205 research outputs found

    A probabilistic atlas of the human thalamic nuclei combining ex vivo MRI and histology

    Get PDF
    The human thalamus is a brain structure that comprises numerous, highly specific nuclei. Since these nuclei are known to have different functions and to be connected to different areas of the cerebral cortex, it is of great interest for the neuroimaging community to study their volume, shape and connectivity in vivo with MRI. In this study, we present a probabilistic atlas of the thalamic nuclei built using ex vivo brain MRI scans and histological data, as well as the application of the atlas to in vivo MRI segmentation. The atlas was built using manual delineation of 26 thalamic nuclei on the serial histology of 12 whole thalami from six autopsy samples, combined with manual segmentations of the whole thalamus and surrounding structures (caudate, putamen, hippocampus, etc.) made on in vivo brain MR data from 39 subjects. The 3D structure of the histological data and corresponding manual segmentations was recovered using the ex vivo MRI as reference frame, and stacks of blockface photographs acquired during the sectioning as intermediate target. The atlas, which was encoded as an adaptive tetrahedral mesh, shows a good agreement with with previous histological studies of the thalamus in terms of volumes of representative nuclei. When applied to segmentation of in vivo scans using Bayesian inference, the atlas shows excellent test-retest reliability, robustness to changes in input MRI contrast, and ability to detect differential thalamic effects in subjects with Alzheimer's disease. The probabilistic atlas and companion segmentation tool are publicly available as part of the neuroimaging package FreeSurfer

    A probabilistic atlas of the human thalamic nuclei combining ex vivo MRI and histology

    Get PDF
    The human thalamus is a brain structure that comprises numerous, highly specific nuclei. Since these nuclei are known to have different functions and to be connected to different areas of the cerebral cortex, it is of great interest for the neuroimaging community to study their volume, shape and connectivity in vivo with MRI. In this study, we present a probabilistic atlas of the thalamic nuclei built using ex vivo brain MRI scans and histological data, as well as the application of the atlas to in vivo MRI segmentation. The atlas was built using manual delineation of 26 thalamic nuclei on the serial histology of 12 whole thalami from six autopsy samples, combined with manual segmentations of the whole thalamus and surrounding structures (caudate, putamen, hippocampus, etc.) made on in vivo brain MR data from 39 subjects. The 3D structure of the histological data and corresponding manual segmentations was recovered using the ex vivo MRI as reference frame, and stacks of blockface photographs acquired during the sectioning as intermediate target. The atlas, which was encoded as an adaptive tetrahedral mesh, shows a good agreement with previous histological studies of the thalamus in terms of volumes of representative nuclei. When applied to segmentation of in vivo scans using Bayesian inference, the atlas shows excellent test-retest reliability, robustness to changes in input MRI contrast, and ability to detect differential thalamic effects in subjects with Alzheimer's disease. The probabilistic atlas and companion segmentation tool are publicly available as part of the neuroimaging package FreeSurfer.The authors would like to thank Professor Karla Miller (Oxford) for her help with the design of the ex vivo MRI acquisition; Ms. Mercedes I~niguez de Onzo~no and Mr. Francisco Romero (UCLM) for their careful technical laboratory help; and Mr. Gonzalo Artacho (UCLM) for his help with the digitization and curation of his organization of histological data. This project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska- Curie grant agreement No 654911 (project “THALAMODEL”) and by the European Research Council (ERC) Starting Grant agreement No 677697 (“BUNGEE-TOOLS”). It was also funded by the Spanish Ministry of Economy and Competitiveness(MINECO TEC-2014-51882-P, RYC- 2014-15440, PSI2015-65696, and SEV-2015-0490), the Basque Government (PI2016-12), and UCLM Internal Research Groups grants. Support for this research was also provided in part by the National Institute of Biomedical Imaging and Bioengineering (P41EB015896, 1R01EB023281, R01EB006758, R21EB018907, R01EB019956), the National Institute on Aging (5R01AG008122, R01AG016495), the National Institute of Diabetes and Digestive and Kidney Diseases (1-R21-DK- 108277-01), the National Institute of Neurological Disorders and Stroke (R01NS0525851, R21NS072652, R01NS070963, R01NS083534, 5U01NS086625), and was made possible by the resources provided by Shared Instrumentation Grants 1S10RR023401, 1S10RR019307, and 1S- 10RR023043. Additional support was provided by the NIH Blueprint for Neuroscience Research (5U01-MH093765), part of the multiinstitutional Human Connectome Project. In addition, B.F. has a financial interest in CorticoMetrics, a company whose medical pursuits focus on brain imaging and measurement technologies. B.F.’s interests were reviewed and are managed by Massachusetts General Hospital and Partners HealthCare in accordance with their conflict of interest policies. Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (National Institutes of Health Grant U01 AG024904) and DOD ADNI (DOD award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimers Association; Alzheimers Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimers Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California

    High resolution whole brain diffusion imaging at 7 T for the Human Connectome Project

    Get PDF
    Mapping structural connectivity in healthy adults for the Human Connectome Project (HCP) benefits from high quality, high resolution, multiband (MB)-accelerated whole brain diffusion MRI (dMRI). Acquiring such data at ultrahigh fields (7 T and above) can improve intrinsic signal-to-noise ratio (SNR), but suffers from shorter T2 and T2⁎ relaxation times, increased B1+ inhomogeneity (resulting in signal loss in cerebellar and temporal lobe regions), and increased power deposition (i.e. specific absorption rate (SAR)), thereby limiting our ability to reduce the repetition time (TR). Here, we present recent developments and optimizations in 7 T image acquisitions for the HCP that allow us to efficiently obtain high quality, high resolution whole brain in-vivo dMRI data at 7 T. These data show spatial details typically seen only in ex-vivo studies and complement already very high quality 3 T HCP data in the same subjects. The advances are the result of intensive pilot studies aimed at mitigating the limitations of dMRI at 7 T. The data quality and methods described here are representative of the datasets that will be made freely available to the community in 2015

    Depth-dependent intracortical myelin organization in the living human brain determined by in vivo ultra-high field magnetic resonance imaging

    Get PDF
    Background: Intracortical myelin is a key determinant of neuronal synchrony and plasticity that underpin optimal brain function. Magnetic resonance imaging (MRI) facilitates the examination of intracortical myelin but presents with methodological challenges. Here we describe a whole-brain approach for the in vivo investigation of intracortical myelin in the human brain using ultra-high field MRI. Methods: Twenty-five healthy adults were imaged in a 7 Tesla MRI scanner using diffusion-weighted imaging and a T 1 -weighted sequence optimized for intracortical myelin contrast. Using an automated pipeline, T 1 values were extracted at 20 depth-levels from each of 148 cortical regions. In each cortical region, T 1 values were used to infer myelin concentration and to construct a non-linearity index as a measure the spatial distribution of myelin across the cortical ribbon. The relationship of myelin concentration and the non-linearity index with other neuroanatomical properties were investigated. Five patients with multiple sclerosis were also assessed using the same protocol as positive controls. Results: Intracortical T 1 values decreased between the outer brain surface and the gray-white matter boundary following a slope that showed a slight leveling between 50% and 75% of cortical depth. Higher-order regions in the prefrontal, cingulate and insular cortices, displayed higher non-linearity indices than sensorimotor regions. Across all regions, there was a positive association between T 1 values and non-linearity indices (P < 10 125 ). Both T 1 values (P < 10 125 ) and non-linearity indices (P < 10 1215 ) were associated with cortical thickness. Higher myelin concentration but only in the deepest cortical levels was associated with increased subcortical fractional anisotropy (P = 0.05). Conclusions: We demonstrate the usefulness of an automatic, whole-brain method to perform depth-dependent examination of intracortical myelin organization. The extracted metrics, T 1 values and the non-linearity index, have characteristic patterns across cortical regions, and are associated with thickness and underlying white matter microstructure

    Imaging the subthalamic nucleus in Parkinson’s disease

    Get PDF
    This thesis is comprised of a set of work that aims to visualize and quantify the anatomy, structural variability, and connectivity of the subthalamic nucleus (STN) with optimized neuroimaging methods. The study populations include both healthy cohorts and individuals living with Parkinson's disease (PD). PD was chosen specifically due to the involvement of the STN in the pathophysiology of the disease. Optimized neuroimaging methods were primarily obtained using ultra-high field (UHF) magnetic resonance imaging (MRI). An additional component of this thesis was to determine to what extent UHF-MRI can be used in a clinical setting, specifically for pre-operative planning of deep brain stimulation (DBS) of the STN for patients with advanced PD. The thesis collectively demonstrates that i, MRI research, and clinical applications must account for the different anatomical and structural changes that occur in the STN with both age and PD. ii, Anatomical connections involved in preparatory motor control, response inhibition, and decision-making may be compromised in PD. iii. The accuracy of visualizing and quantifying the STN strongly depends on the type of MR contrast and voxel size. iv, MRI at a field strength of 3 Tesla (T) can under certain circumstances be optimized to produce results similar to that of 7 T at the expense of increased acquisition time

    CALIBRATED SHORT TR RECOVERY MRI FOR RAPID MEASUREMENT OF BRAIN-BLOOD PARTITION COEFFICIENT AND CORRECTION OF QUANTITATIVE CEREBRAL BLOOD FLOW

    Get PDF
    The high prevalence and mortality of cerebrovascular disease has led to the development of several methods to measure cerebral blood flow (CBF) in vivo. One of these, arterial spin labeling (ASL), is a quantitative magnetic resonance imaging (MRI) technique with the advantage that it is completely non-invasive. The quantification of CBF using ASL requires correction for a tissue specific parameter called the brain-blood partition coefficient (BBPC). Despite regional and inter-subject variability in BBPC, the current recommended implementation of ASL uses a constant assumed value of 0.9 mL/g for all regions of the brain, all subjects, and even all species. The purpose of this dissertation is 1) to apply ASL to a novel population to answer an important clinical question in the setting of Down syndrome, 2) to demonstrate proof of concept of a rapid technique to measure BBPC in mice to improve CBF quantification, and 3) to translate the correction method by applying it to a population of healthy canines using equipment and parameters suitable for use with humans. Chapter 2 reports the results of an ASL study of adults with Down syndrome (DS). This population is unique for their extremely high prevalence of Alzheimer’s disease (AD) and very low prevalence of systemic cardiovascular risk factors like atherosclerosis and hypertension. This prompted the hypothesis that AD pathology would lead to the development of perfusion deficits in people with DS despite their healthy cardiovascular profile. The results demonstrate that perfusion is not compromised in DS participants until the middle of the 6th decade of life after which measured global CBF was reduced by 31% (p=0.029). There was also significantly higher prevalence of residual arterial signal in older participants with DS (60%) than younger DS participants (7%, p = 0.005) or non-DS controls (0%, p \u3c 0.001). This delayed pattern of perfusion deficits in people with DS differs from observations in studies of sporadic AD suggesting that adults with DS benefit from an improved cardiovascular risk profile early in life. Chapter 3 introduces calibrated short TR recovery (CaSTRR) imaging as a rapid method to measure BBPC and its development in mice. This was prompted by the inability to account for potential changes in BBPC due to age, brain atrophy, or the accumulation of hydrophobic A-β plaques in the ASL study of people with DS in Chapter 2. The CaSTRR method reduces acquisition time of BBPC maps by 87% and measures a significantly higher BBPC in cortical gray matter (0.99±0.04 mL/g,) than white matter in the corpus callosum (0.93±0.05 mL/g, p=0.03). Furthermore, when CBF maps are corrected for BBPC, the contrast between gray and white matter regions of interest is improved by 14%. This demonstrates proof of concept for the CaSTRR technique. Chapter 4 describes the application of CaSTRR on healthy canines (age 5-8 years) using a 3T human MRI scanner. This represents a translation of the technique to a setting suitable for use with a human subject. Both CaSTRR and pCASL acquisitions were performed and further optimization brought the acquisition time of CaSTRR down to 4 minutes which is comparable to pCASL. Results again show higher BBPC in gray matter (0.83 ± 0.05 mL/g) than white matter (0.78 ± 0.04 mL/g, p = 0.007) with both values unaffected by age over the range studied. Also, gray matter CBF is negatively correlated with age (p = 0.003) and BBPC correction improved the contrast to noise ratio by 3.6% (95% confidence interval = 0.6 – 6.5%). In summary, the quantification of ASL can be improved using BBPC maps derived from the novel, rapid CaSTRR technique

    Multimodal image analysis of the human brain

    Get PDF
    Gedurende de laatste decennia heeft de snelle ontwikkeling van multi-modale en niet-invasieve hersenbeeldvorming technologieën een revolutie teweeg gebracht in de mogelijkheid om de structuur en functionaliteit van de hersens te bestuderen. Er is grote vooruitgang geboekt in het beoordelen van hersenschade door gebruik te maken van Magnetic Reconance Imaging (MRI), terwijl Elektroencefalografie (EEG) beschouwd wordt als de gouden standaard voor diagnose van neurologische afwijkingen. In deze thesis focussen we op de ontwikkeling van nieuwe technieken voor multi-modale beeldanalyse van het menselijke brein, waaronder MRI segmentatie en EEG bronlokalisatie. Hierdoor voegen we theorie en praktijk samen waarbij we focussen op twee medische applicaties: (1) automatische 3D MRI segmentatie van de volwassen hersens en (2) multi-modale EEG-MRI data analyse van de hersens van een pasgeborene met perinatale hersenschade. We besteden veel aandacht aan de verbetering en ontwikkeling van nieuwe methoden voor accurate en ruisrobuuste beeldsegmentatie, dewelke daarna succesvol gebruikt worden voor de segmentatie van hersens in MRI van zowel volwassen als pasgeborenen. Daarenboven ontwikkelden we een geïntegreerd multi-modaal methode voor de EEG bronlokalisatie in de hersenen van een pasgeborene. Deze lokalisatie wordt gebruikt voor de vergelijkende studie tussen een EEG aanval bij pasgeborenen en acute perinatale hersenletsels zichtbaar in MRI

    Intelligent Imaging of Perfusion Using Arterial Spin Labelling

    Get PDF
    Arterial spin labelling (ASL) is a powerful magnetic resonance imaging technique, which can be used to noninvasively measure perfusion in the brain and other organs of the body. Promising research results show how ASL might be used in stroke, tumours, dementia and paediatric medicine, in addition to many other areas. However, significant obstacles remain to prevent widespread use: ASL images have an inherently low signal to noise ratio, and are susceptible to corrupting artifacts from motion and other sources. The objective of the work in this thesis is to move towards an "intelligent imaging" paradigm: one in which the image acquisition, reconstruction and processing are mutually coupled, and tailored to the individual patient. This thesis explores how ASL images may be improved at several stages of the imaging pipeline. We review the relevant ASL literature, exploring details of ASL acquisitions, parameter inference and artifact post-processing. We subsequently present original work: we use the framework of Bayesian experimental design to generate optimised ASL acquisitions, we present original methods to improve parameter inference through anatomically-driven modelling of spatial correlation, and we describe a novel deep learning approach for simultaneous denoising and artifact filtering. Using a mixture of theoretical derivation, simulation results and imaging experiments, the work in this thesis presents several new approaches for ASL, and hopefully will shape future research and future ASL usage
    corecore