15 research outputs found

    Simulation and Simulators for Nuclear Power Generation

    Get PDF

    Critical success factors for instrumentation and control projects within the power industry in South Africa

    Get PDF
    Abstract: Instrumentation and control projects entail an upgrade or refurbishment of a portion of the current process control system. The changes introduced present integration challenges to people, the plant and operating guidelines and procedures. The successful implementation of these time sensitive projects depends on factors such as change management effectiveness, stakeholder investment and competency of the project team. Project success factors identified across the lifecycle of the project enables the organization to filter down on challenges and risks contained within each project phase. The research identifies critical success factors specific to instrumentation and control projects within the South African power industry. The framework is developed through the descriptive analysis of feedback received from key stakeholders within the organization

    Development of a Hardware-in-the-loop Simulation Platform for Safety Critical Control System Evaluation

    Get PDF
    During the lifetime of a nuclear power plant (NPP) safety electronic control system components become obsolete [7]. It is difficult to find replacement components qualified for nuclear applications [50]. Due to strict regulations, replacement components undergo extensive verification and operational analysis [70]. Therefore, the need for a platform to evaluate replacement safety control systems in a non-intrusive manner is evident. Verifying the operation or functionality of potential replacement electronic control systems is often performed through simulation [71]. To enable simulation, a physical interface between potential control systems and computer based simulators is developed. System connectivity is establish using Ethernet and standard industrial electrical signals. The interface includes a National Instruments (NI) virtual instrument (VI) and data acquisition system (DAQ) hardware. The interface supports simulator controlled transmission and receipt of variables. The transmission of simulated process variables to and from an external control system is enabled. This is known as hardware-in-the-loop (HIL) simulation [49]. Next, HIL interface performance is verified and the following are identified; a measure of availability; the effect of varied configurations; and limitations. Further, an HIL simulation platform is created by connecting a NPP simulator and a programmable logic controller (PLC) to the interface, Canadian Deuterium Uranium (CANDU) reactor training simulator and Invensys Tricon version nine (v9) safety PLC respectively. The PLC is programmed to operate as shutdown system no. 1 (SDSl) of a CANDU reactor. Platform availability is verified and the response of the PLC as SDSl and is monitored during reactor shutdown. Proper execution of the steam generator level low (SGLL) logic on the PLC and variable transmission are observed. Thus, a platform and procedure for the evaluation of replacements for obsolete electronic control system components is demonstrated

    Nuclear Power

    Get PDF
    At the onset of the 21st century, we are searching for reliable and sustainable energy sources that have a potential to support growing economies developing at accelerated growth rates, technology advances improving quality of life and becoming available to larger and larger populations. The quest for robust sustainable energy supplies meeting the above constraints leads us to the nuclear power technology. Today's nuclear reactors are safe and highly efficient energy systems that offer electricity and a multitude of co-generation energy products ranging from potable water to heat for industrial applications. Catastrophic earthquake and tsunami events in Japan resulted in the nuclear accident that forced us to rethink our approach to nuclear safety, requirements and facilitated growing interests in designs, which can withstand natural disasters and avoid catastrophic consequences. This book is one in a series of books on nuclear power published by InTech. It consists of ten chapters on system simulations and operational aspects. Our book does not aim at a complete coverage or a broad range. Instead, the included chapters shine light at existing challenges, solutions and approaches. Authors hope to share ideas and findings so that new ideas and directions can potentially be developed focusing on operational characteristics of nuclear power plants. The consistent thread throughout all chapters is the "system-thinking" approach synthesizing provided information and ideas. The book targets everyone with interests in system simulations and nuclear power operational aspects as its potential readership groups - students, researchers and practitioners

    Nuclear Power - System Simulations and Operation

    Get PDF
    At the onset of the 21st century, we are searching for reliable and sustainable energy sources that have a potential to support growing economies developing at accelerated growth rates, technology advances improving quality of life and becoming available to larger and larger populations. The quest for robust sustainable energy supplies meeting the above constraints leads us to the nuclear power technology. Today's nuclear reactors are safe and highly efficient energy systems that offer electricity and a multitude of co-generation energy products ranging from potable water to heat for industrial applications. Catastrophic earthquake and tsunami events in Japan resulted in the nuclear accident that forced us to rethink our approach to nuclear safety, requirements and facilitated growing interests in designs, which can withstand natural disasters and avoid catastrophic consequences. This book is one in a series of books on nuclear power published by InTech. It consists of ten chapters on system simulations and operational aspects. Our book does not aim at a complete coverage or a broad range. Instead, the included chapters shine light at existing challenges, solutions and approaches. Authors hope to share ideas and findings so that new ideas and directions can potentially be developed focusing on operational characteristics of nuclear power plants. The consistent thread throughout all chapters is the system-thinking approach synthesizing provided information and ideas. The book targets everyone with interests in system simulations and nuclear power operational aspects as its potential readership groups - students, researchers and practitioners

    Nuclear Power - System Simulations and Operation

    Get PDF
    At the onset of the 21st century, we are searching for reliable and sustainable energy sources that have a potential to support growing economies developing at accelerated growth rates, technology advances improving quality of life and becoming available to larger and larger populations. The quest for robust sustainable energy supplies meeting the above constraints leads us to the nuclear power technology. Today's nuclear reactors are safe and highly efficient energy systems that offer electricity and a multitude of co-generation energy products ranging from potable water to heat for industrial applications. Catastrophic earthquake and tsunami events in Japan resulted in the nuclear accident that forced us to rethink our approach to nuclear safety, requirements and facilitated growing interests in designs, which can withstand natural disasters and avoid catastrophic consequences. This book is one in a series of books on nuclear power published by InTech. It consists of ten chapters on system simulations and operational aspects. Our book does not aim at a complete coverage or a broad range. Instead, the included chapters shine light at existing challenges, solutions and approaches. Authors hope to share ideas and findings so that new ideas and directions can potentially be developed focusing on operational characteristics of nuclear power plants. The consistent thread throughout all chapters is the system-thinking approach synthesizing provided information and ideas. The book targets everyone with interests in system simulations and nuclear power operational aspects as its potential readership groups - students, researchers and practitioners

    Nuclear Power - System Simulations and Operation

    Get PDF
    At the onset of the 21st century, we are searching for reliable and sustainable energy sources that have a potential to support growing economies developing at accelerated growth rates, technology advances improving quality of life and becoming available to larger and larger populations. The quest for robust sustainable energy supplies meeting the above constraints leads us to the nuclear power technology. Today's nuclear reactors are safe and highly efficient energy systems that offer electricity and a multitude of co-generation energy products ranging from potable water to heat for industrial applications. Catastrophic earthquake and tsunami events in Japan resulted in the nuclear accident that forced us to rethink our approach to nuclear safety, requirements and facilitated growing interests in designs, which can withstand natural disasters and avoid catastrophic consequences. This book is one in a series of books on nuclear power published by InTech. It consists of ten chapters on system simulations and operational aspects. Our book does not aim at a complete coverage or a broad range. Instead, the included chapters shine light at existing challenges, solutions and approaches. Authors hope to share ideas and findings so that new ideas and directions can potentially be developed focusing on operational characteristics of nuclear power plants. The consistent thread throughout all chapters is the system-thinking approach synthesizing provided information and ideas. The book targets everyone with interests in system simulations and nuclear power operational aspects as its potential readership groups - students, researchers and practitioners

    Development and optimization of new generation start-up instrumentation systems (SUI) for domestic CANDU reactors

    Get PDF
    Due to the age and operating experience of Bruce Power units, equipment ageing and obsolescence has become one of the main challenges that need to be resolved for all systems, structures and components in order to ensure a safe and reliable production of energy. The research objectives of this thesis will focus on methodology for modernization of Start- Up Instrumentation (SUI), both in-core and Control Room equipment, using a new generation of detectors and cables in order to manage obsolescence. The main objective of this thesis is to develop a new systematic approach to SUI installation/replacement procedure development and optimization. Although some additional features, such as real-time data monitoring and storage/archiving solutions for SUI systems are also examined to take full advantage of today???s digital technology, the objective of this thesis does not include detailed parametrical studies of detector or system performance. Instead, a number of technological, operational and maintenance issues associated with Start-Up Instrumentation systems at Bruce Power will be identified in this project and a structured approach to developing a replacement/installation procedure that can be standardized and used across all of the domestic CANDU stations is proposed. Finally, benefits of Hierarchical Control Chart (HCC) methodology for all stages of plant life management, such as system design, development, operation and maintenance are demonstrated. Keywords: Task Breakdown and Analysis methodology, installation/removal procedure development and optimization, risk-based analysis and optimization, Hierarchical Control Chart (HCC) methodology for system maintenance and troubleshooting, Start-Up Instrumentation (SUI), Ion Chambers, Fission Chambers, proportional counters, Shutdown System 1 (SDS1), Shutdown System 2 (SDS2)
    corecore