and

the measured pitch rate becomes the “rigid” pitch state q (q'0 = q ,  see Equation (2.25)).

Assuming no aerodynamic coupling between the rigid and structural motion, it can be 

easily shown that the aeroelastic dipoles become maximally tight with the pole and zero
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precisely canceling. With aerodynamic coupling, the signal q itself contains some 

aeroelastic content, and the dipoles are consequently perturbed. Exact pole-zero 

cancellation will not occur. However, the dipoles remain relatively tight since the 

coupling path is an indirect mechanism. References 42 and 44 fully document these 

observations. If the design objective is gain stabilization, then placing the sensor at the 

mass center is the theoretical optimum situation.43

Now suppose the sensor in Figure 2.16 is located at position 1. At this location, 

the mode slope 1 is nearly zero (0,' = 0 ), and mode slope 3 is significantly nonzero and 

negative (0( « 0 ) .  Equation (2.25) implies that the mode I  content in the signal q\ is 

negligible, while the mode 3 content is significant and is out-of-phase with the rigid 

content (i.e., + q and - 0 ' are of different sign). Consequently, the mode 1 dipole will 

be tight, while the mode 3 dipole will have an undesirable orientation with the zero 

located significantly above the pole. The direct pick-up o f the -0 , <£, term by the sensor 

in Equation (2.25) is a direct mechanism, consequently, the dipole is significantly altered. 

If the design objective is gain stabilization, then sensor position 1 is beneficial for mode 

/ ,  but a serious problem occurs with mode 3 (phase destabilization).

To resolve this problem, suppose the sensor is relocated to position 2. Here, 

03'  = 0 and 0 ' »  0 .  The term -0 3'  will be negligible in Equation (2.25) and the mode 3 

dipole will be tight (gain stabilization). Additionally, the -0,' term will be significant 

and in-phase with the q term in Equation (2.25). The mode 1 dipole will have the zero 

located well below the pole leading to a phase stabilization condition. This closed-loop 

behavior may or may not be acceptable depending on the specific design objectives.
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Based on the mode shapes indicated in Figure 2.16, significant trades between the mode / 

and 3 dipole structures for various sensor locations exist. With many modes such as in 

Figure 2.2, the manual sensor placement task is extremely challenging with many 

constraints from conflicting modes.

IVfode 1

Rate Gyro Sensor

Nose

cm
Elevator
Deflection

Figure 2.16 Initial Deflection State for Elevator Down Input

Now suppose the design objective is to phase stabilize most or all aeroelastic 

modes. The only region where both mode 1 and mode 3 have in-phase motion with the 

rigid motion is near the vehicle tail (position 3). For a sensor placed in this region, 

<p[ »  0 , 03' »  0 and the terms - 0,' and - 0 ' are initially sign consistent with +q in 

Equation (2.25). Each dipole should have its zero oriented below the pole (phase 

stabilization) allowing for augmentation o f aeroelastic damping. This sensor placement 

corresponds to a “collocated actuator-sensor” solution. As stated previously, significant 

damping augmentation is synonymous with loose closed-loop dipole structure, and the 

resulting response behavior may be objectable. Further, if the aerodynamic coupling 

mechanisms are strong enough, the indirect mechanisms may alter the dipole structures 

from that stated above.
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To demonstrate some of these issues with the full vehicle model, consider a phase 

stabilization objective for all aeroelastic modes. Inspection of Figure 2.2 with ail 18 

modes present suggests a gyro placed at xs=3,340 in (e.g.. elevator hinge line station) will 

result in 0 ' » 0  for all j  except j= 16  and 17 where 0 ' = 0 . Note this interpretation

requires reflection about the zero line of some of the mode shapes to be consistent with 

an assumed elevator down or tail up load. Figure 2.17 shows the corresponding Evans 

plot for this sensor location and for zt=2 rad/s. Most every aeroelastic pole is phase 

stabilized, with a few being gain stabilized. The near 180 deg departure angles are highly 

desirable for damping augmentation. However, the closed-loop dipoles would be 

significantly loose. Further note this all out phase stabilization objective has opened up 

the mode 1 dipole to an extent where the rigid-body mid period mode and aeroelastic 

m odel migration paths couple. The rigid pitch mode migrates towards the fundamental 

aeroelastic mode zero, while aeroelastic mode 1 migrates towards the compensator zero 

at -2  rad/s. This feature limits the amount o f all important rigid pitch damping that can 

be achieved. Unfortunately, sliding the sensor location forward destabilizes certain 

aeroelastic modes before the low frequency characteristics in Figure 2.17 are restored 

back to Figure 2.13.
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Figure 2.17 Root Locus Plot for xs=3,340 in

Now consider a gain stabilization objective for all aeroelastic modes. Inspection 

of Figure 2.2 shows a region near xs=2,000 in slightly ahead of the mass center where 

several (but not all) modes correspond to 0 ' = 0 .  especially mode 1. Figure 2.18 shows

the corresponding Evans plot for xs=2,000 in and z*=2 rad/s. In Figure 2.18, observe the 

desirable rigid body pitch augmentation features. Additionally, note the first aeroelastic 

mode is approximately cancelled by its associated zero (gain stabilization). However, 

both the 3rd and the 13th modes are particularly objectionable, showing instability as the 

loop gain increases. This destabilization is consistent with Figure 2.2 where «  0.
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Figure 2.18 Root Locus Plot for xs=2,000 in

Examination of Figure 2.2 also reveals a region near xs=2,500 in slightly aft o f the 

mass center where many modes have zero mode slope, including mode 3. Figure 2.19 

shows the corresponding Evans plot for xs—2,500 in and z*=2 rad/s. Note in Figure 2.19 

that many modes between 10 rad/s and 30 rad/s are gain stabilized. However, at even 

higher frequency, several aeroelastic modes are destabilized. Finally, note that desired 

rigid body pitch augmentation has broken down restricting the upper limit of achievable 

pitch damping.
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Figure 2.19 Root Locus Plot for .t,=2,500 in

To summarize the gain stabilization objectives, the forward sensor offers the 

capability to add significant damping to the rigid pitch mode, while simultaneously 

suppressing mode /. However, mode 3 is destabilized. On the other hand, the aft sensor 

achieves suppression of many modes, including mode 3, but at the expense o f limited 

pitch damping. Further, although the damping of mode 1 could be greatly increased, the 

closed-loop dipole will be excessively loose. The conclusion is that a single sensor 

architecture (see Figure 2.9) is not feasible for meeting the gain stabilization objective. A 

similar conclusion can be said about the phase stabilization results.
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Additional design freedom is achieved by considering a two sensor architecture, 

as shown in Figure 2.20. The strategy here (gain stabilization, for example) is to blend the 

desirable features of both fore and aft sensor signals and to avoid the undesirable 

features. Two rate gyro signals y ,  =  q \ , v ,  =  q\  will be blended into the single feedback 

signal y . as shown in Figure 2.20, where h {(s) and h2(s) denote blending filter transfer 

functions. In this situation, the feedback control law is

u(s) = k( s) (yc(s) -  y(s))  =  A:(j)(yc(j)  — hx(s)y\(s)  — hz( s ) y 2(s)) (2.42)

Substitution of Equation (2.42) into Equation (2.30) and providing allowance for the 

composite signal y  yields the closed-loop system

, v k ( s ) gu (s)
y . ( s )  = -----------------------------------------------------------------------y  ( 5 )

I + Ar(j)(/z, (5-)g,, (5) +  /i,( s )g2l ( j))

y, W  = ----------  k<»>^.<»>--------------- j>(J) <2.43,
1 + k i s ) ^  (s)gu (s) + h2(s )gzl (s))

_  k(s)(h](s)gu (s) + h2(s)g2l{s)) A
l + k(s)(h](s)gii(s) + fi2(s)g2l(s)) y‘

Note here the denominator polynomial is influenced by both feedbacks and both blending

filters. Within the closed-loop pole migration framework, the zeros can now be tailored

by blending the two feedback signals. However, note the y  signal does not correspond to

any single pitch rate signal obtained from the airframe.
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Figure 2.20 Closed-Loop System with Two Feedbacks

For the forward sensor {xsi=2,000 in), desirable low frequency characteristics 

below 10 rad/s are observed, while above this frequency undesirable behavior is present 

(see Figure 2.18). Note the opposite trend with the aft sensor (.r*2=2,500 in), undesirable 

features reside below 10 rad/s, while desirable characteristics are present above 10 rad/s 

until 30 rad/s is reached (see Figure 2.19). Therefore, low pass Filtering of the forward 

sensor with cut off at 7 rad/s will be used to preserve low frequency characteristics, while 

above 7 rad/s but below 31 rad/s band pass filtering of the aft sensor with break 

frequency at 7 rad/s and 31 rad/s will be used to preserve mid frequency characteristics. 

Attenuation of all feedback signals above 31 rad/s is enforced. Characteristics of both the 

low pass hi(s) and band pass h2(s) Filtering are shown in Figure 2.21.
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Figure 2.21 Low Pass Filter and Band Pass Filter Characteristics

Figure 2.22 shows the Evans plot for the blended sensor arrangement with 

xs=2,000 in and 2,500 in and the blend filters in Figure 2.21. The compensator parameter 

Zk is again 2 rad/s. The root locus behavior shown in Figure 2.22 correlates with the blend 

strategy. For frequencies below 7 rad/s, the closed-loop dynamics correlate with the fore 

design in Figure 2.18. A conventional, well damped rigid-body pitch mode is present, but 

mode 1 is slightly less gain stabilized. Note, however, the new zero appearing near —2 

rad/s and the 1st aeroelastic mode zeros pushed slightly to nonminimum phase. In spite of 

this, the low frequency characteristics appear desirable. For frequencies in the band 

between 7 rad/s and 31 rad/s, the closed-loop dynamics match the aft design in Figure 

2.19. The dipole structures, in general, are tight. The 3rd aeroelastic dipole structure could 

use further improvement, but is certainly more desirable when compared with the 3rd
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aeroelastic characteristics in Figure 2.18. Note the hard aeroelastic instabilities lying 

beyond 31 rad/s, which are inherent in the 2,500 in rate gyro signal.

Overall, the blended sensor strategy for gain stabilization captures the desirable 

features of both the fore and aft designs and looks promising. Note a similar manual 

blending strategy for the phase stabilization objective could be considered but is not 

pursued here. The blending filter parameters make the manual placement procedure less 

tractable. Utilization o f even more sensors would exasperate this trend. Thus, to fully 

exploit multi-sensor blending, development o f an optimal, auto sensor placement 

procedure is warranted.
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CHAPTER 3 

PARAMETER OPTIMIZATION CONCEPTS

3.1 Introduction

This chapter deals with the development of parameter optimization concepts 

including theoretic principles and numeric algorithms to be used in optimal sensor 

placement efforts. In this chapter, various classes of optimization problems will be 

presented and reviewed. The simplest class of problems that have no constraints on the 

independent variables will be introduced first. This problem class is called unconstrained 

optimization. Optimization problems having constraints on the parameter values, 

commonly referred to as constrained optimization, will be introduced as well. Both 

equality and inequality constraint cases are considered. Emphasis is given to the 

necessary and/or sufficient conditions for optimality. A numerical technique called the 

gradient descent method will be presented for finding the optimal placement of flight 

control sensors. This computational search method will be used in the dissertation 

research. This chapter also focuses on the formulation of candidate sensor placement 

criteria tailored for use in the conventional-based root migration flight control design of 

highly elastic vehicles. Attention is given to criteria based on root locus concepts such as 

departure angle and dipole structure. Additionally, constraint conditions on the 

independent variables and/or system properties are addressed. The main condition is to 

enforce minimum phase behavior for the open-loop transfer function.
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3.2 Unconstrained Optimization

Suppose an engineer is faced with the design task for a system having complex

nonlinear dependence on many variables requiring specification. Placement o f multiple

feedback sensors within a highly elastic flight vehicle is a prime example. Complete

understanding of relationships between the design variables and the resulting system

characteristics may be lacking and/or difficult to formulate due to high dimensionality

and nonlinear interdependencies. Critical system characteristics may drive the need for

not just a feasible selection of numerical values, but rather the “best” selection which

provides the “highest” benefit. In many cases, these variables cannot be freely chosen but

must satisfy various restrictions and requirements. In addition to selecting the design

variable values, the engineer must also formulate a meaningful metric to assess the

benefit. A design task of this flavor is well suited to parameter optimization concepts.119’ 

122

Application of optimization techniques and tools to large, complex, and multi

dimensional science and engineering problems is an effective and efficient solution 

strategy. Design and research in the areas o f flight vehicle dynamics and control, and 

many other areas, are beginning to employ such tools and concepts routinely. The 

applications have in turn furthered vigorous development of computational techniques 

and engendered new directions of research. Practical implementation of these theoretic 

principles with various numerical methods of high computational complexity is now 

possible with the availability of high-speed, large-memory digital computers.
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The mechanics of most parameter optimization problems can be described as 

follows: find the combination of independent variable values which optimize a stipulated 

quantity, possibly subject to some restrictions on the variable values. The quantity to be 

optimized (maximized or minimized) is termed the objective function. The variables that 

may be changed in the quest for the optimum condition are called decision parameters, 

and the restrictions on allowable parameter values are known as constraint functions. For 

a minimization problem, the objective function is commonly referred to as the cost 

function, while for maximization problems, the benefit function is considered. In this 

dissertation, parameter optimization techniques are classified according to the type of 

applicable constraints being enforced. These categories include no constraints, equality 

constraints, and inequality constraints. In the following discussion, concepts from 

Reference 119 are heavily used.

First consider unconstrained optimization. Unconstrained optimization principles 

address the conditions required for finding local minimums of multivariate functions 

whose arguments are continuous and on which no restrictions are imposed. This problem 

type is the simplest class of parameter optimization problems. Solution techniques for 

this class o f problems involve finding values o f the decision parameters that minimize the 

cost function, which is a function of these parameters. The principal objective here is to 

identify the necessary and/or sufficient conditions for optimality. Techniques for 

numerically achieving these conditions are considered later.

Let Uj for i = I, 2  n denote the ilh scalar decision parameter out o f a total set

containing n parameters, or

u, = / ' *  decision param eter ^  j ^

i = 1 ,  2, •• n
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In most problems, identifying the decision parameter set is obvious, but in some cases 

identification may require some effort. The decision parameters must form an

independent set. In the aeroelastic vehicle sensor placement focus, decision parameters

are primarily sensor locations (.r or .r,) and possibly blending filter and control 

compensation parameters (h/(s), h2(s), k(s)) described in Chapter 2. The decision 

parameters can be collected into a decision vector u, or

u = [ u l u 2 - u n)T (3.2)

Also let J  be the scalar cost function which depends on the decision parameters, or

/ ( « , ,  k 2, ••• un) = J ( u ) = cos t function  (3.3)

Formulating and identifying relevant and practical cost functions that have direct bearing 

on the overall design objectives is a critical step requiring considerable effort. This 

process should be well thought out and based on problem insight and familiarization, if 

possible. With respect to aeroelastic vehicle sensor placement interests for Evans-based 

root migration control design strategies, the cost function will be based on the key rigid- 

body and aeroelastic pole-zero geometric structures discussed previously in Chapter 2.

Suppose the cost function J  is a continuous function of u through second order 

partial derivatives. In this case, the Taylor series expansion for dJ  can be expressed as

d^(“ ) j  , 1 j  r d zJ(u)—— du +  —du ------ :
du 2 d u ‘

d J ( u ) = du + ± d u r \  d u + —  (3.4)

where the partial derivatives in Equation (3.4) are evaluated at some expansion point. 

From elementary principles o f calculus and Equation (3.4), necessary conditions for a 

local minimum are

Condition 1: —AUJ . = o (3.5)
du
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where

dJ(u) _^dJ(u) dJ(u) dJ(u) j_Q
du du. du,

Condition 2: 

where

d 2J( a)  

d u 2

du_

>0

(3-6)

(3-7)

d 2J (u)
d u 2

d 2J(u) d 2J(u) d 2J ( u)
du,di<, du,du2
d 2J(u) d 2J(u) d 2J (u)

du2du 2 d u 2dun

d 2J(u) d 2J(u) d 2J (u)
dundul dundu2 dundun

(3.8)

Condition I says the gradient of the cost function with respect to the decision parameters 

must equal zero. Each first order partial derivative or slope corresponding to individual 

decision parameters must have a zero value. In this situation, Equation (3.4) implies the 

tangent to the cost function hyper-surface is level, suggesting an extremity has been 

reached. Points satisfying Condition I are called stationary points and are feasible 

candidates for a local minimum. This condition, however, does not distinguish between 

maxima and minima. Condition 2 can be used to resolve this distinction. Condition 2 says 

the Jacobian of the cost function with respect to the decision parameters must be positive 

semi-definite. Each quadratic form involving the second order partial derivatives (or 

equivalently, the curvatures) must have a nonnegative value. An equivalent condition 

requires the eigenvalues o f  the Jacobian matrix to be nonnegative. In this situation. 

Equation (3.4) implies small changes in u will lead to nonnegative changes in J, thus
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ruling out the maximum case. Figure 3.1 illustrates these basic concepts for one 

dimension.

Equations (3.5) and (3.7) are necessary conditions. If a candidate decision vector 

does not satisfy these conditions, then it is not a minimum. If a candidate decision vector 

satisfies these conditions, then no rigorous conclusion can be made, although the 

candidate vector is a strong contender for being a minima. In Equation (3.7), the 

objectionable condition is d 2J / d u 2 = 0 .  A stationary point with d 2J / d u 2 =  0 is called a 

singular point. In these cases, additional information (i.e., third order derivative 

d i J / d u } ) is needed to establish whether the point is a true minimum. Sufficient 

conditions for a local minimum are Condition 1 and

Condition 3: ^  > q (3.9)
du~

Condition 3 says the cost function to decision parameter Jacobian is positive definite (or 

has positive eigenvalues). If a candidate decision vector satisfies Condition 1 and 3, then 

it is indisputably a minima, and such points are referred to as minimum points.

The aeroelastic vehicle sensor placement problem has certain constraints imposed 

on the decision parameters and other system properties, and thus does not precisely fit the 

problem structure outlined in this section. Therefore, the next section addresses equality 

constrained optimization. The topics in this section do, however, lay the foundation for 

these more advanced topics. As a final comment, numerical generation o f candidate 

decision vectors that satisfy Conditions 1, 2, or 3 are not considered until Section 3.5.
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Figure 3.1 Unconstrained Optimality Conditions for One Dimension

3.3 Equality Constrained Optimization

Theoretic principles for constrained optimization problems are more challenging 

than their unconstrained counterparts. This class of problem involves Finding values o f

the decision parameters «/, u2 un that minimize cost function J, which is dependent on

the decision parameters and on state parameters x/, x2,  x„b or

J(x\, x2,  xm_ ui, u2,  un) = cost function  (3.10)

In Equation (3.10), n and m  are the number o f decision and state parameters, respectively. 

The state and decision parameters are required to also satisfy equality constraint functions 

Fj of the form

0  = F, (xi, x2,  xm. u t, u2, ........... un) = i'h constraint function  (3.11)

i = 1 ,2 , m
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Equality constraint functions can be real physical constraints such as geometric/kinematic 

conditions or governing models from first principles. These types of constraints are easily 

identified in most problems. Equality constraint functions can also be stipulations by the 

engineer to illicit some desired behavior from the system. These types of constraints, 

which are effective but not overly restrictive, are more difficult to formulate. 

Identification of the state parameters can also be challenging at times.

To write the problem in compact form, state, decision, and constraint vectors can 

be written as

x = [x{ x 2.............x m}T (3.12)

« = r « i « 2 .............. u n ] r  (3 .13)

F = [ F , F 2..........Fmf  (3.14)

In compact form, the cost and constraint functions can thus be written as J(x,u) and 

F(x,u), respectively. The problem now is to find the decision vectors u that minimize cost 

J  where simultaneously the state vector x  is determined from the decision vector through 

the constraint F=0. The equality constraints thus add a new level of difficulty to the 

optimization problem. A first order necessary condition for the solution of this 

optimization problem is the gradient of the cost function with respect to the decision 

parameters, subject to the equality constraints, must equal zero, or

Condition 4: dJ{x,u)  ^  =Q (3 I5)
du

To develop this condition and to uncover the notational meaning in Equation 

(3.15), consider the differential Taylor series expansion for J  and F  through first order.
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Also consider the special points where dJ = 0 for an arbitrary change in du while holding 

d F  = 0. Inserting dF  = 0  into Equation (3.17) and solving for dx yields

If dJ  must equal zero for any du,  it is necessary for the row matrix coefficient o f du in 

Equation (3.19) to equal zero. This necessary condition is precisely Equation (3.15), or

Note Ju is the partial derivative o f J  with respect to u holding x  constant, while / '  is the

partial derivative o f J  with respect to u holding F  constant at zero. Points satisfying 

Condition 4 are called stationary points and are feasible candidates for a local minimum. 

As before, the first order condition does not clarify between maxima and minima.

To resolve this dilemma, reconsider the cost function Taylor series expansion in 

Equation (3.16), but now expanded through second order derivatives, or

where Jxu, Ju_x and Juu are the second order partial derivatives of the cost function with 

respect to x  and u as similarly defined in Equation (3.8). The constraint function 

expansion in Equation (3.17) is also recalled. From this expression at dF=0 , the

dx = —F~x Fudu ( 3 . 1 8 )

Substituting for dx in Equation (3.16) yields

dJ = U u - J lF; 'Fu)du ( 3 . 1 9 )

dJ(x ,u)
du F( x.u )=0 (3.20)

(3.21)
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differential state vector must still satisfy Equation (3.18). Substitution for dx  from 

Equation (3.18) in Equation (3.21) yields

d J = [ j x / „ £  F 'du ' dU Fudu)T
J,
J„

- F ; ' F mdu
du

+ --•(3.22)

<U=(J, - y ,F ,- 'F .W « + ^ « r y „  + F j F ^ ' j ^ F . ) d u + -  (3.23)

Define the second partial derivative of J  with respect to u holding F  constant at zero as

d J ( x ,u )  j r j  _ j  p- i  p  _  p Tp - ' r j  . p Tp~'r j  p~l p  n  741
- I  1 F {  r .f i  ) = 0  J  u u  J  u u  J  u . x r  x r u  C u  r x J  xu ^  C  u  r x J  X.X r  x C udu

Thus, Equation (3.24) yields a second order necessary condition for the solution of the 

optimization problem. The Jacobian of the cost function with respect to the decision 

parameters, subject to the equality constraints, must be positive semi-definite, or

Condition 5: 3 lF( t „)=0> 0 (3.25)

The objectionable condition occurs again when the Jacobian is identically zero. Thus, 

sufficient conditions for a local minimum are Condition 4  and

d 2J(x ,u)  
d u:

Condition 6: — — lf( IU|=0> 0 (3.26)

Another perspective for approaching the equality constrained optimization 

problem is the Adjoint Method using Lagrange Multipliers. This procedure is distinct 

from that just discussed, however, the procedure leads to the same conditions for 

optimality. This procedure is a popular and powerful approach that streamlines the 

solution steps and may offer additional insight and computational advantages.
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In this approach, the equality constraints in Equation (3.11) will be attached or 

adjoined to the cost function by a set o f undetermined multiplier coefficients A/, 

A2 A„, as follows.

m
H( x ,u , A],A2,---Am) = J  (x,u) + ^ A , F ' { x , u )  (3.27)

i=l

H(x,u ,A)  = J(x,u)  + AT F(x,u)  (3.28)

In Equation (3.27), the scalar coefficients A, are called Lagrange multipliers, and the 

Lagrange multiplier vector A is thus defined as

•* = [4  (3.29)

It is important to note that A is independent of .v and u. In Equation (3.27)-(3.28), H  

represents a modified cost, but ultimately if constraints are enforced (F=0), then H  is 

equivalent to J.

To determine first order conditions for optimality, consider the Taylor series 

expansion for dH  through first order.

dH  = ^ — dx + —— du + r^~rdA =  H Xdx + H udu + H  Kd  A (3.30)
ax au aA

Note that H \  in Equation (3.30) is always zero from the specified structure in Equation 

(3.28), or

H x = F T (= 0) (3.31)

Thus, the third term in Equation (3.30) disappears leaving only the dx and du terms. With 

x  being determined from F=0  for a given u, dx cannot change independently from du. 

Direct accounting for this dependency in Equation (3.30) is cumbersome. Therefore, with 

the free parameters, specify A such that Hx is always zero, or
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H ,  = 7 +/Lr F  = 0

-1
(=  - J F )

(3.32)

(3.33)

Now the first term in Equation (3.30) disappears leaving only the du term.

With this only remaining term, the condition for optimality is

H U= J U+XTFU = 0  (3.34)

Equations (3.31), (3.32) and (3.34) imply the gradient o f the modified cost with respect to 

the decision parameters, subject to the constraints and a specific choice for the Lagrange 

multipliers, must equal zero. After collecting these results, the first order necessary 

condition for the solution o f the equality constrained optimization problem is 

C ondition7: H  k — 0 (3.35)

H t = 0 (3.36)

H u = 0 (3.37)

Condition 7 is equivalent to Condition 4 with Equation (3.11).

To determine second order conditions for optimality, reconsider the modified cost 

function Taylor series expansion in Equation (3.30) through second order, or

dx
+ i[dLrr

2

X , X ' dx
<i h = [ h , h , w j du du dXT H uu X du

_dX X X . _dX_
H---- (3.38)

The main question here is the value of dX. Consider the differential of Equation (3.28).

dH = d J  + XTdF  + F TdX (3.39)

If the equality constraints are enforced (FT=0), note Equation (3.39) implies that dX can 

be chosen arbitrarily. Here, dX will be specified as zero. This conclusion is consistent 

with Equation (3.33) where if F  is held constant, then X is also required to be constant.
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With dF=0, the differential state vector must still satisfy Equation (3.18). Substitution for 

dx and dA. in Equation (3.38) thus yields

'-F ; 'F ,d u
duT 0

X x H u ~~ F~' Fudu
dH  = [H, Hu t f j du Huu H u, du

0 H ju. 0

= (//„  - H ,F ? F J d u + ± d J (//„„ - H J ? F „ - F l F f H m + F j F ? H J ? F . ) d i r t ~ ■ ■ (3.40)

Define the second partial derivative o f H  with respect to u holding F  constant at zero as

(3.41)

Thus, a second order necessary condition for the solution of the optimization problem is 

the Jacobian of the cost function with respect to the decision parameters, subject to the 

equality constraints, must be positive semi-definite, or

Condition 8: H 'u > 0 (3.42)

The objectionable condition occurs again when the Jacobian is identically zero. Thus, 

sufficient conditions for a local minimum are Condition 7 and

Condition 9: H'uu > 0 (3.43)

Conditions 7 and 9 are equivalent to Conditions 4  and 6, respectively.

The constraints imposed on the decision parameters and other system properties 

in the aeroelastic vehicle sensor placement problem are of an inequality form. Thus, the 

dissertation research problem does not exactly fit the problem structure o f this section. 

Consequently, the next section addresses inequality constrained optimization problems.
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3.4 Inequality Constrained Optimization

Inequality constrained optimization problems are o f an advanced nature, however, 

their theoretical development relies heavily upon previously considered topics. Most 

applied engineering optimization problems, including the dissertation research, lie within 

this category. In this problem class, the constraint relationships are of an inequality form, 

rather than the equality case. Suppose the decision and state parameters are combined

into a signal set of generic parameters y f, v? yP where p  denotes the number of

parameters. Introduce the generic parameter vector y  as

y  = [ >’/ v2 yP]T (3.44)

The optimization problem involves finding the parameters y  that minimize cost function J

J(y) = cost function  (3.45)

subject to the inequality constraints F

0 >F(y)  =  constraint function  (3.46)

F = [ F ,  F2 Fq] T (3.47)

In general, y and F  are vectors of a different dimension. Equation (3.46) adds yet another 

level o f  difficulty to the optimization problem.

For a one dimensional problem. Figure 3.2 illustrates the three possible cases for a 

local minimum point. In case 1, the constraint is inactive (F<0), and the situation is 

identical to that discussed in Section 3.2. The necessary and sufficient conditions for a 

minimum can be found there, where the reader is reminded o f the first order condition

dJ/dy =  0. In case 2, the constraint is active (F=0). Consider the differential Taylor series

expansion about these minimum points for J  and F  through first order, or
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Admissible values for dy  must satisfy

dF
— dy < 0 (3.50)
dy

while the minimality condition requires that

^ ~ d y >  0 (3.51)
dy

Equations (3.50) and (3.51) imply that d J / d y  and d F / d y  must have different sign or 

sgn(37 /dv)  = - s g n (3 F /d v ) . Case 3 is a special situation where the unconstrained 

minimum point and the equality constraint are coincident. This case can be considered as 

in case I assuming the minimum is approached from the admissible region. The case 1, 2 

and 3 conditions for optimality can be combined into the signal statement

/t =  0 i f ^ ~  = 0 and F  < 0  
—  + A -  0 where 'V (3.52)
dy y  / l > 0  and F = 0

dy

In Equation (3.52), A denotes a scalar Lagrange multiplier with more restrictions 

(nonnegativeness) than in Section 3.3.
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J ( y ) 4 F(y)<0 t J ( y ) 4 v F(y)<0

or

j(y)i F(y)<0/ J ( y ) l  F(y)<0

</ or

J ( y ) 4 F(y)<0

or

Figure 3.2 Inequality Constrained Optimality Cases for One Dimension

In the general case when y  and F  are vectors, the first order necessary condition 

for optimality in Equation (3.52) is still applicable after generalization to
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A. = 0 i f  dJ /  3y = 0 and F < 0

dJ t- dF A, > 0  i f  dJ /d y  ^  0 and F  = 0
+  A. = 0 where ' (3.53)

dy dy A.i = 0 if  dJ /  3v 0 and Ft < 0

fo r  i =  1,2 q

Equation (3.53) mathematically implies that 3 J /3 y  must be a linear combination of the 

vectors 3Ft / d y , in a negative sense. Geometrically, this result means the gradient o f the

cost with respect to the parameters must point in a direction such that a decrease in cost

can only occur under constraint violation. The conditions given in Equation (3.53) do not

include the Kuhn-Tucker constraint qualification conditions which are needed for rare 

and uncommon minima points.119

The structure in Equation (3.53) is similar to that in Equations (3.32) and (3.34) 

motivating consideration of an adjoint procedure. Thus, adjoining Equation (3.46) to 

Equation (3.45) with Lagrange multipliers yields

H ( y )  = J ( y )  + AJ F(y)  (3.54)

In this format, a first order necessary condition for the solution of the inequality 

constrained optimization problem is 

Condition 10:

A. = 0  i f  dJ  /  3y = 0 and F < 0

H , < 0 A.j > 0 i f  dJ /  dy ^  0 and Ft = 0
with (3.55)

H  v — 0 A, = 0  i f  dJ / 3y ^  0 and F( < 0

fo r  i =  1,2 q

Condition 10 is essentially equivalent to Condition 7 when the inactive constraints are 

discarded. To show this, suppose that m o f the constraints are active. The maximum

number o f constraints that can be independently active is p, or m < p. Discard the q-m
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inactive constraints and rename the remaining active constraints as F. Select m  elements 

of y  and denote them as state parameters .t. The remaining elements (n=p-m ) of v are 

denoted as decision parameters u. In this situation, H \ = 0, Hy = 0  implies Hx = 0 and Hu 

= 0, and each A, > 0. Condition 10 is thus equivalent to Condition 7 with the added 

requirement that the Lagrange multipliers are positive.

With this link to Section 3.3, the second order necessary condition for the solution 

to the optmization problem is Condition 8 in Equation (3.42). In addition, sufficient 

conditions for a local minimum under the inequality constraints are Condition 10 (or 7) 

and Condition 9 (see Equation (3.43)). This theoretical foundation can now be applied to 

the sensor placement problem in this dissertation. To actually compute the optimal 

solution, a numerical algorithm is discussed next.

3.5 Numerical Solution Strategy

In principle, computing parameter sets that satisfy optimality conditions in 

Section 3.4 is straightforward. In practice, however, implementing numerical search 

algorithms in a software format that computes optimal parameter sets both reliably and 

efficiently is challenging and requires a separate combination of skills distinct from 

theoretic development skills. This challenge is especially true for the complex elastic 

aircraft dissertation application, which is computationally intensive, requiring implicit 

gradient construction and generation of high dimensional root locus structures involving 

polynomial factoring and root sorting for each independent hyper-direction in the 

parameter space and at each iteration step. The initial strategy was to utilize 

commercially available software routines for optimization such as Reference 123.
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Commercial software routines based on an advanced sequential quadratic programming 

algorithm were tested but ultimately were found to be unworkable for the dissertation 

research. In simple terms, the algorithm would never converge. Based on this experience, 

a decision was made to manually script and implement a low order, reduced convergence 

rate, gradient method. This strategy provides a stable and reliable solution at the expense 

o f increased computational effort.

A first order gradient search strategy is the simplest of all methods. An alternative 

name for the gradient method is the method of steepest descent. This strategy is used to 

find a local minimum or maximum of the objective function J  subject to the inequality 

constraints F. The strategy is based ultimately on the simple fact that J  decreases when 

migrating in the parameter space along a heading that is aligned opposite to the 

directional derivative or gradient vector. In addition, the parameter step cannot violate 

any constraints imposed on the system, or if the constraints are initially violated, the 

parameter step must bring the solution closer to a condition satisfying the constraints. 

This strategy forms the basis for many direct methods used in unconstrained and 

constrained optimization. Although these methods often are slow to converge, they are by 

far the most widely applied strategy because of their simplicity and reliability. The 

gradient method is iterative, proceeding from an initial approximation for the parameter

vector yi to successive points y?, y3 etc., until some stopping criteria related to the

optimality conditions from Section 3.4 are satisfied. When using the gradient method, the 

following basic questions immediately arise:

•  W hat direction should the parameter vector be stepped in?

•  W hat magnitude should the parameter vector be stepped in?
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A generic algorithm structure is given in Figure 3.3. The algorithm strategy is 

broken down into two parts focusing on 1) constraint satisfaction and 2) cost 

minimization with constraint. The algorithm starts with specification of the initial 

parameter vector y  based on problem familiarization and manual optimization results. 

Constraint function vector F  is then evaluated and tested for compliance. If the 

constraints are violated, the parameter vector v is stepped in a direction to bring the 

constraints closer to satisfaction. Only when the constraints are rigorously satisfied, does 

the algorithm strategy move on to cost minimization objectives. In this part, the gradients 

of the cost function J  and constraint function F  with respect to parameter vector y  are 

computed, and from this the Lagrange multiplier vector A is computed. The augmented 

cost function gradient Hy is then computed and tested for stationarity. If a stationary 

condition is not achieved, the parameter vector y  is stepped in a direction to reduce the 

cost without violating the constraints. Numerically, the constraints may be slightly 

violated so the algorithm returns to the initial part to make small corrections to y  if 

necessary. This process continues until a stationary condition is reached.

In the constraint satisfaction strategy noted in Figure 3.3, stepping y  can be based 

on the condition

where J' denotes a vector containing the subset of constraint functions within F  that are 

violated, and Ay denotes the parameter increment vector. Suppose there are two 

constraint violations (2<g) and three parameters (p=3). Equation (3.56) reduces to

. ;̂ Ay < 0 (3.56)

(3.57)
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This set of equations is under constrained and can be reformulated as

dJ] 3 3 1 dJ\
ay, dv2 Ay, •r 3y,
d-A d-A Ay, d.A

Lay, dv2

Ay, (3.58)

Increments Ay/ and Ay? can be solved for after specifying Ayj. The parameter update law 

is then

Vn,»=:V„w +Ay (3.59)

with F(ynew) being closer to satisfaction than F(y„w). This procedure is continued until 

F(y)<0.

Start

r
Specify  Initial y

X
; Com pute F j

! Test F < 0 True
Constraint
Satisfaction

J. False
Com pute Fyj

 I______
-i Step y To A ch ieve  F < 0

Compute Jy -

X
Com pute Fyi

X
Com pute A.;

Com pute My

! Step y To A ch ieve  Hy =  0

Cost
M inimization
With
Constraint

Figure 3.3 Numerical Algorithm for Inequality Constraint Optimization with 
Direct Lagrange Multiplier Strategy

Now suppose there are three constraint violations (3<q) and two parameters 

(p= 2). Equation (3.56) reduces to
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37 ,

ay,
a./;

•Av, +

n\

3 ^  
3 v ,  

37,
Av, H--------

■' av,

A v ,  <  0

— A v ,  <  0 (3.60)

a a a /, _
'-A v, +  ——- A y ,  <  0

ay , ' 3 y ,

This set of equations is over constrained and no exact solution for the increment is 

available. An approximate solution strategy is to artificially insert nonzero values c, into 

the right-hand side of Equation (3.60), or

a.y;
av. 3 v ,
a./, 3 . / ,

aV| 3 v ,
a./, a./,
dy. 3 y ,

Ay,
A y ,

c i
c ,

c ,

(3.61)

Equation (3.61) can then be “solved” by a least squares procedure. The parameter update 

law in Equation (3.59) is again used, and the process is repeated until F(y)< 0. In this 

latter case, no guarantees are in place to ensure success. In addition, the problem may be 

overly constrained where some F,(y)>0 for all y. Additional strategy or problem 

reformulation may be required in these situations.

Now focus on the cost minimization with constraint strategy shown in Figure 3.3. 

The gradients Jv and F} are computed first. These computations can be based on explicit 

closed-form expressions for Jy and F v, if available, or they can be based on finite 

differencing. If the problem allows, the Lagrange multiplier vector A can be computed 

directly as

A  = -  J f, i f  F, = 0  

A, = 0 if  F, < 0
(3 .62 )

f o r  i = I, 2,
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To implement this direct method, the constraint F  must be explicitly accessible for 

numerical manipulation. The nonzero A, in Equation (3.62) will most commonly be 

computed from a finite differencing scheme. With this information, Hy is computed and 

the parameter vector y is again updated, as in Equation (3.59). Here, Ay is based on the 

strategy

Ay  = - k ---- — (3.63)
I H x \

Equation (3.63) indicates the step direction is opposite to the modified cost gradient. This 

direction provides the largest reduction of H  ( or reduction of J  without violating F<0). 

Normalization by l//vl yields a unit direction, thus leaving the scaling parameter k to 

control the step magnitude. Parameter k  can be either a scalar (uniform step magnitude) 

or diagonal matrix (nonuniform step magnitude) and typically must be reduced in value 

as the search proceeds in order to balance convergence rate with solution precision.

To further illustrate the algorithm strategy given in Figure 3.3, consider the 

geometry in Figure 3.4 for two parameters (p =2 ) and one constraint (q—l ). If the current 

parameter solution violates the constraint {point I ), the step Ay will be computed similar 

to the strategy in Equation (3.58) and can be along the -Fy vector. Repeated iterations will 

ultimately lead to a parameter solution that over satisfies the constraints {point 2). At this 

point, the constraints are inactive and A=0 (see Equation (3.62)). The step Ay will be 

along the -Jy vector {Hy—Jy).  Repeated iterations will ultimately lead to a parameter 

solution that just satisfies the constraint {point 3). At this point, the constraint is active 

and A^O (see Equation (3.62)). Geometrically, the vector AFV is the negative projection of 

Jy onto Fy, or
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(3.64)

where 0  is the angle between Jy and F v. Thus, Lagrange multiplier A is precisely the 

negative change in J  due to F, and Equation (3.64) matches Equation (3.62). For 

minimization; 0  must satisfy k ! 2 < 0  < k  rad, which leads to the conclusion that A>0. 

Note how this precise value of A results in Hy being tangent to the constraint curve. The 

step Ay will thus be in a direction which provides the largest reduction of J  without 

violating F<0. Depending on the constraint shape (convex or concave), the algorithm 

may require a return to the constraint satisfaction strategy for a small correction to y. 

Repeated iterations will ultimately lead to the optimum condition shown in Figure 3.5 

where Jy and F v are parallel and point in opposite directions. This condition corresponds 

to case 2 in Figure 3.2. In principle, with more constraints and more parameters, the 

numerical algorithm is identical to that just discussed, but visualization is more difficult 

or intractable. After convergence, the second order condition should always be checked 

to rule out any saddle point solutions.

In some problems, the constraint relations do not permit a direct computation for 

the Lagrange multipliers as described in Figure 3.3 and Equation (3.62). In such 

problems, an alternate algorithm structure is required, such as given in Figure 3.6. The 

algorithm strategy is again split into two parts with the constraint satisfaction part being 

identical to that in Figure 3.3. The difference lies in the cost minimization with constraint 

section. After entering this section of the algorithm, the constraints are sorted into active 

constraints Fa and inactive constraints Fia, or

(3.65)
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H  y = J  y

y>

Figure 3.4 Illustration of Numerical Algorithm with Direct Strategy

y 2  A

Increasing J
J = J

i

i

F = 0Increasing F
i
i

Figure 3.5 Optimum Solution Condition
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In a similar fashion, sort the system parameters into state parameters x  and decision 

parameters u

To achieve this sorting, suppose that m o f the constraints are active (recall m<p). Select m 

o f the elements o f y  and denote them as x. The remaining n —p-m elements are denoted as 

u. Hence, the sorting in Equation (3.66) results. Sorting o f y  is arbitrary, but ultimately 

must yield positive Lagrange multipliers (for Fa). Figure 3.6 indicates that if the 

Lagrange multipliers are nonpositive, then the algorithm returns to the y sorting process. 

One sorting set is always guaranteed to exist that leads to positive Lagrange multipliers.

After this sorting, gradients Jx J u and F^x are computed. The augmented cost 

function H  in Equation (3.54) and its gradient Hy thus become

Next, Lagrange multipliers associated with the inactive constraints (Aja) are set to zero 

and the active Lagrange multipliers (A„) are computed indirectly, or

= o
' . (3.69)

Gradient H y thus becomes

(3.66)

(3.67)

(3.68)

(3 .70 )
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where Hx=0. Finally, Hu is tested for stationarity. If a stationary condition is not 

achieved, the decision parameter vector u is stepped in a direction to better achieve 

stationarity, or

U n e ,  =  11 o ld  +  A u (3.71)

The increment decision vector is computed similar to the strategy given in Equation 

(3.63), or

Av = 0 - k H i
\ H . .

=  [A x  A  u  ]

Note the state parameter vector x is held constant during this step.

(3.72)

S t a r t

S pet r i fy I n i t i a l  v

; C o m  p u t c  F ;

-i T r u e

F a l s e
C o m p u t e  Fy !

- S t e p  y T o  A c h i e v e  F < 0

i S o r t  F I n t o  F, ,Fia

r
S o r t  y In to x ,u

C o m p u t e  J x . J  u i

C o m p u t e  Fax i

Fa l s

C o m  pu teX. a ;

e ,--------- *-----------
— i Te s t  X a > 0 i

i  T r u e
C o m p u t e  H u j

Tes~tfH u =C> T r u e  
 1 F a l s e ______

S t e p  u T o  A c h i e v e  H u= 0

>

S t o p

C o n s t r a i n t  
S a t i s f a c t i o n

C o s t
M i n i m  i z a t i o n  
W i t h
C  o n s t r a i n t

Figure 3.6 Numerical Algorithm for Inequality Constraint Optimization with Indirect
Lagrange M ultiplier Strategy
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To further describe the arbitrariness o f the y sorting process, reconsider point 3 in 

Figure 3.4 redrawn in Figure 3.7. Here p=2 and q—m=I.  Suppose y t is selected as the 

state parameter {x=yt) and >’2 is selected as the decision parameter (m=\’2). as shown in 

Figure 3.7a. Because Fay/=Fax and Jy/=JX are both negative, the active Lagrange 

multiplier will be negative (^,< 0, see Equation (3.69)). Theoretic principles are violated 

here, and stepping the decision parameter in either direction would violate the constraint 

or increase the cost. Another sorting of y is required. Sorting o f y must be x=y2 and u=yj,  

as shown in Figure 3.7b. Here, Fay2=Fax and Jy2=Jx have opposite signs leading to Xa>0. 

Further, the decision parameter can be stepped into a region that does not violate the 

constraint and thus, the cost is reduced.

^ > 0  

Increasing J

i  f  = 0
Increasing F

t y = J x

Figure 3.7a Illustration of Sorting Options
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yz=x

F ayTFau
C I

F a v—F a x

Increasing F

F = 0

0

Increasing J

y,=u

Figure 3.7b Illustration of Sorting Options

The numerical algorithm strategy discussed in Figure 3.3 and 3.6 can be thought 

o f as generic and applicable for general problems. Such algorithms can be specifically 

tailored for individual problems such as those found in this dissertation. Thus, Figure 3.8 

describes the numerical algorithm strategy actually implemented to solve the dissertation 

research problem. Note the strategy does not consider preliminary constraint satisfaction 

logic. Sensor placement for highly elastic vehicles with many modes and a requirement 

for minimum phase behavior can often lead to a highly constrained or over constrained 

problem statement. There may be only small regions within the parameter space, or none 

at all, where minimum phase behavior may be rigorously achieved. Rather than relaxing 

the constraint objectives, the strategy is to simply interpret H  as the actual cost, and the
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search will proceed in a direction that best reduces the value o f H. Because the 

constraints are directly accessible, the algorithm uses a direct Lagrange multiplier 

strategy, and thus no distinction is made between state parameters and decision 

parameters. In most cases in this dissertation, the parameter vector y  has two elements 

that correspond to sensor positions xst and (see Figures 2.1 and 2.2). All derivatives

Start

Specify Initial Sensor Fbaticn 3^ 
Garptte Initial Cost Hid

Reduce Qadiert Rin Value Ay

j G xrp le  Gradients Jy , ^
I Gcrrpute Lagrargp Multipliers X (JF)
| G rrpite Unit Search Direction £ 
i Gbrrpute Adaptive Step Size k

_L
Gbrrpite I'few Sensor Fbsiticn yncw

Gbrrptfe NbwGbst F ^ ; Reuitialize Q d Sensor Fbsition y ^
Reinitialize Q d  Cost Hw

1---------------------
iI

False j Test For Cost Irrpruverrent 

j Hew <  Hcki

TTrue

Test Ftr Gbnvetgpnce 

Hid -  H ew <£

±
True

Stop

False

Figure 3.8 Implemented Numerical Algorithm
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are computed implicitly with a finite difference scheme, and the increment gain is 

adaptable providing nonuniform stepping. Finally, stopping criteria is based on actual 

reduction o f the H  value, rather than Hy.

In Figure 3.8, the new cost H„eiv is computed as in Equation (3.54) using ynew. The 

new sensor positions are computed according to

(3.73)

with

(3.74)

k  =
k x 0  

0 k .

The components of the unit search direction vector e  are

H
£ (3.75)

for i = I, 2

The augmented cost gradients in Equation (3.75) are computed according to

(3.76)

for i = 1,2
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(3.77)

The cost and constraint gradients appearing above are obtained from

j  _  • / (•y.i +  ) - 7 ( . r , ,  - A . v , , . . r , : )

2 A . t „

_ + ) ~  - ^ , 2 )

2a -T:
F  _  / r , (- r . l +

2A*„

r  F,(X<l-X<2 ~ A V <2>
= ----------------------- 5 1 ^ ------------------------

for j  = 1,2........<7

Finally, the Lagrange multipliers in Equation (3.76) are computed by

A = 0  i / f  <0

, / ( f ; . . . . / ; .  +6Fl , . . . r q) - A F v . . . f i ............................
* J - < -----------------------------------  > < / ^ 2 0  (3.78)

for y = 7,2........q

The final discussion addressing the numerical algorithm in Figure 3.8 concerns 

the individual step size parameters k, appearing in Equation (3.74). If is small, the 

discrete sensor placement step will closely approximate the gradient path, but 

convergence will be slow since the gradient must be calculated many times. On the other 

hand, if ki is large, convergence will initially be very fast, but the algorithm will 

eventually oscillate about the optimum. It is clear that some mechanism must be utilized 

for reducing the step size as the optimum point is approached. In general, large steps are 

desirable when the current solution is far away from the optimum. Further, a decrease in 

step size when an oscillation commences is desirable. M any schemes can be employed, 

such as reducing the step size by a fixed amount after a specified number of steps or 

when the cost function fails to decrease. In Figure 3.8, the adaptive step size parameter is
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formulated as a function of the gradient value and the increment o f the independent value 

used to construct the gradient, o r

The idea behind this adaptive rule is to increase the step size gain value in high slope 

regions and to decrease this value in shallow areas. Since the increment parameter Ax„ is 

used to calculate the augmented cost slope, this increment must be small, especially near 

the stationary point to ensure accurate slope information. Note in Figure 3.8, these 

increment values, or

are reduced (halved) when the new cost value is bigger than the old value. For all runs in 

this dissertation, algorithm param eter values are selected as A r„= / in (initial), 9*=10 deg , 

and e  =10~*.

3.6 Sensor Placement Cost and Constraint Functionals

This section addressess the formulation and identification of sensor placement 

criteria (i.e., cost and constraint functions) for optimization, which are tightly coupled to

(3.79)

Specifically, the parameter is computed by the rule

(3.80)

where 9  is a specified constant and 9  is calculated below.

(3.81)

(3.82)
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important closed-loop dynamic characteristics, and the selected design technique that 

effectively leverages these characteristics. As discussed in Section 2.4, the Evans root 

migration design strategy, and thus geometric pole-zero structure in the complex 

frequency plane, are o f high interest. Closed-loop design objectives break down into 

rigid-body and aeroelastic objectives. The rigid-body design objectives are largely 

accounted for by using pitch rate feedback signals and proportional plus integral 

compensation logic. Thus, rigid-body design objectives are not directly considered in the 

cost function statement. However, as noted in Figures 2.17 and 2.19, situations arise 

where the rigid-body behavior couples with the I st aeroelastic mode characteristics. In 

these situations, the rigid-body behavior can be adjusted indirectly by changing the mode 

1 term appearing in the cost function. Thus, the cost function is based exclusively on 

aeroelastic design objectives.

Aeroelastic design goals are broken down as either phase stabilization or gain 

stabilization objectives associated with key aeroelastic dipoles as noted in Figure 2.14. 

Various geometric pole-zero root structures or root loci structures can be linked to the 

gain and phase stabilization objectives. For example, with gain stabilization objectives 

(mode cancellation), an obvious relationship to consider is separation distance between 

the zero and pole. Define the dipole vector St for mode i as the complex distance from 

pole to zero, or

$  i  =  P i  ~  Z i  (3.83)

where s=-pi and r=-z, denote the aeroelastic mode i pole and zero values. Thus, the 

dipole magnitude is simply

H i  =  I 8  i I (3.84)
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and small values are desirable for gain stabilization. A general cost function targeting 

gain stabilization behavior based on dipole magnitude is thus 

Gain Stabilization Cost I:

J  = X  w > V ,  (3-85)
t =  1

where vv, are weighting parameters and n represents the number of aeroelastic modes. By 

minimizing the cost, the dipole magnitudes are minimized, resulting in gain stabilization. 

Note key dipoles can be highlighted by nonzero vv, ’s.

If phase stabilization (damping augmentation) is the design objective, a 

corresponding relationship is the directional orientation between the zero and pole. The 

dipole angle is denoted by

a  ' = Z. 8 ,  (3.86)

Here, desirable values are near Jtzt2 rad  for phase stabilization (see Figure 2.14). Because

of this offset from 0 rad, introduce the complementary dipole angle cc' and its absolute

value Cx" as

a  ' = Z  8 , -  3 tt f  2 (3.87)

a  " = I a  ' I (3.88)

A general cost function illiciting phase stabilization behavior based on complementary 

dipole angle is thus 

Phase Stabilization Cost 1:

j  =  X  vv. «r <3-89);= i
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By minimizing the cost, the complementary dipole angles (or their absolute values) are 

minimized, resulting in phase stabilization.

The cost functions in Equations (3.85) and (3.89) focus on pole-zero centered 

information. Cost functions can also be based on migration path centered information. 

Such cost functions may capture features not fully accounted for in dipole-based cost 

functions and vice versa. For example, even for cases where /J,=0 rad/s or cc,~3n/2 rad, 

the pole migration may follow an unexpected and undesirable path or initial direction, 

theoretically speaking. Migration path based cost functions may be more appropriate in 

these situations. For gain stabilization objectives, the length of the migration path is an 

appropriate criterion. If ds denotes the infinitesimal distance traveled along the i'h 

migration path, the total path length is

assuming k >0 (recall Equation (2.33)). Desirable A, values for gain stabilization

objectives are near 0 rad/s. A general cost function based on path length would thus be 

Gain Stabilization Cost 2:

Gain stabilization behavior would occur when the path length, or the cost, is minimized.

W ith phase stabilization objectives, the corresponding criterion is the angle along 

the migration path averaged by the path length itself. Denote the migration path angle d, 

at one point along the loci as the angle between the real axis and the tangent to the 

migration path at the location s , or

a long hurt

(3.90)

n

J  = X  W, A (3.91)
; = i
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Of =  Z .d s  (3.92)

For phase stabilization objectives, desirable ft values are near rtrad.  The complementary

migration path angle and its absolute value are thus introduced as

0  ' =  0  f -  7U (3.93)

0 ,"  = I 0 , ' I  (3.94)

The averaged complementary migration path angle (absolute value) is computed by

^ 4 r  o ’ \ds  i = d - J * ‘“  e"\ —  \dkk 
X, 1 ‘=-r. X: 1 dk ,

a i l in g  h u t  a ltm \i h u t

(3.95)
k

Note the upper limit of integration can be lowered to emphasize the initial segment of the 

entire path. A general cost function based on path angle would thus be 

Phase Stabilization Cost 2:

J  = S  lt;< 0 .96)
i = i

Phase stabilization behavior would occur when this cost is minimized.

A special case o f this last criterion occurs when only the initial path angle is

considered. Note the migration path angle 6, at the initial point along the path is

equivalent to the departure angle 0di defined in Equation (2.39), or

e  i 1 S = -  P ,  =  0  d ,  (3.97)

This equality gives rise to a complementary departure angle and its absolute value as

O 'd , -  e  d ,  -  K  (3.98)

e :  = \d 'd I (3.99)
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Under this special case, note the averaged complementary migration path angle (absolute 

value) reduces to

0  i =  0 " ,  (3.100)

and the cost function in Equation (3.96) simplifies to

J  = S  w . d ". (3JO l)/ = !

In this dissertation, optimal sensor placement studies are based exclusively on 

Equations (3.85) and (3.101), or a combination thereof. The selection of //, over X, for 

gain stabilization cost is founded on subjective and objective bases. Historically 

speaking, manual sensor placement efforts with aeroelastic vehicles most commonly 

deals with minimization o f I st aeroelastic mode content within the feedback signal. 

Placement criteria are based on simple inspection of the transfer function aeroelastic zero 

location relative to the pole. Construction and consideration of the migration path is 

typically not considered. Additionally, if path length was to be considered, an accurate 

calculation of path length would require a fine compensator gain grid, and this would 

lead to high computational burdens with a high dynamic order vehicle within an iterative 

optimization search algorithm. For these reasons, ju, based cost is selected over X, based

cost. Selection o f #  (&"= 9"d, ) over (% ( a  ” ) for phase stabilization cost is based simply

on the importance o f the initial path direction for lightly damped modes such as those 

associated with aeroelastic vehicles.

To sample the type of cost function surface being addressed in this dissertation for 

insight and understanding, Figures 3.9 and 3.10 show three dimensional plots of J  vs. xs/
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and xs2 for two simplified gain and phase stabilization cost functions given below for the 

flexible aircraft model described in Chapter 2.

J  = » * , / / ,  + w 3 / /  , (3.102)

J  = w , 0 "  + w-3 6 " t (3.103)

Inclusion of only modes /  and 3  is due to trade offs noticed in manual sensor placement 

studies (see Figures 2.18-2.19 and Reference 45). Numerical parameters used in 

constructing these cost surfaces are w /= w j= I s/rad  or I/deg, hi=h2=I, Zt=2 rad/s for the 

phase stabilization case, and c*=/ rad/s for the gain stabilization case. First note the cost 

surface is symmetric about the plane xs/=xs2. In Figure 3.9a, note there are two general 

regions consisting of high and low plateaus. To be on the low plateau, both sensors must 

lie in the aft regions o f the airframe. Thus, careful sensor placement can lead to 

significant improvements. In the close-up view in Figure 3.9b, note in the low cost 

regions, the surface is relatively flat, but there exists a long narrow trough with multiple

local minimum points. The trough is steep on one side and shallow on the other. Figure

3.10 shows similar traits, but the surface is even flatter. This relatively flat surface may 

pose a difficult challenge to extract the remaining cost reductions from a gradient based 

search algorithm. Further, the starting sensor locations may strongly influence which 

local minimum point is approached. The reader is reminded that modified cost H  will be 

minimized (not 7), and the A.TF  constraint cost is not included in Figures 3.9-3.10. The 

reader should also realize that construction of Figures 3.9-3.10 is computationally 

intensive and is infeasible to construct for every weighting, compensator, and blend 

selection investigated, and is intractable for more than two sensors. Information in
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Figures 3.9 and 3.10 is only for general insight and will not be applicable for specific 

optimization cases presented in Chapters 4 -6 .
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b) Figure 3.9 Gain Stabilization Surface Cost Plot
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Feedback sensors cannot be placed freely but rather must satisfy certain practical 

design constraints. In many cases, nonminimum phase aeroelastic zeros are present in 

transfer functions corresponding to arbitrarly placed sensors. Right-half plane zeros are 

undesirable since they will always attract a closed-loop pole for sufficient loop gain. 

These zeros are to be avoided in all situations. To force all transfer function zeros into the 

stable region, constraint equations must account for this behavior. Thus, all cost functions 

in this dissertation will be subject to 

Minimum Phase Constraints:

Ft = R e (-z ,)< 0 , (i=7.2 n) (3.104)

where F, is the inequality constraint function and s = —z, denotes the aeroelastic mode i

zero location. If rigorously enforced, these constraint equations insure that all aeroelastic 

zeros will lie in the left-half plane. Additional constraints require the sensors to lie on the 

airframe and within regions where the function fits to the raw mode shape data are

accurate (see Section 2.3 and Appendix). Thus, in addition to Equation (3.104), all

dissertation cost functions will be subject to 

On The Body Constraints:

F ,= xs, - J s <Q> (3.105)

(i=n+I, n+2 ............n+n&)

0 (3.106)

(i=n+n&+I, n+na+2 .......... n+2na)

In Equation (3.105)-(3.106), .t, and .t* denote upper and lower bounds on acceptable 

sensor positions. When rigorously applied, these constraints insure the sensors lie on the
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airframe. In this dissertation, on the body constraint parameters are Fixed as xs=300 in 

and x s=3,500 in.

Figure 3.11 illustrates the feasible and infeasible sensor placement regions 

rigorously imposed by the minimum phase and on the body constraints in Equations 

(3.104)-(3.106) for two sensors associated with the flexible aircraft model from Chapter 

2. Numerical parameters used in constructing Figure 3.11 include h i—h2—l  and ,rf =300 

in. and x s = 3,500 in. First note the feasible/infeasible regions are symmetric about the line 

xsi = x*2- The on the body constraints carve out a rectangular region of feasibility. The 

composite minimum phase constraint o f all eighteen aeroelastic modes leaves a small 

oddly shaped area where at least one sensor is generally located in the aft region of the 

fuselage. This result is consistent with Figure 2.17 and 2.2 where it was noted that a 

collocated elevator and rate gyro leads to minimum phase behavior. Note the feasible 

region in Figure 3.11 generally overlaps the low cost region in Figures 3.9-3.10. The 

relatively small feasible region in Figure 3.11 suggests the aeroelastic sensor placement 

problem is highly constrained. This observation justifies the algorithm search strategy in 

Figure 3.8, which does not address the initial constraint satisfaction logic discussed in 

Figure 3.3 and 3.6. Recall the dissertation strategy is simply to interpret H=J+?JF  as the 

cost and any reduction in H, either from J  or XfF, is desirable.
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Figure 3.11 Feasible Sensor Placement Regions

Now that specific cost and constraint functions are laid out, a few additional 

comments on the numerical algorithm (see Figure 3.8) are warranted. The minimum 

phase and on the body constraints (Equation (3.104)-(3.106)) are of such structure that 

direct computation of the Lagrange multipliers is feasible (see Equation (3.78)). For the 

minimum phase constraints, the j lh Lagrange multiplier in Equation (3.78) can be 

calculated by giving small increments to the real part of each aeroelastic zero as follows: 

For a certain sensor position, the open-Ioop transfer function can be represented as

y(s) /u{s)  = k(s)(fh (s ) g u (5) +  ft, (5)g „ (*)) = k -  + Z' KS + Z l } - (3.107)
( s+ p t)(s+ p 2)---
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where root sorting has resulted in the aeroelastic zeros — z, corresponding to j=I,  2,

 n. Let Zj =(Jj -icq. Note the constraints Fj in Equation (3.104) are equivalent to -a}.

Thus, let AFj = AOj where AO) denotes the increment value applied to the zero’s real part 

when computing A.j=-Jf?j in Equation (3.78). When the aeroelastic zero is complex and its 

real part is perturbed by Aaj, the corresponding conjugate zero must also be perturbed to 

preserve symmetry about the real axis. Implementation and utilization of this Lagrange 

multiplier construction is computationally intensive. Computation of the Lagrange 

multipliers associated with the on the body constraints is much simpler since the 

constraints are nothing more than offsets of the sensor positions (see Equations (3.105)- 

(3.106)). In this dissertation, the constraint increment parameter is fixed at Aoj=0.1 rad/s.

Since the root migration framework is symmetric about the real axis, only the 

upper quadrant contributions to the cost in Equations (3.85) and (3.101) are used. The 

conjugate contribution terms are not included in the numerical algorithm. This stipulation 

significantly reduces computational burdens. Computation of the departure angle based 

cost function in Equation (3.101) is straight forward and poses no difficulty. The 

departure angles are computed according to Equation (2.40), or a modified version, 

thereof. This computational ease is not the case when considering the dipole magnitude 

based cost function in Equation (3.85). Here, each aeroelastic dipole must be 

computationally identified from a list of transfer function roots at each iteration. This 

process is computationally intensive and is described below.

First, out of all the open-loop transfer function poles, the aeroelastic poles in the 

upper quadrants of the complex plane are identified and sorted in ascending order 

according to their natural frequency values. Figure 2.22 clearly shows that the
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corresponding closed-Ioop pole does not always migrate towards the closest zero. This 

possibility complicates the dipole (i.e., zero) identification process. The zero used in 

Equation (3.83) to construct the dipole vector is defined to be the zero the open-loop pole 

migrates towards as l/:*l approaches <». The only reliable way to identify this zero is to 

construct the root locus at each iteration in the numerical search and sort the aeroelastic 

zeros according to the final location along each aeroelastic pole migration path. The kk 

grid used to construct the migration paths must be sufficiently fine to render accurate 

resolution during the piecewise migration steps. This process is computationally 

intensive.

Several subtle points in this aeroelastic zero sorting process arise when 

implementing this strategy in com puter software. Sometimes the aeroelastic pole will 

migrate towards a real axis aeroelastic zero such as the I2 ,h mode in Figure 2.15c 

migrating towards the zero located at +25.9 rad/s in Figure 2.4 and Table 2.1. In this 

situation, both the lower quadrant and upper quadrant poles form a break-in point on the 

real axis with one migration path heading towards the real axis zero and the other heading 

toward +«» rad/s. If the upper quadrant pole path is identified as heading towards +«» 

rad/s, the migration path must be switched to the lower quadrant pole path after reaching 

the real axis.

Sometimes the 7” aeroelastic mode and rigid pitch mode will couple in the sense 

that the aeroelastic pole migration path ends at the compensator zero, which physically is 

not an aeroelastic zero. Likewise, the rigid pitch pole migration ends at a pair o f complex 

roots physically associated with the 1st aeroelastic mode. Figure 2.17 and 2.19 are 

examples o f this behavior. These situations raise the question o f whether the zeros should
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be swapped before dipole vector construction. In this dissertation, when this situation is 

identified, the zeros are swapped before dipole vector construction. Implementation of 

sorting logic for this situation is non-trivial. In fact, when dynamic blending filters or 

variable static blending filters are considered, the appearance of multiple low frequency 

complex zeros made this sorting logic intractable, and the dipole is reverted to the 

original definition.
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CHAPTER 4

OPTIMAL SENSOR PLACEMENT:

GAIN STABILIZATION

4.1 Introduction

This chapter deals with computing optimal sensor locations using gain 

stabilization objectives. This procedure is based on minimizing aeroelastic dipole 

magnitudes as described in Equation (3.85). Dipole magnitude values for selected 

aeroelastic modes will be minimized using the optimization method presented in Figure 

3.8. During optimization, inequality constraints addressing minimum phase zero and on 

the body sensor behavior, as presented in Equations (3.104)-(3.106), are enforced. The 

general form of the cost function utilized in this chapter, based on dipole magnitude with 

inequality constraints, can be written as

In this study, only the key dipole magnitude values o f the low frequency modes 1 and 3 

and an additional high frequency mode (10) that affects control system stability are 

considered. Thus, the only nonzero weights in Equation (4.1) will be vv/t vvj, and vv/0. 

This selection is based on knowledge obtained during manual sensor placement efforts. 

The solution strategy is to start with simple blend filters and progress to more advanced 

blending logic (and hence more design freedom) when necessary. Static and dynamic 

filters with fixed parameters, as well as variable parameters, will be considered.

(4.1)
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Weighting factors are selected based on relative dipole magnitude values and are refined 

to tailor the solution results. Different initial positions for sensor locations will also be 

tested and used for solution refinement. The com pensator zero parameter is specified and 

fixed (z*=/ rad/s) to allow an acceptable trade off between the mode I dipole magnitude 

tightness and the rigid pitch damping. For the most desirable sensor placement solutions, 

the time responses and general behavior o f the closed-loop system will be tested and 

evaluated.

4.2 Sensor Placement with Fixed Static Blending

In this section, optimal gyro placement corresponding to the flight control system 

architecture shown in Figure 2.20 will be investigated. Optimization parameters are the 

two gyro locations xs/ and xs2. The blending filters in the feedback signals will be

considered constant, static values equal to one for each filter. The static filters can be

represented by the following expressions.

h,(s) = J (4.2)

h2(s) = 1 (4.3)

The fixed static filters in both Equations (4.2) and (4.3) express the simplest blending 

logic. These filters represent spectrally uniform and equally balanced blending. The 

procedure for finding the optimal sensor locations depends on the initial sensor positions 

used in the optimal search strategy. From Figure 3.9, as well as from manual placement 

experience, candidate initial sensor locations can be determined. The weighting factors of 

the cost function terms are initially assigned equal to one. Based on the optimization 

results, these values will be adjusted in order to find desirable solutions satisfying the
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system requirements. If the solution characteristics are unsatisfactory, other dipole terms 

will be added to the cost function with appropriate weighting factors, or other initial 

sensor locations will be sought, dependent on the evaluation of the optimization results.
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Figure 4.1 Root Locus Plot fo rx si—850 in and xs2=2,750 in (Zk=l rad/s)

As a baseline, consider the augmentation characteristics associated with a manual 

sensor placement solution. For the initial sensor positions o f ;ks/=850 in and xs2=2,750 in, 

the resulting root locus diagram is illustrated in Figure 4.1. Observe in Figure 4.1 the 

relaxed stability pole near the origin is stabilized and good levels o f damping in the rigid 

pitch mode are achieved (see migration path initiating from near the origin and wrapping
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around towards the real axis compensator zero). These trends indicate desirable rigid- 

body augmentation. Aeroelastic augmentation is not so favorable. Note the 3rd aeroelastic 

dipole has a considerable magnitude value {ji}-6.6176 rad/s). This large value allows the 

3rd aeroelastic mode to have a big influence on the overall time response. The mode 1 

dipole magnitude value is not as large as for mode 3, but is still excessively large 

{fii=-0.7487 rad/s). Also observe from Figure 4.1, as loop gain is increased both mode 1 

and mode 10 are destabilized due to nonminimum phase zeros. These right-half plane 

zeros can lead to reduced structural mode damping, phase loss in the control loop, and 

possibly response reversal. These unacceptable characteristics must be corrected with 

improved sensor locations.

For the initial sensor positions of xsi=850 in and xs2=2,750 in, the optimization 

algorithm is applied to the augmented cost function

H  = w,//, + w3f i 3 + J  A, Fi (4.4)
i=i

with weights w/=wj=l  s/rad. The resulting optimal sensor positions are xs/=861.5 in and 

xS2=2,744 in. With sensors placed at these optimal values, the resulting root locus 

diagram is illustrated in Figure 4.2. Comparing Figure 4.2 with 4.1, note the dipole 

magnitude values for both aeroelastic mode 1 and 3 have decreased from 0.7487 to 

0.7372 rad/s, and from 6.6176  to 2.8603 rad/s, receptively. However, the mode 1 dipole 

magnitude reduction is modest and the reduction of mode 3 's dipole magnitude primarily 

arises due to a switch in the associated dipole zero, and not in significant zero movement. 

These reductions are consistent with the objectives of Equation (4.4) where the initial and 

final H  values are 7.4616 and 7.4167, respectively. In Figure 4.2, the zeros of the I st and 

lCf" aeroelastic modes still lie in the right-half plane. Recall the numerical algorithm does
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not rigorously address constraint satisfaction and this is why nonminimum phaseness still 

remains. This strategy was by choice due to the very limited feasible sensor region (see 

Figure 3.11). However, the strategy does treat X,F, as an additional cost and as noted 

above, the overall cost is reduced to a local minimum.

Technically speaking, Figure 4.2 shows improved results compared to Figure 4.1 

(i.e., smaller fi t and //j). Practically speaking, however, the two results are not 

significantly different (sensors only moved 10 in or less). In simpler terms, mode / and 3 

are not sufficiently gain stabilized, and mode /  and mode 10 destabilization (i.e., less 

stable as loop gain increases) is unacceptable. The cost function in Equation (4.4) was 

tested with many different weight factors but failed to result in improved conditions. The 

results in Figure 4.2 can be considered as the best for the cost function structure in 

Equation (4.4) and the given starting positions. In other words, for the given cost function 

and initial sensor positions, very little optimization or design freedom is available and 

additional changes must be considered for any further improvement.
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Figure 4.2 Root Locus Plot for xsi= 86 l.5  in and xs2=2,744 in

To overcome this situation, an additional term representing the dipole magnitude 

value o f the l ( f h aeroelastic mode is included in the objective function. The updated cost 

function can be written in the following form.

22

H  = wxf i x + w, / /3 +  wl0f i X0 + ^  4  F- (4 -5)
/ = !

The cost function o f Equation (4.5) is used to obtain optimal sensor locations by starting 

the sensors in the same previous initial positions, but using different values of the 

weighting factors. For weight factors o f w/=2 s/rad, w3=3 s/rad, and w/0=5 s/rad, it is 

found that the optimal positions of the sensors are xsl=880.6 in and xs2=2,999.6 in. Note 

one o f the sensors moved approximately 20 f t .  The root locus plot o f the control system 

when the sensors are placed in these optimal positions is illustrated in Figure 4.3. In 

addition, Figure 4.4 shows the augmented cost function value at each optimization
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iteration, while Figure 4.5 shows the track of sensor positions during the search. It is 

noticed by comparing Figure 4.3 with Figure 4.1 that the dipole magnitude values for 

both modes 3 and 10 decreased from 6.6176 to 6.3274 rad/s and from 2.7580 to 1.8877 

rad/s, respectively, while the dipole magnitude value for the 1st mode increased from 

0.7487  to 1.5909 rad/s. Observe from Figures 4.2 and 4.3 that by giving a bigger weight 

value for mode 3, and by including a mode 10 cost with a large weight value, the 

magnitude dipole values for these modes are decreased and the nonminimum phase zero 

behavior has been eliminated (although this is not guaranteed by the numerical 

algorithm). A clear trade between mode 1 and mode 3 exists: when the magnitude dipole 

value for one of them decreases, the magnitude dipole value for the other increases. In 

general, the magnitude dipole values for both mode 1 and 3 indicate that both modes are 

still not sufficiently gain stabilized.
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Figure 4.3 Root Locus Plot for xs/=880.6 in and x ,2=2,999.6 in
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Recall that many local minimums exist (see Figure 3.9) and that these solutions 

depend on the initial sensor positions. In an attempt to improve upon the solution results 

presented thus far, another set o f initial sensor positions will be used. The flight control 

system root locus plot for manually placed sensors at xs/=2,I00 in and xs2=2,900 in is 

shown in Figure 4.6. Although aeroelastic mode 10 is still nonminimum phase, this figure 

reveals that the magnitude dipole values for most aeroelastic modes are better than ones 

in Figure 4.1. The magnitude dipole values for both modes 1 and 3 are jU/= 2.6940 rad/s 

and / ij= 1.7258 rad/s, respectively.
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Figure 4.6 Root Locus Plot for xsl —2,100 in and xs2=2,900 in
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The noted manual placement values will be used as new initial positions in the 

optimization algorithm in order to attempt an improvement to the gain stabilization 

objectives. Reconsider the augmented cost function in Equation (4.4). Figure 4.7 outlines 

the root locus plot for the flight control system when w/=l  s/rad and wj=I s/rad are used 

as weighting factors in the augmented cost function. It is noticed from this Figure that the 

magnitude dipole value for the 1st aeroelastic mode has been slightly decreased from 

2.6940 to 2.3032 rad/s while the magnitude dipole value for the 3rd aeroelastic mode has 

been significantly decreased from 1.7258 to 0.1593 rad/s. An acceptable rigid body mode 

is also achieved. A majority of aeroelastic modes are stable except the 10th aeroelastic 

mode as well as the 13th aeroelastic mode. For these modes, the constraint terms F /0 as 

well as F /j are violated and the corresponding modes go to instability for high gain 

values. Note in this case the search algorithm allowed F/j to become violated after 

initially starting in compliance, but the overall H  cost value decreased. The optimal 

sensor locations are found at xsl=2,099.I in and xs2=2,684.4 in. It is found that the 

optimization algorithm using the objective function in Equation (4.4), for different values 

o f weighting factors, is unable to find any optimal sensor positions, where all high 

frequency modes remain stable for high gain values. In other words, there were no 

feasible solutions present which satisfy the constraint equations (zeros in left-half plane).
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Figure 4.7 Root Locus Plot for xr/=2,099.7 in and xs2=2,684.4 in

To overcome this situation, an additional term representing the magnitude dipole 

value of the lCfh aeroelastic mode multiplied by an appropriate weighting factor is added 

to the cost function (see Equation (4.5)). The magnitude term j u , j  could have also been 

selected in the cost function but was not because in Figure 4.6, F u  is satisfied and fiio is 

highly affective in keeping all higher frequency aeroelastic zeros in the left-half plane 

(see Figure 4.3). Thus, the same augmented cost function as in Equation (4.5) will be 

minimized using the optimization algorithm. It is found that the appropriate objective 

function for static Filters in the feedback path requires vv/=2 s/rad, wj=I  s/rad, and vv/0=7 

s/rad  as weighting factors when the sensors are initially placed at xsl=2,100 in and 

x S2 = 2 ,9 0 0  in. The optimization solution indicates that the optimal location of sensors are
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xst= l,925.3 in and xS2=2,823.1 in. The root locus plot corresponding to these values is 

illustrated in Figure 4.8. It is noticed from this figure that the flight control system is 

stable for different gain values. Also it is noted that all constraint equations are satisfied 

where all zeros belonging to the aeroelastsic modes lie in the stable region. In addition, 

the desirable augmentation of the rigid-body mode is preserved. Comparing this figure 

with Figure 4.6, it is clear that the dipole magnitude of the lCfh mode is decreased from 

2.3413 to 0.0445 rad/s, and from 2.6347  to 2.3314 rad/s for the I st mode, while it lightly 

increased for the 3rd mode from 1.4891 to 1.5810 rad/s. Figure 4.9 shows the objective 

function value versus the number o f iterations while Figure 4.10 shows the sensor 

position trace.
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Figure 4.8 Root Locus Plot for xs/=1,925.3 in and xs2=2,823.1 in

>*£>.

-e

R e p ro d u c e d  with p e rm iss ion  of th e  copyrigh t ow ner.  F u r th e r  reproduction  prohibited w ithout perm iss ion .



9.5

8.5<o
_3co>
X
c
o
o
5  7.53

u .

6.5

300250200100 150
Number of Iterations

50

Figure 4.9 Cost Function History fo r:cT/= /, 925.3 in and xs2=2,823.1 in

2900

2880

2860

CM
CO
X

2840

2820

2800

2780

" —  ■ n --------------- 1
r  -  y  !

i \
j !

r . ..

r  ••

. i
i

\

i
j

! j

| |

: Y

. '■ \ | 

! ii i

i ^  i

» i
i \

i i

r  ! |

I ( 
| \ 1

/

/

s '
s ’

j i 

| |

j

|

| |

| | 
1 1 )

|

1900 1920 1940 1960 1980 2000 2020 2040 2060 2080 2100
Xs1 ( In )

Figure 4.10 Sensor Position History for xs/=J, 925.3 in and xS2=2,823.1 in

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



130

The final case will be tested using two unity static blending filters with different 

signs such as h/(s)= -l and h2(s)= l. The optimization software is applied to an augmented 

cost function represented in Equation (4.4) using w/ = I s/rad  and w j= l s/rad  as 

weighting factors for modes I and 3 respectively. Placing the sensors at initial positions 

xs/=750 in and xs2= 2,850 in, the optimal locations are found to be at x r/ =892.7 in and 

xs2 = 2,701.4 in. Figure 4.11 shows the root locus plot for the flight control system when 

the sensors are placed in the resulting optimal positions. This figure reveals that using 

two opposite sign blended feedback signals result in undesirable rigid-body control. This 

effect is not unexpected since the feedback signal q (y) in Figure 2.20 is devoid of any 

rigid pitch rate contribution, or

q = hi (s)qi + h2{s)q2 

= (~l){<7 + (4-6)

y=i

Also note from this figure that the magnitude dipole value for mode /  is very big 

(jU/=5.2488 rad/s), while mode 3 is well gain stabilized (£13=0 .0 1 9 5  rad/s). Constraint 

equations F4 and F /6 are violated, thus the corresponding aeroelastic modes have 

nonminimum phase zeros. Due to the break down o f rigid-body control, this filtering 

strategy is not pursued any further in this dissertation.
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Figure 4 .1 1 Root Locus Plot for xs/ =892.7 in and xs2 = 2,701.4 in

The main conclusion from the results presented in this section is that fixed static 

blending (see Equations (4.2)-(4.3)) is highly restrictive and does not allow sufficient 

design freedom to fully achieve the desired gain stabilization objectives. The numerical 

optimization search algorithm appears to be working well and does what is asked of it. 

The com puted sensor locations tend to reduce selected dipole magnitudes with high 

weightings, but due to significant trades between the modes and insufficient design 

freedom, the dipole magnitudes are never significantly reduced. To alleviate the problem, 

the next section allows more freedom in the blending filter structure.
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4.3 Sensor Placement with Variable Static Blending

In this section, optimal gyro placement corresponding to the system in Figure 2.20 

is again considered. The feedback blending Filters will be considered as variable, static 

values. Based on the ability to shift loop gain between kk and h t-h2 in Equation (2.43) and 

Figure 2.20, there is no loss of generality if one filter is held Fixed and the other allowed 

to vary. Here, the static gain parameter of the first Filter will be considered variable, while 

the parameter value of the second Filter will be considered constant (unity). The static 

Filters can be expressed as

h ,(s )= c i (4.7)

h2 (s)= 1 (4.8)

The variable static filter structure in Equations (4.7)-(4.8) introduces the next level of

design freedom beyond that considered in Section 4.2. The Filters here represent

spectrally uniform but unbalanced blending. Optimization parameters here include the 

two gyro locations xs/ and xs2 and the filter parameter c t. To avoid unexpected 

exploitation by the optimizer, the variable filter parameter will be constrained to lie 

within certain bounds. Thus, introduce two additional constraints

F23= ci - ci ^ °  (4.9)

F ,4 =  c , — c , < 0 (4.10)

where c, andc, denote upper and lower bounds on c t . The numerical algorithm is run

with c, = 0.1 and c, = 10 .

The first case will be tested by selecting the variable blending filter parameter

with an initial value of c/=5. The starting sensor locations are chosen to be at xxi=2,100
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in and xs2=2,950 in. The corresponding root locus plot for this manual selection is 

illustrated in Figure 4.12. Comparing this Figure to Figure 4.6, where the (approximately) 

same initial sensor locations are applied but a different blending parameter value 

(h i(s )= l) is used, it is noted that increasing the parameter value of the static Filter number 

I increases the magnitude dipole value o f the effective mode 10 relative to that in Figure 

4.6. Note that mode 9 is technically the nonminimum phase mode (F9>0), but because of 

the near by zero, this feature is essentially tied to mode 10. Additionally the F} constraint 

is violated and mode 3 becomes unstable and has a nonminimum phase zero, while mode 

6 becomes unstable for a certain range of gain values.
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Figure 4.12 Root Locus Plot for xs/=2,100 in , x*?=2,950 in and c /= 5

R e p ro d u c e d  with p erm iss ion  of th e  copyright ow ner.  F u r the r  reproduction  prohibited without perm iss ion .



134

When minimizing the augmented cost function (see Equation (4.4) with F2J, F24 

included) using w /= w j= l s/rad  as weighting factors, the optimization tool failed to find 

suitable positions for the sensors, for which all aeroelastic zeros lie in left-hand plane. 

The final results indicate that the sensors are located at xsi=2,265.5 in and x<2=2,982.4 in 

while the final value of the filter parameter is c i-2 .5 .  The root locus plot o f flight control 

system for these results is shown in Figure 4.13. Comparing Figure 4.13 with Figure 

4.12, it is noticed that the aeroelastic mode 3  becomes highly gain stabilized and its 

dipole value drops from 6.1960 to 0.0341 rad/s, while the dipole value of the first mode 

increased from 1.6076 to 2.4656 rad/s. Also the dipole magnitude value of aeroelastic
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mode 10  is decreased and this mode becomes stable for different gain values, while the 

constraints F i2 and Fm become violated leading to nonminimum phase zeros. Note that 

even though F l2 and F /(5 become violated during the optimization process, F} and F /0 

become satisfied and the H  value is reduced. The results in Figure 4.13 are also 

comparable to Figure 4.7, when assertaining the benefit o f the variable filter. For this 

case, no significant benefit is attained.

In an attempt to correct the high frequency problems in Figure 4.13, reconsider 

the augmented cost function represented in Equation (4.5) with F23 and F24 included and 

with the same previous initial values. Also select the weighting factors as wt=l s/rad, 

w3—I s/rad  and w/o=5 s/rad. The optimization process again failed to find appropriate 

positions of sensors at which the selected dipole values are minimized and all aeroelastic 

modes are stable for different gain values. Figures 4.14a and 4.14b show the root locus 

plot when the sensors are placed at the final optimal results xs/=2,429.7 in and 

xS2=2 ,923.2 in and while the blending parameter is c/=4.6. Comparing both Figures 4 .14a 

and 4.14b with Figure 4.12, it is noticed that the dipole value of the first mode is 

increased from 1.6076 rad/s to 2.6100 rad/s while the dipole value of the third mode is 

decreased from 6.1960 rad/s to 0.4438 rad/s which becomes stable for different gain 

values. Also, the constraint F ;4 is violated and aeroelastic mode 14 becomes unstable for 

high gain value. This high frequency stability problem is again objectionable.
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Figure 4.14a Root Locus Plot fo rx 5/= 2,429.7 in, xs2=2,923.2 in and ci=4.6
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It is obvious from the previous results that using xs/=2,100 in and xx2=2,950 in as 

initial sensor positions is not an appropriate choice for finding desirable solutions. To 

improve upon the previous results, different initial positions such as xx/=850 in and 

xs2=2,750 in will be considered. The root locus plot for these manually selected positions 

with the initial blending parameter of c /= 5  is illustrated in Figure 4.15. This Figure 

reveals that many aeroelastic modes are unstable for high gain values. Comparing this 

figure with Figure 4.12, it is clear that the 3rd mode becomes stable but the I s' mode goes 

unstable, and both modes have larger dipole magnitude values.

Applying an optimization algorithm using the objective function in Equation (4.5) 

with the weighting factors wt=5 s/rad, wj=3 s/rad, and w/0=2 s/rad, the optimization 

algorithm is able to Find suitable sensor positions at which the critical dipole magnitude 

values are decreased, but still is unable to force all areoelastic modes to have minimum 

phase zeros. Both Figures 4.16a and 4.16b show the root locus plot when the sensors are 

placed at the calculated positions xs/= l,324.1 in and xs2—2,371.9 in with the calculated 

value o f the filter parameter c/=0.9. Comparing these Figures with Figure 4.15, it is 

noticed that the dipole value decreased from 6.6061 to 0.4249 rad/s for the first mode and 

decreased from 10.0313 to 0.1540 rad/s for the third mode. Also, all constraint equations 

are satisfied except F/?. The aeroelastic mode 12 becomes unstable for high gain values 

and has a nonminimum phase zero.
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A final case will be tested using the previous initial sensor locations as well as the 

same augmented cost function but with a different filter parameter value. The new value 

will be considered as c/=0.5. Optimization results indicate that the optimal sensor 

locations are xs/= 1,325.7 in and .*>7=2,369.8 in while the optimal parameter value is 

again c/=0.9. Figures 4.17a and 4.17b show the flight control system root locus for the 

optimal calculated values. It is noticed from results, as well as the figures, that choosing 

any value for the static blending filter parameter c t (or the same initial sensor locations 

and cost function structure) does not affect the final results. The optimal solution is 

relatively insensitive to the starting value for c/.
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Figure 4.17a Root Locus Plot for xxl= l,325.7 in, xS2=2,369.8 in and c/=0.9
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Figure 4.17b Root Locus Plot for x,i=J,325.7 in, xS2=2,369.8 in and c/=0.9
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The main conclusion from the results presented in this section is that variable 

static blending does not offer much design freedom beyond that of the fixed static 

blending cases. Some measurable improvements are seen in the ability to gain stabilize 

the critical modes ( /  and 3), but there is always a lingering right-half plane zero 

associated with a higher frequency mode. More design freedom is needed in the 

optimization process.

4.4 Sensor Placement with Fixed Dynamic Blending

In the previous Sections 4.2 and 4.3, the flight control system blend filter structure 

is considered to have a static form. In this section, another prospect will be considered to 

significantly enhance design freedom beyond that considered in previous sections. This 

prospect deals with a fixed but dynamic filter structure. Two simple blending filter types 

will be considered and are based on problem experience from manual sensor placement 

efforts. Figure 4.18 shows the two types o f blending strategies and the corresponding 

filter equations are indicated below.

Low and Band Pass:

fh(s) = c,
a

(4.11)
s + a

h1(s)=c- s b
(4.12)

2 s + a s  + b

Low and High Pass:

fc,(s) =  c,
a

(4.13)
s + a

h2(s) = c2 — (4.14)
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Figure 4.18 Dynamic Blend Filters
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The basic strategy here is to blend desirable low frequency features in the gyro 

number 1 feedback signal with desirable high frequency traits in the gyro number 2 

feedback signal. This strategy assumes that gyro I is located some where near the mid 

fuselage region while gyro 2 is located in an aft region of the fuselage. These locations 

tend to yield desirable gain stabilization characteristics in bounded frequency windows 

(see Section 2.5). The two strategies differ only in how attenuation at high frequency is 

treated, with the low-high pass strategy introducing lesser phase loss in the control loop. 

The fixed dynamic filter structures in Equations (4 .11)-(4.14) represent spectrally 

nonuniform and possibly unbalanced blending. These filters introduce the next level of 

complexity in the design process. Because of the fixed nature of the filters, optimization 

parameters in this section only include the two gyro locations xs/ and x*?.

The low pass and band pass filter structure indicated in Figure 4.18 will be 

considered first. Based on knowledge obtained from Chapter 2, the low and band pass 

filter parameters are selected as a= 7  rad/s, b=31 rcid/s, and c/=C2=J. This selection 

provides a transition between the two feedback signal at a frequency between the critical 

1st and 3rd aeroelastic modes, as well as equally balanced strength between the two 

signals. The optimization algorithm is applied to the augmented cost function in Equation 

(4.4) for initial sensor locations xs/=850 in and xS2=2,750 in, for weighting factors vv/= 

w3=I s/rad, and for the filter parameters indicated previously. Figure 4.19 illustrates the 

root locus plot when the sensors are located on the final solution.
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Figure 4.19 Root Locus Plot for xsi=867.4 in and xs2=2,726.3 in

It is noticed that when the sensors are located at xst=867.4 in and xs2=2,726.3 in, 

constraint F/ is violated and the corresponding mode I has a nonminimum phase zero. 

Note the sensors moved very little from the starting locations. Thus, a local minimum 

exists near the starting condition, and this local minimum is highly undesirable. In 

general, the optimization results using the low-band pass blending logic are not very 

successful in satisfying control design requirements. It is concluded after using many 

different forms o f the augmented cost function, as well as different weighting factor 

values and initial sensor positions, the constraint Ft remains violated.
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As fully discussed in the References 42 and 44, a root locus analysis on the y 

numerator in Equation (2.43) leads to the conclusion that phase loss in the low-band pass 

filter approach tends to push the / "  aeroelastic zero into the right-half plane. In other 

words, the transition provided by the low-band pass blend logic is to harsh and disrupts 

the near by dipole structures. The low-band pass filter is not considered any further in this 

chapter. Thus, consider the low-high pass blending logic proposed in Figure 4.18. The 

filter parameters are selected as a=3 rad/s, c/=I,  and c?=7. The signal y in Figure 2.20 

sees no phase loss from this logic.

Applying the optimization algorithm using the augmented cost function shown in 

Equation (4.4) with weighting factors w,=ws=l s/rad for initial sensor locations 

xs/= 2,l00 in and xk2=2,950 in, the optimal sensor locations are found to be xst=2,101.1 in 

and xs2=2,477.5 in. Figure 4.20 shows the root locus plot when the sensors are manually 

placed while Figure 4.21 shows the root locus plot when the sensors are optimally placed.
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Figure 4.20 Root Locus Plot for xsi=2,100 in and xs2=2,950 in (Zk=l rad/s)
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Figure 4.21a Root Locus Plot for xst= 2 ,lO L l in and xS2=2 ,4 7 7 .5  in
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Figure 4.21b Root Locus Plot for xst =2,101.1 in and xsz=2,477.5 in
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By comparing these last two figures, it is noted that mode 3 becomes fairly well 

gained stabilized, the magnitude dipole value o f the 3rd mode is decreased from 2.6642 to 

0.2832 rad/s. Mode I could be more gain stabilized (a change in j i t from 3.5055 to 

2.5156 rad/s), but at least constraint F t is satisfied. In fact, all constraints are satisfied 

except F 14 where its corresponding mode is unstable for high gain values. Figure 4.22 

shows the augmented cost function value at each optimization iteration while Figure 4.23 

shows the sensor position track during the search. Note the first sensor remains 

essentially fixed at its initial value (xsl=2,100 in). This is consistent with Figure 2.2 

where mode slope 1 is approximately zero ( 0 ,'(2,100) = 0 ) and leads to modest mode / 

gain stabilization. On the other hand, the second sensor moves approximately 475 in 

(.xs2=2,477.5 in) to a location where 03'(2,477.5) = 0 yielding high gain stabilization.
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Figure 4.22 Cost Function History for .r^=2,101.1 in and xs2=2,477.5 in
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Figure 4.23 Sensor Position History for xs/ =2,101.1 in and jc<2=2 ,4 7 7 .5  in

To enhance gain stabilization for mode I, another highly similar case is run, 

except the cost function weights are selected as w/=3 s/rad  and wj=l  s/rad. Increased wt 

should mandate an improved jU/ value. Figure 4.24 shows the resulting root migration 

plot for the optimal solution xst=2,716.5 in and xs2=2,475.7 in. When comparing Figure 

4.24 with 4.20, the mode 1 and 3 dipole magnitude values decreased from 3.5055 to 

2.4889 rad/s and from 2.6642 to 0.1241 rad/s, respectively. These results are unexpected 

and show the highly nonlinear behavior o f this optimization problem. Instead of Finding a 

new xsi value that significantly reduces ///, the optimizer found an xs/ value that reduces 

Hi more. Nevertheless, solutions portrayed in Figures 4.21 and 4.24 are judged to be two 

of the better solutions in this chapter. Figures 4.25-4.26 show the corresponding search 

history results.
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Figure 4.24a Root Locus Plot for xst=2,716.5 in and xs2=2,475.7 in
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Figure 4.24b Root Locus Plot for xsl=2,716.5 in and xs2=2,475.7 in
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Figure 4.25 Cost Function History for x%l=2,716.5 in and xs2=2,475.7 in
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Figure 4.26 Sensor Position History for.rf/=2,716.5 in and xS2=2 ,475.7 in
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4.5 Sensor Placement with Variable Dynamic Blending

In Section 4.4. cases were run with a fixed blending structure; thus, the full 

potential of the dynamic filters was not exploited. For example, it is observed that when 

the low-high pass filter parameter a is decreased and c2 is increased manually using the 

Figure 4.21 solution, the mode /  dipole becomes much tighter. In other words, there may 

be additional solution enhancements that can be extracted from this filter structure. In this 

section, the low-high pass dynamic blending strategy will be exploited further by 

allowing one independent parameter and one dependent parameter o f the dynamic filters 

to be optimized simultaneously during sensor placement. The parameter a in Equations 

(4 .13)-(4.14) will be considered variable inside the optimization algorithm. Further the 

param eter c? will be allowed to vary according to the schedule c2=2a. Constraints similar 

to these in Equations (4.9)-(4.10) fo ra  are enforced where a =0.1 rad/s and a = 10 rad/s.

Consider a case starting with optimization variables xs/=2,100 in, xs2=2,950 in, 

and a=5 rad/s. Other parameter values that are fixed include c/=l .  Cost function 

(Equation (4.4)) weights are w f =wj=l  s/rad. The optimal solution yields xs/=2,J01.8 in 

and xs2= 2 ,4 7 7 .2  in and a=5 rad/s. The corresponding root locus plot is given in Figure 

4.27. These results are quite unexpected. Note the filter parameter a did not change 

during the optimization. Further analysis revealed components of the gradient vector 

associated with xsi and xs2 dominated the corresponding component for a by several 

orders of magnitude. Thus, the optimizer essentially ignored the directional information 

corresponding to a during iterative stepping. Even though manual changes in the 

param eter a lead to significant root locus changes, additional changes due to xsi and xs2 

wash out these effects. Also note xst changed very little while xs2 moved approximately
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475 in. In fact, these sensor locations are virtually identical to those found in the solution 

for Figure 4.21. Thus, the root locus features in Figures 4.27 and 4.21 look highly similar 

(even though c/ and C2 are somewhat different). Little additional benefit was extracted 

from considering a variable dynamic filter for this single test case.
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Figure 4.27a Root Locus Plot for xsi=2,101.8 in, xS2=2 ,4 7 7 .2  in and a=5 rad/s
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Figure 4.27b Root Locus Plot for xs/=2,101.8 in, x,?=2,477.2 in and a - 5  rad/s

4.6 CIosed-Loop Vehicle Evaluation

In this section, one of the more promising sensor placement solutions will be 

carried through to the final step of flight control design and evaluation. Two candidate 

sensor placement solutions based on gain stabilization are potential cases. These solutions 

correspond to the variable static blending case given in Figure 4.14 and the fixed 

dynamic blending (low-high pass) case given in Figure 4.24. The Figure 4.14 case is 

highlighted here based on its simpler blending logic.

Figure 4.28 shows the Figure 4.14 root locus plot with closed-loop pole locations 

explicitly indicated for a compensator gain value of kk=0.066 rad/rad/s. For this gain 

value, the rigid pitch mode (mid period mode) damping and natural frequency are £
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=0.7043 and comp =0.8349 rad/s. These values are considerably improved relative to the

open-loop values obtainable from Table 2.1. These values should provide acceptable 

flying qualities for a large transport. After augmentation, the unstable slow mode in Table

2.1 is relocated to s=-0.0040 rad/s providing a stable closed-loop airframe. Even though 

the desire here was to gain stabilize the aeroelastic modes, Figure 4.28 indicates a mode /  

damping ratio of £  ( =0.2277, which is also much improved relative to Table 2.1. Finally,

note that even though two higher frequency aeroelastic modes have a potential instability, 

for the selected gain value they are stable.
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Figure 4.28 Closed-Loop Poles for xs}=2,429.7 in, xs2=2,923.2 in and c/=4.6
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Figure 4.29 shows the corresponding time response for q due to a 0.01 rad/s

pitch rate command qc (see Figure 2.20 and Equation (2.43)). First note that q does not

correspond to any pitch rate signal along the fuselage, but rather is a linear combination 

of two physical pitch rate signals. Further note that individual pitch rate responses may 

vary from that shown in Figure 4.29 due to different output characteristics. These other 

responses are not considered here. In general, the closed-loop response in Figure 4.29 is 

significantly improved when compared to the open-loop responses given in Figure 2.7- 

2.8. First and foremost, the closed-loop response is stable. The gross response consists of 

a single overshoot occurring around 3 s with a decay to steady state after 6  s. Note the 

system behaves as a rate command Type 1 system in the short term. This behavior is the 

mid-period modal contribution to the overall response. Also note in the response two 

distinct high frequency ripples with frequency content of approximately 6  rad/s and 40 

rad/s. These vibrations are originating from the 1st and 12th aeroelastic modes (see Figure 

4.28). By careful placement o f the feedback sensors, these vibrations have been 

minimized by gain stabilization strategies, but residual oscillations still remain. The 

impact o f these residual vibrations on piloted flying qualities is an open issue. These 

residual vibrations can be reduced by leveraging the loop gain (£*), but the rigid pitch 

response quickness and damping is degraded. Given the extreme nature of the vehicle 

airframe and the associated flight control challenge, the final results appear to be 

reasonably successful.
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CHAPTER 5

OPTIMAL SENSOR PLACEMENT:

PHASE STABILIZATION

5.1 Introduction

This chapter deals with computing optimal sensor locations using phase 

stabilization objectives. This procedure is based on minimizing aeroelastic 

complementary departure angles as described in Equation (3.100)-(3.101). 

Complementary departure angle values for selected aeroelastic modes will be minimized 

using the optimization method presented in Figure 3.8. During optimization, inequality 

constraints addressing minimum phase zero and on the body sensor behavior as presented 

in Equations (3.104)-(3.106) are enforced. The general form of the cost function utilized 

in this chapter, based on complementary departure angle with inequality constraints, can 

be written as

Previous studies revealed a direct trade exists between mode 1 and 3. These two modes 

are critical to the stability of the system. Therefore, only the key complementary 

departure angle values o f the low frequency modes 1 and 3 that affect control system 

stability are considered. Thus, the only nonzero weights in Equation (5.1) will be wt and 

wj. This selection is based on knowledge obtained during manual sensor placement 

efforts. The solution strategy is to start with simple blend filters and progress to more

(5.1)
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advanced blending logic (and hence more design freedom) when necessary. Static and 

dynamic filters with fixed parameters, as well as variable parameters, will be considered. 

W eighting factors are selected based on relative complementary departure angle values 

and are refined to tailor the solution results. Different initial positions for sensor locations 

will also be tested and used for solution refinement. The compensator zero parameter is 

specified and fixed (z*=2 rad/s) to facilitate augmenting rigid pitch damping and natural 

frequency. For the most desirable sensor placement solutions, the time responses and 

general behavior of the closed-loop system will be tested and evaluated.

5.2 Sensor Placement with Fixed Static Blending

In this section, optimal gyro placement corresponding to the flight control system 

architecture shown in Figure 2.20 will be investigated. Optimization parameters are the 

two gyro locations xst and xs2. The blending filters in the feedback signals will be 

considered as constant, static values equal to one for each filter. The static filters can be 

represented by the following expressions.

hi(s) = /  (5.2)

h2( s ) = l  (5.3)

The fixed static filters in both Equations (5.2) and (5.3) express the simplest blending 

logic. These filters represent spectrally uniform and equally balanced blending. The

procedure for finding the optimal sensor locations depends on the initial sensor positions

used in the optimal search strategy. From Figure 3.10, as well as from manual placement 

experience, candidate initial sensor locations can be determined. The weighting factors of 

the cost function terms are initially assigned equal to one. Based on the optimization
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results, these values will be adjusted in order to find desirable solutions satisfying the 

system requirements. If the solution characteristics are unsatisfactory, other departure 

angle terms will be added to the cost function with appropriate weighting factors, or other 

initial sensor locations will be sought, dependent on the evaluation of the optimization 

results.

As a benchmark, consider the root migration characteristics associated with 

Figure 5.1 for sensor positions xs/=850 in and „r,2=2,750 in. These positions could have 

originated from an inconclusive manual placement study, for example. Observe in Figure

5.1 the relaxed stability pole near the origin. The control system architecture (see Figure 

2 .20) is effective in stabilizing this mode and providing high levels of damping and 

quickness in the rigid pitch mode (see migration path initiating from near the origin and 

wrapping around the real axis compensator zero). These trends imply desirable rigid- 

body augmentation. The aeroelastic augmentation characteristics are much less desirable. 

Observe from Figure 5.1, as loop gain is increased both mode 1 and mode 10 are 

destabilized due to undesirable complementary departure angles (0, =46.11 deg, 

01O = 171.7497 deg). On the other hand, the mode 3 complementary departure angle is 

nearly optimum ($, =5.714 deg). Also note the zeros associated with mode I as well as 

mode 10 are nonminimum phase. Reduced structural mode damping, phase loss in the 

control loop, and possibly response reversal may result from this control and are 

unacceptable characteristics which must be corrected with improved sensor locations.

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



160

45

40

OJ
^  30

~  15

-4.5 ■4 -3.5■5 3 -2.5 •2 -1.5 1 -0.5 0
Real Axis ( rad / s )

Figure 5.1 Root Locus Plot for xs/=850 in and xs2=2,750 in (Zk=2 rad/s)

For the initial sensor positions o f xs/=850 in and xs2=2,750 in, and for the 

weights o f w/= 1 I /deg  and w j= l 1/deg, the optimization algorithm is applied to 

Equation (5.4), or

22

H  = + w3fa + ^ (5. 4)
/=i

The resulting optimal sensor positions are xs/=926.6 in and xs2=2,734.6 in. The resulting 

root locus plot when the sensors are placed at these optimal locations is illustrated in 

Figure 5.2. Note the complementary departure angle for mode /  in Figure 5.2 has not 

changed much from that shown in Figure 5.1. From Figure 5.2, it is also noticed that the 

constraints F / and F/0 are still violated. Note both aeroelastic modes 1 and 10 have
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nonminimum phase zeros. This result is again an artifact of the implemented search 

algorithm in Figure 3.8. Because o f the limited region o f feasibility, dedicated constraint 

satisfaction is not considered. However, the overall cost is reduced and this reduction can 

originate with improved constraint satisfaction (note the mode I zero is closer to the 

imaginary axis in Figure 5.2 than in 5.1). The optimization algorithm with selected values 

o f weighting factors and starting positions is unable to satisfy all constraint equations 

indicating a design change is needed.

Real Axis ( rad / s )

Figure 5.2 Root Locus Plot for x%i—926.6 in and xs2—2,734.6 in
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Consider increasing the weighting factor for aeroelastic mode 1 from 1 1/deg to 3 

1/deg and keeping the weight factor for mode 3 as I 1/deg. The optimization tool is 

applied to Equation (5.4) with the same previous initial placement o f sensors. The 

optimization results indicate that the best sensor locations are x <1=903.4 in and 

x<2=2,937.2 in. The flight control system root locus when the sensors are placed at these 

optimal values is illustrated in Figure 5.3. Comparing the root locus features in Figure 5.3 

with Figure 5.1, the optimal solution shows that both the Is' and the 3rd aeroelastic modes 

have desirable complementary departure angles. Numerically, the complementary 

departure angle for mode I is significantly decreased from 46.11 deg\o 0.003 deg, but the 

complementary departure angle for mode 3 is slightly increased from 5.71 deg to 6.16 

deg. Examining the locations of aeroelastic mode zeros, the original zeros previously 

laying in the unstable region have been forced to move into the stable region. These two 

results are consistent with the proposed cost function and constraints in Equation (5.4). 

Additionally, preservation of rigid-body stability augmentation characteristics is 

achieved. An implication from these observations and sensor placement strategy is the 

flight control system is stable with improved damping for a wide range o f gain values. 

Also, the minimization history in terms o f the objective function vs. number of iterations 

and the sensor location search path are shown in Figures 5.4-5.5. Note a change in sensor 

location o f approximately 200 in or less results in a large reduction of H. Also, it is noted 

from this plot that the complementary departure angle of the 1&1 aeroelastic mode is 

undesirable. This behavior is somewhat accepted, however, since the constraint F /0 is 

satisfied.
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Figure 5.3 Root Locus Plot for xs/=903.4 in and xs2=2,93/.2 in
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Figure 5.5 Sensor Position History for xsl=903.4 in and x.<2=2,937.2 in

The main conclusion from the results presented in this section is that fixed static 

blending (see Equations (5.2)-(5.3)) is very effective and allows sufficient design 

freedom to achieve the desired phase stabilization objectives in nearly all aspects. 

Selected modes become or remain well phase stabilized and the corresponding 

complementary departure angle values are near zero. The computed sensor locations tend 

to reduce the complementary departure angle with high weightings with an observable 

design trade. The only remaining quasi-significant deficiency is the departure angle for 

mode 10. One approach to address this small deficiency would be inclusion of 0IO in the

cost function. This solution approach was not explored. To possibly alleviate this 

problem, the next section explores more sophisticated blending structures.
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5.3 Sensor Placement with Variable Static Blending

In this section, optimal gyro placement corresponding to the system in Figure 2.20 

is again considered. The feedback blending filters will be considered as variable, static 

values. Based on the ability to shift loop gain between kk and h r h2 in Equation (2.43) and 

Figure 2.20, there is no loss o f generality if one filter is held fixed and the other allowed 

to vary. Here, the static gain parameter o f the first filter will be considered variable, while 

the parameter value of the second filter will be considered constant (unity). The static 

filters can be expressed as

h)(s)= c, (5.5)

h2 (s)= 1 (5.6)

The variable static filter structure in Equations (5.5)-(5.6) introduces the next level of

design freedom beyond that considered in Section 5.2. The filters here represent

spectrally uniform but unbalanced blending. Optimization parameters here include the 

two gyro locations xs/ and xs2 and the filter parameter ct . To avoid unexpected 

exploitation by the optimizer, the variable filter parameter will be constrained to lie 

within certain bounds. Thus, introduce two additional constraints

F23= c l - c l <0  (5.7)

F 2a =  q  -  c ,  < 0 (5.8)

where c, andc, denote upper and lower bounds on c/. The numerical algorithm is run

withe, = 0.1 andc, = 10.

The first case will be tested by giving the variable blending filter parameter an

initial value of c/=5. Figure 5.6 shows the root locus plot of the flight control system
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with the specified blend filter parameter and with sensors placed initially at xs/=850 in 

and xX2 =2,750 in. It is noted from this figure that constraints F,, F9 and F/j are violated. 

Aeroelastic mode 18 is also unstable for an intermediate range of gain values. The I s' 

aeroelastic mode has a highly undesirable complementary departure angle. An 

optimization algorithm will be applied to Equation (5.4) with constraints F2j, F24 

included to minimize the complementary departure angle for both modes 1 and 3, and to 

force the nonminimum phase zeros to move to the stable region. Since the I st aeroelastic 

mode has an extremely undesirable complementary departure angle ($  =160.5048 deg), a 

larger weight factor will be assigned to this mode compared to the one assigned to mode 

3. The weighting factors are w/=l 1/deg and wj=0.5 1/deg. The optimal solution 

indicates the best sensor positions are at .vv/ =823.7 in and xs2=2,759.5 in while the 

optimal blend filter parameter is cf =0.8. Figure 5.7 illustrates the root locus plot when the 

optimal values are considered. It is noted from this plot that both the 1st mode and the 3rd 

mode have desirable complementary departure angles. Numerically, the complementary 

departure angle for the 1st mode is greatly decreased from 160.5048 deg to 0.5664 deg 

while the complementary departure angle for the 3rd mode is slightly increased from 

5.1238 deg to 5.7133 deg. Also, it is noted that aeroelastic mode 10 has an undesirable 

complementary departure angle, but all constraint equations are satisfied (although this 

result is not always guaranteed) and an acceptable rigid-body pitch mode is achieved. The 

cost function value for each iteration is illustrated in Figure 5.8. Note Figure 5.8 shows a 

temporary increase in the H  value. The cost function history plots show all trial iterations, 

even iterations that failed to decrease the H  value. Observe how the algorithm changes

R e p ro d u c e d  with p e rm iss ion  of th e  copyrigh t ow ner.  F u r th e r  rep roduction  prohibited w ithout perm iss ion .



167

the adaptive step size or the gradient construction increment, and the H  value continues 

its decreasing history.
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Figure 5.6 Root Locus Plot for xs/=850 in, xS2=2,750 in and c/=5 (z*=2 rad/s)
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Figure 5.7 Root Locus Plot for xs/=823.7 in, xs2=2,759.5 in and c/=0.8
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Figure 5.8 Cost Function History for x,,/=823.7 in, xS2=2,759.5 in and c t=0.8

Another case will be tested using the same initial values used in the previous case 

but with different weighting factor values. The values w/=3 I /deg  and ws=l 1/deg will be 

considered here. The results indicate optimal sensor positions will be xst= 845.7 in and 

xS2=2,789.1 in, and c f=0.8. The root locus plot when the sensor are located in these 

positions is shown in Figure 5.9. Comparing this figure with Figure 5.6, it is noticed the 

complementary departure angle for mode 1 has dropped from 160.5048 deg in the initial 

case to 1.7720 deg  in the optimal case, while the complementary departure angle for 

mode 3 has slightly increased from 5.1238 deg to 5.98 deg. These results indicate the 

complementary departure angle for both critical modes ( /  and 3) are not decreasing
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simultaneously. When the complementary departure angle o f the / "  mode is decreasing, 

the complementary departure angle of the 3rd mode is increasing or vice versa.
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Figure 5.9 Root Locus Plot for ,v5/= 845.7 in , xS2=2.789.1 in and ct=0.8

A major conclusion from the investigations presented in this section is that, 

although the variable static blending filters transform a very poor manual solution with 

three nonminimum phase zeros into a minimum phase system with a greatly improved 0, 

value without disrupting the value, these more sophisticated blend filters do not offer 

much leverage for improving the 0IO value beyond the Fixed static cases. Therefore, more 

design freedom is explored in the next section.

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



170

5.4 Sensor Placement with Fixed Dynamic Blending

In the previous Sections 5.2 and 5.3, the flight control system blending filter is 

considered to have static form. In this section, another prospect beyond the previous 

forms will be considered to find the optimal location of sensors. This prospect deals with 

a fixed dynamic filter architecture. The main objective o f using such a filter is to provide 

more freedom in designing and tailoring optimal sensor solutions. Several forms of 

dynamic filters will be considered and tested to satisfy design requirements. Two simple 

blending filter strategies are considered and coincide with the filters presented in Figure 

4.18 and Equations (4 .1 1)-(4.14). These filters again represent spectrally nonuniform and 

unbalanced blending. Because of the fixed nature o f the filters, optimization parameters 

in this section only include the two gyro positions xsi and xS2-

When using the Iow-band pass filters, the optim izer is unable to satisfy design 

requirements. An optimization algorithm applied to the augmented cost function 

represented in Equation (5.4) for different initial sensor locations as well as different 

weighting factors failed to find suitable solutions for the sensor locations in which all 

constraint equations are satisfied. In general, the l sr aeroelastic mode tends to have a 

nonminimum phase zero and an undesirable com plem entary departure angle. Thus, the 

low-high pass filters will be tested. It is found that this kind of filter tends to facilitate 

constraint Ft satisfaction. Figure 5.10 shows the root locus plot of the flight control 

system when the sensors are initially placed at xs/ —850 in and xS2=2,750 in and when the 

dynamic filters are selected with a=3 rad/s, c i—l ,  and c2=7. Comparing this figure with 

Figure 5.1, it is noted that nonminmium phase zeros are moved to the stable region. Also,
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the complemenatry departure angle o f the first mode is improved (0, = 46.11 to 14.7506 

deg).
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Figure 5.10 Root Locus Plot for xsl=850  in and xs2=2,750 in, Zk=2 rad/s, (Dynamic Blend)

To minimize the complementary departure angles for both modes 1 and 3. an 

optimization procedure will be applied on the augmented cost function shown in 

Equation (5.4) with weighting factors w/=wj=J 1/deg. An optimization solution indicates 

the most desirable locations for the sensors are found to be at xs/=622.6 in and 

=2,877.8 in. Figure 5.11 shows the root locus plot when the sensors are located at the 

optimized solution. Comparing Figure 5.11 with Figure 5.10, it is noted that both mode 1 

and 3  are well phase stabilized, the complementary departure angle o f the / "  mode is 

decreased from 14.7506 to 1.7252 deg while the complementary departure angle of the
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3rd mode is slightly decreased from 3.5290 to 3.2068 deg. All constraint equations 

remained satisfied. Most importantly to note is the undesirable mode 10 departure angle 

has been eliminated with utilization of dynamic blending filters, although it may require 

improvement with further tailoring. Figure 5.12 shows the augmented cost function value 

at each optimization iteration while Figure 5.13 shows the track of the sensor positions 

during the search.
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Figure 5.11 Root Locus Plot for xsi=622.6 in and xS2=2,877.8 in
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Figure 5.13 Sensor Position History for xsi —622.6 in and xs2=2,877.8 in

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



174

In an attempt to improve upon the previous results, another case will be tested. 

The same dynamic filters a —3 rad/s, c/=I,  and c2—7 as well as the same weigthing 

factors wi=w3=I I/deg  will be used, but different initial locations for the sensors will be 

considered. Figure 5.14 illustrates the root locus plot when the sensors are located in the 

initial placement such as xsi—2,100 in andxs2=2,950 in.
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Figure 5.14 Root Locus Plot for xs/=2,100 in and xs2=2,950 in (z*=2 rad/s)

Applying the search algorithm on Equation (5.4), the computational results 

indicate the optimal locations are found to be xsJ =3,195.3 in and xs2=2,755.9 in. Figure 

5.15 shows the root locus plot o f the flight control system for the optimized solution. 

Comparing Figure 5.15 with Figure 5.14 reveals the complementary departure angle for
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the I st mode is decreased from 9.9666 to 6.4469 deg. while the complementary departure 

angle for the 3rd mode is decreased from 6.0560 to 1.8702 deg. Figures 5.16 and 5.17 

illustrate the cost minimization history and the sensor location path, respectively. Note 

the altered starting values have resulted in a drastically different solution for xsl when 

compared with Figure 5.11 (3,195.3 in vs. 622.6 in). Here the first gyro is to be mounted 

near the vehicle tail while in Figure 5.11, the gyro should be mounted near the vehicle 

nose. Although drastically different mounting locations exist, the local minimum 

solutions (i.e., root migration characteristics) appear highly similar.
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Figure 5.15 Root Locus Plot for .tr/ =5,795. J  in and xS2=2,755.9 in
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Figure 5.16 Cost Function History for xs/=3,195.3 in and xS2=2,755.9 in
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Figure 5.17 Sensor Position History for xs/ =3,195.3 in and xS2=2,755.9 in
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5.5 Sensor Placement with Variable Dynamic Blending

In Section 5.4, cases were run with a fixed blending structure. Thus, the full 

potential o f the dynamic filters was not exploited. It is noted from application that 

multiplying the second feedback signal by a higher gain while minimizing the sensor cut 

off parameter value helps to reduce nonminimum phaseness o f the I st aeroelastic mode. 

For example, it is observed that when the low-high pass filter parameter a is decreased 

and c2 is increased manually using the Figure 5.11 solution, the mode 1 zero translates 

deeper into the left-half plane. In other words, there may be additional solution 

enhancements that can be extracted from this Filter structure. In this section, the low-high 

pass dynamic blending strategy will be exploited further by allowing one independent 

parameter and one dependent parameter o f the dynamic filters to be optimized. The 

param eters in Equations (4 .13)-(4.14) will be considered variable inside the optimization 

algorithm. Further the parameter c? will be allowed to vary according to the schedule 

c2=2a. Constraints for the parameter a (0.1<a<10 rad/s) are again enforced during the 

optimization.

Consider a case starting with optimization variables xs/=2,100 in and xs2—2,950 

in, and a=3 rad/s. Other parameter values that are fixed include ci=I.  Cost function 

(Equation (5.4)) weights are w/=wj=I I/deg. The optimal solution yields a=1.8 rad/s and 

no change for xsl and xs2 (xsi=2,100 in and xs2=2,950 in). The corresponding root locus 

plot is given in Figure 5.18. These results are quite unexpected. Note the sensor positions 

xsl and xs2 did not change during the optimization. Further analysis revealed the 

components of the gradient vector associated with xx/ and x r2 are dominated by the 

corresponding component for a by several orders of magnitude. Thus, the optimizer
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essentially ignored the directional information corresponding to xx/ and xs2 during 

iterative stepping. Even though manual changes in xs/ and xx2 lead to significant root 

locus changes, additional changes due to a wash out these effects. This result is in direct 

contrast to that found in Section 4.5. It is noted from Figure 5.18 that the complementary 

departure angles for both aeroelastic modes /  and 3 are well phase stabilized (0, =0.0001 

deg, (f>, =1.4185 deg), all constraint equations are satisfied, and the rigid-body mode is 

successfully augmented. Little additional benefit was extracted from considering a 

variable dynamic filter for this single test case. Two small benefits may be improved 0,,

and 0I8 values compared with those in Figure 5.15.
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Figure 5.18 Root Locus Plot for xst=2,100 in, xs2=2,950 in and a=1.8 rad/s
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5.6 CIosed-Loop Vehicle Evaluation

In this section, one of the more promising sensor placement solutions will be 

carried through to the final step of flight control design and evaluation. Three candidate 

sensor placement solutions based on phase stabilization are potential cases. These 

solutions correspond to the variable static blending case given in Figure 5.7 and the fixed 

dynamic blending (low-high pass) cases given in Figure 5.11 and 5.15. The Figure 5.7 

case is highlighted here based on the simpler blending logic.

Figure 5.19 shows the Figure 5.7 root locus plot with closed-loop pole locations 

explicitly indicated for a compensator gain value of kk=0.58 rad/rad/s. For this gain 

value, the rigid pitch mode (mid period mode) damping and natural frequency are

= 0.6169 and comp =2.2063 rad/s. These values are considerably improved relative to the

open-Ioop values obtainable from Table 2.1. These values should provide acceptable 

flying qualities for a large transport. After augmentation, the unstable slow mode in Table 

2.1 is relocated to s=-0.0070 rad/s providing a stable closed-loop airframe. The desire 

here was to phase stabilize the aeroelastic modes, and Figure 5.19 indicates a mode 1 

damping ratio of £ f  =0.1994, which is also much improved relative to Table 2.1. Finally,

note that there are no predicted instabilities for any gain value.
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Figure 5.19 Closed-Loop Poles for xs/=823.7 in, xs2=2,759.5 in and c t=0.8

Figure 5.20 shows the corresponding time response for q due to a 0.01 rad/s

pitch rate command qc (see Figure 2.20 and Equation (2.43)). First note that q does not

correspond to any pitch rate signal along the fuselage but rather is a linear combination of 

two physical pitch rate signal. Further note that individual pitch rate responses may vary 

from that shown in Figure 5.20 due to different output characteristics. These other 

responses are not considered here. In general, the closed-loop response in Figure 5.20 is 

significantly improved when compared to the open-loop responses given in Figure 2.7- 

2.8. First and foremost, the closed-loop response is stable. The gross response consists of
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a single overshoot occurring around 1.2 s with a decay to steady state after 3 s. Note the 

system behaves as a rate command Type I system in the short term. This behavior is the 

mid-period modal contribution to the overall response. Also note in the response one 

distinct high frequency ripple with frequency content of approximately 10 rad/s. This 

vibration is originating from the 3rd aeroelastic mode (see Figure 5.19). Even though the 

3rd mode is damped considerably relative to the open-loop value, the closed-loop pole is 

distanced from the corresponding zero (i.e., a loose dipole) and the time response suffers. 

This phenomenon is often overlooked in elastic control design. The impact of this 

residual vibration on piloted flying qualities is an open issue. This residual vibration 

could be reduced by lowering the loop gain (A:*), but the rigid pitch response quickness 

and damping is degraded. Given the extreme nature of the vehicle airframe and the 

associated flight control challenge, the final results appear to be reasonably successful.
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Figure 5.20 Step Response for xsi=823.7 in, xs2=2,759.5 in and ci=0.8
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CHAPTER 6

OPTIMAL SENSOR PLACEMENT:

GAIN-PHASE STABILIZATION

6.1 Introduction

In Chapter 4, objective functions based on dipole magnitude are minimized to 

obtain optimal sensor positions, while in Chapter 5 other objective functions based on 

complementary departure angle are minimized to find optimal positions of the sensors. 

This chapter deals with computing optimal sensor locations using mixed gain and phase 

stabilization objectives. The cost function will be based on the complementary departure 

angle, as well as the dipole magnitude. The goal of utilizing this cost function is to 

improve the stability and performance o f the control system by minimizing the 

complementary departure angles for critical aeroelastic modes, as well as degrading the 

influences of key aeroelastic modes by minimizing the dipole magnitude values. The 

general form of the cost function utilized in this chapter, based on dipole magnitude and 

complementary departure angle with inequality constraints, can be written as

where and w0 refer to weighting factors for the dipole magnitude and complementary

Considering the first and third aeroelastic modes are the critical modes in the 

control system design, the only nonzero weights in Equation (6.1) will be

(6 . 1)

departure angle costs, respectively, for the i,h mode.

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



w , , w and w^ . This selection is based on knowledge obtained during manual

sensor placement efforts. The solution strategy is to start with simple blend filters and 

progress to more advanced blending logic (and hence more design freedom) when 

necessary. Static and dynamic filters with fixed parameters, as well as variable 

parameters, will be considered. Weighting factors are selected based on relative dipole 

magnitude values, as well as complementary departure angle values, and are refined to 

tailor the solution results. Different initial positions for sensor locations will also be 

tested and used for solution refinement. Primarily for rigid-body pitch tailoring, it has 

been found in Chapter 4-5 that the com pensator parameter is best chosen as Zk=2 rad/s 

when the cost function based on complementary departure angle is used, while a selection 

of Zk=l rad/s is most appropriate when the cost function based on dipole magnitude is 

used. Therefore, different compensation parameter values are also used for solution 

refinement. Also, additional optimization cases with a variable compensator parameter, in 

addition to variable sensor locations, will be considered. In these cases, several types of 

blending strategies are considered. For the most desirable sensor placement solutions, the 

time responses and general behavior o f the closed-loop system will be tested and 

evaluated.

6.2 Sensor Placement with Fixed Static Blending

In this section, optimal gyro placement corresponding to the flight control system 

architecture shown in Figure 2.20 is investigated. Optimization parameters are the two 

gyro locations xst and xS2- The blending filters in the feedback signals will be considered
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constant, static values equal to one for each filter. The static filters can be represented by 

the following expressions.

The fixed static filters in both Equations (6.2) and (6.3) express the simplest blending 

logic. These filters represent spectrally uniform and equally balanced blending. The 

procedure for finding the optimal sensor locations depends on the initial sensor positions 

used in the optimal search strategy. From Figure 3.9 and Figure 3.10, as well as from 

manual placement experience, candidate initial sensor locations can be determined. The 

weighting factors o f the cost function terms are initially assigned equal to one. Based on 

the optimization results, these values will be adjusted in order to find desirable solutions 

satisfying the system requirements. If the solution characteristics are unsatisfactory, other 

dipole magnitude or departure angle terms will be added to the cost function with 

appropriate weighting factors, or other initial sensor locations will be sought dependent 

on the evaluation o f the optimization results.

Two different compensator parameter values are investigated using the mixed cost 

function optimization strategy. The first case considers the Equation (2.41) compensator 

with Zk=2 rad/s. For this case, the sensors initially will be placed at xsi-8 5 0  in and 

xs2=2,750 in and Figure 5.1 shows the corresponding baseline root locus plot. The 

optimization algorithm is applied to the augmented cost function represented in Equation

(6.4) using wMi -1  s/rad, =1 s/rad, =1 l/deg  and = / l/deg.

h,(s)= I (6 .2 )

h2(s) = I (6.3)

(6.4)
/ = !
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Results indicate the optimal sensor positions are found at x,1=907.4 in and x,2=2,934.6 

in.
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Figure 6.1 Root Locus Plot for xs/=907.4 in and xx2 =2,934.6 in

Figure 6.1 shows the root locus plot when the sensors are placed at the optimal 

locations. It is noticed from this plot that acceptable rigid body augmentation, as well as 

stable aeroelastic modes, are achieved. Comparing this plot with the plot in Figure 5.1, 

stability o f the 10th aeroelastic mode is achieved without updating the weighting factor 

values (as required in Chapter 5, Figure 5.3). It is noticed from the root locus plot in 

Figure 6.1 that the complementary departure angle o f the first mode is decreased from 

46.116 deg to 0.0004 deg but the complementary departure angle of the third mode is 

increased from 5.714 deg to 6.3282 deg. Also it is noticed that the dipole magnitude
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value of the third mode is decreased from 6.6176 rad/s to 6.2487 rad/s but the dipole 

magnitude value of the first mode is increased from 0.7487 rad/s to 1.4344 rad/s. 

Comparing Figure 6.1 with Figure 5.3, it is obvious that both optimal sensor location 

results are close {xs1=907.4-903.4 in and .vv? =2,934.6-2,937.2 in). Figure 6.2 shows the 

total cost function value versus the number of iterations, while Figure 6.3 shows the 

positions of both sensors during iteration.
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Figure 6.2 Cost Function History for xs/=907.4 in and x =2,934.6 in
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Figure 6.3 Sensor Position History for x,/=907.4 in and xs2 -2 ,934 .6  in

Another case is investigated with compensator parameter specified as Zk=l racl/s. 

Also, different initial sensor positions are nearly considered. The new sensor locations are 

xsi= 2,l00  in and xs2=2,950 in. These values are nearly consistent with Figure 4.6 in 

Chapter 4. Applying the optimization algorithm on Equation (6.4) using w =5

s/rad, =1 s/rad, =0.1 l/d eg  and w^= 0.1 l/deg  as weighting factors results in the

solution xs/=2,222.1 in and xs2=2,671.1 in. The root locus plot for the flight control 

system when the sensors are placed in the optimal positions is shown in Figure 6.4. It is 

noticed from this plot that all aeroelastic modes have minimum phase zeros. 

Nevertheless, aeroelastic mode 13 is unstable for an intermediate range of gain values. 

Comparing with all previous results in Chapters 4, 5, and 6, this is the first case where the
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dipole magnitude values as well as departure angles o f the most critical aeroelastic modes 

are reduced simultaneously. Both the dipole magnitude values as well as the 

complementary departure angle values of both modes /  and 3 are decreased relative to 

their initial values. The complementary departure angle of the first mode is decreased 

from 3.8119 deg to 2.6283 deg while the complementary departure angle o f the third 

mode is decreased from 8.1095 deg to 0.0050 deg. Also, the dipole magnitude value 

decreased from 2.6940 rad/s to 2.4434 rad/s for the first mode and from 1.7258 rad/s to 

0.0457 rad/s for the third mode. Note that applying the optimization tool to Equation

(6.4) does not require implementing an additional cost term for the 10"' aeroelastic mode 

(see Figures 4.6, 4.7 and 4.8, and note xs/=2,900 in rather than 2,950 in). Figures 6.5 and 

6.6 show the cost function values as a function of the iteration number and sensor 

position tracks, respectively.
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Figure 6.4 Root Locus Plot for xs, =2,222.1 in and x!i2=2,671.1 in
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Figure 6.5 Cost Function History for xsi=2,222.1 in and x ^ —2,671.1 in
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Figure 6.6 Sensor Position History for xs/ =2,222.1 in and xs2=2,671.I in
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6.3 Sensor Placement with Variable Static Blending

In this section, optimal gyro placement corresponding to the system in Figure 2.20 

is again considered. The feedback blending filters will be considered as variable, static 

values. Based on the ability to shift loop gain between kk and h t-h2 in Equation (2.43) and 

Figure 2.20, there is no loss of generality if one filter is held fixed and the other allowed 

to vary. Here, the static gain parameter of the first filter will be considered variable, while 

the parameter value of the second filter will be considered constant (unity). The static 

filters can be expressed as

h,(s)= c, (6.5)

h2(s)= I (6 .6)

The variable static filter structure in Equations (6.5)-(6.6) introduces the next level of 

design freedom beyond that considered in Section 6.2. The filters here represent 

spectrally uniform but unbalanced blending. Optimization parameters here include the 

two gyro locations xsi and xs2 and the filter parameter cj. To avoid unexpected 

exploitation by the optimizer, the variable filter parameter will be constrained to lie 

within certain bounds. Thus, introduce two additional constraints

F 2 3 = c , - c ! <  0  ( 6 . 7 )

F 2 4 = c l ~ c , <  0  ( 6 . 8 )

where c, andc, denote upper and lower bounds on ct. The numerical algorithm is run

withe, = 0.1 andc, = 10 .

As in Section 6.2, two different fixed dynamic compensaters are considered and

include Zk=I rad/s or Zk=2 rad/s. In the first case, the sensors are initially placed at
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xs/=850 in and .t,2=2,750 in, while the variable static blend filter is given an initial value 

c/=5. The compensator lead parameter is considered to have constant value Zk=2 rad/s. 

These values are consistent with Section 5.3. The corresponding root locus plot was 

previously shown in Figure 5.6. The optimization algorithm is applied on Equation (6.4) 

with weighting factors =5 s/rad, =5 s/rad, vv̂  =1 l/deg  and vv̂  = / l/deg. The

optimization solution is xsl=821.6 in and x,2=2,757.9 in, while the optimal value o f the 

variable blend filter is c/=0.8. Figure 6.7 shows the root locus plot when the optimal 

results are implemented in the flight control system.

Real Axis ( rad / s )

Figure 6.7 Root Locus Plot for xs/=821.6 in, xs2=2,757.9 in and ct=0.8
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It is clear by comparing this figure with Figure 5.7 that the two optimal results are 

highly similar with approximately the same sensor placements and blend filter 

parameters. The complementary departure angle for the / "  aeroelastic mode decreased to 

0.0083 deg compared with 0.5664 deg in Figure 5.7, while the complementary departure 

angle for the 3rd aeroelastic mode decreased to 5.6986 deg compared with 5.7133 deg , but 

it is increased relative to the initial value (5.1238 deg). In an absolute sense, the 

complementary departure angle for mode 1 is significantly decreased from 160.5048 deg 

(see Figure 5.6) to 0.0083 deg. Comparing with the initial values, the dipole magnitude 

value for the 1st aeroelastic mode is decreased from 6.6061 rad/s to 1.3947 rad/s, while 

the dipole magnitude value for the 3rd aeroelastic mode is decreased from 10.0313 rad/s 

to 2.8162 rad/s.

In the second case, the parameter o f the forward path dynamic compensator is 

considered to have constant value of Zk=1 rad/s. The sensors are initially placed at 

xsI—2,100 in and x 2,950 in, while the variable static blend filter is considered to have 

an initial value of c/=5. This condition is consistent with Section 4.3 and Figure 4.12. 

Optimization is applied to Equation (6.4). Solution results indicate that optimization 

failed to find optimal sensor locations at which either all aeroelastic modes are stable for 

all gain values or the rigid-body mode is augmented appropriately. Changing the 

weighting factor values does not lead to a desirable solution. For example, the 

optimization procedure is applied to the augmented cost function using vv̂  =5

s/rad, =5 s/rad, =1 l/deg  and =1 l/deg  as weighting factors. Figure 6.8

illustrates the root locus plot when the sensors are placed at the solution result 

xsi —2,472.4 in and xS7=2,966.1 in and with c/=3.3. Note the troublesome mode 14.
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Figure 6.8 Root Locus Plot for xs/=2,472.4 in, xS2—2,966.1 in and ci=3.3

6.4 Sensor Placement with Fixed Dynamic Blending

The static filters from Section 6.3 in the feedback paths o f the flight control 

system shown in Figure 2.20 are replaced by low and high pass dynamic filters. The 

structure of these filters are shown in Figure 4.18 and Equations (4 .13)-(4.14), where the 

filter parameters are a=3 rad/s, cj = l  and c?=7. Two different initial placements of the 

sensors along with two different compensator parameter values are investigated. First, 

consider the sensors initially located at xs/=850 in and xs2=2,750 in, while the 

compensator parameter is z*=2 rad/s. The root locus for this flight control system is 

illustrated in Figure 5.10. The optimization results due to applying the search tool on

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



194

Equation (6.4) with weighting factors = vt-/; = /  s/rad , and = vv̂  = / I/deg  reveals

the optimal sensor placements are xs/=623.2 in and xs2=2,843.3 in. Note using the

augmented mixed cost function based on both complementary departure angle and dipole

magnitude leads to similar results as in the purely phase stabilization cost function for the

same conditions (see Figure 5.11). Figure 6.9 shows the root locus plot for the mixed

optimal solution found here.
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Comparing this figure with Figure 5.10, observe the complementary departure

angle for the I st mode is slightly decreased from 14.7506 deg  to 13.7839 deg while the

complementary departure angle for the 3rd mode is slightly decreased from 3.5290 deg to

3.1491 deg. Also, the dipole magnitude value for the l sr mode is slightly decreased from
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Figure 6.9 Root Locus Plot for.rf/=625.2 in and xs2=2,843.3 in
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3.3947 to 3.2523 rad/s, while the dipole magnitude value for the 3rd aeroelastic mode is 

increased from 2.3472 to 2.5206 rad/s. Figure 6.10 and 6.11 show the augmented cost 

function value at each optimization iteration and the track o f sensor positions during the 

search, respectively. Note the similarity to Figures 5.12-5.13.
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Figure 6.10 Cost Function History for xs/=623.2 in and xs2=2,843.3 in
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Figure 6.11 Sensor Position History for x*/=625.2 in and xs2=2,843.3 in
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Consider now the sensors initially placed in different locations. The new locations 

are x</=2,100 in and xS2=2,950 in, while the new value for the com pensator parameter is 

z*=/ rad/s. The flight control system root locus with these new values is outlined in 

Figure 4.20. By applying optimization to the augmented cost function in Equation (6.4) 

while considering = vv^ = / s/rad, and vv̂  = —I l/deg  as weighting factors,

solution results xs/=3,I86 in and xsz=2,583.6 in are generated. Figures 6.12a and 6.12b 

show the optimal root locus plot. Comparing this figure with Figure 4.20, it is clear the 

complementary departure angle values and dipole magnitude values for both modes 1 and 

3 decreased simultaneously relative to the initial values. The complementary departure 

angle for the I st mode is decreased from 18.3969 deg to 15.0552 deg. For the 3rd mode, it 

decreased from 9.9272 deg to 5.9625 deg. Also, the dipole magnitude value for the Ist 

mode is slightly decreased from 3.5055  to 2.8291 rad/s, while for the 3rd mode it 

decreased from 2.6642 to 1.3322 rad/s. Note using the mixed augmented cost function 

based on both complementary departure angle and dipole magnitude leads to a uniquely 

different result than with the purely gain stabilization augmented cost function (see 

Figure 4.21). Examination of the root locus plot in Figure 6.12 shows the aeroelastic 

mode 14 is unstable for a medium range of gain values. Both aeroelastic mode 1 and 3 

are well gain stabilized, and have acceptable complementary departure angles. Figure 

6.13 illustrates the augmented cost function values for each iteration, while Figure 6.14 

shows the track of sensor locations during the search.

with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited w ithout perm iss ion .



Im
ag

 
Ax

is 
(r

ad 
I s 

)

197

7x 10
1

0 .8

0 .6

0 .4

0 .2

0

- 0 .2

-0 .4

- 0 .6

- 0.8

1
-12  -10  -8 -6 - 4 - 2  0 2

Real Axis ( rad /  s ) x -|0

Figure 6.12a Root Locus Plot for xs/= 3,I86 in and .t,?=2,583.6 in
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6.5 Sensor Placement with Variable Dynamic Blending

In this section, the low-high pass dynamic blend filters shown in Figure 4.18 and 

Equations (4.13)-(4.14) are considered with a variable parameter. This parameter is 

optimized in order to improve upon previous results in determining desirable sensor 

locations. The parameter a is considered variable during the optimization procedure, but 

it is bounded in the range between 0.1 and 10 rad/s. The first filer gain is constant at 

c/= l, while the second filter is variable with dependency on a according to c2=2a. Two 

different initial placements of the sensors along with two different compensator 

parameter values are investigated. First, consider the sensors as initially located at 

xs/=850 in and xt?=2, 750 in, while the blend filter parameter is a=5 rad/s. The 

compensator is characterized by z*=2 rad/s. Figure 6.15 illustrates the root locus plot 

when these values are considered.
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Figure 6.15 Root Locus Plot for xs/ =850 in, xs2=2,750 in and a=5 rad/s
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An optimization tool is applied on Equation (6.4) with appropriate weighting 

factors =3 s/rad, = 1 s/rad, and vv̂  = vi  ̂ = / l/deg. Optimization results indicate

the optimal sensor locations are xs/=850.1 in and x f2=2,750.6 in and the optimal sensor 

parameter is a=1.4 rad/s. The flight control root locus plot when the optimal values are 

considered is shown in Figure 6.16. Comparing Figure 6.16 with Figure 6.15 reveals the 

complementary departure angle values for both modes I and 3 are decreased relative to 

the initial values, while the dipole magnitude value are slightly increased relatively to the 

initial values. Numerically, the complementary departure angle for the I*1 mode is 

decreased from 28.7960 deg to 2.7255 deg while the complementary departure angle for 

the 3rd mode is decreased from 10.7864 deg  to 2.7493 deg. Also, the dipole magnitude
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Figure 6.16 Root Locus Plot fo rxsj= 850.I in, xS2=2,750.6 in and a=1.4 rad/s
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value for the I st mode is increased from 3.2592 to 3.2601 rad/s, and from 2.3430 to 

2.3444 rad/s for the 3rd mode. Note, the sensor locations do not move because the cost 

function slope corresponding to the filter parameter dominates over the other slopes. 

Figure 6.17 shows the augmented cost function at each iteration number.
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Figure 6.17 Cost Function History for xs/=850.I in, xs2- 2 , 750.6 in and a=1.4 rad/s

Different initial sensor locations are considered next, while the same initial filter 

parameter as in the previous case is assigned. The new locations are xsi=2,100 in and 

xS2—2,950 in. Considering the compensator parameter to have a value Zk=l rad/s, the root 

locus of the flight control system using these values is illustrated in Figure 6.18. 

Applying an optimization tool on the augmented cost function with w = wUt =1 s/rad.
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Figure 6.18 Root Locus Plot forxsi=2,100 in, xs2=2,950 in and a=5 rad/s

and w = =1 l/deg  as weighting factors, the optimization results refer the optimal

sensor locations are xs/=2,100.2 in and xs2=2,949.8 in while the optimal filter parameter 

is a=I rad/s. Figure 6.19 outlines the root locus plot for these values. As in the previous 

case, the sensor locations do not move appreciably due to the higher cost surface slope 

for the filter parameter relative to the slopes corresponding to the sensor locations. 

Comparing Figure 6.19 with Figure 6.18 reveals that the complementary departure angle 

for the 1" mode is decreased from 31.8005 deg to 2.0523 deg  while the complementary 

departure angle for the 3rd mode is decreased from 17.5824 deg to 2.3762 deg. Also, the 

dipole magnitude value for the I st mode is slightly decreased from 3.5066 to 3.5063
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rad/s, while the dipole magnitude for the 3rd mode is also slightly decreased from 2.6654 

to 2.6652 rad/s. Figure 6.20 shows the cost function history.
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Figure 6.19 Root Locus Plot fo rxst =2,100.2 in, xs2=2,949.8 in and a= I rad/s
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Figure 6.20 Cost Function History for xs/ =2,100.2 in, xs2=2,949.8 in and a= I rad/s
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In general, using the augmented cost function based on both complementary 

departure angle and dipole magnitude to optimize the sensor locations, as well as the 

filter parameter, does not affect the dipole magnitude values of the critical aeroelastic 

modes. These modes are not being gain stabilized. However, the departure angle is 

influenced strongly in a beneficial manner.

6.6 Sensor Placement with Variable Dynamic Compensating

In this section, a new problem class not previously considered in this dissertation 

is addressed. Here, the forward path compensator parameter Zk used in the flight control 

system is optimized simultaneously with the sensor locations xs/ and xs2. This problem 

class is considered because experience has shown that Zk can have a large influence on the 

characteristics o f the rigid pitch mode and first aeroelastic mode, and their interaction. 

The compensator variable Zk is constrained in the range between 0.5 and 2.5 rad/s with 

appropriate constraints appended to the cost function. Two types of fixed blending filters 

(static and low-high pass dynamic) are investigated, and different initial sensor 

placements are considered. An optimization algorithm is applied on the augmented cost 

function represented in Equation (6.4) using appropriate values for the weighting factors.

First o f all, the fixed static blend filters represented in Equations (6.2)—(6.3) with 

unit parameter values will be considered. The investigation case is optimized by placing 

the sensors at initial locations such as at xs/=850 in and xs2=2,750 in. The initial value of 

the compensator variable is chosen equal to z*=/.5 rad/s. Figure 6.21 illustrates the root 

locus plot when the initial values are considered. Note that both aeroelastic modes 1 and
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10 have nonminimum phase zeros. This plot has similar characteristics as in Figures 4.1 

and 5.1.

50

45

40

-o
e—*

■5 25

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
Real Axis ( rad / s )

Figure 6.21 Root Locus Plot for xs/=850 in, xs?=2,750 in and z*= /.5  rad/s (Static Blend)

The optimization algorithm is applied to the augmented cost function represented 

in Equation (6.4) with additional constraints for Zk- Appropriate values for the weighting 

factors are found to be vv  ̂=5 s/rad, vv^ =10 s/rad, =1 1/deg, and =3 1/deg. The

optimization results are xsl=1,209.1 in, x ,2=3,003.8 in, and Zk=0.5 rad/s. The root locus 

plot corresponding to these optimal results is shown in Figure 6.22. Comparing Figure 

6.22 with 6.21 reveals that all constraint equations are satisfied. Both aeroelastic modes / 

and 3 are well phase stabilized. Also it is noticed that the complementay departure angles
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of both modes I and 3 decreased from 50.2792 deg to 3.4820 deg and from 3.77795 deg 

to 0.8198 deg , respectively. The dipole magnitude o f the third mode is decreased from 

6.6176 rad/s to 2.8464 rad/s, but the dipole magnitude for the first mode is increased 

from 0.7487 rad/s to 2.0865 rad/s. Note with Zk=0.5 rad/s, the quickness of the rigid 

pitch motion is limited.
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Figure 6.22 Root Locus Plot for xs/= 1,209.1 in, xs2=3,003.8 in and Zt=0.5 rad/s

Another case is considered using different values for the sensor locations. The 

new initial sensor locations are xsi=2,100 in and xs2—2,950 in. The compensator 

parameter is again specified initially as z*=/.5 rad/s. Figure 6.23 illustrates the root locus 

plot for the initial values. The optimization algorithm is again applied on Equation (6.4)
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with zt constraints added. W eight factors used in the solution are w =5 s/rad, w = 1f* i Mi

s/rad, w =0.1 1/deg, and = / 1/deg. Optimal sensor position solutions are xsl=2,222.5

in and xS2=2,673.2 in, while the optimal compensator solution is Zk=0.7 rad/s. The root 

locus plot with the sensors placed at the optimal locations and with the compensator at its 

optimal value is shown in Figure 6.24.
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Figure 6.23 Root Locus Plot for xsi—2,100 in, xs2=2,950 in and za-=/.5 rad/s (Static Blending)
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Figure 6.24 Root Locus Plot for xs/ =2,222.5 in, 673.2 in and Zk=0.7 rad/s

Comparing Figure 6.24 with the Figure 6.23 reveals that both complementary 

departure angle and dipole magnitude for the First mode, as well as for the third mode, are 

decreased. It is noticed that the complementary departure angle value decreased from 

8.0746 deg to 0.3047 deg for the First mode and from 10.0453 deg to O.OOSldeg for the 

third mode. Also it is noticed that the dipole magnitude value for both modes /  and 3 are 

decreased from 2.6940 rad/s to 2.4478 rad/s and from 1.7258 rad/s to 0.0646 rad/s. 

respectively. Note the third aeroelastic mode is well gain stabilized, although aeroelastic 

mode 13 becomes unstable for a certain range o f gain values. All constraint equations are 

satisfied.
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To explore a new design space, a different fixed blending strategy is considered. 

These Fixed filters are considered to have dynamic structure (low-high pass). They are 

shown in Figure 4.18 and Equations (4.13)-(4.14). W ith these kinds of dynamic filters 

implemented in the feedback signals o f flight control system, the optimization code is 

applied to Equation (6.4) in order to find the optimal locations for the sensors, as well as 

for the compensator parameter. In the first case, the sensors are initially placed at xs/=850 

in and xs2=2,750 in, while z*=/.5 rad/s is also considered initially. Figure 6.25 shows the 

root locus plot of flight control system when the previous data are considered.
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Figure 6 . 2 5  Root Locus Plot for xs/=850 in, , t s ? = 2 , 750 in and Za = / . 5  rad/s (Dynamic Blend)

Applying the optimization algorithm on Equations (6.4) with Zk constraints and with 

appropriate weighting factors such as =5 s/rad, =1 s/rad, = /  J/deg, and = /
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1/deg, the procedure results in x,i=641.5 in. xs2—2,843.8 in, and Zk-2.5 rcid/s. The root 

locus plot corresponding to these results is shown in Figure 6.26. Comparing Figure 6.26 

with Figure 6.25, the complementary departure angle values are decreased form 18.9181 

deg to 9.8505 deg for the first mode and from 5.4643 deg to 1.2453 deg for the third 

mode. Also it is noticed that the dipole magnitude value for both modes 1 and 3 are 

slightly increased from 3.2523 rad/s to 3.3957 rad/s and from 2.3472 rad/s to 2.5213 

rad/s respectively. Although the complementary departure angles o f both modes 1 and 3 

are not extremely small, these modes are well phase stabilized. Mode 13 augmentation 

has also improved considerably. Figure 6.27 shows the augmented cost function value at 

each iteration, while Figure 6.28 illustrates the track o f the sensor positions during the 

search.
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Figure 6.26 Root Locus Plot for xs/ =641.5 in, xs2=2,843.8 in and Zk=2.5 rad/s
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Figure 6.27 Cost Function History for xsl=64J.5 in, xs2- 2 ,843.8 in and zt=2.5 rad/s
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Figure 6.28 Sensor Position History for xs/=641.5 in, xS2=2,843.8 in and Zk=2.5 rad/s
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To improve the previous results, the second case is tested under different initial 

sensor locations. The new locations are xsi= 2,I00 in and xsy=2,950 in, while the 

compensator parameter will have the same previous initial value of Zk=J.5 rad/s. The root 

locus plot o f the flight control system when the initial values are considered is shown in 

Figure 6.29. Applying the optimization algorithm on the augmented cost function with

o<
45

40

35

co 30

“  15

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
Real Axis ( rad / s )

Figure 6.29 Root Locus Plot for xsj= 2,I00  in, x sz=2,950 in and Zk=I-5 rad/s (Dynamic Blending)

the previous weighting factors, the optimization results indicate that the optimal locations 

o f sensors are xsi=3,185 in and xS2=2,583.7 in, while the optimal value o f compensator 

parameter is zt=2.5 rad/s. Figure 6.30 outlines the root locus plot of flight control system 

when the optimal values are considered. Comparing Figure 6.30 with Figure 6.29, the
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complementary departure angle value for the / "  aeroelastic mode is decreased form 

14.1342 deg to 2.6232 deg while the complementary departure angle value for the 3rd 

aeroelastic mode is decreased from 7.9913 deg to 0.1790 deg. Also it is noticed that the 

dipole value for both modes I and 3 are decreased from 3.5055 rad/s to 2.8 rad/s and 

from 2.6642 rad/s to 1.3 rad/s respectively. Note, both complementary departure angles 

and dipole magnitudes are decreased simultaneously. Figure 6.31 shows the cost function 

value at each iteration while Figure 6.32 illustrates the sensor position track during the 

search.
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Figure 6.30a Root Locus Plot for xs /= 3 ,1 8 5  in, xs2= 2 ,5 8 3 .7  in and Zk=2.5 rad/s
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Figure 6.31 Cost Function History for xsl=3,185 in, xs2=2,583.7 in and Zk=2.5 rad/s
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Figure 6.32 Sensor Position History for xx/=3,I85 in, xs2=2,583.7 in and Zk=2.5 rad/s

6.7 Closed-Loop Vehicle Evaluation

In this section, the more promising sensor placement solutions will be carried 

through to the final step of flight control design and evaluation. Two candidate sensor 

placement solutions based on mixed gain-phase stabilization are considered here. These 

solutions correspond to the fixed static blending with variable compensator case given in 

Figure 6.24 and the fixed dynamic blending (low-high pass) with variable compensator 

case given in Figure 6.26. The Figure 6.26 case is highlighted to consider a dynamic 

blending solution.

Figure 6.33 shows the Figure 6.26 root locus plot with closed-loop pole locations 

explicitly indicated for a compensator gain value of kk=0.13 rad/rad/s. For this gain
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value, the rigid pitch mode (mid period mode) damping and natural frequency are £  

= 0 .8235  and comp= 0 .5 6 l3  rcid/s. These values are considerably improved relative to the

open-Ioop values obtainable from Table 2.1. Note these modes are driven very close to a 

pair of complex zeros eliminating their contribution to the closed-loop dynamics. The fast 

mode from Table 2.1 moves out along the real axis and becomes the primary rigid pitch 

mode. After augmentation, the unstable slow mode in Table 2.1 is relocated to s= -0 .0 0 1 7  

rad/s  providing a stable closed-loop airframe. Figure 6.33 indicates a mode 1 damping 

ratio of ^  =0 .4 7 7 6 , which is also much improved relative to Table 2.1. Finally, note that 

at high gain values, all modes are projected to remain stable.
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Figure 6.33 Closed-Loop Poles for xsl= 6 4 1 .5  in, xs2= 2 ,8 4 3 .8  in and Zt=2.5 rad/s
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Figure 6.34 shows the corresponding time response for q due to a 0.01 rad/s

pitch rate command qc (see Figure 2.20 and Equation (2.43)). In general, the closed-loop

response in Figure 6.34 is significantly improved when compared to the open-loop 

responses given in Figure 2.7-2.8 . First and foremost, the closed-loop response is stable. 

The gross response consists o f very rapid first order type response. Note the system 

behaves as a rate command Type 1 system in the short term. This behavior is the 

augmented fast mode contribution to the overall response. Also note in the response one 

distinct high frequency ripple with frequency content of approximately 6 rad/s. This 

vibration is originating from the 1st aeroelastic mode (see Figure 6.33). This behavior is a 

prime example of how higher damping from phase stabilization can actually degrade the 

system response. Nevertheless, the final results appear to be reasonably successful.
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Figure 6.34 Step Response for =641.5 in, xs2=2,843.8 in and zr—2.5 rad/s
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

In this dissertation, a new systematic methodology and strategy to find the 

optimal position o f sensors used in feedback flight control systems for a highly flexible 

vehicle is developed. This method is based on conventional Evans root migration flight 

control design techniques. Formulation of sensor placement criteria and cost functions for 

optimization are developed which link key closed-loop dynamic characteristics to the 

control design technique. With the Evans design technique, these criteria are based on 

open-loop transfer function pole-zero geometric features. Cost functions based on 

complementary departure angle are considered to influence the root locus paths of critical 

aeroelastic modes to initially move away from the imaginary axis (phase stabilization), 

while cost functions based on dipole magnitude are utilized to decrease and even cancel 

the influence of critical aeroelastic modes on the system dynamics as seen by the sensors 

at their specific locations (gain stabilization). Mixed cost functions based on 

complementary departure angle, as well as dipole magnitude, are considered also. 

Constraint equations are considered to ensure that all aeroelastic zeros lie in the stable 

region. Specialized optimization software based on the gradient or steepest descent 

method is generated to minimize these different types of cost and constraint equations. In 

the objective function, individual cost terms are multiplied by suitable weighting factors.

R e p ro d u c e d  with p e rm iss ion  of th e  copyrigh t ow ner.  F u r th e r  rep roduction  prohibited w ithout perm iss ion .



219

To improve the flight control system characteristics, other variables such as blending 

filter parameters and compensator parameters are optimized along with sensor positions.

For the augmented cost function investigations in Chapter 4 based on dipole 

magnitude (gain stabilization), implementing only two cost terms associated with critical 

modes 1 and 3 is not sufficient for yielding desirable solutions. In this strategy, one or 

more high frequency aeroelastic modes always penetrated the instability region. The 

presence of an additional term representing one o f these high frequency dipole magnitude 

values must be implemented in the cost function to achieve desirable solutions. In many 

cases during the optimization process, the dipole magnitude value of either mode 1 or 

mode 3 would decrease relative to its initial value while the other value would increase. 

Seldom did both dipole magnitude values decrease simultaneously, thus illustrating a 

gain stabilization trade exists between these critical modes. Adjustment of the relative 

cost weight between these modes can be used to tune the solution characteristics, but this 

process is highly nonlinear, sometimes leading to unexpected results. Fixed static 

blending filters appear to be fairly restrictive towards meeting gain stabilization 

objectives. Additional design freedom offered by variable static, fixed dynamic, and 

variable dynamic blend filters allowed solution results to closer approach the desired gain 

stabilization objectives. However, these additional freedoms tended to generate high 

frequency loci that penetrate the right-half plane for sufficiently high gain. Consequently, 

these extra design freedoms must be exploited carefully and cautiously. Results indicated 

that the initial sensor locations used in the optimization process can have a significant 

influence on the solution characteristics.
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For the augmented cost function investigations in Chapter 5 based on 

complementary departure angle (phase stabilization), utilization of only two cost terms 

associated with critical modes I and 3 is sufficient for generating desirable solutions. In 

this strategy, the higher frequency aeroelastic modes tend to remain stable. In most cases 

during the minimization process, the complementary departure angles for modes J and 3 

did not decrease simultaneously, relative to their initial values. A phase stabilization trade 

between these critical modes was observed in the results. This trade can be tailored by 

adjusting the cost function weights in a relative fashion; however, this process can be 

highly nonlinear. Fixed and variable static blend filters are very effective and allow 

sufficient design freedom to achieve the desired phase stabilization objective. Dynamic 

blending filters helped to simultaneously decrease the complementary departure angles 

for both modes 1 and 3 , and can be used to tailor other root locus features. Results also 

indicated that initial sensor positions can have a profound effect on the optimal sensor 

solution characteristics.

The high-speed, highly flexible transport poses a difficult and challenging sensor 

placement problem. For example, in both the gain stabilization and phase stabilization 

investigations, a clear trade-off is noted between modes 1 and 3. This behavior is 

traceable to the inherent conflicts between the mode shapes noted in Chapter 2. With all 

18 modes present, placement of sensors which yields minimal cost while simultaneously 

satisfying imposed constraints is extremely challenging. Optimal sensor placement based 

on phase stabilization appears to be an easier problem (for this particular vehicle) when 

compared to the gain stabilization based placement problem. In the former, several 

solutions exist where the complementary departure angles are very near optimum for
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critical modes (0/.j=0 deg). In the latter, simultaneous achievement of tight dipole 

structures for the critical modes (j>{ 3< I rad/s) was difficult to achieve.

For the mixed augmented cost function investigations in Chapter 6 based on both 

dipole magnitude and complementary departure angle (gain-phase stabilization), some of 

the previously noted problems are overcome. Optimal sensor solutions that 

simultaneously have reduced dipole magnitude and complementary departure angle 

values for critical modes / and 3 relative to their initial values are reliably generated from 

this strategy. This trend held regardless of the type of blending filter strategy that was 

utilized (i.e., static or dynamic, fixed or variable). The compensator lead parameter plays 

an important role in influencing the low frequency rigid and first aeroelastic mode 

behavior. In Chapter 6, cases are considered where the optimization is allowed to find the 

best compensator lead parameter value while simultaneously placing the sensors. The 

variable compensator parameter allowed further progress to be made towards the mixed 

gain-phase stabilization objectives.

7.2 Recommendations

Several logical extensions to this dissertation and its contents are recommended as 

future work. The initial recommendation is to increase understanding of the current 

results to better plan other follow on investigations to improve the methodology and 

process for optimal sensor placement. One obvious area to explore is further testing of 

various dynamic filters and different kinds of compenators with fixed or variable 

parameters to improve flight control characteristics. The work in this dissertation by no 

means exhausted the space of suitable design filters. This dissertation also only
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considered two feedback signals of the rate gyro type. Another recommendation is to 

consider more than two feedback signals, possibly using a combination of rate gyros and 

accelerometers. The control architecture could also be upgraded with more than one 

input. Updating the optimization software to minimize multiple parameters is advisable in 

these cases. Modification of the software to rigorously address inequality constraints is 

also highly recommended. Different sensor placement criteria such as frequency response 

or time response based objective functions should also be developed and tested using the 

optimization tool. Closed-loop sensor placement criteria are also recommended for future 

work. For a problem containing many local minima, a gradient search procedure may not 

be the most appropriate optimization technique. Consideration of other optimization 

techniques is also recommended.
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APPENDIX
Figure A. 1 shows the large high-speed, highly flexible transport configuration 

studied throughout this dissertation.
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Figure A. 1 Aircraft Configuration Geometry
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d 0  (x  ) dd> (x  )

) = - K  K  ). K  (XV ) =  Q  (in ), 0 '(jc>y) =
dx, d x v

c f „  = / "' ravv' ° f c 0 , .ry=[// / /  ••• x v  f  (id).

x  j  =  2 , 3 6 4  - x y

(.t,denotes x a t th e /*  sensor location and x y denotes xs at the f h sensor location).
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