8 research outputs found

    Optimal Control and Coordination of Small UAVs for Vision-based Target Tracking

    Get PDF
    Small unmanned aerial vehicles (UAVs) are relatively inexpensive mobile sensing platforms capable of reliably and autonomously performing numerous tasks, including mapping, search and rescue, surveillance and tracking, and real-time monitoring. The general problem of interest that we address is that of using small, fixed-wing UAVs to perform vision-based target tracking, which entails that one or more camera-equipped UAVs is responsible for autonomously tracking a moving ground target. In the single-UAV setting, the underactuated UAV must maintain proximity and visibility of an unpredictable ground target while having a limited sensing region. We provide solutions from two different vantage points. The first regards the problem as a two-player zero-sum game and the second as a stochastic optimal control problem. The resulting control policies have been successfully field-tested, thereby verifying the efficacy of both approaches while highlighting the advantages of one approach over the other. When employing two UAVs, one can fuse vision-based measurements to improve the estimate of the target's position. Accordingly, the second part of this dissertation involves determining the optimal control policy for two UAVs to gather the best joint vision-based measurements of a moving ground target, which is first done in a simplified deterministic setting. The results in this setting show that the key optimal control strategy is the coordination of the UAVs' distances to the target and not of the viewing angles as is traditionally assumed, thereby showing the advantage of solving the optimal control problem over using heuristics. To generate a control policy robust to real-world conditions, we formulate the same control objective using higher order stochastic kinematic models. Since grid-based solutions are infeasible for a stochastic optimal control problem of this dimension, we employ a simulation-based dynamic programming technique that relies on regression to form the optimal policy maps, thereby demonstrating an effective solution to a multi-vehicle coordination problem that until recently seemed intractable on account of its dimension. The results show that distance coordination is again the key optimal control strategy and that the policy offers considerable advantages over uncoordinated optimal policies, namely reduced variability in the cost and a reduction in the severity and frequency of high-cost events

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Fixed-wing UAV tracking of evasive targets in 3-dimensional space

    Get PDF
    In this thesis, we explore the development of autonomous tracking and interception strategies for single and multiple fixed-wing Unmanned Aerial Vehicles (UAVs) pursuing single or multiple evasive targets in 3-dimensional (3D) space. We considered a scenario where we intend to protect high-value facilities from adversarial groups employing ground-based vehicles and quadrotor swarms and focused on solving the target tracking problem. Accordingly, we refined a min-max optimal control algorithm for fixed-wing UAVs tracking ground-based targets, by introducing constraints on bank angles and turn rates to enhance actuator reliability when pursuing agile and evasive targets. An intelligent and persistent evasive control strategy for the target was also devised to ensure robust performance testing and optimisation. These strategies were extended to 3D space, incorporating three altitude control algorithms to facilitate flexible UAV altitude control, leveraging various parameters such as desired UAV altitude and image size on the tracking camera lens. A novel evasive quadrotor algorithm was introduced, systematically testing UAV tracking efficacy against various evasive scenarios while implementing anti-collision measures to ensure UAV safety and adaptive optimisation improve the achieved performance. Using decentralised control strategies, cooperative tracking by multiple UAVs of single evasive quadrotor-type and dynamic target clusters was developed along with a new altitude control strategy and task assignment logic for efficient target interception. Lastly, a countermeasure strategy for tracking and neutralising non-cooperative adversarial targets within restricted airspace was implemented, using both Nonlinear Model Predictive Control (NMPC) and optimal controllers. The major contributions of this thesis include optimal control strategies, evasive target control, 3D target tracking, altitude control, cooperative multi-UAV tracking, adaptive optimisation, high-precision projectile algorithms, and countermeasures. We envision practical applications of the findings from this research in surveillance, security, search and rescue, agriculture, environmental monitoring, drone defence, and autonomous delivery systems. Future efforts to extend this research could explore adaptive evasion, enhanced collaborative UAV swarms, machine learning integration, sensor technologies, and real-world testing

    Optical MEMS

    Get PDF
    Optical microelectromechanical systems (MEMS), microoptoelectromechanical systems (MOEMS), or optical microsystems are devices or systems that interact with light through actuation or sensing at a micro- or millimeter scale. Optical MEMS have had enormous commercial success in projectors, displays, and fiberoptic communications. The best-known example is Texas Instruments’ digital micromirror devices (DMDs). The development of optical MEMS was impeded seriously by the Telecom Bubble in 2000. Fortunately, DMDs grew their market size even in that economy downturn. Meanwhile, in the last one and half decade, the optical MEMS market has been slowly but steadily recovering. During this time, the major technological change was the shift of thin-film polysilicon microstructures to single-crystal–silicon microsructures. Especially in the last few years, cloud data centers are demanding large-port optical cross connects (OXCs) and autonomous driving looks for miniature LiDAR, and virtual reality/augmented reality (VR/AR) demands tiny optical scanners. This is a new wave of opportunities for optical MEMS. Furthermore, several research institutes around the world have been developing MOEMS devices for extreme applications (very fine tailoring of light beam in terms of phase, intensity, or wavelength) and/or extreme environments (vacuum, cryogenic temperatures) for many years. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on (1) novel design, fabrication, control, and modeling of optical MEMS devices based on all kinds of actuation/sensing mechanisms; and (2) new developments of applying optical MEMS devices of any kind in consumer electronics, optical communications, industry, biology, medicine, agriculture, physics, astronomy, space, or defense

    Asynchronous, distributed optimization for the coordinated planning of air and space assets

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 189-194).Recent decades have seen the development of more advanced sensor and communication systems, with the future certainly holding more innovation in these areas. However, current operations involve "stovepipe" systems in which inefficiencies are inherent. In this thesis, we examine how to increase the value of Earth observations made by coordinating across multiple collection systems. We consider both air and space assets in an asynchronous and distributed environment. We consider requests with time windows and priority levels, some of which require simultaneous observations by different sensors. We consider how these improvements could impact Earth observing sensors in two use areas; climate studies and intelligence collection operations. The primary contributions of this thesis include our approach to the asynchronous and distributed nature of the problem and the development of a value function to facilitate the coordination of the observations with multiple surveillance assets. We embed a carefully constructed value function in a simple optimization problem that we prove can be solved as a Linear Programming (LP) problem. We solve the optimization problem repeatedly over time to intelligently allocate requests to single-mission planners, or "sub-planners." We then show that the value function performs as we intend through empirical and statistical analysis. To test our methodologies, we integrate the coordination planner with two types of sub-planners, an Unmanned Aerial Vehicle (UAV) sub-planner, and a satellite sub-planner. We use the coordinator to generate observation plans for two notional operational Earth Science scenarios. Specifically, we show that coordination offers improvements in the priority of the requests serviced, the quality of those observations, and the ability to take dual collections. We conclude that a coordinated planning framework provides clear benefits.by Thomas Michael Herold.S.M

    Autocalibrating vision guided navigation of unmanned air vehicles via tactical monocular cameras in GPS denied environments

    Get PDF
    This thesis presents a novel robotic navigation strategy by using a conventional tactical monocular camera, proving the feasibility of using a monocular camera as the sole proximity sensing, object avoidance, mapping, and path-planning mechanism to fly and navigate small to medium scale unmanned rotary-wing aircraft in an autonomous manner. The range measurement strategy is scalable, self-calibrating, indoor-outdoor capable, and has been biologically inspired by the key adaptive mechanisms for depth perception and pattern recognition found in humans and intelligent animals (particularly bats), designed to assume operations in previously unknown, GPS-denied environments. It proposes novel electronics, aircraft, aircraft systems, systems, and procedures and algorithms that come together to form airborne systems which measure absolute ranges from a monocular camera via passive photometry, mimicking that of a human-pilot like judgement. The research is intended to bridge the gap between practical GPS coverage and precision localization and mapping problem in a small aircraft. In the context of this study, several robotic platforms, airborne and ground alike, have been developed, some of which have been integrated in real-life field trials, for experimental validation. Albeit the emphasis on miniature robotic aircraft this research has been tested and found compatible with tactical vests and helmets, and it can be used to augment the reliability of many other types of proximity sensors

    A Biomimetic, Energy-Harvesting, Obstacle-Avoiding, Path-Planning Algorithm for UAVs

    Get PDF
    This dissertation presents two new approaches to energy harvesting for Unmanned Aerial Vehicles (UAV). One method is based on the Potential Flow Method (PFM); the other method seeds a wind-field map based on updraft peak analysis and then applies a variant of the Bellman-Ford algorithm to find the minimum-cost path. Both methods are enhanced by taking into account the performance characteristics of the aircraft using advanced performance theory. The combined approach yields five possible trajectories from which the one with the minimum energy cost is selected. The dissertation concludes by using the developed theory and modeling tools to simulate the flight paths of two small Unmanned Aerial Vehicles (sUAV) in the 500 kg and 250 kg class. The results show that, in mountainous regions, substantial energy can be recovered, depending on topography and wind characteristics. For the examples presented, as much as 50% of the energy was recovered for a complex, multi-heading, multi-altitude, 170 km mission in an average wind speed of 9 m/s. The algorithms constitute a Generic Intelligent Control Algorithm (GICA) for autonomous unmanned aerial vehicles that enables an extraction of atmospheric energy while completing a mission trajectory. At the same time, the algorithm automatically adjusts the flight path in order to avoid obstacles, in a fashion not unlike what one would expect from living organisms, such as birds and insects. This multi-disciplinary approach renders the approach biomimetic, i.e. it constitutes a synthetic system that “mimics the formation and function of biological mechanisms and processes.

    DRONE DELIVERY OF CBNRECy – DEW WEAPONS Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD)

    Get PDF
    Drone Delivery of CBNRECy – DEW Weapons: Emerging Threats of Mini-Weapons of Mass Destruction and Disruption (WMDD) is our sixth textbook in a series covering the world of UASs and UUVs. Our textbook takes on a whole new purview for UAS / CUAS/ UUV (drones) – how they can be used to deploy Weapons of Mass Destruction and Deception against CBRNE and civilian targets of opportunity. We are concerned with the future use of these inexpensive devices and their availability to maleficent actors. Our work suggests that UASs in air and underwater UUVs will be the future of military and civilian terrorist operations. UAS / UUVs can deliver a huge punch for a low investment and minimize human casualties.https://newprairiepress.org/ebooks/1046/thumbnail.jp
    corecore