
Multimodal Image Analysis of the Human Brain

Multimodale beeldanalyse van het menselijk brein

Ivana Despotovic

Promotor: prof. dr. ir. W. Philips
Proefschrift ingediend tot het behalen van de graad van 
Doctor in de Ingenieurswetenschappen

Vakgroep Telecommunicatie en Informatieverwerking
Voorzitter: prof. dr. ir. H. Bruneel
Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2013 - 2014



ISBN 978-90-8578-658-0
NUR 954
Wettelijk depot: D/2014/10.500/4



The scientific man does not aim at an immediate result.
He does not expect that his advanced ideas will be readily taken up...
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Samenvatting

Gedurende de laatste decennia heeft de snelle ontwikkeling van niet-invasieve hersen-
beeldvorming technologieën een revolutie teweeg gebracht in de mogelijkheid om
de structuur en functionaliteit van hersens te bestuderen. Er is grote vooruitgang
geboekt in het beoordelen van hersenschade en het verkennen van de anatomie van
de hersens door gebruik te maken van MRI, terwijl EEG beschouwd wordt als de
gouden standaard voor diagnose van neurologische afwijkingen. Beide beeldvorming-
stechnieken hebben hun voor- en nadelen, en geen enkele individuele methode is per-
fect geschikt voor alle klinische toepassingen. Daarom is er stijgende interesse in het
bestuderen van multimodale hersenbeeldvorming, dit is het benutten van de intrinsieke
krachten van verschillende beeldvormingstechnieken, of verschillende modaliteiten
van dezelfde techniek, door die technieken te combineren. Bijvoorbeeld, de integratie
van EEG en MRI data laat toe om bronnen van neurale hersenactiviteit te lokaliseren
in 3D ruimte via EEG en die onmiddellijk te vergelijken met zichtbare hersenletsels
uit het MRI beeld. Een ander voorbeeld is het combineren van verschillende MRI se-
quenties van de hersenen, zoals T1-gewogen of T2-gewogen MRI, diffusie gewogen
MRI of functionele MRI, waardoor we meer herseninformatie kunnen vergaren en
betere hersenletseldetectie kunnen doen.

De vooruitgang in hersenbeeldvorming technologie resulteert in een grote hoeveelheid
data met steeds hogere kwaliteit. De analyse van deze grote en complexe multimodale
datasets is een langdradig en complexe taak voor clinici, die de relevante informatie
manueel moeten visualiseren en extraheren. Deze manuele analyse is niet alleen tij-
drovend, maar ook gevoelig voor fouten, zoals vastgesteld bij verschillende inter- en
intra-operator variabiliteitstudies. Deze uitdagingen in hersendata-analyse resulteerde
in de nood voor geautomatiseerde methoden om ziektediagnoses the verbeteren en te
testen. De dag van vandaag wordt computer geholpen diagnose (CAD) vaak gebruikt
om artsen bij te staan bij het maken van kwalitatieve diagnoses, onder de vorm van
computeralgoritmen voor beeldsegmentatie, registratie en visualisatie.

In deze thesis focussen we op de ontwikkeling van nieuwe en verbeterde comput-
ertechnieken voor multimodale analyse van het menselijke brein, waaronder MRI
segmentatie en EEG bronlokalisatie. We besteden veel aandacht aan de verbetering
en ontwikkeling van nieuwe methoden voor accurate en ruisrobuuste beeldsegmen-
tatie, dewelke daarna succesvol gebruikt worden voor de segmentatie van hersens in
MRI van zowel volwassen als pasgeborenen, alsook voor de ontwikkeling van realis-
tische hoofdmodellen van pasgeborenen. Daarenboven ontwikkelden we een geı̈nte-
greerde, multimodale EEG-MRI methode voor de lokalisatie van abnormale neuronale
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activiteit in de hersenen van een pasgeborene. Deze lokalisatie wordt gebruikt voor de
vergelijkende studie tussen een beroertes, gedetecteerd via EEG en acute perinatale
hersenletsels, zichtbaar in MRI. Hiervoor voegen we theorie en praktijk samen waar-
bij we focussen op twee medische applicaties: (1) automatische 3D MRI segmentatie
van de volwassen hersenen in de aanwezigheid van een subtiel epileptisch hersenlet-
sel, veroorzaakt door focal cortical dysplasia (FCD) en (2) multi-modale data analyse
van de hersens van een pasgeborene met perinatale hersenschade, veroorzaakt door as-
phyxia en hypoxische-ischemische encefalopathie, een aandoening van ernstig tekort
aan zuurstof of bloed in de hersens.

Beeldsegmentatie niet triviaal omdat MRI beelden imperfecties vertonen. Daaren-
boven zijn beelden dikwijls gedegradeerd door ruis en andere artefacten. De diversiteit
van beeldverwerkingstoepassingen hebben tot de ontwikkeling van verschillende seg-
mentatietechnieken geleid, die zowel verschillen in precisie als in complexiteit. Dit
komt omdat er geen methode bestaat die bruikbaar is voor alle afbeeldingen, noch zijn
alle methoden even goed voor een bepaald type van afbeelding. Bijvoorbeeld, som-
mige methoden gebruiken enkel het intensiteitshistogram, terwijl sommige spatiale
beeldinformatie integreren om zo robuuster te zijn tegen ruis. Sommige methoden ge-
bruiken theorieën uit het kansrekenen of uit de theorie van vaagverzamelingen, terwijl
sommige andere methoden voorkennis integreren (specifieke beeldvormingmodellen,
bv. MRI hersenatlassen) om de segmentatieresultaten verder te verbeteren. Daaren-
boven zijn sommige methoden enkel bruikbaar voor 2D afbeeldingen, terwijl andere
methoden toelaten om 3D volumes te segmenteren.

In deze thesis stellen we nieuwe ruisrobuuste en accurate beeldsegmentatie metho-
den voor. In de context van automatische hersensegmentatie in MRI stellen we een
drie-labels graph cut methode voor. Dit resulteert in automatische, meer accuraat 3D
MRI segmentatie van het hersenweefsel, bestaande uit witte stof (WM), grijze stof
(GM) en liquor cerebrospinalis (CSF). In de context van ruisrobuuste en multimodale
beeldsegmentatie stellen we een fuzzy c-mean segmentatiemethode voor, waarbij we
de nadruk leggen op het gebruik van spatiale contextmodellering, door zowel spatiale
als intensiteitsinformatie van naburige pixels te incorporeren om zo beeldruis te ver-
wijderen. De kracht van de voorgestelde methode wordt aangetoond aan de hand van
MRI hersenscans, waar we succesvol theorie en praktijk combineren; tegelijkertijd
maken we gebruik van een aantal heuristieken om de complexiteit van de algoritmen
te beperken en om hogere performantie en flexibiliteit te behalen. De automatische
3D graph cuts methode wordt gebruikt voor de segmentatie van de hersenschors in
de aanwezigheid van subtiele FCD laesies. De ruisrobuuste fuzzy c-means clustering
wordt gebruikt voor mult-modale segmentatie van het hersenweefsel bij pasgeborenen
en voor het realistisch modelleren van het hoofd van een pasgeboren baby.

Een realistisch hoofdmodel voor elektrische volumegeleiding ontwikkelen, is een be-
langrijke stap naar het niet-invasief onderzoeken van neuro-elektrische activiteit in
de hersenen. Voor volwassenen zijn reeds verschillende hoofdmodellen ontwikkeld
en succesvol gebruikt voor EEG bronlokalisatie. Daarentegen is het ontwikkelen van
een geschikt hoofdmodel voor pasgeborenen een uitdagende taak. Dit komt hoofdza-



vii

kelijk door de complexe anatomie van de ontwikkelende hersenen van de pasge-
borene, en door de ontoereikende kennis van de geleidbaarheid van de weefsels in
het hoofd. Binnen deze thesis stellen we een raamwerk voor voor het modelleren
van een realistisch volumegeleidingsmodellen voor het hoofd van pasgeboren baby’s,
waarbij we de uitdagingen hiervoor bespreken en onze oplossingen voorstellen. De
uitdagingen voor het opstellen van het model zijn ondermeer het segmenteren van
het hoofd van de pasgeborene, het schatten van de geleidbaarheid van de verschil-
lende structuren in het hoofd en de positionering van de EEG elektroden op het hoofd.
Daarenboven gebruiken we ons realistisch hoofdmodel voor volumegeleiding voor
EEG bronlokalisatie bij pasgeborenen.

Tenslotte presenteren we een geı̈ntegreerde methode voor ictale EEG dipool bron-
lokalisatie, gebaseerd op een realistisch hoofdmodel. We onderzoeken de bruik-
baarheid van EEG bronlokalisatie bij pasgeborenen met postasphyxiale aanvallen. Dit
is de eerste objectieve studie die het verband tussen EEG aanvallen en acute peri-
natale hersenschade, zichtbaar op MRI, vergelijkt. In het verleden werd EEG bron-
lokalisatie succesvol gebruikt voor deze doeleinden bij volwassenen, maar werd niet
uitvoerig bestudeerd bij pasgeborenen. We gebruiken onze methode om de dipool
aanval lokalisatie te vergelijken met acute perinatale hersenschade zichtbaar op MRI
in 10 voldragen zuigelingen met neonatale encephalopathie. We bestudeerden ook
experimenteel de gevoeligheid voor fouten op het plaatsen van de elektrodes en het
effect van variaties in de geometrie en geleidbaarheid van het hoofd van pasgeborenen
op onze methode. De lokalisatieresultaten van 45 focale beroertes van 10 pasgebore-
nen zijn vergeleken met de visuele analyse van EEG en MRI data, geannoteerd door
specialisten. De resultaten van onze gefuseerde methode geven aan dat ictale EEG
bronlokalisatie bruikbaar is bij pasgeborenen en mits verdere bestudering, kan deze
techniek een nuttig diagnostisch middel worden.

Dit werk resulteerde in 2 tijdschriftpublicaties opgenomen in de Science Citation In-
dex. In totaal zijn daarnaast 19 artikels verschenen in international en nationale con-
ferenties, waarvan 15 als eerste auteur.
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Summary

In the last decades, the rapid development of non-invasive brain imaging technologies
has revolutionized our ability to investigate brain structure and function. Enormous
progress in accessing brain injury and exploring brain anatomy has been made using
magnetic resonance imaging (MRI), while electroencephalography (EEG) has been
considered as the gold standard in the diagnosis of neurological dysfunction. Each
of these brain imaging techniques has its strengths and weaknesses, and no single
method is best suited for all experimental or clinical conditions. Therefore, there is
an increased interest in studying multimodal brain imaging, by combining different
techniques or different modalities of the same technique, to synthesize the strengths
inherent in each. For instance, by integrating EEG and MRI data and performing
EEG source imaging, we can localize neural activity of the brain in 3D space and do
direct comparison with brain lesions visible on MRI. On the other hand, by combining
different MRI sequences of the brain, such as T1-weighted and T2-weighted MRI,
diffusion weighted MRI or functional MRI, we can capture more brain information
and do better lesion detection.

The advances in brain imaging technologies have also provided large amount of data
with an increasingly high level of quality. The analysis of these large and complex
multimodal datasets has become a tedious and complex task for clinicians, who have
to visualize and manually extract important information. This manual analysis is not
only time-consuming, but also prone to errors, as assessed by various inter- or intra-
operator variability studies. These difficulties in brain data analysis required inven-
tions in computerized methods to improve disease diagnosis and testing. Nowadays,
computer-aided diagnosis (CAD) has been extensively used to assist doctors in quali-
tative diagnosis by providing computerized algorithms for image segmentation, regis-
tration and visualization.

In this dissertation, we focus on developing new and improved computerized tech-
niques for multimodal analysis of the human brain, including brain MRI segmenta-
tion and EEG source localization. We pay a great attention to improve and develop
new methods for more accurate and noise-robust image segmentation, which are then
successfully used for brain MRI segmentation in both adults and neonates, as well
as for a realistic head modeling in neonates. Additionally, we develop an integrated
multimodal EEG-MRI method for localizing abnormal neuronal activity in the neona-
tal brain. This method is used for the comparative study between EEG seizures and
acute perinatal brain lesions visible on MRI. In doing so, we merge theory with prac-
tice and focus on two medical applications: (1) automatic 3D MRI segmentation of
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the adult brain in the presence of subtle epileptic lesions caused by focal cortical dys-
plasia (FCD), and (2) multimodal data analysis of the neonatal brain with perinatal
brain injuries caused by asphyxia and hypoxic-ischemic encephalopathy, a condition
of severely deficient supply of oxygen or blood to the brain.

In both medical applications, the segmentation of brain MRI is essential because it in-
fluences the outcome of the entire analysis. This is because different processing steps
such as the cortical thickness measurement, brain volume estimation or dipole source
localization, rely on accurate segmentation of anatomical regions. In the context of
EEG dipole source localization, it is necessary to reconstruct a patient-specific head
model to accurately locate the sources of abnormal brain activity. For that purpose, it
is necessary to segment the patient’s MRI of the head into the scalp, skull and brain
tissue. Also, in the case of FCD lesion detection, accurate segmentation of the brain
cortex is important in measuring the cortical thickness, which is an important feature
for the lesion detection.

In general, MRI segmentation is not a trivial task, because acquired MR images are
imperfect and often corrupted by noise and other image artifacts. Also, the diversity of
image processing applications has led to development of various segmentation tech-
niques of different accuracy and degree of complexity. This is because there is no
single method that can be suitable for all images, nor are all methods equally good for
a particular type of image. For example, some of the methods use only the gray level
histogram, while some integrate spatial image information to be robust for noisy en-
vironments. Some methods use probabilistic or fuzzy set theoretic approaches, while
some additionally integrate prior knowledge (a specific image formation model, e.g.
MRI brain atlas) to further improve segmentation performance. Also, some of the
methods are suitable only for 2D images, while others are capable to segment 3D
volumes.

In this dissertation, we propose new methods for more accurate and noise-robust im-
age segmentation. In the context of automatic MRI segmentation of the adult brain,
we propose a three-label graph cuts method for more accurate 3D MRI segmentation
of three brain tissues: white matter (WM), gray matter (GM) and cerebrospinal fluid
(CSF). In the context of noise-robust and multimodal image segmentation, we pro-
pose a modified fuzzy C-means segmentation method. In this method, we emphasize
the use of spatial context modeling by integrating spatial and intensity information of
the neighboring pixels to eliminate image noise. The performance of the proposed
segmentation methods is demonstrated on brain MRI, where we successfully merged
theory with practice, but at the same time we employ heuristics to reduce the complex-
ity of the algorithms and to achieve higher performance and flexibility. The automatic
3D graph cuts method is used for brain cortex segmentation in the presence of subtle
FCD lesions, while the noise-robust fuzzy C-means clustering is used for multimodal
segmentation of the neonatal brain tissue and for a realistic head modeling of the
neonatal head.
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Developing a realistic volume conductor head model is an important step towards a
non-invasive investigation of neuro-electrical activity in the brain. For adults, dif-
ferent volume conductor head models have been designed and successfully used for
EEG source analysis. However, creating appropriate neonatal volume conductor head
model is a challenging task mainly due to the complex anatomy of the developing
newborn brain and insufficient knowledge of head tissue conductivities. In this disser-
tation, we present a pipeline for modeling a realistic volume conductor model of the
neonatal head, where we address the modeling challenges and propose our solutions.
The modeling challenges include the neonatal head segmentation, the conductivity es-
timation of different head structures and the EEG electrode positioning on the scalp.
Further on, we use our realistic head model for neonatal EEG source localization.

Finally, we propose an integrated method for ictal EEG dipole source localization
based on a realistic head model to investigate the utility of EEG source imaging in
neonates with postasphyxial seizures. This is the first objective study to compare the
relationship of EEG seizures to acute perinatal brain lesions visible on MRI. In the past
EEG source localization was successfully used for this purpose in adults, but it has not
been sufficiently explored in neonates. In this thesis, we use our method to compare
the dipole seizure localization results with acute perinatal lesions seen on brain MRI
in 10 full-term infants with neonatal encephalopathy. Through experimental studies,
we also explore the sensitivity of our method to the electrode positioning errors and
to variations in neonatal skull geometry and conductivity. The localization results of
45 focal seizures from 10 neonates are compared with the visual analysis of EEG and
MRI data, scored by expert physicians. The performance of our fused method indi-
cated that ictal EEG source imaging is feasible in neonates and with further validation
studies, this technique can become a useful diagnostic tool.

This work resulted in 2 journal papers cited in the Science Citation Index. In total, 19
other papers appeared in the proceedings of international and national conferences, of
which 15 as the first author.
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1
Introduction

I have no special talents. I am only passionately curious.
– Albert Einstein

1.1 Motivation

In the last decades, the rapid development of non-invasive brain imaging technolo-
gies has opened new horizons in the study of brain structure and function. Different
techniques, such as magnetic resonance imaging (MRI) and electroencephalography
(EEG), are now available to capture features of brain anatomy and function, and map
neuronal dynamics as well as growth and degenerative processes. In addition to MRI,
cranial ultrasound is used for diagnosing brain injury in neonates.

Among all brain imaging techniques, MRI is the most frequently used technique in
clinical neuroscience for non-invasive diagnosis, quantitative evaluation and image
guiding therapy in both adults and neonates [Blakemore, 2012, Rutherford, 2012].
This is because MRI does not involve ionising radiation, in contrast to X-ray com-
puter tomography (CT) or positron emission tomography (PET), and provides high
resolution 3D volumetric images of soft tissues and organs inside the body. Since
MRI signals can penetrate through bone, MRI is very well suited for analyzing the
anatomy of the human brain as well as for analyzing the vasculature and microstruc-
ture of brain tissues. In the last 20 years, MRI has been extensively used as a research
and clinical imaging tool in neonatology and neonatal intensive care, together with
cranial ultrasound imaging [Prastawa, 2007, Dudink, 2010, Rutherford, 2012].

Cranial ultrasound imaging is usually the first and the most suitable brain imaging tool
in neonates, allowing real-time bed-side scanning [Barr, 1999, Vansteenkiste, 2007].
In adults, cranial ultrasound is not possible because ultrasound waves can not penetrate
through the bone and once the fontanelles (gaps between the bones of the cranium)
have been closed (usually between ages 3 months and one year), cranial ultrasound
imaging cannot be performed. The advantage of ultrasound imaging compared to
MRI is its superior resolution and ultrasound machines are far less expensive than
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MRI scanners. Also, cranial ultrasound is more sensitive to measure changes in brain
microstructure than MRI [Plaisier et al., 2013]. However, ultrasound imaging has
limited field of view and difficulty in assessing deeper structures. Also, the contrast
between soft tissues provided by cranial ultrasound is not sufficient for detecting subtle
lesions in brain anatomy. Thus, although ultrasound is an independent diagnostic tool,
it is often combined with MRI in diagnosis of more sever patients with subtle brain
lesions.

The location and magnitude of brain activity is often studied using tools such as EEG,
which indirectly measures the electrical signals generated in the brain between neu-
rons as a function of time. Non-invasive EEG is acquired using electrodes to monitor
the electrical activity at different points of the scalp, and is suitable for both adults and
neonates [De Vos, 2009]. In recent years, the study of the brain function and behavior
has lead to an increasing interest in the location of the source of the electrical signals
generated by neurons. Also, in certain brain diseases (such as epilepsy), it is important
to know with more accuracy what is the nature of the disease and the exact location
of the problem in the brain. This is usually done by performing EEG dipole source
localization [Vanrumste, 2001, Hallez, 2008].

1.1.1 Multimodal brain analysis

Each of the existing non-invasive brain imaging techniques has its strengths and weak-
nesses, and no single method is best suited for all experimental or clinical condi-
tions. Therefore, there is an increased interest in studying multimodal brain imag-
ing, by combining different techniques or different modalities of the same technique,
to synthesize the strengths inherent in each, [Biagioni et al., 2001, Roche-Labarbe
et al., 2008, Despotovic et al., 2013a, Prastawa et al., 2005, Weisenfeld and Warfield,
2009, Murgasova, 2008, Maalouf et al., 2001].

For instance, localizing neuronal activity in the brain, both in time and in space, is
a central challenge in understanding brain function. EEG data provide high tempo-
ral resolution (measured in milliseconds), but limited spatial resolution. In contrast,
MRI provides better spatial, but relatively poor temporal resolution. By performing
EEG source localization and integrating both EEG and MRI data, we can localize
neural activity of the brain in 3D space and the location of an EEG source can be
compared to lesions visible on MRI, see Fig. 1.1 [Despotovic et al., 2013a, Biagioni
et al., 2001, Roche-Labarbe et al., 2008]. On the other hand, by combining different
MRI modalities of the brain, such as T1-weighted (T1-W), T2-weighted (T2-W), Fluid
Attenuated Inversion Recovery (FLAIR) or Diffusion Weighted Imaging (DWI), we
can capture more brain information and do better lesion detection (see Fig. 1.2).

Brain imaging has achieved remarkable advances over the past few decades, provid-
ing more and more data with an increasingly high level of quality. The analysis of
these large datasets has become a tedious and complex task for clinicians, who have
to visualize and manually extract important information. This manual analysis is not
only time-consuming, but also prone to errors, as assessed by various inter- or intra-
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Figure 1.2: Examples of a brain lesion visibility using different MRI modalities. The lesions
are indicated with arrows. (a) An example of a haemorrhage lesion hardly visible on the T1-W
image (left), but clearly noticeable on the T2-W image (right). (b) An example of a big focal
brain lesion only visible on the DWI image (right). (c) An example of a tumor lesion on T1-W,
T2-W and FLAIR MR images. The tumor can be identified in all three cases, but the easiest
on the FLAIR image. The first two examples (a) and (b) show a neonatal brain and the last
example (c) shows an adult brain.

operator variability studies [Collier et al., 2003, Vansteenkiste, 2007]. These difficul-
ties in brain data analysis required inventions in computational methods to improve
disease diagnosis and testing. Nowadays, computer-aided diagnosis (CAD) has been
extensively used to assist doctors in qualitative diagnosis by providing computer algo-
rithms and tools that extract important clinical information from images. For example,
multiple imaging modalities used for automated recognition and diagnosis, require
computerized algorithms for pattern matching, image registration, segmentation, en-
hancement and visualization.

Due to all these advances, the multimodal image analysis is now a fast-moving, de-
manding and exciting multidisciplinary activity with a continuous need in developing
newer and better methods to help doctors to find the source of the problem.
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1.2 Thesis and contributions

This thesis is about multimodal image analysis of the human brain, with the focus on
a development of supervised and unsupervised brain MRI segmentation algorithms
and neonatal EEG source localization. Throughout the work we concentrate on two
practical applications:

1. Improving brain cortex segmentation for the detection of subtle brain lesions in
patients with focal cortical dysplasia (FCD).

2. Developing and testing neonatal EEG dipole source localization, using a realis-
tic head model and multimodal data fusion in babies with perinatal brain injuries
caused by asphyxia.

In both applications, the segmentation of brain MR images is essential because it in-
fluences the outcome of the entire analysis. This is because different processing steps
in the analysis (like cortical thickness measurement, brain volume estimation, dipole
source localization, etc.) rely on accurate segmentation of anatomical regions. For
instance, in the context of EEG dipole source localization, it is necessary to recon-
struct a patient-specific head model (using MRI segmentation) to accurately locate the
sources of abnormal brain activity, where the brain signals are generated using the
information acquired with the electrodes located over the patient’s head, Fig. 1.1. For
that purpose, we have to segment the patient’s MRI of the head into the scalp, skull
and brain tissue. Also, in the case of FCD lesion detection, accurate segmentation of
the brain cortex is important in measuring the cortical thickness, which is an important
feature for the lesion detection.

However, image segmentation is not a trivial task because images are often corrupted
by noise and other image artifacts. Therefore, we pay a great attention to study and
develop new methods for accurate and noise-robust image segmentation. To eliminate
noise and other image artifacts, we emphasize the use of spatial context modeling by
integrating neighborhood information of the image elements (pixels for a 2D image
or voxels for a 3D image) in the proposed segmentation methods. The performance of
the proposed segmentation methods is demonstrated on brain MRI (in both adults and
neonates) where we successfully merged theory with practice, but at the same time
we employ heuristics to reduce the complexity of the algorithms or to achieve higher
flexibility.

1.2.1 Novelties

The novelties and contributions of this thesis can be divided in two groups: (1) those
related to image segmentation with application to brain MRI and (2) those integrating
our MRI segmentation research and EEG monitoring of the neonatal brain, and re-
sulting in the application for neonatal EEG source localization [Deburchgraeve et al.,
2010, Deburchgraeve et al., 2009, De Vos, 2009, Hallez, 2008].
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In the first group we have contributed the following algorithms and methods:

1. An improved 3D graph cut algorithm for brain tissue segmentation with appli-
cation to more accurate brain cortex segmentation and epileptic lesion detection
in FCD patients. Our method uses three-label graph cut and preforms automatic
3D MRI brain segmentation by integrating intensity and boundary information
into the Markov random field-based energy function. This method outperforms
existing graph cut algorithms and also competes favourably with other state-of-
the-art algorithms for MRI segmentation, [Despotovic et al., 2011b,Despotovic
et al., 2011c].

2. A new fuzzy clustering method for accurate and noise-robust image segmenta-
tion. Our method uses the joint spatial and intensity feature space, and integrates
an anisotropic neighborhood model. This method allows multi-feature segmen-
tation and can be used in many different applications. In this thesis the perfor-
mance of the algorithm is evaluated on brain MRI datasets, but its segmentation
potential is shown in other applications as well [Despotovic et al., 2010b,Despo-
tovic et al., 2010c,Despotovic et al., 2010a,Despotovic et al., 2010d,Despotovic
et al., 2013c].

3. An integrated algorithm for the neonatal brain volume segmentation (brain ex-
traction) using T1-W and T2-W MRI of the neonatal brain. This method com-
bines thresholding, active contours and mathematical morphology [Despotovic
et al., 2010e].

4. An algorithm for 3D realistic head modeling in newborn infants. This algorithm
integrates the MRI method for the neonatal brain extraction, mathematical mor-
phology, and noise-robust fuzzy segmentation [Despotovic et al., 2009a,Despo-
tovic et al., 2009b, Despotovic et al., 2010f, Despotovic et al., 2013b].

In the second group we have created the following contributions:

1. The first integrated method for ictal EEG dipole source localization in newborn
infants based on a realistic head model, [Despotovic et al., 2013a, Despotovic
et al., 2011a].

2. The experimental studies for investigating the utility of EEG source imaging in
neonates with postasphyxial seizures. We explored the sensitivity of our method
to the electrode positioning errors and to variations in neonatal skull geometry
and conductivity, [Despotovic et al., 2013a, Despotovic et al., 2012].

3. The first objective study of the relationship between the localization of neonatal
seizures and associated MRI patterns of brain injury, [Despotovic et al., 2013a].



1.2 Thesis and contributions 7

1.2.2 Publications

In terms of publications, so far this work resulted in 17 publications as the first author:

• 2 accepted A1 journal publications in the field of image segmentation [Despo-
tovic et al., 2013c] and multimodal EEG and MRI data analysis of the neonatal
brain [Despotovic et al., 2013a].

• 10 publications published in the proceedings of international peer-reviewed con-
ferences in the field of image segmentation (with application to MRI brain seg-
mentation) [Despotovic et al., 2010d], [Despotovic et al., 2010a], [Despotovic
et al., 2010c], [Despotovic et al., 2011c], [Despotovic et al., 2011b], 3D realis-
tic head modeling and EEG source localization in newborn infants [Despotovic
et al., 2009a], [Despotovic et al., 2010e], [Despotovic et al., 2012], [Despo-
tovic et al., 2013b] and ultrasound signal and image analysis [Despotovic et al.,
2008];

• 5 publications in national conferences [Despotovic et al., 2009b], [Despotovic
et al., 2010f], [Despotovic et al., 2010b], [Despotovic et al., 2011d], [Despo-
tovic et al., 2011a].

Also, this research contributed to 4 publications by other first authors in the field of
MRI analysis of the brain in patients with epileptic lesions (FCD lesion detection)
[Kumcu et al., 2012, Platisa et al., 2011, Platisa et al., 2012, Qu et al., 2013].

The following listed articles are a selection of the most important publications that
were published during the course of this research:

A1 journals

1. Despotovic, I., Vansteenkiste, E., and Philips, W. (2013). Spatially coherent
fuzzy clustering for accurate and noise-robust image segmentation. In Journal
IEEE Signal Processing Letters, Volume 20, Issue 4, pages 295-298.

2. Despotovic, I., Cherian, P.J., De Vos, M., Hallez, H., Deburchgraeve, W., Gov-
aert, P., Lequin, M., Visser, G.H., Swarte, R.M., Vansteenkiste, E., Van Huffel,
S. and Philips, W. (2013). Relationship of EEG sources of neonatal seizures
to acute perinatal brain lesions seen on MRI: A pilot study. In Journal Human
Brain Mapping, Volume 34, Issue 10, pages 2402-2417.

International conference proceedings

1. Despotovic, I., Vansteenkiste, E. and, Philips, W. (2013). A realistic volume
conductor model of the neonatal head: methods, challenges and applications. In
Proc. IEEE International Conference on Engineering in Medicine and Biology
Society Conference (EMBC), pages 3303-3306, Osaka, Japan.
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2. Despotovic, I., Cherian, P.J., De Vos, M., Hallez, H., Govaert, P., Lequin, M.,
Visser, G.V., Swarte, R., Vansteenkiste, E., Van Huffel, S. and Philips, W.
(2012). Influence of Volume Conductor Model Errors on Dipole Source Lo-
calization in Neonates. In Proc. International Society for Magnetic Resonance
in Medicine (ISMRM), page 3647, Melbourne, Australia.

3. Despotovic, I., Segers, I., Platisa, Lj., Vansteenkiste, E., Pizurica, A., Deblaere,
K. and Philips, W. (2011). Automatic 3D graph cuts for brain cortex segmenta-
tion in patients with focal cortical dysplasia. In Proc. IEEE International Con-
ference on Engineering in Medicine and Biology Society Conference (EMBC),
pages 7981-7984, Boston, Massachusetts, USA.

4. Despotovic, I., Segers, I., Platisa, Lj., Vansteenkiste, E., Pizurica, A., Deblaere,
K. and Philips, W. (2011). Brain MRI Segmentation for Focal Cortical Dyspla-
sia Lesion Detection. In Proc. International Society for Magnetic Resonance in
Medicine (ISMRM), page 4277, Montreal, Canada.

5. Despotovic, I., Goossens, B., Vansteenkiste, E. and Philips, W.(2010). An im-
proved fuzzy clustering approach for image segmentation. In Proc. IEEE Inter-
national Conference on Image Processing (ICIP), pages 249-252, Hong Kong,
China.

6. Despotovic, I., Goossens, B., Vansteenkiste, E. and Philips, W. (2010). T1- and
T2-weighted Spatially Constrained Fuzzy C-Means Clustering for Brain MRI
Segmentation. In Proc. SPIE Medical Imaging, 76231V, 9 pages, San Diego,
California, USA.

7. Despotovic, I., Jelaca, V., Vansteenkiste, E. and Philips, W. (2010). Noise-
robust method for image segmentation. In Proc. Advanced Concepts for Intel-
ligent Vision Systems (ACIVS), pages 153-162, Sydney, Australia.

8. Despotovic, I., Vansteenkiste, E., Philips, W. (2010). Brain volume segmenta-
tion in newborn infants using brain MRI with a low inter-slice resolution. In
Proc. IEEE International Conference on Engineering in Medicine and Biology
Society Conference (EMBC), pages 5038-5041, Buenos Aires, Argentina.

9. Despotovic, I., Deburchgraeve, W., Hallez, H., Vansteenkiste, E. and Philips,
W. (2009). Development of a Realistic Head Model for EEG Event-Detection
and Source Localization in Newborn Infants. In Proc. IEEE International Con-
ference on Engineering in Medicine and Biology Society (EMBC), pages 2296-
2299, Minneapolis, Minnesota, USA.
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1.3 Organization of the thesis

This section presents an overview of the content of the following Chapters of the
thesis.

Chapter 2: Brain data analysis.
In this chapter we present background information on the human brain anatomy and
review the development of non-invasive brain imaging techniques, such as MRI and
EEG. We start with a brief introduction to the human brain anatomy and neurophys-
iology and discuss the phases of the brain development, from neonate till adulthood.
Next, we describe two brain injuries, birth asphyxia and epilepsy with FCD lesions
that are the clinical challenges of the thesis. Furthermore, we explain the physics and
acquisition of MRI, as well as the challenges in MRI analysis and the differences be-
tween imaging adult and neonatal brains. Finally, we explain the main concepts of
EEG brain data analysis, necessary for understanding neonatal EEG source imaging
in Chapter 7.

Chapter 3: Brain MRI segmentation.
In this chapter we review the image segmentation methods commonly used for MRI
brain tissue segmentation. Firstly, we introduce the basic concepts of image segmenta-
tion, which are necessary for a good understanding of this and the following Chapters.
Then, we explain different preprocessing steps such as the bias field correction, image
registration and brain extraction. Next, we review the most popular brain MRI seg-
mentation techniques and highlight differences between them. Finally, we discuss the
validation problem in brain MRI segmentation.

Chapter 4: Three-label graph cut for 3D brain MRI segmentation.
In this chapter we propose the modification of the standard graph cut method for
more accurate and automatic 3D brain MRI segmentation. The proposed method
uses three-label graph cut (labels: white matter (WM), gray matter (GM) and cere-
brospinal fluid (CSF)) and preforms automatic 3D MRI brain segmentation integrat-
ing intensity and boundary information. The performance of the method is tested on
both simulated and real MR brain images with different noise levels and real patients
with FCD lesions. The experimental qualitative and quantitative segmentation results
are presented, where we also compare the performance of the proposed method with
other brain MRI segmentation methods. The qualitative validation for FCD patients is
scored by the expert physician.

This work is done in collaboration with my master thesis student Ief Segers [Segers
et al., 2010] who implemented the proposed segmentation algorithm in C++, created
the graphical user interface (GUI) and did an initial testing of the method on patients
with FCD lesions.

Chapter 5: Noise-robust FCM clustering.
This chapter is about segmenting medical images using fuzzy models where we
present our novel solution for noise-robust fuzzy C-means clustering. Firstly, we re-
view the recent research efforts involving supervised and unsupervised fuzzy segmen-
tation of MRI for brain tissue analysis. Following this, we present our solution for
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spatially coherent and noise-robust fuzzy clustering. Here, instead of modeling the
spatial context using the Markov Random Field (MRF), we model it by much simpler
techniques, using low complexity locally adaptive methods. For more accurate seg-
mentation we propose an anisotropic neighborhood model based on phase congruency
features. Then, we present the new spatially coherent solution for the FCM clustering
that uses both T1-W and T2-W MRI for brain tissue segmentation. The performance
of our methods is tested on several datasets: on synthetic images with different noise
levels, on variety of real images, on simulated adult MR brain images with different
noise levels and on neonatal MR brain images with the gestational age of 40 weeks.
Both qualitative and quantitative segmentation results are compared with the related
FCM-based techniques as well as with the state-of-the-art MRI segmentation methods.

Chapter 6: Development of a realistic head model in neonates.
In this chapter we present a new interactive hybrid segmentation method for realis-
tic head modeling in newborn infants, which we use later for neonatal EEG source
analysis in Chapter 7. Our method combines our new FCM clustering (Chapter 5),
active contours and mathematical morphology. To build a realistic head model, we
also developed a method for brain volume segmentation in neonates (brain extraction)
using T1-W and T2-W MRI. This is because the existing brain volume segmenta-
tion techniques are mainly developed for adults and are not applicable to neonates or
require additional corrections. Both brain extraction and 3D realistic head reconstruc-
tion methods are explained. The brain extraction algorithm is tested on real neonatal
brain MRI with a gestational age between 39-41 weeks. The segmentation results are
compared to manual segmentation and results show that our method is effective and
more accurate than existing brain volume segmentation methods originally developed
for adults.

Chapter 7: Neonatal EEG source imaging.
In this chapter we present an integrated method for ictal EEG dipole source localiza-
tion in neonates, based on a realistic head model. The focus here is to investigate the
utility of EEG source imaging in neonates with postasphyxial seizures and explore
the relationship between dipole locations and brain lesions visible on MRI. Firstly,
we explain the cause and diagnosis of neonatal seizures and discuss the challenges in
neonatal EEG source localization. Then, we describe the test population (10 full-term
infants with neonatal encephalopathy) and the procedure for acquisition of MRI and
EEG data. Following this, we explain our method and compare the dipole seizure
localization results with acute perinatal lesions seen on brain MRI. Through experi-
mental studies, we explore the sensitivity of our method to the electrode positioning
errors and to variations in neonatal skull geometry and conductivity. Finally, we com-
pare the localization results of 45 focal seizures from 10 neonates with the visual
analysis of EEG and MRI data, scored by expert physicians.

This work is done in cooperation with Erasmus MC-Sophia Hospital in Rotterdam,
MEDISIP group from Ghent University and ESAT-STADIUS division from KU Leu-
ven. Erasmus MC-Sophia Hospital provided us with the necessary MRI and EEG
data, clinical diagnosis of the patients and validations of the experimental results. The
MEDISIP group provided us with the source localization method (initially developed
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for adults), which has been modified in this research for the purpose of neonatal EEG
source imaging. Finally, the EEG data analysis and automatic EEG seizure detection
is done by the ESAT-STADIUS division, whose results we used as an input for EEG
source localization.

Chapter 8: Conclusions.
This final chapter includes the overall conclusions of the thesis and points out in which
direction further related research might proceed.
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2
Brain data analysis

Surely, the brain must hold the key to human nature:
understanding it will allow us to make sense of so much that puzzles us about ourselves.

– Adam Zeman

This chapter provides the necessary background on the human brain anatomy and on
MRI and EEG brain data analysis. Section 2.1 explains the anatomy and development
of the human brain, including an explanation of the two brain injuries (birth asphyxia
and epilepsy with FCD) that are the clinical challenges of the thesis. Since MRI anal-
ysis of the neonatal and adult brain is the central subject of the thesis, it is necessary
to understand how MR images are formed, what they show, how they differ, how we
can analyze them and what are the challenges. This is the subject of the Section 2.2.
Subsequently, in Section 2.3 we explain the most important concepts of EEG brain
data analysis that is necessary for understanding neonatal EEG source imaging in the
Chapter 7.

2.1 Brain anatomy and development

The brain is the most complex vital organ of the human body. It controls our physical
senses and stores our memories and processes our thoughts and emotions. Our brain
consists of millions and millions of nerve cells (neurones), which are connected and
communicate with each other. When communication between neurons is broken or
interrupted for a long time, brain degeneration occurs, causing brain injury, which can
vary greatly in severity. Many of the questions about how the brain develops, works
and dies are still unanswered, but doctors and scientists continuously stepped up their
efforts to learn more about the brain every day.



14 Brain data analysis

Dendrites

Cell body

Nucleus

Axon 
hillock

Myelin 
sheath

Axon

Presynaptic cell
Synaptic
terminals

Synapse

Postsynaptic cell

Signal 
direction

Figure 2.1: The basic parts of a neuron are the cell body, dendrites, the axon and synaptic
terminals.

2.1.1 Human brain anatomy

The brain is the central part of the central nervous system (CNS) and is largely com-
posed of nerve cells or neurons and glial cells. There are over 100 billion neurons in
the brain and an even greater number of glial cells.

Neurons are information messengers. They use electrical impulses and chemical sig-
nals to transmit information between different areas of the brain, and between the
brain and the rest of the nervous system. The size and shape of neurons can vary, but
all neurons have three basic parts: a cell body or soma and two extensions called an
axon and a dendrite (see Fig. 2.1). The cell body contains the cell nucleus, in which
all vital proteins are synthesized. Neurons communicate with each other via synap-
tic terminals by releasing chemicals (neurotransmitters). Dendrites extend from the
cell body and have a function of receiving information to the cell body from synaptic
connections, while axons take information away from the cell body. A single cell can
connect with as many as 15000 other cells, building an incredibly complex network
of connections. The majority of neurons are unable to undergo regeneration or fur-
ther divide, and this results in irreversible damage to the nervous system after trauma,
intoxication, oxygen deficiency (like in asphyxia) or stroke.

Glial cells are major constituents of the central nervous system and play a pivotal
role during development and adulthood. Although they do not have a direct role in
neurotransmission, glial cells have a supporting role that helps define synaptic contacts
and maintain the signaling abilities of neurons. Glial cells lack axons and dendrites
and are smaller than neurons. Some evidence also suggests that glial cells aid (or, in
some cases, prevent) recovery from neuronal injury and that they are involved in a
number of diseases, such as Alzheimer’s disease or multiple sclerosis [Nagele et al.,
2004].
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Figure 2.2: The brain anatomy. (a) The main brain parts such as cerebrum, cerebellum and
brain stem are indicated. (b) On the left side: the terminology to describe position and orienta-
tion of brain structures. On the right side: the human head structures (scalp, skull and brain).
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Figure 2.3: The four brain lobes: frontal, temporal, occipital and parietal.

The main parts of the brain are cerebrum, cerebellum and brain stem. Their location
is illustrated in Fig. 2.2(a). The cerebrum is the largest part of the brain (accounts
for two-thirds of the total weight of the brain) and controls voluntary actions, speech,
senses, thoughts, and memory. The outer layer of the brain is known as the cerebral
cortex (or cortical gray matter). Its surface has grooves or fissures (called sulci) and
ridges (called gyri). The brain is immersed in cerebrospinal fluid (CSF), which pro-
vides essential substances for the metabolism of the brain and is encapsulated within
the skull and scalp, which act as protective layers against trauma, Fig. 2.2(b). Within
the brain there are a number of cavities called ventricles. They are filled with CSF,
which is produced within the ventricle wall.

The cerebrum is divided into two hemispheres (left and right), which are further sub-
divided into four lobes: frontal, temporal, parietal and occipital. This is illustrated
in Fig. 2.3. The left hemisphere is functionally dominant, controlling language and
speech, while the right hemisphere interprets visual and spatial information. All lobes
are interconnected and each lobe has a specific function. The frontal lobes are located
in the front of the brain and are responsible for problem solving, judgment and motor
function. The parietal lobes are located at the top back of the brain and they manage
sensation, handwriting, and body position. The temporal lobes are located on each
side of the brain, above ears, and they process memory, auditory (hearing) informa-
tion, speech and language functions. The occipital lobes are located at the back of the
brain and they receive and process visual information.
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Figure 2.4: Illustration of the typical three cross-sections through the brain: axial, corona and
sagittal. The right-bottom image shows the coronal section of the brain where the gray matter,
white matter, talamus and ventricles are indicated with arrows. Note that axial plane is also
called horizontal or transverse plane. Parts of the figure are from [Uzwiak, 2013].

The brain tissues can be divided into gray matter (GM) and white matter (WM), see
Fig. 2.4. The gray matter is found at the brain cortex and in some deep brain struc-
tures, such as the thalamus, caudate nuclei, putamen and globus palidus. The cortical
gray matter predominantly contains closely packed neuron cell bodies and actively
participates in the storage and processing of information. It is estimated that there
are more than 10 billion cells in the cerebral cortex alone. The white matter consists
mainly of glial cells and long myelinated axons, which connect different parts of the
gray matter and transmit signals from one part of the brain to another. The term white
matter is due to a glistering whitish appearance of myelin which is mainly composed
of lipid tissue.

The brain and the different areas of the brain can be analyzed and illustrated using
images of the brain in different orientations or planes. The three most commonly used
planes are: sagittal, coronal ans axial, as illustrated in Fig. 2.4. Further readings on
the anatomy of the neuron and the brain can be found in [Nolte, 2002].
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2.1.2 Brain development

Human brain maturation is a complex, lifelong process that involves a complex se-
quence of morphological, functional and organizational changes. Although these
changes are complex they occur in an organized sequence. Pathological studies have
been important in documenting the process of brain maturation, but brain imaging of-
fers the added value of being able to study the live fetus and infant in the earliest and
most important phases of maturation, see Fig. 2.5.

The development of the human brain and CNS consists of several synchronized pro-
cesses, some of which are completed before birth, while others continue into adult-
hood. At about three weeks gestation (three weeks of pregnancy) the neural tube
forms, creating the basis for all further CNS development. From the first to the fourth
month of gestation, major regions of the human brain can be recognized in primitive
form. The spinal cord develops at one end of the neural tube, and forebrain and fa-
cial structures at the other. During this period, the ventricles are formed in the central
region of the tube that will become the brain, see Fig. 2.6.

Beginning at the fifth month of gestation the surface of the growing brain begins to fold
into sulci and gyri [Levine and Barnes, 1999]. Between the sixth and seventh month
of gestation, the major sulci are visible and myelination occurs regionally beginning
with the brain stem [Inder and Huppi, 2000] and generally proceeds from inferior
to superior and posterior to anterior. Myelin is an insulating layer made up of fatty
substances and protein that allows rapid and efficient transmission of impulses along
the nerve cells. Proximal pathways tend to myelinate before distal and sensory before
motor [Volpe, 2000]. The process of myelination is the most rapid during the first 2-3
years of life and by the age of 3 years, most major tracts are significantly myelinated
[Parazzini et al., 2002]. However, due to the refined structure of the adult brain and
subtle changes in appearance, axons within the cortex and in some regions such as a
white matter bundle near the temporal lobe, continue to myelinate into the second and
third decades of life [Yakovlev and Lecours, 1967]. By birth, nearly all sulcal and
gyral patterns are present and after birth they continue to increase in complexity.

At birth, almost all of the neurons (30 billion or more) have been formed. During
the first year of life, synaptic density increases rapidly, reaching by 2-years of age
a level approximately 50% greater than that typically seen in adults [Huttenlocher,
1979]. This is because the brain develops a functional architecture through the rapid
formation of these synapses or new connection, myelination of the axonal fibres and
growth of glial cells. In the first 2 years of live the brain growth is rapid and the brain
weight reaches 80% of its adult weight. Throughout the first decade of life a child’s
brain is superdense and at about age 11, a brain gets rid of extra connections in a
process calling “pruning”. By age 5 years brain size is approximately 90% of adult
brain size [Dekaban and Sadowsky, 1978, Lenroot and Giedd, 2006] and reaches its
maximum weight at age 20. However, significant remodeling of gray and white matter
continues into the third decade of life, something that could not be fully appreciated
until MRI became available.
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Figure 2.5: Imaging of the brain maturation before birth using ultrasound and fetal MRI.

3 weeks 7 weeks

4 months 9 months

Forebrain

Optic
vesicle

Midbrain

Hindbrain

Hindbrain

Spinal cord

Forebrain

Figure 2.6: Phases of the brain development.
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2.1.3 Brain injuries: clinical challenges of the thesis

2.1.3.1 Asphyxia and hypoxic-ischemic encephalopathy

Asphyxia is a condition of severely deficient supply of oxygen to the brain and occurs
due to breathing difficulties or other problems that prevent the baby from receiving
sufficient amounts of oxygenated blood. An acute reduction in oxygen delivery to the
brain results in break down of the neuronal energy metabolism within minutes. This
causes seizures as a common manifestation of neurological dysfunction [Volpe, 2008]
and requires early detection to enable prompt treatment with the aim to prevent further
brain injury. Asphyxia is a major cause of permanent disability in very preterm infants
who survive after neonatal intensive care. Despite improvements in perinatal care in
the developed world, asphyxia remains a major cause of mortality, resulting in up to
25% of perinatal mortality and morbidity.

Infants who have been asphyxiated during delivery may develop signs of hypoxic-
ischemic encephalopathy (HIE), where hypoxia is inadequate supply of oxygen in the
blood, ischemia is decrease in blood flow and encephalopathy is brain disease. Al-
though both preterm and term infants are at high risk of asphyxia, the HIE staging is
reserved for term infants (gestation > 37 weeks). The most typical abnormal neuro-
logical sign in HIE are convulsions (called “generalized tonic-clonic” seizures), which
are the most dramatic type of seizure involving the whole body. Convulsions are caus-
ing sudden, rapid, violent movements and occasionally loss of consciousness. These
convulsions can start with focal movements (involving one specific part of the body)
and progress to generalized movements (i.e., both sides of the body).

Infants with signs of HIE may be scanned with two different techniques during the
neonatal period: cranial ultrasound and MRI. Cranial ultrasound has the advantage of
being mobile equipment and therefore is easily used bedside in the neonatal unit. It is
ideal for daily or half daily scans to follow the evolution of changes within the brain.
Cranial ultrasound allows screening and monitoring the evolution of lesions but is not
as good as MRI at determining the exact site, and extent of lesions. The combination
of cranial ultrasound and MRI is ideal for assessing the newborn brain.

MRI has been widely used to investigate the asphyxiated infant [Rutherford, 2001].
The pattern of injury seen on MRI is related to the type and severity of the insult.
During the first week after delivery, six main areas of abnormality may be identified
on MRI in infants with HIE [Cowan and Denis, 2007]. Whilst one particular pattern
may dominate, in most infants a combination of abnormalities is present. The early
MRI findings are: brain swelling, loss of the normal signal in the posterior limb of
the internal capsule (see Fig. 2.7), abnormal signal intensities in the basal ganglia and
thalami, brain stem lesions, loss of GM/WM differentiation and cortical highlighting
[Rutherford, 2012, Cowan and Denis, 2007].

Monitoring of brain function using the EEG, continuously or by serial EEGs is well-
suited to give insight into brain function and its dynamic changes in neonatal HIE and
helps to guide treatment as well as prognostication [Perumpillichira, 2010]. A good
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Figure 2.7: Illustration of the asphyxiated brain. Normal (on the left) and abnormal (on the
right) signal intensities within the posterior limb of the internal capsule are indicated with ar-
rows. From [Cowan and Denis, 2007].

understanding of the pathophysiology of HIE is needed not only in the selection of
suitable diagnostic tests and treatment methods, but also to develop new therapeutic
strategies. Confirmation by video electroencephalography (EEG) is considered the
gold standard in the diagnosis of neonatal seizures.

2.1.3.2 Focal cortical dysplasia - FCD

The prevalence of epilepsy is estimated to be around 1% of the population and up to
40% of these patients continue to have seizures despite optimal drug treatment. These
patients represent a high socio-economical burden due to direct and indirect medical
costs. Most of these refractory patients might benefit from epilepsy surgery, requiring
a precise localisation of the epileptogenic zone. Epilepsy surgery in an optimally
selected population yields a high chance of seizure freedom. In patients in whom
the abnormal electrical brain activity can be correlated to an identifiable anatomical
lesion, up to 80% seizure freedom can be achieved by surgery. The success depends
on the type of lesion.

Focal cortical dysplasias (FCDs) are localized malformations of cortical development
increasingly associated with drug refractory epilepsy and more frequently being oper-
ated on in epilepsy centers. Magnetic resonance imaging plays a pivoting role in the
presurgical evaluation of patients with refractory epilepsy and although MRI quality
has significantly improved through the advent of high field clinical MRI systems (3
Tesla), FCD still remains a diagnostic challenge. This is mainly due to the subtle le-
sions, the complex convolution of the human cerebral cortex and the dependence on
the expertise and attention of the radiologist viewing the MR images. It is estimated
that about 25% of these lesions are being overlooked on the optimized epilepsy MR
imaging protocols [Deblaere and Achten, 2008].
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2.2 Magnetic Resonance Imaging - MRI

2.2.1 History of MRI

MRI is a relatively new technology with its early foundations in the late 1930’s, when
Isidor Isaac Rabi designed a process by which the magnetic strengths of atomic nuclei
could be recorded [Rabi et al., 1938]. He received the Nobel prize in physics in 1944.

In 1946, Felix Bloch and Edward Purcell, working independently, devised improve-
ments upon Rabi’s process and were the first to demonstrate magnetic resonance phe-
nomena in condensed matter. For the experiments Bloch used liquid water [Bloch
et al., 1946, Bloch, 1946], while Purcell used solid paraffin [Purcell et al., 1946]. In
1952, they received the Nobel Prize in physics for nuclear magnetic resonance (NMR)
spectroscopy. Up until the 1970’s NMR was being used for chemical and physical
analysis.

Then, in 1971 Raymond V. Damadian was the first to experiment with NMR on living
tissue. He tested NMR on rat tissues and discovered that nuclear magnetic relax-
ation times of healthy tissue and malignant tumors were different [Damadian, 1971].
This motivated doctors and scientists to use NMR to detect areas of disease inside
the body, which previously required exploratory surgery. With the inventions in com-
puter technologies it was possible to develop images from NMR information in 1973,
and echo-planar imaging (a rapid imaging technique) in 1977. The same year, Dama-
dian acquired the first human body image, showing an axial slice through the tho-
rax [Damadian et al., 1977].

The next step towards the modern MRI was made by the inventions of Paul C. Lauter-
bur and Sir Peter Mansfield in 1973 [Lauterbur, 1973,Mansfield, 1977]. They showed
that much higher resolution could be obtained by manipulating the local magnetic field
using gradient fields, and this idea is still successfully used in modern MRI. For their
work, Lauterbur and Mansfield received the Nobel prize in medicine and physiology
in 2003. In the late 1980’s the name NMR had been changed to a more “friendly”
term MRI that does not evoke a sense of danger to patients who need the exam.

The first MRI had low spatial resolution and the equipment used resistive magnets with
weak magnetic fields. Even then, it was obvious that MRI capability in discriminating
the soft tissue was superior to that of X-ray-based computer tomography (CT) and
allows better and earlier diagnosis. Following this, many scientists over the next 20
years developed MRI into the technology that we know today.

Perhaps one of the most exciting MRI developments was the invention of supercon-
ductors over the 1980s and 1990s. These superconductors make the strong magnetic
fields used in MRI possible and enable high image resolution with excellent soft-tissue
contrast. Also, images can be acquired in any imaging plane. Since then, advances in
computing has made the MRI process much faster. Today MR imaging is widespread
and helps human accomplish something that cannot be done any other way.
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2.2.2 The physics of MRI

The principle of MRI is based on a non-invasive interaction between radio waves
and nuclei of atoms in the body in the presence of a strong magnetic field. This
principle uses a physical phenomenon of nuclear magnetic resonance, and is related
to the natural spinning of nuclei of atoms (charged particles in motion).

Every nucleus is composed of protons (positively charged particles) and neutrons (par-
ticles without electric charge), which have an intrinsic angular momentum, called spin.
The combination of these particles in a nucleus, possesses a total angular momentum
J , called nuclear spin. Nuclear spin can have values of 0, half-integers or whole in-
tegers. Nuclei with even atomic number (even number of protons) have nuclear spin
zero (J = 0) and they are unaffected by a magnetic field and can not be detected by
magnetic resonance. Nuclei with odd atomic number (odd number of protons) have
integer or half-integer nuclear spin number (odd spin) and are affected by magnetic
fields and can be observed by MR spectroscopy. However, only nuclei with half-
integer spin number are of interest for the purpose of MRI. Table 2.1 shows a list of
some nuclei useful in MRI and spectroscopy, from [Bushberg and Seibert, 1994,Haake
et al., 1999].

Table 2.1: Spin values of several nuclei of interest in MR imaging and spectroscopy.

Nucleus Spin Magnetic
number moment µ

1H 1/2 2.79
17O 5/2 1.89
19F 1/2 2.63
23Na 3/2 2.22
31P 1/2 1.13

Clinical MRI (e.g. MRI of the brain) focuses on the hydrogen atom 1H (contains
nuclei with one proton). This is because of the nature of 1H, which in comparison
with other nucleus (see Table 2.1), has the strongest magnetic moment µ = 2.79,
very high isotropic abundance of 99.98% and the highest concentration in the human
body. On an average, the human body is composed of 60% water (H2O - consists
of two hydrogen atoms and one oxygen). The water content highly depends on body
size, age and gander, and also different body parts (e.g. tissues and organs) contain
different amount of water [Ulijaszek et al., 1998], see Table 2.2. For instance, the
average human brain is composed of 75% water, while the lungs are nearly 85%
water. Hydrogen is also present in fat and most other tissues in the body.

The varying molecular structures and the amount of hydrogen in various tissues effect
how the protons behave in the external field. For example, because of the total amount
of hydrogen in water, it has one of the strongest net magnetization vectors relative
to other tissues. Other tissues within the body have less hydrogen concentration and
become magnetized to a lesser extent (their net magnetization is less intense).
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Table 2.2: Body water content (percentages) for different period of life and different tissue
types in adults.

Period of life Water % Tissue in adults Water %

Fetus 94% Skin 64%
Infant 75% Skeleton (bones) 31%
Adult - man 60% Muscle 80%
Adult - woman 55% Lungs 85%
Elderly 50% Brain 75%

2.2.2.1 Basic principles

A nucleus with odd spin (such as the hydrogen atom 1H) can be represented as a
magnetic moment vector that causes the nucleus to behave just like a magnet, with
one north pole and one south pole, see Fig. 2.8(a). This is because a nucleus has a
positive charge and, if it is spinning around an axis, then we have rotating charges
which produce a small magnetic field. We can calculate the magnetic moment µ with
the following expression:

µ = γJ. (2.1)

where γ is the gyromagnetic ratio and J is the nuclear spin. Vectors µ and J are paral-
lel and their direction defines atomic axis. For hydrogen nucleus, γ = 42.58 MHz/T,
which is in the radio-frequency (RF) range.

In an ensemble of nuclei, the sum of all of the magnetic moment vectors of the indi-
vidual nuclei yields the net magnetization vector M:

M =
∑
i

µi. (2.2)

Since M is a vector quantity, it represent changes in the average orientation and dis-
tribution of magnetic moments.

Under normal circumstances and at room temperature, magnetic moments have no
fixed orientation and there is no overall magnetic field. The proton spins are randomly
distributed due to thermal agitation and the Brownian motion, which results in no net
magnetization vector for the protons in the tissue, M = 0, see Fig. 2.8(c). However,
when nuclei are placed in an external magnetic field B (e.g. when a patient is placed
in the MRI scanner), they tend to align with the applied magnetic field, see Fig. 2.8(d).
The interaction between B and µ results in a periodic motion (a precessional move-
ment of the nucleus around the applied magnetic field) and a potential energy E, see
Fig. 2.8(b). This periodic motion is known as Larmor precession and is described by
the Larmor (angular) frequency ωL as follows:

ωL = γB0. (2.3)

The frequency of precession is directly related to the strength of the applied magnetic
field B0.



2.2 Magnetic Resonance Imaging - MRI 25

z

Nμ J

ωωL

Sμ = γ J 
transversal plane

+
+

+ +
++ +

+

θ

y
x

μ

E

B0

(a) (b)

M=0M 0

B0 parallelp

Mz

anti-parallel

θ

θ

(c) (d)

Figure 2.8: (a) A nucleus has a property called spin. The spinning positive charge causes a
magnetic moment µ, which causes the nucleus to behave as a magnet where N is a north pole
and S is a south pole. (b) Inside a magnetic field with intensityB0, the magnetic moment aligns
with the magnetic field, resulting in a potential energy E and a precessional movement of the
nucleus around the applied magnetic field with the Larmor angular frequency ωL. (c) At room
temperature, no net magnetization exists due to Brownian motion. (d) Inside a magnetic field,
B0, the magnetic moments aligns with the magnetic field. There is a slight preference for the
parallel alignment resulting in longitudinal net magnetization Mz .

Conventionally, the orientation of the static magnetic field B0 is taken to be along the
z-axis of a thee-dimensional (3D) Cartesian coordinate system. The z-axis represents
the longitudinal direction and the x- and y-axis (lying in the plane perpendicular to
the z-axis), form a transverse x, y-plane, see Fig. 2.8(b).
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The potential energy E of the single particle in an external magnetic field is defined
as:

E = −µ ·B = −γJB0 cos θ, (2.4)

where B0 is the external magnetic field strength, θ is the angle between the external
magnetic field and the magnetic moment µ, see Fig. 2.8(b). In classical mechanics,
any value of E is possible because there is no limitation on the energy of the particle.
However, in quantum mechanics, which deals with physical phenomena at micro-
scopic scales, the particle can only have a limited number of energy values (only a
finite number of directions). This phenomenon is called space quantization (or Zee-
man effect) and discrete energy levels can be described as follows:

E = −mγ~B0, m = −j,−j + 1, ..., j − 1, j (2.5)

where γ~B0 is the quantum, j is the spin quantum number and ~ is the reduced Plank
constant or Dirac constant (1.0546 × 10−34 Js). The spin quantum number depends
on the number of protons and neutrons in the nucleus, see Table 2.1.

In the case of the hydrogen nucleus (a single proton with a spin quantum number,
j = 1/2), the quantization of the magnetic moments results in two discrete energy
levels:

Ep = −1

2
γ~B0

Eap = +
1

2
γ~B0,

(2.6)

where “p” stands for parallel and “ap” for anti-parallel alignment of the magnetic
moments with the magnetic field, see Fig. 2.8(d). The anti-parallel alignment corre-
sponds to a high energy state where the magnetic moments are opposing the external
magnetic field, while the parallel alignment corresponds to a low energy state in which
the nuclei are in the direction of the magnetic field. There is a slight preference for
the parallel alignment, creating a net magnetisation in the direction of the main mag-
netic field, where a larger B0 will produce a larger net magnetization. The population
difference Np − Nap (for parallel and anti-parallel alignment) causes a longitudinal
magnetization Mz , see Fig. 2.8(d).

A transition of proton from the parallel (low energy) to the anti-parallel (high energy)
state can be only made by absorbing a photon with energy equal to:

Eap − Ep = γ~B0. (2.7)

For a photon with energy E = ~ωL, the resonance condition is described by the
Larmor (angular) frequency:

ωL = γB0. (2.8)

Note that the angular frequency of precessing magnetic moment derived from the clas-
sical mechanical relations in Eq. (2.3) is the same Larmor angular frequency derived
from the quantum mechanical relations in Eq. (2.8).
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Once the tissue has become magnetized (the spins are in either the high or low energy
state), a condition known as thermal equilibrium is reached. In this configuration, the
equilibrium magnetizationM0 equalsMz and is parallel toB0. The population ratio at
equilibrium is given by the Boltzmann factor for the energy difference4E = γ~B0:

Nap

Np
= exp

−γ~B0

kBT
, (2.9)

where kB is Boltzmann’s constant (1.3807×10−23 J/K) and T is the absolute tempera-
ture. This indicates that the energy difference and the sensitivity of the MRI technique,
can be altered by reducing the temperature or increasing the magnetic field. Therefore,
MRI needs a strong magnetic field B0, which for modern clinical scanners is between
0.5 and 3.0 T (Tesla). To put the magnitude of this field into context, 1 Tesla is equal
to 10,000 Gauss and the Earth’s magnetic field varies from between 0.3− 0.7 Gauss.

2.2.2.2 Creating an MR signal

At thermal equilibrium, there is no net magnetization in the transverse plane, see Fig.
2.8(b). To create an MR signal and perform MR imaging, it is necessary to perturb
the magnetic moments precessing about the external magnetic field B0. This can be
accomplished by applying a radio frequency (RF) energy pulse (an oscillating electro-
magnetic field B1) with a frequency equal to the Larmor frequency and perpendicular
to the z-axis and B0, see Fig. 2.9(a). The nuclei resonate, gain energy, change their
alignment by transiting from the lower to the higher energy state. The anti-parallel
state becomes occupied, and the parallel state becomes less occupied. The result of
this perturbation is that the net magnetization vector M is rotating away from the z-
axis and towards the x, y-plane, and has both longitudinal Mz and transverse Mxy

component, see Fig. 2.9(b). The angle of rotation α is called “flip angle” and depends
on the amplitude B1 and on the duration of the pulse tp:

α =

∫ tp

0

γB1dτ = γB1tp. (2.10)

By an appropriate selection of the amplitude B1 and the pulse duration tp, any flip
angle α can be obtained. In MR imaging the most important RF pulses are the α = 90o

and α = 180o pulse. The 90o pulse results in the net magnetization vector oriented in
the x, y-plane, where there is no longitudinal magnetization Mz = 0. The 180o pulse
results in the net magnetization vector oriented in the opposite direction of the z-axis,
see Fig. 2.9(c). Additionally to the effect of bringing more spins in the anti-parallel
state, the RF field also forces all individual spins to rotate in phase. This phenomena
is called phase coherence, and makes it possible that the net magnetization vector has
a transverse component in non-equilibrium conditions.

When the transmission of RF pulse is turned off the nuclei gradually lose energy and
return to its equilibrium state. This process is called relaxation. Relaxation is governed
by two physical phenomena: spin-lattice relaxation and spin-spin relaxation. Both
phenomena are illustrated in Fig. 2.10.
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Figure 2.9: (a) The generation of an oscillating electromagnetic field B1 perpendicular to the
magnetic field B0 using an RF pulse. (b) The decrease of the longitudinal magnetization Mz

and generation of the transverse magnetization Mxy . (c) Illustration of the “flip angle” α. .

The spin-lattice relaxation is an energy phenomenon that describes the return of the
spins to the energy equilibrium (the favored parallel alignment state). The energy
difference between the favored parallel alignment state and the anti-parallel state,
~ωL = γ~B0, is dissipated as heat to the ensemble. This return to thermal equilibrium
leads to an increase of the longitudinal magnetization Mz with time t as follows:

Mz = M0[1− e−t/T1 ], (2.11)

where M0 is the net magnetization at equilibrium in the z-direction. The spin-lattice
relaxation follows an exponential course of growth characterized by the time constant
T1 (longitudinal relaxation time), which is a measure for the restoration of the longi-
tudinal magnetizationMz . After time T1, the longitudinal magnetizationMz is recov-
ered to approximately 63% of its final value. After 5 T1 times, Mz = M0[1 − e−5],
the recovery of Mz is complete, see Fig. 2.10(a).

The spin-spin relaxation phenomenon leads to dephasing of the spins (loss of the
phase coherence), which causes the disappearance of the transverse magnetization
Mxy . This phenomenon is caused by the small differences in local magnetic fields
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Figure 2.10: (a) The spin-lattice relaxation process. After t =T1 the longitudinal magnetization
Mz has reached 63% of its equilibrium value. (b) The spin-spin relaxation process. After t =T2

the transverse magnetization Mxy has decreased to 37% of its value at t = 0.

that are experienced by the spins. These small differences are caused by the chemical
environment of the spins, which depends on material composition. Dephasing, how-
ever, does not influence the state of the individual magnetic moments which determine
the longitudinal magnetization. The decrease of the transverse component of the net
magnetization during spin-spin relaxation can be described with the equation:

Mxy = M0e
−t/T2 , (2.12)

where M0 is the initial transverse magnetization at t = 0, when the RF pulse has been
turned off. The spin-spin relaxation follows an exponential decay curve characterized
by the time constant T2 (transverse relaxation time), which is a measure of the nuclear
spin dephasing. After time T2, the phase coherence of the spins has dropped to ap-
proximately 37%. After 5 T2 time, phase coherence has just about disappeared and
Mxy = 0, see Fig. 2.10(b).

The T1 and T2 relaxation constants considerably depend on the tissue type. Addition-
ally, T1 time depends on the strength of the external magnetic field: the higher the
field, the higher T1, see Table 2.3. For all tissues T2 time is shorter than T1 time.
This results in transverse magnetization Mxy to decay faster than the time required by
longitudinal magnetization Mz to recover, see Fig. 2.11.

Dephasing of the spins in non-homogeneous media (e.g. the human body) can be
additionally affected by magnetic field inhomogeneities of the static magnetic field.
These inhomogeneities can be related to the field itself (e.g. the magnet does not
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Figure 2.11: (a) The transverse magnetizationMxy decays more rapidly than the time required
by longitudinal magnetization Mz to recover. (b) Example of the “falling box”. If the box is
thrown from an airplane, two simultaneous “forces” are included: the Earth’s gravity and the
kinematic energy in the direction of flight. The actual movement of the box is the superposition
of two motions performed independent of each other. While the box is traveling toward the
earth, coming closer and closer, it barely continues in the direction of flight.

Table 2.3: T1 and T2 relaxation times for various tissues. From [Bushberg and Seibert, 1994].

Period of life T1 (0.5T)(ms) T1 (1.5T)(ms) T2(ms)
CSF 1800 2400 1400
White Matter 500 780 90
Gray Matter 650 900 100
Muscle 550 870 45
Liver 350 500 40
Fat 210 260 80

provide a homogeneous field), or by different magnetic susceptibilities of the materials
present in the field. This is called the T∗2 effect, where T∗2 < T2, see Fig. 2.12(b).

During relaxation, the longitudinal magnetization Mz is becoming greater than the
transverse magnetization Mxy , resulting in the net magnetization M to spiral up
around the z-axis. The nuclei precess about the z-axis at the Larmor frequency. The
energy emitted during relaxation is an RF signal at the Larmor frequency. This sig-
nal is called the free induction decay (FID) response signal and MR is based on the
recording of this signal in the x, y-plane, see Fig. 2.12(a),(b). The FID response signal
is measured by a conductive field coil (receiver coil) placed around the object being
imaged.

Note that only the transverse magnetization Mxy produces signal and a receiver can
be set to detect this magnetization. Also, note that the B1 field is much smaller than
the static field B0. The effects of the B1 field are cumulative, so that a B1 field of
few gauss can cause realignment of the net magnetic vector even thought the static B0

field is measured in thousands of gauss.
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Figure 2.12: (a) The spiral behavior of the magnetic moment M due to the influence of the
RF pulse is illustrated on the transverse plane with the transverse magnetization Mxy . (b)
The diagram is showing the process of transverse relaxation after a 90o RF pulse is applied at
equilibrium. The resultant decaying signal shown in red color is known as the free induction
decay (FID) - actual decay due to T∗

2 relaxation including the effects of field inhomogeneities.
This signal represents the loss of phase coherence and reduction of Mxy = 0.

2.2.2.3 MR imaging principles

The MR signal described above is obtained from the complete volume in the static
field, and does not contain any position-dependent information. However, the basis of
MR imaging is the spatial allocation of individual MR signals that reflect the respec-
tive anatomical structure. Thus, to produce 2D or 3D MR images, the MR signal must
be encoded for each spatial dimension. The common method is to spatially vary the
magnetic field at each location in an image or volume that we want to obtain, which
will then influences the nuclear spins to rotate with uniquely different precessional
frequencies at different locations.

The spatial differentiation of the magnetic field can be achieved by superimposing a
series of linear magnetic field gradients in the three orthogonal directions x, y and z
onto the existing z component of the main field. This produces a linear variation in
precessional frequencies along applied direction and provides information about the
spatial location of the nuclei in the body. This can be described with the modified
Larmor equation:

ωL(r) = γ(B0 + G · r) (2.13)

where r = (x, y, z) is the position vector, ωL(r) is the Larmor frequency of nucleus
at location r, G = (Gx, Gy, Gz) is a linear magnetic field gradient with the three
components in the orthogonal directions x, y and z, and G · r = (Gxx+Gyy+Gzz)
is the inner product between the two vectors. This equation is fundamental to MR
imaging process because it indicates that the frequency of precession is a function
of the static field and the gradient field at each location r. This indicates that the
precession frequency for each nucleus is uniquely defined by its position.

The advantage of the magnetic field gradients is to allow us to position slice planes
at random in MR imaging. To illustrate the principle of a transverse slice selection,



32 Brain data analysis

Receiver coil Y

Z

X

(B0)

Gradient coils

Z

X

Y

Z coil X coil Y coil
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Figure 2.14: The principle of slice (2D imaging) or slab (for 3D imaging) selection. Only the
spins in a slice with thickness 4z are excited by applying an RF pulse with a bandwidth 4w
in the presence of the slice selection gradient Gz in the z-direction.
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where a slice is oriented perpendicular to the z-axis, consider that only a linear gradi-
ent Gz is switched on and G = (0, 0, Gz). Then, the Larmor frequency of the spins
in the imaging volume depends on the z-position:

ωL(z) = γ(B0 +Gzz). (2.14)

At the moment when an RF pulse with a finite bandwidth is transmitted, only the spins
in a slice perpendicular to the z-direction will be excited. The location of the center of
the slice depends on the gradient. This is illustrated in Fig. 2.14. The slice thickness
4z depends on the steepness of the gradient and the bandwidth of the RF pulse:

4z =
4w
γGz

, (2.15)

where 4w is the bandwidth of the RF pulse. In 2D imaging, a narrow-bandwidth
pulse is used to excite only a limited slice. In 3D imaging, a broad-bandwidth pulse
is used to excite a larger volume and the excited volume is called a slab rather than a
slice.

Slice or volume selection is not sufficient for imaging because it only allows position
encoding in a single direction. The question is how do we get an image from the slice?
It is important to understand that the image is computed from the raw data generated
form the MR signal, where the MR signal is produced with the transverse magnetiza-
tion Mxy , see 2.2.2.2. To encode position within the slice, additional magnetic field
gradients Gx and Gy are used. Then, MR image information such as voxel intensity
is obtained in the spatial frequency domain, which is often referred to as k-space. The
k-space concept is independently introduced by Ljunggren and Twieg in 1983 [Ljung-
gren, 1983, Twieg, 1983]. The MR imaging procedure is explained in more detail as
follows.

First, note that after RF excitation the transverse component of the net magnetization
vector describes a rotation around the z-axis:

Mxy(t) = Mxye
−iωt. (2.16)

When a 3D magnetic field gradient G is applied (where in general the gradient G is
time-dependent), the angular frequency ω can be written as:

ω(r, t) = γ

∫ t

0

G(τ) · r dτ. (2.17)

When the transverse component of the net magnetization is recorded while the gra-
dient is switched on, the signal from all the spins in the imaging volume is recorded.
This can be seen as an integration in the space domain over the entire imaging volume:

s(t) =

∫ ∫ ∫
ρ(x, y, z)e−iγ

∫ t
0
G(τ)·r dτ dx dy dz, (2.18)

where s(t) is the measured signal, ρ(x, y, z) is the position-dependent spin density.
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Figure 2.15: Illustration of an MR image reconstruction from raw data. (a) The first row shows
the 2D k-space raw data matrix. The second row shows the MR image reconstructed via an
inverse 2D Fourier transform. (b) The center of the 2D k-space raw data contains a low spatial
frequency and determines the rough structure and the image contrast in the reconstructed MR
image. (c) The k-space raw data along the margin contain a high spatial frequency and provide
information of the finer structures (such as edges) in the image and determine the resolution.

Relaxation effects T1 and T2 can be included by multiplying the spin density with two
relaxation functions g(t, T1) and h(t, T2):

s(t) =

∫ ∫ ∫
ρ(x, y, z)g(t, T1)h(t, T2)e−iγ

∫ t
0
G(τ)·r dτ dx dy dz. (2.19)

It is well known that the Fourier transform of a 3D function f(x, y, z) is:

F (k) =

∫ ∫ ∫
f(x, y, z)e−2πik·r dx dy dz, (2.20)

where k = (kx, ky, kz) is the spatial frequency vector.

Comparing Eqs. 2.19 and 2.20, we see that measured signal s(t) is equal to the Fourier
transform F (k) of the image to be reconstructed f(x, y, z) if the following conditions
are satisfied:

1. The relaxation functions g(t, T1) and h(t, T2) in Eq. (2.19) are time indepen-
dent. This is assumed to be true in practice, which implies that the relaxation
times T1 and T2 do not change over the imaging volume during the short readout
time (during the period the receiver coil measures the signal).
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2. The spatial frequency vector k is defined as:

k(t) =
γ

2π

∫ t

0

G(τ)d(τ). (2.21)

This is known as the k-theorem [Mansfield, 1977].

From Eq. (2.21), it is clear that a longer measurement time or stronger gradient
strength leads to a larger k-space. This produces images with a better spatial reso-
lution. The sampling in k-space is determined by the time evolution of the magnetic
gradient G. By manipulating the gradients, any point in k-space can be sampled,
see 2.2.2.4. Once all of k-space has been assembled, the inverse Fourier transform is
performed to obtain the image. MR images represent a weighted proton density that
depends on the relaxation time constants T1 and T2 and the moment of the measure-
ment. An example of the reconstruction of an MRI image from raw data (k-space) is
shown in Fig. 2.15.

2.2.2.4 Basic MRI pulse sequences

To sum up, the signal acquired during MRI depends on:

1. The magnetic fields generated by the MRI system:

• the static field B0 (which aligns the spins),

• the RF field B1 (used for excitation of the protons - flip angle),

• the gradient fields G (used for position-encoding).

2. The properties of the protons in the volume:

• proton density,

• relaxation properties (T1 and T2 time constants),

• the local field inhomogeneities (T∗2 effects).

The static field can not be manipulated, but the RF field and the gradient fields can be
changed in time. Acquisition of MR images with different kinds of contrast can be
obtained by using different sequences of RF and gradient fields. These sequences are
called MRI pulse sequences. This is a big advantage of MRI over e.g. CT where only
contrast based on the electron density of tissue can be obtained.

Since the free inductive decay (FID) signal (transmitted by the spins returning to the
equilibrium) quickly vanishes, it does not allow the gradient switching that is needed
to encode the k-space trajectory. Therefore, MRI sequences use methods for rephasing
the spins after the gradients have been applied. The coherent RF signal that is emitted
after rephasing is called an echo. There are different ways to generate an echo and two
basic schemes used in MRI are the spin echo (SE) pulse sequence and the gradient
echo (GE) pulse sequence.
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The Spin Echo pulse sequence

The spin echo (SE) sequence consists of the 90o RF excitation pulse, followed by a
180o RF pulse for rephasing the spins. The effect of the 180o pulse can be explained
on a single spin in the rotating reference frame. After excitation with a 90o pulse, the
spin is oriented along the x-axis. Suppose that the rotational frequency of the spin is
slightly higher than the expected Larmor frequency and the spin is dephasing in the
clockwise direction. In the rotating reference frame, the spin will move away from
the x-axis. By applying a 180o pulse, the spin is rotated 180o about the y-axis. If
it continues to rotate in the clockwise direction, it is now moving towards the x-axis
rather than away from it. The time it takes for the spin to align with the x-axis, and be
in coherence, is exactly the time between the 90o and the 180o pulses. This is half of
the echo time TE. The spin echo sequence is repeated with repetition time TR as often
as the k-space is filled with echoes. The number of raw data lines corresponds to the
number of repetitions of the sequence.

A diagram of a 2D SE pulse sequence and the trajectory that is sampled in k-space is
shown in Fig. 2.16. A slice selection gradient Gz is applied together with the 90o RF
excitation pulse and later with the 180o RF pulse to flip the spins and make them rotate
back towards coherence. A phase-encoding gradient Gy is applied along the y-axis.
Then, the spin-echo signal is acquired in echo time TE, while a frequency-encoding
gradient Gx along the x-axis is switched on. Thus, the frequency-encoding gradient
is also known as the readout gradient. The amplitude of the phase-encoding gradient
Gy determines the ky coordinate of the line that will be sampled in k-space, while
the frequency-encoding gradient Gx scans a line in k-space in the kx direction. The
next line in k-space is acquired in the same manner after the repetition time TR. For a
matrix of size 256×256, gradient switching of the spin echo sequence is repeated 256
times with repetition time TR and with the phase-encoding gradient Gy increasing
step-by-step. The gradient step amplitudes are frequently represented in the pulse
diagrams by a multitude of horizontal lines in the bar - positive or negative.

The Gradient Echo sequence

The acquisition time of the SE sequences can be relatively long. This is the case in
T2-W MR images, as the acquisition of the next line in k-space can only be acquired
when T1 relaxation of all spins is finished. Because the SE sequence uses a 90o RF
excitation pulse, T1 relaxation can take a long time. This can be avoided by using
a gradient echo (GE) sequence, which uses gradients with opposite signs to dephase
and rephase the spins, see Fig. 2.17. In this case there is no 180o pulse to flip spin
angles for RF excitation. Therefore, a shorter TR can be achieved, leading to shorter
acquisition times. The flip angle is smaller than 90o, usually between 20o and 60o.

The downside of the GE sequences is that the local field inhomogeneities due to sus-
ceptibility effects are not compensated by the echo. Then, the signal is governed by
T∗2 rather than T2. This leads to T∗2-W images instead of T2-W images. GE sequences
are therefore mainly used for very fast imaging techniques in 2D or 3D.
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Figure 2.16: (a) Schematic illustration of a 2D spin echo pulse sequence; (b) The associated
k-space trajectory in the kx , ky plane for one positive phase-encoding gradient value Gy . By
modifyingGy , a different trajectory in k-space is traversed. The data is acquired while scanning
the green line in k-space.
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Figure 2.17: (a) Schematic illustration of a 2D gradient echo sequence; (b) The associated
k-space trajectory in the kx , ky plane. The data is acquired while scanning the green line in
k-space. Note the opposite polarities of the gradients along the x-axis and the RF pulse which
can have a flip angle smaller than 90o.

The image contrast is determined by manipulating TE and TR. In MRI, three main
contrast types can be discriminated: T1-W, T2-W and proton density (PD) weighted.
To obtain a T1-W image, a short TR is used. To obtain a T2-W image, a long TE is
used. To obtain a PD-weighted image, a long TR is combined with a short TE. For the
brain MRI, these contrasts are explained and illustrated in Section 2.2.3, Fig. 2.19.
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2.2.2.5 The MRI scanner system

The essential components of an MRI system include: (1) a large magnet which gener-
ates a uniform magnetic field B0, (2) smaller electromagnetic coils to generate mag-
netic field gradients Gx, Gy, Gz for imaging, and (3) a radio transmitter and receiver
and its associated transmitting and receiving antennae or coils. In addition to these
fundamental components, a computer is necessary to coordinate signal generation and
acquisition and image formation and display. The schematic diagram of the functional
configuration of an MRI unit is shown in Fig. 2.18.

In MRI the patient is placed inside the scanner which is made up of a moveable bed-
like structure and a large hollow tube. The outer part of the tube contains the main
magnet that generates the very strong magnetic field. The static magnetic field B0 is
commonly generated by a superconducting magnet, using a superconductor current
loop. Usually niobium-titanium (NbTi) or niobium-tin (Nb3Sn) superconductors are
used, cooled with liquid helium. The lines of force for the main magnet are configured
to pass parallel to the chamber axis (and thus follow the length of the patient’s body).
Between the patient and the outer part of the tube is the outer casing of the scanner, the
RF body coil (send and receive), 3 pairs of gradient coils (for the x, y and z direction),
and the temperature shields. Two different RF coils are used for transmission and
reception of signals. This is because the signal reception quality is strongly dependent
on the distance between the spins and the coil. Therefore, one large integrated RF coil
is present for excitation of the spins and one smaller RF coil is used very close to the
body for better signal quality. Specific RF coils exist for different body parts such as
the brain, chest, knee, spine, etc. Some of these coils can also transmit RF waves. The
received MR signal is collected and processed by computer to form MR images.

The room in which the scanner is located needs to shield the surroundings from stray
magnetic fields, but also shield the scanner from sources that might affect the field
homogeneity. Stray magnetic fields outside the scanner room can unintentionally af-
fect magnetic materials, like machines, credit cards, pacemakers, etc. MRI requires
shielding to block specific radio waves that may distort images created by the MRI and
to keep stray magnetic field strengths within accepted risk levels. All scanner room
walls, ceiling, and flooring must covered with a shield plates, comprising a Faraday
cage. The shield plates are commonly made of metals such as copper, galvanized
steel or aluminium. Further readings on the MRI physics can be found in [Blink,
2004, Beutel et al., 2000].

In summary, MRI works as follows. The tissue inside a magnet becomes temporarily
magnetized when the hydrogen nuclei in the body align with the static magnetic field
B0. Then, the tissue responds to exposure to RF waves (the RF field B1) at a par-
ticular frequency by sending back an RF wave signal. This phenomenon only occurs
at the Larmor frequency ωL corresponding to the specific strength of the magnetic
field. The detected signal is composed of multiple frequencies, reflecting different
positions along the magnetic field gradient. When the signal is broken into its compo-
nent frequencies, the magnitude of the signal at each frequency is proportional to the
hydrogen density at that location, thus allowing an MR image to be constructed.
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Figure 2.18: The schematic diagram of an MRI scanner system - scanner cutaway.
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2.2.3 MRI of the brain

One of the greatest advantages of MRI over other brain imaging techniques is its ex-
cellent soft tissue contrast. Standard anatomical brain MRI acquisitions are typically
designed to optimize discrimination between three tissue types: gray matter (GM),
white matter (WM), and cerebrospinal fluid (CSF), see Fig. 2.19(a). Tissue contrast
is produced and optimized by altering several different intrinsic and extrinsic param-
eters. Intrinsic parameters are related to the chemistry of the tissue and include the
relaxation constants T1 and T2. Extrinsic parameters include the flip angle, the rep-
etition time (TR) and the echo time (TE). By manipulating with these parameters,
standard MRI modalities such as T1-W and T2-W, can be obtained.

The two extreme cases in terms of contrast difference in MR are fat and water (CSF).
For example, when imaging with a long TE parameter, inherent differences in T2

times of tissues will become apparent. Tissues with a long T2 (water) will take longer
to decay and their signal will be stronger (or appear brighter in the image) than the
signal from tissue with a short T2 (fat). In a similar manner TR governs T1 contrast.
Tissue with a long TR (water) will take a long time to recover back to the equilibrium
magnetisation value, so therefore a short TR interval will make this tissue appear dark
compared to tissue with a short T1 (fat). Therefore, in T1-W images the CSF around
the cortical areas and within the ventricles is dark and in T2-W images bright, Fig.
2.19(a),(b). When TE and TR are chosen to minimise both these weightings, the
signal contrast is only derived from the number or density of spins in a given tissue.
This type of image is called Proton Density (PD), Fig. 2.19(c). Signal intensities of
the adult brain tissues and TR and TE times at T1-W, T2-W and PD are summarized
in Table 2.4.

Additional modalities used in the methods presented in this theses are Fluid Atten-
uation Inversion Recovery (FLAIR) and Diffusion Weighted Images (DWI). These
modalities are very useful for studying of brain injuries. The important property of
FLAIR is that the CSF is not enhanced as in the T2-W images and the injuries ad-
jacent to the CSF are seen much more earlier, see Fig. 1.2(c). The main property of
DWI is that they give local directional information on the diffusivity of water inside
the brain tissue. Using these images we can understand how much a water molecule
can migrate along each direction in a given location and using that we can detect brain
tissue malformations.

Anatomical MRI modalities are formed from 3-D volume elements called voxels.
Each voxel is assigned a single value based on the average magnetic resonance char-
acteristics present in the tissue corresponding to that voxel. The size of the voxel
determines the spatial resolution, or the fineness of detail that can be distinguished
in an image. Voxel sizes vary depending on imaging parameters, magnet strength,
the time allowed for acquisition, and other factors, but often in standard MRI studies
voxel sizes are on the order of 1-2 mm. Greater spatial resolution can be obtained with
a longer scanning time, but this must be weighed against patient discomfort. In adult
brain MRI studies image acquisition time is around 20 min, while in pediatric MRI
studies image-acquisition time is limited to between 5 and 15 min.
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Figure 2.19: Illustration of standard anatomical MRI modalities of the human adult brain in
an axial plane: (a) T1-weighted (T1-W) image, (b) T2-weighted (T2-W) image and (c) Proton
Density (PD) image. The combination of RF pulse timing constants (TE and TR), specific for
each modality, are given below images.

Table 2.4: Signal intensity of various brain tissues at T1-W, T2-W and PD in adults.

Tissue T1-W T2-W PD
Fat Bright Bright (less than T1-W) Bright
Water Dark White Light gray
Gray matter (GM) Gray Gray Gray
White matter (WM) White Dark (darker than PD) Dark
TR values < 500 ms > 1500 ms > 1500 ms
TE values 50-100 ms > 80 ms < 50 ms
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2.2.3.1 Challenges in brain MRI analysis - imaging artifacts

Different kinds of artifacts affect the analysis of brain MRI and diagnostic quality.
Often MR images are deteriorated by noise due to various sources of interference and
other phenomena that affect the measurement processes in imaging and data acqui-
sition systems. The small differences that may exist between normal and abnormal
tissues are confounded by noise and artifacts, often making direct analysis of the ac-
quired images difficult. Typically, all MRI brain artifacts can be classified in three
groups: (1) patient-related, (2) signal processing-related and (3) hardware (machine)-
related [Erasmus et al., 2004].

Among patient-related artifacts are those resulting from either voluntary or involun-
tary motions during MRI acquisition. Patient motion can cause either ghost images
or image noise. Periodic movements such blood vessel or CSF pulsation cause ghost
images (Fig. 2.20(a)), while non-periodic movement causes image noise. Ghost im-
age intensity increases with amplitude of movement and the signal intensity from the
moving tissue. Several methods can be used to reduce motion artifacts, where the most
common ones are patient immobilisation and signal suppression of the tissue causing
the artifact.

Several signal processing-related artifacts occur frequently in MRI: the Gibbs phe-
nomenon (ringing artifacts), the partial volume effect (PVE) and the aliasing (wrap-
around). The Gibbs phenomenon or ringing artifact is caused by the under-sampling
of high spatial frequencies at sharp boundaries in the image. The artifact is seen at
bright edges or at near sharp boundaries, where high contrast transitions in the tis-
sue occur (like at the skull-brain interface, see Fig. 2.20(b)). The Gibbs artifact is
characterized by a series of regularly spaced parallel lines alternating between bright
and dark, which slowly fade with distance. The easiest way to reduce this effect is
increasing the matrix size at the cost of additional acquisition time.

The partial volume effect manifests itself in the mixing of tissue intensities when more
than one tissue is present at the voxel. If an interface between two different tissues
occurs within a voxel, the resulting voxel intensity will be proportional to the weighted
average of the signals deriving from these tissues, see Fig. 2.20(c). By using a smaller
pixel size and/or a smaller slice thickness, this artifact can be reduced.

The aliasing or wrap-around artifact occurs whenever the object being imaged extends
beyond the field of view but is still within the sensitive volume of the coil. As a result,
the areas extending beyond the field of view boundaries are aliased (wrapped) back
into the image on the opposite side to appear at artifactual locations, see Fig. 2.20(d).
This phenomenon is usually caused by undersampling of the frequencies contained
within the return signal (sampling at a frequency below the Nyquist limit).

Perhaps the most challenging artifact is the intensity inhomogeneity, also called the
bias field, which is the most significant hardware-related artifact. The bias field is
a smooth low-frequency multiplicative artifact caused by the inhomogeneity of the
magnetic field during the scanning process, altering intensities across the image. The
degree of inhomogeneity of the magnetic field during scanning strongly depends on
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(a) (b)

(c) (d)

Figure 2.20: MR imaging artifacts: (a) the ghosting effect (caused by the movement of the
patient in the scanner), (b) the Gibbs phenomenon (ringing), (c) the partial volume effect (PVE)
and (d) the aliasing (wrap-around).
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Figure 1.5: T1-weighted MRI scanned at different magnetic field strengths: (a) 0.5T with
virtually no bias; (b) 1T with slightly visible bias; (c) 3T with strong bias. First row: original
image; second row: corrected image; third row: bias field; fourth row: histogram of the original
image; fifth row: histogram of the corrected image.

Figure 2.21: T1-W MRI scanned at different magnetic field strengths: (a) 0.5T with virtually
no bias; (b) 1T with slightly visible bias; (c) 3T with strong bias. First row: original image;
second row: corrected image; third row: bias field. From [Murgasova, 2008].

strength of the magnet used, Fig. 2.21. Data scanned at 0.5 T exhibit virtually no
bias field and this artifact can be simply neglected. These days MRI is usually ac-
quired on scanners with a magnetic field strength between 1 and 3 T producing an
inhomogeneity strong enough to cause problems for the automated MRI analysis.

2.2.3.2 Neonatal brain imaging

MR imaging is an excellent technique for imaging neonates because of the absence
of ionizing radiation and the superior contrast of soft tissues and resolution compared
with sonography. However, there are certain differences between adult and neona-
tal imaging and thus, imaging neonatal brains presents set of technical and practical
challenges that must be addressed to obtain optimal images [Plaisier et al., 2012].
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The most obvious technical difficulty is in obtaining motion-artifact-free images, due
to movement of a baby during a long MRI acquisition. This problem will decrease
the image quality and often necessitate a repeat MRI to establish a diagnosis. The two
main practical difficulties are due to anatomical and developmental issues. Neonates
are much smaller than adults. An average term neonate weighs 3.5 kg, with brain
25% of the adult size [Kliegman et al., 2008]. With development and maturation, in
addition to growth, there are changes in the appearance of many structures, such as
the brain, bones (skull) and cartilage. For instance, the brain sulcation of the cortex
and myelination of the white matter tracts develop rapidly in the neonatal period.

All these developmental changes influence the appearance of the available MR signal
of the neonatal brain and create the limits of the scan resolution. The immature brain
has higher water content than the adult brain and this is associated with a marked
increase in T1 and T2 values. Appropriate changes in the pulse sequences are required
to produce good quality images. For instance, the high water content, and lack of fatty
myelin, requires an increase in echo time TE on T2-W imaging to around 150-160 ms
to improve contrast. T1 contrast can be flat requiring an increase in repetition time TR
to around 1200 ms at 1.5 Tesla (compare this with adult brain MRI in Table 2.4).

The appearance of neonatal and mature adult brains in MRI differs significantly. For
instance, if we look at T1-W MRI of the neonatal brain (see Fig. 2.22 top row) we
can notice that the most prominent differences between the neonatal and adult brain
(see Fig. 2.22 bottom row) is the reversed contrast of white matter (WM) and gray
matter (GM). This is caused by the presence of unmyelinated WM and higher water
content of the brain structures in neonates. Also, MRI of the neonatal brain has lower
contrast-to-noise ratio and lower resolution in comparison to the adult brain. As the
brain matures, the darker intensities of WM present in the MRI of the neonatal brain
gradually increase, eventually exhibiting a bright intensity pattern on T1-W MRI. This
is caused by a decrease in both T1 and T2 times as the water content decreases and
myelin sheath forms around the WM tracts.

By the age of one year, the majority of white matter tracts are well defined (see 2.22,
second row) and the tissue contrast is very similar to the contrast in the adult brain.
The cortical folding has increased, resulting in a more complicated shape of WM and
cortical GM than in neonates. The process of myelination is almost complete by the
age of two years. However, the refined configuration of the adult brain is not attained
until early adolescence [Rutherford, 2001]. As a result, WM and GM of very young
children can be very difficult to distinguish in MRI, due to age and location dependent
WM/GM contrast.

Even though tissue contrast is already adult-like, brain structures in young children
have different shapes and sizes [Wilke et al., 2003]. Also, the smaller size of the brains
structures together with the limited resolution of MRI result in an increased number
of voxels containing two or more tissue classes, causing mixing of tissue intensities or
partial volume effect.
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Neonate

Adult

1 year

Figure 2.22: Illustration of sagittal (the first column) and axial slices (the second column) of
the normal T1-W MRI of the human brain. The first row shows the baby’s brain at birth, the
second row is one year old child and the last row is the mature adult brain.
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2.3 Electroencephalography - EEG

Although it was known as early as in the 19th century that living brains have electrical
activity, the German psychiatrist Hans Berger was the first to record this activity in
humans, in the late 1924 [Berger, 1929]. A recording of electrical signals from the
brain is made by attaching the electrodes to the subject’s scalp. These electrodes pick
up electric signals naturally produced by the brain and send them to galvanometers
(instruments that detect and measure small electric currents). The galvanometers are
attached to pens, under which graph paper moves continuously. The pens trace the
signals onto the graph paper. Berger’s invention, commonly known as the EEG or
brainwave test, is used today routinely as a non-invasive diagnostic test in neurology,
psychiatry and in brain research.

Due to recent advances in EEG recording technology and rapid development of
signal analysis methods, EEG has received the status of a true brain-mapping and
brain-imaging method that provides spatio-temporal information regarding brain
(dys)function [Michel and Murray, 2012]. In fact, EEG measures changes in the
brain’s electric potential field at the scalp surface. By properly sampling and correctly
analyzing this electric field, EEG can provide reliable information about the neuronal
activity in the brain and the temporal dynamics of this activity. However, the main
drawback of EEG is its low spatial resolution. This is because of the presence of the
skull layer between the brain and EEG electrodes. The skull disperses the electrical
field making EEG recording relatively ineffective at differentiating specific circuit and
regions in the brain.

Although many clinical EEG studies still use the EEG in its traditional way (analyzing
the graphs at certain electrodes), nowadays, there is an increased interest in combined
multimodal studies. For instance, EEG is increasingly used in the neuroimaging be-
cause of the increasing interest in the temporal dynamics of brain networks and com-
patibility of the EEG with other brain imaging techniques (e.g. MRI, fMRI and PET).
The multimodal EEG-MRI studies (e.g. EEG source analysis) are important aid in the
diagnosis and management of epilepsy (like focal cortical dysplasia) and other seizure
disorders (asphyxia and HIE), as well as in the diagnosis of brain damage related to
trauma and diseases such as strokes, tumors, encephalitis, and drug and alcohol intox-
ication.

2.3.1 Electrical activity of the brain

The main information processing structures in the CNS are neurons, see Fig. 2.1. At
rest state neurons are electrically polarized due to an unequal distribution of Na+, K+

and Cl− ions across the cell membrane. The intracellular environment (inside the cell
membrane) is negatively polarized with the respect to the extracellular environment
(outside the cell membrane). This potential difference across the cell membrane is
called the resting potential and is typically around -70 mV [Schaul, 1998]. If the
potential difference grows (the intracellular environment is more negative), the neuron
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is hyperpolarized, and if the potential difference lowers (the intracellular environment
is more positive, or less negative), the neuron is depolarized.

Neurons have unique capabilities to transmit signals both within the cell (intracellular
signaling) and between cells (intercellular signaling). In the intracellular signaling
the cell body of a neuron communicates with its own terminals by sending electrical
signals (action potentials) along an axon in the process called conduction. In the
intercellular signaling the communication between neurons is achieved by releasing
chemicals at the synaptic terminals in the process called neurotransmission. Electrical
signals in a neuron occur due to the ions movement across the cell membrane (through
the ion channels). When the intracellular environment of the neuron is depolarized
beyond a critical level or threshold, an action potential is generated that proliferates
along the axon until it reaches its axon terminals.

The neurotransmission begins at axon terminals where neuron transmits its electri-
cal signal from presynaptic to postsynaptic regions using neurotransmitters ( brain
chemicals) to communicate with other neurons. The postsynaptic potentials alter the
neuronal membrane potential by several millivolts, which lasts around 10 ms. Since
every neuron has many synapses connecting to different neurons, the actual poten-
tial over a cell membrane is given by the spatial and/or temporal summation of the
postsynaptic potentials. Both depolarisation (an excitatory postsynaptic potential) or
hyperpolarisation (an inhibitory postsynaptic potential) is possible. If the potential is
excitatory, it is more likely that an action potential will be triggered. When the poten-
tial is inhibitory, the generation of action potentials will be suppressed. This complex
network of electro-chemical signals controls normal brain function.

2.3.2 EEG recording

The electro-chemical signals travel through the brain and skull, and can be recorded
with EEG electrodes attached to the scalp surface. Below each electrode are many
thousands of neurons. Slight changes of voltage in the axons of these neurons
are called graded potentials, which can only be detected when many neurons syn-
chronously depolarize or hyperpolarize. This occurs mainly in the brain cortex where
vertically oriented large pyramidal cells are aligned and amplify each other’s extra-
cellular field, Fig. 2.23(a),(b). The currents generated by these neurons sum up in the
extracellular space and are attenuated through different head layers such as the CSF,
skull and scalp. After attenuation, the sum of electrical brain potentials is still large
enough to be detected by EEG electrodes, see Fig. 2.23(c). For instance, when cortical
neurons are simultaneously active, the sum of these potentials on the human scalp will
be between 10 to 150 µV.

The process of current flow through different head tissues between the electrical
sources (generators) and the recording electrode is referred to volume conduction,
while the process of retrieving these electrical sources which generate the EEG is
called EEG source analysis (or EEG source imaging).

In a typical set-up, EEG electrodes are placed at well-defined positions on the scalp
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Figure 2.23: (a) An illustration of the cortical slice with the pyramidal neurons which are or-
thogonal to the surface. From [Hallez, 2008]. (b) A schematic picture of the alignment of the
pyramidal neurons in the cortex. (c) The difference of electrical brain potentials measured by
electrodes placed on the human scalp. From [De Vos, 2009](d) An example of an EEG. Poten-
tial differences are measured between electrodes, indicated by a label. From [Perumpillichira,
2010].
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Figure 2.24: Illustration of the standard 10-20 system electrode placement with a side and a top
view of the head. The standard 10-20 system uses the distances between bony landmarks (the
nasion, inion and preauricular points) of the head to generate a system of lines that run across
the head and intersect at intervals of 10% or 20% of their total length. Electrodes are placed at
the intersections.

surface. The most common positioning of electrodes that provides a uniform cover-
age of the entire scalp is given by the international 10-20 system [Wang and Gotman,
2001]. The standard 10-20 system includes 19 electrodes, where each electrode has
a name referring to the brain lobe or anatomical point where it is located, see Fig.
2.24. Often in practice, particularly in the neonatal intensive care unit (NICU), the
electrodes are attached manually on the scalp using anatomical reference points and
10-20 system measurements. To compromise between the need to obtain high accu-
racy (more electrodes) and practical applicability in a NICU setting (less number of
electrodes), typically 9 or up to 17 scalp electrodes are used for neonatal EEG moni-
toring. In adults, to avoid the manual electrode montage on the head, an electrode cap
consisting of 32, 64, 128 or 256 fixed electrodes is used. However, using the same
caps for neonates is challenging because of differences in head size between adults
and neonates and greater variation in head geometry among neonates. Today, there
are some promising solutions for this problem available in the market, like specially
designed EEG head caps for neonates [Vanhatalo et al., 2008], which might have a
great potential for clinical use in the near future.

Since EEG recording consists of measuring the potential differences between two
electrodes as a function of time, see Fig. 2.23(c) and Fig. 2.23(d), an appropriate ref-
erence for this measurement has to be chosen. The most used EEG references are: one
electrode on the top of the head such as Cz or Fz , average between two ear electrodes,
average of all connected electrodes or bipolar leads between adjacent electrodes. The
average reference requires high density recording (∼128 channels) and is commonly
used for visualizing widespread coherent waveforms that occur with similar phase and
amplitude. The bipolar reference, where the EEG signals are obtained by subtracting
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Figure 2.25: Examples of different brain traces, from bottom to top: (1) beta rhythm (13-30Hz),
(2) alpha rhythm (8-13Hz), (3) theta rhythm (4-8Hz) and (4) delta rhythm (0.5-4Hz). For each
brain wave, the characteristic states of consciousness are are listed in the last column.

neighboring electrode signals, is commonly used for visualizing highly localized brain
activity.

2.3.2.1 EEG’s wave patterns

Every human being has a unique brain wave pattern, and the brain wave characteristics
such as the length, height, and rate, vary in different parts of the brain being studied.
The normal brain wave pattern is associated with the age (the adult EEG is different
from the neonatal EEG) and the state of consciousness, like changes in a person’s state
of arousal (from being deeply asleep to awake and alert). Analyzing EEG recording,
several brain wave patterns can be identified and the EEG signals are typically sub-
divided in 4 frequency f bands (delta, theta, alpha and beta), as illustrated in Fig.
2.25. Each brain wave pattern is associated with different mental and physiological
processes.

Delta waves are in the frequency range from 0.5 Hz up to 4 Hz and are the slow-
est waves with the highest amplitude. Delta waves are dominant during unconscious
states, e.g. during deep sleep, and are normally found in infants and young children. In
neonates, delta waves are the most prominent in posterior regions of the brain, while
in adults, they occur in frontal regions. In clinical diagnosis, delta waves can be de-
tected with deep midline lesions, with diffuse lesions and with subcortical lesions in
frontal region of the brain.
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Theta waves are in the frequency range from 4 Hz to 8 Hz and are typically seen in
young children. They are associated with deep relaxation, meditative and creative
states. Abnormal activity occurs when there is an excess of theta waves. In clinical
diagnosis, it can be seen in similar disorders as mentioned with delta waves.

The first rhythmic EEG activity that Hans Berger detected were alpha waves. Alpha
waves are in the frequency range from 8 Hz to 12 Hz and are associated with relax-
ation, closed eyes and a light sleep. Alpha waves can be seen in the posterior regions
of the brain. In clinical diagnosis, abnormal alpha waves occur in coma.

Beta waves are the high-frequency waves in the range from 12 Hz up to 30 Hz. They
are prevalent during concious and wakeful activity, such as busy thinking and active
concentration, and are most evident frontally. Abnormal rhythmic beta activity is
usually linked with drug effect and in patients who are anxious and alert. In the areas
of cortical damage the beta activity is reduced or completely absent.

2.3.3 Advantages and limitations of EEG

From a practical point of view, EEG is a low-cost, non-invasive and portable tool to
measure in real time brain function. EEG has a high temporal resolution (millisecond
temporal resolution) and is able to detect fast changes in neural activity. The temporal
resolution is determined by the sampling frequency and in clinical applications EEG
is mostly sampled at 256 Hz.

Next to the great advantages of EEG, it is important to understand the limitations of
the technique. The first EEG limitation is its low spatial resolution, which limits the
amount of brain activity that can be extracted. For instance, using only visual evalua-
tion it is feasible to localize brain activity and define brain lobes of interest, but more
precise spatial localization of the brain activity is not possible. To perform the quan-
titative localization of the brain activity, also referred to as inverse problem or EEG
source localization, research have focused on developing mathematical models for
electrical sources and volume conductor. However, the source localization problem
is highly ill-posed and under-determined. Ill-posed means that the inverse problem is
very sensitive to noise and that the solution changes when there is a slight change in
the input data. Under-determined means that a multiple number of sources within the
brain volume can “fit” one EEG recording. This means that it is theoretically impos-
sible to precisely determine the location of the EEG generator using only EEG scalp
recordings. To obtain a unique solution, additional/prior assumptions about the source
must be introduced. Today, several different approaches to solve inverse problem ex-
ist based on different assumptions [Michel et al., 2004, Hallez et al., 2007]. The most
common approach is to assume that a limited number of dipoles generate the mea-
sured potentials on the scalp [Scherg and von Cramon, 1985], and that the electrical
field generated by a group of pyramidal cells can be approximated sufficiently by a
single dipole [de Munck et al., 1988, De Vos, 2009].

The second limitation is that only a portion of underlying brain electrical activity can
be recorded using scalp EEG. For instance, it is more difficult to detect the electrical
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activity from deep sources than near the skull [Gloor, 1985]. The electrical signals that
are generated in the deep brain structures can be greatly modified by time they reach
the recording electrode. This is because the voltage field decreases with the square of
the distance and the electrical signals are attenuated by different brain layers between
the source and the recording electrode (the volume conductor effect). Also, the skull
can act as a “low-pass” spatial filter of the brain’s electrical field [DeLucci et al., 1962],
where the potentials of interest can be averaged out by different brain layers. It can
also happen that the electrical signal can not be recorded due to volume conduction
effect and the orientation of the electrical generator (represented by a dipole) to the
recording electrode [Gloor, 1985]. Dipole orientations that are “aimed” towards the
electrode are better recorded.

Finally, the third and the most challenging problem is to remove EEG artifacts, which
hamper the interpretation of the brain activity. All EEG artifacts can be divided in
two groups: (1) patient-related or physiological artifacts and (2) hardware (machine)-
related artifacts [Fisch, 1999]. Patient-related artifacts are caused by different kinds
of body movements (e.g. muscle activity, respiration, movement of the head, eye balls
or scalp), skin resistance changes (e.g. due to perspiration) and moving electrical po-
tentials within the body (e.g. heart muscle contraction). Hardware (machine)-related
artifacts are caused by electrical malfunctioning of the EEG recording system (e.g.
disconnected electrode, malfunctioning of the cables or amplifiers). Many signal pro-
cessing methods have been developed to remove different EEG artifacts [Jung et al.,
2000], especially eye and muscle artifacts which are the most common artifacts in
EEG recordings [Joyce et al., 2004, De Vos et al., 2010].

2.3.4 Applications of EEG analysis

EEG is extensively used in many clinical and research applications to study normal
and abnormal functioning of the brain. In clinical practice, EEG is typically used to
monitor and diagnose neurological disorders, to evaluate the patients’ status in inten-
sive care units (for both adults and neonates), to measure the brain activity after a
sever head injuries, to identify cause of sleep disorders and to analyze the changes
in behavior. In research applications EEG is used to asses cognitive functions of the
brain and to improve our understanding the brain development and maturation.

The most intensively studied application of EEG analysis is in epilepsy, where EEG is
still the most important method to determine the epileptic syndrome. In epilepsy the
synchronous electrical activity of a focal or large brain area is abnormal and the typical
clinical manifestation is an epileptic seizure. The EEG recording during a seizure is
called ictal EEG and readings display rhythmic activity with a frequency of 5 to 6 Hz.
The signal amplitude during ictal EEG is usually higher than when no seizure occurs.
The EEG measured between seizures is called interictal EEG and typically consists
of a spike (a fast electrical event) with a time duration of 20 to 70 ms, a sharp wave
with a time duration of 70 to 200 ms and a spike-wave-complex, consisting of a spike
followed by a wave. In focal epilepsy spikes are detected in only one hemisphere of
the brain, while in multi-focal epilepsy spikes spread over both hemispheres.
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By visually investigating the ictal or interictal EEG, it is possible to perform a quali-
tative localization of the electrical source. It is also possible to perform a quantitative
localization using EEG source imaging, when a volume conductor model and an elec-
trical source model are introduced. A focal electrical source may be represented by a
current dipole with three parameters: two orientation parameters and one magnitude
parameter. EEG dipole source analysis aims at retrieving the dipole which best fits
the measured EEG. An increasing number of studies demonstrated that EEG source
imaging is a powerful tool to non-invasively localize the epileptic focus [Kaiboriboon
et al., 2012].

A relatively new field is EEG monitoring of neonates with neurologic disorders (e.g.
asphyxia, HIE). It is an important field as seizures occur in 1 up to 3.5 per 1000
births [Volpe, 2008]. Neonatal EEG gives valuable information about brain function
and maturation, helps detecting seizures, and complements other clinical examina-
tions. Since some neonatal seizures are subclinical, without clinical symptoms, it is
extremely important to monitor them with a full EEG. The expertise needed to inter-
pret neonatal EEGs is not available around the clock in the Neonatal Intensive Care
Unit (NICU). Also, EEG monitoring is highly labor intensive as it generates large
amounts of data. Because of these reasons, automated analysis and seizure detection
methods are needed to assist doctors in reviewing the EEG [Deburchgraeve et al.,
2008, Perumpillichira, 2010].

Diagnostic brain-wave patterns of other disorders vary greatly. In the case of severe
brain injury, EEG typically shows overall slowing of the brain activity and excess of
theta waves (4 to 8 cycles per second). However, a trained medical expert should
interpret EEG results in the context of the patient’s medical history and other medical
test results.

Further readings on the EEG (including EEG source localization and neonatal EEG)
can be found in [Perumpillichira, 2010, Restak, 1995, Hallez, 2008, De Vos, 2009].

2.4 Conclusion

Multimodal and non-invasive brain imaging is one of the fastest growing multidisci-
plinary activity. In the last two decades, enormous progress in assessing brain injury in
both adults and neonates has been made using MRI, while EEG has been considered
as the gold standard in the diagnosis of neurological dysfunction. By combining both
EEG and MRI in multimodal imaging of the brain, important aid in the diagnosis and
management of neurological dysfunction of the brain and neonatal seizure phenomena
has been achieved.

In this chapter the important background of the human brain anatomy, MR imaging
of the brain, and MRI and EEG brain data analysis are explained. Firstly, we intro-
duced the reader with the human brain anatomy including the developmental phases
of the brain from fetus till adulthood. Then, we explained the causes and symptoms
of the two brain injuries, birth asphyxia (in neonates) and epilepsy with FCD lesions
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(in adults). These two brain injuries are the main clinical applications of the thesis.
Secondly, we described how the MR images are formed, what they show, how they
differ, how we can analyze them and what are the challenges of the brain MRI anal-
ysis. Since MRI analysis of the neonatal and adult brain is the central subject of the
thesis, we also highlighted and illustrated the differences between neonatal and adult
MRI. Finally, we explain the essence of EEG brain data analysis that is necessary
for understanding multimodal MRI-EEG brain imaging. We explain electrical brain
activity, potentials and limitations of EEG and clinical applications of spatial EEG
analysis.
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3
Brain MRI segmentation

You don’t understand anything unless you understand there are at least 3 ways.
– Marvin Minsky

Image segmentation is an important task in medical image analysis and is often the first
and the most critical step in many clinical applications. In brain MRI analysis, image
segmentation is commonly used for measuring and visualising the brain’s anatomical
structures, for analyzing brain changes, for delineating pathological regions and for
surgical planing and image-guided interventions. In the last few decades, various
segmentation techniques of different accuracy and degree of complexity have been
developed and reported in the literature.

In this chapter we review the most popular methods commonly used for MRI brain
tissue segmentation. We highlight differences between them and discuss their capa-
bilities, advantages and limitation. We first introduce the basic concepts of image
segmentation. Then, we explain different MRI preprocessing steps including image
registration, bias field correction and removal of non-brain tissue. Finally, after re-
viewing different brain MRI segmentation methods, we discuss the validation problem
in brain MRI segmentation.

However, despite intensive research, brain MRI segmentation still remains a challeng-
ing problem with no unique and general solution and there is a continuous need for
developing newer and better segmentation methods. Thus, in Chapter 4, we propose
a modification of the standard graph cuts algorithm for more accurate 3D brain MRI
segmentation.

3.1 Basic concepts

In the following text we will introduce the basic concepts necessary for understanding
brain MRI segmentation. This includes defining 2D and 3D images over a lattice,
describing an image segmentation problem and image features, and introducing MRI
intensity distributions of the brain tissue.
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Figure 3.1: Illustration of lattice nodes in 2D and 3D space. (a) 2D lattice with dimensions
M ×N , where each node is specified with its coordinates (i, j). (b) 3D lattice with dimensions
M ×N ×D, where each node is specified with its coordinates (i, j, k).

3.1.1 2D and 3D images

An image can be defined as a function I(i, j) in 2D space or I(i, j, k) in 3D space,
where i = 0, ...,M − 1, j = 1, ..., N − 1 and k = 0, ..., D − 1 denote spatial coor-
dinates. The values (or amplitudes) of the functions I(i, j) and I(i, j, k) are intensity
values and are typically represented by a logical value 0 or 1 for binary images, a gray
value {0, . . . , 255} for gray scale images, or a color vector for color images. In MRI
of the brain, image elements are represented by gray intensity values, see Fig. 3.3. Ev-
ery image consists of a finite set of image elements called pixels in 2D space or voxels
in 3D space. Each image element is uniquely specified by its intensity value and its
coordinates (i, j) for pixels and (i, j, k) for voxels, where i is the image row number,
j is the image column number and k is the slice number in a volumetric stack.

To describe image data in space a finite rectangular or square point lattice P is used.
A lattice P is defined as a discrete set of m nodes (or sites) P = {1, ...,m}, where
1, ...,m are indices. Each lattice node is a point in the Euclidean space and represent
an image pixel in 2D or an image voxel in 3D. A rectangular lattice for a 2D image of
size M ×N can be denoted as P = {(i, j)|1 ≤ i ≤ M, 1 ≤ j ≤ N}. In general, the
lattice is represented with an orthogonal grid with nodes lying at the intersections of
the grid lines as shown in Fig. 3.1. However, to represent image data, an alternative
representation of the lattice is used where a node is depicted as a square for an image
pixel or a cube for an image voxel. This is illustrated in Fig. 3.2 and Fig. 3.3.

For simplicity of notation, in the following text an image is represented with I and
an image pixel (i, j) is represented by a single index i = 1, ...,m (assuming raster
scanning order) where m = MN . The dimensionality of an image I will be clear
from the context.
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Figure 3.2: Illustration of image elements in 2D and 3D space. (a) In 2D space image ele-
ments (pixels) are represented with a lattice nodes depicted as a square. (b) In 3D space image
elements (voxels) are represented with a lattice nodes depicted as a cube.
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Figure 3.3: Illustration of image elements in the MRI of the brain. An image pixel (i, j) is
represented with the square in the 2D MRI slice and an image voxels (x, y, z) is represented as
the cube in 3D space.
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Original MR image Segmented image
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Figure 3.4: An example of the brain MRI segmentation with an original MR image (on the left)
and segmented image with three labels: WM, GM and CSF (on the right).

3.1.2 Image segmentation

The goal of image segmentation is to divide an image into a set of semantically mean-
ingful, homogeneous and non-overlapping regions of similar attributes such as in-
tensity, depth, color or texture. The segmentation result is either an image of labels
identifying each homogeneous region, or a set of contours which describe the region
boundaries. The labeling problem is to assign a label from the set of labels L to each
of the nodes in P . Since in our work we use pixel/voxel intensities for MR image
segmentation, we consider a discrete set of labels L = {1, ..., L} and the nodes with
similar intensities are assigned the same unique label.

Image segmentation can be performed on 2D images, sequences of 2D images or 3D
volumetric imagery. Most of the image segmentation research has focused on 2D
images. If the data is defined in 3D space, such as obtained from a series of MRI
images, then typically, each image “slice” is segmented individually. However, since
important anatomical information relevant for segmentation of volumetric imagery
also exists in 3D space, the development of integrated 3D segmentation algorithms is
desired.

Fundamental components of structural brain MRI analysis include the classification
of MRI data into specific tissue types and the identification and description of specific
anatomical structures. Classification means to assign to each element in the image a
tissue class, where the classes are defined in advance. The problems of segmentation
and classification are interlinked because segmentation implies a classification, while
a classifier implicitly segments an image. In the case of brain MRI, image elements
are typically classified into three main tissue types: white matter (WM), gray matter
(GM) and cerebrospinal fluid (CSF), see Fig. 3.4. The segmentation results are further
used in different applications such as for analyzing anatomical structures, for studying
pathological regions, for surgical planing and for visualization, see Fig. 3.5.
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(a) (b)

Figure 3.5: Segmentation results. (a) Segmentation of pathological regions and (b) 3D visual-
ization of the cortex anatomy (from [BrainVisa, 2012]).

3.1.3 Image Features

Image features represent distinctive characteristics (signatures) of an object or an im-
age structure to be segmented. Features rely on numerical measurements, including
quantitative visual appearance and shape descriptors, that can help to discriminate
between the structures of interest and their background. The outcome of image seg-
mentation highly depends on appropriate feature selection (choosing the most relevant
features) and accurate feature extraction.

The visual appearance of an object of interest is typically associated with its pixel or
voxel intensities (gray values in brain MRI) and spatial interaction between intensi-
ties (intensity co-occurrence) in an image. Image segmentation based on individual
pixel/voxel intensities is feasible only when intensities of an object of interest and its
background differ to a large extent. Then, the complete object or the majority of its
pixels/voxels can be separated from the background by simply comparing the inten-
sity values to the threshold (the intensity value that clearly separates the object form
the background). The threshold is derived from the overall intensity distribution of the
image.

In general, individual intensities are not sufficient for accurate image segmentation
and more powerful discriminative features have to be used. This includes spatial in-
teraction between intensities. For instance, the appearance of tumour lesion in brain
MRI can be associated with spatial patterns of local pixel/voxel intensity variations
or empirical probability distributions of intensity co-occurrences. In the spatial inter-
action models each intensity depends on a subset of the neighboring intensities, see
Fig. 3.6. The most popular models that can capture local spatial interactions between
pixels/voxels intensities are Markov Random Field (MRF) models [Li, 1995], which
will be explained in Section 3.4.3 and will be used in the graph cuts segmentation
algorithm described in Chapter 4.
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2D spatial 
intensity model

3D spatial 
intensity model

Figure 3.6: Illustration of 2D (on the left) and 3D (on the right) spatial interactions between
neighboring pixel/voxel intensities.

In the presence of noise and under poor image resolution, appearance features (pix-
el/voxel intensities and their spatial interaction) may fail to identify an object of in-
terest in an image. In this case, the segmentation performance can be improved by
incorporating shape features such as probabilistic prior shape models, which have
been extensively used in medical image segmentation [Yan et al., 2010, Ecabert et al.,
2008, Yang and Duncan, 2004, Tao et al., 2002, Duta and Sonka, 1998]. The prob-
abilistic prior shape models specify an average shape and variation of an object of
interest and are typically estimated from a population of co-aligned images of the
object (training data sets) [Davies et al., 2008].

One of the most popular features for image segmentation are edges. Edges refer to
boundaries of an object surface where the intensities change sharply [Gonzalez and
Woods, 2008]. Such changes are typically detected by thresholding the first- and
second-order spatial derivatives of the intensities (the intensity gradient and Lapla-
cian). However, edges detected in this way are sensitive to image noise [Rogowska,
2000] and often require image smoothing as a preprocessing step [Canny, 1986, Marr
and Hildreth, 1980].

Another more robust method for edge detected is the phase congruency method
[Kovesi, 1999, Kovesi, 2002], which is a frequency-based method for feature detec-
tion. This feature detection method, using local phase and energy, is based on a plausi-
ble model of how mammalians detect edges suggested by Morrone and Owens [Mor-
rone and Owens, 1987] and successfully explains the psychophysical effect of human
feature perception. Instead of searching the pixels/voxels in the image with sharp in-
tensity changes, features such as step edges, lines and corners are detected at points
where the Fourier components of the image are maximally in phase (local maximal
congruency in the phase values). In our work we use the phase congruency feature
detection method to improve image segmentation in Chapter 5.
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3.1.4 Intensity distribution in brain MRI

The intensity of brain tissue is one of the most important features for brain MRI seg-
mentation. However, when intensity values are corrupted with MRI artifacts such as
image noise, partial volume effect (PVE) and bias field effect (see Section 2.2.3.1),
intensity-based segmentation algorithms will lead to wrong results. Thus, to obtain
relevant and accurate segmentation results, very often several preprocessing steps are
necessary to prepare MRI data. For instance, it is necessary to remove background
voxels, extract brain tissue, perform image registration for multimodal segmentation
and remove the bias field effect, see Fig. 3.7.

In the case when the bias field, non-brain structures (e.g. the skull and the scalp) and
background voxels are removed, the histogram of the adult brain MRI has three main
peaks corresponding to the three main tissue classes, see Fig. 3.9(a). In the healthy
adult brain, the intensity variation within tissue is small and the intensities inside the
brain can be considered to be a piecewise constant intensity function, corrupted with
noise and PVE. The PVE describes the loss of small tissue regions due to the limited
resolution of the imaging system. It means that one pixel/voxel lie in the interface
between two (or more) classes and is a mix of different tissues. This happens because
the resolution of the MRI scanner is finite.

To understand intensity distribution in brain MRI, it is important to remember that
MRI acquisition is based on acquiring complex k-space data and an MR image is then
calculated as the magnitude of the Fourier transform of the k-space data, see Section
2.2.2.3. It has been shown that the noise in the magnitude images is governed by a
Rician distribution, based on the assumption that the noise on the real and imaginary
channels is Gaussian [Gudbjartsson and Patz, 1995]. The probability density function
for a Rician distribution is defined as:

fRice(x) =
x

σ2
exp

(
−
(
x2 + ν2

)
2σ2

)
I0

(xν
σ2

)
, (3.1)

where x is the measured pixel/voxel intensity, ν is the image pixel/voxel intensity in
the absence of noise, σ is the standard deviation of the Gaussian noise in the real
and the imaginary images and I0 is the zero-order modified Bessel function of the
first kind. The Rician probability density function (PDF) is plotted in Fig. 3.8(a) for
several values of the signal-to-noise ratio (SNR), where the SNR is defined as ν/σ
(the power ratio between the signal and the background noise).

A special case of the Rician distribution is in image regions where only noise is present
and SNR= ν/σ = 0 (e.g. in the dark background areas of an MRI where no NMR
signal is present). This special case of the Rician distribution where ν = 0 and I0 = 1
is also known as the Rayleigh distribution:

fRayleigh(x) =
x

σ2
exp− x2

2σ2
. (3.2)

In the image regions where the NMR signal is present and SNR≥ 3, the noise dis-
tribution approximates a Gaussian distribution, see Fig. 3.8. Thus, the problem of
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T1-W Brain tissue
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Figure 3.7: Preprocessing steps: (a) the original T1-W MR image of the adult brain; (b) the
brain tissue image after removing non-brain structures; (c) the bias field ; (d) the brain tissue
image after bias field correction.
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Figure 3.8: (a) The PDF for the Rician distribution. (b) The PDF for the Gaussian distribution.
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Figure 3.9: (a) Histogram of a bias-corrected T1-W MRI of an adult brain. Histograms of the
tissue classes are based on manual segmentation and distributions slightly differ from Gaussian
due to partial volume effect. (b) Histogram of a 1.5 T T1-W MRI of a neonatal brain. The
difference between the neonatal and the adult brain histogram is the existence of the myeli-
nated and non-myelinated WM in neonates, which are separated with GM intensities. Since
non-myelinated WM is more dominant than myelinated WM, T1-W MRI shows an inverted
WM/GM intensities in neonates in comparison to adults.

Rician noise in the brain MRI is often simplified in practice by assuming the Gaussian
distribution for the noise:

fGauss(x) =
1

σ
√

2π
exp

(
− (x− µ)

2

2σ2

)
, (3.3)

where x, σ and µ are the intensity, the standard deviation and the mean value respec-
tively. Due to this approximation, the histogram of a bias-corrected brain MRI in the
presence of noise can be described with a Gaussian mixture model (GMM), where
each tissue class (WM, GM and CSF) is modeled by a Gaussian distribution. How-
ever, in the presence of partial volume effects the tissue intensity distributions slightly
diverge from a Gaussian distribution, as can be seen from the histogram in Fig. 3.9(a)
where histograms of the tissue classes are based on manual segmentation.

The MRI intensity distribution of the neonatal brain is more complex because the in-
tensity variability within-tissue cannot be neglected due to the process of myelination.
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Figure 3.10: (a) Joint 2D intensity histogram of T1-W and T2-W MRI of the adult brain.
The associated 1D histograms of each MRI modality are plotted on the left and top. Both
individual histograms consists of three overlapped Gaussian distributions that approximate the
expected tissue distribution of GM, WM and CSF. (b) The scatter plot of the tissue intensities
after applying tissue segmentation. The horizontal axis represents T1-W intensities and the
vertical axis represents T2-W intensities. The red cloud corresponds to GM, the green to WM,
and the blue to CSF.

The histogram of 1.5 T T1-W MRI of the neonatal brain is shown in Fig. 3.9(b). The
difference between the neonatal and the adult brain histogram is the existence of the
myelinated and non-myelinated WM in neonates, which are separated with GM inten-
sities. Since non-myelinated WM is more dominant than myelinated WM, T1-W MRI
shows an inverted WM/GM intensities in neonates in comparison to adults.

3.1.4.1 T1-W and T2-W intensity distribution

It can be noted from the 1D histogram of the bias-corrected T1-W MRI of an adult
brain in Fig. 3.9(a) that there is an overlap between different tissue classes. Also, it
can be seen that an overlap between WM and GM tissue is higher than between GM
and CSF. This overlap between the class distributions can cause ambiguities in the de-
cision boundaries when intensity-based segmentation methods are used [Fischl et al.,
2002]. However, many researchers showed that adding additional MRI sequences
with different contrast properties (e.g. T2-W MRI, Proton Density MRI) can improve
intensity-based segmentation and help separate the class distributions [Maillard et al.,
2008, Mayer and Greenspan, 2009, Traynora et al., 2011]. Therefore, to improve the
brain MRI segmentation, we developed a new fuzzy clustering method that incorpo-
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Figure 3.11: The scatter plot of the tissue intensities, including T1-W and T2-W MRI of the
neonatal brain, after manual segmentation. Blue is cerebrospinal fluid, yellow is gray matter,
purple is myelinated white matter and green is non-myelinated white matter. The horizontal axis
represents T1-W intensities and the vertical axis represents T2-W intensities. As can be seen
from the scatter plot, there is a significant overlap between the intensities of different tissues,
and there are ambiguities in the decision boundaries. From [Prastawa, 2007].

rates both T1-W and T2-W intensity information [Despotovic et al., 2010c]. This
method is described in Chapter 5 and is used in Chapter 6 for the neonatal brain seg-
mentation.

The joint 2D intensity histogram of T1-W and T2-W MRI of the adult brain is shown
in Fig. 3.10(a). The shape of the intensity distributions of tissue classes depends on the
image quality (the presence of noise, PVE, etc.) and the shape of the classified data
depends on the applied segmentation method. In the example in Fig. 3.10(a), there is a
small overlap among classes due to the good quality MRI. Thus, the standard k-means
clustering method is used to segment the brain tissue probability maps (see 3.3.2.4)
and the final clusters are indicated with different colors in the scatter plot of T1-W and
T2-W MRI in Fig. 3.10(b). In general, when MRI artifacts are present and there is a
significant overlap among tissue classes, the spatial information of the brain tissue is
required to disambiguate the classification problem.

The scatter plot of the tissue intensities including T1-W and T2-W MRI of the neonatal
brain is shown in Fig. 3.11. The brain tissue is manually segmented in four classes:
GM, CSF, myelinated WM and non-myelinated WM. In comparison to the scatter plot
of the adult brain tissue intensities, the scatter plot in neonates has a significant overlap
between the intensities of different tissues, and there are ambiguities in the decision
boundaries.
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3.2 Preprocessing

After MRI acquisition several preprocessing steps are necessary to prepare the images
for segmentation, see Fig. 3.7. The most important steps include MRI bias field cor-
rection, image registration (in the case of multimodal image analysis) and removal of
non-brain tissue (also called a brain extraction).

3.2.1 Bias field correction

The bias field, also called the intensity inhomogeneity, is a low-frequency spatially
varying MRI artifact causing a smooth signal intensity variation within tissue of the
same physical properties, see Fig. 2.21 and Fig. 3.7. The bias field arises from spatial
inhomogeneity of the magnetic field, variations in the sensitivity of the reception coil
and the interaction between the magnetic field and the human body [Collins et al.,
2005, Sled et al., 1998]. The bias field is dependent of the strength of the magnetic
field. When MR images are scanned at 0.5 T, the bias field is almost invisible and can
be neglected. However, when MR images are acquired with modern high-field MR
scanners with a magnetic field strength 1.5 T, 3 T or higher, the bias field is strong
enough to cause problems and considerably affect MRI analysis. In practice, trained
medical experts can make visual MRI analysis to certain levels of intensity inhomo-
geneity (10%-30%) [Sled et al., 1998]. In contrast, the performance of automatic MRI
analysis and intensity-based segmentation methods decreases greatly in the presence
of the bias field, see Fig. 3.12. This is because most of the segmentation algorithms
assume intensity homogeneity within each class. Therefore, the correction of the bias
field is an important step for the efficient segmentation and registration of brain MRI.

The bias field is typically modeled as low-frequency multiplicative field [Lewis and
Fox, 2004, Sled et al., 1998]. Suppose that we place all image elements I(i, j, k),
i = 0, . . . ,M − 1, j = 0, . . . , N − 1 and k = 0, . . . , D − 1 into an m × 1 column
vector x = (x1, ..., xm), where xi, i = 1, ...,m represents the observed intensity of
the i-th voxel andm = MND is the total number of image elements. The degradation
effect of each image voxel xi can be expressed as:

xi = xpibi, i = 1, ...,MND (3.4)

where xpi is an ideal intensity of the i-th voxel and bi is an unknown smoothly varying
bias field. The problem of eliminating the bias field is the task of estimating bi.

If the intensities of MRI are logarithmically transformed, the multiplicative bias field
becomes an additive bias field as follows:

log(xi) = log(xpi) + log(bi). (3.5)

This simplified multiplicative model is used in most state-of-the-art bias correction
methods to represent the bias field [Sled et al., 1998, Shattuck et al., 2001, Lewis
and Fox, 2004]. However, in reality there are certain limitations to the correctness
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Figure 3.12: Influence of the bias field on brain MRI segmentation. (a) An example of the
sagittal brain MRI slice with bias field is shown in the top of the figure. The image histogram is
shown in the middle and the three label segmentation in the bottom. (b) The bias corrected MRI
slice is shown in the top, the corresponding histogram in the middle and three label segmentation
in the bottom.
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of this model. Even though the model is consistent with the variations arising form
the sensitivity of the receiver coil, the relationship between the measured and true in-
tensities in MRI is more complicated. This is due to non-uniformity of the induced
currents and spatial inhomogeneity of the excitation field, which depends on the ge-
ometry and electromagnetic properties of the subject as well as the coil polarization
and pulse sequence [Sled et al., 1998]. In spite of these difficulties, the multiplicative
low-frequency model is successfully used in practice to model the intensity inhomo-
geneity in brain MRI.

In the literature, various methods have been proposed to correct the bias field in MRI.
One of the earliest methods proposed to correct the bias field are based on the manual
labeling of the brain tissue voxels, which are then used to reconstruct the bias field in
form of a parametric surface. The main disadvantage of this surface fitting method is
the need for manual interaction. The bias field can be also estimated and corrected
by using a low-pass filtering [Cohen et al., 2000], but this approach can introduce
additional artifacts in the image because it also removes the low-frequency component
of the true image data. Both the surface fitting method and the low-pass method can be
improved and made fully automatic if they are coupled with automatic segmentation
of the brain [Wells III et al., 1996b, Van Leemput et al., 1999]. Other approaches for
the bias field correction include minimizing the image entropy [Mangin, 2000], fitting
the histogram of the local neighbourhood to global histogram of the image [Shattuck
et al., 2001], maximizing the high-frequency content of the image [Sled et al., 1998]
and using a registered template image [Lewis and Fox, 2004]. Image templates and
probabilistic atlases are explained later in the Section 3.2.2.2.

In this thesis we use the non-parametric bias correction method (also called the N3
method - Non-parametric Non-uniform Normalization), which is developed by Sled
et al. [Sled et al., 1998]. They tested the method on both real and simulated MR
data and showed that the accuracy of brain tissue classification and cortical surface
extraction is significantly improved using N3 method as a preprocessing step.

3.2.2 Image registration

Image registration is the process of overlaying (spatially aligning) two or more images
of the same content taken at different times, from different viewpoints, and/or by dif-
ferent sensors. Registration is required in medical image analysis for obtaining more
complete information about the patient’s health when using multimodal images (e.g.
MRI, CT, PET, SPECT) and for treatment verification by comparison of pre- and post-
intervention images. In medical image registration the term co-registration is used for
intra-subject registration (the alignment multimodal images of the same subject), re-
alignment is used for motion correction within the same subject, and normalization is
used for inter-subject registration when several population groups are studied. Three
examples of image registration are shown in Fig. 3.13.

Image registration involves finding the transformation between images to so that cor-
responding image features are spatially aligned. The spatial alignment is typically
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Figure 3.13: Three examples of image registration. (a) 3D fusion of a skin and a skull model
derived from MRI. (b) Fusion of MR and CT image of the brain. (c) Fusion of 3D MRI and
PET brain volumes. From [Vansteenkiste, 2007].

Translation Rotation Scaling Skew

tx

ty

sy

rx

sx
kx

1

1 1

Figure 3.14: Illustration of affine 2D transformation including translation, rotation, scale and
skew of a regular square. The solid line square corresponds to the original shape and the dashed
line square is the target square.

initialized using rigid or affine transformation [Hajnal et al., 2001]. A rigid trans-
formation is a 6-parameter transformation composed of translation and rotation. If
scaling and skewing are allowed, we obtain a 12-parameter affine transformation, see
Fig. 3.14. A rigid registration is sufficient for intra-subject registration if the object
of interest does not deform. This is a reasonable assumption for images of the brain
if these are acquired at the same stage of brain development. However, if the task is
to match images belonging to either different subjects (inter-subject registration) or
the same subject at different stages of brain development (e.g. growth in children,
changes related to ageing, or atrophy due to disease), a non-rigid registration of the
images is required to obtain satisfactory results. The non-rigid registration algorithms
are typically based either on physical models for transformation such as elastic [Shen
and Davatzikos, 2002] or fluid deformation models [D’Agostino et al., 2002], or a
linear combination of smooth basis functions [Ashburner and Friston, 1999] or free-
form deformations [Rueckert et al., 1999]. However, the problems in inter-subject
brain MRI registration will arise when brains include lesions or diseases, because it is
not possible to match the same structures between healthy and diseased brains.
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3.2.2.1 Similarity measures

The registration problem seeks to find an alignment of a source image IS and a target
image IT to maximize their similarity. So, the aim is to find a transformation T which
maps each voxel in the target image IT to its corresponding voxels in the source image
IS and maximizes a similarity measure S:

T = arg max
T

S(IT , I
′

S), (3.6)

where I pS is the aligned source image. There are different similarity measures available
and they can be based on intensity (correlation metrics) or features (points, edges,
corners, lines, etc).

The simplest way of defining a similarity measure is to use sum of square differences:

SSSD = − 1

N

N∑
i=1

(xi − yi)2, (3.7)

where N is the number of voxels, xi denotes intensity of the i-th voxel of the target
image IT , and yi denotes intensity of the i-th voxel of the aligned source image I pS .
This similarity measure assumes that images have the same photometric properties
(e.g. similar intensities) and is therefore only suitable when images are acquired with
the same MRI protocol. In the case when this assumption is relaxed to deal with
linear changes of the intensities in the two images, the cross-correlation can be used
as a similarity measure:

SCC =

∑N
i=1(xi − x̄)(yi − ȳ)√∑N

i=1 (xi − x̄)2
∑N
i=1 (yi − ȳ)2

, (3.8)

where ȳ and x̄ denote the mean voxel intensity in the source and target images.

When different image modalities are used, such as T1- and T2-W MRI or CT and
MRI, the intensity relationship is not linear and the intensity pattern does not match
among modalities. In these cases it is possible to use a similarity measure called
mutual information, which assumes that the statistical dependency between intensities
of corresponding voxels in images IT and IS is maximal at registration [Wells III et al.,
1996a, Viola and Wells, 1997, Pluim et al., 2003].

Mutual information is defined in terms of entropy and joint entropy:

SMI = H(IT ) +H(IS)−H(IT , IS), (3.9)

where H(IT ) and H(IS) denote respectively the entropy of image IT and IS , and
H(IT , IS) is the joint entropy of both images. The entropy H of the grayscale MR
image IT with intensity values i = 0, ..., 255 is calculated as:

H(IT ) = −
255∑
i=0

P (i) logP (i), (3.10)
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where P (i) is the probability of observing intensity i in image IT and can be esti-
mated from the histogram of the image. Other methods for estimating this probability
distribution include techniques such as Parzen windowing [Wells III et al., 1996b].
Similarly, the joint entropy H(IT , IS) is calculated as:

H(IT , IS) = −
255∑
i=0

255∑
j=0

P (i, j) logP (i, j), (3.11)

where P (i, j) is the joint probability of observing intensity i in the target image and
intensity j at the corresponding location in the source image. This joint probability
can be estimated from the joint histogram of images IT and IS .

Using these definitions, mutual information can be also written as:

SMI =
255∑
i=0

255∑
j=0

P (i, j) log
P (i, j)

P (i)P (j)
, P (i) > 0, P (j) > 0. (3.12)

When the intensities are one-to-one related, then P (i) = P (j) = P (i, j) and mutual
information is maximal. When the intensities are independent, then SMI = 0.

A modified version of this similarity measure which is more robust to variations in
image overlap and field of view is the normalized mutual information [Studholme
et al., 1999]:

SNMI(IT , IR) =
H(IT ) +H(IS)

H(IT , IS)
. (3.13)

Mutual information has been successfully used by many researchers to register mul-
timodal images in various applications [Wells III et al., 1996a, Viola and Wells,
1997, Thevenaz and Unser, 2000, Pluim et al., 2003, Mellor and Brady, 2005]. In
this work we use mutual information [Thevenaz and Unser, 2000, Mellor and Brady,
2005] to register T1- and T2-W images of the neonatal brain in Chapter 6.

3.2.2.2 Templates and probabilistic atlases

The template is an image/volume which encodes the average probability of finding
different kinds of tissues at each spatial location. The anatomical template is obtained
by normalizing, aligning and averaging of anatomical images from several different
subjects. All the images are normalized in a standard stereotaxic space such as the
Montreal Neurological Institute (MNI space) [Evans et al., 1993]. MNI is widely
used to provide a common reference for the 3D localization of functional activation
foci and anatomical structures, enabling the comparison of results obtained across
different studies. The standard probabilistic atlas of the human brain consists of a
template and three tissue probability maps for WM, GM and CSF [Evans et al., 1993],
see Fig. 3.15. The tissue probability maps are obtained by normalizing and averaging
a number of segmented subjects. The probabilistic atlas then describes the anatomical
variability of the brain.
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GM WM CSF

Figure 3.15: Templates for GM, WM and CSF for an axial plane. The last image corresponds
to an overlap of the previous tissue probability maps.

Image registration is a necessary step for the inclusion of probabilistic atlases as a
prior knowledge of the brain anatomy into the segmentation method. A probabilistic
atlas is often used to initialize and constrain the segmentation process. The prior
knowledge of the brain anatomical structures can increase the robustness and accuracy
of a segmentation method, see Section 3.3.4.

A general review of registration techniques can be found in [Fitzpatrick et al., 2004,
Crum et al., 2004, Zitova and Flusser, 2003].

3.2.3 Removal of non-brain tissue

Non-brain tissues such as fat, skull, or neck have intensities overlapping with intensi-
ties of brain tissues. Therefore, the brain has to be extracted before brain segmentation
methods can be used. This step classifies voxels as brain or non-brain. The result can
be either a new image with just brain voxels or a binary mask, which has a value of
1 for brain voxels and 0 for the rest of tissues. In general, the brain-voxels comprises
GM, WM, and CSF of the cerebral cortex and subcortical structures, including the
brain stem and cerebellum. The scalp, dura matter, fat, skin, muscles, eyes and bones
are always classified as non-brain voxels. The Fig. 2.2 can help to visualize brain and
non-brain parts.

The common method for brain extraction is to use prior information of the brain
anatomy. A deformable template can be registered with an image and non-brain tissue
is then removed by transferring the brain mask from the template, [Xue et al., 2007].
However, brain extraction using a probabilistic atlas is usually not very accurate and
can cause misclassification around the brain boundary. An alternative method for ex-
tracting the brain is the brain extraction tool (BET) [Smith, 2002], which is part of
the publicly available software package FSL. This method finds the center of gravity
of the brain and then inflates a sphere until the brain boundary is found. It has been
proven to work in practice on good-quality T1-W and T2-W images of the adult brain.
An example of the brain extraction is shown in Fig. 3.16.
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Figure 3.16: Result of brain extraction on a T1 MR image in an axial plane. The left image
shows the original T1-W MRI. The middle image depicts the estimated brain mask. The right
image presents an overlap of the brain mask and original MR image.

3.3 Image segmentation methods

The diversity of image processing applications has led to development of various tech-
niques for image segmentation [Pal and Pal, 1993, Chan and Vese, 2001, Boykov and
Funka-Lea, 2006,Unnikrishnan et al., 2007,Cai et al., 2007,Prastawa, 2007,Shi et al.,
2011]. This is because there is no single method that can be suitable for all images,
nor are all methods equally good for a particular type of image. For example, some
of the methods use only the gray level histogram, while some integrate spatial im-
age information to be robust for noisy environments. Some methods use probabilistic
or fuzzy set theoretic approaches, while some additionally integrate prior knowledge
(specific image formation model, e.g. MRI brain atlas) to further improve segmenta-
tion performance. Also, some of the methods are suitable only for 2D images, while
others are designed to segment 3D volumes.

However, most of the segmentation methods developed for one class of images can be
easily applied/extended to another class of images. For example, the theory of graph
cuts, although firstly developed for binary images [Greig et al., 1989], can be modified
and used for 3D MRI segmentation of the brain tissue, which will be described in more
detail in Chapter 4. Also, unsupervised fuzzy clustering [Pal and Pal, 1993,de Oliveira
and Pedrycz, 2007] has been successfully applied in different areas such as remote
sensing, geology, medical, biological and molecular imaging. In Chapter 5 we will
present our new fuzzy C-means clustering solution and demonstrate its applicability
in different areas.

The segmentation methods, with application to brain MRI, may be grouped as follows:

• Manual segmentation;

• Intensity-based methods (including thresholding, region growing, classification,
clustering);

• Atlas-based methods;

• Surface-based methods (including level sets and deformable models).
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Figure 3.17: Editing tool for manual delineation: ITK-SNAP screen shot [ITK-SNAP, 2009].

3.3.1 Manual segmentation

Manual segmentation refers to the process where a human operator (e.g. expert physi-
cian) segments and labels an image by hand. The manual method is believed to be
the most accurate because of the difficulty to accurately and reliably delineate struc-
tures in medical images. The segmentation difficulties are related to image quality and
artifacts, see Section 2.2.3.1.

Given the improvements achieved over the past years by imaging tools (e.g. MR scan-
ners resolve images at millimetric resolution) the manual segmentation has become
an intensive and time consuming task. A trained operator typically has to go through
around eighty 512 × 512 images, slice by slice, to extract the contours of the target
structures. This manual segmentation is not only tedious but particularly prone to er-
rors, as assessed by various intra- or inter-operator variability studies [Collier et al.,
2003, Vansteenkiste, 2007]. Also, manual segmentation results are often difficult and
even impossible to reproduce, because even experienced operators show significant
variability with respect to their own previous delineation.

However, manual segmentation is still intensively used for defining a surrogate for
true delineation (called “ground truth”) and quantitative evaluation of automated seg-
mentation methods. Also, manual segmentation of different brain structures is a fun-
damental step in brain atlas formation and is used in atlas-based segmentation ap-
proaches [Prastawa, 2007, Murgasova, 2008, Shi et al., 2011].
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For manual delineation, editing tools such as ITK-SNAP [Yushkevich et al., 2006,
ITK-SNAP, 2009] usually display 3D data in the form of a 3 synchronized 2D orthog-
onal views (sagittal, coronal and axial) onto which the operator draws the contour of
the target structure, see Fig. 3.17. The output data therefore consists of a series of 2D
contours from which a continuous 3D surface has to be extracted. This is a non-trivial
post-processing task and is prone to errors. For instance, due to inter-slice inconsis-
tencies in segmentation, bumps in the reconstructed 3D surface are inevitable. More
robust segmentation methods can usually be derived from true 3D structure models in
that they can ensure globally smoother and more coherent surfaces across slices.

3.3.2 Intensity-based methods

Intensity-based segmentation methods classify individual pixels/voxels based on their
intensity. In the case of the brain MRI, three main tissue classes, WM, GM and CSF,
can be distinguished based on intensity, see Fig. 3.4. A more detailed classification
is not possible because the intensity profiles of more detailed brain structures overlap.
Even separation of the three main tissue classes based on intensity itself requires in-
corporating tools for dealing with artifacts in MRI, such as intensity inhomogeneity,
noise, partial volume, as well as overlap in intensities of brain and non-brain tissue
(e.g. the scalp have the same intensities as brain tissues).

Several intensity-based techniques are available for tissue classification. The most
common method is the use of intensity histogram of all of the voxels and fitting Gaus-
sian functions to the distribution. The probability of a given intensity correspond-
ing to a given type of tissue can thus be inferred and voxels are assigned to tissue
types accordingly. Additionally incorporating neighbourhood information helps to
give preference to spatially homogeneous regions in the resulting segmentation. This
can significantly decrease misclassification due to random noise in the image [Pham
et al., 2000]. Additionally, probabilistic atlases can be included in the classification
to inform whether a given location in the brain is likely to contain WM, GM, or CSF
voxels [Prastawa, 2007].

3.3.2.1 Thresholding

Thresholding is the simplest image segmentation method. A thresholding procedure
uses the intensity histogram and attempts to determine intensity values, called thresh-
olds τ , which separates the desired classes. The segmentation is then achieved by
grouping all pixels between thresholds into one class, see Fig. 3.18. The thresholding
methods have many variations: global (single threshold) or local threshold (depend-
ing on the position in the image), multi-thresholding, adaptive thresholding, etc. In
the case of a single global threshold, segmentation of an image I(i, j) is defined as:

I p(i, j) =

{
1 if I(i, j) > τ

0 if I(i, j) ≤ τ.
(3.14)
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Figure 3.18: (a) Gray level histogram that can be partitioned by a single threshold. (b) Gray
level histogram that can be partitioned by multiple thresholds.

where I p(i, j) is a segmented (thresholded) image, where pixels labeled with 1 corre-
spond to object and pixeles labeled with 0 correspond to background, see Fig. 3.18(a).

Thresholding is fast and computationally efficient method, but does not take into ac-
count the spatial characteristics of an image (neighborhood information). Thus thresh-
olding is sensitive to noise and intensity inhomogeneities. In low-contrast images it
tends to produce scattered groups of pixels rather than connected regions and requires
connectivity algorithms as a post-processing step.

In general, threshold-based segmentation methods are not suitable for textured images.
This is because the perceptual qualities of textured images are based on higher order
interactions between image elements or objects in the scene. However, in brain MRI
segmentation, thresholding can be used to separate background voxels from the brain
tissue or for initializing the tissue classes in iterative segmentation methods such as
fuzzy C-means clustering, see Chapter 5. A survey on thresholding techniques is
provided in [Sezgin and Sankur, 2004].

3.3.2.2 Region growing

Region growing (also called region merging) is a technique for extracting a connected
region of the image which consists of groups of pixels/voxels with similar intensi-
ties [Haralick and Shapiro, 1985]. In its simplest form, region growing starts with
a seed point (pixel/voxel) that belongs to the object of interest. The seed point can
be manually selected by an operator or automatically initialised with a seed finding
algorithm. Then, region growing examines all neighboring pixels/voxels and if their
intensities are similar enough (satisfying a predefined uniformity or homogeneity cri-
terion), they are added to the growing region. This procedure is repeated until no more
pixels/voxels can be added to the region.

Region growing is suitable for segmentation of volumetric images which are com-
posed of large connected homogeneous regions. Thus, it is successfully used in med-
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seed point

Initialization Region growing segmentation

(a) (b)

Figure 3.19: An example of a region growing segmentation of a brain lesion. (a) In the ini-
tialization step, a seed point is manually selected in the lesion area. (b) The final segmentation
result is a connected region and represents the lesion.

ical image analysis to segment different tissues, organs or lesions from MR images.
For example, it is used in brain MRI analysis for segmentation of brain vessels [Passat
et al., 2005], brain tumour segmentation [Weglinski and Fabijanska, 2011] or extrac-
tion of brain surface [del Fresno et al., 2009]. See an example of region growing
segmentation in Fig. 3.19.

The main disadvantage of the region growing method is its sensitivity to the initializa-
tion of seed point. By selecting a different seed point, the segmentation result can be
completely different. If seed point and homogeneity criterion are not properly defined,
the growing region can leak out and merge with the regions that do not belong to the
object of interest. Also, region growing is sensitive to noise and segmented regions
in the presence of noise can become disconnected or have holes. On the other hand,
separate regions can become connected in the presence of partial volume effects.

3.3.2.3 Classification methods

Classification methods use data with known labels to partition image feature space.
Image features are typically intensity values, but can be also related to texture or other
image properties. Classification methods can be both supervised and unsupervised.
Supervised classification require training images, which are manually segmented and
then used as references for automatic segmentation of new images. Next to the manual
interaction that is laborious and time consuming, another disadvantage of supervised
classification methods is that they generally do not take into account the neighborhood
information and thus, they are sensitive to noise. Also, the use of the same training set
for a large number of images can lead to biased results, which do not take into account
anatomical and physiological variability between different subjects.
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kNN classifier
One of the simplest classifiers is the nearest-neighbor classifier [Duda et al., 2001],
where each pixel/voxel is classified in the same class as the training datum with the
closest intensity. A generalization of this approach is the k-nearest-neighbor (kNN)
classifier, where the pixel/voxel is classified according to the majority vote of the
closest training data. The kNN classifier is considered a non-parametric classifier
because it makes no underlying assumption about the statistical structure of the data.
It is especially suitable if a large number of training data is available.

The kNN classification method was adapted for brain MRI segmentation by Warfield
et al. [Warfield et al., 1998]. In addition to image intensities, Warfield used spatial
localization of brain structures (classes) in form of a non-rigidly registered template as
an additional feature to enhance the classification process. The segmentation is then
calculated in an iterative process by interleaving the segmentation refinement with
updating the non-rigid alignment to the template. This procedure requires manual
selection of a large number of training samples for each tissue class to train the kNN
classifier. Due to the manual interaction in the training phase, the method is not fully
automatic and the results depend on particular choice of the training set. Cocosco et al.
[Cocosco et al., 2003] developed a method for the robust selection of training samples
to make the kNN classification process fully automatic. This method is reported to
deal well with anatomies which differ from the probabilistic atlas. However, it does
not deal with the problem of natural intensity variation within each tissue class. Both
methods require correction of the bias field as a pre-processing step.

Bayesian classifier
One of the most commonly used parametric classifiers is the Bayesian classifier
[Wells III et al., 1996b]. The Bayesian classifier models the probabilistic relationships
between the attribute set and the class variables, which are then used for estimating
the class probability of the unknown variable. This model involves Bayesian infer-
ence such as maximum a posteriori (MAP) estimation, where the goal is to estimate
the label output image x̂ given the observed image y by minimizing the posterior
distribution P (x|y) of the possible labels x:

x̂ = arg max
x

P (x|y). (3.15)

The Bayesian framework consists of three probability distributions: the prior distribu-
tion P (x), the posterior distribution P (x|y) and the conditional distribution P (y|x)
(also called the likelihood). The prior distribution embodies the knowledge of likely
configurations before an actual image is observed. The posterior distribution is derived
after an observation has been made and the likelihood is defined as the probability of
obtaining a particular observation given a set of model parameters.

The Bayes rule describes the relation between the posterior probability P (x|y), prior
probability P (x), and likelihood P (y|x) as follows:

P (x|y) =
P (y|x)P (x)

P (y)
. (3.16)
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Using this definition (3.16), the MAP estimate can be written as:

x̂ = arg max
x

(P (y|x)P (x)/P (y))

= arg max
x

(P (y|x)P (x)),
(3.17)

where P (y) can be omitted because it is a constant in the case when y is known. Since
in many cases the probability distributions have exponential functions, this computa-
tion can be simplified by using a logarithmic transform:

x̂ = arg max
x

(logP (y|x) + logP (x)). (3.18)

More details about the Bayes’ theory can be found in [Therrien, 1989].

In the case of the brain MRI segmentation, the classifier assumes that the pixel intensi-
ties are independent samples from a mixture of Gaussian probability distributions, see
Section 3.1.4 and Fig. 3.10(a). Training data is collected by obtaining representative
samples from each component of the Gaussian mixture accordingly. Classification of
new data is obtained by assigning each pixel to the class with the highest posterior
probability.

Bayesian classifiers are used in the expectation-maximization (EM) segmentation
methods which have been successfully implemented in several software packages
used in the medical imaging community: SPM [Ashburner and Friston, 2005], FAST
[Zhang et al., 2001], FreeSurfer [Fischl et al., 2002] and 3DSlicer [Pohl et al., 2006].
All these methods implement a segmentation and bias correction in the EM frame-
work. They also include various additional improvements, such as non-rigid align-
ment of atlas [Ashburner and Friston, 2005] and including neighbourhood information
in the form of Markov Random Fields [Li, 1995, Zhang et al., 2001].

In general, the EM segmentation framework can be described as follows:

EM approach for brain MRI segmentation

Firstly, initialize the EM algorithm. In the case of brain MRI segmentation, the GMM
is used to initially estimate model parameters. Then, iterate between expectation step
(E-step) and maximization step (M-step) until convergence:

E-step: Estimate the brain tissue segmentation given the current estimate of model
parameters. This step can include the use of neighbourhood information (e.g. in the
form of MRF modeling).

M-step: Estimate the model parameters. This step can consist of a combination of the
following steps:

1. Estimate the intensity distribution parameters for each tissue class.

2. Estimate the bias correction parameters.

3. Estimate the registration parameters for alignment of probabilistic atlas with the
image.
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3.3.2.4 Clustering methods

Clustering methods are unsupervised segmentation methods that partition an image
into clusters of pixels/voxels with similar intensities without using training images. In
fact, clustering methods use the available image data to train themselves. The segmen-
tation and training is done in parallel by iterating between two steps: data clustering
and estimating the properties of the each tissue class. The most commonly used clus-
tering methods are the k-means clustering [Coleman and Andrews, 1979], the fuzzy
C-means clustering [Dunn, 1973, Bezdek, 1981] and the expectation-maximisation
(EM) method [Pham et al., 2000].

The k-means clustering method partitions the input data into k classes by iteratively
computing a mean intensity for each class (also called centroid) and segmenting the
image by classifying each pixel/voxel in the class with the closest centroid. The k-
means clustering is also known as a hard classification method because it forces each
pixel/voxel to belong exclusively to one class in each iteration. The fuzzy C-means
clustering is soft classification method based on fuzzy set theory [Zadeh, 1965]. It
is a generalization of the k-means clustering because it allows each pixel/voxel to
belong to multiple classes with different membership degrees in each algorithm iter-
ation and the final classification decision is made at the end (when the convergence
criteria is reached). The EM method has the same soft classification principle but typ-
ically assumes that MRI intensities of different brain tissues can be represented with
a Gaussian mixture model, see Section 3.1.4. Even though clustering methods do not
require training images, they do require some initial parameters and the EM method
has shown the highest sensitivity to initialization in comparison to fuzzy C-means and
k-means methods [Pham et al., 2000].

As it is the case with classification methods, clustering methods do not incorporate
spatial neighborhood information and thus, they are sensitive to noise and intensity
inhomogeneities. To improve the clustering performance for images corrupted with
noise, we developed a new spatially coherent fuzzy C-means clustering method for
noise-robust image segmentation [Despotovic et al., 2013c, Despotovic et al., 2010c].
Our method is described in Chapter 5.

3.3.3 Atlas-based methods

If an atlas or template of the human brain for a specific population of interest is avail-
able (see Section 3.2.2.2), then atlas-based methods can be a powerful tool for brain
MRI segmentation. The atlas contains information about the brain anatomy (e.g. con-
tains the information about the location of different brain structures) and it is used as
a reference (a prior knowledge) for segmenting new images. The main advantage of
these methods is the possibility to segment any brain structure available in the atlas
without any additional cost. Conceptually, atlas-based approaches are similar to clas-
sifier methods, except that they are implemented in the spatial domain rather than in
the feature space.
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Before a probabilistic atlas can be used as a prior knowledge, it has to be aligned
with the image to be segmented. Since the segmentation labels and the “ground truth”
are known for the atlas, all atlas information is transferred to the target image after
registration. Therefore, the performance of atlas-based methods is directly dependent
on quality of the registration method used.

The traditional way of aligning the probabilistic atlas with the image is to use affine
registration. Unfortunately, an affine alignment may not be sufficient if the brain
anatomy of interest differs significantly from the average atlas anatomy. Pohl et al.
therefore suggest aligning the atlas using non-rigid registration [Pohl et al., 2002].
However, in their later work Pohl reports difficulties in registering anatomical template
with the image to be segmented using standard registration methods [Pohl, 2005].
D’Agostino developed a special similarity measure for registering probabilistic maps
directly to the new image [D’Agostino et al., 2004]. Recently, several methods have
been developed which aim to overcome this problem by iteratively refining the seg-
mentation and non-rigid registration of the probabilistic atlas at the same time. Ash-
burner developed a method for simultaneous segmentation, bias correction and non-
rigid registration of a probabilistic atlas [Ashburner and Friston, 2005].

However, even with non-rigid registration methods, accurate segmentations of com-
plex structures is difficult due to anatomical variability. Also, atlas-guided segmenta-
tion in patients with brain deformations can be difficult and prone to errors, because
the probabilistic atlas is based on a population of healthy subjects. For instance, in
patients with brain lesions or a brain-anatomy that significantly differs from the atlas
template, the atlas alignment and the corresponding segmentation of the brain will
fail or give inaccurate results. In these cases an atlas-based approach is not a suitable
method for image segmentation.

An aligned probabilistic atlas can be also used as a good initial estimate of the seg-
mentation, which is especially important for EM-based methods, as EM algorithm
is guaranteed to converge to local, not global, maxima. In addition, most EM-based
methods, [Ashburner and Friston, 2005,Pohl et al., 2006] use the probabilistic atlas to
constrain the segmentation process where again, the correct alignment of the proba-
bilistic atlas is crucial for a successful and accurate segmentation.

3.3.4 Surface-based methods

In addition to intensity-based and atlas-based methods, there are a number of alter-
native brain segmentation approaches. These approaches include surface-based meth-
ods, such as level sets and deformable models.

Deformable models, also called active contours or snakes in 2D and active surfaces
or active balloons in 3D, were introduced in [Kaas et al., 1988] and were further de-
veloped in [Cohen and Cohen, 1993, Terzopolous et al., 1998]. Deformable models
use closed parametric curves or surfaces for delineating region boundaries. The para-
metric curves and surfaces deform under the influence of external (or image) forces
(controlled by the image attributes) and the internal forces, which control the surface
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(a) (b) (c)

Figure 3.20: Segmentation of the brain surface using deformable models. (a) A closed curve
is initialised inside the brain. (b) The segmentation result of the brain surface in 2D. (c) 3D
surface of the brain.

regularity. In general, deformable models represent the fusion of geometry, physics
and approximation theory. Geometry is used to represent the shape of the object,
physics defines constraints on how the shape may vary over time and space, and ap-
proximation theory provides mechanisms for fitting the models to measured data.

To delineate a boundary of an object, first a closed curve or surface is placed near the
desired boundary in an image. Then, internal and external forces are deforming the
curve or surface in an iterative relaxation process. Internal forces are computed from
within the curve or surface to keep it smooth throughout the deformation. External
forces are usually derived from the image to deform the curve or surface towards the
desired feature of interest. In traditional deformable models, image forces come pri-
marily from edge information (i.e., significant image intensity. However, such reliance
on edge information makes deformable models sensitive to noise and highly depen-
dent on the initial estimate. There have been significant efforts to integrate region
information into deformable models. For instance, Chan and Vese [Chan and Vese,
2001] present a level-set method based whose main idea is to consider the information
inside the regions, and not only at their boundaries. We use this level-set method in
Chapter 6 to refine and delineate the surface of the brain and scalp in newborn infants.

Sometimes the image data are not sufficient to delineate the region of interest and thus,
prior knowledge has to be introduced. Also, a noise model can be added to the shape
prior. A general review on deformable models in medical image analysis can be found
in [Montagnat et al., 2001].
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3.4 Modeling the spatial context

The use of spatial context or neighborhood information is of great importance in brain
MRI segmentation. Unless the image is simply random noise, the intensity of an im-
age pixel/voxel is highly statistically dependent on the gray intensities of its neighbors
(surrounding pixels/voxels). Markov Random Field (MRF) theory provides a basis
for modeling local properties of an image, where the global image properties fol-
low the local interactions. MRF models have been successfully integrated in various
brain MRI segmentation methods to decrease misclassification errors due to image
noise [Pham et al., 2000, Zhang et al., 2001, Ashburner and Friston, 2005]. Here we
introduce the basic concepts of MRF models that we use later to formulate the energy
function of the 3D graph cut method for brain MRI segmentation.

3.4.1 Neighborhood system

First, let us introduce some notations. As has been described in Section 3.1.1, every
pixel (or voxel) in an image can be represented with one node in the lattice P . Let
xi represent an intensity value of a single pixel (or voxel) with a position i in an
image x = (x1, ..., xm) defined over a finite lattice P , where m is the total number
of image elements (m = MN for a 2D image and m = MND for a 3D image). Let
N = {Ni|∀i ∈ P} denote a neighboring system for a lattice P , where Ni represent a
small neighborhood around i, not including xi.

The nodes (pixels/voxels) in a lattice P are related to one another via neighborhood
system N that can be defined as:

N = {Ni|∀i ∈ P}. (3.19)

The neighboring relationship has the following properties:

• a node i does not belong to its own neighborhood: i /∈ Ni ;

• the neighboring relationship is mutual: i ∈ Ni′ ⇐⇒ i
′ ∈ Ni.

The set of neighbors of i can be defined as the set of surrounding nodes within a radius
of
√
r from the center i

Ni = {i
′
∈ P| [dist(pixeli, pixeli′ )]

2 ≤ r, i
′
6= i}, (3.20)

where dist(a, b) is the Euclidean distance between neighboring pixels a and b and
r ∈ Z : r ≥ 0 is an integer number.

The first and the second order neigborhoods are the most commonly used neighbor-
hoods in image segmentation. The first order neighborhood consists of 4 nearest nodes
in a 2D image and 6 nearest nodes in a 3D image, while the second order neighbor-
hood consists of 8 nearest nodes in a 2D image and 18 nearest nodes in a 3D image,
see Fig. 3.21.
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Figure 3.21: (a) 2D and (b) 3D neighborhood configuration for the first, second and third order
respectively.

3.4.1.1 Cliques

A clique c, defined over a lattice P with respect to a neighborhood system N is a
subset of nodes in P such that c is either a single-node, or a pair of two neighboring
nodes, or a collection of n neighboring nodes.

The collection of all cliques for a lattice P and a neighborhood system N is denoted
by C. Let Cn be the set of all cliques containing n nodes. Then, the single-node clique
C1, the two-node clique C2 and the three-node clique C3 can be formulated as:

C1 = {i|i ∈ P}, (3.21)

C2 = {{i, i
′
}|i
′
∈ Ni, i ∈ P}. (3.22)

C3 = {{i, i
′
, i
′′
}|i, i

′
, i
′′
∈ P are neighbors to one another}. (3.23)

The types of 2D cliques occurring in the first and the second order neighborhoods
containing up to 4 nodes are illustrated in Fig. 3.22(a). The cliques C2 containing
only two nodes for the first, second and third order 3D neighborhoods are illustrated
in Fig. 3.22(b). The number of possible cliques increases significantly as the lattice
dimensions and the neighborhood order increase, so usually C is constrained to be a
set of pairwise (two-node) cliques.
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Figure 3.22: (a) 2D clique types occurring in the first (NB1) and the second (NB2) order
neighborhoods. (b) 3D pairwise cliques for the first (NB1), the second (NB2) and the third
order (NB3) neighborhood. There are 13 such cliques indexed as vi, i = 1, ..., 9 for the vertical
and hi, i = 1, ..., 4 for the horizontal ones.



88 Brain MRI segmentation

3.4.2 Markov Random Field models

Markov random field model can be represented with a graph G , (P,N ), where P
represents the nodes and N determines the links (also called edges) that connect the
nodes according to the neighborhood relationship. Such graph structure corresponds
to an image, where nodes correspond to pixels (or voxels) and the links connecting
the nodes represent the contextual dependency between pixels (or voxels).

To define Markov property, let xP\i denote the vector of all gray values in the image
without xi, and let xNi denote the neighborhood vector containing gray intensities
from a small neighborhood Ni around i, not including xi. Using these notations,
Markov models assume the following property:

P (xi|xP\i) = P (xi|xNi
). (3.24)

Expressed in words, this property states that knowing all the intensity values in the
image without xi, gives no extra information on xi over knowing only the intensity
values in the local neighborhood Ni around i.

According to the well known Hammersley-Clifford theorem [Clifford, 1990], the joint
prior distribution of all image elements x is always a Gibbs distribution P (x) if the
MRF property in (3.24) is correct:

P (x) =
1

Z
exp

(
− 1

T
U(x)

)
where U(x) =

∑
c∈C

Vc(x). (3.25)

where Z is a positive normalizing constant known as the partition function and T is
the constant called the temperature of the field. The temperature controls the sharp-
ness of the distribution and is typically assumed to be 1. If the temperature is high,
all configurations tend to be equally distributed. Near the zero temperature, the dis-
tribution concentrates around the global energy minima. U(x) is the energy function,
which is a sum of clique potentials Vc(x) over all possible cliques C.

The Hammersley-Clifford theorem establishes the important connection between the
local and global specifications of an MRF. It gives theoretical justification to the design
of an MRF via local or global properties depending on their availability in a specific
application context. The theorem’s relevance in the image processing community was
established by Geman and Geman [Geman and Geman, 1984]. Its original proof was
developed in 1971, but was published in 1990 [Clifford, 1990].

The importance of the theorem in practice is that it provides a simple way of specifying
the joint probability. This can be done by defining the clique potential functions.
Thus, any a priori knowledge or preference about the interactions between the sites
can be embraced. How to properly select the parameters controlling the strength of
spatial interactions for an effective model is a major topic in MRF theory and practice.
Computation time is also often an issue.

For mode reading and details about MRF see [Li, 1995].



3.4 Modeling the spatial context 89

3.4.3 Energy functions and optimization criteria

MRF theory is often merged with estimation theory and is used to formulate energy
functions to find an optimal solution to the segmentation problem. Often, the energy
function is formulated to define the minimal solution. The main issues are how to
formulate the energy function and how to choose the optimization technique for its
minimization. The formulation of the energy function describes how various image
properties (e.g. pixel intensities and their contextual properties) are encoded into the
function. It maps a solution to a real number, which indicates the quality of the solu-
tion in terms of a cost or goodness. The optimization of the energy function addresses
the problem of local or global minima and the efficiency of methods in time and space.

The most popular optimisation criteria that is used with MRF modeling is Maxi-
mum a posteriori (MAP) probability. This MAP-MRF framework is a special case
of Bayesian approach (see Section 3.3.2.3) and has been successfully used in differ-
ent image segmentation problems to decrease misclassification error due to random
noise in the image [Pham et al., 2000]. In medical imaging, MRF is used to model the
prior probability P (x), which takes into account the fact that most pixels belong to
the same tissue class as their neighboring pixels. Then, the segmentation is obtained
by maximizing a posterior probability P (x|y) of the segmentation given the image
data [Zhang et al., 2001, Ashburner and Friston, 2005]. This maximization problem
from Eq. (3.18) becomes an energy minimization x̂ = arg minE(x|y) problem. This
is because if P (x) is a Gibbs distribution (3.25), then it can be shown that P (x|y) is
a Gibbs distribution with posterior energy E(x|y) and P (x|y) ∝ exp (−E(x|y)).

The posterior energy is represented as a sum of clique potentials Vc(x) and the
smoothness data term (or likelihood) Di(yi|xi)

E(x|y) =
∑
i

Di(yi|xi) +
∑
c∈C

Vc(x). (3.26)

In the case of MRF model with pairwise cliques, the energy function is

E(x|y) =
∑
i

Di(yi|xi) +
∑
i,i′

Vi,i′ (xi, xi′ ), (3.27)

where Vi,i′ (xi, xi′ ) is the pairwise potential representing the interaction of neighbor-
ing labels.

Next to Bayesian approach, graph cut is another powerful optimization method that
aims to find the optimal solution of the segmentation problem by minimizing the en-
ergy function [Greig et al., 1989, Boykov et al., 2001]. Generally, graph cuts based
segmentation has become an attractive approach in computer vision because it ad-
dresses segmentation in a global optimization framework and gives exact solutions
for sub-modular MRF problem described in (3.27) [Greig et al., 1989]. In Section
4 we focus on graph cuts based segmentation and propose its modification for more
accurate and automatic 3D brain MRI segmentation.
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3.5 Validation of brain MRI segmentation

Validation and comparison of different segmentation methods is a general problem in
medical image analysis. It requires a “ground truth” or gold standard to which the
outcome of the segmentation method can be compared. Unfortunately, the “ground
truth” does not exist for the analysis of in vivo acquired data in humans. Thus, the
“ground truth” of the real patients is typically generated after image acquisition.

In brain MRI analysis, the “ground truth” for the real patient data is usually made by
one or more expert physicians who need to manually analyze and segment anatomical
structures of interest, see Section 3.3.1. Although this is the only way to validate the
real patient MRI data, this validation must be critically considered because the manual
segmentation is prone to errors, highly subjective and difficult to reproduce (even by
the same expert) [Vansteenkiste, 2007]. Also, this type of validation is not always
available because it is time-consuming and depends on the human operator. Therefore,
few alternative validation methods evolved in the praxes to validate the accuracy of
the segmentation algorithms. The most popular validation methods include the use of
software simulations and phantoms.

In software simulations, the artificial MR images are generated with computer pro-
grams that simulate the real acquisition process. In this way the “ground truth” is
known and the influence of different acquisition parameters and imaging artifacts can
be controlled and examined independently. This type of validation is very flexible,
easily accessible by different researchers and can be performed with little effort. How-
ever, a drawback of this validation is that software simulators can not take into account
all factors that might influence the real image acquisition and the simulated images are
only and approximate of the real images.

Since software simulations have certain limitations, validation of new segmentation
methods can be done using human-like phantoms, whose physical properties (e.g.
geometry of the tissue structures, material properties) are known and are similar to the
in vivo properties. The phantom images are generated using the MRI scanner and are
more realistic than images generated with software simulations. On the other hand, the
phantom images do not offer the flexibility of the software simulations and imaging is
more expensive and labour intensive.

The most popular simulated images used for validation of brain MRI segmentation
methods are designed by Collins et al. [Collins et al., 1998] and are also known as a
realistic digital brain phantom or simply BrainWeb. Images are freely available on-line
and easily accessible for all researcher to test the performance of the new segmentation
methods. In our work, we used this simulated brain database to test the outcome of
our segmentation methods and to compare it with other state-of-the-art methods. We
also validated our segmentation methods on real patients where the “ground truth”
segmentation is done manually by an expert physician (or it is corrected and approved
by an expert physician when it is done by less experienced researcher).



3.6 Conclusions 91

3.6 Conclusions

Image segmentation is an important step in many medical applications involving 3D
visualization, measurements, registration and computer-aided diagnosis. This chapter
has provided a brief introduction to the fundamental concepts of MRI segmentation of
the human brain and methods that are commonly used.

In Section 3.1, we have defined the basic concepts necessary for understanding MRI
segmentation methods, such as 2D and 3D image definition over a lattice, image fea-
tures and brain MRI intensity distributions. Following this, pre-precessing steps nec-
essary to prepare images for MRI segmentation have been described in Section 3.2.
The most important steps include bias field correction, image registration and removal
of non-brain tissues or brain extraction. The correction of intensity inhomogeneity is
an important step for the efficient segmentation and registration of brain MRI. Image
registration is required in brain MRI segmentation for the alignment of multimodal
images of the same subject or several population groups taken at different times and
from different viewpoints.

Due to the rapid development of medical image modalities, new application-specific
segmentation problems are emerging and new methods are continuously explored and
introduced. Selection of the most appropriate technique for a given application is a
difficult task. In many cases, a combination of several techniques may be necessary
to obtain the segmentation goal. Very often integration of multimodal information
(acquired from different modalities or over time) can help to segment structures that
otherwise could not be detected on single images.

The most popular image segmentation methods that are used for brain MRI segmen-
tation have been reviewed and discussed in Section 3.3. Newer methods are usually
designed to bring more accurate results by incorporating neighborhood information
and prior information from atlases. As a consequence, the segmentation process of-
ten becomes more complex and time consuming. The likely future research will still
focus on developing more accurate and noise-robust methods, but also on improving
the computational speed of segmentation methods. Computational efficiency will be
particularly important in real-time processing applications such as computer guided
surgery.

Probably one of the most important questions concerning medical image segmenta-
tion is its use in real clinical settings. It is undeniable that computerized segmentation
methods have shown their potentials and applicability in computer-aided diagnosis
and therapy planing. It is expected that in the near future they will also become essen-
tial tools in real clinical settings, particularly in qualitative diagnosis and where 3D
reconstruction and visualisation of the anatomical structures is important.
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4
Three-label graph cut for 3D

brain MRI segmentation

The science of today is the technology of tomorrow.
– Edward Teller

The increasing importance of 3D medical imaging leads to a growing demand for
volumetric image analysis and automatic 3D MRI segmentation of the brain tissue.
This automatic segmentation is a challenging problem because MRI imperfections
and degradations such as the bias field and noise can highly influence the accuracy of
segmentation methods. To improve segmentation performance and correct erroneous
data, it is often necessary to use some additional knowledge about the image structure
and contextual constraints. Since the intensity of a pixel/voxel in an image is highly
statistically dependent of its neighboring pixels/voxels, the common solution is to
integrate the spatial interaction between neighboring elements directly into the image
segmentation algorithm.

One of the most consistent and convenient ways to model local spatial properties of
an image is using the Markov Random Field (MRF) theory. To establish optimal so-
lutions, MRF theory is often merged with estimation theories and used to formulate
energy functions. Graph cut is a powerful optimization method for a wide class of bi-
nary and non-binary energies that aims to find the optimal solution of the segmentation
problem by minimizing the objective or the energy function [Boykov et al., 2001,Song
et al., 2006, Wolz et al., 2010]. Graph cut method provides an efficient and flexible
approach for image segmentation that can enforce image smoothness while preserv-
ing important image discontinuities [Boykov et al., 2001]. In some cases, such as a
sub-modular MRF problem described in Eq. (3.27), it can produce globally optimal
solutions, as it was shown by Greig et. al. [Greig et al., 1989]. The computational
efficiency of this sub-modular optimization problem is improved by using the combi-
natorial s-t min-cut method on graph, which was proposed by [Boykov et al., 2001].

In this chapter, we address the problem of 3D brain MRI segmentation, where we
focus on multi-label min-cut graph cut segmentation and propose its modification for
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more accurate and automatic 3D brain MRI segmentation. The main contribution of
our work is that we extended s-t min-cut/max-flow graph cut method for automatic
3D brain MRI segmentation using three-label graph and performed comparison study
between this and several state-of-the-art brain MRI segmentation methods. First, we
describe the basic concepts of the graph cut approach. Then, we propose an improved
3D graph-cut method that is designed to use three labels and segment brain MRI in
three brain tissues: WM, GM and CSF. Following this, we study the performance of
the automatic 3D graph cut method on simulated and real brain MRI, and we present
the comparison results with other popular 3D brain MRI segmentation methods. Next,
we apply the proposed method to automatic brain cortex segmentation in patients with
focal cortical dysplasia (FCD). Finally, we draw general conclusions and give future
directions for improving 3D brain MRI segmentation.

This work is done in collaboration with my master thesis student Ief Segers [Segers
et al., 2010] who implemented the proposed segmentation algorithm in C++, created
the graphical user interface (GUI) and did an initial testing of the method on patients
with FCD lesions.

4.1 Graph cut approach - background

Fist, let us introduce some basic terminology. Let G , (V, E) represent a graph,
where V is a set of nodes and E is a set of links (or edges) that connect neighboring
nodes. A set of nodes V = P ∪ {t, s} consists of all nodes in a lattice p ∈ P and two
additional terminal nodes, which are called the source s and the sink t. A set of edges
E = N ∪ {(s, p), (p, t)} consists of two type of edges: n-links and t-links. Edges that
connect two lattice nodes are called n-links and a set of all n-links correspond to a
neighborhood system N for a lattice P . Edges that connect a node p from a lattice P
with a terminal node s or t are called t-links. Note that a neighborhood system can be
arbitrary and may include diagonal or any other kind of n-links.

A non-negative weight w (also called a cost) is assigned to all edges in a graph e ∈ E .
For simplicity, we will concentrate on directed graphs where each pair of connected
nodes p and q (neighboring nodes in P) is described by a single link epq = (p, q) ∈
E and a single weight wpq . Generally, in directed graphs, a cost of a direct edge
is not equal to the cost of the reverse edge wpq 6= wqp. A simple 2D example of
an undirected graph that can be used for image segmentation is shown in Fig. 4.1,
where n-links are represented with blue lines, t-links with red and green lines and
edge weights with the line thickness.

4.1.1 The min-cut and max-flow problems

Let C denote an s-t cut that partitions the graph nodes into two disjoint subsetsO and
B, where s ∈ O and t ∈ B. The cut is a curve (or a hyper-surface in N-dimensional
space) that separates the source s from the sink t. The min-cut problem is to search for
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Figure 4.1: Illustration of a graph with two terminal nodes s and t and a simple 2D segmen-
tation example for a 3 × 3 image. The cost of each edge is represented by the line thickness,
n-links are shown in blue color and t-links in red and green color. An s-t cut is represented with
a dashed line. After the cut, the nodes are connected either to s or t, meaning they are assigned
with one of the two labels: object or background.

an s-t cut with the minimum cost among all cuts, where the cost of a cut C = {O,B}
is the sum of costs of edges traversed by the cut e ∈ C:

| C |=
∑
e∈C

we. (4.1)

Note that a cut in Fig. 4.1 divides the nodes between the terminals and corresponds to a
binary partitioning of an underlying image into “object” and “background” segments.

A min-cut problem can be also solved by finding a max-flow from the source termi-
nal s to the sink terminal t. The max-flow method can be easily explained with the
“quantity of water” that can flow from the source to the sink, while considering graph
edges as “water pipelines” of the size proportional to edge weights [Ford and Fulk-
erson, 1962]. The idea is to push as much “flow” as possible through the directed
graph from the source to the sink and there must be at least one saturated edge on any
path from source to sink (otherwise we could push more flow). The set of saturated
edges separate the source and sink in two disjoint parts {O,B} which correspond to
min-cut. Thus, the max-flow value is equal to the min-cut cost and Fig. 4.2 shows a
simple example of max-flow cut in a given two-terminal graph.
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Figure 4.2: A simple example of the min-cut/max-flow in a given two-terminal graph.



4.1 Graph cut approach - background 97

4.1.2 Energy function for binary optimization

In general, graph representation shown in Fig. 4.1 is used for a binary labeling prob-
lems, where non-terminal nodes p ∈ P represent pixels or voxels, while terminal
nodes t and s represent binary labels 0 and 1, where t = 0 denote a background label
Lbkg and s = 1 denote an object label Lobj. Assume that xp is the intensity value of
pixel p and Np is a small neighborhood around p, not including xp. Then, q denotes
a neighboring node of p and q ∈ Np. Let f = (f1, ..., fp, ...f|P|) be a binary vector
whose components fp ∈ {Lbkg, Lobj} specify assignments to pixel p, where each pixel
p can be either “obj” or “bkg”. Vector f defines a segmentation. The global energy
function that integrates region and boundary properties of f is defined in the same way
as in Eq. (3.27):

E(f) = λ
∑
p

Dp(fp)︸ ︷︷ ︸
data term

+
∑
p,q

Vp,q(fp, fq)︸ ︷︷ ︸
smoothness term

. (4.2)

The coefficient λ ≥ 0 specifies a relative importance of the region properties term
versus the boundary properties term. A regional term is also called a data term because
it is derived from the observed data and it expresses the label preference for each node
p. A boundary term is also called a smoothness term where the interaction (pairwise)
potential Vp,q(fp, fq) expresses the prior knowledge about the optimal labeling f and
is derived from the neighborhood interaction (e.g. MRF).

The data term Dp(fp) assumes that the individual penalties for assigning pixel p to
“object” and “background”, correspondingly Dp(Lobj) and Dp(Lbkg), are given. For
example, the data penalty Dp(fp) can represent how xp (the intensity of pixel p) fits
into given intensity models (e.g. histograms) of the object and background:

Dp(Lobj) = − lnP (xp|Lobj)

Dp(Lbkg) = − lnP (xp|Lbkg).
(4.3)

This definition of the data term is motivated by the MAP-MRF formulations in [Greig
et al., 1989]. Defined in this way, the smaller the value of Dp(fp) the more likely is
the label fp for node p.

The smoothness term describes a penalty for a discontinuity between neighboring
elements p and q, where the interaction potential Vp,q ≥ 0. The cost of Vp,q is close to
zero when the neighboring elements p and q are very different (e.g. in their intensity),
and Vp,q is large when p and q are similar. The penalty Vp,q can also decrease as a
function of distance between p and q. Often, the costs Vp,q is calculated as follows:

Vp,q ∝ exp

(
− (xp − xq)2

2σ2

)
1

dist(p, q)
. (4.4)

The pairwise potential Vp,q(fp, fq) expresses the prior knowledge about the optimal
labeling f .

This function penalizes a lot for discontinuities between pixels of similar intensities
when |xp − xq| < σ. However, if pixels are very different, |xp − xq| > σ, then the
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Figure 4.3: Illustration of a 2D graph cut with a curve (on the left) and a 3D graph cut with a
surface (on the right).

penalty is small. This function corresponds to the distribution of noise among neigh-
boring pixels of an image. Since in brain MRI the noise distribution approximates a
Gaussian distribution (see Section 3.1.4), σ2 can be calculated as:

σ2 =

n∑
i=1

(
(xi − µ)2

n

)
. (4.5)

In the case of binary energy minimization in Eq. (4.2), it is possible to get a globally
optimal labeling f if and only if the pairwise interaction potential Vp,q(fp, fq) satisfies
the regularity condition

Vp,q(0, 0) + Vp,q(1, 1) ≤ Vp,q(0, 1) + Vp,q(1, 0). (4.6)

The theoretical proof of this regularity condition can be found in [Kolmogorov and
Zabih, 2004].

This s-t graph cut segmentation method with binary labels is not restricted to only
2D images and can compute globally optimal segmentation on volumetric 3D images
as well as on volumetric images of any dimension. This was shown in the work of
Boykov et al. [Boykov and Kolmogorov, 2004, Boykov and Funka-Lea, 2006]. In the
case of 2D images, a graph cut can be represented with a curve and for N-D images a
cut is a hyper-surface, see illustration for 2D and 3D case in Fig. 4.3.

Although the s-t graph cut approach is computationally feasible for many tasks, its
straightforward implementation for high-resolution images and 3D volumes is lim-
ited both by the supra-linear time complexity and the intense memory requirements
[Boykov and Funka-Lea, 2006]. Recent results in Lombaert et al. [Lombaert et al.,
2005] showed that multi-level and banded techniques can mitigate the problem.
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4.1.3 Multi-label optimization

Graph cuts can also be used for multi-label energy minimization where |L| > 2. In
certain cases the minimization of the multi-label energy can be exact, but more often
only approximate minimization is possible.

The exact minimum can be found efficiently via graph cuts only if L is a finite 1D set,
the labels are linearly ordered and the interaction potential is Vp,q(fp, fq) = |fp − fq|
[Boykov et al., 2001]. In this case the energy function is:

E(l) = λ
∑
p

Dp(fp) +
∑
p,q

wp,q|fp − fq|. (4.7)

In this multi-label case a graph G = (V, E) is constructed as follows. Graph nodes
V contain terminals s and t and for each node p a set of nodes p1, p2, ..., pk−1 is
created. All nodes are connected with edges {ep1, ..., e

p
k}, where ep1 = {s, p1}, epj =

{pj−1, pj}, and epk = {pk−1, t}. Each edge epj has a weight Kp + Dp(j), where
Kp = 1 + (k − 1)

∑
q∈Np

wp,q . For each pair of neighboring nodes p, q and for each
j = {1, ..., k − 1} create an edge (pj , qj) with weight wpq .

Fig. 4.4 illustrates the part of the graph G which corresponds to two neighbors p and
q. For each node p, a cut on the graph G separates at least one edge epi . The weights
for epi are assigned sufficiently large so that the min-cut separates exactly one of them
for each p. This creates a correspondence between the min-cut and an assignment of
a label to p. If the min-cut separates edge epi , then a label i is assigned to p.

4.1.3.1 Approximate optimization

In the majority of cases, only the approximate optimization of the multi-label en-
ergy function is possible. The major restriction is that the smoothness term in the
energy function must only involve pairs of pixels. The most popular approximation
methods that efficiently find a local minimum for an arbitrary set of labels L are the
α-expansion and the αβ-swap algorithms proposed by Boykov et al. [Boykov et al.,
2001], which are also called the move-making algorithms.

Both the expansion and the swap algorithms find a local minimum of the energy func-
tion defined as in Eq. (4.2) with respect to very large moves. These large moves allow
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a group of image elements to change their label simultaneously, which is in contrast to
the standard moves where only one pixel can change one label at the time. The stan-
dard moves are used in methods such as Iterated Conditional Modes (ICM) [Besag,
1986] and simulated annealing [Geman and Geman, 1984], which sometimes give
results that are far from the global optimum as demonstrated in [Greig et al., 1989].
The move-making algorithms find good approximate solutions by iteratively running
min-cut/max-flow algorithms on appropriate graphs [Boykov et al., 2001,Boykov and
Kolmogorov, 2004]. Boykov et al. proved in their work [Boykov et al., 2001] that
by using α-expansion moves any labeling locally is within a known factor of global
minimum.

The main idea behind these two methods is to decompose the segmentation problem
with multiple labels into a set of problems defined over a set of binary labels. In this
case the binary labels make decision weather the node keeps already assigned label
or it takes the new proposed label. The algorithms start with some initial labeling
and then iteratively find the optimal subset of nodes (i.e. giving the largest energy
decrease) to switch to the new proposed label. The expansion algorithm performs
an iteration for every label α ∈ L, and the swap algorithm for every pair of labels
α, β ∈ L. The algorithm stops when no further decrease of the energy is possible.
Both algorithms terminate in a finite number of steps.

Since in this thesis we use only α-expansion algorithm for three-label graph cut opti-
mization, we will explain it in more detail.

4.1.3.2 α-expansion algorithm

Let f denote a given labeling (an input labeling) and f
′

a new labeling. A labeling f
uniquely defines an image partition P = {Pl|l ∈ L}, where Pl = {p ∈ P|fp = l}
is a subset of nodes assigned label l. A new labeling f ′ defines a new partition P

′
.

Given a label α and an input labeling f , the goal is to find a labeling f̂ that minimizes
the energy E over all labelings within one α-expansion of f .

The outline of the α-expansion algorithm is:

1. Start with an arbitrary labeling f .

2. Set success:=0.

3. For each label α ⊂ L:
find f̂ = arg minE(f

′
) among f

′
within one α-expansion of f .

4. If E(f
′
) < E(f), then set f := f̂ , success:=1 and go to the step 2.

5. Return labeling f .

The structure of the α-expansion graph Gα = (Vα, Eα) is illustrated in Fig. 4.5 on the
case of a 1D image for simplicity. The set of nodes includes two terminals α and ᾱ
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Figure 4.5: An example of the graph structure for α-expansion on the case of a 1D image.
The set of pixels in an image are represented with nodes P = {p, g, r, s} and there are two
auxiliary nodes a = apq and b = ars. The current partition is P = {P1,P2,Pα}, where
p ∈ P1, {q, r} ∈ P2 and s ∈ Pα.

.

and all image elements p ∈ P . Additionally, an auxiliary node apq is created for each
pair of neighboring nodes {p, q} ∈ N that are separated in the current partition (e.g.
such that fp 6= fq), where the set of all auxiliary nodes is denoted by A. Auxiliary
nodes are introduced at the boundaries between partition sets Pl for l ∈ L. Then, we
can write the set of all nodes Vα as:

Vα = {α, ᾱ,P,A}. (4.8)

Each node p is connected to the terminal nodes α and ᾱ by t-links epα and epᾱ re-
spectively, where the set of all t-links is denoted by Et-links. Each pair of neighboring
nodes, which are not separated by partition P (fp = fq), is connected by n-link Epq ,
where the set of all n-links is denoted by En-links. Additionally, for each pair of neigh-
boring nodes {p, q} ∈ N which are separated by partition P (fp 6= fq), three edges
are defined Epq = {epa, eaq, eaᾱ}, where a = apq is the auxiliary node. The set of all
triplet of edges is denoted by Apq . Then, we can write the set of all edges Eα as:

Eα = {Et-links, En-links,Apq}. (4.9)

Any cut C on graph Gα must separate one t-link for any pixel p ∈ P . An image
element p keeps its old label fp if the cut C separates the t-link epᾱ and p is assigned
a new label α if the cut C separates the t-link epα. The cut C also separates n-links
epq if and only if the cut C connects nodes p and q to different terminals. In the case
of the triple set of edges Epq , the cut C can be defined in 4 different ways:

1. If epα, eqα ∈ C, then C ∩ Epq = ∅, see Fig. 4.6(a);

2. If epᾱ, eqᾱ ∈ C, then C ∩ Epq = eaᾱ, see Fig. 4.6(b);

3. If epᾱ, eqα ∈ C, then C ∩ Epq = epa, see Fig. 4.6(c);

4. If epα, eqᾱ ∈ C, then C ∩ Epq = eaq
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Figure 4.6: An illustration of the possible cuts on a graph Gα for two nodes p, q, where fp 6= fq .
(a) C ∩ Epq = ∅; (b) C ∩ Epq = eaᾱ; (c) C ∩ Epq = epa.

According to the study in [Kolmogorov and Zabih, 2004] the α-expansion algorithm
may be used whenever Vp,q(α, α) + Vp,q(β, γ) ≤ Vp,q(α, γ) + Vp,q(β, α), for all
α, β, γ ∈ L, which is also called the expansion inequality.

4.2 Three-label graph for brain segmentation

In this section we describe our graph cut 3D brain MRI segmentation method, which
is based on the multi-label α-expansion graph cut algorithm proposed by Boykov et
al. [Boykov et al., 2001, Boykov and Kolmogorov, 2004].

To segment brain MRI data we create an extended 3D graph cut method with three
labels L = {LWM, LGM, LCSF} and three terminal nodes WM,GM,CSF, which refer
to the three brain tissue types: WM, GM and CSF. First, we define the MRF-based
energy function in the same way as in Eq.(4.2). Then, we define the data term and
the smoothness term based on the intensity and boundary information of the observed
MRI data. The fusion of intensity and boundary properties and definitions of data and
smoothness terms are described in the following sections.

4.2.1 Data term

The data term Dp(lp), lp ∈ {LWM, LGM, LCSF} defines t-links and is derived from the
observed MRI data assuming a Gaussian mixture model (GMM) as an intensity model,
where each tissue class (WM, GM and CSF) is modeled by a Gaussian distribution,
see Section 3.1.4. A GMM is fitted to intensity histogram using the expectation-
maximization (EM) algorithm as described in [D’Souza, 2004] and in Section 3.3.2.3.
In this way, the partial volume effects, which occur at the boundaries between tissues,
are also taken into account.
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After the Gaussians are calculated, we have for each intensity value the probabilities of
belonging to the three tissues P (xp|LWM), P (xp|LGM) and P (xp|LCSF). Since adding
a constant to Dp(lp) does not change the energy formulation [Boykov et al., 2001],
we assume without loss of generality that all Dp(lp) are non-negative. Following this,
we define the data term Dp(lp) for each label as the maximum penalization constant
Kmax minus the sum of the negative log-likelihoods of the probabilities that voxel p
belongs to the other two labels:

Dp(LWM) = Kmax − ((− lnP (xp|LGM) + (− lnP (xp|LCSF)) ,

Dp(LGM) = Kmax − ((− lnP (xp|LWM) + (− lnP (xp|LCSF)) ,

Dp(LCSF) = Kmax − ((− lnP (xp|LWM) + (− lnP (xp|LGM)) .

(4.10)

The constant Kmax is chosen large enough to keep Dp(lp) positive.

4.2.2 Smoothness term

The smoothness term Vp,q defines n-links and is based on two terms: the intensity V Ip,q
term and the boundary term V Bp,q:

Vp,q = cV Ip,q + (1− c)V Bp,q, (4.11)

The intensity term depends on the intensity information and the distance between the
neighboring elements p and q (q ∈ Np), while the boundary term depends on the
boundary information. The parameter c controls the contribution of the boundary and
intensity terms. When c = 1, only the intensity discontinuity part has an influence and
when c = 0, only the boundary term has an influence.

The boundary information is derived from image gradients, which have been often
used as a measure of image sharpness and an indication of image boundaries. First,
the gradient gp is computed for each image voxel p as the derivative of the intensity
values of the neighboring voxels in the chosen 3D neighborhoodNp, see Section 3.4.1.
Then, the mean gradient ḡp for the considered voxel is calculated to reduce the noise
influence. For each voxel p, the boundary information is calculated as:

Bp = 1− exp(−ḡp/σg), 0 < Bp < 1, (4.12)

where σg is the normalization factor. In the computation of the boundary information
Bi between two neighbouring voxels p and q, the maximum mean gradient is used
from the set of local maxima along the line joining elements p and q, denoted as
Mp,q [Malik et al., 2001]. The gradient-based boundary term is defined as V Bp,q =
(1 −maxi∈Mp,q

(Bi)). Bi is nearly 1 whenever the gradient is maximum at i, which
means that there is a strong local maximum along Mp,q and that elements p and q
have weak connection between them. On the contrary, if only the weak local maxima
exist along Mp,q , then Bi is nearly 0 and the connection between the two pixels will
be strong, wB will be nearly 1. For example, this will happen in a constant brightness
region.
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Following these definitions, the smoothness term Vp,q can be calculated as:

Vp,q = c

(
exp

(
− (xp − xq)2

2σ2

)
1

dist(p, q)

)
︸ ︷︷ ︸

intensity term

+ (1− c)
(

1− max
i∈Mp,q

(Bi)

)
︸ ︷︷ ︸

boundary term

. (4.13)

The intensity term penalizes intensity discontinuities and is based on the MRF. Each
node in the lattice P corresponds to a voxel in the brain MRI volume and n-links
between nodes are created using the same neighborhood systemNp as in the boundary
term. The edge (n-links) weights are defined by the first term in Eq. (4.13), which
consists of the squared intensity difference between the two voxels (xp − xq)2, the
intensity variance σ2 over the whole volume and the distance dist(p, q) between both
voxels. When the intensity difference is small, the weight will be large and vice versa.
Consequently, the voxels with similar intensity values will less likely be separated
from each other because the cost will be higher. Similarly, the voxels with largely
differing intensities will be faster separated. The variance σ2 is included to adapt
between images with overall strongly differing intensity values and those with overall
less differing intensity values. Finally, taking the spatial distance between into account
ensures that voxels that are further away contribute less to the neighbourhood system
of the considered voxel.

4.2.3 Graph construction and energy minimization

The construction of the three-label graph G = (V, E) and a simple example of 2D
image segmentation are illustrated in Fig. 4.7. For simplicity, an example is given for a
2D image with 3×3 pixels. The set of nodes consists of three terminals WM,GM,CSF
and lattice nodes p ∈ P , where each lattice node represent one image pixel.

The first step in Fig. 4.7 involves the creation of the graph with two different set
of edges: n-links and t-links. Each node p is connected to the terminal nodes
WM,GM,CSF by t-link. The weights of t-links are defined by a GMM model and are
represented in the energy function as the data term Dp(lp), lp ∈ {LWM, LGM, LCSF}.
Each pair of neighboring nodes {p, q} ∈ N is connected by n-link epq according
to the predefined neighborhood system Np. The weights of n-links are defined by a
MRF model and a gradient image, and are represented in the energy function as the
smoothness term Vp,q .

The created graph is a three-label graph, as shown in the second step. An optimal
segmentation will be achieved by minimizing the energy function for all possible seg-
mentations. The minimization of the energy function is achieved by decomposing the
three-label problem into a set of problems defined over a set of binary labels, using
α-expansion algorithm, see Section 4.1.3.2. The third step presents the final result
of this minimization that consists of a multi-way cut and a final label assignment to
pixels. The resulting graph can be denoted by G = (V, E − C), where the cost of the
cut |C| is the sum of its edge weights in the edge set C.
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Figure 4.7: Overview of the three-label graph cut segmentation for a 2D image with 3×3 pixels.
In the first step, the two different types of edges of the graph are presented. The second step
shows the complete graph. The edges between lattice nodes p ∈ P are initialized with weights
that are calculated based on the smoothness properties (MRF and gradients). The weights for
the edges between lattice nodes and terminal nodes (labels) are based on the data properties
(intensity model). The third step presents the final result of the energy minimization and a final
label assignment to pixels.

The major problem with energy minimization of the large 3D volumetric data using
graph cuts is in the computational cost. Graph cut implementation for high-resolution
volumetric MRI of the brain such as 256× 256× 120 or even higher 512× 512× 120
is limited both by the supra-linear time complexity and the intense memory require-
ments. One of the solutions is to split the 3D volume into a number of volumes. In our
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Graph 1 Graph 2

Sub-volume 1 Sub-volume 2

Figure 4.8: Illustration of a 3D volume splitting into two overlapping parts on a simplified
example. Let’s assume that all balls together make the entire 3D volume and that each ball
represents one image voxel. The light gray balls represent the voxels from the first sub-volume,
the dark gray balls represent the voxels from the second sub-volume and the mid-gray balls
represent the overlapping voxels that belong to both the first and the second sub-volume. To
do 3D segmentation we use 2 graphs, each for one sub-volume. The segmentation results are
stored for the first and the second sub-volume to the middle of the overlap.

implementation we split the 3D volume into two overlapping sub-volumes. This over-
lap between sub-volumes is important because we want to keep continuity of the 3D
edge information and the spatial context information that are included in the energy
function. We use an overlap of 20 voxels wide and the segmentation results are stored
for the first and the second sub-volume to the middle (10th voxel) of the overlap. This
3D volume splitting is illustrated in simplified example in Fig. 4.8.

4.3 Experimental results

In this section we present the performance of the proposed three-label graph cut
method for 3D brain MRI segmentation (from hereon termed as 3DGC). The method
was validated both quantitatively and qualitatively on a realistic digital brain phan-
tom MRI data (BrainWeb) and real MRI data. The simulated brain MRI data were
downloaded from the BrainWeb Database [BrainWeb, 2013, Collins et al., 1998] and
the real MRI data were downloaded from the Internet Brain Segmentation Repository
(IBSR) [IBSR, 2013]. The IBSR provides real patient MRI data and manually guided
expert segmentation results, which are used as a “ground truth” segmentation in this
study.

In all experiments we used T1-W MRI volumes and we performed a comparison study
to other 3D brain MRI segmentation methods. Our quantitative results indicated that
the 3D graph cut segmentation performs well in comparison with other state-of-the-
art methods without the use of a prior knowledge of a preregistered statistical brain
phantom.
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4.3.1 Simulated brain MRI data - BrainWeb

To validate the method quantitatively, we need images with known “ground truth”
because the gold standard for the analysis of real MR images does not exist, see
Section 3.5. Thus, we used the simulated MRI from the realistic brain phantom,
BrainWeb [Collins et al., 1998] (181 × 217 × 181 voxel matrix with a resolution
of 1mm × 1mm × 1mm), where the “ground truth” segmentation is provided. The
BrainWeb data is available for different additive noise levels. The noise level (ex-
pressed in percentages) is relative to the average real and imaginary values of the
overall brightness of the tissue class. The noise is generated using a pseudorandom
Gaussian noise, which is added to both real and imaginary components before the final
magnitude value of the simulated MR image is computed.

In the following experiments, we use the Dice coefficient ρi [Dice, 1945] as a sim-
ilarity measure to quantify the overlap between the automated segmentation and the
given “ground truth” for each tissue type i:

ρi =
2|Ai

⋂
Bi|

|Ai|+ |Bi|
, (4.14)

where Ai and Bi denote the set of pixels labeled into i by the “ground truth” and
3DGC segmentation respectively, and |Ai| denotes the number of elements in Ai.

The Dice coefficient is in the range 0 ≤ ρi ≤ 1 and has value 0 if there is no overlap
between the two segmentations and 1 if both segmentations are identical. The average
Dice coefficient ρavr, considering the Dice coefficients of all three brain tissues ρWM,
ρGM and ρCSF, is calculated as follows:

ρavr =
ρWM + ρGM + ρCSF

3
. (4.15)

4.3.1.1 Quantitative results

In Fig. 4.9 we show the results of different experiments where we tested the perfor-
mance of the proposed 3DGC method for different noise levels 3%, 5%, 7% and 9%.
First, in Fig. 4.9(a) we show comparison results between the proposed three-label
graph cut method implemented in 3D and in 2D (slice by slice). The results show
that the 3D implementation of the method has better performance for all noise levels.
Then, in Fig. 4.9(b) we show the performance of the 3DGC method considering a
different number of neighbors which are used to model the spatial contextual infor-
mation. The best results are obtained for 18 neighbors for all noise levels. Following
this, we experimentally searched for the values of the parameters λ and c, for which
the 3DGC gives the best segmentation. Both parameters are strongly dependent on the
noise level and are plotted in Fig. 4.9(c) and Fig. 4.9(d) respectively. The parameter
λ is decreasing and the parameter c is increasing with the higher noise levels. Finally,
we show in Fig. 4.9(e) the comparison between the two-label graph cut method pre-
sented in Section 4.1.2 and the proposed three-label graph cut method, for GM and
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Figure 4.9: (a) The average similarity measure ρavr of the proposed graph cut method in 2D
(slice by slice and using 8 neighbors) and in 3D (using 18 neighbors). (b) Sensitivity of the
3DGC method to a different number of neighbors. (c) The parameter λ for different noise
levels and 18 neighbors. (d) The parameter c for different noise levels and 18 neighbors.(e) The
similarity measure for the gray matter ρGM in the case of the 3DGC method and the two-label
graph cut presented in Section 4.1.2 and implemented in 3D.

both implemented in 3D. In the two-label graph cut the first label is the gray matter
and the second label is the rest of the brain.

Considering these experimental results, in the following experiments we use 18 neigh-
bors for the 3DGC segmentation and depending on the noise level, we choose the
appropriate parameters λ and c to obtain the optimal segmentation.
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Figure 4.10: Segmentation performance of the 3DGC method for different noise levels. (a) The
average similarity measure ρavr of the slices of the phantom volume in the range [30− 150], for
different tissue types. The similarity measure of all individual slices per tissue type are show in
(b) for WM, (c) for GM and (d) for CSF.

More detailed segmentation results of the 3DGC method for different noise levels
are shown in Fig. 4.10. The results are presented for each tissue type individually
ρWM, ρGM, ρCSF (for all BwainWeb data slices) and as the average Dice coefficient
ρavr. Typically, only the slices in the range [20 − 150] are taken into account for a
quantitative evaluation and the average Dice coefficient ρavr calculation, because the
slices outside this range do not contain the brain tissue. From the results we can see
that the best results are obtained for the WM segmentation and the lowest results for
the CSF segmentation. Considering individual Dice coefficients, we can see that ρGM

is stable over a wide range of slice numbers, but drops in the higher regions of the
brain. In contrast, ρWM is showing the better results in the higher than in the lower
regions of the brain. In the case of ρCSF, the best performance is at the very low and
high regions of the brain, while there are some decreases in the performance in the
middle regions.

The segmentation results of the 3DGC method using BrainWeb data are compared
with seven popular methods for 3D brain MRI segmentation: (1) FMRIB’s Auto-
mated Segmentation Tool (FAST-FSL) [Zhang et al., 2001], (2) Statistical Parametric
Mapping (SPM) [Ashburner and Friston, 2005], (3) Histogram-Based method with
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Figure 4.11: Comparison analysis of the 3DGC method with seven popular brain MRI segmen-
tation methods. (a) The similarity measure for the gray matter ρGM. (b) The similarity measure
for the white matter ρWM. For all segmentation methods the existing parameters were chosen
to give the highest similarity measure.

automated Threshold (HBT) [Antel et al., 2002], (4) Fuzzy C-Means (FCM) [Bezdek,
1981], (5) EM-based Segmentation method (EMS) [Van Leemput et al., 1999], (6)
Constrained Gaussian Mixture Model method (CGMM) [Greenspan et al., 2006] and
(7) Adaptive Mean-Shift method (AMS) [Mayer and Greenspan, 2009]. The compar-
ison results are presented in Fig. 4.11.

Results show that for the lowest noise level of 3%, HBT and FCM give the best re-
sults but for the higher noise levels, the accuracy of these methods decrease rapidly.
For other noise levels, the 3DGC method outperforms other segmentation methods,
except for the highest noise level of 9%, where the best performance in segmenting
the GM was achieved using the FSL method. In all experiments, the parameters of the
segmentation methods were selected to give the best segmentation result.
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Original phantom slice Ground truth 3DGC FSL

SPM FC           M HBTNoise free phantom

Figure 4.12: Segmentation results of the phantom slice 90 with the highest noise level 9% for
the 4 different methods. In the upper left corner is the MRI image with the 9% noise and in
the lower left corner is the original simulated MRI image without noise. The “ground truth”
segmentation image is showing three tissue types: WM in white, GM in light gray and CSF
in dark gray. The 3DGC and FSL segmentation results show the closest resemblance to the
“ground truth” image, while the HBT, FCM and SPM retain more noise artifacts.

4.3.1.2 Qualitative results

To illustrate the quantitative results, in Fig. 4.12 we show the qualitative results on the
BrainWeb phantom slice number 90 with the highest noise level 9%. In this represen-
tative example, we can see how different segmentation methods including the 3DGC,
FSL, SPM, FCM and HBT are performing in the presence of noise. It is clear from
Fig. 4.12 that the HBT and FCM have a lot of noise artifacts, which are especially
visible in the white matter regions. This is because these two methods are very sensi-
tive to image noise and deal with image pixels as separate points, without integrating
the spatial contextual information. The SPM segmentation shows less noise artifacts,
but still lacks in accurate labeling of the neighboring voxels and do not preserve the
homogeneous regions. Finally, the FSL and 3DGC methods show the best segmenta-
tion performance and the highest robustness to noise. They both succeed to enforce
the spatial coherence and correctly label the neighboring voxels in the noisy areas.
Judging on these visual results, it is difficult to say which method performs better in
this particular example. However, the benefit of the 3DGC method in comparison to
FSL is that we do not use the spatial priors based on the atlas information, which are
used in FSL method and still, we obtain a high segmentation accuracy.
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4.3.2 Real MRI data - IBSR

In this section we demonstrate the performance of the 3DGC on real MRI datasets
for the brain gray matter segmentation. A set of 20 normal T1-W MRI brain data
was downloaded from the IBSR repository [IBSR, 2013] together with the manually
guided expert segmentation results, which are used as a “ground truth” segmentation.
Each MRI volume consists of about 60 coronal T1-W slices with the inter-slice reso-
lution of 3.1 mm (thickness between consecutive slices). We also downloaded from
the IBSR repository segmentation overlap index of the several brain MRI segmenta-
tion methods, which are available for a comparison study. The overlap index between
the manual expert segmentation (the “ground truth” segmentation) and the automatic
segmentation is measured with the Tanimoto coefficient T (i) (also known as Jaccard
index) for each tissue type i

Ti =
|Ai
⋂
Bi|

|Ai|+ |Bi| − |Ai
⋂
Bi|

, (4.16)

where Ai and Bi denote the set of pixels labeled into i by the “ground truth” and the
segmentation method respectively, and |Ai| denotes the number of elements in Ai.
Note that T (i) ≤ ρ(i) and 0 ≤ T (i) ≤ 1.

Before we tested the performance of the 3DGC method on the IBSR data, we did the
bias field correction of all MRI scans using the method proposed by [Sled et al., 1998].
We skipped the brain extraction step, because we downloaded MRI scans where the
non-brain structures were previously removed. For more details about the bias field
correction and the brain extraction see Section 3.2.

4.3.2.1 Quantitative results

Quantitative results of the 3DGC method along with results of six other segmenta-
tion methods from the IBSR website and literature are shown in Fig. 4.13 for all
20 volumes. The six segmentation methods that we used in this comparison study
are: (1) Adaptive Mean-Shift method (AMS) [Mayer and Greenspan, 2009], (2)
Adaptive MAP method (AMAP) [Rajapakse et al., 1997], (3) Biased-MAP method
(BMAP) [Rajapakse and Kruggel, 1998], (4) Fuzzy C-Means (FCM) [Bezdek, 1981],
(5) Bayesian method for automatic segmentation of brain MRI (MPM-MAP) method
[Marroquin et al., 2002] and (6) MLC method [Duda et al., 1973].

The proposed 3DGC method competes favorably with the other considered methods.
This trend is most evident in the first six volumes, which are quoted in the literature as
being particularly difficult scans, of low contrast and relatively large spatial inhomo-
geneities. The IBSR bran volumes have been roughly ordered by their difficulty to be
segmented, ordered in decreasing level of difficulty. The 3DGC results are consistent
across the varying brain data, whereas the alternate segmentation methods exhibit a
strong decrease in performance in the more difficult cases.
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Figure 4.13: Comparison analysis of the 3DGC method with six popular brain MRI segmen-
tation methods. The graph shows the Tanimoto similarity measure for the gray matter TGM.
For all segmentation methods the existing parameters were chosen to give the highest similarity
measure.
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Figure 4.14: Three examples of T1-W MRI with FCD lesions. The lesions are indicated with
a circle. They are characterized by increased cortical thickness and blurring of the cortical gray
matter and white matter border.

4.4 3D brain cortex segmentation in patients with FCD

In patients with intractable epilepsy, focal cortical dysplasia (FCD) is the most fre-
quent malformation of cortical development. The latest studies have indicated that
one out of two hundred adults suffer from recurrent epilepsy [Rajan et al., 2009] and
30% of them are due to FCD. In clinical treatment, the FCD lesions often have to be
removed by surgery and before this can be done, it is necessary to detect and delineate
the lesions. However, FCD detection is a very challenging task and standard radiolog-
ical MRI evaluation of the lesions still fails in many cases, because of the complexity
of the cortex and subtle behavior of the lesions. Therefore, developing an automatic
algorithm for FCD detection would be a very useful tool for clinical diagnosis and
surgical planning.

On MRI scans, FCD lesions are typically characterized with the increased cortical
thickness, blurring of the gray-white matter interface and hyperintensity signal in the
lesion area. Examples of T1-W MR images with FCD lesions are shown in Fig. 4.14.

To date, several methods have been reported for detection and visual improvement of
FCD lesions [Bernasconi et al., 2001, Antel et al., 2002, Colliot et al., 2005, Besson
et al., 2008]. Often, the T1-W MRI scans are first preprocessed by removing skull,
lipid layers and intensity inhomogeneity. Then, the maps of the three main FCD fea-
tures for a lesion detection are calculated: cortical thickness map, gradient map and
relative intensity map. The cortical thickness map is derived from a cortical thickness
measurement, which requires MRI segmentation of the brain cortex as a preprocessing
step. However, the choice of the selected segmentation method and its segmentation
accuracy can highly affect the cortical thickness map and final FCD lesion detection.
For instance, in the approach of [Bernasconi et al., 2001], the main problem is a large
false positive rate where many non-lesion areas are detected as lesions. This is mainly
due to the limitations of the cortical thickness model, which does not evaluate the
gray matter thickness with enough accuracy. The overview of the FCD lesion detec-
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tion steps is shown in Fig. 4.15.

In general, accurate MRI brain cortex segmentation is a challenging task, not only
because of the complicated structure of the brain and the anatomical variability be-
tween subjects, but also because of the presence of noise and often low contrast be-
tween brain tissues in MRI. This is even a more difficult problem in the patients with
subtle brain lesions which might be hard to visualize on brain MRI. Since manual
segmentation is time-consuming, prone to errors and subjective, automated and ac-
curate tissue segmentation is needed. Currently, the most popular methods used for
brain cortex segmentation in FCD patients are the histogram-based method with auto-
mated threshold (HBT) [Antel et al., 2002], FMRIB’s Automated Segmentation Tool
(FAST-FSL) [Zhang et al., 2001], Statistical Parametric Mapping (SPM) [Ashburner
and Friston, 2005] and Fuzzy C-Means (FCM) [Bezdek, 1981]. The comparative seg-
mentation results of these methods on the healthy brain are shown in Section 4.4.1.

While most of these methods are suitable for general brain tissue segmentation, HBT
is used in the vast majority of FCD detection techniques because of its simplicity and
good computational efficiency. The main disadvantage of the HBT method (as well
as of the standard FCM method) is its high sensitivity to noise and other imaging
artifacts. In contrast, the FSL, SPM and graph cuts methods are less sensitive to noise
because they include the spatial contextual information in the image segmentation.

In this Section we use an improved three-label 3D graph cut segmentation framework,
which integrates intensity and boundary information, to segment brain cortex in 3D in
FCD patient. The boundary information is used to constrain the shape of the cortex
with a goal to achieve more precise cortex segmentation. The performance of the
method is tested on real patients with FCD lesions. The location and the size of
all FCD lesions is manually indicated by an expert physician in all patients. This
manual segmentation was used as a “ground truth” for the qualitative evaluation of the
experimental segmentation results.

Our results showed that the proposed method is effective, robust to noise and achieves
good segmentation of the brain cortex. The qualitative validation, visually verified
by a medical expert, showed that the FCD lesions were segmented well as a part of
the cortex, indicating increased thickness and cortical deformation. The results of
our segmentation can be further used for a cortical thickness measurement and lesion
detection.

4.4.1 Qualitative validation

The qualitative validation was performed on MR images of 8 real patients with FCD
lesions. The MRI data were recorded at Ghent University Hospital on a Siemens 3T
MRI scanner (256×256×176 voxel matrix with a resolution of 1mm×1mm×1mm).
The MRI were preprocessed by removing skull, lipid layers and bias field. The cortex
segmentation is visually evaluated by expert physician. In all cases the segmentation
was successful and the lesions were segmented as part of the cortex. The segmentation
results are shown in Fig. 4.16 for four patients. The original MRI slice is shown on
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Figure 4.15: An overview of the steps for automatic FCD lesion detection.
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P1

P2

P3

P4

Original MRI SegmentationFCD lesion

Figure 4.16: The cortex segmentation results for four different patients are shown in each row.
The original MRI slice is shown at the left and the resulting slice after segmentation with the
3DGC is shown at the right.

the left with a rectangle around the lesion. On the right is the segmentation result.

For all patients we use the 3DGC method with 18 neighbors and the parameters c =
0.3 and λ = 2040. The parameters are experimentally determined and since the
segmentation results highly depend on the choice of the parameter λ we performed
additional experiments. In Fig. 4.17 and Fig. 4.18 we show two examples on how
different values of the parameter λ influence the segmentation results [Segers et al.,
2010]. We use four different values of the parameter λ: (a) λ = 510, (b) λ = 1020,
(c) λ = 1530 and (d) λ = 2040. In these two examples, as well as for the other
six FCD patients, the worst segmentation result is obtained for λ = 510, where the
brain cortex is over-segmented. Considering the opinion of the expert physician, the
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Figure 4.17: Illustration of the 3DGC performance on real FCD patient’s MRI for different
values of the parameter λ [Segers et al., 2010]: (a) λ = 510, (b) λ = 1020, (c) λ = 1530 and
(d) λ = 2040.

best segmentation of the cortex is obtained for λ = 2040, where both the cortex and
lesions are well delineated together.

4.5 Computational efficiency

The final implementation of the automatic 3DGC method and the graphical user in-
terface is done in C++ by my master student Ief Segers [Segers et al., 2010]. The
graphical user interface (GUI) is implemented in Qt. The visualisation of the segmen-
tation results in 2D and 3D is done using the Visualization Toolkit (VTK) [Schroeder
et al., 2006]. The Insight Toolkit (ITK) is used for the lesion annotation and for cal-
culating the bias field using the N4ITK method [Sled et al., 1998].

The execution time of the 3DGC method for 181 × 217 × 181 brain volume is about
3 min. This execution time is calculated without taking into account preprocessing
steps such as the brain extraction and the bias field estimation. The execution time
of the bias field alone is about 1 hour, for the same brain volume. This means that
the 3DGC segmentation method is fast, but preparing MR images for segmentation is
time-consuming and highly influence the computational complexity of the complete
segmentation process.
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Figure 4.18: Illustration of the 3DGC performance on real FCD patient’s MRI for different
values of the parameter λ [Segers et al., 2010]: (a) λ = 510, (b) λ = 1020, (c) λ = 1530 and
(d) λ = 2040.

4.6 Discussion

The segmentation performance of the 3DGC method was extensively validated in this
study. Both quantitative and qualitative validation for different noise levels was done
using the brain phantom MRI data. The quantitative validation was also done on
real MRI data, while the qualitative validation is performed on real MRI data of the
patients with FCD lesions. In the following text we will discuss the segmentation
results in more detail.

The quantitative validation indicated that the 3DGC method using three labels and
18 nearest neighbors gives the best segmentation results. To obtain the best possible
segmentation, we also needed to experimentally adjust the values of the parameters λ
and c. The parameter λ controls the relative importance of the data term versus the
smoothness term in the energy function, while the parameter c controls the relative
importance of the boundary versus the intensity properties in the smoothness term.

At higher noise levels, we found better segmentation performance for the lower values
of the parameter λ. A lower value of λ gives more importance to the smoothness term,
which uses the spatial neighborhood information (integrates MRF) to attract neighbor-
ing voxels to the same tissue class. In this way, the smoothness term is eliminating
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noise and small isolated artifacts, but at the same time is smoothing and removing
some important anatomical details of the brain cortex. For instance, the smoothing
can eliminate tiny cortical fissures in the brain surface (called sulcus) which are filled
with CSF, see Section 2.1.1. These fissures are very important for a cortical thickness
measurement because if they are over-smoothed and not segmented well, the cortical
thickness in that area will increase and indicate a false cortical lesion.

To avoid tissue over-smoothing and over-segmentation we integrated the boundary
information in the smoothness term, which is controlled with the parameter c, see
Section 4.2.2. If the parameter c = 1, then the boundary information has no influ-
ence and only the intensity discontinuity part controls the smoothness term. But when
c = 0, the boundary term has the highest influence. In our experiments, the parameter
c was tested for several different values and in average the best segmentation perfor-
mance was obtained for c = 0.3. Different values of the parameter c did not show a
high impact on the final Dice coefficient values. This is because the Dice coefficient is
calculated for the whole 3D volume, which is much bigger than the tiny fissures in the
brain cortex. Thus, the best way to see an improvement in the fissure segmentation is
by qualitative validation.

The 3DGC method is compared quantitatively with seven different segmentation
methods, see Section 4.3. For the lowest noise level of 3%, HBT and FCM gave
good results, but for the higher noise levels, the accuracy of these methods decreased
rapidly. For higher noise levels, the quantitative results indicated that the 3DGC
method with three classes and 18 neighbors outperformed other segmentation meth-
ods. Only for the highest noise level of 9%, the best performance in segmenting the
GM was achieved using the FSL method. In the case of real MRI data, the proposed
3DGC algorithm is shown to competes favorably with the set of algorithms tested for
GM tissue. The first six brains of the dataset are known to be particularly difficult to
segment as they correspond to “older” scans with the strong bias field. In all experi-
ments, the 3DGC method was able to enforce the spatial coherence and correctly label
the neighboring voxels in the noisy areas.

The performance of the 3DGC method was also tested on 3D MRI data of the pa-
tients with FCD lesions. The qualitative results showed that in all eight patients the
FCD lesions were segmented well together with the brain cortex, indicating an in-
creased cortical thickness. The segmentation performance was highly influenced by
the parameters λ and c. As it was the case with the qualitative results, the quantitative
results showed that the changes in the parameter λ influenced the final segmentation
more than the changes of the parameter c. However, even for a wide range of λ and
c values, the lesions were segmented as a part of the cortex. These results suggest
that the 3DGC method is suitable for calculating the cortical thickness map and can
be further integrated in the FCD lesion detection framework, see Fig. 4.15.
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T1-W MRI FLAIRFCD Lesion

Figure 4.19: FCD lesion on T1-W and Core Flair MRI. By integrating both MRI modalities in
a segmentation framework can improve the FCD lesion detection.

4.7 Future directions

In the future work, several different possibilities can be considered for improving the
performance of the 3DGC method. The first possibility is to extend the graph cut
algorithm to deal with multimodal image information. For instance, by integrating
T1-W and FLAIR MRI of the brain, it is possible to obtain additional features for FCD
lesion detection and to create more accurate multimodal brain cortex segmentation. In
some cases, FCD lesions are hardly visible on T1-W images, but they can be detected
on FLAIR scans. Two examples of T1-W and FLAIR images with FCD lesions can
be seen in Fig. 4.19.

The second possibility is to include the prior knowledge of the probabilistic brain at-
las or the training data of the patients with FCD lesions into the segmentation frame-
work. It has been show by several studies that atlas-based MRI segmentation of the
healthy brain is more accurate and can deal with several MRI artifacts. However, it
has been also noticed that atlas-based MRI segmentation fails when the segmentation
deals with the brain with certain deviations and lesions which are not captured by the
atlas database. In those cases, it is possible to create a training subset of MRI data
with expert-delineated brain deviations of interest and include it in the segmentation
framework as a prior knowledge, where the training data is not used for the perfor-
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mance evaluation.

The third possibility is to improve the gradient-based boundary information in the
smoothness term to be more robust to image noise. Since the gradients are very sen-
sitive to noise, in this work we used an average image gradient to suppress the noise
problem. However, when MRI sequences are corrupted by higher noise levels, the
problem of determining the accurate spatial gradients becomes challenging and often
certain boundary information is over-smoothed by averaging. One of the solutions is
to use more sophisticated methods that can successfully deal with image noise (e.g
phase congruency method [Kovesi, 2000]) or to improve the spatial gradient calcula-
tion.

The fourth possibility is to automatically determine the optimal parameters λ and c.
In this work we did an experimental study on how different values of the parameters
influence the segmentation results. We found a strong relationship between the param-
eters and image noise. The higher the noise level is in the image, the lower λ and the
higher c are needed. The lower λ gives more importance to the smoothing term and
the higher c gives more importance to the boundary term (if the boundary information
is properly determined).

Finally, the validation of the method on more FCD patients and further improvements
in both speed and accuracy of the 3DGC can be also considered in the future work.

4.8 Conclusion

In this chapter we presented an improved technique for 3D brain MRI volume segmen-
tation based on the graph cut algorithm. In Section 4.1, we explained the basic con-
cepts necessary for understanding graph cut segmentation methods. This included the
explanation of the min-cut and max-flow problems, definition of the energy function
for binary optimization and definition of the problem for multimodal energy minimiza-
tion. Then, we explained in more detail the α-expansion algorithm for approximate
energy optimization that we used for energy minimization of the proposed three-label
graph cut approach. Following this, we explained an improved three-label graph cut
method for 3D brain MRI segmentation in Section 4.2. We defined the data and the
smoothness term of the energy function using intensity, boundary and spatial neigh-
borhood information.

In Section 4.3 we presented the experimental results. The proposed method was vali-
dated both qualitatively and quantitatively on simulated and real brain MRI datasets,
and the results were compared with the state-of-the-art algorithms for 3D brain MRI
segmentation. The performance of the 3DGC algorithm was also demonstrated on the
real MRI data of the patients with FCD lesions. Based on the quantitative validation,
the proposed 3D graph cuts method with 18 neighbors outperforms the popular brain
segmentation techniques for a wide range of noise levels. Experimental results with
different neighbourhood systems showed that the 3D segmentation outperforms the
2D slice-by-slice segmentation. The qualitative validation indicated the ability of the
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3DGC to successfully segment the FCD lesions as a part of cortex, even when the λ
parameter is not precisely tuned to the image. Also, the results showed that using the
3DGC method, segmentation of the normal tissues is not degraded by the presence of
abnormal tissues. In all experiments, the proposed method was able to enforce the spa-
tial coherence and correctly label the neighboring voxels in the noisy areas. Although
the results presented in this chapter are preliminary and furtherer clinical evaluation
is required, they are are very encouraging and suggest that the 3DGC method can im-
prove the FCD lesion detection and can be successfully applied in many other clinical
applications.

In future research, different ways to improve the current algorithm’s limitations can
be examined. In particular, the selection of the appropriate parameters λ and c. Also,
integrating noise robust boundary detection method could help in more accurate def-
inition of the regions corresponding to different tissue types. The performance of the
3DGC method can be potentially improved by including multimodal intensity infor-
mation from T1-W and FLAIR MRIs and using probabilistic atlases in the segmenta-
tion framework.
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5
Noise-robust FCM clustering

There is a way to do it better - find it.
– Thomas Edison

Segmentation of noisy images is one of the most challenging problems in image
analysis and any improvement of segmentation methods can highly influence the per-
formance of many image processing applications. In automated image segmentation,
the fuzzy c-means (FCM) clustering has been widely used because of its ability to
model uncertainty within data, its applicability to multimodal data and its fairly robust
behavior. However, the standard FCM algorithm does not consider any information
about the spatial image context and is highly sensitive to noise.

In this chapter, we present a new FCM-based method for spatially coherent, noise-
robust image segmentation. The contribution of our method is twofold: (1) the spa-
tial information of local image features is integrated into both the similarity mea-
sure and the membership function to compensate for the effect of noise; and (2) an
anisotropic neighborhood, based on phase congruency features, is introduced to avoid
edge smoothing and retain image details. The performance of the proposed algorithm
is tested on synthetic images with different noise levels and on real images. The seg-
mentation results demonstrate that our method efficiently preserves the homogeneity
of the regions, without smoothing the line features and important details, and is more
robust to noise than related FCM-based methods.

Following this we also present an extension of the new FCM method to multimodal
image segmentation, where we integrate multimodal image information into the spa-
tial contextual information to overcome the noise problem. The performance of the
proposed algorithm is tested on simulated and real adult MR brain images with dif-
ferent noise levels, as well as on neonatal MR brain images with the gestational age
of around 40 weeks. Experimental results show that the proposed multimodal method
is effective and robust to noise and can be successfully used for complex and noisy
image segmentation of the neonatal brain.
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5.1 Introduction

Fuzzy clustering is an iterative, soft classification method. While hard classification
methods (such as k-means) force each pixel to belong exclusively to one class in each
iteration, fuzzy clustering allows pixels to belong to multiple classes with different
membership degrees, where a final classification decision (defuzzification) is made
at the end. In this way fuzzy clustering can retain more information about the origi-
nal image properties through all iterations, leading to a more accurate classification.
This is very important in applications where uncertainty, poor contrast, limited spatial
resolution and noise are present (for example medical and satellite images). Among
fuzzy clustering methods, the fuzzy c-means (FCM) algorithm, initially developed by
Dunn [Dunn, 1973] and later generalized by Bezdek [Bezdek, 1981], is the most pop-
ular one. Although this conventional FCM algorithm works well on noise-free images,
it is highly sensitive to noise because it classifies pixels in the feature space without
considering their spatial distribution in the image.

To overcome misclassification errors due to noise, many extensions of the FCM al-
gorithm have been proposed [Ahmed et al., 2002, Xue et al., 2003, Chen and Zhang,
2004,Shen et al., 2005,Chuang et al., 2006,Cai et al., 2007,Wang et al., 2009,Li et al.,
2011]. The most common approach is to include feature information (e.g. intensity
values) of the neighboring pixels into the modified FCM objective function [Ahmed
et al., 2002, Chen and Zhang, 2004] or into a similarity measure between cluster cen-
ters and image elements [Shen et al., 2005]. Ahmed et al. [Ahmed et al., 2002] mod-
ified the objective function of the standard FCM algorithm to allow the immediate
neighbours of the pixel to influence its labeling. Chen and Zhang [Chen and Zhang,
2004] proposed two improvements of the Ahmed et al. algorithm to reduce the com-
putational time. On the other hand, to keep the continuity from the FCM algorithm,
Shen et al. [Shen et al., 2005] introduced a new similarity measure that depends on
spatial neighbourhood information, where the degree of the neighbourhood attraction
is optimized by a neural network. The FCM performance can also be enhanced by
combining pixel-wise fuzzy classification with pre-processing (noise cleaning in the
original image) [Xue et al., 2003,Cai et al., 2007] and post-processing (noise cleaning
on the classified data) [Xue et al., 2003].

However, these methods have certain limitations. They can not deal with very noisy
images and can not accurately segment at the same time coarse homogeneous regions
and finer image elements such as edges and lines. Also, some of the methods have
increased complexity [Ahmed et al., 2002,Wang et al., 2009] and some of them intro-
duce image smoothing [Xue et al., 2003, Cai et al., 2007]. Image smoothing together
with using an isotropic neighborhood model for integrating the neighborhood infor-
mation are often the main causes for loss of important image elements during seg-
mentation. For instance, the loss of line elements, such as roads and rivers in remote
sensing images or brain sulci (fissures in the surface of the brain) in brain MRI.

In this chapter, we present an improved FCM clustering algorithm for accurate and
noise-robust image segmentation. The two main novelties with respect to related ap-
proaches are: (1) our algorithm integrates spatial neighborhood information of local
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image features into both the similarity measure and the membership function and (2)
an anisotropic neighborhood is introduced using the properties of the phase congru-
ency features [Kovesi, 1999, Kovesi, 2002]. With the first improvement we obtain
a method that is highly robust to noise and can successfully segment coarse homo-
geneous regions. With the second improvement, using an anisotropic neighborhood,
we improve the segmentation accuracy and designed the method that is also able to
segment line elements and step edges without smoothing and with more accuracy.
To identify phase congruency features (such as edges, lines, corners, etc.) and ob-
tain their location, orientation and confidence factor, we use an improved noise-robust
phase congruency method [Kovesi, 2002], which was designed to provide good fea-
ture localization. The efficiency of our segmentation method is tested on synthetic
and real images with different noise levels. Experimental qualitative and quantitative
results indicate that our method successfully reduces the effect of noise, preserves im-
age details and biases the algorithm toward homogeneous clustering. Following this,
we also present an extension of the improved FCM method to multimodal brain MRI
segmentation.

This chapter is organized as follows. In Section 5.2 the basic principles of the standard
FCM algorithm are reviewed and in Section 5.3 the phase congruency feature detec-
tion method is explained. Our modified noise-robust FCM algorithm is explained in
Section 5.4. Experimental and comparison results are presented and discussed in Sec-
tion 5.5. Next, in Section 5.6 we explain the multimodal FCM segmentation with
experimental results. Finally, we give hints for the future work in Section 5.8 and
conclude this chapter in Section 5.9.

5.2 FCM algorithm

Let X = {xj , j = 1, 2, ..., N | xj ∈ Rq} represent feature vectors of the image with
N pixels that needs to be partitioned into C classes, where every component of the
vector xj represents a feature of the image at position j, and q is the dimension of the
feature vector. The FCM clustering algorithm is based on minimizing the following
objective (or energy) function:

JFCM(U, V ) =

C∑
i=1

N∑
j=1

umijDij , (5.1)

where uij is the membership degree of the feature vector xj with respect to the i-
th cluster, U is the partition matrix [uij ]C×N , V is the set of the cluster prototypes
{vi}Ci=1, m is the weighting exponent that controls the fuzziness of the resulting par-
tition (most often m = 2), Dij is the similarity index which measures the distance
between xj and the i-th cluster center vi. The most commonly used similarity mea-
sure is the squared Euclidean distance and then Dij = ‖xj − vi‖2. Low membership
degree values are assigned to pixels far from the cluster centroid, and high member-
ship degree values to pixels close to the cluster centroid.
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Figure 5.1: An example for the FCM segmentation: (a) noisy image, (b) segmentation result
using standard FCM algorithm and (c) “ground truth”(desirable segmentation).

The objective function JFCM(U, V ) (Eq. (5.1)) is minimized under the following con-
straints:

uij ∈ [0, 1], ∀j :

C∑
i=1

uij = 1 and ∀i : 0 <

N∑
j=1

uij < N. (5.2)

Considering these constraints and calculating the first order partial derivatives of
JFCM(U, V ) with respect to uij and vi and setting them to zero, results in the fol-
lowing two conditions for minimizing JFCM(U, V ):

uij =

[
C∑
k=1

(
Dij

Dkj

) 1
m−1

]−1

(5.3)

and

vi =

∑N
j=1 u

m
ij xj∑N

j=1u
m
ij

, (i = 1, 2, ..., C) . (5.4)

The FCM algorithm iteratively optimizes JFCM(U, V ), by evaluating Eq. (5.3) and
Eq. (5.4), until the following stop criterion is satisfied:

max
i∈[1,C]

‖v(l)
i − v

(l+1)
i ‖∞ < ε, (5.5)

where l is the iteration index and ‖ · ‖∞ is the L∞ norm. Once a membership value
uij for each class i is assigned to each pixel j, a defuzzification of the fuzzy clusters
{Fk}Ck=1 into their crisp version {Hk}Ck=1 is done by assigning each pixel to the class
with the highest membership value as follows:

max
i∈[1,C]

(uij) = ukj =⇒ xj ∈ Hk (5.6)

The main drawback of the standard FCM for image segmentation is that the objective
function does not take into account neighborhood information and deals with the pix-
els as the separate points. Therefore, the standard FCM algorithm is sensitive to noisy
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pixels (or outliers) and very often those pixels are wrongly classified. An example of
the FCM segmentation on a noisy synthetic image with its “ground truth” (desirable
segmentation) is shown in Fig. 5.1.

The most logical approach to improve the FCM performance and eliminate noise prob-
lem is to include spatial and feature information of the neighboring pixels into the al-
gorithm. In most of the cases, including an isotropic neighborhood configuration will
give satisfactory results, but in the cases where it is important to accurately segment
line features and edges, we need to use an anisotropic neighborhood configuration.
To define the anisotropic neighborhood configuration in our method, we used loca-
tion, orientation and confidence factor of the image features defined with the phase
congruency method, which is described in Section 5.3.

5.3 Phase congruency, local phase and energy

Phase congruency is a frequency-based method for feature detection, where features
are detected at points where the Fourier components of the image are maximally in
phase (local maximal congruency in the phase values). This feature detection method,
using local phase and energy, is based on a plausible model of how mammalians detect
edges suggested by Morrone and Owens [Morrone and Owens, 1987] and success-
fully explains the psychophysical effect of human feature perception. Originally, the
concepts of local phase and energy were developed for analyzing one-dimensional
(1D) signals and are later successfully extended to two dimensions (2D) [Kovesi,
1999, Kovesi, 2002].

Initially, phase congruency of the signal f(x) at the location x (proposed by Morrone
and Owens [Morrone and Owens, 1987]) is defined by:

PC(x) = max
φ̄(x)∈[0,2π]

∑
nAn cos(φn(x)− φ̄(x))∑

nAn
, (5.7)

where An is the amplitude and φn is the local phase at position x of the nth Fourier
component of the signal f(x) and φ̄(x) is the amplitude-weighted mean local phase
angle of all the Fourier terms at position x. The cosine of the difference between the
local phase φn and the weighted mean local phase φ̄(x) is a quantity approximately
equal to one minus half this difference squared (the Taylor expansion of cos(x) ≈
1 − x2/2 for small x). This means that finding a maximum of the phase congruency
is approximately equivalent to finding a minimum of the weighted standard deviation
of phase angles. Defined in this way, phase congruency is a rather inelegant quantity
to calculate. Thus, an alternative interpretation of phase congruency is proposed by
Venkatesh and Owens [Venkatesh and Owens, 1990], based on the analytical signal
and the local energy function E(x):

E(x) =
√
F (x)2 +H(x)2, (5.8)

where F (x) is the input signal f(x) without its DC component andH(x) is the Hilbert
transform of F (x) (90o phase shifted version of F (x)). Components F (x) and H(x)
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are typically calculated by convolving the signal with a quadrature pair of 1D filters
(one even- and one odd-symmetric filters that have zero mean, identical L2 norm and
are orthogonal). Venkatesh and Oens showed that calculating points of maximum
phase congruency is equivalent to searching for peaks in the local energy function and
that phase congruency can be defined as:

PC(x) =
E(x)∑
nAn

. (5.9)

Note that phase congruency at location x is significant only in the case when it occurs
over a wide range of frequencies.

The phase congruency function PC(x) is directly proportional to the local energy
function E(x) scaled by the sum of the Fourier component amplitudes

∑
nAn. Since

local energy is a measure of signal change, it can be interpreted as a feature detector
for different feature types. The local phase indicates the type of the feature that energy
corresponds to (line or step edge). By dividing the local energy function with

∑
nAn

we obtain the phase congruency function which is dimensionless and takes values be-
tween 0 (no congruency) and 1 (perfect congruency). Calculated in this way, phase
congruency provides a dimensionless measure of feature significance (confidence fac-
tor, PC ∈ [0, 1]), which is invariant to variations in image illumination and/or contrast.
In certain applications, these phase congruency characteristics gives advantage to the
phase congruency method over the gradient-based methods [Canny, 1986, Marr and
Hildreth, 1980,Gonzalez and Woods, 2008], which are very sensitive to image illumi-
nation and sometimes fail in feature localization.

Since 1D phase congruency is initially defined as a normalized quantity in Eq. 5.7 and
5.9, then it is sensitive to noise, ill-conditioned when nearly all Fourier amplitudes are
small and feature localization is not always good. All these problems are addressed in
the phase congruency method proposed by Kovesi [Kovesi, 2002], which is designed
to provide noise-robust and accurate feature localization. The new noise-robust phase
congruency function PCnr(x) is defined as:

PCnr(x) =
W (x)〈E(x)− T 〉∑

nAn + ε
, (5.10)

where W (x) is a phase congruency weighting function, T is the radius of the noise
circle (see Fig. 5.2a), ε is a small positive constant (to avoid division by zero) and 〈 〉
here denotes that the enclosed quantity is equal to itself when its value is positive and
zero otherwise. To solve the noise problem, phase congruency is calculated using the
amount by whichE(x) exceeds the radius of the noise circle and the appropriate noise
threshold T is determined from the statistics of the filter responses to the image. A
small positive constant ε is addressing the problem when all the Fourier amplitudes
are very small. For more details on how W , T and An are calculated see [Kovesi,
2002]. The geometrical relationship between phase congruency, local energy and the
sum of Fourier amplitudes is shown in Fig. 5.2a. The local Fourier components are
plotted as complex vectors adding head to tail. The total energyE(x) is the magnitude
of the vector from the origin to the end point.
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Figure 5.2: Geometrical representation of the local energy for 1D and 2D signals. (a) Polar
diagram shows the geometrical relationship between the sum of Fourier amplitudes

∑
nAn,

local energy E(x) and phase congruency PC(x). The noise circle represents the level of E(x)
one can expect from the noise in the signal. If E(x) falls within this circle, the confidence of
phase congruency value falls to 0. (b) Geometrical representation of the monogenic signal and
2D local energy. The convolution is written using an asterisk sign ∗. On the right side of the
graph are examples of three filters that might be used to find the monogenic signal (b is the
difference of Gaussians bandpass even filters, o1 and o2 are two odd filters antisymmetric to the
even part).
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There are a few ways to extend the definition of local phase and energy to 2D. One pos-
sibility is to use steerable filters [Freeman and Adelson, 1991] to estimate the phase
of 1D signal in the direction of maximal local energy. Another way, proposed by
Kovesi [Kovesi, 1999, Kovesi, 2000, Kovesi, 2002], is to use the 2D log-Gabor filters
with different scales and orientations (e.g. 6 orientations and 4 scales). For this paper,
the local phase φ(x, y) and energy E(x, y) were estimated using the monogenic sig-
nal, which is a multi-dimensional extension of the analytical signal theory developed
by Felsberg and Sommer [Felsberg and Sommer, 2001]. This choice is mainly made
because of the computational speed and simplicity.

The monogenic signal consists of three quantities: local energy, local phase, and local
orientation (discussed in more detail in [Felsberg and Sommer, 2001,Boukerroui et al.,
2004] and illustrated in Fig. 5.2b). The computation of the monogenic signal for a 2D
image proceeds as follows. First, a rotationally symmetric, zero-mean filter is applied
to the image to form a bandpass image Ib, which constitutes the even component of the
signal. Then, the odd component is composed of the response of two anti-symmetric
filters to the even part. These two filters, o1 and o2 are described in the Fourier domain
as:

O1(u, v) =
u√

u2 + v2
, O2(u, v) =

v√
u2 + v2

, (5.11)

where u, v are the Fourier domain coordinates. Local phase φ(x, y), local orientation
θ(x, y), and local energy E(x, y) are calculated using these filter responses and the
bandpass (even) image Ib in the space domain as follows:

φ(x, y) = tan−1(
Ib√

(o1 ∗ Ib)2 + (o2 ∗ Ib)2
), (5.12)

θ(x, y) = tan−1(
o1 ∗ Ib
o2 ∗ Ib

), (5.13)

E(x, y) =
√
I2
b + (o1 ∗ Ib)2 + (o2 ∗ Ib)2, (5.14)

where o1 and o2 are the inverse Fourier transforms of O1 and O2. The geometrical
representation of the monogenic signal fm(x, y), 2D local energyE(x, y), local phase
φ(x, y) and an example of a quadrature triple filters are shown in Fig. 5.2b. Note that
an extension of the Hilbert transform to multiple dimensions in Eq. 5.11 is known as
the Riesz transform.

Three examples of the phase congruency feature map obtained from the corresponding
intensity image is shown in Fig. 5.3. The first row illustrates the difference between
Canny edge detection and phase congruency feature detection. Note the difference at
the line features. The Canny detects two edges at the both sides of the line, while phase
congruency detects exactly one line feature. The second row illustrates the robustness
of the phase congruency to image contrast and illumination. For instance, the low
contrast square in the circle at the top right corner of the image is almost invisible with
the Canny edge detector, while using phase congruency is clearly marked. Finally, the
last row illustrates the noise-robust phase congruency feature detection.
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Figure 5.3: Illustration of three examples of the phase congruency maps. The first row illus-
trates the difference between phase congruency and Canny edge detection: (a) original image
Lena, (b) Canny edge detection and (c) phase congruency feature map. The second row il-
lustrates the robustness of phase congruency to changes in image contrast and illumination
variations: (a) original image, (b) Canny edge detection and (c) phase congruency. The third
row illustrates: (a) noisy image, (b) phase congruency and (c) feature map (red color represents
the line feature and blue color represents the step (edge) feature.
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5.4 Accurate and noise-robust image segmentation

One of the important characteristics of an image is that neighbouring pixels tend to
have similar feature values and the probability that they belong to the same cluster is
high. Therefore, to improve the performance of the standard FCM algorithm, we inte-
grate information of the neighboring pixels in our method. We used both intensity in-
formation and membership degree values of the neighboring pixels to overcome noise
problem during segmentation. Furthermore, to obtain more accurate segmentation,
we use phase congruency features (such as step edges and lines) to define isotropic or
anisotropic neigborhood configuration.

5.4.1 Neighborhood configuration

The location (x, y), orientation θ, local phase φ and confidence factor PC of the phase
congruency features are used to define a neighborhood configuration.

In homogeneous regions, where phase congruency is zero or a very small value almost
equal to zero (PC ' 0), an isotropic neighborhood is used. In the regions where
lines and edges are detected (PC is greater than zero), an anisotropic neighborhood is
used. This is illustrated in Fig. 5.4, where on the left top side is an image segment with
different 3 × 3 neighborhoods (highlighted with different symbols and colors) and on
the right bottom side is a table describing each of those neighborhoods in a separate
row and illustrating their isotropic or anisotropic configuration.

The type of the feature is defined with the local phase, see example in Fig. 5.3(c).
In our method the local phase φ is normalized between 0 and 1 as follows. First, the
negative phase angles φ < 0 are mapped to the range [0−π] where, for example,−π/3
is mapped to π/3. Following this, all φ > π/2 are mapped in the range [0 − π/2] as
π − φ. Finally, the normalization of the phase is done as φnorm = (π/2 − φ)/(π/2),
where φnorm ∈ [0− 1].

If the phase φnorm is closer to 0 we have a line feature. The orientation of the line
is defined with an orientation θ and only the neighbours lying on the same line are
considered for an anisotropic neighborhood configuration (see the 6th row of the table
in Fig. 5.4(b) for the line pixel). If φnorm is closer to 1, the feature is an edge and the
neighbors lying on the same side of the edge are selected for an anisotropic neigh-
borhood configuration (see the 5th row of the table in Fig. 5.4(b) for the edge pixel).
In the case that the central element belongs to a region (0 < PC < 1) and some
of the neighboring elements belong to a line, an anisotropic neighborhood is defined
excluding all elements within the line, see the last row of the table in Fig. 5.4(b).

5.4.2 Integrating neighborhood information

If we look back at the FCM objective function in Eq. (5.1) and its two necessary
conditions for the convergence Eq. (5.3) and Eq. (5.4), we can conclude that the
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Figure 5.4: Neighborhood configuration. (a) An illustration of 6 different 3× 3 neighborhoods
(delineated in different color) with the central pixel defining the specific neighborhood config-
uration; (b) The table describes all 6 neighborhoods (indicated on the image on the left side).
The second column shows the confidence factor PC and the third column shows type of the
feature (local phase values φ). The last column shows the appropriate isotropic or anisotropic
neighborhood configuration (NGB), where the important neighbors are highlighted in red color.
Note that the neighborhood configuration (isotropic or anisotropic) is determined for each im-
age pixel in advance using phase congruency features as described here.
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segmentation result is significantly influenced by the choice of the similarity measure
Dij , which is used for computing the membership degree values uij in Eq. (5.3), and
uij are further used for computing the cluster centers vi in Eq. (5.4). Considering
that, in each iteration of the algorithm we adjust both the similarity measure and the
membership degree values in two separate steps using the information of the neigh-
boring pixels. By using only one of these two steps, we can successfully segment
noisy images till certain noise level, but for images with higher noise levels both steps
are needed for accurate segmentation. We explain now these two steps in more detail.

In the first step we define the new neighborhood weighted similarity measure as fol-
lows:

D∗ij = wij‖xj − vi‖2 = (1− αSij)‖xj − vi‖2, (5.15)

where wij ∈ [0, 1] is the similarity measure weight, which depends on the local neigh-
borhood attraction weight Sij ∈ [0, 1] and the parameter α ∈ [0, 1] that controls the
relative importance of the neighbourhood attraction. If α = 0 or Sij ' 0, then
wij = 1 and D∗ij = Dij , and we have the standard FCM.

The local neighborhood attraction weight Sij is defined as:

Sij =

∑
r∈Nj

uirajrd
−1
jr∑

r∈Nj
ajrd

−1
jr

, (5.16)

whereNj is a set of neighbors with index r in a n×n square window, surrounding the
study element with index j, uir is the membership degree of the neighbouring element
r to the cluster i, ajr is the intensity attraction and djr is the distance attraction. The
intensity attraction ajr is defined as the absolute intensity difference between the study
pixel j and its neighbor r:

ajr = |xj − xr| . (5.17)

The distance attraction djr can be defined in different ways, but for this study we used
the Manhattan distance to equally include the influence of the first and the second
order neighborhood into the weight calculation. The Manhattan distance between the
element j with coordinates (pj , qj) and its neighbor r with coordinates (pr, qr) is
defined as:

djr = max(|pj − pr|, |qj − qr|) . (5.18)

The number of neighbors Nr depends on the neighborhood configuration. In homo-
geneous regions where the neighborhood configuration is isotropic we have Nr =
n2 − 1 and in the regions where line and edges are detected and the neighborhood is
anisotropic we have 0 < Nr < n2 − 1.

After calculating the new similarity measure D∗ij , we update the membership values
using Eq. (5.3) where instead of Dij we use D∗ij .

Then, to further improve the segmentation performance, in the second step we use
again the neighbourhood information to adjust the updated membership values in the
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following way:

u∗ij =
uijM

β
ij∑C

k=1 ukjM
β
kj

, Mij =

∑
r∈Nj

uird
−2
jr∑

r∈Nj
d−2
jr

, (5.19)

where u∗ij is the new membership value (u∗ij ∈ [0, 1],
∑C
i=1 u

∗
ij = 1 ∀j and

0 <
∑N
j=1 u

∗
ij < N ∀i), C is the number of clusters, Mij is the spatially weighted

membership degree mean and β ∈ Z+ is the parameter that controls the relative im-
portance of Mij . The squared reciprocal distance d−2

jr is used in Eq. (5.16) and Eq.
(5.19) because the neighbours r close to the central element j should influence the
result more, while more distant neighbours should have a lower weight.

The idea behind this new integration of neighborhood information in the FCM algo-
rithm is as follows. Consider the local n×n neighbourhood where the central element
xj is corrupted with noise and hence has large intensity differences with the closest
neighbouring elements xr, which in turn have intensities similar to that of the clus-
ter center vi (see Fig. 5.4, noisy pixel). After running the standard FCM algorithm,
the neighbouring elements will be classified in a cluster i, while the central element
will be in a different cluster. However, in this case the local neighbourhood attraction
weight Sij will be large and the expression (1−αSij) will be small for α 6= 0. There-
fore, the new spatially dependent similarity measure will be smaller than the one in the
standard approach. That means that after one iteration of the algorithm the central el-
ement xj will be attracted to the neighbouring cluster i. Next, if we calculate Mij and
update the membership values using Eq. 5.19, the new membership values u∗ij will
stay unchanged in homogeneous regions, but for a noisy pixel they will be influenced
by the labels of its neighbouring pixels. In our case, the central element xj is then
even stronger attracted to the cluster i. If the neighbourhood attraction is continuously
large till the end of the algorithm, the central element xj will be forced to belong to
the cluster i despite being dissimilar to it. More precisely, this property biases the
algorithm towards homogeneous clustering and suppresses the noise problem.

5.4.2.1 Parameters α and β

Note that if α = β = 0, we have the standard FCM algorithm. If α = β = 1 the
neighborhood attraction is maximal and it decreases for α < 1 or β > 1. The optimal
values of α and β depend on the image noise level.

In the case when an isotropic neighborhood model is used, we experimentally found
that the higher the image noise is, the higher parameter α and β = 1 are needed for
the best segmentation performance. This result is also intuitive, because it shows that
in the case of higher noise levels, the neighborhood attraction is more important to
eliminate isolated noisy pixels in the image. Similarly, for lower noise levels, the
parameter α should be lower and β > 1. The exact values of the parameters can be
experimentally determined and their values depend not just on the image noise but
also on the image content as well (e.g. MRI image, satellite image, etc.).
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The relationship between the parameters and noise is a little bit different when an
anisotropic neighborhood model is used. In this case, if an anisotropic neighborhood
is accurately defined (e.g. a noise robust method is used to determine a neighborhood
configuration), then the resulting method does not appear to be highly sensitive to
parameter settings. This means that α and β optimization is not critical anymore. We
experimentally found that the best segmentation is achieved when the neighborhood
attraction is maximal α = β = 1. Intuitively, this is because only important neighbors
(see Fig. 5.4) are used to calculate the weights Sij and Mij and even when the noise
level is low the maximal neighborhood attraction will not smooth image edges and
lines as it is the case with an isotropic neighborhood models.

5.4.3 Algorithm steps

The outline of the proposed noise-robust FCM algorithm is:

Step1. Set the number of clusters C, degree of fuzziness m, stop criterion ε and
neighborhood size.

Step2. Calculate phase congruency features and define the neighborhood configura-
tion for each pixel.

Step3. Initialize the centers of the clusters vi|i = 1, 2, ..., C.

Step4. Calculate the new similarity measure D∗ij , see Eq. (5.15).

Step5. Calculate uij using D∗ij , see Eq. (5.3).

Step6. Calculate the new membership values u∗ij , see Eq. (5.19).

Step7. Update vi using u∗ij , see Eq. (5.4).

Repeat steps 4-7 until the stop criterion is satisfied, see Eq. (5.5).

As with all clustering algorithms, the segmentation performance and the computation
speed may highly depend on the initialization step such as the initialization of the
cluster centers and the membership degrees of each pixels to different cluster. The
existing methods very often rely on the random assignment of the cluster centers in
the initialization process, which can produce inconsistent and non-reproducible clus-
tering results. It can happen that in multiple runs of the same data and for different
initial cluster seeds, the method does not converge to the same final set of clusters.
This can happen due to the convergence of the objective function to different local
minima. However, by having a good initialization of the FCM’s parameters, which
can be estimated from an initial segmentation, we can obtain faster convergence and
more accurate segmentation results. In this way, the initial segmentation constructs
the training set of classified voxels in the original image and ensures the convergence
of the energy function to an optimal minimum. Therefore, to mitigate the initialisa-
tion problem, we use intensity-based thresholding [Reddi et al., 1984] (as an initial
segmentation) to initialize the cluster centers and to generate a fast and reliable con-
vergence of the FCM’s objective function.
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Figure 5.5: Segmentation results for different types of noise (SNR = 16 dB): (a) gamma; (b)
Rayleigh; (c) salt-and-pepper; (d) uniform. The similarity between the segmented image and
the “ground truth” is shown in percentage.

5.5 Experimental results

In this section, we present experimental results of our algorithm using three different
types of images: (1) synthetic images with different noise levels, (2) phantom Mag-
netic Resonance Images (MRI) of the human brain, and (3) real images. We present
qualitative results for all three image types and the quantitative results are only com-
puted for the first two image types where the “ground truth” segmentation is avail-
able. In all experiments we set the weighting exponent to m = 2, the stop criterion to
ε = 0.01 and the parameter which controls the effect of the neighbors to α = 1.

5.5.1 Synthetic images

Firstly, we investigate the sensitivity of our method to different types of noise: gamma,
Rayleigh, salt-and-pepper and uniform. For this purpose we use a simple synthetic
image (size 256×256) shown in Fig. 5.5, which contains three different homogeneous
classes and known “ground truth” segmentation. In this example Signal to Nose Ratio
between the original and noisy images is 16 dB for all noise types. Both qualitative
and quantitative segmentation results using 5× 5 neighborhood size are shown in Fig.
5.5 (second row). The results indicate that our method can successfully deal with
different types of image noise and give satisfactory segmentation.

Secondly, we investigated the segmentation performance of our method on a synthetic
image (size 256 × 256) shown in Fig. 5.6i, which contains a four-class pattern with
three different homogeneous classes and a line as the fourth class. We tested the
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sensitivity our our method to different levels of the zero mean Gaussian noise and
how the size of the chosen neighborhood influence the segmentation result (e.g. 3×3,
5× 5 or 7× 7 neighborhood). The quantitative comparison results are plotted in Fig.
5.7. The first graph Fig. 5.7(a) shows the segmentation performance of our method
using different neighborhood sizes, where the best performance is achieved using 7×7
neighborhood. The comparison results with other methods (using 5× 5 neighborhood
for our method and the best segmentation result for other methods) are plotted in the
next three graphs.

In all experiments, we use the Dice coefficient ρi as the similarity measure to quantify
the overlap between the automated segmentation and the given “ground truth”, where
i indicates different clusters. The definition of the Dice coefficient is given in the
previous Chapter 4 in Eq. 4.14.

The graph in the Fig. 5.7(b) shows the results of the average Dice coefficient (ρavr)
over all four clusters:

ρavr =
ρ1 + ρ2 + ρ3 + ρ4

4
, (5.20)

where ρ1, ρ2 and ρ3 are the Dice coefficients of 3 homogeneous clusters and ρ4 is the
Dice coefficient of the line cluster. The lower-left graph (Fig. 5.7(c)) shows the Dice
coefficient of the line cluster (ρ4 or ρline), while the lower-right graph (Fig. 5.7(d))
shows the average Dice coefficient of the three homogeneous regions excluding the
line cluster (ρhom):

ρhom =
ρ1 + ρ2 + ρ3

3
. (5.21)

From the graphs we can clearly see that the FCM method shows the worst performance
for all noise levels. The methods by Cai et. al. [Cai et al., 2007] and Shen et al. [Shen
et al., 2005] give an improved performance of ρavr for all noise levels compared to
the FCM method. However, their segmentation performance starts rapidly to decrease
for very noisy images (SNR < 14 dB). The method by Shen et al. gives better result
in segmenting the line cluster, while the method by Cai et al. has good performance
in segmenting homogeneous regions, but fails in segmenting line cluster, especially
for higher noise levels. The results of our method, without using phase congruency
and anisotropic neighborhoods, indicate that this method is good for segmenting ho-
mogeneous regions (good performance for very noisy images), but it is not efficient
in segmenting line elements. However, by including anisotropic neighborhoods in our
method, we obtained the best segmentation performance for all noise levels and for
both homogeneous and line clusters.

In Fig. 5.6 we show the qualitative comparison results of our method with other
FCM-based methods [Bezdek, 1981, Shen et al., 2005, Xue et al., 2003, Cai et al.,
2007,Despotovic et al., 2010d], where Signal-to-Noise Ratio (SNR) between the orig-
inal and noisy image is 14 dB. As can be seen in Fig. 5.6(b), the standard FCM algo-
rithm can not classify correctly four classes. The method by Shen et al. [Shen et al.,
2005] shows the improved segmentation performance compared to the standard FCM
algorithm, but it is not effective for the higher noise levels shown in Fig. 5.6(c). The
method from Xue et al. [Xue et al., 2003], which is using image pre-processing and
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Figure 5.6: Comparison of the segmentation results: (a) noisy image SNR=14 dB; (b) FCM
[Bezdek, 1981]; (c) Shen et al. [Shen et al., 2005]; (d) Xue et al. [Xue et al., 2003] without
post-processing; (e) Xue et al. [Xue et al., 2003] with post-processing; (f) Cai [Cai et al., 2007];
(g) our method without phase congruency (isotropic neighborhood); (h) our proposed method
(anisotropic neighborhood); (i) original image (“ground truth”).
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Figure 5.7: Quantitative validation results for different noise levels (SNR): (a) segmentation
performance using different neighborhood sizes; (b), (c) and (d) comparison results of FCM,
Shen et al., Cai et al. and our proposed algorithm using isotropic and anisotropic neighborhood
configuration. The upper-right graph shows the average Dice coefficient ρavr . The lower-left
graph shows the Dice coefficient for the line class ρline and the lower-right graph shows the
average Dice coefficient for the homogeneous classes excluding line ρhom. In all three cases
our method shows the best performance.

post-processing to improve the segmentation performance, shows blurring artifacts af-
ter pre-processing (Fig. 5.6(d)) and wrong classification (merging the line with another
class) after post-processing (Fig. 5.6(e)). The method from Cai et al. [Cai et al., 2007],
which is using image filtering before applying the fast version of the FCM, shows bet-
ter performance (Fig. 5.6(f)) than previous methods, but still causing blurring, data
misclassification and lost of line elements for the higher noise levels. Finally, the re-
sults of our method using only isotropic neighborhood configuration in Fig. 5.6(g) is
very efficient in segmenting homogeneous regions, but not in preserving the line fea-
ture. By adding phase congruency and anisotropic neighborhood configuration to the
algorithm, we get the best segmentation result, see Fig. 5.6(h).
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Figure 5.8: Quantitative validation results for different noise levels (3%, 5%, 7% and 9%):
(a) comparison results of FCM, Shen et al., Cai et al., SPM, FSL and our proposed algorithm
using anisotropic neighborhood configuration and 3 × 3 neighborhood size; (b) segmentation
performance of our methods for white matter, gray matter and CSF. Both graphs show the
average Dice coefficient ρ over all MRI slices.

5.5.2 Simulated brain MRI data - BrainWeb

In this experiment, we use simulated MR images from the realistic brain phantom with
known “ground truth”, which are obtained from the BrainWeb (Simulated Data Base
at the McConnell Brain Imaging Centre of the Montreal Neurological Institute) and
described in [Collins et al., 1998].

The quantitative segmentation results for four different noise levels (3%, 5%, 7% and
9%) are shown in Fig. 5.8. The Dice coefficient (see Eq. (4.14)) is also used here
as the similarity index ρ between the segmented and “ground truth” images. For all
graphs the plotted similarity measure ρ is the average similarity measure over all slices
of the MRI brain phantom. The first graph in Fig. 5.8(a) shows the comparison results
between our method, FCM and two FCM-based methods (Shen et al. and Cai et al.)
and two popular MRI segmentation methods - not FCM-based (Statistical Parametric
Mapping (SPM) [Ashburner and Friston, 2005] and FMRIB’s Automated Segmenta-
tion Tool (FAST-FSL) [Zhang et al., 2001]). The experimental results indicate that
our method has the highest accuracy in segmentation compared to other methods. The
segmentation results of our algorithm for each of the three classes (WM, GM and
CSF) are plotted in the second graph Fig. 5.8(b).

The qualitative segmentation result of the brain MRI with 9% noise (slice 70) are
shown in Fig. 5.9. The original noisy image is shown in Fig. 5.9(a) and the “ground
truth” segmentation image in Fig. 5.9(f). Here, the goal was to segment the brain into
three classes: white matter, gray matter and cerebrospinal fluid (CSF) (which can be
identified as white, light gray and dark gray class in the “ground truth” image). The
best segmentation results plotted in Fig. 5.9 are obtained using 3× 3 neighborhood.
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Figure 5.9: Segmentation result using T1-W MRI BrainWeb phantom image, slice 70: (a)
noisy image corrupted with 9% noise; (b) FCM [Bezdek, 1981]; (c) Shen et al. [Shen et al.,
2005]; (d) Cai et al. [Cai et al., 2007]; (e) our segmentation result; (f) “ground truth” image and
(g) the phase congruency feature map indicating line and step edge features in color. Compared
to the “ground truth” image (look at the areas indicated with the arrows), our segmentation is
robust to noise and preserves image details the best.
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We compare our segmentation results with the results of the standard FCM [Bezdek,
1981], Shen et al. [Shen et al., 2005], Cai et al. [Cai et al., 2007] methods. The
segmentation result of the standard FCM algorithm in Fig. 5.9(b) shows the worst
performance and high sensitivity to image noise. Although a better result is obtained
using the algorithm of Shen et al. Fig. 5.9(c), their method is still not enough efficient
to deal with higher noise levels. This drawback is improved in the algorithm of Cai et
al. Fig. 5.9(d), which is able to remove all noise artifacts and give nice homogeneous
regions, but it is not able to perceive line elements (like sulci, folded brain cortex
regions filled with CSF). The phase congruency feature map indicating step edges and
sulci of the brain is shown in Fig. 5.9(g). Compared to the “ground truth” in Fig. 5.9(f)
and other segmentation results, our method successfully segments both homogeneous
regions and brain sulci as shown in Fig. 5.9(e).

5.5.3 Real images

The performance of our algorithm is also demonstrated on four real images: (1) a
Computer Tomography (CT) image of the skull, (2) a satellite image of the airport, (3)
a fingerprint image and (4) a CT image of the liver with tumor lesion. The qualitative
results for all four images are shown in Fig. 5.10. Images in the left column are
the original images. The segmentation results using the standard FCM method are
shown in the second column and the results using the proposed noise-robust FCM
segmentation are shown in the right column.

For the first image, a CT image of the human skull, the goal was to segment the bone
structures of the skull which have a light gray or white intensity on the original CT im-
age. For this purpose, we segmented the image in two clusters: the bone structures as
the first cluster and the rest of the tissue plus background in the second cluster. Since
the original image is corrupted with noise artifact the segmentation result using the
standard FCM segmentation was not successful and isolated noisy pixels appeared all
over the image. The noise problem is successfully eliminated and the segmentation re-
sult is visibly improved by using our noise-robust FCM method. The skull is precisely
segmented as a one homogeneous structure and the noisy pixels in the background are
removed.

For the second and third images the goal was to accurately segment line elements of
the airport tracks and fingerprint curves respectively. Also, in these two examples, we
segmented images in two clusters. In the satellite image of the airport, we segmented
the airport tracks and nearby roads in the first cluster (appears white in the segmenta-
tion image -white label) and the rest of the image in the second cluster (black label).
In the example of a fingerprint image, we segmented the fingerprint friction ridges in
the first cluster (black label) and the rest in the second cluster (white label). These two
image examples have less noise artifacts than the first image and the FCM segmen-
tation gives better result than in the first case. However, still some noise artifacts are
present, especially in the fingerprint image. The results using our method again show
the segmentation improvements by efficiently removing noise pixels but at the same
time preserving line elements without blurring or over-segmenting them.
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Figure 5.10: Segmentation results of the standard FCM and our proposed method on four real
images. The first row represents a CT image of the skull, the second row shows a satellite image
of the airport, the third row shows a fingerprint image and the last row shows a CT image of the
liver with a tumor lesion. In the first column (a) we have original images. The second column
(b) shows the results of the FCM segmentation and the last column (c) shows the results of our
proposed segmentation.
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For the last image, a CT image of the liver, the goal was to separate the tumor lesion,
which appears as darker tissue in comparison to the rest of the liver tissue. In this
example we segmented the image in three clusters: the tumor tissue as the first cluster,
the rest of the liver tissue as the second cluster and the image background in the third
cluster. The noise artifacts are again present after the FCM segmentation, while the
result using our segmentation algorithm removes noise and shows more homogeneous
regions.

5.6 Multimodal spatially constrained FCM clustering

In this Section we propose the multimodal extension of the FCM method for more
accurate and spatially constrained multimodal brain MRI segmentation, from hereon
termed as SCFCM. To preserve the homogeneity of different brain tissues, we com-
bined information from both T1-W and T2-W MRI scans into the spatial neighborhood
information. Here, we used an isotropic multimodal neighborhood model. The per-
formance of the proposed algorithm is tested on simulated and real adult MR brain
images with different noise levels, as well as on neonatal MR brain images with the
gestational age of 39 weeks. Experimental quantitative and qualitative segmentation
results show that the proposed method is effective and robust to noise. Also, SCFCM
appears as a very promising tool for complex and noisy image segmentation of the
neonatal brain.

5.6.1 SCFCM algorithm

The new SCFCM clustering aims to improve the robustness of the FCM algorithm and
the accuracy of MRI brain segmentation. In this multimodal clustering method, we
modify the distance measure of the FCM, similarly as in Eq. (5.15), by including the
multimodal spatial contextual informationMij as follows:

D∗∗ij = wij‖xj − vi‖2 = (1− αMij)‖xj − vi‖2, (5.22)

where α ∈ [0, 1] is a parameter to control the relative importance of the neighborhood
attraction and xj is a two-dimensional feature vector consisting of the pixel intensities
from T1-W and T2-W images at position j. If α = 0, D∗∗ij is the squared Euclidean
distance and we have the standard FCM.

The multimodal spatial contextual informationMij depends on the feature attraction
ajr (pixel intensities in our case) and the distance attraction djr (spatial position of
the pixels), and is defined as the average of the neighborhood contributions from both
the T1-W and T2-W images:

Mij =
1
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whereNr is the number of neighbors surrounding the element xj and uir is the mem-
bership degree of the neighboring element xr to the cluster i. Feature attractions a(T1)

jr

and a(T2)
jr are defined as the absolute intensity differences between xj and its neighbor

xr in respectively the T1-W and T2-W image as

a
(T1)
jr = |[xj ]1 − [xr]1| and a

(T2)
jr = |[xj ]2 − [xr]2| . (5.24)

The distance attraction djr between the coordinates of elements x(pj , qj) and
x(pr, qr) could be defined in different ways, but for this study we use the squared
Euclidean distance

djr = (pj − pr)2 + (qj − qr)2 , (5.25)

where a different weight is assigned to the first and the second order neighborhood.

This is slightly different than in the case of the Manhattan distance, defined in Eq.
(5.18), where the distance weight is the same for the first and the second order neigh-
borhood. The Manhattan distance is more appropriate in the case when the image
consists of broad homogeneous regions of a simpler geometric structure as it is the
example in Fig. 5.6(a) or when an anisotropic neighborhood is used. However, in the
case when the image consists of more complex structures, such as the brain tissue,
it is desirable to assign different weights to further neighbors to avoid the smoothing
or even elimination of some important smaller anatomical structures (e.g. the brain
cortex fissures).

In Eq. (5.23), the reciprocal of the distance d−1
jr reflects the fact that neighbors xr

closer to the element xj should have more influence on the result, while further neigh-
bors should be less important.

The outline of the proposed SCFCM algorithm is:

Step1. Set the number of clusters C, degree of fuzziness m, stop criterion ε and
neighborhood size.

Step2. Initialize the centers of the clusters vi and using FCM calculate uij .

Step3. Calculate the modified multimodal distance D∗∗ij , see Eq. (5.22).

Step4. Update uij using the modified distance D∗ij , see Eq. (5.3).

Step5. Update vi using uij , see Eq. (5.4).

Repeat steps 3-5 until the stop criterion maxi∈[1,C] ‖v
(l)
i − v

(l+1)
i ‖∞ < ε is satisfied.

As it has been already noted in Section 5.4.3, the segmentation performance and the
computational speed of the clustering methods highly depend on the initialization step.
Here, we also use intensity-based thresholding [Reddi et al., 1984] (as an initial seg-
mentation) to initialize the cluster centers and to generate a fast and reliable conver-
gence of the FCM’s objective function.
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5.6.2 Experimental results - simulated brain MRI data

In this section, the experimental results of applying the multimodal SCFCM algorithm
to simulated BrainWeb MRI [BrainWeb, 2013] is presented for different noise levels.
The method is compared with the segmentation performance of the standard FCM
[Bezdek, 1981] (including intensities of both T1-W and T2-W MRI into the feature
vector) and SCFCM with only T1-W MRI. For all experiments, we set the number of
clusters C = 3, the weighting exponent m = 2, ε = 0.001 and the neighborhood size
3 × 3. The parameter α, which controls the effect of the neighborhood attraction in
SCFCM, is experimentally determined. Since the lower signal-to-noise ratio (SNR)
of the MRI signal requires a higher value of the parameter α, it changes with the noise
level for the simulated data. In the following experiments we use α = 0.8 for 9%
noise, α = 0.7 for 7% noise, α = 0.4 for 5% noise and α = 0.1 for 3% noise.

The quantitative comparison results for different noise levels between the 3DGC
method that we proposed in the previous chapter, the standard FCM which includes
both T1-W and T2-W MRI intensities in the feature vector, the noise-robust FCM
that we introduced in the previous section, the SCFCM using only T1-W MR image
(SCFCM T1) and both T1-W and T2-W MR images (SCFCM T1&T2) are presented
in Fig. 5.11(a). We used the Dice similarity index ρ for the comparison and quanti-
tative evaluation. In our experiment, the results for ρ are averaged over slices with
indices 30, 60 and 90. From Fig. 5.11(a) we can clearly see that the SCFCM T1&T2
gives better results than the SCFCM T1, 3DGC and FCM for lower noise levels. How-
ever, the noise-robust FCM method outperforms all methods in this example. For the
highest noise level, the 3DGC gives equally good result as the the SCFCM T1&T2.
Detailed results for SCFCM T1&T2 in terms of anatomical structures are depicted
in Fig. 5.11(b). For any of the three brain tissues, the maximum difference between
two noise levels is less than 2% in similarity index ρ. This experiment on simulated
brain MRI is very interesting to quantitatively compare the segmentation performance
of our different segmentation methods: the automatic 3DGC, the noise-robust FCM
clustering and the unsupervised SCFCM clustering.

For the qualitative comparison results, we use the three representative slices with in-
dices 60, 90 and 120 from the BrainWeb data and corrupted with 9% Gaussian noise.
The qualitative segmentation results of the standard FCM, SCFCM T1 and SCFCM
T1&T2 for different noise levels are showed in Fig. 5.12 for the slice 60, Fig. 5.13 for
the slice 90 and Fig. 5.14 for the slice 120. In all three examples, results show that the
standard FCM method, although including multimodal intensity information, can not
deal with noisy images and gives the worst segmentation result. The SCFCM method
using only T1-W MRI gives better result by eliminating isolated noisy pixels. The best
segmentation result is achieved using the multimodal SCFCM method, which highly
agrees with the “ground truth” segmentation and this can be visually noted.
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Figure 5.11: Quantitative validation result for different noise levels. (a) Comparison results be-
tween: the 3DGC method that we proposed in the previous chapter, the standard FCM method,
the noise-robust FCM with anisotropic neighborhood, the SCFCM using only T1-W MR image
(SCFCM T1) and using multimodal T1-W and T2-W MR images (SCFCM T1&T2). The sim-
ilarity index ρ is the average value of the similarity indexes for WM, GM and CSF tissue over
the slices with indices 30, 60 and 90. (b) Segmentation performance of the multimodal SCFCM
(SCFCM T1&T2) for WM, GM and CSF.
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Figure 5.12: Comparison of the segmentation results on the 60th BrainWeb brain slice: (a) the
original T1-W MR image with 9% noise; (b) the original T2-W MR images with 9% noise;
(c) the segmentation result obtained with the FCM algorithm; (d) the segmentation result of the
SCFCM method using only T1-W image; (e) the segmentation result of the multimodal SCFCM
method using T1-W and T2-W MR images; (f) the “ground truth” segmentation .
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Figure 5.13: Comparison of the segmentation results on the 90th BrainWeb brain slice: (a) the
original T1-W MR image with 9% noise; (b) the original T2-W MR images with 9% noise;
(c) the segmentation result obtained with the FCM algorithm; (d) the segmentation result of the
SCFCM method using only T1-W image; (e) the segmentation result of the multimodal SCFCM
method using T1-W and T2-W MR images; (f) the “ground truth” segmentation .
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Figure 5.14: Comparison of the segmentation results on the 120th BrainWeb brain slice: (a)
the original T1-W MR image with 9% noise; (b) the original T2-W MR images with 9% noise;
(c) the segmentation result obtained with the FCM algorithm; (d) the segmentation result of the
SCFCM method using only T1-W image; (e) the segmentation result of the multimodal SCFCM
method using T1-W and T2-W MR images; (f) the “ground truth” segmentation .
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(a) (b) (c)

Figure 5.15: Real neonatal MR brain image: (a) and (b) original T1-W and T2-W MR images
respectively; (c) the multimodal SCFCM segmentation of the neonatal brain in three tissues:
WM (white segment), GM (light gray segment) and CSF (dark gray segment).

In addition to synthetic brain MRI we also demonstrate the performance of our multi-
modal SCFCM algorithm on real neonatal MRI images. Due to lack of ground truth,
the real neonatal MR brain scans are used only for qualitative validation. The neona-
tal MR brain data in Fig. 5.15 was recorded at Sophia Children’s Hospital (Erasmus
Medical Center, Rotterdam, the Netherlands), on a newborn preterm (born at 39 weeks
of gestation) subject to asphyxia. Both T1-W and T2-W MR images were acquired
on a Siemens 1,5T MRI scanner (256 × 256 × 20 voxel matrix with a resolution of
0.7mm×0.7mm×4mm). Before segmentation, the T1-W and T2-W neonatal images
are registered and the non-brain tissue is eliminated.

We use this multimodal SCFCM method in Chapter 6 for multimodal MRI segmenta-
tion of the neonatal brain tissue.

5.7 Computational efficiency

The final implementation of the proposed fuzzy segmentation methods is done in Mat-
lab. The execution time of the noise-robust FCM clustering for 256×256 image, 3×3
neighborhood and 3 labels (clusters) is less than 1 min. Note that this execution time
also includes the calculation of the phase congruency features. Typically, the conver-
gence of the noise-robust FCM energy function is reached after less then 15 iterations.

The execution time of the multimodal FCM clustering for two-modal 256 × 256 im-
ages, 3×3 neighborhood and 3 clusters is also less than 1 min. Note that in this
multimodal FCM method we only used isotropic neighborhood (there are no phase
congruency features). The convergence of the multimodal FCM energy function is
reached after less then 10 iterations. Additional image preprocessing steps that are
necessary in brain MRI segmentation were not included in the calculation time.
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In comparison with the 3DGC method, both the noise-robust FCM and the multimodal
SCFCM are slow. However, the 3DGC method is fully implemented in C++ and we
believe that implementation of the FCM methods in C++ can reduce running time by
more than a half.

5.8 Future directions

From a methodological point of view, future work can focus on few different im-
provements of the proposed fuzzy segmentation method. The first improvement can
be an extension of the method to deal with volumetric 3D images by incorporating
3D neighborhood information. The second improvement can include bias field cor-
rection of MR images directly into the FCM objective function. This will allow the
labeling of an image element to be influenced by the neighboring labels and at the
same time compensate for intensity inhomogeneities. The third possibility is to in-
clude the prior knowledge (in the case of brain MRI - the probabilistic brain atlas)
into the segmentation framework. The fourth possibility is to automatically determine
the optimal parameters α and β for isotropic neighborhood models and in the case
of multimodal image segmentation. The fifth improvement is to automatically deter-
mine the optimal number of clusters, because in our work the number of clusters is
determined manually. Finally, further improvements in both speed and accuracy of
the spatially-coherent and noise-robust FCM should be also considered in the future
work.

5.9 Conclusion

In this chapter, we have presented a spatially-coherent fuzzy C-means clustering
method for segmentation of noisy images. To enable accurate and noise-robust im-
age segmentation, we integrated both intensity and spatial contextual information of
the neighboring pixels into the segmentation algorithm using anisotropic neighbor-
hood configuration. The phase congruency method is used to determine significant
image features (edges and lines) and define anisotropic neighborhood. In this way, the
proposed method is designed to accurately segment fine image elements and coarse
homogeneous regions at the same time. Next to this, we have also presented a multi-
modal modification of the FCM method for unsupervised segmentation of three brain
tissues (CSF, GM, WM) in MRI. To enable noise-robust multimodal segmentation we
integrated intensity information from both T1-W and T2-W images and local spatial
contextual constraint into the segmentation algorithm.

The quantitative and qualitative experimental results for synthetic and real images
showed a good segmentation performance, especially for very noisy images, and
demonstrate an encouraging future of practical applications of the proposed method.
For example, our method could be useful in applications such as image texture seg-
mentation, medical image segmentation and multispectral image segmentation, where
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spatial contextual information is important. The performance of the multimodal spa-
tially constrained FCM algorithm is tested on simulated and real adult MR brain im-
ages with different noise levels, as well as on neonatal MR brain images with the ges-
tational age of 39 weeks. The experimental results showed that the SCFCM method
is effective and more robust to noise than other FCM-based methods and can be used
for a complex and noisy image segmentation of the neonatal brain.



6
Developing a realistic head

model in neonates

If an elderly but distinguished scientist says that something is possible, he is almost certainly
right; but if he says that something is impossible, he is very probably wrong.

– Arthur C. Clarke

Developing a realistic volume conductor head model is an important step towards a
non-invasive investigation of neuro-electrical activity in the brain. For adults, dif-
ferent volume conductor head models have been designed and successfully used for
EEG source analysis. However, creating an appropriate neonatal volume conductor
head model is a challenging task mainly due to the more complex anatomy of the de-
veloping newborn brain in comparison to adults and insufficient knowledge of head
tissue conductivities.

In this chapter we present a pipeline for modeling a realistic volume conductor model
of the neonatal head, where we address the modeling challenges (particularity neonatal
brain MRI segmentation challenges) and propose our solutions. We explain the nec-
essary MRI segmentation steps for neonatal realistic head modeling including MRI
preprocessing, brain volume segmentation, reconstruction of the neonatal skull and
final 3D reconstruction. Further on, in Chapter 7 we use this realistic head modeling
pipeline to create personalized realistic head models for neonatal EEG source local-
ization.

6.1 Introduction

The rapid development of non-invasive brain imaging techniques has opened new hori-
zons in the study of brain structure and function. In studies of brain pathology, such
as epilepsy, birth asphyxia or strokes, the most important diagnostic tools are MRI
and EEG. They can capture features of brain anatomy and function, and map neu-
ronal dynamics and degenerative processes. Since individual analysis of EEG and
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MRI have its strengths and weaknesses, there is an increasing demand for multimodal
EEG-MRI brain analysis, such as EEG source analysis, to synthesize the strengths
inherent in each technique [Michel et al., 2004]. However, one of the most important
steps in EEG source analysis is a volume conductor head modeling.

The first volume conductor models of the human head were modeled as a homoge-
neous sphere [Frank, 1952]. Soon it was noticed that different head structures such as
the skull, scalp and brain tissue have significantly different conductivities and a new
three-shell concentric spherical head model was introduced. In this model, the outer
layer represented the scalp, the middle layer represented the skull and the inner layer
represented the brain tissue. However, since the spherical head model is just a sim-
plified model of a real human head, further improvements were necessary for more
accurate EEG source analysis [Vatta et al., 2010].

New possibilities in the human head modeling came with the development of modern
medical imaging techniques such as MRI and CT, which allow in vivo study of the
human brain by providing detailed anatomical images of the brain’s structure. Nowa-
days, a more realistic head modeling is possible by segmenting volumetric 3D MRI
and CT images of the human head in different anatomical structures. Segmented skull,
scalp and brain tissue are then used to reconstruct a 3D realistic volume conductor
model. Typically, CT images are used for the skull segmentation, while MRI scans
are used for the soft tissue segmentation such as the brain tissue and the scalp. Thus,
to appropriately reconstruct a 3D head model, MRI and CT images must be registered
prior to image segmentation. However, CT imaging is not allowed in neonates due
to its invasive nature and the neonatal head tissue segmentation must rely only on ac-
quired MRI scans. This causes difficulties for the neonatal skull segmentation, which
is hardly visible on MRI scans.

In general, realistic head modeling is a more challenging task in neonates than in
adults. This is because the appearance of the neonatal and mature adult brains differs
significantly on MRI scans and the anatomy of the developing newborn brain is more
complex in comparison to adults, see Section 2.2.3.2. Furthermore, there is insuffi-
cient knowledge of head tissue conductivities, which, to our knowledge, have never
been measured in neonates. Due to these reasons, it is not possible to use the same
methods and parameters in neonates that are used for creating an adult realistic head
model.

However, the main framework for creating a realistic volume conductor model is still
the same in both adults and neonates and includes three equally important steps:

1. MRI segmentation of the head in different head structures such as the scalp,
skull and brain tissue;

2. Selection of appropriate conductivities for each head structure;

3. Appropriate placement of the EEG electrodes on the scalp surface.

In this chapter we will address MRI segmentation step, while the steps (2) and (3) will
be discussed in more detail in the next Chapter 7.
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The chapter is organized as follows. In Section 6.2 we present the main steps of
our integrated method for MRI segmentation of the neonatal head that is used for a
realistic head modeling. First, we explain preprocessing steps that are used to prepare
neonatal MRI for segmentation. Then, we propose the new brain extraction method
for neonates and explain methods for MRI segmentation of the neonatal brain tissue.
The neonatal skull and scalp segmentation is explained in Section 6.2.4. We also
present experimental results of the brain extraction method and compare qualitatively
with the manual expert segmentation. In Section 6.3 we summarize and explain the
steps for a realistic head modeling. Finally, we conclude this chapter in Section 6.4.

6.2 MRI segmentation of the neonatal head

Head tissue segmentation in newborns is more complex than in adults due to fast
growth process, complex anatomy of the developing brain and often poor MRI quality,
see Section 2.1.2. Next to the often unavoidable artifacts such as the motion of a non-
sedated subject, neonatal brains exhibit different signal intensity characteristics than
mature adult brains, see Section 2.2.3.2. Due to these differences, MRI segmentation
techniques developed for adults are not applicable for neonates or require additional
corrections.

MRI segmentation of the neonatal brain has become a research focus in recent years
[Xue et al., 2007,Shi et al., 2011,Weisenfeld and Warfield, 2009]. The existing meth-
ods are mainly focused on the problem of neonatal brain tissue segmentation (e.g.
brain cortex, myelinated and non-myelinated white matter), and are not developed
to segment head structures such as skin, skull, and cranial cavity. Also, the existing
methods rely on probabilistic atlases that contain the spatial variability of the tissue
structure. However, a good atlas of the newborn brain is difficult to obtain because
of the great anatomical variations between subjects and subjective ground truth man-
ual segmentation from which the atlas is derived. Also, an atlas-based segmentation
is prone to errors in non-healthy babies due to the existence of brain lesions. Thus,
to segment different head structures of the neonatal head, we propose an integrated
atlas-free segmentation algorithm based on multimodal T1-W and T2-W MRI.

All MRI data in this study were recorded at the Sophia Children’s Hospital (Erasmus
Medical Center, Rotterdam, the Netherlands), on newborn preterms with gestational
ages between 37-41 weeks. Both T1-W and T2-W MRI were acquired on a Siemens
1,5T MRI scanner, 256×256×20 to 25 voxel matrix, with a resolution of 0.7 mm×0.7
mm×4 mm. In few patients, T2-W images were acquired at lower in-plane resolution
and are later up-sampled to match the higher resolution T1-W images. Note that the
original MRI scans have low inter-slice resolution to reduce scanning time.

For the purpose of realistic head modeling, we propose an integrated segmentation
method that combines active contours, noise-robust FCM clustering and mathemati-
cal morphology and is able to segment four head structures in neonates: scalp, skull,
cerebrospinal fluid (CSF) and brain tissue. To prepare MRI data for segmentation, we
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Figure 6.1: 3D reconstruction of low-resolution MRI scans and the result after interpolation.
The final results (on the right) shows the appropriate inter-slice resolution.

used several preprocessing steps. First we use cubic spline interpolation to interpolate
low resolution MRI scans and obtain the inter-slice resolution of 0.7 mm. Then, we
preform bias field (intensity inhomogeneity) correction [Sled et al., 1998] and mul-
timodal T1-W and T2-W MRI registration [Mattes et al., 2001, Thevenaz and Unser,
2000]. After preprocessing, to identify and segment different head structures (scalp,
CSF and brain), we used our brain extraction algorithm [Despotovic et al., 2009a]
that will be explained in Section 6.2.2 and an algorithm that combines mathematical
morphology and multimodal fuzzy c-means clustering [Despotovic et al., 2010c], see
Section 5.6. To reconstruct the neonatal skull, we use mathematical morphology and
segmentation results of the brain and the scalp tissue. All these steps will be explained
in more detail in the following sections.

To summarize, the proposed algorithm is implemented in the six following steps:

1. Preprocessing of the multimodal T1-W and T2-W MRI: image interpolation,
bias field correction and multimodal image registration;

2. MRI segmentation of the head tissue and the image background;

3. Brain extraction - segmentation of the brain volume;

4. Segmentation of the neonatal brain into two clusters: brain tissue and CSF;

5. Reconstruction of the skull and the scalp;

6. 3D realistic head modeling;

Note that due to the low inter-slice resolution, MRI segmentation is performed in
2D (slice by slice) and the neonatal head is segmented into four labels: scalp, skull,
cerebrospinal fluid and brain tissue. White and gray matter are segmented as one class
(brain tissue), because of the same conductivity for the neonatal brain.
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6.2.1 Preprocessing steps

Several preprocessing steps are necessary before segmenting the neonatal brain into
different anatomical structures.

Image interpolation

First, we need to interpolate (up-sample) the original low resolution MRI data to ob-
tain the appropriate inter-slice resolution. It is common in neonatal MRI acquisition
that the resolution in the slice direction is much lower than the in-plane resolution
because of the short scanning time. This low inter-slice resolution causes disturbing
visual artifacts of 3D surfaces of a reconstructed head model. Thus, to obtain smoother
surfaces, we need an isotropic resolution of the MRI data. Using the interpolation step
we can compute the “missing” voxels in an MRI volume and make that up-sampled
3D volume surface looks better and more realistic than a rough staircase surface of
the originally acquired MRI data with a poor inter-slice resolution, see Fig. 6.1. The
smooth surfaces of the head structures are important for accurate attachment of EEG
electrodes and more precise 3D EEG source localization inside the brain. Note that
the interpolation step does not add new information to the original image content.

The goal of interpolation is to estimate the information of missing pixels/voxels in an
image based on the information given by existing pixels/voxels, so that the new inter-
polated image is as close to the original one as possible. The given information can be
color, gray level or density and in our case it is gray level intensity of the existing pix-
els/voxels. There are different interpolation methods such as nearest neighbor, linear,
quadratic, cubic spline, and so on. An illustration of different interpolation methods is
shown in Fig. 6.2. The nearest neighbor interpolation causes jaggedness or staircase
effect, while linear interpolation causes image blurring [Ledda, 2007]. Cubic spline
interpolation is considered as a good solution for close to ideal interpolation in many
cases and provides attractive properties such as smooth behavior, sufficient regularity
and easy implementation [Gotchev et al., 2000]. It also offers a good compromise be-
tween computational complexity and accuracy. Thus, in this work we use cubic spline
interpolation for the purpose of a realistic head modeling.

Bias field correction

Second, after image interpolation we need to remove the intensity inhomogeneity from
the original MRI data. For this purpose we use the non-parametric bias correction
method (also called the N3 method - Non-parametric Non-uniform Normalization)
proposed by Sled at al. [Sled et al., 1998]. For more details about the bias field cor-
rection see Section 3.2.1.

Image registration

After intensity inhomogeneity correction a registration algorithm is required to align
T1-W and T2-W MR images. To do so, we use affine transformation and mutual
information metrics [Mattes et al., 2001,Thevenaz and Unser, 2000], where the lower
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(a) (b) (c) (d)

Figure 6.2: Illustration of three commonly used interpolation methods. (a) Original image; (b)
Nearest neighbor interpolation; (c) Linear interpolation; (d) Cubic-spline interpolation.

resolution T2-W images are up-sampled with cubic spline interpolation to match the
higher resolution T1-W images. In few neonates, automatic image registration failed
or did not give satisfactory results due to the different position angles of the neonatal
head during acquisition. In those cases we used supervised registration method where
we manually indicated the matching anatomical points (also called landmarks) on both
T1-W and T2-W MRI prior to registration. For more details about image registration
see Section 3.2.2.

Brain extraction

Finally, the last and probably the most challenging preprocessing step in neonates is
the brain extraction. This step classifies voxels as brain or non-brain. The result can
be either a new image with just brain voxels or a binary mask, which has a value of
1 for brain voxels and 0 for the rest of tissues. In general, the brain-voxels comprises
GM, WM, and CSF of the cerebral cortex and subcortical structures, including the
brain stem and cerebellum. The scalp, dura matter, fat, skin, muscles, eyes and bones
are always classified as non-brain voxels. The Fig. 2.2 can help to visualize brain
and non-brain parts. This step is challenging because the brain extraction methods
proposed for adults do not give satisfactory results when applied to neonates. Thus,
we developed a new brain extraction algorithm for neonates, which is explained in the
following Section 6.2.2.

6.2.2 Brain volume segmentation

To date, existing brain/non-brain segmentation methods have been mainly developed
for adult brain [Shattuck and Leahy, 2002,Smith, 2002,Battaglini et al., 2008]. Among
them, BET (Brain Extraction Tool) [Smith, 2002] is the most popular one and is used
in SIENA (Structural Image Evaluation, using Normalisation, of Atrophy), which is a
robust approach to quantifying brain volume change [Bartsch et al., 2007]. Recently,
Battaglini et al. [Battaglini et al., 2008] proposed an extension of BET to remove
segmentation imperfections (e.g. incorrect inclusion of eyes, periorbital fat and other
non-brain structures). However, BET is not designed to segment the neonatal brain.
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Figure 6.3: A framework representing brain extraction algorithm for neonates using multi-
modal MRI images.

Since manual MRI segmentation of the brain is time-consuming, it is desirable to
develop a fast and robust computerized method for automatic or semi-automatic brain
extraction in neonates. In this Section we propose a hybrid segmentation method for
brain volume extraction in neonates using both T1-W and T2-W MRI, which can also
have a low inter-slice resolution. Our method starts with a thresholding step, which
generates a binary brain mask. The threshold for an initial segmentation is computed
automatically by applying an anisotropic diffusion filter to the image and using the
resulting voxel intensity histogram. This is followed by a set of morphological filters:
erosion, dilation and closing. Erosion is used to remove small connections between
the brain and surrounding tissue such as eyes, muscles and fat. After removing eyes
and other non-brain structures, a morphological dilation is performed to recover some
of the eliminated tissue. Then, a morphological closing is used to fill in the remaining
holes and create a homogeneous brain mask. A final refinement of the brain contour
is achieved using active contours proposed by Chan and Vese [Chan and Vese, 2001].
This active contour method is suitable for our application because it can detect objects
whose boundaries are not necessarily defined by the gradient, which is often the case
in the neonatal brain MRI. An algorithm overview is shown in Fig. 6.3.

The experimental segmentation results of our brain volume segmentation method on
real neonatal MRI show that the method achieves performance comparable to manual
segmentation and is effective and more accurate than segmentation methods originally
developed for adults. Next to a realistic head modeling and 3D volume reconstruc-
tion, brain volume segmentation offers the possibility of exploring the developmental
changes, measuring the brain growth and detecting early disorders.
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6.2.2.1 Image smoothing

To enhance poor MRI quality (e.g to reduce noise, motion artifacts), the registered MR
images are filtered using non-linear anisotropic diffusion [Perona and Malik, 1990,
Gerig et al., 1992], as modified by Black et al. [Black et al., 1998]. The anisotropic
diffusion filter is a diffusion process that facilitates intra-region smoothing and inhibits
inter-region smoothing, without removing significant parts of the image information
that are important for the image interpretation (like edges and lines). The equations
that we use for filtering are given as follows:

∂I(x, y, t)

∂t
= div [g(||∇I||)∇I] , (6.1)

g(x) =


[

1−
(
x

ρ

)2
]2

2
if |x| ≤ ρ,

0, otherwise,

(6.2)

where ||∇I|| is the gradient magnitude, g(||∇I||) is the “edge-stopping” function
(Tukey’s biweight) [Black et al., 1998], t is the number of iterations and ρ is a scale
parameter. In this method we consider 4 nearest neighbours for diffusion conduction.

6.2.2.2 Brain mask generation

The brain mask generation consists of three main steps. Firstly, we calculate automatic
thresholds from the diffused T1-W and T2-W MRI histograms to generate an initial
brain mask. Then, we use morphological operations to remove the non-brain regions.
Finally, we use an active contour model [Chan and Vese, 2001] to refine the brain
mask. The brain segmentation steps are illustrated in Fig. 6.5.

Initial brain mask

After anisotropic diffusion, the MRI histogram of a brain is smoother and it allows
us to generate automatic thresholds much easier. To obtain initial brain mask, we
generate three thresholds (head/background (τbkg), lower brain (τl) and upper brain
(τu)) using T1-W and T2-W MRI histograms, that provide us with different intensity
information of the same anatomical structure. The highest peak of the histogram cor-
responds to the image background and can be approximated by a Rayleigh distribution

ρR(x) =
x

σ2
exp

(
− x2

2σ2

)
, (6.3)

where x is the intensity and σ is the standard deviation. Other peaks in the histogram
correspond to the head and brain regions and can be approximated with a Gaussian
distribution

ρG(x) =
1

σ
√

2π
exp

(
− (x− µ)

2

2σ2

)
, (6.4)
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Figure 6.4: Histograms of the T1-W and T2-W MRI: (a) selecting the head/background thresh-
old τbkg by fitting the Rayleigh distribution to the first peak of the histogram,(b) setting the
upper brain threshold τu = µ + 2σ from the T1-W MRI histogram (c) setting the lower brain
threshold τl = µ− 2σ from the T2-W MRI histogram.

where x, σ and µ are the intensity, the standard deviation and the mean values respec-
tively.

In our algorithm, we firstly calculate the head/background threshold (τbkg) and the
upper brain threshold (τu) using T1-W MRI histogram and generate binary mask of
the head without the eye optic nerves and fat (which are very bright regions in T1-W
MR images). Then, we apply the obtained head mask on T2-W MR images and dis-
connect the eyes and some of the non-brain tissue from the brain. Next, we calculate
the lower brain threshold (τl) from the T2-W MRI histogram to remove the air and
the rest of the non-brain tissue. To select τbkg , we fit the best Rayleigh curve to the
first histogram peak and search for the closest histogram minimum on the right, see
Fig. 6.4(a). Similarly, to obtain τl and τu, we fit the best Gaussian curve to the proper
histogram and set thresholds about 2σ below and above the mean value respectively,
see Fig. 6.4(b) and Fig. 6.4(b).

Removal of the non-brain regions

In this stage it may still happen that the non-brain tissue is not completely separated
from the brain in the initial brain mask. Therefore, before the brain volume is associ-
ated with the largest connected component in the binary mask, we apply a sequence
of morphological operations to break any remaining attachments. This is normally
achieved by morphological filtering in the following way: the bright regions in the
binary image are eroded away until any links between brain and non-brain are elim-
inated, the largest single cluster is then chosen, and this is then dilated by the same
extent as the erosion, resulting in a brain mask. At the end, a morphological closing
operation is used to fill small holes inside the mask.
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Final segmentationClosing

Figure 6.5: An overview of the bran extraction steps. The first row shows the results after
applying the three thresholds: head/background τbkg , upper brain τu and lower brain τl. The
second row shows the results after erosion, finding the biggest connected component and dila-
tion. The third row shows the result after closing and final brain delineation.
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Since our brain mask is a binary image b(i, j), it can be described in terms of sets
of pixels with coordinates (i, j) assuming the value 1 or 0. To filter these images we
need to use binary mathematical morphology, which is based on two basic operators,
dilation and erosion. Both operators are defined in terms of a structuring element
h(i, j). The structuring element can be thought of as an image, although much smaller
in size than the whole image. By much smaller we mean an image with sides below
10 pixels, while the input image can have sides of hundreds of pixels. The shape of
this structuring element can be different and reveals what kind of shapes are important
in the following morphological operation. In our method we use a structuring element
with a spherical shape.

The binary erosion of b(i, j) by structuring element h(i, j) is denoted as (b	 h)(i, j)
and the dilation is denoted as (b⊕ h)(i, j). The erosion removes bright noisy spots in
the image (called bumps), while dilation removes dark noisy spots (called pits). Math-
ematical opening and closing are combinations of mathematical erosion and dilation.
Mathematical opening consists of erosion with a structuring element h(i, j) followed
by dilation with the mirrored structuring element h(−i, j), while mathematical clos-
ing is dilation followed by erosion. Opening removes bumps and closing removes
pits.

Mask refinement

Due to morphological operations, brain mask may have rough surface after removing
the non-brain tissue. The refinement of the brain mask is achieved with an active
contour [Chan and Vese, 2001] where its initial condition is the previously obtained
binary brain mask. We run the active contour on T2-W images (max 10 iterations) to
achieve smoother brain shape.

We use T2-W images because the brain tissue is more visible (has better contrast in
comparison to the surrounding non-brain tissue) than on T1-W images.

6.2.2.3 Brain extraction results

In this Section, we present both qualitative and quantitative experimental results of the
proposed brain extraction algorithm on real neonatal brain MRI.

To validate our method quantitatively, manually segmented images (approved by the
expert physician) are used as a “ground truth”, because the gold standard for the anal-
ysis of newborn brain MRI does not exist. For manual delineation we used the ITK-
SNAP [Yushkevich et al., 2006,ITK-SNAP, 2009] editing tool which displays 3D data
as a three synchronized 2D orthogonal views (sagittal, coronal and axial) onto which
the operator draws the contour of the target structure, see Fig. 6.6. The output data
therefore consists of a series of 2D contours from which a continuous 3D surface has
to be extracted. This is a non-trivial post-processing task and is prone to errors. For in-
stance, due to inter-slice inconsistencies in segmentation, bumps in the reconstructed
3D surface are inevitable.
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Figure 6.6: The screen shot of the ITK-SNAP editing tool that was used for the manual delin-
eation of the neonatal brain [ITK-SNAP, 2009].

Since a manual delineation is labour-intensive and time-consuming, we have per-
formed only a limited validation of our results. The similarity index used for the
comparison and quantitative evaluation is the Dice coefficient ρi [Dice, 1945], de-
fined in Eq. (4.14), where i indicates the number of neonates. The average similarity
measure for each of the 10 neonates and for the whole brain volume, including all
MRI slices that contain the brain tissue, is ρi ≥ 0.90.

The qualitative segmentation results are presented in Fig. 6.7. The first and the second
columns show the brain delineation results on T1-W and T2-W MRI respectively,
while the manual segmentation obtained with ITK-SNAP tool is showed in the third
column. In the same Fig. 6.7 we show in different figure rows the performance of
the method on different brain slices from the top, middle and bottom parts of the
brain. We can see that the method is efficient in eliminating non-brain structures and
nicely preserves the shape of the brain tissue comparing to the “ground truth” manual
segmentation.
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Figure 6.7: Comparison of the segmentation result of the proposed algorithm (delineated with
the red contour) with the manually segmented mask (green).
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Figure 6.8: Illustration of the multimodal FCM segmentation of the neonatal brain using T1-W
and T2-W MRI. Since there is a great intensity overlap between different tissues we segmented
MRI into more than 3 clusters to differentiate between CSF, WM and GM. Afterwards, we
merge several clusters into one to obtain desired segmentation. For the purpose of realistic head
modeling we need two final clusters: CSF and the brain tissue consisting of both WM and GM.

6.2.3 Brain tissue segmentation

After brain extraction, MR images are prepared for the brain tissue segmentation. For
the purpose of a realistic head modeling, we need only to separate CSF from the brain
tissue, because these two structures have significantly different conductivities. White
and gray matter are segmented as one structure due to the same conductivity in a
realistic head model.

For the brain tissue segmentation, we use our multimodal extension of the FCM
method for spatially constrained MRI segmentation described, which is described in
more detail in Section 5.6. To preserve the homogeneity of different brain tissues, we
combined information from both T1-W and T2-W MRI scans into the spatial neigh-
borhood information. Since there is a great intensity overlap between different tissues
in the neonatal brain, we segmented MRI into more than 3 clusters to differentiate
between CSF, WM and GM. Afterwards, we merge several clusters into one to obtain
desired segmentation into CSF and the brain tissue consisting of both WM and GM.
The number of clusters is determined experimentally by visual evaluation for each
neonate. In most of the cases, segmentation in 7 clusters successfully separated CSF
from the brain tissue, where the clusters are grouped into two final clusters. One ex-
ample of the multimodal brain MRI segmentation on neonatal MR brain image with
the gestational age of 39 weeks is shown in Fig. 6.8.
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Figure 6.9: Anatomy of the neonatal skull from the side view (left) and top view (right).

6.2.4 Scalp and skull segmentation

Segmentation of the neonatal scalp is obtained using combination of the multimodal
FCM clustering (described in Section 5.6) and active contours [Chan and Vese, 2001].
Here, we use the MRI scans where the brain tissue is removed as described in Section
6.2.2. The scalp can be recognized as a bright region on T1-W MRI. To segment the
scalp from the rest of the head structures, first we use multimodal FCM clustering with
two labels, where the first label corresponds to the bright region of the scalp and the
second label to the rest of the head. Consequently, when the scalp mask is obtained,
the outer surface of the scalp is refined using active contours in the same way as it is
done for the refinement of the brain surface.

The most challenging head structure to segment was the neonatal skull because it is
not easily visualized on MRI scans, contains structural inhomogeneities and partial
volume voxels. For the skull reconstruction, we used the remaining voxels between
the brain and the scalp, which resulted in a skull layer that completely surrounds the
brain. The anterior fontanelle was modeled as a part of the skull, where the skull
layer is eroded at the top of the head, using mathematical morphology and manual
landmarks, to reach the maximum possible thickness of one voxel size. The fontanelle
was approximately 2-3 cm wide and 3-4 cm long. The anatomy of the neonatal skull
and location and shape of the fontanelle are illustrated in Fig. 6.9.

6.3 Realistic head modeling

Finally, all segmented structures are used to generate a cubic grid with a cube side of
0.7 mm. The segmented skull, based on individual MRI, was 1.4-2.1 mm thick (two to
three voxels), but sometimes also reaching 2.8 mm in the occipital lobe. The fontanelle
thickness was set to 0.7 mm. These values fitted well in the realistic skull thickness
range of 1.1-2.9 mm, which was determined by an expert pediatric radiologist, based
on manual skull thickness measurements using all patients in this study. An overview
of the steps necessary for a realistic head modeling is shown in Fig. 6.10
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Figure 6.10: An outline of a realistic head modeling method. We use both T1-W and T2-W
MRI sequences as an input. Firstly we do image preprocessing including bias field correction
and image registration. Then, we do brain extraction and MRI segmentation into four compart-
ments: brain tissue, cerebrospinal fluid (CSF), scalp and skull. Finally, 3D head reconstruction
is followed with the tissue conductivity selection and electrode placement.
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6.4 Conclusion

The aim of this chapter was to present a framework for a realistic head modeling in
newborn infants without using atlases and probability maps of the brain. Our method
relies on two multimodal MRI information, T1-W and T2-W images, and has been
tested on real neonatal brain MRI. This integrated method combines active contours,
FCM clustering and mathematical morphology and is able to segment four head struc-
tures in neonates: scalp, skull, cerebrospinal fluid (CSF) and brain tissue.

As a part of a realistic head modeling, we have proposed a new neonatal brain
extraction method. This method has three sequential steps: background removal,
generation of the initial brain mask and a final brain mask refinement. In the first
step, the head tissue is separated from the background using simple thresholding and
histogram analysis. The second step includes an anisotropic diffusion filter and an
automated threshold to produce an initial brain mask. The anisotropic diffusion fil-
ter is used to remove noise artifacts and generate smoother image histogram, which
is further used for an automated threshold calculation. The third step involves the
refinement of the previously defined brain mask and generates the final brain bound-
ary using active contours. Our brain extraction method is designed for low-resolution
MRI data and is robust to partial volume voxels. Experimental results demonstrated
good correlation with a “ground truth” manual delineation, with a similarity index
above 90%, and yield a good segmentation performance even in noisy and poor qual-
ity MRI. Also, our segmentation more closely approximates the “true” brain volume
by compensating the missing slices.

Future work may include further refinement of the algorithm and testing on a variety
of gestational ages.
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Neonatal EEG source

imaging

A fact is a simple statement that everyone believes.
It is innocent unless found guilty.

A hypothesis is a novel suggestion that no one wants to believe.
It is guilty, until found effective.

– Edward Teller

Even though it is known that neonatal seizures are associated with acute brain lesions,
the relationship of EEG seizures to acute perinatal brain lesions visible on MRI has
not been objectively studied. In the past EEG source localization was successfully
used for this purpose in adults, but it has not been sufficiently explored in neonates.
In this chapter we propose an integrated method for ictal EEG dipole source localiza-
tion based on a realistic head model to investigate the utility of EEG source imaging
in neonates with postasphyxial seizures. We describe our method and compare the
dipole source localization results with acute perinatal lesions seen on brain MRI in
10 full-term infants with neonatal encephalopathy. Through experimental studies, we
also explore the sensitivity of our method to the electrode positioning errors and to
variations in neonatal skull geometry and conductivity. The localization results of 45
focal seizures from 10 neonates are compared with the visual analysis of EEG and
MRI data, scored by expert physicians. In 9 of 10 neonates, dipole locations showed
good relationship with MRI lesions and clinical data. Our experimental results also
suggest that the variations in the used values for skull conductivity or thickness have
little effect on the dipole localization, whereas inaccurate electrode positioning can
reduce the accuracy of source estimates. The performance of our fused method indi-
cates that ictal EEG source imaging is feasible in neonates and with further validation
studies, this technique can become a useful diagnostic tool.

This work is done in cooperation with Erasmus MC-Sophia Hospital in Rotterdam,
MEDISIP group from Ghent University and ESAT-STADIUS division from KU Leu-
ven. Erasmus MC-Sophia Hospital provided us with the necessary MRI and EEG
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data, clinical diagnosis of the patients and validations of the experimental results. The
MEDISIP group provided us with the source localization method (initially developed
for adults), which has been modified in this research for the purpose of neonatal EEG
source imaging. Finally, the EEG data analysis and automatic EEG seizure detection
is done by the ESAT-STADIUS division, whose results we used as an input for EEG
source localization.

7.1 Introduction

7.1.1 Neonatal seizures and their diagnosis

Neonatal encephalopathy is a syndrome characterized by neurological dysfunction in
central nervous system in newborns born at term or late preterm (≥36 weeks gesta-
tion). Seizures are a common manifestation of neurological dysfunction in neonates
[Volpe, 2008] and are attributed to biochemical imbalances within the central nervous
system (CNS), intracranial damages and infections. The newborn brain is very sus-
ceptible to seizures because term infants have well developed excitatory mechanisms
and poorly developed inhibitory mechanisms [McBride et al., 2000]. This explains the
greater incidents of seizures in the neonatal period than at any other time in life [Pa-
trizi et al., 2003]. In the last decade, an increasing number of studies have shown that
neonatal seizures cause lasting changes in the CNS [Koh et al., 1999, Ben-Ari and
Holmes, 2006] and are powerful predictors of long-term cognitive and developmental
impairment [Miller et al., 2002]. Also, subtle seizures are more common in full-term
than in premature infants.

There are two major types of seizures:

1. Primary generalized seizure - this seizure type affects the entire cerebral cortex;

2. Partial (focal) seizure - the abnormal signals of brain cells begins in one region
of the brain and remains in that region (Fig. 7.1).

Most seizures in the neonate are focal, although generalized seizures have been de-
scribed in rare instances. Perinatal asphyxia and hypoxic-ischemic encephalopathy
(HIE) are the most common causes of seizures in newborns. Seizures require early
detection to enable prompt treatment with the aim to prevent further brain injury.

Confirmation by video EEG is considered the gold standard in the diagnosis of neona-
tal seizures, while MRI is mainly used to diagnose structural brain damage. The
majority of seizures occurring in sick neonates are subtle or subclinical and can be
detected only by continuous EEG (cEEG) monitoring [Murray et al., 2008]. Elec-
trographic neonatal seizures are claimed to be independently associated with poor
outcome [McBride et al., 2000]. It is also known that the majority of newborns with
neonatal seizures have acute brain lesions visible on MRI [Cowan et al., 2003] and
that certain MRI patterns of brain injury like thalamus and basal ganglia injury are
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Partial seizure Generalized seizure 

Normal EEG 

Figure 7.1: Illustration of the normal EEG activity on the top and partial and generalized
seizure activities in the bottom. The brain on the top indicates the position of four brain lobes,
highlighted with different colors.

strongly predictive of poor outcome in HIE [Barkovich et al., 1998]. Though a few
studies have tried to relate brain lesions seen on MRI and specific EEG patterns [Scher
et al., 1993, Biagioni et al., 2001, Leijser et al., 2007], an objective study of the rela-
tionship between the localization of neonatal seizures and associated MRI patterns of
brain injury, using quantitative techniques, has not yet been done. The combination
of these modalities by means of 3D source localization might provide further insight
into the pathophysiology of neonatal seizure phenomena.

7.1.2 Challenges in neonatal EEG source imaging

EEG source localization estimates the active anatomical zones of the brain using EEG
signals measured on the scalp. Two sub problems are involved: (1) the forward prob-
lem, which is to calculate the electrode potentials in a head model for a given source
(usually a current dipole) and (2) the inverse problem, which is to find the dipole
parameters that best represent the measured potentials at the scalp electrodes. The
accuracy of source solutions highly depends on the selection of a volume-conductor
head model, including the selection of head tissue conductivities. The earliest head
models, used for adult source localization, model a head as a set of concentric spheres
representing different conductive layers like scalp, skull and brain, to simplify the
calculation of the forward and inverse problems. However, the human head is not a
sphere and using a spherical instead of a realistic head model results in a dipole loca-
tion error [Roth et al., 1993, Yvert et al., 1997, Cuffin, 1996, Silva et al., 1999]. This
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High density EEG recording running in our neonatal intensive care unit. 
The figure shows a preterm baby at conceptional age of 30 weeks with 
a high density EEG cap in place The EEG caps typically include 24 28 Ag/AgCl

Electroencephalography (EEG) Cap
a high density EEG cap in place. The EEG caps typically include 24–28 Ag/AgCl
electrodes, and they are provided at different sizes to fit babies with different 
conceptional age. The interelectrode distance is around 2.5–3 cm. 
The neonatal incubator and other medical devices connected to the baby are 
removed from the figure afterwards for better visualization of the EEG cap. 
Notably, the cap is fully compatible with i.v. lines and nasal tubes, which
are often needed in preterm babies at this age. 
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This Figure is a courtesy of University of Helsinki, Finland.

Figure 7.2: Illustrations of the high density EEG cap for adults (left), promising solution of the
EEG cap for neonates (middle, from [Tokarieva et al., 2012]) and the standard 10-20 manual
electrode placement (right).

is particularly important when studied sources are located in the temporal or occipital
lobes [Vatta et al., 2010].

To perform EEG source localization and compare the results directly with MRI le-
sions, accurate electrode placement and co-registration of EEG and MRI data are re-
quired. The most common methods for placing the electrodes on the scalp are using
EEG head caps or using the standard 10-20 International System that requires manual
electrode placement based on anatomical landmarks and relative distances (see Fig.
7.2). In adults, standard EEG head caps with fixed electrode positions are often used,
but using the same caps for neonates is challenging because of differences in head
size and greater variation in head geometry among neonates. Although there are some
promising solutions for this problem available in the market, like specially designed
EEG head caps for neonates [Vanhatalo et al., 2008], which might have a great po-
tential for clinical use in the near future, the standard 10-20 system is still the most
commonly used method in clinical practice in neonates. In source localization studies
that employ a realistic head model, the exact electrode positions on the scalp need
to be projected on the surface of the head model. This can be solved by using a 3D
digitizer, which transforms coordinates of electrode locations to the MRI coordinates.
However, this method is not available in most EEG laboratories. Therefore, a common
solution is to place the electrodes on the scalp using the standard 10-20 positions and
anatomical landmarks (like the inion and nasion points). As a consequence, such an
approximation can introduce errors in the source modeling procedure [Khosla et al.,
1999, Wang and Gotman, 2001].

Although EEG dipole source analysis is widely used in adults to localize epileptic
sources [Michel et al., 2004], it is still not well explored in neonates because of the
unknown conductivity values of the neonatal head. Additional challenges in neonatal
source localization using a realistic head model are due to significant anatomical dif-
ferences between newborn and adult heads. For instance, head tissue segmentation in
newborns is more complex than in adults because of the lower MRI resolution (due to
the short scanning period and small size of the newborn brain), lower contrast-to-noise
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ratio (due to the higher water content and ongoing myelination of the white matter)
and imaging artifacts (like ghosting effects, ringing and noise). The most difficult
structure to segment is the skull, because it is hardly visible on MRI scans. Also, the
skull is thinner in neonates and contains more inhomogeneities due to the fontanelles.

7.1.3 Goals and implementation overview

The aim of this pilot study was to explore the utility of neonatal ictal EEG source
imaging and study its relationship to anatomical lesions, visible on MRI. For this pur-
pose, we developed an integrated method for ictal EEG dipole source localization in
neonates based on a realistic head model. We applied this method on 45 electrographic
seizures recorded by cEEG from 10 neonates with presumed perinatal asphyxia and
HIE, and we attempt to verify the identified ictal sources by relating them to acute peri-
natal MRI lesions. We segmented MRI scans from each patient to construct person-
alized 3D realistic head models with four compartments: scalp, skull, cerebrospinal
fluid (CSF) and brain tissue. Using personalized MRI in this study is important to
directly relate 3D localization of the active sources in the brain with MRI lesions and
to minimize the dipole position errors due to different head shapes in neonates and
distinctive anatomical features. For each neonate, we built five personalized 3D real-
istic head models to experimentally evaluate the sensitivity of the method to variations
in skull conductivity and skull geometry (including skull thickness and the presence
of the anterior fontanelle). Also, we experimentally evaluated the sensitivity of the
method to electrode mislocalization. After constructing the head model, the spatial
distribution of seizures over scalp electrodes are extracted with previously developed
algorithms [Deburchgraeve et al., 2008, Deburchgraeve et al., 2009] and the optimal
dipole position is estimated with EEG source localization method based on the finite
difference method [Hallez et al., 2005]. We used the equivalent current dipole as a
representative model for a group of synchronously active neurons. For all patients
we analyzed only seizures with an unequivocal focal onset as determined by visual
inspection of cEEG data.

7.2 Materials

7.2.1 Studied patients

Ten full-term newborns (6 females and 4 males) with gestational ages between 37-41
weeks, admitted to the neonatal intensive care unit (NICU, from Erasmus MC-Sophia,
Rotterdam, The Netherlands), were included in this study. All 10 neonates displayed
features of perinatal asphyxia and HIE. The selection of these patients was based on
both the presence of recorded electrographic seizures on cEEG and acute perinatal
brain lesions [Cowan et al., 2003] on MRI. They are part of an ongoing study of
utility of long-term cEEG monitoring in neonates with presumed perinatal asphyxia
and encephalopathy. Selection for cEEG was based on criteria for asphyxia and/or a
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high degree of suspicion of seizures [Perumpillichira et al., 2011]. The medical ethics
committee of Erasmus University Medical Center Rotterdam approved this study.

In all patients, we selected and studied focal electrographic seizure discharges with
clear focal onsets. All patients had brain lesions visible on MRI. Half of the patients
had predominantly unilateral, focal brain injury (like a stroke), while the other half
had bilateral brain lesions (due to HIE). Details about the patients and their lesions
detected on MRI are shown in Tables 7.1 and 7.4. All EEG and MRI data were
recorded at the Sophia Children’s Hospital (part of the Erasmus University Medical
Center Rotterdam, the Netherlands). cEEG registrations were started mostly within
the first 24 hours after birth and MRI scans were done within the first 10 days. This
time difference in acquiring EEG and MRI data is important for a reliable diagnosis
because EEG changes after asphyxia are best studied in the acute phase and the rate
of recovery gives an indication of the severity and duration of the presumed hypoxic
insult, while the pattern of brain injury is most easily seen in MRI few days after
birth, when brain swelling is lower [Biagioni et al., 2001], and helps to better predict
the outcome [Rutherford et al., 1998].

7.2.2 Data acquisition

cEEG registrations were made using a NervusTM monitor (Taugagreining hf, Reyk-
javik, Iceland). We used silver-silver chloride electrodes applied on the scalp accord-
ing to the 10-20 International System (17 electrodes:Fp1,2, F3,4, C3,4, Cz, P3,4, F7,8,
T3,4, T5,6, O1,2) using conductive paste and fixed with collodion. The Fz electrode
was used as the reference. The impedances were kept below 5 kΩ. The polygraphy in-
cluded ECG, respiration, electro-oculogram (EOG), chin EMG and limb movements.
The EEG sampling frequency was 256 Hz. The band-pass filter was between 0.3 - 70
Hz. EEGs were reviewed in their entirety by an experienced clinical neurophysiologist
and the background activity was classified according to an in-house developed eight-
grade classification system, emphasizing the severity and evolution of discontinuity
and recovery of sleep-wake cycles [Perumpillichira et al., 2011].

We defined seizures as ictal-appearing electrographic discharges that showed a clear
variation from background activity, displaying a repetitive pattern of sinusoidal oscil-
lations or sharp waves, or a mixture of both, lasting 10 s, with evolution in ampli-
tude and frequency over time [Bye and Flanagan, 1995, Perumpillichira et al., 2011]
whether they had clinical correlates or not. Seizures were visually scored for their on-
set location, frequency, amplitude, duration, morphology and spread (see Table 7.1).

MRI scans of the brain were acquired in the first week post partum (PP) in all 10
patients with seizures. All scans included conventional T1-weighted (T1-W) and T2-
weighted (T2-W) spin echo sequences, 3D spoiled gradient recalled (3D-T1- SPGR)
sequence and diffusion weighted imaging (DWI) and were acquired on a 1,5 T MRI
scanner (Siemens, Germany), 256×256×20 to 25 voxel matrix with a resolution of
0.7mm×0.7mm×4mm. All MRI scans were scored by a pediatric neuroradiologist
according to well-described patterns of neonatal brain injury [Swarte et al., 2009].
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7.3 Multimodal data fusion for EEG source imaging

Our method for neonatal EEG ictal dipole source localization consists of three key
components: (1) 3D realistic head modeling; (2) automatic extraction of the spatial
distribution of the selected seizure over electrodes; and (3) solving the forward and
inverse problems for source localization (see Fig. 7.3).

 
Figure 1: An outline of the EEG dipole source localization algorithm with three main components: realistic head 
model, EEG event detection (automatic seizure detection) and solving the forward and inverse problems using an 
equivalent current dipole for source localization. Forward problem calculates the electrode potentials given the 
source and the head model. Inverse problem quantitatively estimates the source parameters in the head model for a 
given set of EEG measurements. 

Figure 7.3: An outline of the EEG dipole source localization algorithm with three main com-
ponents: realistic head model, EEG event detection (automatic seizure detection) and solving
the forward and inverse problems using an equivalent current dipole for source localization.
Forward problem calculates the electrode potentials given the source and the head model. In-
verse problem quantitatively estimates the source parameters in the head model for a given set
of EEG measurements.

7.3.1 Head modeling

Modeling a realistic head model as a volume conductor is not a trivial task because it
requires three equally important steps: (1) segmentation of the various head structures
(such as scalp, skull, and brain tissue), (2) selection of the correct tissue conductivities
and (3) appropriate electrode placement.

7.3.1.1 Head MRI segmentation

Segmentation of the neonatal head for the purpose of a realistic head modeling is
described in more detail in Chapter 6. Here we will only briefly summarise the most
important segmentation steps.

In this study we used an atlas-free segmentation algorithm based on T1-W and T2-W
MRI scans that is able to segment four head structures: scalp, skull, cerebrospinal
fluid (CSF) and brain tissue. Before segmentation, we used cubic spline interpolation
to interpolate low resolution MRI scans and obtain the inter-slice resolution of 0.7
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mm. Then, we did bias field (intensity inhomogeneity) correction [Sled et al., 1998]
and multimodal T1-W and T2-W MRI registration [Mattes et al., 2001, Thevenaz and
Unser, 2000]. After preprocessing, to identify and segment different head structures
(scalp, CSF and brain), we used a brain extraction algorithm [Despotovic et al., 2009a]
and an algorithm that combines multimodal fuzzy c-means clustering [Despotovic
et al., 2010c]] and mathematical morphology.

The most challenging head structure to segment was the neonatal skull because it is
not easily visualized on MRI scans, contains structural inhomogeneities and partial
volume voxels. For the skull reconstruction, we used the voxels between the brain
and the scalp, which resulted in a skull layer that completely surrounds the brain. The
anterior fontanelle was modeled as a part of the skull, where the skull layer is eroded at
the top of the head (using mathematical morphology) to reach the maximum possible
thickness (one voxel size). The fontanelle was approximately 2-3 cm wide and 3-4 cm
long. The anatomy of the neonatal skull and location and shape of the fontanelle are
illustrated in Fig. 6.9.

Finally, all segmented structures are used to generate a cubic grid with a cube side of
0.7 mm. The segmented skull, based on individual MRI, was 1.4-2.1 mm thick (two to
three voxels), but sometimes also reaching 2.8 mm in the occipital lobe. The fontanelle
thickness was set to 0.7 mm. These values fitted well in the realistic skull thickness
range of 1.1-2.9 mm, which was determined by an expert pediatric radiologist, based
on manual skull thickness measurements using all patients in this study.

7.3.1.2 Head conductivity selection

When different compartments of the brain are obtained, the appropriate conductivi-
ties have to be attached to them. Since head conductivities, to our knowledge, have
never been measured for neonates, in this work we estimated the conductivity values
based on available studies for adults and small animals [Thurai et al., 1984, Ged-
des and Baker, 1967, Baumann et al., 1997, Gibson et al., 2000, Oostendorp et al.,
2000, Akhtari et al., 2002, Gonçalves et al., 2003, Lai et al., 2005, Roche-Labarbe
et al., 2008]. The neonatal scalp and CSF conductivities were assumed to be the
same as in adults with the values 0.43 S/m and 1.79 S/m respectively [Geddes and
Baker, 1967,Baumann et al., 1997], while the neonatal brain conductivity is set to 0.33
S/m [Gibson et al., 2000,Roche-Labarbe et al., 2008]. To estimate the conductivity of
the neonatal skull, we used the previous study of Murray [Murray, 1981] where it was
reported that the conductivity of the neonatal skull should be between 0.033 and 0.2
S/m (the adult skull conductivity is in the range from 0.0067-0.015 S/m [Oostendorp
et al., 2000, Akhtari et al., 2002, Lai et al., 2005]). Since the conductivity of the brain
and the scalp is considerably higher than the conductivity of the skull, we used 0.033
S/m as the “true” conductivity value of the neonatal skull, where the brain-to-skull
conductivity ratio is 10. Furthermore, since wrong estimation of the skull conductiv-
ity can lead to source mislocalization, in the experimental study (Section 7.4.2) we
estimated different source localizations based on different plausible values of human
skull conductivities as given in Table 7.2.
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Figure 7.4: The two images (side view on the left and top view on the right) show the example
of our reconstructed 3D head model with 17 electrodes. Nasion and inion points together with
T3, T4 electrodes form the equatorial plane and the electrode Cz represents the north pole. The
x-axis points to the right side of the head (through T4), the y-axis points to the front of the head
(through the nasion point), and z-axis passes through Cz. The coordinates θ (the azimuth) and
ϕ (the latitude) are used to describe the electrode positions.

Component Adult(S/m) Neonate(S/m)
Brain 0.2-0.48 0.33
CSF 1.79 1.79
Skull 0.0067-0.015 0.033-0.2
Scalp 0.43 0.43

Table 7.2: Head tissue conductivities

7.3.1.3 Electrode placement

Finally, 17 electrodes were placed on the scalp using the standard 10-20 system [Wang
and Gotman, 2001]. An illustration of the standard 10-20 system electrode positions
mapped on a head is shown in Fig. 2.24. The nasion and inion points were manu-
ally defined on each segmented head volume and were used as anatomical markers
for electrode placement. For each patient, electrode positions were adapted regard-
ing the shape of the head and the segmented scalp, which led to subject-dependent
electrode placement. The coordinates of the electrodes were described using two pa-
rameters: the azimuth θ (angle with the vertical z-axis where 0o ≤ θ < 180o) and the
latitude ϕ (contra-clockwise angle with the x-axis in the horizontal x-y plane where
0o ≤ ϕ < 360o). An example of the 3D realistic head model with 17 electrodes pro-
jected on the scalp is illustrated in Fig. 7.4. All steps for the realistic head modeling
are summarized in Fig. 6.10.
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7.3.2 EEG event detection

Two to five focal seizures, that were considered to be representative of the expressed
seizure patterns in each neonate, were visually selected by a clinical neurophysiol-
ogist. The selected seizures were then reviewed by two experienced clinical neuro-
physiologists and a consensus was reached about the identified seizure characteristics.
From a signal processing point of view, the neonatal seizures could be classified in
three morphological types with respect to their EEG characteristics: the spike train
seizure type (Fig. 7.5(a)), the oscillatory seizure type (Fig. 7.5(b)) and the combi-
nation of the previous two types (mixed pattern, Fig. 7.5(c)). The major difference
between the spike train type and the oscillatory type is that the spike train type con-
sists of isolated spikes appearing on a background of lover voltage EEG, whereas the
oscillatory type is a fluent, continuous seizure. The oscillatory type also has a contin-
uous kind of repetitiveness and a lower frequency content, while the spike train type
is a discontinuous, high-frequency seizure. In this study, all analyzed seizures were
spike trains or mixed patterns with a large spiky component.

Fp2‐F8

F8‐T4

30uV
2 sec(a)

T4‐T6

Fp1‐F3

F3‐C3

100uV
2 sec(b)

C3‐P3

T C

454uV
10

T4‐C4

C4‐Cz

Cz‐C3

10 sec(c)

Figure 7.5: (a) Example of a spike train type seizure; (b) example of an oscillatory type seizure;
(c) example of a seizure consisting of both morphologies, starting with oscillatory activity and
ending with a spike train. From [Deburchgraeve et al., 2008].
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7.3.2.1 Automatic seizure detection and localization

To automatically and objectively extract the spatial topography of the selected
seizures, we applied a two-step method consisting of (1) automatic seizure detection
and (2) automatic seizure localization.

The first step (automatic seizure detection) is the application of the recently devel-
oped automated spike train detector [Deburchgraeve et al., 2008, De Vos et al., 2011],
which detects highly similar, high energetic spikes in a seizure. This spike train de-
tection algorithm consists of three consecutive steps. In the first step, high energetic
parts of the EEG are segmented using a non-linear energy operator (NLEO) [Kaiser,
1990]. This operator is proportional to the square of both the instantaneous frequency
and amplitude. Because of these properties, the NLEO amplifies the high- frequency
spikes of the spike train relative to the background EEG, facilitating the segmentation.
The second step analyzes the spikiness of the detected high energetic segments. This
spikiness defines that the spikes need to be ’isolated’ in the EEG by comparing the
energy of the detected segment with its immediate background activity. The third step
is the correlation analysis that grows a set of highly correlated segments to detect the
occurrence of a repetitive pattern of segments. If more than 8 inter-correlated seg-
ments can be found in a 30s window (with average correlation > 0.8), a spike train
type seizure is detected. The output of the first step is a set of highly correlated, high
energetic spike-like segments corresponding to the spikes of the neonatal seizure (see
Fig. 7.6(a)).

In the second step (automatic seizure localization), the detected spikes are aligned
and grouped into a tensor, which is modeled with a trilinear structure using Parallel
Factor Analysis (PARAFAC) [De Vos et al., 2007, Deburchgraeve et al., 2009]. Note
that in this study, we consider stationary seizures, but for an extension of the method
that takes into account the evolution of the seizure, we refer to [Deburchgraeve et al.,
2010]. As a result, the spatial distribution vector of the spikes over the EEG channels
is obtained and is used as an input for source localization (Fig. 7.6(b)). The advan-
tage of this preprocessing step is that the signal to noise ratio of the input for source
localization is increased compared to raw topographies of single spikes. We have also
shown previously that the PARAFAC localization is more robust and less sensitive
to added noise as compared to simple spike averaging [Deburchgraeve et al., 2009].
The automated detections and localizations of all the 45 seizures were subsequently
checked by the clinical neurophysiologist to ensure that they corresponded to the vi-
sual interpretation.
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Segmentation of the EEGSegmentation of the EEG

(a)

Seizure detection Seizure localization

Topographic plot
+ positiveSpike detection
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Spatial distribution 
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(PARAFAC)

- negative
( )

(b)

Figure 7.6: (a) Example of spike train detection. All marked segments (gray shaded + marked
by rectangle) are those detected by segmentation step. After the spikiness operator and cor-
relation analysis only the shaded segments remain. As a result, only those segments with a
high correlation with previous segments (shaded) are kept and are detected as being part of a
spike train type seizure. (b) Algorithm outline for automatic seizure detection and localization.
Firstly, we detect and segment all spikes by the seizure detector. Then, using a PARAFAC de-
composition we calculate the spatial distribution of the spikes over the EEG channels, which can
be plotted as a topographic plot. Positive and negative brain regions are indicated with red and
blue color respectively. Parts of the figure from [Perumpillichira, 2010] and [Deburchgraeve
et al., 2009].
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7.3.3 EEG dipole source localization

Using a topographic plot as a graphical representation of the spatial distribution of
the spikes over the EEG electrodes is suboptimal to relate EEG spatial information
with 3D brain anatomy. However, the combination of EEG and MRI data for 3D
source localization can provide a representation of electrical generators inside the 3D
anatomical space of the brain and enable exploring their relationship with underlying
lesions. To achieve this goal, three input elements are required: the electrical fields
modeled with an equivalent current dipole, a realistic head model (Section 7.3.1) and
the spatial distribution of the seizure over the EEG electrodes (Section 7.3.2). Since
all events in this study were assumed to be focal activities, we used a single rotating
current dipole for the dipole fit.

7.3.3.1 The current dipole

A neuron cell is modeled as an element that withdraws current I from the extracellular
space (a so-called current sink) and injects a current with the same intensity (current
source). The current flow causes both electric and potential fields inside the human
head, which extends to the scalp. A large group of electrically active neuron cells,
located in a small peace of cortex, can be represented as one equivalent current dipole
on macroscopic level [He et al., 2002, de Munck et al., 1988]. It is very difficult to
estimate the extent of the active area of the cortex because the potential distribution
on the scalp is almost identical to that of an equivalent dipole [Hara et al., 1999].

The current dipole is characterized with two parameters: the dipole position rdip and
the dipole moment d (see illustration in Fig. 7.7(a).

p

I

d

-I

z

x

y

  
θ 

φ
dx

dz

dy

(a) (b)

Figure 7.7: (a) Illustration of the current dipole for a given current source and current sink
configuration. (b) The dipole as a vector with 6 parameters: 3 for the dipole location (dx, dy, dz)
and 3 for the vector components of the dipole (ex, ey, ez). These vector components can also
be transformed into spherical components: an azimuth θ, elevation ϕ and magnitude d of the
dipole. From [Vanrumste, 2001].
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The dipole position parameter rdip is typically chosen half way between the source
and sink. The dipole moment d is defined by a unit vector ed (which is directed from
the current sink to the current source) and a magnitude given by d = ||d|| = Ip
where p is the distance between the source and the sink and dx, dy , dz are the dipole
components along the three Cartesian axes (Fig 7.7b).

7.3.3.2 Solving the forward and inverse problem

The dipole source localization consists of solving forward and inverse problems. The
forward problem starts from a given current source and then calculates the resulting
potentials in the volume conductor. These potentials can be obtained by solving the
following Poisson’s differential equation, which gives a relationship between the po-
tentials at any position in a volume conductor V and the applied current sources:

∇ · J = ∇ · (σ(x, y, z)V (x, y, z)) = Iδ(r− r2)︸ ︷︷ ︸
current source density

+ (−Iδ(r− r1))︸ ︷︷ ︸
current sink density

, (7.1)

where ∇ · J is the current density, σ(x, y, z) is the location dependent conductivity
tensor and V (x, y, z) is the potential distribution inside the head model due to a dipole
with current source and sink at positions r2(x2, y2, z2) and r1(x1, y1, z1) respectively
and a scalp measurement point r(x, y, z). The current density can be also written as
the sum of the current source density and the current sink density. The negative sign in
front of the current sink density indicates that current is removed from the extracellular
volume and the delta function indicates that current is removed at one point in space.

Poisson’s equation 7.1 can be solved using an analytical expression for spherical
head models, while numerical solutions are needed for realistic inhomogeneous head
models. In this study we used a finite difference method (FDM) [Hallez et al., 2005,
Hallez, 2008] for numerical solution, where a cubic computational grid is defined to
the vertices at the edges of the labeled voxels in the realistic head model (Fig. 7.8).

Figure 7.8: The 3D cubic grid with 18 potential points. From [Hallez, 2008].
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Differentiating equation ( 7.1) in anisotropic media leads to the following finite differ-
ence formulation at each vertex V (r0):

I =

18∑
i=1

AiV (ri)−
( 18∑
i=1

Ai

)
V (r0), (7.2)

where V (r0) is the potential at the central discrete point, V (ri), i = a, ..., h is the
potential at the i-th neighboring point andAi is a coefficient depending on the conduc-
tivity tensors of the elements (cubes) shown in Fig. 7.8. Note that the cubes indicate
the conductivity tensors and the geometry of the head model, but the potential values
are computed at the nodes between the voxels. I denotes the current depending on the
position of the center node. If the center node is at a monopole of the current source or
sink, then I = 1 or I = −1, respectively, else I = 0. To each node, we can assign an
equation according to (7.2). This results in a system of equations with N unknowns,
with N equal to the number of nodes in the head model. To solve the linear system
of equations, we used successive over-relaxation (SOR). Furthermore, reciprocity was
used to speed up the forward calculation in the inverse problem [Vanrumste et al.,
2001].

Solving the inverse problem consists of finding the parameters of the dipole source
that best explain the set of measured potentials at the scalp electrodes consisted of
the preprocessed EEG-spike trains. This is an iterative procedure where the source
parameters are adjusted until a cost function (indicating the difference between the
measured electrode potentials and those caused by the estimated source) is minimal.
We find the optimal dipole position ropt and components dopt for the input potentials
Vin at 17 scalp electrodes. This was done by minimizing the relative residual energy
(RRE):

RRE =
‖Vin − Vmodel(r,d)‖22

‖Vin‖22
+ C(r), (7.3)

where Vin are the preprocessed spike trains and Vmodel are the electrode potentials
obtained by solving the forward problem with a dipole source position rdip and com-
ponents d. ‖.‖2 indicates the L2-norm. C(r) is zero for dipole positions in the brain
compartment and is set to a high value elsewhere. This additional term will constrain
the solution of the inverse solver to the brain compartment. The non-gradient based
Nelder-Mead simplex method [Nelder and Mead, 1965] is used to find the minimum
of the RRE, which is a measure of the goodness of fit (GOF). A reasonable GOF was
assumed if the RRE was ≤0.20.

To examine the relationship between EEG seizures and MRI brain lesions, for each
patient we performed source localization for each selected event (seizure) using per-
sonalized head model obtained from patient’s MRI data. The source reconstruction
solutions (equivalent dipoles) were projected onto the original T1-W, T2-W and DWI
MRI volumes. To delineate the lesions on MRI, we used MRI sequences where the
lesion was best visualized (like DWI or SPGR) and the distance between the dipole
and the nearest lesion margin was measured using 3D Euclidean distance. The manual
delineation of the lesions was checked and approved by a pediatric neuroradiologist.
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7.4 Experimental setup

Although the main goal of this study was to explore the relationship of acute perinatal
brain lesions visible on MRI to estimated EEG sources of neonatal seizures, we also
needed to explore the influence of different parameters on these estimates. Since EEG
source localization results may be affected by the skull reconstruction errors (includ-
ing skull thickness and the presence of the fontanelle), the wrong estimation of the
skull conductivity and the errors in electrode placement, we performed experimen-
tal studies to better understand the influence of these elements on ictal EEG source
localization in neonates.

7.4.1 Conductivity and geometry of the skull

For the experimental study, for each patient we built five head models: “normal”,
“maxcond”, “mincond”, “no fontanelle” and “thick”, to test the sensitivity of the
source localization to variations in skull conductivity and geometry. The “normal”
head model is the first head model obtained after the MRI segmentation and the initial
head conductivity estimation, where the skull conductivity is set to 0.033 S/m and the
segmented skull thickness is 1.4-2.1 mm, containing the anterior fontanelle (0.7 mm
thick). This head model was used as the reference (true) head model in this study.

Head model Skull cond. Skull thick. Fontanelle Font.
(S/m) (mm) yes/no thick. (mm)

1. “Normal” 0.033 1.4-2.1 Yes 0.7
2. “Maxcond” 0.2 1.4-2.1 Yes 0.7
3. “Mincond” 0.0067 1.4-2.1 Yes 0.7
4. “Thick” 0.033 2.1.2.8 Yes 0.7
5. “No fontanelle” 0.033 1.4-2.1 No -

Table 7.3: Five head models used for the experimental study. Skull cond.: skull conductivity;
Skull thick.: skull thickness; Font thick.:fontanelle thickness.

The second and the third head models, “maxcond” and “mincond”, were used to test
the influence of differences in estimation of the skull conductivity. In comparison to
the “normal” head model, in the “maxcond” and “mincond” head models we only
changed the skull conductivity to 0.2 S/m and 0.0067 S/m respectively, which cor-
respond to the maximal and minimal head conductance estimated in adults. For in-
stance, the conductivity of most soft tissues is around 0.2 S/m (white matter in the
adult brain) [Geddes and Baker, 1967], while the lowest value reported for the adult
skull conductivity is 0.0067 S/m [Saha and Williams, 1992, Lai et al., 2005] (Table
7.2).

The last two head models, “no fontanelle” and “thick”, were used to test the influence
of the anterior fontanelle and skull reconstruction errors on dipole localization. In
comparison to the “normal” head model, the “no fontanelle” head model does not
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contain the anterior fontanelle and the “thick” head model has voxel-size (0.7 mm)
thicker skull with the values between 2.1-2.8 mm (in some cases reaching 3.5 mm in
occipital regions). The “no fontanelle” head model was used to explore whether the
fontanelles, as thin cartilage structures, create paths of low conductivity for the volume
currents in the brain and tend to concentrate dipoles around the current leakage [Bénar
and Gotman, 2002]. The “thick” head model was used to examine how the errors in
the skull thickness, caused by partial volume effects and MRI segmentation, influence
the source estimates. The summary of the five head models is given in Table 7.3.
To calculate the dipole shifts (distances) caused by using different head models of the
same patient, we used 3D Euclidean distance.

7.4.2 Influence of electrode mislocalization

Since incorrect assumptions of electrode positions on a realistic head model can also
introduce source localizations errors, we performed the experimental study to inves-
tigate how spatial electrode misplacements from the standard 10-20 system influence
dipole localization results (using 17 electrodes). To estimate these errors we used
five patients, each with five focal seizures and median GOF < 0.20, and we dis-
placed the electrodes from their initial 10-20 position. This is achieved by angular
displacement of the parameters θ and ϕ (see 7.4), where it is assumed that these
displacements were zero-mean Gaussian with the same standard deviation σ for all
electrodes [Khosla et al., 1999] (see Fig. 7.9). We did four experiments with dif-
ferent standard deviations: 2o, 5o, 10o and 12o. For each standard deviation and for
each patient we generated eight different electrode position sets by adding Gaussian
displacements to the original electrode positions using the “normal” head model (see
Table 7.3). This resulted in 200 inverse problem calculations for each experiment. To
calculate the dipole shifts (distances) caused by electrode mislocalization we used 3D
Euclidean distance. The results of this experimental study should help in understand-
ing how important it is to know the exact electrode positions in solving the inverse
problems and whether the electrode mislocalization errors are big enough to justify
the additional cost of digitizing electrode positions.

Figure 7.9: Standard 10-20 system electrode placement of the 17 electrodes projected onto the
scalp and dashed circles represent the area of the electrode misplacement.
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7.5 Results

7.5.1 Relationship of seizure foci to brain lesions detected by MRI

To compare 3D EEG source localization results with well-defined brain lesions seen
on MRI, for all 10 patients we used the “normal” head models since they provided
the best GOF. A description of brain lesions visible on MRI (clinical diagnosis) and
dipole localization results is shown in Table 7.4 for each patient. To better understand
the locations of MRI lesions and dipoles within the brain see Fig. 7.1, where the brain
on the top illustrates the location of the four brain lobes.

No. MRI lesions (clinical diagnosis) Dipoles positions (localization results)

1 Bilateral (right > left) watershed
(sub)cortical lesion in occipital lobe

Right occipital lobe

2 Watershed (sub)cortical lesion in right
posterior frontal and parietal lobes

Right posterior frontal and parietal
lobes

3 Bilateral (sub)cortical injury, mainly in
frontal and occipital lobes

Bilateral posterior frontal and parietal
lobes

4 Bilateral infarction in temporal and
parietal lobes

Bilateral posterior frontal, temporal and
parietal lobes

5 Ischemia and hemorrhage left ba-
sofrontal and frontal periventricular

4 dipoles (left frontal lobe) and 1 dipole
(right posterior frontal)

6 Subdural and subarachnoid hematoma
in the left occipital region

Left occipital lobe

7 Bilateral white matter hemorrhages in
posterior frontal, parietal and occipital
lobes

Bilateral posterior frontal and parietal
lobes

8 Infarction, in right parietal, posterior
frontal and frontal lobes

Right frontal, posterior frontal and pari-
etal lobes

9 Bilateral (right > left) white matter and
(sub)cortical injuries in frontal, occip.
and temporal lobes and basal ganglia.

Bilateral (three right and 2 left) poste-
rior frontal and temporal lobe

10 Bilateral white matter injury in frontal
lobe

Left posterior frontal lobe

Table 7.4: Description of MRI lesions and localized dipoles’ positions. No.: number of patient.
The second column of the table describes the lesions seen on MRI including their location (the
side and the lobe of the brain). The third column describes the dipole localization results (the
side and the lobe of the brain).

For all patients, the dipole source localization results together with delineated MRI
lesions (marked with red color) with axial, coronal and sagittal views are shown in
Fig. 7.10, 7.11, 7.12, 7.13 and 7.14. Different EEG events (seizures) are illustrated
with different color and a corresponding topological plot, and for each seizure dipole,
GOF and the distance from the closest lesion border are displayed.
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Since we hypothesized that the location of the seizure would be on the lesion border
[Hartings et al., 2003], we classified localized dipoles in three categories: dipoles very
close or on the edge of the lesion (≤ 5 mm), dipoles in the vicinity of the lesion (≤ 15
mm) and dipoles far from the lesion (> 15 mm) [Ding et al., 2007]. For each patient,
good relationship between the estimated dipoles and MRI lesions was accepted only
if the following conditions were simultaneously satisfied: (1) lesions and dipoles are
located at the same side and in the same lobe of the brain (co-localization is positive
“+”), (2) the majority of dipoles are located ≤ 5 mm from the edge of the lesion, (3)
the majority of the remaining dipoles are in the vicinity of the lesion (≤ 15 mm) and
(4) median GOF is ≤ 0.20. If the majority of dipoles are located far from the lesion
> 15 mm, good relationship is rejected (see results for patient 5, Fig. 7.12). These
relationship results are summarized in Table 7.5, which shows that in 9 of 10 patients
we found good relationship between localized dipoles and visible MRI lesions. In all
9 cases, majority of dipoles were located at the edge or very close to the edge of the
lesion and no single dipole is located far from the lesion, > 15 mm.

No. of dipoles
with dist. (mm)

No. Coloc. GOF ≤ 5 ≤ 15 15 Relationship

1 + 0.16 3 1 0 Good

2 + 0.12 4 1 0 Good

3 + 0.12 4 1 0 Good

4 + 0.10 3 2 0 Good

5 + 0.22 0 0 5 Not good

6 + 0.9 4 0 0 Good

7 + 0.9 5 0 0 Good

8 + 0.12 4 1 0 Good

9 + 0.14 5 0 0 Good

10 + 0.09 2 0 0 Good

Table 7.5: Relationship results between localized sources of EEG seizures and MRI lesions.
No.: number of patient. The second column of the table shows the colocalization results be-
tween dipoles and lesions (described in Table 7.4), where “+” and “-” indicate positive and
negative colocalization. Median goodness of fit is shown in the second column, while the quali-
tative results from the measured dipole-lesion distances are summarized in the third, fourth and
fifth column. The dipoles are classified into three groups: very close or at the edge of the lesion
(≤5 mm), in the vicinity of the lesion (≤15 mm) and far from the lesion >15 mm. The last
column shows the final relationship results (good/not good) between MRI lesions and dipole
locations. Coloc.: colocalization, dist.: distance of the dipole from the edge of the nearest
lesion.
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Figure 7.10: Dipole localizations results for Patient 1 (up) and Patient 2 (down). 3-D dipole
fit results are plotted onto the patients’ T1-W and DWI MRI using projections on three planes:
axial, coronal and sagittal. The color of the dipole represents different EEG events (seizures),
which are also illustrated with a corresponding 2D topological plot (derived from PARAFAC
analysis that represents the spatial distribution of the seizure discharges over the EEG channels).
For each seizure dipole, the goodness of fit (GOF) and the distance from the closest lesion
border are given next to the topological plot.
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Figure 7.11: Dipole localizations results for Patient 3 (up) and Patient 4 (down).
3-D dipole fit results are plotted onto the patients’ T1-W and DWI MRI using projections on
three planes: axial, coronal and sagittal. The color of the dipole represents different EEG
events (seizures), which are also illustrated with a corresponding 2D topological plot (derived
from PARAFAC analysis that represents the spatial distribution of the seizure discharges over
the EEG channels). For each seizure dipole, the goodness of fit (GOF) and the distance from
the closest lesion border are given next to the topological plot.
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Figure 7.12: Dipole localizations results for Patient 5 (up) and Patient 6 (down).
3-D dipole fit results are plotted onto the patients’ T1-W and DWI MRI using projections on
three planes: axial, coronal and sagittal. The color of the dipole represents different EEG
events (seizures), which are also illustrated with a corresponding 2D topological plot (derived
from PARAFAC analysis that represents the spatial distribution of the seizure discharges over
the EEG channels). For each seizure dipole, the goodness of fit (GOF) and the distance from
the closest lesion border are given next to the topological plot.
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Figure 7.13: Dipole localizations results for Patient 7 (up) and Patient 8 (down).
3-D dipole fit results are plotted onto the patients’ T1-W and DWI MRI using projections on
three planes: axial, coronal and sagittal. The color of the dipole represents different EEG
events (seizures), which are also illustrated with a corresponding 2D topological plot (derived
from PARAFAC analysis that represents the spatial distribution of the seizure discharges over
the EEG channels). For each seizure dipole, the goodness of fit (GOF) and the distance from
the closest lesion border are given next to the topological plot.
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Figure 7.14: Dipole localizations results for Patient 9 (up) and Patient 10 (down).
3-D dipole fit results are plotted onto the patients’ T1-W and DWI MRI using projections on
three planes: axial, coronal and sagittal. The color of the dipole represents different EEG
events (seizures), which are also illustrated with a corresponding 2D topological plot (derived
from PARAFAC analysis that represents the spatial distribution of the seizure discharges over
the EEG channels). For each seizure dipole, the goodness of fit (GOF) and the distance from
the closest lesion border are given next to the topological plot.
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Patients 7 and 8 are good examples where dipole locations relate very well with the
lesions and they are shown in 7.13. These two patients had clinical features of severe
HIE. Patient 7 had bilateral white matter hemorrhages (in posterior frontal, parietal
and occipital lobes) and dipole locations were bilaterally located at the border of the
lesions. Patient 8 had infarcts in the right parietal, posterior and anterior frontal lobes
and all dipole locations corresponded to these regions. However, in patient 5 (7.12),
who had a small left basofrontal hemorrhage, we found that the dipole locations were
situated much higher in the left frontal region. The reason for this is that we have no
EEG electrode near the putative seizure focus close to the lesion, located very deep
in the brain. It is possible that the seizures in this patient spread vertically [Cave-
ness et al., 1973] leading to secondary sources, resulting in the GOF values for the
ictal dipoles of > 0.20. This patient also illustrates the limitation of volume con-
ductor models of EEG source localization, which do not take into account factors
like anisotropies or the presence of various cortico-cortical networks [Plummer et al.,
2008], in localizing certain types of seizure foci. Moreover, distinguishing the pri-
mary EEG source that initiates ictal activity from secondary sources, which are due
to propagation, can often be difficult [Ding et al., 2007], as could have happened in
this patient. It is also well-known that some frontal lobe seizures are difficult to lo-
calize using non-invasive methods [Quesney, 1991,Salanova et al., 1994]. Our overall
results are in agreement with animal experiments, which show that majority of the
seizures after perinatal hypoxic ischemic brain injury originate from the parainfarct
regions [Hartings et al., 2003, Kadam et al., 2010].

Similar to what has been reported [Bye and Flanagan, 1995, Patrizi et al., 2003], we
found that the majority of our seizure foci tend to cluster near the central parasagittal
regions. The majority of the brain lesions in our patients also co-localized to these
areas. Vulnerability of the perirolandic regions to brain injury may be due to regional
metabolic differences [Chugani and Phelps, 1986]. The parasagittal watershed regions
are also vulnerable in perinatal HIE [Volpe and Pasternak, 1977].

7.5.2 Dipole position errors due to volume conductor model errors

Sensitivity results due to variations in skull geometry and conductivity are shown in
Table 7.6. For each patient, we show the mean dipole shift value of all patient-specific
dipoles calculated between two head models indicated in each column. The variability
in mean dipole shifts between patients (visible in Table 7.6) is most probably due to
differences in the modeled spikes (source topography) and anatomical variability of
the lesions. This variation is small and always below 5 mm. In the last row, we show
the total mean dipole shift for all 10 patients with the standard error of the mean.
The mean dipole shift of dipole locations between “normal” and “thick” head models
was 1.42 mm, between “normal” and “no fontanelle” head models was 0.65 mm,
between “normal” and “mincond” head models was 1.55 mm and between “normal”
and “maxcond” was 2.34 mm. From these results we can say that the influence of the
anterior fontanelle to dipole localization is almost negligible ( 0.7 mm), but increasing
the skull thickness for 0.7 mm (from the range of 1.4-2.1 mm to the range of 2.1-2.8
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mm) caused mean dipole shift of 1.5 mm. In a previous study [Roche-Labarbe et al.,
2008] it was reported that the main source of uncertainty for dipole localization is the
skull conductivity. They estimated that the mean dipole shift between head models
with skull conductivities of 0.33 S/m and 0.0042 S/m is 11.6 mm. However, selecting
0.033 S/m as a “normal” neonatal skull conductivity, which is six times smaller than
0.2 S/m (“maxcond”) and five times bigger than 0.00067 (“mincond”), we got smaller
mean dipole shifts of 2.5 mm and 1.6 mm respectively.

Patient Dipole shift (mm)
Skull geometry Skull conductivity

“normal”- “normal”- “no “normal”- “normal”-
“thick” fontanelle” “mincond” “maxcond”

1 3.00 0.40 2.55 2.71
2 1.25 0.56 1.82 4.32
3 3.60 0.81 1.35 1.05
4 0.39 1.61 1.03 1.65
5 1.62 0.62 1.80 1.85
6 1.28 0.10 2.67 2.81
7 0.71 1.23 0.96 4.91
8 0.96 0.92 1.57 1.50
9 0.65 0.40 0.90 1.85
10 0.77 0.86 0.81 0.79

1.42±1.06 0.65±0.32 1.55±0.67 2.34± 1.36

Table 7.6: Sensitivity results to variations in skull geometry and conductivity. Dipole
shift in a table represent mean distance (measured in mm) of all dipoles located in one
patient between different head models. The last row in a table shows the mean dipole
shift ± standard deviation between different head models for all patients.

We also calculated the mean dipole shift caused by inaccurate electrode posi-
tioning. By increasing the angular mislocalization of the electrode positions by
2o, 5o, 10o, 12o, we obtained mean dipole position shift of 2.80 mm, 6.41 mm, 11.72
mm and 14.79 mm respectively. These shift results are slightly higher comparing
with the adult study with a realistic head model (2o electrode mislocalization gives
the mean dipole shift of ∼ 2 mm, 1:1 ratio) [Wang and Gotman, 2001], where they
used 29 electrodes for EEG recording. Since we used only 17 electrodes, we expect
that increasing the number of electrodes can cause reduction in the localization error.
However, for the purpose of this study we think that this error is acceptable.
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7.6 Discussion

7.6.1 Comparisons with previous studies

To our knowledge, there has been only one previously published study about neonatal
EEG source localization [Roche-Labarbe et al., 2008] where sensitivity of different
parameters on source estimates was evaluated. From a clinical point of view and
methodology, our study is different from theirs and is based on a larger number of
patients. The main contribution of our study is to show the first clinical results with
regard to the feasibility of localizing neonatal ictal EEG activity and its good relation-
ship to acute perinatal brain lesions visible on MRI.

Our method is based on automatic extraction of the seizure topography and more so-
phisticated MRI segmentation for 3D volumetric modeling of the neonatal head. We
localize the pathological seizures (ictal phenomena, that are associated with acute, se-
rious brain injury), while Roche-Labarbe et al. localize transients in neonatal EEG.
Our head models consist of 4 compartments: scalp, skull, CSF and brain tissue, while
they used a 3-layer Boundary Element Method (BEM) (which uses surfaces tessel-
lations) to model the scalp, skull and brain tissue. A difference of our approach is
that together with CSF we model the ventricular system, giving the head model more
realistic structure with an additional conductive layer. This is important because the
electrode potentials are dependent on the total electrical field generated in the head
caused by a current dipole. Also, CSF and the ventricles can be used to constrain the
dipole location. Current dipoles cannot be placed in the ventricles or CSF and this can
be added in the EEG source localization procedure. In adults, it has been shown in
a previous study [Vanrumste et al., 2000] that not incorporating the ventricles in the
head model causes a dipole location error of about 7 mm in the vicinity of the ventri-
cles (deep gray matter) and about 3 mm in the brain cortex. However, since neonates
have lower volume conduction than adults, we believe that this error could be smaller
in babies.

Another difference is that Roche-Labarbe et al. used a patented cap for electrode
placement and a magnetic digitizer for 3D digitization of the spatial positions of the
electrodes, while we used the standard 10-20 International System to manually place
the electrodes on the scalp in a relation to the anatomical markers. However, none of
these methods are error-free. Electrode caps can move slightly in position [Atcherson
et al., 2007] and may have fixed inter-electrode distances, but less accurate relationship
to anatomical landmarks of the skull. In the case of applying individual electrodes, one
relies on an experienced EEG technician who should have less margin of error. On
the other hand, digitized electrode positions, which were not available for this study,
describe the true electrode positions on the scalp more precisely than the standard 10-
20 positions. In the study of Khosla et al. [Khosla et al., 1999], it was shown that on
average the digitized electrode locations deviated from the standard 10-20 positions
by about 4o in adults. This misallocation has not yet been measured in neonates, but
it might be very similar if the fine adjustments based on the anatomical markers and
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head shape are made during electrode positioning. For studying the relationship of
seizures to brain lesion in this pilot study, this mismatch is tolerable. However, if
higher precision source localization is desired (e.g. for surgical planning in epilepsy
patients), the digitization of electrode positions is recommended.

Finally, this study is the first to evaluate the influence of electrode mislocalizations on
source localization in neonates. Our experimental results indicated that the electrode
mislocalization is the most critical component for the accurate source localization.
Since we used a clinical setup of only 17 electrodes, we believe that using a higher
number of electrodes would give more accurate source estimation. This had been
already shown in adult studies [Vanrumste et al., 2000]. While highly accurate dipole
localization is needed for presurgical evaluation of patients with refractory epilepsy,
our primary aim in neonates is to study the relationship of seizures to brain lesions and
eventually their pathophysiology. Hence we think that the obtained error is acceptable.
The reality in most NICUs doing cEEG is that 8 to 9 scalp electrodes are used for
this purpose. Thus the 17 electrodes that we use may be a reasonable compromise
between the need to obtain high accuracy (more electrodes) and practical applicability
in a NICU setting (less number of electrodes).

7.6.2 Estimation of the skull conductivity

As the skull conductivity has never been measured for human neonates, one of the
challenges in this study was to estimate the neonatal skull conductivity using available
studies for adults and animals. In adults, the conductivity of the skull was measured
both in vitro and in vivo [Geddes and Baker, 1967, Oostendorp et al., 2000, Akhtari
et al., 2002, Lai et al., 2005], but still there is little consensus on the absolute skull
conductivity value or the brain-to-skull conductivity ratio. Also, the skull conductivity
is electrically anisotropic and depends on the skull thickness, skull composition, test
frequencies and temperature. The adult skull conductivity reported in the literature
ranges from 0.0067-0.015 S/m. It has recently been suggested that the human brain-
to-skull conductivity ratio is 15 [Oostendorp et al., 2000] and 25 [Lai et al., 2005]
instead of the widely used value of 80 [Rush and Driscoll, 1986]. In the study of
Akhtari et al. [Akhtari et al., 2002] the conductivity of the three-layer live human
skull was measured (top compact bone, middle spongiform layer and lower compact
bone). They reported that the skull conductivity is frequency dependent in the range
from 10-90 Hz by as much as 10% in compact bone and 13% in spongiform (percent
increase in conductivity). Also, they indicated that there may be a weak relationship
between the thickness and conductivity in different skull layers.

In the recent study of Pant et al. [Pant et al., 2011] the first measured conductivity
values for neonatal and preterm mammalian skull were reported. They used fresh
neonatal piglet skull samples with the average thickness about 1.3 mm and found the
average neonatal/preterm piglet skull conductivity in the range 0.025-0.035 S/m (av-
erage 0.030 S/m) at 1 kHz. They also found that the skull conductivity increased
linearly with the skull thickness. Note that although the piglet brain is a well-accepted
preclinical model for neurodevelopmental research in humans (due to its anatomic
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and physiologic similarities to humans, like similar patterns in brain growth and de-
velopment), the similarity between the piglet neonatal/preterm skull and the human
neonatal skull is still controversial.

In this study we used three different values for the neonatal skull conductivity (0.2
S/m, 0.033 S/m and 0.0067 S/m) and tested their influence on source mislocaliza-
tion. In these experiments, we used 0.033 S/m as the “normal”/“true” neonatal skull
conductivity value. Taking into account the incomplete development of the neonatal
bone, it is reasonable to assume that the neonatal skull has higher conductivity than
the adult skull. Also, comparing with the adult studies, the brain-to-skull ratio of 10
seems reasonable. Our results also indicate that the mean dipole mislocalization using
conductivities 0.2 S/m or 0.0067 S/m is less than 5 mm. Like in the most EEG source
localization studies in adults, we assumed the skull conductivity to be isotropic. It
is an open question how this assumption affects the accuracy of EEG dipole source
localization in neonates and it should be handled in a separate study.

7.6.3 Strengths and limitations

Strengths of our study include the use of continuous multichannel EEG monitoring
for more complete sampling of seizure data, automated seizure localization, as well
as the use of a realistic head model. The expertise needed to interpret neonatal EEGs
is not available around the clock in the NICU. Also, EEG monitoring is highly labor-
intensive as it generates large amounts of data. For these reasons, automated analysis
methods are needed in the context of cEEG monitoring in the NICU. We also at-
tempted to place our ictal source localization in the clinical context by relating them
to the acute brain lesions seen on MRI.

The limitations of our study are the small number of patients, as well as the deliberate
selection of patients with discrete lesions visible on MRI and clear-cut focal seizures
recorded on EEG. This may be justified as our aim was to explore the relationship
of neonatal seizures to brain injury patterns visible on MRI. These type of studies
are useful for hypothesis generation and cannot be generalized to all neonates with
HIE and seizures. As compared to interictal spike localization studies, ictal source
localization studies are more challenging. By the time the seizure is expressed in the
scalp electrodes, a large volume of intracranial tissue is involved by the ictal discharge,
and the model may be showing the spread and not the origin [Merlet and Gotman,
2001]. Wide-spread regional propagations of the seizures are expected to be less of a
problem in the neonate as compared to older children and adults due to the immature
cortico-cortical connections that have been shown by anatomic [Caveness et al., 1973]
and metabolic [Kato et al., 1980] studies. We also took care in each patient to select
seizure patterns that were reproducible.
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7.7 Future directions

The near-term clinical application of dipole localization of neonatal seizures is still
limited in the NICU and the studies like ours are needed to close our present gaps in
the knowledge about pathophysiology of neonatal seizures. We feel that with further
validation, this type of multimodal approaches could improve therapy (for example, by
using more targeted neuroprotective therapies for particular type of seizures) as well
as outcome predictions in the future. Large, multi-center cEEG studies are needed
to study the pathophysiology of neonatal seizures, their relationship to acute brain
lesions as well as the effect of their treatment with antiepileptic drugs. Studying large
amounts of cEEG data is highly labor-intensive and will be simplified by the use of
automated methods like the one we used.

Although evolution of EEG background activity in the first few days after perina-
tal asphyxia is known to be a robust predictor of clinical outcome [Murray et al.,
2009, Watanabe et al., 1980], prediction of outcome in neonates with moderately se-
vere EEG background abnormality is very difficult. In this selected group, multimodal
evaluations, such as estimation of MRI lesion location and volume, electrographic
seizure burden as well as ictal source localization may help to improve prognostica-
tion. A recent study showing that watershed brain injuries are related to impaired
language ability [Steinman et al., 2009] in survivors of HIE, is a step in this direction.

Long-term follow-up is needed in our patients to look for neurocognitive deficits and
epilepsy. This is further emphasized by the fact that patient nos. 5 and 7 in this study
developed epileptic seizures on follow-up. A recent study using an animal model of
neonatal hypoxic ischemic brain injury has shown that development of epilepsy in
later life is strongly related to the presence of pathological brain lesions [Kadam et al.,
2010]. Similar studies in neonates with HIE will help to refine our prognostication in
patients with particular combinations of seizures and brain injury patterns on MRI.

7.8 Conclusion

This pilot study evaluated the utility of 3D localization of neonatal seizures using a
realistic head model and relationship of seizure foci to brain lesions detected by MRI.
Despite many difficulties, we have shown that EEG ictal source localization is feasible
in newborns and can lead to important new insights into the properties of cerebral
neural networks and 3D comparison with brain lesions.

The results have shown that the majority of calculated 3D sources were at the edge or
≤ 5 mm from the nearest MRI lesions. Also, using approximate head tissue conduc-
tivities (which were found in literature) with an accurate geometrical description of the
head, yielded reasonable results for both cortical and deep EEG sources. Considering
that the 3D sources were computed using only 17 electrodes and the standard 10-20
system of electrode placement, our results are very promising for further research on
the relationship between EEG source localization and brain injury visible on MRI.
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8
Conclusions

There is no real ending. It’s just the place where you stop the story.
– Frank Herbert

The recent development of non-invasive and multimodal brain imaging techniques has
opened new horizons in understanding and studying the brain structure and function
in a way that has never been done before in living humans. Enormous progress in
assessing brain injury has been made using MRI, while EEG has been considered as
the gold standard in the diagnosis of neurological dysfunction. By combining both
EEG and MRI in multimodal imaging of the brain, important aid in the diagnosis and
management of neurological dysfunction of the brain and neonatal seizure phenomena
has been achieved. This is just one of the reasons why multimodal brain imaging is
one of the fastest growing multidisciplinary activity today.

In this thesis, we focused on developing new techniques for multimodal image analysis
of the human brain, including brain MRI segmentation and EEG source localization.
In doing so, we merged theory with practice and focused on two medical applications:

1. Automatic 3D MRI segmentation of the adult brain and 3D brain cortex seg-
mentation in the presence of FCD lesions;

2. Multimodal EEG-MRI data analysis of the asphyxiated neonatal brain with peri-
natal brain injuries.

Throughout the thesis we tried to present numerous original interpretations, pictorial
explanations and discussions broadening our viewpoints on this topic.

In Chapter 2, we presented the important background of the human brain anatomy
where we explained the developmental phases of the brain from fetus till adulthood.
Then, we also explained the basic physical principles of MR imaging, how MR images
are formed, what they show, how they differ, how we can analyze them, what are the
challenges of the brain MRI analysis and what are the differences between adult and
neonatal MRI. Furthermore, we explained the basics of EEG brain data analysis that
is necessary for understanding multimodal MRI-EEG brain imaging.
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In Chapter 3, we explained the most important concepts of MRI segmentation and
reviewed the most popular methods commonly used for brain tissue segmentation in
MRI. We summarized the main ideas, similarities and differences between segmenta-
tion methods. Also, we discussed the validation problem in brain MRI segmentation.

Despite intensive research, brain MRI segmentation still remains a challenging prob-
lem with no unique and general solution and there is a continuous need for developing
newer and better segmentation methods. Also, segmentation of noisy images is one
of the most challenging problems in medical image analysis and any improvement of
segmentation methods can highly influence the performance of many clinical applica-
tions. Thus, we presented our original contributions in this field in Chapters 4 and 5. In
our original contributions, we paid a great attention to improve and develop new meth-
ods for accurate and noise-robust image segmentation. Our methods are adapted to the
local image context by modeling spatial interactions between pixels/voxels using con-
textual constraints. In making our way through this research field, we were inspired
by the concepts of MRF models. Our contribution here was modeling new/improved
locally adaptive methods which employ such concepts. Our segmentation methods
were then successfully used for brain MRI segmentation in both adults and neonates,
as well as for a realistic head modeling in neonates. We tried to motivate the proposed
algorithms in terms of better segmentation results.

In Chapter 4, we addressed the problem of 3D brain MRI segmentation, where we fo-
cused on the multilabel min-cut graph cut segmentation and proposed its modification
for more accurate and automatic 3D brain MRI segmentation. Our main contribution
in this work was to extend the s-t min-cut/max-flow graph cut method for automatic
3D brain MRI segmentation using three-label graph. We also performed compari-
son study between this and several state-of-the-art brain MRI segmentation methods.
Next, we applied the proposed method to automatic brain cortex segmentation in pa-
tients with FCD lesions. The proposed method was validated both qualitatively and
quantitatively on simulated and real brain MRI datasets. The experimental results
showed that our 3DGC method competes favorably with other state-of-the-art meth-
ods and is able to enforce the spatial coherence and correctly label the neighboring
voxels in the noisy areas. Also, results suggested that the 3DGC method can improve
the FCD lesion detection and can be successfully applied in many other clinical appli-
cations.

In Chapter 5, we presented a new FCM-based method for spatially coherent and noise-
robust image segmentation. In general, the standard FMC clustering has ability to
model uncertainty within data and is easily applicable to multimodal data. However,
the standard FCM is highly sensitive to image noise, because it does not consider
any information about the spatial image context. The contribution of our method is
twofold: (1) the spatial information of local image features is integrated into both
the similarity measure and the membership function to compensate for the effect of
noise; and (2) an anisotropic neighborhood, based on phase congruency features, is
introduced to avoid edge smoothing and retain image details. The performance of
the proposed algorithm was tested on synthetic images with different noise levels and
on real images. The segmentation results demonstrated that our method efficiently
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preserves the homogeneity of the regions, without smoothing the line features and
important image details, and is more robust to noise than related FCM-based methods.

Following this, we also presented an extension of the new FCM method to multi-
modal image segmentation, where we integrated multimodal image information into
the spatial contextual information to overcome the noise problem. The performance
of the proposed algorithm is tested on simulated and real adult MR brain images with
different noise levels, as well as on neonatal MR brain images with the gestational
age between 39-41 weeks. Experimental results showed that the proposed multimodal
method is effective and robust to noise and can be successfully used for complex and
noisy image segmentation of the neonatal brain.

In Chapter 6, we presented a new interactive hybrid segmentation method for realistic
head modeling in newborn infants. Our method combines our new multimodal FCM
clustering, active contours and mathematical morphology. For the purpose of real-
istic head modeling, we also developed a method for brain volume segmentation in
neonates (brain extraction) using multimodal T1-W and T2-W MRI. This is because
the existing brain volume segmentation techniques are mainly developed for adults
and are not applicable to neonates or require additional corrections. The brain extrac-
tion algorithm was tested on real neonatal brain MR images with the gestational age
between 39-41 weeks. The segmentation results were compared to manual segmenta-
tion and results showed that our method is effective and more accurate than existing
brain volume segmentation methods originally developed for adults.

Furthermore, in Chapter 7 we proposed an integrated multimodal EEG-MRI method
for neonatal EEG source localization using a realistic head model. This pilot study
evaluated the utility of 3D localization of neonatal seizures and explored the relation-
ship between neonatal EEG seizures and acute perinatal brain lesions visible on MRI.
Despite many difficulties, we showed that EEG ictal source localization is feasible in
newborns and can lead to important new insights into the properties of cerebral neural
networks and 3D comparison with brain lesions. The results showed that the majority
of calculated 3D sources were at the edge or ≤ 5 mm from the nearest MRI lesions.
Also, using approximate head tissue conductivities (which were found in the litera-
ture) with an accurate geometrical description of the head, yielded reasonable results
for both cortical and deep EEG sources. Considering that the 3D sources were com-
puted using only 17 electrodes and the standard 10-20 system of electrode placement,
our results are very promising for further research on the relationship between EEG
source localization and brain injury visible on MRI.

Overall, the strength of this thesis lies in the practical applications of our methods and
clinical validation of the quantitative segmentation results in the field of MR imaging.
The limitations of the methods proposed in this work are that they are tested on the
small number of patients as well as the deliberate selection of patients with discrete
lesions visible on MRI. This is the case with both adult patients with FCD lesion and
asphyxiated neonates. Next, the MRI segmentation of the adult brain tissue was tested
only on MR images recorded with the same 3T MRI scanner, while the realistic head
modeling framework was specifically designed for neonatal brain images acquired
with a lower-resolution 1.5T MRI scanner. However, to fully evaluate the clinical sig-
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nificance of the neonatal EEG source localization, we need bigger set of asphyxiated
babies that can be only acquired over a period of at least a few years. We also need
more accurate data acquisition with higher MRI resolution.

8.1 Future work

In future research, there is a lot of space for further developments and new applications
of the algorithms presented in this thesis. For instance, the performance of the 3DGC
method can be potentially improved by including multimodal image information. In
the case of FCD patients, lesion detection can be improved by using intensities from
both T1-W and FLAIR MRI of the brain. This is because in some cases FCD lesions
are hardly visible on T1-W images, but they can be detected on FLAIR scans. Another
possibility is to include the prior knowledge of the probabilistic brain atlas or the
training data of the patients with FCD lesions into the segmentation framework. In
the case of the noise-robust FCM clustering, future work can focus on extension of
the method to deal with volumetric 3D images by incorporating 3D neighborhood
information. For both segmentation methods, an automatic calculation of the optimal
segmentation parameters and further improvements in both speed and accuracy should
be considered in the future work. Moreover, it would be interesting to integrate the
bias field correction of MR images directly into the segmentation energy function and
to allow the labeling of image elements to be influenced by the neighboring labels and
at the same time compensate for intensity inhomogeneities. Finally, the validation of
the methods on more patients should be also considered in the future work.

Considering the multimodal EEG-MRI study for neonatal dipole source localiza-
tion, the near-term clinical application is still limited in the NICU and the studies
like ours are needed to close our present gaps in the knowledge about pathophysi-
ology of neonatal seizures. We feel that with further validation, this type of multi-
modal approaches could improve therapy as well as outcome predictions in the fu-
ture. Large, multi-center cEEG studies are needed to study the pathophysiology of
neonatal seizures, their relationship to acute brain lesions as well as the effect of their
treatment with antiepileptic drugs. Long-term follow-up is needed in our patients to
look for neurocognitive deficits and epilepsy. Studying large amounts of cEEG data
is highly labor-intensive and will be simplified by the use of automated methods like
the one we developed. Also, similar multimodal brain imaging studies in both adult
and neonates will help to refine our prognostication in patients with particular combi-
nations of seizures and brain injury patterns on MRI.
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8.2 Brief summary of the main contributions

To summarize, the novelties and contributions of this research can be divided in two
groups: (1) those related to image segmentation with application to brain MRI and (2)
those integrating our MRI segmentation research and EEG monitoring of the neonatal
brain, and resulting in the application for neonatal EEG source localization.

In the first group we have contributed the following algorithms and methods:

1. An improved 3D graph cut algorithm for brain tissue segmentation with appli-
cation to more accurate brain cortex segmentation and epileptic lesion detection
in FCD patients, [Despotovic et al., 2011b, Despotovic et al., 2011c].

2. A new fuzzy clustering method for accurate and noise-robust image segmen-
tation, [Despotovic et al., 2010b, Despotovic et al., 2010c, Despotovic et al.,
2010a, Despotovic et al., 2010d, Despotovic et al., 2013c].

3. An integrated algorithm for the neonatal brain volume segmentation (brain ex-
traction) using multimodal MRI, [Despotovic et al., 2010e].

4. An algorithm for 3D realistic head modeling in newborn infants, [Despotovic
et al., 2009a,Despotovic et al., 2009b,Despotovic et al., 2010f,Despotovic et al.,
2013b].

In the second group we have created the following contributions:

1. The first integrated method for ictal EEG dipole source localization in newborn
infants based on a realistic head model, [Despotovic et al., 2013a, Despotovic
et al., 2011a].

2. The experimental studies for investigating the utility of EEG source imaging
in neonates with postasphyxial seizures, [Despotovic et al., 2013a, Despotovic
et al., 2012].

3. The first objective study of the relationship between the localization of neonatal
seizures and associated MRI patterns of brain injury, [Despotovic et al., 2013a].

This work resulted in 2 journal papers cited in the Science Citation Index. In total, 19
other papers appeared in the proceedings of international and national conferences, of
which 15 as the first author.
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