
Western University Western University

Scholarship@Western Scholarship@Western

Digitized Theses Digitized Special Collections

2008

Development of a Hardware-in-the-loop Simulation Platform for Development of a Hardware-in-the-loop Simulation Platform for

Safety Critical Control System Evaluation Safety Critical Control System Evaluation

Drew James Rankin
Western University

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation Recommended Citation
Rankin, Drew James, "Development of a Hardware-in-the-loop Simulation Platform for Safety Critical
Control System Evaluation" (2008). Digitized Theses. 4114.
https://ir.lib.uwo.ca/digitizedtheses/4114

This Thesis is brought to you for free and open access by the Digitized Special Collections at
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F4114&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/4114?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F4114&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Development of a Hardware-in-the-loop

Simulation Platform for Safety Critical

Control System Evaluation

(Spine title: Hardware-in-the-loop Simulation of Safety Control Systems)

(Thesis format: Monograph)

by

Drew James Rankin

Graduate Program
in

Engineering Science
Electrical and Computer Engineering

/
A thesis submitted in partial fulfillment

of the requirements for the degree of
Master of Engineering Science

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

© Drew J. Rankin 2008

Abstract
During the lifetime of a nuclear power plant (NPP) safety electronic control system
components become obsolete [7]. It is difficult to find replacement components qual­
ified for nuclear applications [50]. Due to strict regulations, replacement components
undergo extensive verification and operational analysis [70]. Therefore, the need for a
platform to evaluate replacement safety control systems in a non-intrusive manner is
evident. Verifying the operation or functionality of potential replacement electronic
control systems is often performed through simulation [71].

To enable simulation, a physical interface between potential control systems
and computer based simulators is developed. System connectivity is establish using
Ethernet and standard industrial electrical signals. The interface includes a Na­
tional Instruments (NI) virtual instrument (VI) and data acquisition system (DAQ)
hardware. The interface supports simulator controlled transmission and receipt of
variables. The transmission of simulated process variables to and from an external
control system is enabled. This is known as hardware-in-the-loop (HIL) simulation
[49]. Next, HIL interface performance is verified and the following are identified; a
measure of availability; the effect of varied configurations; and limitations.

Further, an HIL simulation platform is created by connecting a NPP simulator
and a programmable logic controller (PLC) to the interface, Canadian Deuterium
Uranium (CANDU) reactor training simulator and Invensys Tricon version nine (v9)
safety PLC respectively. The PLC is programmed to operate as shutdown system
no. 1 (SDSl) of a CANDU reactor. Platform availability is verified and the response
of the PLC as SDSl and is monitored during reactor shutdown. Proper execution
of the steam generator level low (SGLL) logic on the PLC and variable transmission
are observed. Thus, a platform and procedure for the evaluation of replacements for
obsolete electronic control system components is demonstrated.

Keywords: hardware-in-the-loop, simulation, National Instruments, interface,
programmable logic controller, Tricon v9, shutdown system, SDSl, steam generator
level low, obsolete, CANDU, nuclear power plant

in

Table of Contents

Certificate of Examination ... ii

A b s tr a c t .. iii

D edication ... iv

Acknowledgements.. v

List of tables.. ix

List of fig u re s .. x

Abbreviations and N om en clatu re ...xiii

1 Introduction... 1
1.1 Background.. 1
1.2 M otivations...................................... 5

1.2.1 Qualification... 6
1.2.2 Obsolescence and replacement.. 6
1.2.3 Enhanced capabilities.. 7

1.3 Problem Statem ent... 8
1.3.1 Hardware-in-the-loop interface developm ent.............................. 9
1.3.2 Hardware-in-the-loop shutdown system simulation..................... 9

1.4 O bjectives... 10
1.5 Organization .. 11

2 Nuclear Power Plant Control Systems and Sim ulation.................... 13
2.1 NPP Fundamentals.. 13
2.2 CANDU Fundamentals.. 16
2.3 Safety S y s te m s ... 20

2.3.1 Safety system con cepts ... 21
2.3.2 Shutdown system no. 1 ... 23

vi

Table of Contents

3 Hardware-in-the-loop Interface Development... 29
3.1 Hardware-in-the-loop Interface Development Procedure...................... 29
3.2 Hardware-in-the-loop Interface Developm ent.. 33

3.2.1 Mock sim ulator.. 34
3.2.2 Ethernet signal transceiver... 35
3.2.3 Hardware-in-the-loop interface d ev ice .. 42
3.2.4 Hardware-in-the-loop analog loop simulation platform 44

4 Hardware-in-the-loop Interface Analysis ... 45
4.1 Hardware-in-the-loop Interface Timing A n a lysis 45

4.1.1 M e t h o d ... 45
4.1.2 Assumptions... 48
4.1.3 Analysis of results .. 49

4.2 Hardware-in-the-loop Interface Scalability A n a ly s is 61
4.2.1 M e t h o d ... 61
4.2.2 Assumptions... 65
4.2.3 Analysis of results .. 65
4.2.4 Transmission delay study.. 76
4.2.5 Maximum system under test input/output study 79

5 Hardware-in-the-loop Shutdown System Simulation 80
5.1 NPP Hardware-in-the-loop Simulation Platform Development Procedure 80
5.2 NPP Hardware-in-the-loop Simulation Platform Development 84

5.2.1 Darlington NPP training sim ulator... 85
5.2.2 Controlled variable transceiver m o d u le 87
5.2.3 Hardware-in-the-loop interface... 89
5.2.4 System under test: Tricon v9 PLC ... 90
5.2.5 System under test: trip detection l o g i c 90

5.3 Hardware-in-the-loop Simulation Platform Timing Verification 93
5.3.1 M e t h o d ... 93
5.3.2 Assumptions... 95
5.3.3 Analysis of results .. 95

5.4 NPP Shutdown System Hardware-in-the-loop Sim ulation................... 100
5.4.1 M e t h o d ... 100
5.4.2 Assumptions... 103
5.4.3 Bench-mark SDSl SGLL simulation... 103
5.4.4 Hardware-in-the-loop SDSl SGLL simulation............................. 107

6 Conclusions... 114
6.1 Summary of contributions.. 114
6.2 Suggestions for future work ... 117

R eferences..119

vii

Table of Contents

A Darlington Nuclear Power Plant Design Specifications......................126

B Coverage of Process Failures by Shutdown Systems no. 1 and 2 . 129

C C Program Modules for Simulation and Development Analysis . . 134

D Invensys Tricon v9 Safety Programmable Logic Controller and Shut­
down System no. 1 .. 169

E Invensys Tricon v9 PLC Function Block D ia g ra m s........................... 181

F National Intruments Lab V IE W HIL Interface Virtual Instrument 183

Curriculum V ita e .. 187

v n i

List of Tables

2.1 Methods used to ensure NPP safety requirements [13]............................ 17

3.1 Generic (SUT input) UDP/IP packet structure....................................... 39
3.2 Return request UDP/IP packet structure.. 39
3.3 Returned (SUT output) UDP/IP packet structure.................................. 40
3.4 Controlled variable ranges by decimal position for 16 mA analog signals

at a 12bit resolution... 42

4.1 Percentage of successful transfers.. 55
4.2 Maximum stable number of input only and output only configurations. 79

5.1 Channelized steam generator level biases and low level trip thresholds. 102
5.2 Controlled variable values... 106

A .l Darlington NPP general and reactor core design specifications............. 127
A.2 Darlington NPP reactivity control and shutdown system specifications,

continued.. 128

D.l General characteristic of Tricon v9 controller... 171
D.2 Comparison of self checking capabilities across two controllers 177
D.3 Comparison of self checking capabilities across two controllers 178

IX

List of Figures

2.1 Basic nuclear power plant energy cycle.. 14
2.2 Simplified nuclear power plant control system.. 14
2.3 Model of ‘Defence in Depth’ concept.. 15
2.4 Energy cycle and main CANDU NPP systems... 18
2.5 Simplified CANDU NPP primary heat transport system (PHTS) [26]. 19
2.6 Simplified CANDU NPP steam cycle [30].. 20
2.7 Safety instrumented system (SIS) open action path................................ 22
2.8 a) General (SDSl) and b) local (SDS2) coincident two-out-of-three

(2oo3) trip mechanisms... 25
2.9 CANDU SDSl trip parameters and originating systems......................... 26

3.1 HIL simulation platform concept... 30
3.2 interface developmental procedure... 30
3.3 Sample sine wave generation with parameters: top - waveform fre­

quency = 2.0Hz, sampling frequency — 16Hz, number of samples =
17; bottom - waveform frequency = 1.0Hz, sampling frequency = 32Hz,
number of samples = 65.. 36

3.4 Lab VIEW virtual instrument process flow... 43
3.5 HIL simulation evaluation platform.. 44

4.1 Average signal transmission time vs. HIL timeout per SUT delay. . . 50
4.2 Average time with 95th percentile vs. HIL timeout per SUT delay. . . 52
4.3 Successful transfers vs. HIL timeout per SUT delay.............................. 54
4.4 Cumulative successful transfers vs. poll time per SUT delay................. 56
4.5 interface availability vs. HIL timeout per execution interval................. 58
4.6 Average signal bias vs. HIL timeout per SUT delay................................ 60
4.7 Average total elapsed time vs. I/O configuration..................................... 67
4.8 Average total elapsed time with 95th percentile vs. I/O configuration. 69
4.9 Average total elapsed time with 95th percentile vs. I/O configuration. 70
4.10 Successful transfers vs. I/O configuration. ... 72
4.11 interface availability with errors vs. I/O configuration (Dataset 1). . . 73
4.12 interface availability with errors vs. I/O configuration (Dataset 2). . . 74
4.13 Average signal bias vs. I/O configuration.. 76
4.14 Average total elapsed time vs.transmission delay..................................... 77
4.15 interface availability and error flags vs. tranmission delay..................... 78

\

x

List of Figures

5.1 Application specific HIL simulation procedure.. 81
5.2 DarlSIM component interconnections... 85
5.3 Module execution interval and execution phase.. 86
5.4 SGLL trip logic.. 92
5.5 Expected sequence of events during HIL simulation platform verifica­

tion for a 21 ms SUT execution interval... 94
5.6 NPP HIL simulation platform availability vs. SUT delay with Tricon

v9 PLC installed.. 96
5.7 Sequence of events during HIL simulation platform verification for a

21 ms SUT execution interval... 98
5.8 Sequence of events during HIL simulation platform verification for a

63 ms SUT execution interval... 99
5.9 Steam generator feed-water system... 102
5.10 Simulation platform for bench-mark SDS1 evaluation............................. 104
5.11 Bench-mark SGLL trip detection, simulation of Darlington NPP re­

sponse to loss of secondary side heat removal design base event. . . . 105
5.12 General co-incidence trip logic satisfied by channel D and E SGLL trip

parameters.. 107
5.13 Four consecutive bench-mark simulation shutdown scenarios................ 108
5.14 HIL simulation platform for SDS1 evaluation using the Tricon v9 PLC. 109
5.15 Hardware-in-the-loop SGLL trip detection, Tricon v9 PLC induced

response to loss of secondary side heat removal design base event. . . I l l
5.16 Four consecutive hardware-in-the-loop simulation shutdown scenarios. 112
5.17 Hardware-in-the-loop SGLL trip detection, detailed analysis of Tricon

v9 PLC induced response to loss of secondary side heat removal design
base event... 113

B.l Coverage of process failures by shutdown system no. 1 and indepen­
dently by shutdown system no. 2.. 130

B.2 Coverage of process failures by shutdown system no. 1 and indepen­
dently by shutdown system no. 2, continued... 131

B.3 Coverage of process failures by shutdown system no. 1 and indepen­
dently by shutdown system no. 2, continued... 132

B.4 Coverage of process failures by shutdown system no. 1 and indepen­
dently by shutdown system no. 2, continued... 133

D. l Tricon v9 triple modular redundant (TMR) controller........................ 170

E. l Invensys Tricon v9 safety PLC steam generator level low function block
diagram logic (Tristation 1131 Developer’s W orkbench)....................... 182

F. l National Intruments Lab VIEW HIL interface virtual instrument (G
programming language)... 184

xi

List of Figures

F.2 National Intruments LabVIEW HIL interface virtual instrument (G
programming language), continued .. 185

F.3 National Intruments LabVIEW HIL interface virtual instrument (G
programming language), continued .. 186

*

Xll

Abbreviations and Nomenclature

Abbreviations

2oo3 Two-out-of-three voting

AECL Atomic Energy of Canada Limited

B W R Boiling Water Reactor

CA N D U CANadian Deuterium Uranium

Ch-X Channel (identified by X)

CNSC Canadian Nuclear Safety Commission

CPU Central Processing Unit

CSV Comma Separated Values

d 2o Deuterium Oxide, Heavy Water

DAQ Data Acquisition System

DarlSIM Darlington Nuclear Power Plant Simulator

ECCS Emergency Core Cooling System

El Execution Interval

eu engineering units (kg/s, m, °Celsius)

FBD Function Block Diagram

h 2o Hydrogen Oxide, Water

HIL Hardware-in-the-Loop

I&C Instrumentation and Control

IAEA International Atomic Energy Agency

LCV Level Control Valve

LOCA Lost Of Coolant Accident

m A milli-ampere

ms milli-second

X lll

Abbreviations and Nomenclature

M W megawatt

M W (e) Megawatt Electric Power

NI National Instruments

NPP Nuclear Power Plant

N W North-West

OPG Ontario Power Generation

OS Operation System

PCI Peripheral Component Interconnect

PHTS Primary Heat Transport System

P H W R Pressurized Heavy Water Reactor

PLC Programmable Logic Controller

P W R Pressurized Water Reactor

SCFW Spurious Closure of Feed-water valve

SDS Shutdown System

SDSl Shutdown System no. 1

SDS2 Shutdown System no. 2

SG Steam Generator

SGLL Steam Generator Level Low

SIS Safety Instrumented System

SUT System Under Test

T C P /IP Transmission Control /Internet Protocol

TN T Trinitrotoluene

U D P /IP User Datagram Protocol/Internet Protocol

USNRC United States Nuclear Regulatory Commission

v9 version nine

VD C Voltage (Direct Current)

VI Virtual Instrument

xiv

Abbreviations and Nomenclature

Nomenclature

avHIL interface availability

cveu controlled variable represented in engineering units

cveutx transmitted variable represented in engineering units

CVeurx received variable represented in engineering units

CVi instantaneous controlled variable value

CVmax maximum expected controlled variable value

cVmin minimum expected controlled variable value

CVrange

fsw

fs

range of expected controlled variable values

frequency of the sine wave to generate

frequency of the samples

nbit resolution in bits for analog to digital conversion

nbit total number of identified erroneous transfers

ni/o
ns

number of configured inputs and outputs

number of sinusoidal samples to generate

ntotal total number of attempted transfers through the interface

resanalog

reScv

analog signal resolution

expected controlled variable resolution

resuDP/IP

tEI

iHIL

resolution of the UDP/IP packet structure

period of execution for modules on the simulator

maximum time expected for the majority of SUT outputs
to return after being requested to do so

tsHIL

tüsuT

tSUTEI

tSUT

tte

interface signal settling time

system under test signal settling time

system under test control logic execution period

system under test control logic execution wait time

total elapsed time for all process variables to be transmitted
through the interface

ttemax maximum total elapsed time for process variable transmis­
sion over entire simulation

XV

1

Chapter 1
Introduction

The success of integrating nuclear power plants (NPPs) into a society with increasing
population density and environmental concern relies heavily on safety system design
[14]. Confidence in safety systems to mitigate environmental, economical and public
health consequences must be demonstrated [14]. Many NPP safety analysis codes,
simulation tools and methods of evaluation exist [6]. However, significant challenges
remain in the verification process of electronic control systems for safety critical nu­
clear control applications [6].

A flexible simulation platform for the operational verification of safety electronic
control systems is developed. In doing so, existing tools are interfaced with modern
simulation practises and control system technologies. This platform is not intended
to replace existing tools. However, it is intended to strengthen the set of currently
available tools [6]. The following sections underscore the background, motivations,
problems and objectives of the research undertaken in this thesis.

1.1 Background

NPPs are required to abide by increasingly strict safety standards and regulations [70].
Safety critical control and shutdown systems within NPPs are essential in satisfying
these regulations, assuring public health and safety, minimal environmental impact
and stable plant economics [3]. Therefore, safety related electronic control systems
must be evaluated to verify, validate, qualify or certify proper operation and design.

Evaluations are performed by regulatory bodies, manufacturers and systems
engineers [6]. Depending on the intended application for the electronic control system,
specific qualifications and certifications are required [11]. These requirements are
specified by regional, national and international regulatory bodies whom develop NPP
instrumentation and control (I&C) standards [8]. However, as mentioned, standards
and regulations are becoming increasingly strict, and are also sometimes vague [31].

Chapter 1: Introduction 2

Therefore, the submission of an electronic control system for evaluation may require
the commitment of extensive resources over a long period of time [43]. For many
manufacturers, justifying certification procedures for nuclear applications is difficult
due to the relatively small nuclear I&C market [50].

Though a small market for certified electronic control systems for nuclear ap­
plications currently exists, it is widely believed that the nuclear energy industry is
entering a renaissance [21] [20]. The apparent renaissance is the result of an increase
in energy demand, public awareness and an acceptance that nuclear power genera­
tion is necessary for base load electrical supply [21] [19]. However, as mentioned,
manufacturers cannot justify performing extensive and costly industry certifications.
The result is a small number of certified electronic control systems,. This places lim­
itations on NPP utilities and systems engineers when developing new or replacement
I&C system components. Engineers either; a) choose from few certified electronic con­
trol systems; b) design and qualify in-house electronic control systems; or c) attempt
to integrate and qualify commercial electronic control systems which lack certification

[4]-
It is not clear whether manufacturers will respond to the expected increase in

commercial nuclear activity and tightening regulations. However, the requirement
for a range of electronic control systems covering a variety of applications is evident.
Increasingly, the task of verifying, validating and qualifying electronic control systems
to satisfy the requirements outlined by regulatory bodies is being placed on NPP sys­
tems engineers [18]. To prove system functionality electronic control systems are often
evaluated through various simulation and emulation techniques [71]. Thus, the appli­
cation and development of the platform within this thesis is performed to streamline
the evaluation of electronic control systems applied in specific NPP applications.

The International Atomic Energy Agency (IAEA) estimates that total world­
wide electrical generating capacity will grow in the range of 37 to 84 per cent between
2006 and 2030. Over the same period, nuclear generating capacity is expected to grow
in the range of 21 to 87 per cent [16]. These projections are difficult to foresee given
the average age of operational NPPs is over 24 years. In fact, today nearly 85 per
cent of operational NPPs are within 25 years of their life expectancies [21] [20] [19].
Therefore, simply to sustain current nuclear power generating capacity there is a
great need for major refurbishment and life extension initiatives in parallel with new
nuclear build.

Chapter 1: Introduction 3

Public concern over nuclear proliferation and security causes significant road­
blocks when addressing safety system development for nuclear applications [88]. His­
torically, nuclear power generation has a great safety record [88]. This record has
been maintained through regulations, standards and thorough engineering practices
which have ultimately resulted in an industry which is poised to respond to the ever
growing demand for energy.

The fundamental basis for power generation by nuclear fission both enables
and disables its application. Nuclear fission reactions release an immense amount
of energy, 20 million times the amount of energy released by Trinitrotoluene (TNT)
[2]. However, the fuel used to generate heat in a nuclear fission reaction is naturally
radioactive. Further, fuel which has been depleted of its useful radioactive material, or
spent fuel, has a higher radioactivity than the original natural or enriched uranium
[2]. Therefore, spent nuclear fuel requires extensive monitoring, management, and
storage facilities [88].

Currently, 18 nuclear reactors generate 14.6 per cent of Canada’s total electrical
supply [22]. However, a reactor has not commissioned in Canada for over 15 years.
The most recently constructed reactor is Darlington Unit 4, an Atomic Energy of
Canada Limited (AECL) design, which went into service in June 1993 [23]. Of the 18
operating Canadian reactors, two units, Pickering 1 and 4, are recently refurbished
having been brought back into service within the last five years [37]. Also, in March
2008, New Brunswick Power began an 18-month refurbishment of the Point Lepreau
NPP [78].

The estimated life expectancy for Canadian Deuterium Uranium (CANDU)
NPPs operating in Canada is 40 years [23]. By 2030, 16 of the 18 operating Canadian
reactors will have surpassed their life expectancies [23]. Therefore, it is immediately
necessary to plan engineering methods for plant life extension, refurbishment, retrofit
and new build projects. Failure to act will result in a reduced nuclear capacity of
only 1870 megawatt (MW), Darlington 3 and 4 combined capacity, and a shortage in
total Canadian electrical supply [23].

The accelerated development and expansion of NPP sites will require definite
assurances that public health, public safety and the environment are not placed at risk
[21] [20]. These assurances rely on engineering practices during NPP safety system
design. Within the nuclear industry, for example, design basis events are well defined
postulated events identified to establish the acceptable performance requirements for

Chapter 1: Introduction 4

structures, systems, and components [44]. To mitigate the consequences of design
basis events, safety critical control and shutdown systems are installed.

In a NPP many systems are classified as safety critical. There are different stan­
dards and levels of classification. However, the safety critical and shutdown systems
which are most critical to safety in all NPPs axe those which prevent the release of
radioactive material from a contained volume [29]. In order to maintain containment;
pressures, temperatures, flow rates, and other plant processes as well as neutronic
stability are monitored and controlled [29]. By controlling the physical plant, limi­
tations of the mechanical components which contain radioactive materials are never
reached and accidents are mitigated [29]. Further, conservative safety margins are
maintained to assure safe operation [10]. Safety margins are the margins allocated
between the limitations of physical operation in any given process and the specified
safe limit of the components within the process during anticipated operational oc­
currences [61]. The reduced performance of ageing and obsolete components nullifies
engineering efforts and can result in a reduction of the safety margin [87].

Aside from obsolete systems, many electronic control systems in NPPs are com­
posed of ageing analog circuitry [10]. Concerns often arise when analog controllers
are to be replaced by digital controller platforms [67]. The reliability of software
based systems, common cause faults and fault tolerance of digital systems come into
question [60]. Simple replacement of these systems can lead to minor variances in
plant performance, or instability in plant operation [60]. However, through proper
simulation methods it is believed that the performance of the digital systems can be
measured and either observed variances can be minimized or process performance or
safety margins can be improved [56].

The process of engineering replacement systems includes extensive testing and
verification [53]. This is especially true for safety critical systems [53]. However, due to
hazardous environments, it is not always possible to perform testing on replacements
for obsolete systems as they exist in the plant [9]. In these cases, the use of simulation
techniques not only assists with verifying proper electronic control system operation
prior to installation within the NPP, but is the only means of testing the physical
system prior to plant start-up [9].

Traditionally simulations are performed entirely by software [42]. In the Cana­
dian nuclear industry there are many extensively developed nuclear power generation
software simulation platforms [15]. These simulators are capable of performing com­

Chapter 1: Introduction 5

plex and extensive simulations [15]. With the increasing problems of obsolescence
and replacement, expansion of software simulators to include connection to external
hardware is becoming more common [89]. Process variables from within the soft­
ware simulator are converted to compatible electrical input signals for input to the
electronic control system under test (SUT). Also, SUT output process variables are
converted from electrical signals to software variables and received by the software
simulator. Connection of the two systems, simulator and SUT forms a loop. There­
fore, this method of simulation is known as hardware-in-the-loop (HIL) simulation

[79].
This thesis covers two major topics; i) the role of HIL simulation in the devel­

opment and testing of electronic control systems; and ii) the simulation of a specific
CANDU NPP shutdown system application. Throughout, focus is placed on the
Canadian nuclear power generation industry where these topics have extensive appli­
cation as well as motivation for research and development. Both the HIL interface
and the simulation platform developed within this thesis are designed to be flexible
and modular, enabling installation between various software simulators and electronic
SUTs.

1.2 Motivations

There are three distinct motivations behind the research performed in this thesis. All
motivations are the result of strict industry regulations and limited availability of
replacement electronic control systems discussed previously. The primary motive is
the need for both a process and a platform for the qualification of shutdown system
hardware and software based on relevant standards through HIL simulation. This is
a long term motivation which extends beyond the scope of this thesis. The secondary
motive is to better enable the replacement of obsolete digital and analog shutdown
system hardware and software. The final motivation is to provide support for the
integration of enhanced functionalities and advanced control techniques digital safety
control systems.

Chapter 1: Introduction 6

1.2.1 Qualification
V . . ■' 1 • : ■ . t . . ■ ' f : H M / f , ' V

During replacement, a potential electronic control system must demonstrate equiv­
alent functional performance to the system being replaced. Further, plant safety
margins must be maintained and safety standards satisfied [87]. Within the nuclear
industry, interest in qualifying electronic control systems has grown due to the lack
of certifications, discussed earlier. Therefore, a method to qualify electronic control
systems through evaluation is necessary.

Application specific qualification routines provide engineers with the ability
to prove that potential replacement systems meet the criteria outlined in standards
and regulations and do not negatively impact plant performance when installed in
a specified application [50]. It is expected that related standards can be identified,
reviewed and that system requirements can be quantified for a specific application.
The quantified requirements are evaluated against the potential electronic control
system and the system is either accepted for installation or removed from contention.

Qualification of a electronic control systems requires functional evaluation.
However, installation into a NPP is not an option due to the continuous and expensive
nature of NPP operations [68]. Therefore, performance evaluation of a potential elec­
tronic control system within an HIL simulation platform is performed to provide full
functional evaluation and verification. Along with quantified standard requirements,
an integrated platform for streamlined system qualification could be constructed.

1.2.2 Obsolescence and replacement

It is essential to better enable the replacement of obsolete shutdown system compo­
nents in NPPs [67]. This is true as the rate of obsolescence rises with the age of
operating reactors [7]. Also, it is expected that obsolescence will continue despite the
predicted nuclear renaissance [33]. In fact, the opposite is true with an increase in
anticipated refurbishment, retrofit, and plant life extension projects.

Currently, many projects address obsolete systems within NPPs [7]. However,
due to financial, scheduling and regulatory restrictions the replacement of all sys­
tems and components is not realistic [7]. Therefore, proper functionality must be
established between refurbished and existing systems. Additionally, continued obso­
lescence issues are inevitable. It is difficult to predict technological trends or support
for currently installed systems [65].

Chapter 1: Introduction 7

Components once commonly available are now either manufactured on a per
request basis, or are simply no longer manufactured [50]. Further, many suitable mod­
ern electronic control systems are not qualified for nuclear applications [50]. There­
fore, reverse engineering techniques have become common practise in maintenance
and refurbishment routines [1]. Through reverse engineering, physical, functional
and operational replicas are developed to satisfy NPP design standards and regu­
lations [25]. These replicas avoid or reduce the extensive requirements experienced
when installing modern replacements [25]. Thus, functionality between old and new
is maintained. However, at the system level, complexity proves to be a limiting factor
in the process of reverse engineering [25]. Systems are comprised of intricate networks
of non-serviceable components and can be very difficult to replicate. If the original
manufacturer of the system is no longer willing to manufacture these devices, entire
system replacement must be adopted.

For every system replacement, potential replacement systems must be exten­
sively verified to assure confidence in mitigating design basis accidents and maintain­
ing safety margins [79]. Though many methods of evaluation exist, the development
of a HIL simulation platform which enables I&C component and electronic control
system verification in a standardized, flexible and scalable manner would be a valu­
able addition to an already strong set of tools [35]. By this method, exhaustive
reverse engineering practices would become obsolete. Further, the ability to prove
the performance of modern replacement systems would be enabled.

This thesis encompasses the preliminary development of a flexible, scalable and
modular interface. The interface is designed with focus on common, standardized
simulator and electronic control system connectivity. It is expected that the pro­
posed procedure can be utilized within the nuclear industry to facilitate streamlined
integration of existing software simulator platforms and potential replacement sys­
tems. The platform developed is not intended to be used for qualifying or validating
components. However, the platform enables evaluation of industrial processes and
the functional verification of electronic control system logic.

1.2.3 Enhanced capabilities

Obsolescence is the primary reason raised when replacing control systems or com­
ponents [77]. However, replacement systems often emulate the performance of the

Chapter 1: Introduction 8

obsolete system [77]. There is a fundamental flaw in this practise. Obsolete systems
are no longer manufactured because either modern, more capable products are avail­
able, or because problems are identified and the system did not perform as expected
for some applications. This being said, when modern technologies are installed to
replicate obsolete systems safe operation of the plant may be in jeopardy.

The enhancement of control routines is limited due to strict regulations within
the nuclear industry, as previously mentioned [83]. Also, a reduction in nuclear power
generating projects over the past decades has resulted in NPP control systems falling
behind modern technology and practices [32]. With advancing technology, new algo­
rithms and control techniques are constantly being developed [90]. These techniques
have been extensively employed and proven through use in other industries [90]. How­
ever, the benefits of these techniques have been ignored by the nuclear industry [90].

Similar to the troubles surrounding the replacement of obsolete systems, the
integration of enhanced capabilities requires extensive evaluation. In a NPP, simple
control logic is preferred, especially for safety systems [34]. However, modifying safety
system control logic through the implementation of built-in electronic control system
functions, alarms and other routines can improve performance while maintaining or
improving safety margins [34]. Performance metrics include among other parameters,
reliability, visibility availability, accuracy and reduced execution time. HIL simulation
is an extremely valuable tool for validating correct functionality and identifying the
benefits that these enhanced capabilities provide prior to installation. Further, the
work required to replace any given component is effectively reduced.

1.3 Problem Statement

There are two primary problems which are addressed within this thesis. The first is
the development of an interface for connecting a software simulator to an electronic
control system. The second is the application of the interface, of the first problem,
to a specific safety critical process within a NPP. These two problems are essential in
identifying the role of HIL simulation in electronic control system development and
testing and applying modern simulation techniques to a specific NPP application.

Chapter 1: Introduction 9

1.3.1 Hardware-in-the-loop interface development

Everyday, significant financial and human resources are directed at developing truth
and physics models [24]. These software simulators are developed using many differ­
ent computer platforms and operating systems [59]. Recently, increasing problems
associated with obsolescence of electronic and electro-mechanical components have
produced a common extension for the application of the simulators [77]. Refur­
bishment, upgrade and replacement of obsolete components is performed through
functional verification and evaluation against real-time bench-mark simulated plant
models. HIL simulation platforms provides this capability [41]. In fact, HIL simu­
lation platforms are now developed specifically for the purpose of extending existing
simulator functionality [41].

Within the Canadian nuclear industry, as discussed previously, there are con­
cerns regarding the obsolescence of components. Consequently, the extension of well
developed and tested simulators into HIL simulation platforms has become a priority
of the Canadian nuclear research community [58].

A software, Unix based NPP training simulator, supplied by Ontario Power
Generation (OPG) is used to provide extensive training and replication of opera­
tional scenarios [12]. However, the computer architecture and operating system on
which the simulator was developed, though real-time, is very limited and is no longer
supported by the manufacturer [38]. This becomes a problem as evaluating potential
replacements for obsolete electronic control systems by HIL simulation requires inter­
face between the actual control system hardware and the training simulator. Upon
further investigation, development and analysis; a simple, flexible and inexpensive
solution is established.

1.3.2 Hardware-in-the-loop shutdown system simulation

Advances in digital safety control system platforms and algorithms are being con­
stantly developed [90]. These advanced systems are installed in an array of appli­
cations and industries throughout the world [5]. Although the installation of digital
systems into nuclear control systems, including safety critical systems has been lim­
ited, there are many recent ambitious initiatives for increased implementation [57].
Therefore, a renewed necessity is apparent to evaluate modern alternatives to analog

Chapter 1: Introduction 10

and legacy digital systems in safety critical control applications. In fact, three ad­
vanced electronic control systems axe now certified for nuclear safety application by
the United States Nuclear Regulatory Commission (USNRC) [69] [17].

The Canadian nuclear industry led the world in digital control system imple­
mentation in the 1980s [39]. However, reduced public support of nuclear power gener­
ation did not exclude Canada. Though AECL has taken minor design steps, limited
electronic control system development has resulted [40]. Yet, the resurgence of nuclear
interest has sparked refurbishment initiatives throughout the country. The NPP at
Point Lepreau refurbishment involves specifically the installation of one of the three
USNRC approved electronic control systems. Therefore, the refurbishment directly
relates to the research within this thesis. The Tricon version nine (v9) programmable
logic controller (PLC) is the electronic control system selected for replacement of
shutdown system no. 1 (SDS1) at Point Lepreau [52]. It is also the electronic con­
trol system of focus within this thesis. Though the Tricon v9 PLC is considered
a commercial-off-the-shelf system, it is a complicated system and requires extensive
training and programming experience to implement all available enhancements [86]
[84] [85]. Further, the logic solving unit of SDSl does not rely on complex operations,
functions and algorithms. The simplicity of the safety critical algorithms is appar­
ent when studying the emulated station code of the training simulator and SDSl
fundamentals [39].

In conjunction with the previous problem, the implementation of SDSl logic as
it exists in the training simulator is ported to the Tricon v9 PLC. Further, combining
the development of an advanced electronic control system platform for SDSl and an
HIL interface for a software simulator, results in the Tricon v9 PLC being implemented
with the developed HIL interface to form a HIL simulation platform. Functional and
operational evaluation of the Tricon V9 PLC and verification of the installed control
logic and the capabilities of the simulation platform are performed.

1.4 Objectives

The objectives for the research performed within this thesis are outlined, in no par­
ticular order, in the following list. The two major objectives listed below stem from
the problems and motivations stated in Sections 1.3 and 1.2 respectively. Extended
objectives are nested below the two major problems.

Chapter 1: Introduction 11

• extend the functionality of a NPP training simulator to include hardware-
in-the-loop simulation

- identify a method for simulator and electronic control system connectivity

- develop a software module for the acquisition of NPP training simulator
process variables

- develop an interface which supports connectivity between the Tricon v9
PLC and the NPP training simulator

* propose a procedure for developing an hardware-in-the-loop interface
* evaluate the performance of the interface prior to simulation
* identify limitations of the interface
* develop a method for assuring hardware-in-the-loop simulation results
* propose a procedure for connecting and verifying the operation of the

interface within a hardware-in-the-loop simulation platform

• demonstrate the functionality of C A N D U shutdown system no. 1
control logic on a Tricon v9 PLC through hardware-in-the-loop sim­
ulation

- replicate shutdown system no. 1 control logic within the Tricon v9 PLC

- connect the Tricon v9 PLC to the HIL interface

- establish process scenarios for Tricon v9 PLC operational verification

- verify signal transmission through the hardware-in-the-loop simulation plat­
form

- evaluate the performance of the Tricon v9 PLC against bench-mark NPP
process simulations

1.5 Organization

The thesis is organized as follows. Chapter 2 includes a review of NPP fundamen­
tals, where the concept of nuclear power generation and related control systems are
presented. Chapter 3 proposes a procedure for developing an HIL interface. The pro­
posed procedure is performed and an interface is established. In Chapter 4, analysis
of the interface is performed through the execution of two studies. Various timing

Chapter 1: Introduction 12

requirements and limitations of the interface are observed and discussed. Chapter 5
presents the installation of the interface developed in Chapter 3 within a HIL simula­
tion platform. The simulation platform is designed to enable simulation of a specific
CANDU NPP process. Compatible control logic is developed, and an electronic con­
trol system is programmed. After installing the electronic control system within the
platform, variable transmission and platform timing routines are verified. A bench­
mark process is then observed and hardware-in-the-loop simulation is performed.
During simulation, a software simulator executes CANDU specific NPP processes.
The connected electronic control system is responsible for controlling a segment of
the NPP shutdown system. The performance of the electronic control system as a
replacement system for shutdown, and the developed interface as a tool for verifying
proper electronic control system operation are discussed. Finally, Chapter 6 presents
the conclusions related to the thesis work, contributions, and an outline of potential
future research.

13

Chapter 2
Nuclear Power Plant Control Systems and

Simulation

2.1 NPP Fundamentals

The basic energy cycle for a NPP is shown in Figure 2.1. Fuel for a nuclear fission
reaction contains fissile material (uranium, plutonium). This fuel is fed into the
reactor core where the fission reaction occurs. The energy produced from the chain
fission reactions is released in the form of heat and is used to boil water. The steam
produced from the boiling water drives a set of turbines and in turn an electrical
generator. The electricity produced is supplied to the commercial electric power
grid [27]. In conjunction with feeding fuel into the reactor, spent nuclear fuel is
periodically removed from the reactor. Further, a small percentage of the generated
electrical energy is utilized for electrical energy consumption requirements of the NPP
[27] .

There are many NPP designs in world-wide operation today, all of which follow
this simplified NPP energy cycle. NPPs are classified by the properties of their
moderator. The moderator is a material is contained within the reactor core [63].
Three typical moderator materials are ordinary water, heavy water, and graphite
[28] . Most NPP in operation today use water as a moderator. Three main types
of water reactors exist including heavy, or light water and heavy water reactors. In
brief, light water is composed mostly of hydrogen oxide(H2 0) molecules, whereas
heavy water is composed of an increased amount of deuterium oxide (D2O) molecules
[75]. D2O shares many chemical properties with H2O but allows for non-enriched
uranium, or natural uranium to be used as reactor fuel [66]. This eliminates the
requirement for uranium enrichment facilities. Two of the three main types of water
moderated reactors are moderated by light water. Namely, pressurized water reactors
(PWRs) and boiling water reactors (BWRs). The other is a heavy water moderated

Chapter 2: Nuclear Power Plant Control Systems and Simulation 14

Figure 2.1: Basic nuclear power plant energy cycle.

(^setpoint)

Figure 2.2: Simplified nuclear power plant control system.

reactor or pressurized heavy water reactors (PHWRs) [62]. These basic details of
nuclear physics are sufficient in understanding the thesis as a whole.

NPPs are designed to operate for extended periods at constant electrical power
output. Thus, they often provide base-load electricity supply to the commercial elec­
trical power grid. A steady state balance must be maintained between the rate of
energy released from the fuel in the reactor core and the electrical output of the gen­
erator. Many factors affect this balance, including disturbances in energy conversion
processes, changes in the load requirements of the electrical power systems and in
energy exchanges between the station and the environment [45]. Therefore, a control
system must be implemented to compensate for the identified system imbalance [45].
A simplified plant control system is illustrated in Figure 2.2.

Primary inputs to the control system are reactor power, steam pressure and
generator output (MW). Two common operating modes exist for NPPs. NPPs can
operate in either mode. However, the most common mode is for the control system
to operate in ‘reactor-leading-turbine,’ also referred to as ’turbine-following-reactor’

Chapter 2: Nuclear Power Plant Control Systems and Simulation 15

Figure 2.3: Model of ‘Defence in Depth’ concept.

mode. In this mode, steam pressure is maintained constant while the nuclear fission
energy output is corrected to the desired set-point. The control system adjusts the
steam flow to the turbine by changing the opening of the governor valve, thereby
altering the electrical power output according to the current reactor core power gen­
erating capabilities [45]. Though NPPs are capable of fluctuating with the demands
of the commercial electrical grid, known as ‘load following,’ it is not common practise.
NPPs usually supply base-load electrical generation, and for this reason, other forms
of electrical power generation respond to the changes in commercial electrical power
demand [54] [55].

The above description, concepts and modes of controlling a NPP are signifi­
cantly generalized. However, as indicated in Chapter 1, it is essential to minimize
potential threats to the public and environment from the radioactive materials in­
volved in the nuclear power generating process. Specific principles for achieving safe
reactor operation are well defined [80]. Reactor safety is maintained if the reactor
power is controlled, the fuel is cooled and the radioactivity is contained. For simplicity
these principles are shortened to ‘Control, Cool, and Contain,’ [80].

Reactor safety is further incorporated through a concept known as ‘Defence in
Depth,’ illustrated in Figure 2.3. The concept covers the entire process of designing,
constructing, commissioning and operating a NPP. Further, the concept assumes that
a) the NPP design will have some flaws, b) equipment will occasionally fail, and c)
operating personnel will occasionally make mistakes. It is essential that the employed
depth of defence covers both expected and unexpected flaws, failures and mistakes
[80].

It is apparent that safety holds significant importance in all aspects of a NPP.
At the top level control, cooling and containing are of greatest importance. This is
primarily achieved through practising defence in depth as illustrated in Figure 2.3.

Chapter 2: Nuclear Power Plant Control Systems and Simulation 16

To assist in defence in depth practise, the methods documented in Table 2.1 are used

[13].
Defence in depth includes special safety systems which are initiated as a last

resort for preventing the unsafe consequences of abnormal plant operation during ac­
cident conditions. Specifically, these systems are used to mitigate the consequences
of serious process failures requiring reactor shutdown, decay heat removal or reten­
tion of released radioactivity. Therefore, the systems perform no active function
during normal NPP operation. In fact, all safety systems must be actively poised
to allow operation of the NPP. For this reason safety system designs often require
minimal system unavailability, an aspect which requires efficiently scheduled testing
and maintenance procedures [13]. This is considered when developing an interface for
satisfying electronic control system verification and the methods discussed in Table
2.1 are practised extensively during special safety system design. Safety systems are
the primary focus within the work of this thesis.

2.2 CANDU Fundamentals

CANDU or Canadian Deuterium Uranium refers to a Canadian NPP design. CANDU
NPPs are PHWR plants and are designed and maintained by AECL [47] [82]. A
heavy water moderator and coolant are applied. This allows for natural as opposed
to enriched uranium to be used as fuel. Canada has vast natural uranium reserves.
Therefore, no uranium enrichment facilities are required [64]. CANDU NPPs include

j
various additional characteristics which are unique in the nuclear industry. CANDU
NPPs have the ability to refuel while the reactor is generating electrical power and
connected to the commercial power grid. Other reactor designs replace fuel supplies
regularly during extended scheduled shutdown periods. Many PWRs and BWRs are
designed with high pressure reactor core and require bulk re-fuelling routines. The
AECL NPP has a low pressure reactor core (calandria) which contains the moderator.
High pressure tubes accessible from either end of the calandria enable fuel loading
via fuel bundles. Primary coolant flows around the fuel bundles and heat energy
produced by the fission reaction is transfered to the coolant [64]. These characteristics
are known only to be implemented in AECL and CANDU-based reactor designs.

Similar to Figure 2.1, Figure 2.4 illustrates the energy cycle of a CANDU NPP.
In addition, main CANDU process systems are included. The calandria contains

Chapter 2: Nuclear Power Plant Control Systems and Simulation 17

Method Description [13]
Redundancy Provision of alternative structures, systems and compo­

nents, so that any one can perform the required function
regardless of the state of operation or failure of any other.

Diversity The presence of two or more redundant systems or compo­
nents to perform an identified function, where the different
systems or components have different attributes so as to
reduce the possibility of common cause, or mode, failure.

Reliability The probability that a system or component will meet its
minimum performance requirements when called upon.

Availability
(Testability)

The fraction of time for which a system is capable of fulfilling
its intended purpose.

Separation Separation by geometry, by appropriate barriers, or by a
combination thereof.

Environmental
Qualification

Generation and maintenance of evidence to ensure that
equipment will operate on demand, under specified service
conditions, to meet system performance requirements.

Quality Assur­
ance • The function of a management system that provides con­

fidence that specified requirements will be fulfilled.
• A systematic programme of controls and inspections ap­
plied by any organization or body involved in the trans­
port of radioactive material which is aimed at providing
adequate confidence that the standard of safety prescribed
in regulations is achieved in practise.

• All those planned and systematic actions necessary to
provide confidence that a structure, system or component
will perform satisfactorily in service.

Codes and Stan­
dards

In addition to the above methods, all system should comply
with mandatory regional, national and international codes
and standards.

Table 2.1: Methods used to ensure NPP safety requirements [13].

Chapter 2: Nuclear Power Plant Control Systems and Simulation 18

heat to atmosphere

: f
calandria
(reactor)

(fission)

w
fuel
◄—

a

moderator
(DjO)

A
ir

cooling
water

heat steam
heat ^ heat ^ production . . J
« y » transport heat

r * (evaporation) <K|0)

turbine-
generator MW(e)

— -► primary heat transport loop

------^ steam cycle

— condenser
(condensation)

i i
r

cooling
water

Figure 2.4: Energy cycle and main CANDU NPP systems.

heavy water moderator surrounded by a shield tank. The shield tank is filled with
light water, a neutron absorber. Reactivity control is performed by vertical and
horizontal reactivity control units installed between pressure tubes from the top and
side of the calandria respectively [46].

Description of a simplified primary heat transfer loop begins with the reac­
tor core. This closed loop is the primary heat transport system (PHTS), a system
with a figure eight bi-directional coolant flow pattern. The PHTS is responsible for
removing the coolant from the calandria and transferring it to light water boilers.
An illustration of the PHTS is provided in Figure 2.5. Uranium is loaded into hun­
dreds of pressure tube channels. Heavy water coolant circulates through pressurized
tubes, where heat is transferred to the coolant. The heated (300°C) coolant enters
the boilers, or steam generators. The coolant is then divided into hundreds of tubes
where heat is transferred by conduction to light water. Following energy transfer, the
cooler (260°C) heavy water exits the steam generator and is routed to heat transport
pumps. The coolant then returns to the pressurized fuel channels. This completes the
primary heat transport loop. Approximately 95 per cent of the heat energy generated
during the fission reaction is transferred to the steam generator light feed-water with
the other five per cent being lost to the moderator. A moderator cooling circuit is
also included in the NPP but not discussed here. The heat energy is eventually lost
to the atmosphere [26].

A steam cycle begins in the middle of the PHTS. An illustration of the steam
cycle is provided in Figure 2.6. Light water in the steam generator is heated by

Chapter 2: Nuclear Power Plant Control Systems and Simulation 19

Figure 2.5: Simplified CANDU NPP primary heat transport system (PHTS) [26].

conduction from the heavy water of the PHTS. The light water boils and evaporates
into steam. With a lower density than water, the steam rises to the top of the steam
generator. A reduction in energy transfer efficiency results. The steam departs the
steam generator and flows to the turbine set, both high pressure and low pressure,
where it exerts force on the turbine blades. The force on the turbine causes the
turbine shaft to rotate. The turbine shaft rotates the coupled rotor shaft of an
electrical generator. Heat energy from the steam that does not contribute to driving
the turbine blades is lost to cooling water in the condenser. Finally, the condensed
steam, or water, is returned to the steam generator feed-water inlet through feed­
heating and deaerator systems to complete the steam cycle [30]. Approximately 30
per cent of the total heat energy produced by the chain fission reaction is transferred
to the mechanical energy in the turbine shaft [30].

In summary, kinetic energy from nuclear fission heats the heavy water coolant.
Heat from the heavy water is conducted to the light water secondary coolant in the
steam generator. The light water heat energy is then converted to mechanical energy
(turbine) and mechanical energy converted to electrical energy (generator).

The Darlington NPP, located in the Municipality of Clarington near Bow-

Chapter 2: Nuclear Power Plant Control Systems and Simulation 20

Figure 2.6: Simplified CANDU NPP steam cycle [30].

manville, Ontario, Canada, is the subject of all further NPP descriptions. The NPP
is used to illustrate NPP design, operation and safety characteristics. The design and
practises of the Darlington NPP provide a basis for control system simulation and
development. Darlington NPP is the newest CANDU NPP operating in Canada and
is owned by OPG. Darlington NPP is a four-unit station with a total electrical output
of 3,524MW(e) [39]. Design and operating specifications of the Darlington NPP are
provided in Appendix A.

2.3 Safety Systems

The objective of this research is to enhance safety critical control system practises.
With this in mind, the following systems do not conform to classical closed loop
control problems. In fact, the algorithms within these systems are relatively simple

Chapter 2: Nuclear Power Plant Control Systems and Simulation 21

[76]. It is common practise for special safety critical control systems to perform open-
loop control functions [76]. By definition, open-loop control is any process in a system
whereby one or more variables as input variables influence other variables as output
variables. Characteristic for open-loop control is the open action path or in case of
a closed action path, the output variables being influenced by the input variables
are not continuously influencing themselves [76]. NPP safety systems are responsible
for actuating fail-safe components which conform to the ‘Control, Cool and Contain’
principle. Though the actuating output signals of these systems will eventually affect
input to the safety system, the input variables are not continuously influenced by the
outputs [76].

In this section, the basic design and operating practises of AECL special safety
systems are discussed. There are four special safety systems: shutdown system no.
1 (SDSl), shutdown system no. 2 (SDS2), emergency core cooling system (ECCS)
and the containment system. These systems are responsible for ensuring safe opera­
tion of the NPP, and prevent the release of unsafe amounts of radioactivity into the
environment [29]. Throughout this thesis, focus is placed on SDSl. Therefore, other
safety systems are discussed in brief.

2.3.1 Safety system concepts

Within CANDU NPPs, safety related systems are grouped to protect against common
cause failures which may result from localized damage to the plant. There axe two
groups of safety systems. Group one encompasses the systems required for normal
operation of the NPP as well as SDSl and containment safety systems. Group two
includes SDS2 and the ECCS safety systems [29].

Systems within each group are capable of independently performing reactor
shutdown, decay heat removal, control, and monitoring. Physical separation and
functional diversity separate the groups. Further, interconnection between groups is
practically minimized. However, safety support services (electrical, power, cooling
water and feed-water systems) are capable of providing backup support services to
each group [29].

Control and monitoring of station events is performed from the main control
room of group one. However, if the main control room becomes inoperable or inhab­
itable, a secondary control room belonging to group two remains functional [29].

Chapter 2: Nuclear Power Plant Control Systems and Simulation 22

NP - non-programmable
PE - programmable electronic

Figure 2.7: Safety instrumented system (SIS) open action path.

The previously described NPP control routines provide some degree of safety
protection as they maintain plant balance. However, special safety systems are by
definition safety instrumented systems (SIS). An SIS is defined as an instrumented
system used to implement one or more safety instrumented functions and is composed
of any combination of sensors, logic solvers, and final elements [29]. This is similar to
the open action path illustrated in Figure 2.7. There are two primary SISs in CANDU
NPPs. One system, SDSl, consists of mechanical shut-off rods while the other, SDS2,
injects a neutron absorbing solution into the moderator via liquid poison injection
nozzles. The two shutdown systems respond automatically to both neutronic and
process signals. Further, either system acting on its own is capable of shutting down
the reactor and maintaining shut down for all design basis events [29].

The redundant SDS2 quickly terminates reactor operation when specific neu­
tronic and process parameters enter an unacceptable range. The method of terminat­
ing reactor operation is the rapid injection of concentrated gadolinium nitrate solution
into the moderator through a horizontal nozzle located on the side of the calandria

[29].
The ECCS replenishes reactor coolant in the event of a loss-of-coolant accident

(LOCA). This safety function is necessary to assure cooling of the reactor fuel. In the
initial ECCS phase, pressurized light water is delivered to PHTS headers. Pressure
is provided by ECCS gas tanks. Over the long term, the ECCS re-circulates the light
water through the pressure tubes and dedicated ECCS heat exchangers for decay heat
removal [29].

Containment is provided by containment envelope and containment isolation.
The containment envelope is the reactor building. The envelope provides a pressure-
retaining boundary and includes airlocks, piping and electrical penetrations, with
isolation valves included as necessary. It is designed to withstand the maximum
pressure of any design basis accident. Isolation is achieved automatically by closing

Chapter 2: Nuclear Power Plant Control Systems and Simulation 23

specific valves if an increase in containment pressure or radioactivity level is detected.
In the long term, air coolers provide an atmospheric heat sink for the envelope [29].

2.3.2 Shutdown system no. 1

The two NPP shutdown systems, SDSl and SDS2, are designed in compliance with
Canadian Nuclear Safety Commission (CNSC) regulations [29]. Though SDSl is the
focus of this section and the thesis work, general and performance requirements for
both shutdown systems include [29]:

• A CANDU NPP must be equipped with two independent and diverse shutdown
systems.

• Compliance with regulatory requirements must be approved by the governing
body (CNSC, formerly the Atomic Energy Control Board) prior to issuance of
construction approval or operating license.

• Designed such that, acting alone, it can ensure that:

— the reactor is rendered sub-critical and is maintained sub-critical;

— the reference dose limits are not exceeded; and

— a loss of primary heat transport system integrity shall not result from any
fuel failure mechanism, in the event prompt shutdown is required. •

• Ensure fuel in the reactor, with no defects prior to the event, does not fail as a
consequence of the event for relevant events listed in Tables B.l, B.2, B.3, B.4
of Appendix B.

• Have the ability to operate when exposed to the most severe environmental
conditions that accompany the events listed in Tables B .l, B.2, B.3, B.4 of
Appendix B. This capability should be demonstrated and effects analyzed.

• Demonstrate the target unavailability of less than 10-3 years per year including
availability, testing and maintenance.

• Incorporate redundancy such that the failure of any single component will result
in below allowable performance under accident conditions.

• Provide shutdown capabilities regardless of electrical power supply condition.

Chapter 2: Nuclear Power Plant Control Systems and Simulation 24

• Be designed to have consistent safety capabilities in all operating and failure
modes. Failed components must fail at a safe state.

• Prevent disabling of manual operator shutdown capabilities, and to respond to
redundant and remote location manual shutdown.

• Incorporate diverse, physical and operational independence.

• Be effective and independent of normal process, safety or special safety systems.

SDSl is the primary method for terminating reactor operation when a specified
set of NPP parameters enter an unacceptable range. SDSl reduces the capability of
nuclear fission reactions within the core through the release of spring-assisted gravity-
drop shut-off rods [29]. The shut-off rods are composed of the neutron absorbing
material cadmium.

SDSl has three independent channels, designated D, E and F. Each channel
detects the requirement for a reactor trip and de-energizes a set of relays which
control direct current clutches for the release the shut-off rods. The triplicated design
and measurement of safety critical NPP parameters will function even when a single
loop component or power supply fails. Therefore, a failure will not incapacitate or
spuriously invoke the operation of the safety system [29].

The logic for SDSl operates using general coincidence. General coincidence
operation requires that two of the three (2oo3) channels of SDSl trip. The parameter
on which SDSl trips does not affect the dropping of the shut-off rods. Therefore,
if any two parameters are beyond specified safe limitation set-points, SDSl initiates
shutdown routines [29].

SDSl and SDS2 operation differ when more than one trip parameter is beyond
normal operating range. Both SDSl and SDS2 use a 2oo3 voting mechanism. SDSl
will trip on any two parameters, illustrated in Figure 2.9, which are beyond an ac­
ceptable range, known as general coincidence. On the other hand, SDS2 requires that
the two parameters that are not satisfying proper NPP operation are produced by
the same parameter on both channels. This is known as local coincidence [29]. Both
coincidence voting techniques are illustrated in Figure 2.8.

The parameters which can initiate a general coincident reactor trip through
SDSl are listed below. Further, the parameters and the systems that the measured
variables are captured from are illustrated in Figure 2.9. There are nine measured
variables which must remain within specified ranges in order for the reactor to remain

Chapter 2: Nuclear Power Plant Control Systems and Simulation 25

♦95V

a) General coincidence trip condition
+95V

u
TO
CLUTCH COILS

TRIP PARAMETER 1

CHANNEL *E"
RELAY

CHANNEL ’D'
RELAY

+95V

u
TO
CLUTCH COILS

TRIP PARAMETER 2

CHANNEL -E-
RELAY

CHANNEL ‘D‘
RELAY

-95V

b) Local coincidence trip condition
Figure 2.8: a) General (SDS1) and b) local (SDS2) coincident two-out-of-three

(2oo3) trip mechanisms.

in an operating state. The selection of variables is performed so that all categories
of process failures identified in Appendix B are protected against. Also, the manual
initiation of SDS1 is supported. This is performed by an operator from the main
control room or secondary control area [36].

1. neutron power - Inconel in-core flux detectors. A linear amplifier converts de­
tector current readings to a voltage signal. The set-point for neutron over
power is altered depending whether abnormal reactor operating conditions are
observed. Shutdown system design ensures protection coverage during normal
fuel manoeuvring or single device failure.

2. rate log neutron - Ion chamber detectors. Current signal proportional to the

Chapter 2: Nuclear Power Plant Control Systems and Simulation 26

Figure 2.9: CANDU SDSl trip parameters and originating systems.

thermal neutron flux and amplified to linear and logarithmic neutron power
and rate logarithmic signals. The rate logarithmic signal is used as a direct
trip parameter. Set-point conditioning for rate log neutron trip is provided by
neutron power levels.

3. heat transport system flow - Mass flow feeders. The flow feeders are divided into
two groups, half are used for SDSl and the other half for SDS2. Measurements
are taken from each coolant pass within the calandria. Heat transport system
trip is conditioned out for very low power, or shutdown conditions.

4. heat transport system pressure - Pressure transmitters. Both high and low pres­
sure are used trip conditions are enabled. However, low pressure is conditioned
out for low neutron power levels. Pressure transmitters are also used to control
auxiliary relief valves.

5. reactor building pressure - Pressure transmitters. Triplicated measurement ef­
fective for primary and secondary side breaks within containment.

6. pressurizer level - Effective for small loss-of-coolant accidents. Conditioned out
at very low neutron power levels to allow for draining during maintenance.

7. steam generator level - Effective for protecting against secondary side failures
including secondary side heat removal. If secondary side heat removal is not
functioning the energy transfer from the PHTS to the steam generators, and

Chapter 2: Nuclear Power Plant Control Systems and Simulation 27

subsequently the turbines, is disabled. Further, the mechanical structure of the
steam generators may be compromised. This parameter is also conditioned out
at low neutron power level.

8. steam generator feed-line pressure - Pressure in each steam generator feed-line
is monitored. Protection against secondary side failures which could result in
the loss of the steam generators as heat sink. Conditioned out at low neutron
power levels.

9. moderator level - Effective for loss of moderator cooling, moderator pipe breaks
and channel failures. Both high and low levels provide trip conditions.

The three independent channels of SDS1, D, E and F have completely independent
power supplies, parameter sensors, and other instrumentation, trip computers and
annunciation devices [29]. Shutdown rods are divided into two banks. Each bank
is supplied with redundant power supplies. The shut-off rods are suspended above
the calandria by energized direct current clutches and coincident logic. Each clutch
coil is held energized by the contacts of a separate relay. If a single relay fails, the
remainder of the shut-off rods will drop into the calandria [29].

SDSl has various other operational features. Every variable within SDS1 can
be overridden within the NPP. In this way, SDSl logic can be functionally tested at
regular intervals [29]. Also, rod drop tests can be performed for each individual rod.
The ability of the rod to drop freely into the calandria is essential for proper reactor
shutdown. During a drop test the clutch mechanism is de-energized, and re-energized
almost immediately by a time delay relay. The distance the rod travels is recorded
and determined either to be suitable for shutdown. If the rod does not pass the rod
drop test maintenance is performed [48].

The physical location of components within SDSl enables maintenance routines
while practising separation. Drive mechanisms are located on the reactivity deck
above the calandria. Controlled access to the clutches, motors, potentiometers, gear
boxes and winches is required. Separation between clutch and withdrawal motor
circuits is essential. Regulating and shutdown system channels cannot be on the same
channel. Therefore, separate cables and junction boxes are installed. Trip computers
and relay trip logic for each SDSl channel are located in the main control area. All
SDSl reactor measuring devices are field mounted. However, they are distributed in
a manner which minimizes the possibility of common-mode failures with SDS2 and

Chapter 2: Nuclear Power Plant Control Systems and Simulation 28

reactor regulating system devices. Cables are run in three physically separated cable
runs to the main control room [51].

One trip computer is utilized per channel in SDS1 and SDS2. The trip comput­
ers are digital platforms and have replaced analog trip comparators, programmable
digital comparators and relay logic used in previous plants. Final 2oo3 voting, seal in
routines and shut-off mechanism actuation is performed using various relay circuits
[67]. The relay circuits are controlled directly from the digital outputs of SDSl and
SDS2.

The required insertion time of the shut-off rods following a trip detection is less
than or equal to two seconds. When SDSl is in a tripped state not more than two shut­
off rods are fully withdrawn. Reactor poison removal procedures and adjuster and
mechanical control absorber withdrawal are disabled to assure maximum shutdown
capabilities. Also the D2O moderator system is isolated from the reactor core to
prevent the addition of pure moderator to the poisoned moderator. Conversely, when
SDS2 is in a tripped state the same measures are taken and shut-off rods withdrawal
is disabled [81].

29

Chapter 3
Hardware-in-the-loop Interface

Development
The transmission of signals between simulated and actual systems within an HIL
simulation platform is illustrated in Figure 3.1. Within the following chapters the HIL
simulation platform is referred to simply as the platform. The platform is composed
of simulator, system under test and interface sub-systems. During development a
simplified platform is used. This platform is referred to as the development platform.

Conversion of software process variables to electrical signals enables the instal­
lation of an electronic control system as it exists in an actual NPP environment.
Therefore, HIL simulations are commonly used to evaluate, validate and verify the
operation of electronic control systems. However, to establish process variable trans­
mission between the simulator and the electronic control system an interface must be
developed and installed.

The fundamental function of the interface is to acquire simulated process vari­
ables from a simulator and to convert the variables into analog or digital electrical
signals. The opposite is also true. Electrical signals are returned to the simulator
from the SUT through the interface. The remainder of this chapter focuses on the
development of the interface [41].

3.1 Hardware-in-the-loop Interface Development
Procedure

During HIL simulation the installed electronic control system operates under real­
time conditions. Therefore, the simulator must also support real-time simulation. It
is not the case that the simulated process must provide continuous output of all input
variables, or that it must receive variables continuously from SUT outputs. However,
the period between consecutive signal inputs to, and outputs from the simulated

Chapter 3: Hardware-in-the-loop Interface Development 30

Figure 3.1: HIL simulation platform concept.

identify
requirements

(SUT.timutelor)

f 1f

select
sub-systems

(SUT.

identify
signal

transformations

select
interface

sub-system

develop
interface

(simulated.
real-world)

verify
interface

(ctiatongM)

develop
test suites

(timing, scalability, ...)

interface
analysis

HIL platform
development

Figure 3.2: interface developmental procedure.

process is decided by the rate of change of the variables within the evaluated process.
Capabilities of the SUT must also be considered. In general, an HIL simulation can
achieve real-time operation if the transmission of the outputs and inputs satisfies the
dynamics of the process being evaluated [71].

HIL simulation limitations are introduced by the hardware and software se­
lected for the interface. For this reason, a procedure to develop, test and verify an
interface is proposed. This procedure is illustrated in Figure 3.2. In the end, interface
functionality is verified both prior to and following installation into an application
specific simulation platform. If sufficient performance is not met prior to HIL sim­
ulation, the interface is re-developed and undergoes repeated verification procedures
until acceptable interface performance is observed. A measure of acceptability for
interface performance metrics is left to the discretion of the design and systems en­
gineer. However, the acceptability of the interface performance between differing
configurations is discussed during analysis in Chapter 4.

Within the procedure of Figure 3.2, the requirements of the process being eval­
uated and the purpose for performing HIL simulation are first identified. If already

Chapter 3: Hardware-in-the-loop Interface Development 31

chosen, SUT features and simulator model dynamics are analyzed and functional re­
quirements for the interface are recorded. There are four likely scenarios when faced
with the challenge of developing an interface.

• Known process only - no simulation model, or SUT have been selected. The
process being evaluated specifies all requirements for interface and simulator
development, as well as SUT selection.

• Existing SUT - the SUT has been selected as the electronic control system for
the process being evaluated. However, the electronic control system requires
verification through simulation. Therefore, simulator development is required.

• Existing software simulator - the functionality of an existing simulator is ex­
tended to include HIL simulation. Therefore, multiple SUTs can be evaluated
and their performance compared.

• Existing SUT and simulator - both the existing SUT and simulator scenarios
are satisfied. Simulator development and multiple SUT platform evaluations
are not required.

In all cases, including the existing simulator scenario, simulation requirements rely
most heavily on the process being evaluated. However, in the existing simulator
scenario the process being evaluated has already been reviewed and its dynamic re­
quirements accounted for during simulator development.

Regarding the SUT, two electronic control system specifications are considered.
First, the number of input/output (I/O) supported by the system, nj/Q , is calcu­
lated. This determines the number of required electrical connections between the
simulator and the interface. Also, the execution interval, tgjjpE I, ° f the logic within
the SUT must satisfy the pre-determined requirements of the process being evaluated.
After analyzing the control process and calculating the number of I/O and the exe­
cution interval of the control logic, manufacturer supplied electronic control system
specifications are reviewed to ensure compliance.

For the software simulator, thorough planning is performed. The rate of change
of the variables within the controlled process is accurately reflected in the output
and acquisition intervals of the simulator, tEj. Fundamental sampling theory must
be practised so that valid simulation and accurate reproduction of the real-world
response can be performed. Further, the execution interval of the SUT t$uTEji and

Chapter 3: Hardware-in-the-loop Interface Development 32

the asynchronous execution of the control logic within is addressed and accounted for
within the interface.

During the following interface development the ‘existing simulator scenario’ is
undertaken. Therefore, an SUT is not defined. However, a range of values for SUT
execution intervals, tsuTEI» and I/O capacities, nj/Q , are investigated. Addition­
ally, the dynamics of the process being evaluated are established in an existing NPP
simulator and do not need to be derived.

The chosen NPP simulator has specific process variable output and acquisition
intervals, tEj, which range from 50 milliseconds to 2 seconds. A set of intervals within
this range are implemented during testing and verification. It is recommended that a
thorough examination of real-world process dynamics compared with the simulated
dynamics is performed. However, this is beyond the scope of defined research. There­
fore, the installed simulator is assumed to perform adequately for the process being
evaluated.

Next, the simulator and SUT sub-systems are selected. It may be the case
that the simulator sub-system already exists as in the ‘existing simulator scenario’.
This is the case with the NPP simulator installed in Chapter 5. It is common that
the intended SUT or a set of potential SUT sub-systems have already been selected.
For the developed interface the selection of the SUT and simulator sub-systems is
flexible. The two are specified only by signal conversion requirements. Though an
existing NPP simulator will be installed, any simulator with Ethernet communication
and UDP/IP communication module support is compatible. Alternatively, standard
industrial analog and digital hard-wired signals are specified for SUT compatibility.

Prior to interface development, signal transformations are identified. The cur­
rent design includes transformation of Ethernet signals to and from 4-20 mA analog
and 0-5, 10 and 24V digital signals. Therefore, the selected interface sub-system
accommodates both process variable media.

The selected sub-system for the interface is a National Instruments (NI) com­
puter based data acquisition (DAQ) system and custom NI Lab VIEW Virtual In­
strument (VI) developed using the G programming language. The interface supports
both connectivity media. The NI LabVIEW G programming environment is ex­
tensive. Additionally, support for various DAQ hardware platforms, processors and
operating systems allows for easy transition between interface sub-systems.

Chapter 3: Hardware-in-the-loop Interface Development 33

Following development of the interface, verification suites are defined and ex­
tensive analysis of the interface is recommended prior to performing HIL simulations.
Primarily, the interface must enable communication between the simulator and the
SUT. If a method for variable transfer cannot be established an alternate interface
sub-system is required.

Acquiring variables from the simulator relies on the simulator architecture. If
the simulator platform is known prior to interface development it is suggested that
the runtime capabilities of the simulator be evaluated to determine if process variable
extraction and real-time simulation is possible.

When the capability to transfer variables from the simulator to the SUT is
established, verification and testing routines are developed. Analysis of the interface,
without an SUT installed, is performed to identify timing requirements within a
simulation platform. Identifying the limitations of the interface is not necessary, but
assists in extending the usefulness of the interface beyond a single application. To
proceed with application specific HIL simulation the interface must perform suitably
during these verification procedures.

3.2 Hardware-in-the-loop Interface Development

The development platform is specifically used for interface development. It is designed
with standardized units and is modular. The platform is flexible and enables the
installation of a range of unique software simulators, I/O configurations, execution
intervals and industry standard electronic control systems as SUTs. To establish
modularity, the development platform is composed of three major components:

• mock simulator - Ethernet and UDP/IP capable computer platform,

• Ethernet signal transceiver module - A module capable of generating a sinusoidal
waveform. The waveform simulates process variables normally generated by the
model within a software simulator. The transceiver enables transmission of the
generated signals through UDP/IP sockets and Ethernet media.

• interface: physical adaptor and signal converter - computer based NI DAQ
workstation and NI Lab VIEW VI which provide hardware interface and software
conversion between Ethernet (engineering units) and hard-wired signals (analog
and digital signals).

Chapter 3: Hardware-in-the-loop Interface Development 34

There is no SUT installed within the development platform. In the following descrip­
tions an SUT is referenced. However, a simple hard-wired analog feed-back loop is
implemented. The analog loop is installed between a single output channel and an
input channel within the DAQ. No SUT is not installed so that delays associated with
the interface are isolated from delays induced by the SUT.

3.2.1 Mock simulator

The installed simulator is installed on a Hewlett Packard Tru64 dual processor Unix
server. No plant specific processes are modelled within the simulator, thus it is
referred to as a mock simulator. The simulator is simply an Ethernet signal transceiver
and data capturing device. The signal transceiver is a C program executed at a
constant configurable interval (e.g. 200 ms) on the mock simulator. The program
supports the generation of instantaneous sinusoidal waveform signals. Generated
signals are transmitted through the HIL platform to observe potential simulation
delays and reveal other limitations. An Ethernet controller is installed and operates
in 100 Mbps (mega bits per second) full duplex mode to connect to the interface
through Ethernet media.

Ethernet communication is accomplished through user datagram protocol/In-
ternet protocol (UDP/IP) communications. UDP/IP is a standard for communication
of data between electronic systems commonly used in the information technology in­
dustry. Another common protocol is the transmission control protocol/Internet pro­
tocol (TCP/IP). Due to the popularity of TCP/IP, the four basic differences between
the two protocols and reasons for UDP/IP selection are explained below. •

• reliability - UDP/IP transmissions do not have handshake, retransmit or time­
out functions. This reduces communication reliability, but enables more deter­
ministic transmission a valuable asset during simulation. Retransmitted vari­
ables introduce added delays, a problem which is reduced in UDP/IP communi­
cation. Also, simply monitoring the number of packets sent and comparing the
total against the number received in post process analysis can provide insight
into the reliability of the UDP/IP communication negating the need for the
overhead processing of TCP/IP.

• transmission order - UDP/IP does not support the queueing of transmissions for
receipt within the system. If two packets are transmitted in order, the order at

Chapter 3: Hardware-in-the-loop Interface Development 35

which they axe received is not predictable. Within the interface, an identifier is
implemented on the application layer of the virtual instrument and transceiver
modules to identify process variables during transmission. Therefore, this func­
tion of TCP/IP is negated.

• compactness - UDP/IP transmissions are establish using efficient techniques in a
compact transport layer with minimal overhead. Socket connections require lit­
tle to no transmission for configuration. Also, congestion and traffic monitoring
are eliminated.

• whole packet architecture - Finally, UDP/IP messages are guaranteed to be
transmitted in whole packets. TCP/IP supports merging and splitting of pack­
ets which may interfere with the variable conversion procedures used during
communication.

3.2.2 Ethernet signal transceiver

The Ethernet signal transceiver is a C program. The program enables communica­
tion between the simulator and the interface by opening and closing UDP/IP sock­
ets, generating a sine waveform, transmitting and receiving instantaneous signal val­
ues through UDP/IP sockets. Properties of the generated sine wave are configured
through three parameters, sampling frequency, wave frequency and number of sam­
ples. The amplitude of the sine wave is configured to cover the entire 4 to 20 mA
range of industrial analog control signals. A sinusoidal signal is used as it emulates
the continuous nature of process signals in a NPP. Sample sine waves are illustrated
in Figure 3.3.

During development, the transfer of process variables between the interface and
the mock simulator is controlled entirely by the C program. Therefore, a UDP/IP
packet structure is designed to accommodate the bi-directional communication, to
and from the SUT, required during HIL simulation.

3.2.2.1 Sub-system Synchronization

A unique feature of the proposed HIL simulation platform is the full control of the
transmission of process variables. The ability to control the scheduling of transmis­
sions between the SUT and the simulator provides the benefit of not having to poll
through received variables. For example, assume n variables are being transferred.

Chapter 3: Hardware-in-the-loop Interface Development 36

Sampled Signal lew - 2 OH*, h - 16Hz. na - 16

= 2.0Hz, sampling frequency = 16Hz, number o f samples = 17; bottom - waveform
frequency = 1.0Hz, sampling frequency = 32Hz, number o f samples = 65.

Transmission to the SUT is easily scheduled by the mock simulator. During every
execution interval, all n variables are transmitted. However, the receipt of variables
is not synchronized with the simulator execution interval. If controlled by either the
interface, or the SUT, a portion, m, of the n signals could be returned in one ex­
ecution interval, and another portion, n — m, in the next execution interval. This
non-deterministic performance can affect the accuracy of the HIL simulation. Proper
simulation requires that the simulator receives current state SUT outputs for the set
of most previously transmitted SUT inputs. Therefore, a delay is executed between
SUT input and output routines. This delay is referred to as the SUT delay, tgUT-

In an ordinary HIL simulation platform, process models are executed on a
sub-system which supports direct electrical signal production. In this case, control of
variable transmission relies only on the synchronization of the simulator and the SUT.
However, it is common that no synchronization is implemented. With no synchro­
nization, the longest delay required between SUT input and output routine execution
occurs if the SUT input variables are transmitted immediately following the execu­
tion of input signal acquisition routines on the SUT. In this case, the current SUT
execution interval must finish executing and also the entire next SUT execution in­
terval must also execute to be assured proper SUT output values. Assuming the SUT
execution interval has no variance, an SUT delay of 2 x tsuT Ei must be implemented

Chapter 3: Hardware-in-the-loop Interface Development 37

where t§u xEI is the execution interval for the control logic of the SUT
Introducing and additional interfacing device within the HIL simulation plat­

form, as with the developed interface, complicates the variable transmission proce­
dure. Assuming the interface runs asynchronously with a constant period of 0.25 x
tSUTe i ’ The delay,tgUTi required for the SUT to execute properly would have to be
extended. The worst case scenario with the three systems executing asynchronously
occurs when the SUT input UDP/IP packet arrives at the interface immediately fol­
lowing UDP/IP receipt routines. Again, the eventual generation of an electrical signal
at the SUT input occurs immediately following the execution of input signal acquisi­
tion on the SUT. The SUT executes and SUT output values are produced. However,
due to variances in timing, the return of the variables experience similar delays as
the SUT input transmission. The result is 2 x 0.25 x tsjjTEj for electrical SUT input
generation, 2 x tsuTEI f°r SUT control logic execution and 2 x 0.25 x tsuTEI f°r
conversion from electrical to software variable and acquisition through UDP/IP by
the software simulator. Therefore, a total delay of 4 x t$uTEI is necessary. However,
by using a return request routine, interface synchronization is achieved and the vari­
ables can be returned in a manner similar to the ordinary HIL simulation platform
discussed previously.

The requirements for performing two system asynchronous HIL simulations are
simple. First, the frequency of consecutive control system outputs for the specified
process are identified. Then the capability of the SUT to produce outputs for current
state SUT inputs at twice the identified output frequency is determined. By using
a return request packet, SUT output transmissions can be scheduled through the
interface. Therefore, specified SUT outputs and the deterministic operation of the
HIL simulations are guaranteed. Further, variables received by the simulator can be
identified and validated against the requested variable identified in the return request
packet.

3.2.2.2 U D P /IP Packet Structure

To enable flexible and scalable transmission of controlled variables within the HIL
simulation platform a unique UDP/IP HIL packet structure is adopted. The structure
includes four components:

Chapter 3: Hardware-in-the-loop Interface Development 38

• Controlled variable identifying integer (2 digits)- responsible for identifying the
process variable as a specific input, output or auxiliary variable in relation to
the I/O of the SUT and the configuration of the interface, (range = 00 - 99)

• Controlled variable divisor (4 digits)- required for analog signal scaling con­
versions between engineering units (eu) and real-world analog electrical values
(4-20 mA). The controlled variable divisor is derived as follows;

, _ CVmax ~ CVmin _ Grange / „ x

00 ~ 20mA - 4mA ~ 16mA ’ 1 '

where cvmax and cvmin are respectively the maximum and minimum expected
value of the controlled variable and cod is the controlled variable divisor. For
digital signals the controlled variable divisor is equal to 1.000.

• Controlled variable intercept (4 digits)- required for translating signal values
between engineering units and real-world analog electrical values. Similar to
the divisor, the intercept is derived as follows;

evi — evenin'! (3.2)

where cvmin is the minimum expected value of an analog controlled variable
and evi is the controlled variable intercept. For digital signals, the controlled
variable intercept is used to define the logical conversion between simulator and
SUT binary, TRUE and FALSE, definitions.

• Controlled variable value (8 digits)- the instantaneous sinusoidal waveform value.
The decimal point occupies one of the eight character positions. This method
provides a maximum resolution of one ten-millionth of a controlled variable
engineering unit. Resolution should be reviewed for all controlled variable en­
gineering units (eu) to determine if it is adequate for specific applications. For
example, with a 12-bit SUT, cvmax — ben and cvmin = 2eu, eu could represent
kg/s, m, °C, etc., and the following would hold:

evd

evi

eVmax ev-min b 2
20mA — 4 m A 16mA

cVmin ~ 2 «

0.25eu/mA, (3.3)

(3.4)

The generic structure for all UDP/IP packets is illustrated in Table 3.1. All

Chapter 3: Hardware-in-the-loop Interface Development__________________________ 39

ID (2) divisor (4) intercept (4) value (8)
0 1 0 . 1 2 3 0 1 . 2 3 0 1 2 3 4 5 6 7

Table 3.1: Generic (SUT input) UDP/IP packet structure.

ID (2) divisor (4) intercept (4)
0 1 0 . 1 2 3 0 1 . 2 3

Table 3.2: Return request UDP/IP packet structure.

parameters within the packet are stored in a character array buffer and then
transmitted through UDP/IP using the se n d to () C function. An improved
approach to transferring variables is suggested in Chapter 6.

Within the packet structure, the controlled variable identifying integer has three
purposes. The first is to identify a controlled variable as either an SUT input
or an output. The second is to verify proper requested output signal transfer.
Finally, the identifying integer can be used to configure the interface through
UDP/IP packets. This eliminates the requirement for external hardware pro­
grammers.

SUT input UDP/IP packets are transferred using the structure illustrated in
Table 3.1. An SUT input is identified by a pre-configured block of identifying
integers (e.g. 00-49) within the entire (00-99) range. If a packet is identified
as an SUT input variable, a unique input terminal, or physical channel, on the
SUT is accessed and the analog or digital electrical signal is generated after
being converted using the accompanying divisor and the intercept.

When an SUT output is to be returned a return request packet is issued. The
return request packet structure is illustrated in Table 3.2. This request packet
enables the transmission of I/O throughout the interface controlled by the sim­
ulator. The return request packet initiates the acquisition of an SUT output
from an analog or digital output terminal of the SUT. Similar to input vari­
ables, the output terminal is specified by the identifying integer. The divisor
and intercept are included within the packet as the interface are used to convert
the analog and digital signal values back to engineering units and compatible
logic values. The output is then packaged for transmission, and returned to the
simulator.

Finally, the returned UDP/IP packet structure is illustrated in Table 3.3. There

Chapter 3: Hardware-in-the-loop Interface Development 40

ID (2) value (8)
0 1 0 1 2 3 4 5 6 7

Table 3.3: Returned (SUT output) UDP/IP packet structure.

is no divisor or intercept included in the returned packet as signal conversion has
already taken place. However, the identifying integer is included in the return
packet to verify that the returned process variable matches the requested return
process variable.

With the UDP/IP packet structure defined, the simplified process for transmit­
ting and receiving signals using the Ethernet signal transceiver is as follows:

1.

2.

3.

4.

5.

6.

7.

An instantaneous sinusoidal value is updated within the mock simulator.

The sinusoidal value is formatted to interface UDP/IP specifications.

The UDP/IP packet containing the id, value, divisor and intercept is trans­
mitted to the interface from the mock simulator.

Various delays are implemented to satisfy SUT timing requirements.

A value return request packet containing id, divisor and intercept is trans­
mitted to the interface.

Additional delays are implemented to satisfy interface timing requirements.

An id and value are received at the mock simulator.

3.2.2.3 Limitations

The 12-bit resolution of the SUT analog to digital converter imparts a limitation
to the resolution of the engineering units and controlled variables rescv- The
resolution is calculated in the following;

16mA 16mA
resanalog = ^^bit ~ 212 0.00390625mA, (3.5)

where n^t is the number of bits available for analog to digital conversion. Sub­
sequently, the observed controlled variable resolution is calculated as follows;

0 236U
reset, = 0.00390625m.4 x — — = 0.00146484eu. (3.6)

Chapter 3: Hardware-in-the-loop Interface Development 41

The controlled variable resolution constrained by the 12-bit analog to digital
conversion process within the SUT is evaluated against the constraints of the
UDP/IP packet structure:

0.00146484eu » O.OOOOOleu. (3.7)

To summarize, the following relationship assures adequate resolution within the
UDP/IP packet structure.

» r e s U D P / I P > (3 -8)

where resjjd p / ip is the resolution imposed by the UDP/IP packet structure.

The UDP/IP packet structure enables an extensive controlled variable range
(cvmax ~ Maximum and minimum ranges axe presented in Table 3.4. The
limits are calculated for 4-20 mA signals at a resolution of 12-bits. Each of the rows in
Table 3.4 represents a decimal point position within the eight digit controller variable
value. The minimum limit for controlled variable range is found from (3.8), and is
presented in the following;

min(cvrange) = resuDP/IP X 2n&* (3.9)

Maintaining a margin between the implemented minimum and this calculated mini­
mum is recommended. In Table 3.4, all maximum ranges exceed the minimum ranges
of the controlled variable with a lower resolution. For example, with a resolution
of 00.00001 the maximum range is 99.99999. However, with the resolution 000.0001
the minimum range is 0.4096. Therefore, a simulation that includes a range from
0.0004096 to 100,000,000 is possible, with at least seven significant digits.

The intercept of the process variable is restricted to a constant maximum of
lOOeu and a minimum of -lOeu. Further, the divisor and the intercept have reso­
lutions of one one-thousandth and one one-hundredth respectively. However, these
limitations can be easily modified for alternate applications. Future work includes
expanding the range of the divisor, intercept and controlled variable value using byte-
wise UDP/IP transmission packets.

The interface is expected to respond on demand to UDP/IP packet transmis­
sions. For the interface to perform similar to standard HIL simulations with built in

Chapter 3: Hardware-in-the-loop Interface Development 42

Decimal Position Minimum Range Maximum Range
X X X X X X X X 4096 100,000,000
X X X X X X X . 4096 10,000,000
X X X X X X . X 409.6 1,000,000
X X X X X . X X 40.96 100,000
X X X X . X X X 4.096 10,000
X X X . X X X X 0.4096 1,000
X X . X X X X X 0.04096 100
X . X X X X X X 0.004096 10
. X X X X X X X 0.0004096 1

Table 3.4: Controlled variable ranges by decimal position for 16 mA analog signals
at a 12bit resolution.

I/O capabilities, the amount of time for the interface to respond to a return request
packet must be minimized. This time will be evaluated during the included analysis
performed in Chapter 4.

During interface analysis, data collecting and timing routines are added to the
signal transceiver module within the mock simulator. A timer is initiated prior to
transmitting process variables. The elapsed time is then calculated and captured
following receipt of the instantaneous sinusoidal signal. The entire time for all signals
to be transmitted is captured. Additionally, the data collection routine includes the
capability to capture events both prior to, during and following signal transmission.
Therefore, SUT inputs, outputs and other variables within a single execution interval
can be captured. The data is stored in a comma separated value (CSV) database on
the hard drive of the simulator.

3.2.3 Hardware-in-the-loop interface device

To convert electrical signals to and from software variables NI PCI-6704 and PCI-
6071 E DAQ cards are installed on a computer workstation and a NI LabVIEW VI is
created. The PCI-6704 DAQ card supports 16 voltage outputs, 16 current outputs and
eight (5V TTL/CM OS) digital I/O lines, whereas the PCI-6071 E DAQ card supports
64 analog voltage/current input, two analog outputs and eight digital (5V TTL/C­
MOS) I/O lines. To communicate through UDP/IP with the mock simulator, an
Ethernet controller is used. Similar to the mock simulator, this Ethernet connection
supports 100 Mbps full duplex operation. Further, to minimize network delays, com-

Chapter 3: Hardware-in-the-loop Interface Development 43

Nl Workstation
LabVIEW VI

UOPIIP Rx packet
extraction H variable output signal

conversion
(•u-mA)identification

input I

control ted
variable

output array

UDP/IP Tx
packet

compilation
signal

conversion
<eu— mA)

controlled
variable

input array

DAQ AO, DO

4 ,
DAQ Al, Dl

Figure 3.4: LabVIEW virtual instrument process flow.

munication between the mock simulator and the NI workstation is achieved through
a wired crossover point to point topology. Point to point topology eliminates the
delays associated with interfering network traffic.

The process of transferring and converting signals within the interface VI is
illustrated in Figure 3.4. This process is consistent over all HIL simulations includ­
ing development routines. However, slight modifications for a number of I/O must
be made. Within the VI, UDP/IP packets are extracted to a string using standard
LabVIEW, G programming language communication blocks. The string is then seg­
mented into process variable identifying integer, divisor, intercept and signal value.
The signal values are then converted using the accompanying divisor and intercept
(Figure 3.4: signal conversion) from engineering units to analog signal values (4-20
mA). The conversion is demonstrated in the following equation;

cve u ~ c v i , .
cvmA = --------- :------- 1- 4mA (3.10)

cva

Again, digital signals axe converted using the unitary divisor 1.000. Further,
for digital signals the intercept identifies the conversion between TRUE and FALSE
logic. For example, the simulator may require a TRUE value of 0 and a FALSE
value of -1. However, the SUT recognizes TRUE as +1 and FALSE as 0. Therefore,
the digital value is converted to the correct value of TRUE or FALSE within the
VI. Following conversion, the values are inserted into the correct index within the
controlled variable array. Each index within the array specifies the unique I/O hard­

wired physical channel upon which the controlled variable will be generated. The
array is output to the PCI-6704 DAQ card. Analog and digital signals are generated
and acquired by the SUT on appropriate physical input channels.

The reverse process is performed for SUT outputs when signals are returned to
the mock simulator. However, the acquisition of the controlled variable from the SUT

Chapter 3: Hardware-in-the-loop Interface Development 44

UDP/IP Signal
Generator

data (sensors)
collection UDP/IP Tx

sine waveform generation

data
collection

Nl Workstation
VI

UDP/IP Rx

UDP/IP Rx
(actuators)

- UDP/IP Tx

process variables (Ethernet)
> - process variables (analog signal)

signal conditioning

P DAQAO.DO

DAQAI.DI 4

Figure 3.5: HIL simulation evaluation platform.

must be requested as per the UDP/IP return request packet procedure. Following
a delay to allow SUT execution, a controlled variable return request is issued by
the mock simulator and the appropriate SUT output signal is acquired by one of
the DAQ cards. The controlled variable is then converted to engineering units or
simulator compatible logic values. This conversion is presented in (3.11). Following
conversion the value and variable identification are transmitted through UDP/IP to
the simulator within the returned variable UDP/IP packet structure.

cUeu = (c v m A ~ ~ 4m A) X c u d + c u i (3.11)

3.2.4 Hardware-in-the-loop analog loop simulation platform

The path for communication between each of the components within the interface de­
velopment platform is illustrated in Figure 3.5. The arrows represent signal transmis­
sion from the software signal transceiver through the interface, including the analog
feed-back circuit and the return path to the mock simulator. This analog loop-back
is used to study the effects that the developed interface introduces during HIL simu­
lations. In Chapter 4, two studies are performed using the analog loop-back circuit.
In both studies, the availability, timing, signal bias and other interface performance
metrics are evaluated.

45

Chapter 4
Hardware-in-the-loop Interface Analysis

The developed interface device must be evaluated prior to being installed in an HIL
simulation platform. Therefore, two studies are performed. The first study, or timing
study, evaluates the effects of pre-determined execution intervals, SUT delays and
return request timeouts, or HIL timeouts, on the performance of the interface. In
evaluating these three characteristics, a guarantee of the accuracy of the HIL simula­
tions, and proper signal transfer, is made.

The second study, or scalability study, reveals the effects of various I/O config­
urations on the interface. Also, the study evaluates the performance of the interface
over a range of SUT delays and introduces an additional delay to allow for multiple
variable transmissions. A set of equal numbers of I/O as well as maximum achievable
input and output configurations are investigated. In performing this study a range
of acceptable I/O configurations is determined.

4.1 Hardware-in-the-loop Interface Timing
Analysis

4.1.1 Method

The previously outlined Ethernet signal transceiver module is modified to automate
the analysis of the developed interface. During timing analysis interface response is
evaluated against a pre-defined set of values for three parameters. The three param­
eters, described below, include execution interval, the delay required to execute SUT
control logic appropriately and the delay required for the interface to respond to a
return request. One C module is developed for each simulator execution interval.

1. execution interval, t ^ i (200, 100, 50 m s) - the period of time between subse­
quent C program executions on the software simulator. The execution interval

Chapter 4- Hardware-in-the-loop Interface Analysis 46

is equivalent to the period of time between consecutive SUT input or transmis­
sions or SUT output receipt requests.

2. SU T delay, tg u T (0, 10, 20 m s) - the amount of time required for the SUT to
generate a set of outputs for the most previously transmitted inputs. Further,
the tg u T encompasses all transmission and signal settling delays. For example,
when an SUT is installed within the analog loop-back circuit, tg i /x enables
proper execution of the SUT control logic prior to issuing an SUT output return
request.

3. HIL timeout, t j j j i (1, 2, 3, 4, 5, 10 m s) - the maximum amount of time to wait
for a UDP/IP packet to return from the interface after a return request is issued.
This parameter corresponds to the timeout parameter of the p o l l () function
common to multiplexing input events during UDP/IP communications in Unix.
When a packet is received before the timeout, the program exits the polling
routine and continues processing the received data. If the p o l l () function
expires no data is received and the interface is considered unavailable.

A single I/O pair is configured for the timing study. Execution interval, t^ j ,

HIL timeout, ijy/p, and SUT delay, are evaluated against each other and 54
sets of data are produced. Each of the sets of data includes 3000 transmissions or 10, 5
and 2.5 minutes of simulation for 200, 100 and 50 ms execution intervals respectively.
Parameters t ^ j , and t g j j j ’ are measured in thousandths of a second and have a
resolution of approximately 1 ms. Further, the evaluation is performed over multiple
iterations to confirm data accuracy and the ability to replicate the simulation.

It is expected that timing criteria for packet transmission and basic limitations
of the interface can be observed and discussed in evaluating the interface over a range
of execution intervals tp ;j , t j j iL and ¿SUT values. The interface requires time to
transfer variables to and from the SUT. Without acknowledging and compensating
for the delays introduced by the interface, simulation results are misleading and ulti­

mately invalid.
The source code of the timing analysis C module is provided in Appendix C.

For immediate and simplified reference, the general flow of the modified Ethernet
signal transceiver module is presented in pseudo code below.

begin

Chapter 4- Hardware-in-the-loop Interface Analysis 47

for : each t ^ j - C module is loaded (200, 100, 50 ms),

- Initialize global variables - socket connection, data collection, etc...,

- Open U D P /IP sockets - outgoing/incoming,

- Generate sine waveform -

ns = 1000, f s - 1kHz, f sw = 1Hz, (4.1)

where n s is the number of samples, f s is the sampling frequency and f sw is the
frequency of the sine waveform,

fo r : each t j j j i - loop (1, 2 ,3, 4, 5, 10 ms),

for : each tg i /T ~ 1°°P for 3000 samples (0, 10, 20 ms),

- Initialize local variables - packet buffer, controlled variable, etc...,

- Sine waveform - obtain current sample and increment pointer,

- Start tim er - capture current timer value,

- Controlled variable Tx - format and transmit the controlled variable, id, divisor
and intercept through outgoing UDP/IP socket,

- Controlled variable store - capture the transmitted controlled variable,

- Sleep - current tg u p ,

- Flush U D P /IP socket - clear the incoming UDP/IP socket,

- Request controlled variable return - transmit id, divisor and intercept through
outgoing UDP/IP socket,

- W ait fo r interface - poll incoming UDP/IP socket (current t j j j ¿),

if: U D P /IP packet detected

- Controlled variable R x - receive data on incoming UDP/IP socket and
extract controlled variable and id,

if: received ID equal to requested ID

- Controlled variable store - capture the received controlled variable,
else: Invalid ID - capture invalid ID flag,

else if: poll timeout - capture timeout flag,

Chapter 4-' Hardware-in-the-loop Interface Analysis 48

- Stop tim er - capture current timer value, store timer difference and increment
data-set pointer,

end fo r

end fo r

- Output collected data - write to CSV file with all captured data.

- W ait - perform other simulation tasks prior to next tjpj.

end fo r

end

4.1.2 Assumptions

During the timing analysis no SUT is installed. This is intentional. Yes, SUT delays
are imposed to observe the effect an SUT has on the interface. However, the evaluation
should be independent of the delays that may be present with an SUT installed. When
an SUT and software simulator sub-platform are selected, the verification procedure
can be repeated to identify any discrepancies the SUT installation may cause.

Throughout all studies it is assumed that the workstation on which NI DAQ
system and NI Lab VIEW VI are installed does not experience computational distur­
bances. Some measures have been taken to assure no external disturbances, including
Microsoft Windows XP tasks, occur. These measures are necessary as tasks on the
workstation can significantly affect the performance of the interface. Best practise
includes disabling all scheduled background activities on the Microsoft Windows XP
operating system (OS). Further, the Lab VIEW VI has been configured to run at the
highest priority. However, during observation, computational disturbances may be
referenced as the cause of specific performance deviations. A thorough analysis will
improve understanding of the influence that the Microsoft Windows XP OS has on
HIL simulation when used as a platform for an HIL interfacing device.

Finally, during analysis the complete reproduction of the transmitted sinusoidal
signal on a physical channel is not necessary. Therefore, the frequency of transmission
and the frequency of the transmitted signal do not need to satisfy sampling theory
fundamentals. Further, timing of the digital to analog and analog to digital converters
within the NI DAQ system are assumed negligible. The instantaneously generated

Chapter 4: Hardware-in-the-loop Interface Analysis 49

sinusoid values are only required to provide changing values in each execution interval
or for each I/O throughout the entire timing and scaling analyses.

4.1.3 Analysis of results

Three properties are monitored during the timing analysis. These include; elapsed
time, transmitted controlled variable value and received controlled variable value.
Elapsed time is calculated as the difference in time between the transmission of the
SUT input from the software simulator to the receipt of the SUT output within
the software simulator. The resolution of the elapsed time measurement is 1 ms.
Transmitted and received controlled variables do not require calculation. The SUT
input variable value is stored within the transmitted controlled variable field of a
database as it is received on the UDP/IP socket. The same is true for the SUT
output variable which is stored in the received controlled variable field of the same
database. The resolution of captured variables is limited by the UDP/IP protocol
discussed in Section 3.2.2.

Two error flags are identified. The two flags indicate communication errors
within the interface. The first error flag, or no data flag, is produced if during re­
ceipt of a controlled variable from the SUT there is no data received on the incoming
UDP/IP socket. This error corresponds with a p o l l () timeout expiration. The sec­

ond error flag, or invalid id flag, indicates discrepancy between the sent and received
identifying integers. When this error occurs, the returned variable from the interface
does not match the variable requested by the return request UDP/IP packet. In the
event of either error flag, the received data is invalid. A measure of the availability
of the interface during analysis provides assurance as to whether the simulation is
compromised.

All properties and flags are stored within a CSV database. A database record
is created for every SUT input variable that is transmitted. Therefore, one record for
each of 3000 execution intervals within all SUT delay/HIL timeout combinations is
created. All calculations are performed using both Matlab and Microsoft Excel tools.
All plots are generated using MatLAB.

The following results provide analysis of the data collected during interface
development. The figures generated present a summary of the data collected. Every
effort is made to present relevant illustrations of the data which assist in determining

Chapter 4'- Hardware-in-the-loop Interface Analysis 50

SUT delay = 0ms SUT delay = 10ms SUT delay - 20ms

El = 200m s---------El = 100ms ----------El = 50ms

Figure 4.1: Average signal transmission time vs. HIL timeout per SUT delay.

the limitations of the developed interface. Following each figure, table or result is a
discussion of the observations made from the material presented. Discussion includes;
explanation of results; deduction, general application of the results; and hypothesis,
a possible conclusion arising from the results.

Figure 4.1 includes three graphs. The graphs illustrate the average elapsed time
for single controlled variable transmission. Each of the graphs corresponds to an SUT
delay, from left to right, 0, 10 and 20 ms respectively. During every execution interval
the time for the sinusoid signal to be transmitted through the entire interface, from
SUT input to SUT output, is measured. The elapsed time is accumulated over all
3000 execution intervals. From this total, the average elapsed time is calculated.
From Figure 4.1 the following is observed:

• A 50 ms execution interval results in the shortest average elapsed time for all
configurations.

• A 200 ms execution interval results in the longest average elapsed time.

• A100 ms execution interval results in similar average elapse times as the 50 ms
execution interval for a 10 and 20 ms SUT delay. However, for a 0 ms SUT
delay, the average elapsed times are similar to the 200 ms execution interval.

• 5 ms and longer HIL timeouts result in consistent average elapsed times. How­
ever, HIL timeouts shorter than 5 ms results in varying average elapsed times. •

• There is a strong relationship between SUT delay and the average elapsed time.
However, for all configurations a 4-5 ms delay is observed beyond the value of
SUT delay.

Chapter 4' Hardware-in-the-loop Interface Analysis 51

It is expected that average elapsed time will increase when a shorter execution
interval is used. This expectation is due to an anticipated reduction in processing
time available for transmission in the software simulator and in increased processing
required by the interface. However, the opposite is observed. The 50 ms execution
interval results in the shortest average elapsed time. Further, the 200 ms execu­
tion interval results in the longest average elapsed time. From literature, U D P/IP
communication transmission performance is known to vary when the time between
consecutive transmissions is modified [71]. Therefore, a shorter average elapsed time
is the result of shorter execution intervals which keep the communication sockets
poised for packet transmission, avoiding Ethernet controller power saving sleep and
network maintenance routines. Also, an aspect of the 50 and 100 ms execution inter­
val causes the distinctly shorter average elapsed time over 3000 execution intervals.
The main difference between the evaluated values of execution interval is the time
between execution o f the controlled variables. Therefore, shorter time between sub­
sequent transmissions may ultimately result in shorter transmission times.

Average elapsed time varies with SUT delay for a 100 ms execution interval.
SUT delay is not expected to have any influence on the average elapsed time beyond
the SUT delay itself. However, observations indicate that the 100 ms execution
interval requires a distinctly longer average elapsed time with a 0 ms SUT delay than
with larger SUT delays. W ith a longer SUT delay, the time between transmission
of an SUT input and the request for an SUT output is longer. Therefore, a longer
execution time is required by the C module. On the contrary, for a 0 ms SUT delay
the total execution time required by the C module is minimal. When using a 100 ms
execution interval to execute the required minimal execution time of the C module
with 0 ms SUT delay, the execution o f the C module may not be performed at as high a
priority as with 20 ms SUT delay. This is assuming that the software simulator assigns
priorities during module execution. A higher priority would be required when a 20
ms SUT delay is implemented with 100 ms execution interval as less time is available
for additional processing within the execution interval. Therefore, slight variances in
C module priority scheduling may result in varying average elapsed times.

A strong proportional relationship between the SUT delay and the average
elapsed time is expected. The largest component of the average elapsed time is the
SUT delay. Compared with this delay, U D P/IP transmission delays are negligible.
Therefore, as the SUT delay is increased, the average elapsed time grows longer.

Chapter 4: Hardware-in-the-loop Interface Analysis 52

SUT delay = Oms SUTdetay = 10m$ SUT detoy = 20ms

HIL timeout (ms) HIL timeout (ms) HIL timeout (ms)

| — El = 200ms El = 100ms 1 El - 50ms [

Figure 4.2: Average time with 95th percentile vs. HIL timeout per SUT delay.

Further, an additional 4-5 ms delay is observed. This delay is largely due to the HIL
timeout. Though the HIL timeout is configured for 10 ms, when a U D P/IP packet
is received the p o l l () function does not expire entirely. It is apparent from Figure
4.1 that the p o l l () function is satisfied within 4 to 5 ms on average. Therefore, the
average attainable elapsed time for the developed interface occurs 4 to 5 ms greater
than the SUT delay. If a shorter average elapsed time is required for a specific process,
the interface must be redesigned.

For short HIL timeouts measured average times vary slightly. A short HIL time­
out reduces the amount of time that the software simulator will wait for a requested
variable to be returned. If the wait time, or HIL timeout, is reduced beyond a cer­
tain level, no SUT output variables will be received at the software simulator. This
happens because the interface responds at an average rate to return request packets.
For a short HIL timeout, less packets are successfully received. This can affect the
average calculation of observed interface properties including average elapsed time.

The review of the elapsed time required by the developed interface is extended
in Figure 4.2 which includes three graphs. The graphs illustrate the 95th percentile
time for single controlled variable transmission. From Figure 4.2 the following is
observed:

• The 95th percentile measurements are consistent over all valid average elapsed
times, including those below 5 ms. •

• Average elapsed times for each SUT delay beyond the SUT delay are within 1
ms o f each other.

Chapter f : Hardware-in-the-loop Interface Analysis 53

• For all execution intervals the lower 95th percentile of the average elapsed time
remains constant. However, the 95th percentile increases.

• SUT delay has no effect on the average elapsed time range.

It is expected that inconsistencies in average elapsed times observed for shorter
than 5 ms HIL timeouts are due to a reduced number of successful transfers through
the interface. However, the inconsistencies could be caused by a varying range of
average elapsed times due to SUT delay inaccuracies or other unknown factors. Eval­
uation the 95th percentile average elapse time helps identify the true cause. The 95th
percentile are consistent over all valid HIL timeouts. Therefore, inconsistencies are
not the result of an increased range of average elapsed times.

The 95th percentile average elapsed times are consistent over all HIL timeouts
indicating that the variances observed between execution interval configurations and
for HIL timeouts below 5 ms are not caused by extreme values. Actually, the variance
between execution intervals is due to a larger range of measurements as the lower 95th
percentiles are equal for all execution intervals. The relationship between the 95th
percentile average elapsed time and the execution interval indicates that for a longer
execution interval the range of average elapsed times is increased. This relationship is
further evidence that processing priority is given to C modules. Those modules which
include code requiring nearly the entire execution time provided in the execution
interval are executed at higher priority. In previous discussion it was determined that
the execution interval restricts the execution time of the C module. For 100 ms and
200 ms execution intervals a lower priority must result in interruption or a slight delay
or offset during the SUT delay or UDP/IP packet polling process.

The time between 95th percentile for each SUT delay is equal. Therefore, the
deterministic ability of the interface to respond within a given time does not rely on
the SUT delay. Further, the average elapsed time for each of the three SUT delays
are within 1 ms of each other. Therefore, timing requirements for the transmission
of variables can be made from these observations. The minimum average time occurs
when the SUT delay is 0 ms. In this configuration the average value is greater than 4
ms. Also, it is clear that the 95th percentile is covered within 6 ms of the SUT delay
for each execution interval and HIL timeout. Therefore, an HIL timeout of at least
5 ms is required for the majority of transmissions to be completed successfully and 6
ms to cover the 95th percentile.

Chapter 4 : Hardware-in-the-loop Interface Analysis 54

Figure 4.3: Successful transfers vs. HIL timeout per SUT delay.

Figure 4.3 presents the number of successful transmissions through the interface
over 3000 execution intervals for each SUT delay. The number of successful transfers
is the total number of transfers which do not produce either error flag. From Figure
4.3 the following is observed:

• Below a 3 ms HIL timeout the number of successful transfers drops rapidly.

• For all SUT delays a greater than 5 ms HIL timeout results in very high per­

centage of successful transfers.

• A 0 ms SUT delay results in a reduced number of successful transfers for low
HIL timeout configurations.

The inconsistencies in the average elapsed times observed in Figure 4.1 are
supported by the observed rapid drop in successful transfers. It is apparent that
a reduced number of successful transfers results in a significant loss of accuracy in
average elapsed time calculations. The observed drop in successful transfers is expect
as a shorter HIL timeout will result in a reduction of incoming packet detection. In
fact, for a 0 ms SUT delay there are no successful transfers below a 2 ms HIL timeout.
Additionally, for 10 and 20 ms SUT delays there are no successful transfers at the 1
ms HIL timeout.

The very high successful transfer rates observed above an HIL timeout of 5
ms provide assurance that the interface is capable of performing adequately for single
variable simulations. This observation is expected as with only a single variable trans­
mitted, the interface will wait for a return request packet without being disrupted.
Table 4.1 reveals the numerical percentage of successful transfers illustrated in Figure

Chapter 4- Hardware-in-the-loop Interface Analysis 55

Successful Transfers (%)
El

SUT Delay HIL Timeout 50 ms 100 ms 200 ms
1 ms 0 0 0

0 ms 5 ms 98.8 99.4 97.7
10 ms 99.7 99.9 100
1 ms 0 0 0

10 ms 5 ms 99.8 99.9 99.9
10 ms 100 99.9 100
1 ms 0 0 0

20 ms 5 ms 99.9 99.9 99.8
10 ms 100 100 99.9

Table 4.1: Percentage of successful transfers.

4.3. These percentages provide a measure of certainty for HIL simulation variable
transmission.

For a 0 ms SUT delay, a deduction in successful transfers is observed. This
reduction is of little concern as a 0 ms SUT delay will never be implemented when
performing true HIL simulations. Also, given adequate HIL timeout, an SUT output
is received at the UDP/IP socket and the success rate increases. With a 10 ms
HIL timeout and 0 ms SUT delay, the percentage of successful transfers is greater
than 99%. Therefore, the return receipt packet is received by the NI workstation
immediately following receipt of the SUT input. However, the transmission of the
SUT output is delayed. In addition, the success rates observed between the 10 and
20 ms SUT graphs are relatively constant. Therefore, increasing the SUT delay
beyond 20 ms is not expected to provide higher success rates during single variable
transmissions.

To achieve a near perfect successful transfer rate the HIL timeout can be set to
10 ms. However, if the p o l l () function is not satisfied the HIL timeout expires and
may cause the simulation to become unstable. Therefore, it is important to determine
best practise for HIL timeout selection. This is performed by monitoring the time
required for the p o l l () function to be satisfied and comparing the actual time to
the implemented HIL timeout. Further, other parameters of the interface should be
examined. For example, if a small number of I/O are used, a larger HIL timeout may
be satisfactory.

In Figure 4.4 the actual time the p o l l () function executes, or poll time, is

Chapter 4- Hardware-in-the-loop Interface Analysis 56

_ 100?
80

£
1 60
3 40»
1 20

SU T delay « 0ms, El = 200ms S U T delay = 10ms, El * 200ms SU T delay = 20ms, El = 200ms

1
t

1
t

!

' /

----- ■------ ----------------------1 - - . 1 ,

4 6
poll lime (ms)

10

_ 100
E
g 80

•aI 60
3 40 8
§ 20
3W 0

SUT delay * * 0ms, El * 100ms SUT delay * 10ms, El * 100ms SUT delay * 20ms, El * 100ms
f
l
I

g
g 80
«

/ "
i f

0«
^ 80
o

/
t

f* r ------------------------------ : c 60 H I 60« /
f /

2 '/
/

2
3 40

f
/

a
tt
i

1 40
§ 20 / /

9 / § 20
3

!
i /

i /(0
0 Is . 0 __ T - __________ ,-------------------------

4 6
poll time (ms)

10 4 6
poll time (ms)

10 4 6
poll time (ms)

10

SU T delay - 0ms, El = 50ms S U T delay = 10ms, El = 50ms SUT delay = 20ms, El - 50ms

4 6 8
poll time (ms)

HIL tim eout» 1ms HIL tim eout» 2ms HIL tim eo u t* 3 m s ---------- HIL tim eo u t* 4ms HIL timeout = 5 m s ---------- HIL timeout * 10ms

Figure 4.4: Cumulative successful transfers vs. poll time per SUT delay.

calculated by subtracting the SUT delay from the elapsed times. It is expected that
a large portion of the remaining time is required by the p o l l () function. Figure
4.4 includes nine graphs which present the cumulative p o l l () successful transfers
for each execution interval, SUT delay configuration. From Figure 4.4 the following
is observed:

• For a 1 ms HIL timeout no successful transfers are recorded over all configura­
tions. Consequently, there are no recorded successful transfers at the 1 or 2 ms
poll time.

• A 0 ms SUT delay results in no successful transfers during a 2 ms HIL timeout.
However, the 2 ms HIL timeout results in insufficient successful transfers over
all configurations.

• A 0 ms SUT delay results in a reduced number of successful transfers for 3 and
4 ms HIL timeouts.

Chapter 4 • ' Hardware-in-the-loop Interface Analysis 57

• All HIL timeouts continue to accumulate beyond their respective p o l l () func­
tion expiration. There are no successful transfers at 2 or 3 ms for the 2 or 3 ms
HIL timeouts.

• An HIL timeout of greater than 5 ms performs adequately over all configura­
tions.

• A shorter 50 ms execution interval results in a more consistent number of total
successful transfers after 10 ms poll time.

It is clear that a 1 ms HIL timeout does not provide adequate time for the
p o l l () function to detect a returning UDP/IP packet from the interface. Also, the

2 ms HIL timeout is very near to the critical point of signal receipt or detection.
Similar to previous discussion, insufficient transfers are completed with a 2 ms HIL
timeout for all SUT delays and 3 and 4 ms HIL timeouts for a 0 ms SUT delay. The 2,
3 and 4 ms HIL timeout plots plateau during some configurations due to the reduced
number of successful transfers. With no SUT delay implemented, the interface does
not respond to the return request packet and an error flag is generated as the p o l l ()
function is not satisfied. This is further evidence that an HIL timeout of greater than
5 ms is necessary to achieve adequate performance. In fact, using an HIL timeout of
greater than 5 ms is observed to perform adequately over all execution intverals and
SUT delay configurations.

UDP/IP packets can not be received after the p o l l () function has expired.
The observed transfer accumulation following HIL timeout expiration is the result
of the delays following the p o l l () function detecting the UDP/IP packet. Once
detected, the packet must be obtained and parsed into identifying integer and returned
variable value. Therefore, the poll time include delays beyond that of satisfying the
p o l l () function. For example, The 1 ms HIL timeout for all SUT delays and 2
ms for the 0 ms SUT delay does not allow enough time for the p o l l () function to
detect the incoming packet. However, with a 2 ms HIL timeout and 10 ms SUT delay
transfers succeed beyond the 2 ms poll time expiration. This is evidence that the
p o l l () function detects UDP/IP packet transmission but requires extra processing
time. Other configurations exhibit similar performance. When a packet is detected
before expiration there are extra delays that extend the actual receipt of the variable
and the observed HIL transmission time by up to 4 ms.

Chapter 4- Hardware-in-the-loop Interface Analysis 58

Figure 4.5: interface availability vs. HIL timeout per execution interval.

In previous discussion it was found that a 50 ms execution interval resulted in
shorter average elapsed time and that shorter time between UDP/IP communication
that results from a 50 ms allows packets to be transmitted more efficiently. When
cumulative successful transfers are considered, the 50 ms execution interval again
demonstrates efficient operation. The total number of successful transfers when a
50 ms execution interval is implemented is consistent over a larger range of HIL
timeouts and SUT delays than other execution interval. Especially when compared
to the performance of the 200 ms execution interval.

Error flags recorded during the study are used for analyzing the availability of
the interface. This availability is calculated in the following equation and represents
the percentage of properly received process variables through the HIL simulation
platform;

ntotal ~ n error
a v H I L = ------- ---------------

ntotal

where ntotai is the total number of attempts to transmit variables through the HIL
simulation development platform, and n error is the total number of error flags which
are generated during the entire study. Further, the availability is simply the percent­
age of successful transfers illustrated in Figure 4.3. From Figure 4.5 the following is
observed:

• It is very clear that a 0 ms SUT delay results in a reduced availability for low
HIL timeout configurations. •

• A 20 ms SUT delay produces slightly greater availability for medium range HIL
timeouts than the 10 or 0 ms SUT delays.

Chapter 4- Hardware-in-the-loop Interface Analysis 59

• The unavailability observed with low HIL timeouts is almost entirely due to
expiration of the p o l l () Function (no data flag).

• There are almost no instances where the returned variable does not match the
requested variable (invalid id flag).

Similar to previous observations, Figure 4.5 reveals decreased availability when
the SUT delay is 0 ms. The distinct difference between the availability of the 0
and 10 ms SUT delays indicates that the interface requires between 0 to 10 ms to
execute signal transmission. Further, though a reduction in availability is observed,
the availability during 0 ms SUT delay is only delayed by 1-2 ms. Therefore, the actual
time required for the interface to respond at all to subsequent SUT input, SUT output
requests is at least 2 ms over all configurations. However, the implementation of a
larger HIL timeout resolves all transmission conflicts.

The availability of the interface is nearly perfect when the HIL timeout is greater
than 5 ms. With adequate time to detect an incoming UDP/IP packet, very few trans­
mission are lost due to the p o l l () function expiring. The percentages observed are
documented in table 4.1 where it is evident that for shorter HIL timeouts availabil­
ity is significantly affected by the no data flag as discussed previously. Further, for
single variable transmission it is impossible for two variables to become mixed during
transmission, therefore the number of invalid id flags reported is near 0%.

To evaluate the relationship between each SUT input and output value, the
value of variables successfully transferred through the interface are captured. The
capture procedure occurs prior to transmission and upon successful receipt of a vari­

able and is intended to identify timing constraints regarding the settling time of the
interface. Figure 4.6 includes three graphs which present the per unit average bias
of the transmitted and received signal. The per unit value is derived in the following
equation. Using this method, different sets of engineering units the measured biases
are comparable;

per unit = cveutx ~ cveuTX
cvmax ~ cvmin

(4.3)

From Figure 4.6 the following is observed:

• A per unit average bias measurement of around 2.75 x 10-3 is achieved.

• For greater than 5 ms HIL timeouts the per unit average bias is consistent.

Chapter 4■' Hardware-in-the-loop Interface Analysis 60

El = 2 0 0 m s ---------- El = 100ms ----------- El = 50ms

Figure 4.6: Average signal bias vs. HIL timeout per SUT delay.

• Even at HIL timeouts below 5 ms the average bias is acceptable. However, the
average measured bias varies within these configurations.

The bias observed in Figure 4.6 is due to inaccuracies in component measure­
ments, as well as calibration of the NI DAQ hardware. Biases can be compensated
for prior to simulation if necessary. Inconsistent bias is only a concern if the incon­
sistencies exist between the evaluated configurations. If inconsistencies are observed,
the SUT delay is not adequate for the analog or digital signal to settle. Therefore,
the signal input to the SUT from the interface, or the signal input to the interface
from the SUT may vary from the actual transmitted value. SUT or electronic control
system documentation should be reviewed for expected analog signal settling time.
This settling time should be taken into account when calculating the SUT delay tgUT

in the following;

tsU T = t sH IL + % x ^SUTe i + t8su T , (4-4)

where tSHIL and t SsuT are the settling times for the interface and the SUT respec­
tively, and tsu T E1 is the execution interval of the control logic on the SUT from
Section 3.2.2.2. In Figure 4.6 the biases are very similar for different execution inter­

val and SUT delay configurations.
In Figure 4.6 the per unit average bias for HIL timeout values greater than 5 ms

axe consistent for all SUT delays. The steady state bias is approximately —2.76 x 10~3.
The inconsistencies observed with lower HIL timeouts are not the result of insufficient
settling time. Again, the cause is the reduced number of successful transfers observed
in Figure 4.1 . The HIL timeout provides delay for interface response, and SUT
output capture, conversion and transmission. The SUT output signal is captured

Chapter 4- Hardware-in-the-loop Interface Analysis 61

when the return request packet is issued prior to the HIL timeout delay. Therefore,
the SUT delay is the only delay which is used to compensate for signal settling.

4.2 Hardware-in-the-loop Interface Scalability
Analysis

4.2.1 Method

Similar to the timing analysis, the Ethernet signal transceiver module is again modi­
fied to automate the analysis of the developed interface. However, during scalability
analysis HIL response is evaluated against a pre-defined set of values for two pa­
rameters. The two parameters, described below, include SUT delay and number of
I/O. Also, an additional parameter and the maximum number of I/O ares reviewed
at the end of the section . The reviewed parameter, also described below, is the
transmit delay, or transmission delay (Tx delay). Many C modules are used through­
out the evaluation. The C modules, or timing analysis programs are then executed
automatically using a Perl scripts on the mock simulator. 1 2 3

1. S U T delay (10, 25, 50, 100, 150 m s) - the amount of time required for the
SUT to generate a set of outputs for the most previously transmitted inputs.
Further, the SUT delay encompasses all transmission and signal settling delays.
During the scaling analysis the range of SUT delays is significantly larger than
during timing analysis. These longer delays axe used in real SUT installations
and assist in evaluating interface I/O capacity limits. SUT delay is measured
in thousandths of a second and has a resolution of approximately 1ms.

2. Number o f I /O (1, 5, 10, 25) - during timing analysis only a single I/O com­
bination was studied. Scalability analysis includes a range of I/O configura­
tions. The number of I/O is the number of SUT inputs and outputs, transferred
through the interface. During scalability analysis the number of inputs is equal
to the number of outputs. However, maximum input and output configurations
are evaluated at the end of this section.

3. Tx delay (0, 1, 5, 10 m s) - during timing analysis, with 0 ms SUT delay and 1
or 2 ms HIL timeout no data is received. When the SUT delay is increased a 2

Chapter 4-' Hardware-in-the-loop Interface Analysis 62

ms HIL timeout results in the receipt of data. It is apparent that there is pro­
cessing time required by the interface to receive controlled variables. Therefore,
when implementing multiple I/O the transmission delay is introduced between
consecutive SUT input UDP/IP packet transmissions. Similar to the SUT de­
lay, the transmission delay is also measured in thousandths of a second and has
a resolution of approximately 1 ms.

SUT delay and number of I/O are evaluated against each other and 20 sets of
data are produced. Each of the sets of data includes 2250 transmissions or 7.5 minutes
of simulation with an execution interval of 200 ms. Again, tests are performed over
multiple iterations to confirm data accuracy and the ability to replicate the simulation.
For this study the HIL timeout and execution interval are constant throughout. An
execution interval of 200 ms is implemented as it is the specified execution interval in
the application study of Chapter 5. Further, a 10 ms HIL timeout is used. In Section
4.1.3 observation of the average and 95th percentile elapsed time revealed that a 10
ms HIL timeout demonstrated guaranteed coverage for SUT output transmission.

Two additional analysis are performed and are included at the end of this
section. The first includes the implementation of the transmit delay into the timing
routine. In this analysis transmission delay and number of I/O are evaluated against
each other and an additional 20 sets of data are produced. These sets of data include
3000 transmissions, or 10 minutes of simulation with an execution interval of 200 ms.
Again, tests are performed over multiple iterations to confirm data accuracy. For this
study the HIL timeout, SUT delay and execution interval are constant throughout.
The HIL timeout and execution interval are the same as used in the scaling analysis.
The SUT delay remains constant at 25 ms. This time is slightly greater than the
expected SUT execution interval implemented in Chapter 5.

The final analysis identifies stable operation for maximum SUT input only, and
output only configurations. In this analysis either a single SUT input or a single SUT
output is implemented for the maximum SUT output and input configurations re­
spectively. The number of SUT inputs or outputs is then increased and transmission
of a sinusoidal signal is performed over a period of five minutes. If the simulator does
not abort the simulation process then the SUT input or output is considered a max­
imum. When subsequent larger SUT inputs or outputs succeed they are determined
to be the maximum. This process is performed until the simulator aborts. Once
more, tests are performed over multiple iterations to confirm data accuracy. For this

Chapter 4- Hardware-in-the-loop Interface Analysis 63

study the HIL timeout, SUT delay and execution interval are constant throughout
and hold the same values as in the previous two studies. Further, no transmission
delay is implemented.

It is expected that extended timing criteria and best practises, as well as con­
nectivity limitations for the interface can be observed by evaluating the interface over
a range of I/O configurations and SUT delays. Specific applications implemented
in HIL simulations have different requirements for I/O capacity and SUT execution
time. Without verifying the ability of the interface to support a range of I/O inter­
faces, including those used within the intended specific application, HIL simulation
results are not reliable.

The entire source code for the scaling analysis C module is available in Appendix
C. For immediate and simplified reference, the general flow of the Ethernet signal
transceiver module is presented in pseudo code below. The presented pseudo-code is
primarily used for the first scaling study identified by a :1 in the bullet. However,
items that are unique to the transmission delay study include a :2 in the bullet. No
pseudo code is included for the maximum I/O analysis.

begin

fo r :l each o f the S U T delays loop (10, 25, 50, 100, 150 ms),

fo r : each o f the I /O configurations loop (1, 5, 10, 251/0),

- Initialize global variables - socket connection, data collection, etc...,

- Open U D P /IP sockets - outgoing/incoming,

- Generate sine waveform -

ns = 1000, f s = 1kHz, f s w = 1Hz, (4.5)

where n s is the number of samples, f s is the sampling frequency and f s w is
the frequency of the sine waveform,

fo r :2 each o f the T X delays loop (0, 1, 5, 10 ms),

- Initialize local variables - number of I/O, SUT delay, T X delay, packet buffer,
controlled variable, etc...,

- Start tim er - capture current timer value,

fo r : current number o f S U T inputs

Chapter 4-‘ Hardware-in-the-loop Interface Analysis 64

- Sine waveform - obtain current sample and increment pointer,

- Controlled variable Tx - format and transmit the controlled variable, id, divisor
and intercept through outgoing UDP/IP socket,

if :l Last S U T input

- Controlled variable store - capture the transmitted controlled variable,

if:2 N ot last S U T input

- Sleep - current T X delay,

end fo r

- Sleep - current SUT delay,

- Flush U D P /IP socket - clear the incoming UDP/IP socket,

fo r : current number o f S U T outputs

- Request controlled variable return - transmit id, divisor and intercept through
outgoing UDP/IP socket,

- W ait fo r interface - poll incoming UDP/IP socket (HIL timeout = 10 ms),

if: U D P /IP packet detected

- Controlled variable R x - receive data on incoming UDP/IP socket and
extract controlled variable and id,

if: received ID equal to requested ID

if :l First S U T output

- Controlled variable store - capture the received controlled variable,

else: Invalid ID - capture invalid ID flag,

else if: poll timeout - capture timeout flag,

if: Last S U T output

- Stop tim er - capture current timer value, store timer difference and incre­

ment data-set pointer,

end fo r

- Output collected data - write to CSV file with all captured data.

Chapter 4- Hardware-in-the-loop Interface Analysis 65

- W ait - perform other simulation tasks prior to next execution interval.

end fo r

end:2

end

end:l

4.2.2 Assumptions

Assumptions include those described in the timing study, Section 4.1.2. Addition­
ally, during the scalability analysis n process variables are transmitted and received.
However, only one set of physical output and input terminals of the interface are
used. Therefore, it is assumed that the delay associated with switching terminals
on the interface is negligible. The interface is an on demand system and requests
for varying physical terminals will not affect the measured elapsed times. In using a
single terminal for transmitting a dynamic signal over n SUT inputs a comparison
between the nth SUT input and the 1st SUT output can be made. Prom this mea­
surement, analysis of the signal bias from output to input is performed for different
I/O combinations. Writing to the same physical channel is assumed not to affect the
calculation of the average bias as two consecutive signals within the same execution
interval may have similar values.

4.2.3 Analysis of results

Similar to the timing analysis, three properties are monitored during the scalability
analysis. These include the three parameters and two flags from the timing analysis.
Again, elapsed time is calculated as the difference in time between the transmission
of the SUT input from the software simulator to the receipt of the SUT output within
the software simulator. The resolution of the elapsed time measurement is 1 ms. Also,
the SUT input variable value is stored within the transmitted controlled variable field
of a database. The same is true for the SUT output variable which is stored in the
received controlled variable field of the same database. The resolution of captured
variables is limited by the UDP/IP protocol discussed in Section 3.2.2.

The same two error flags are identified. However, error flag accumulation is
added. For example, if 25 I/O are being transmitted in a single execution interval

Chapter f : Hardware-in-the-loop Interface Analysis 66

and 13 transmissions result in invalid ID flags, the invalid ID flag is incremented
13 times and stored. The same is true for HIL timeouts, or no data flags. This
enables accurate observation of the number of errors within the interface and assists
in identifying invalid transfers which can compromise simulation results.

All properties and flags are again stored within a comma separated value (CSV)
database. A database record is created for every set of SUT input variables transmit­
ted. All variables transmitted within a single execution interval are accumulated in
one record- one record for each of 2250 execution intervals within all SUT delay/HIL
timeout combinations.

The following results provide analysis of the data collected during interface
development. The figures generated present a summary of the data collected. Every
effort is made to present relevant illustrations of the data which assist in determining
the limitations of the developed interface. Following each figure, table or result is a
discussion of the observations made from the material presented. Discussion includes;
explanation of results; deduction, general application of the results; and hypothesis,
a possible conclusion arising from the results.

Figure 4.7 illustrates the average total elapsed time for each I/O configuration
including n controlled variable transmissions. In the figure the independent variable

represents the number of inputs and outputs (ninputs = ^outputs — ni / o) within
the I/O configuration. In every execution interval the total time for n instantaneous
sinusoid signal values to be transmitted through the interface is measured. The total
elapsed time is accumulated over all 2250 execution intervals. The average total
elapsed time is calculated from this total. From Figure 4.7 the following is observed:

• The average total time measured with a single I/O and 10 ms SUT delay, 14.5
ms, is comparable with the results of the same configuration during the timing
analysis, 14.54 ms.

• There is a strong relationship between the SUT delay and the average total
elapsed time.

• There is a linear relationship between the number of I/O and the average total
elapsed time beyond the time taken in the SUT delay. •

• The 150 ms SUT delay reaches the limitations of the HIL platform with 10 I/O.
Average total elapsed time is not measurable for 25 I/O.

Chapter 4 : Hardware-in-the-loop Interface Analysis 67

200

180

160

140 *

I 12°)
®

- 100i>
l -0

60

40

20

00 5 10 15 20 25
number of inputs = number of outputs

[-+ — SUTdelay« 10ros—O - • SUTdelay= 2 5 m s SUTdelay = 50ms - ■ - SUTdelay = 100ms SUTdelay = 150ms|

Figure 4.7: Average total elapsed time vs. I/O configuration.

A larger number of I/O is expected to result in longer average total elapsed
times. Also, the proportion of the average total elapsed time to the SUT delay
results in similar results to the timing analysis. Further, the average total elapsed
times are approximately 4-5 ms greater than the SUT delay component of the total
elapsed time. For a 10 ms SUT delay and 25 I/O an average total elapsed time of 4.33
ms is observed per successful I/O transmission. This is similar to the delay observed
during single I/O transmission. Therefore, the additional delay when I/O are added
is near constant per I/O for incrementing I/O configurations. The accumulation of
HIL timeout delays for every SUT output requested is the cause of the increasing
additional delay.

The linear relationship between the number of I/O and the average total elapsed
time enables extrapolation. Therefore, the response of configurations not included in
the analysis can be approximated and extended limitations of the interface can be
revealed. The formula for extrapolation is presented in the following;

tte = 3.698 x n j / 0 + 0.5514 + t$UT> (4-6)

where tte is the expected total elapsed time, n j / Q is the number of I/O and tg jjT *s
the SUT delay.

With 25 I/O and a 150 ms SUT delay the simulation fails to complete and
the sinusoidal signal generator crashes. It is the purpose of this analysis to identify
the limitations of the interface. Therefore, the eventual failure of a configuration is

Chapter 4- Hardware-in-the-loop Interface Analysis 68

expected. Further, similar limitation is nearly reached with a 100 ms SUT delay and
25 I /O reaching a maximum sustainable execution time o f 191.9 ms. This limitation
is expected as the execution interval of the simulator allows 200 ms for the C module
to execute entirely.

Though it is not evident in Figure 4.7, all SUT delays failed stable transmission
during tests with 50 I /O . The failure is evaluated in (4.7) using (4.6), where even the
lowest SUT delay of 10 ms results in;

tfe = 3.698 x n jjQ + 0.5514 + ts u T = 3.698 x 50 + 0.5514+10 = 195.45ms>191.9ms.

. (4.7)
The maximum equal number o f I /O that would be captured for a 10 ms SUT delay
reflects the maximum equal I /O capacity of the interface. A SUT delay of 10 ms is
a minimal delay and is used for very fast responding electronic control systems. In
(4.8) the maximum I /O configuration is approximated using the following equation;

nI/0 = (ittemax ~ 0.5514 - t s u r) / 3-698 = (191.9 - 0.5514 - 10)3.698 = 49. (4.8)

The interface is designed to support a total number of 100 identifying integers
for SUT I/O . Therefore, the U D P /IP protocol matches the capabilities of the interface
for a very fast electronic control system. A total o f 49 I and 49 O can be implemented
simultaneously. When it is necessary to transmit more than 100 process variables, the
interface would have to be redesigned, or two or more interfaces installed in parallel.
Also, for many slower responding electronic control systems the limitations for the
number o f I /O that can be implemented is much lower.

It is important to identify that evaluating the scalability limitations of the
interface is problematic. When the C program fails due to a r u n n in g t o s l o w ly
error the instantaneous signals axe not captured and the simulation is aborted. This
failure can be used to the advantage of the analysis. However, data collection must
be well planned and failures should be expected. In some cases when the simulator
aborts no data is captured. This is the case for each of the SUT delays with an I /O
configuration of 50 inputs and 50 outputs.

The review of the total elapsed time required by the developed interface is ex­
tended in Figure 4.8 which illustrates the 95th percentile time for multiple controlled
variable transmissions. From Figure 4.8 the following is observed:

Chapter 4■ Hardware-in-the-loop Interface Analysis 69

Figure 4.8: Average total elapsed time with 95th percentile vs. I /O configuration.

• The range of 95th percentile total elapsed times increases with the number of
I/O .

• The range of 95th percentile total elapsed times is very narrow per transmitted
I/O .

It is expected that as the number of I /O increases so does the range of the total
elapsed times measured. During the timing analysis for the single I /O requested the
95th percentile had an extra 1.5 ms during receipt of the SUT output. This can accu­
mulate over 25 I /O and can cause major delays in the interface. Therefore, analysis
of the deterministic response of the HIL timeout during different I /O configurations
is essential. The specific increase in range for each I /O configuration is not known
and is difficult to discern in Figure 4.8. Therefore, further analysis is required. By
subtracting the average times from the 95th percentile and then dividing by the num­
ber of I /O a better understanding of the two observations can be made. The total
range deviation and the deviation per I /O can be observed and discussed regarding
the deterministic response o f the software simulator.

Figure 4.9 includes two plots. Each plot illustrates the range of the 95th per­
centile for the evaluated set of I /O configurations. The top plot includes the total
range deviation. This is calculated by subtracting the lower 95th percentile from the
95th percentile. The bottom plot includes the deviation per number of I/O . Though
the accumulated plot is included, it is the per I /O plot which demonstrates the deter­
ministic qualities of the return request packet and SUT output routine. In addition

Chapter 4 ■' Hardware-in-the-loop Interface Analysis 70

8

00 5 10 15 20 25
number o f inputs = number o f outputs

1.5

- 1.5
250 5 10 15 20

number o f inputs = number o f outputs

Figure 4.9: Average total elapsed time with 95th percentile vs. I /O configuration.

• The increase in the range of the 95th percentiles only extends to approximately
7 ms from 2 ms for 24 additional I/O .

• W hen multiple I /O are transmitted the perceived range of elapsed times de­
creases from approximately 1.5 ms to less than 250us.

An increase in total range for multiple I /O is expected as the accumulation of
HIL timeout and SUT delay variances will result in a greater overall variance. Similar
to Figure 4.8, an increase in range is evident. However, in Figure 4.9, it is apparent
that for an addition of 24 I /O , the increase in the range is less than 6 ms. Therefore,
the total time added to the SUT output routine changes with number of I/O .

When deterministic operation of the interface is discussed, it is important to
identify how deterministic operation affects the HIL platform as a whole. Any de­
terministic operation involves a specific sequence o f events. In the HIL simulation
platform both the SUT delay and HIL timeout for each SUT output must execute
prior to the execution interval expiring. If a significant range in elapsed times is
observed for large numbers o f I /O the HIL platform cannot operate efficiently. For
example, assume 1 ms above the average total elapsed time is required to assure the

to the observations made from Figure 4.9, the following is observed in Figure 4.9:

Chapter f : Hardware-in-the-loop Interface Analysis 71

95th percentile is captured for a single I /O . For 25 I /O , the execution interval would
have to be 25 ms greater than the average total elapsed time to assure proper func­
tionality. That would be 12.5 percent of wasted time occupied within the execution
interval due to non-deterministic functionality. Therefore, with a smaller range of to­
tal elapsed times, the HIL platform can be said to be more deterministic in operation
and can perform over a larger range o f number of I /O .

During the timing analysis for all HIL timeouts, it was found that the deviation
in range o f the 95th percentile per I /O was within 1.5 ms of the average value. This
remains the case for an increase in number of I /O . It is interesting to note that the
range decreases with increasing I /O . Previously it was expected that the range would
increase per number of I /O implemented. However, the decrease is evidence that
the resolution o f elapsed time measurement produces inaccurate results in the timing
analysis. W ith maximum average elapsed times in the 0-30 ms range, the addition
of a single milli-second during HIL-timeout, or the SUT delay can offset average
calculations substantially. The timing analysis did reveal that with increasing HIL
timeout the range remains relatively constant. However, an accurate illustration of
the actual variance of the elapsed time for the interface is provided in Figure 4.9.
It appears that having a larger number of I /O may result in more efficient timing
within the HIL platform. This is not the case. Lower numbers of I /O perform
efficiently just as the larger numbers of I /O . It is the measurement resolution of 1
ms which prevents an accurate representation of the range when using the single I /O
configuration. Therefore, the software simulator responds more deterministically than
previously expected with the entire range o f total elapsed times occurring within 0.3
ms per I /O .

Figure 4.10 presents the number of successful transmissions through the in­
terface over 2250 execution intervals for each I /O configuration. The number of
successful transfers is the total number of transfers which do not produce either error
flag. From Figure 4.10 the following is observed:

• For large numbers of I /O the number of successful transfers per I /O is reduced.

It is expected that the number o f successful transfers will increase linearly with
an increase in the number o f I /O transmitted through the interface. However, it is
difficult to compare the number o f successful transfers between I /O configurations
due to the large range of successful transfers covered. It is known that as the number

Chapter 4- Hardware-in-the-loop Interface Analysis 72

60

50

§ 4 0
x ,

£

I 30

3*
1 20 w

10

number of inputs - number of outputs

|~ - + - SUTdelays 10ms -Q--SU Tdelay = 25ms SUTdetay= 50ms SUTdelayg 100ms - x - SUTdelays 150ms|

Figure 4.10: Successful transfers vs. I /O configuration.

of I /O increase, so does the chance that a U D P/IP packet fails to transmit properly.
Increased traffic is known to reduce the capability of the interface [90], For this
reason, a slight deviation from linear performance is observed. This deviation is
most evident for 25 I /O . At 25 I /O the expected number of successful transfers is
25 x 2250 = 56250. The reduction occurs for all but the 10 ms SUT delay.

Two explanations can justify the reduction in successful transfers. Both are the
result o f no data or invalid ID flags. The cause of the flags could either be network
traffic, as mentioned, or the expiration of the execution interval. It is documented in
the pseudo code for this analysis that if the execution interval were to expire during the
HIL timeout a error flag would not be accumulated. Therefore, the deviation cannot
be the result of an insufficient long execution interval. However, the observation
illustrates a fundamental problem within the analysis. Every successful transmission
is not documented unless an error flag is produced. Therefore, further analysis is
required.

During the timing analysis the availability o f the interface is expected to vary
dramatically for different HIL timeouts. However, the effect of the number of I /O
on the availability of the interface is not expected to be as dramatic. Acceptable
availability is expected over the entire range I /O configurations. Further, in Figure
4.10 it is difficult to discern the percentage o f successful transfers. Figure 4.11 presents
these percentages. Further, the percentages of error flags recorded during the analysis
are presented. From Figure 4.11 the following is observed:

• There is no obvious relationship between the number of I /O and the availability

Chapter 4 : Hardware-in-the-loop Interface Analysis 73

Availability vs. Number of I/O Percentage Invalid ID Flag vs. Number of I/O Percentage No Data Flag vs. Number of I/O

Figure 4.11: interface availability with errors vs. I /O configuration (Dataset 1).

o f the interface.

• W ith 5 1 /0 the availability of the interface is similar for all SUT delays.

• The majority of errors observed with a low number of I /O are due to expiration
of the p o l l () Function (no data flag).

• The majority of errors observed with a high number of I /O are due to the
returned variable not matching the requested variable (invalid id flag).

• The 50 ms SUT delay results in a significantly reduced availability. The reduc­
tion is due to both error flags.

The availability o f the interface for different I /O configurations is expected to
be consistent. Though all availabilities are above 95.5 per cent, there is little to no
relationship between the number o f I /O and the measured availability. Actually, the
single I /O configuration is removed from the trend. As mentioned previously when
a larger number of I /O are transmitted there is a great chance for a transmission to
fail. The data does not satisfy the expectations for interface performance. Therefore,
a second set o f data is produced. The data is presented in Figure 4.12.

Figure 4.12 is similar to Figure 4.11. However, the data presented is from
a secondary simulation. Again, the percentages o f error flags recorded during the
analysis are presented. From Figure 4.12 the following is observed: •

• Again, there is no obvious relationship between the number of I /O and the
availability o f the interface.

Chapter 4- Hardware-in-the-loop Interface Analysis 74

100
Availability vs. Number of I/O Percentage Invalid ID Flag vs. Number of I/O Percentage No Data Flag vs. Number of I/O

92

88

* / \/ \

- o

- o -
SUT delay - 10ms
SUT delay = 25ms
SUT delay = 50ms
SUT delay = 100ms
SUT delay = 150ms

5 10 15 20
number of inputs = number of outputs

25
number of inputs = number of outputs

Figure 4.12: interface availability with errors vs. I /O configuration (Dataset 2).

• Also again, with 5 1 /0 the availability of the interface is similar for all SUT
delays.

• The majority of errors observed with a low number of I /O are due to expiration
of the p o l l () Function (no data flag).

• The majority of errors observed with a high number of I /O are due to the
returned variable not matching the requested variable (invalid id flag). One
extreme case is observed with a 10 ms SUT delay and 25 I/O .

• In comparison with the previous observation the 50 ms SUT delay performs
very well with the highest availability over many configurations.

Again, there is little to no relationship between the number of I /O and the
measured availability. The second set of data demonstrates less relationship between
the number o f I /O and the measured availability than the first. Comparison between
the availability in the single I /O configuration and previous 10 ms SUT delay timing
analysis results indicate that a reduction in the number of successful transfers has
occurred. To determine the cause o f the reduced availability, the right most sub plot
of 4.12 reveals that no data errors occurred. There are two factors which may cause
the observed reduction. The first is the time between subsequent U D P/IP transmis­
sions. In Figure 4.1 it is observed that a 50 ms execution interval results in a reduced
average transmission time than a 200 ms execution interval. This observation is ex­
plained through evaluation o f U D P /IP protocol performance when the time between
subsequent transmissions is changed. In Figures 4.11 and 4.12 having an I /O configu­
ration of 5 provides a higher availability for almost all SUT delays than with a single

Chapter 4- Hardware-in-the-loop Interface Analysis 75

I/O . This and the reduced performance of during single I /O transmission could be
the result of maintained U D P /IP transmission.

There is a definite decrease in availability beyond 5 1 /Os for the first set of data.
To better understand the cause o f the reduction in availability a sub plot illustrating
percentage invalid identifying integers is presented in the second sub plot for Figures
4.11 and 4.12. At configurations above 5 I /O invalid identifying integers account for
nearly all lost controlled variables. At and below 5 1 /0 there are very few invalid
identifying integers. During U D P /IP transmission, in order to reduce overhead and
increase network speed, various hand-shaking and acknowledgment routines found
in other networking protocols are removed. If a single packet is transmitted out of
place or network traffic increases drastically, packets are more likely to be improperly
communicated. Further, during the 10 ms SUT delay 100 per cent of no data flags
resulted in subsequent invalid id flags within the same set of transmitted SUT output.
Therefore, when an SUT output is not received at the software simulator, the U D P/IP
socket is affected. From the second set of data a relationship between no data flags
and invalid id flags is identified. Where a 25 ms SUT delay and a 10 ms SUT delay
have maximum flags, they do for both flags.

The ability to predict the availability o f the interface to respond to a return
request packet comes in to question. However, over two evaluations performed at
different times, reduced single variable availability is experienced. In the first set of
data increased availability is observed in lower I /O configurations. The effects of the
U D P/IP communication protocol are apparent. However, in the second set of data
the availability remains very high for increasing numbers of I /O , unless a no data
error occurs. The observed performance of the interface is unexpected. Therefore, it
is recommended that the availability of the IL interface be observed over the length
of the evaluated simulation prior to performing HIL simulation.

To evaluate the relationship between SUT input and output values, the value
of the nth variables successfully transferred through the interface and the l si variable
received are captured. The capture procedure occurs at the nth transmission of n

variables and the 1st receipt o f n variables. Only a single physical terminal is used for
analog signal loop-back. Therefore, comparison of SUT input and output can only
occur between the last transmitted variable and the first received variable. Figure
4.13 presents the per unit average bias of the transmitted and received signal. The
per unit value is again derived from (4.3). From Figure 4.13 the following is observed:

Chapter 4•' Hardware-in-the-loop Interface Analysis 76

- 2.8

-2.82

I" -2.84

I
f - 2.86

- 2.88

-2.9

-2.92
0 5 10 15 20 25

number of inputs = number of outputs

| —f - SUT defay = 10ms -Q --SU T delay »25ms SUTdelay = 5 0 m s SUTdelay * 100ms SUT delay = 150ms|

Figure 4.13: Average signal bias vs. I /O configuration.

• A per unit average bias measurement of around 2.8 x 10-3 is achieved.

• The average bias is not greatly affected by the SUT delay.

• For a single I /O the average bias is offset from the remainder of the I /O con­
figurations.

• At higher I /O configurations the average bias is reduced slightly.

The captured signal biases are observed in Figure 4.13. Over all configurations
the signal offset, or bias is relatively comparable, especially when comparing the bias
between different SUT delays. Again, the settling time of the interface is not a concern
when performing HIL simulations.

The fluctuation in signal bias for the higher I /O configurations and the single
I /O configuration are very similar to the observations made during the timing study.
In Figure 4.11 the availability of the interface is presented for the same simulation
as Figure 4.13. Again, a reduction in the number o f successful transfers results in a
reduction in the accuracy of the calculated signal bias.

4.2.4 Transmission delay study

During the timing analysis, a 1-2 ms delay is identified for the interface to properly
respond to a return request packet with a 0 ms SUT delay. This delay in interface

Chapter 4- Hardware-in-the-loop Interface Analysis 77

tx delay (ms)

- + - 1 = 0 = 1 -O - I = 0 = 5 1 = 0 = 1 0 ------- 1 = 0 = 25

Figure 4.14: Average total elapsed time vs.transmission delay.

processing is expected due to signal conversion routines and electrical signal gener­
ation. For this reason a transmission delay is proposed. The transmission delay, or
transmission delay, is inserted between subsequent SUT input transmissions.

If multiple SUT inputs are transmitted, the increased processing required by
the interface is expected to result in lower availability. The ability of the interface to
respond to multiple SUT inputs, when a transmission delay is included, is necessary.
Further, limitations resulting from the transmission delay are evaluated. Figure 4.14
illustrates the average total elapsed time of the interface for a 25 ms SUT delay for
multiple I /O configurations and transmission delays. From Figure 4.14 the following
is observed:

• The average total time measured for all but the single I /O configurations is
increased.

• W ith 25 I /O the average time increases beyond the HIL capacity at the 2 ms
T X delay. •

• For 1 ms and greater tranmission delays there is a linear relationship between
the transmission delay and the average time beyond the time taken in the SUT
delay.

The effect that the transmission delay has on the average total elapsed time
required by the interface is predictable. When performing n SUT input transmissions

Chapter 4•' Hardware-in-the-loop Interface Analysis 78

Availability vs. Tx Delay Percentage Invalid ID Flag vs. Tx Delay Percentage No Data Rag vs. Tx Delay

tx delay (ms) tx delay (ms) tx delay (ms)

Figure 4.15: interface availability and error flags vs. tranmission delay.

with a transmission delay of tx , a total additional delay of n x tx is expected to be
observed. From Figure 4.14 it is apparent that the interface responds as expected.
However, different limitations to the number of I /O supported by the interface are
observed. Even with a minimal transmission delay of 1 ms a significant difference
in total elapsed time is observed. The introduction of the transmission delay must
demonstrate increased interface performance to justify reduced numbers of I/O .

The transmission delay is implemented to evaluate the availability of the in­
terface. The delay increases the time between consecutive SUT input transmissions.
Therefore, the increased delay is expected to reduce interface processing requirements
and increase availability. Figure 4.15 illustrates the availability of the interface for a
25 ms SUT delay over multiple I /O configurations and transmission delays. Further,
the percentage o f error flags which occurred during the simulation is presented. From
Figure 4.15 the following is observed:

• There is no obvious relationship between the transmission delay and the avail­
ability.

During the timing analysis a delay required for interface processing was ob­
served. Further, during scalability analysis, no relationship between number of I /O
and availability could be made. Both of these observations were expected to be
resolved with the implementation o f a transmission delay. However, to justify the
reduction in number o f I /O supported by the interface, increased availability should
be demonstrated. From Figure 4.15 it is clear that including a delay between consec­
utive SUT input transmissions does not increase interface availability. The interface
demonstrates similar availability for 0 and 10 ms transmission delays. Therefore, the
transmission delay is not necessary for proper system functionality.

Chapter 4- Hardware-in-the-loop Interface Analysis 79

SUT Delay Maximum SUT Inputs Maximum SUT Outputs
150 99 10
10 99 49

Table 4.2: Maximum stable number of input only and output only configurations.

4.2.5 Maximum system under test input/output study

During the scalability analysis only equal numbers of inputs and outputs are eval­
uated. The evaluation o f equal numbers o f I /O provides a reasonable amount of
confidence in various system configurations. However, it is difficult to discern which
signal, input or output is responsible for the majority of the required transmission
time. Through extended analysis, a measure of the confidence in having unbalanced
I /O can be made.

To better understand the delays that are present during simulation the interface
is automatically configured with an increasing number of I /O until failure. During the
maximum input analysis, a single output is configured. The opposite is true for the
maximum output analysis, where a single input is configured. A failure is registered
when the software signal generator aborts operation due to a r u n n in g t o s l o w l y
error. For a configuration to be considered successful it has to maintain operation for
a period of five minutes. Only the 200 ms execution interval is investigated. Also,
two SUT delays and a 10 ms HIL timeout is implemented over all evaluations. Table
4.2 presents the results o f the maximum input and output analysis.

From Table 4.2, a restricted maximum was not observed when the SUT inputs
were incremented. The limitation o f the U D P /IP packet identifying integer, 99, is
the limit for both SUT delays. Therefore, the transmission o f an SUT input must
require less than (200 — 150m s)/99 0.5ms. However, the maximum stable number of
SUT outputs was recorded as 10 and 49 outputs for 150ms and 10ms SUT delays
respectively. Therefore, the transmission of SUT outputs must require less than
(200 — 10m s)/49 = 3.88 or (200 — 150m s)/10 = 5. Although it was found that the
number o f I /O has a limited effect on the average total elapsed time. For very large
SUT delays the ability o f the simulator to maintain operation is reduced. Further,
(4.8) successfully predicted the 49 SUT outputs required for a 10 ms SUT delay. This
justifies the minimal time required for SUT input transmission.

80

Chapter 5
Hardware-in-the-loop Shutdown System

Simulation
In Chapter 3 the purpose o f performing HIL simulation is described as extending
beyond the development and testing of a interface device. Therefore, though a in­
terface device is developed, various modifications to the HIL simulation platform are
required to enable the proper simulation of NPP processes.

The task o f interfacing simulated signals with existing sub-systems remains.
This chapter focuses on the installation o f an existing software simulator as the
physics/truth model and a specific electronic control system as SUT within an HIL
simulation platform. Transmission o f controlled variables within the HIL simulation
platform is performed by the interface device developed in Chapter 3. First, the HIL
simulation platform is verified to assure proper transmission of controlled variables
between the installed software simulator and SUT prior to HIL simulation. Following
verification, the HIL simulation of a safety critical NPP process is performed and the
performance o f the SUT and the interface is analyzed.

5.1 NPP Hardware-in-the-loop Simulation
Platform Development Procedure

The development of an HIL simulation platform involves physical system connections,
connectivity supporting software development and platform verification. Figure 5.1
illustrates the procedure for installing the interface within an HIL simulation platform.
The procedure begins with the development of a interface which is performed in
Chapter 3.

81Chapter 5: Hardware-in-the-loop Shutdown System Simulation

HIL
interface

development

connect
sub-systems

(SUT, simulator)
------------- -------------

SUT functional
development

(tra in tot», devtiop, port)

T

platform
verification

develop
->1 evaluation suites

(real-world scenario)

T

perform
— ► HIL

simulation

Figure 5.1: Application specific HIL simulation procedure.

Establishing simple physical connections between the interface with a software
simulator and a electronic control system is not adequate for performing HIL simula­
tions. Therefore, the proposed procedure is executed. The result is a complete HIL
simulation platform capable o f accurate NPP process simulation.

Firstly, software simulator connectivity is established. This requires commu­
nication module development within the software simulator. Also, control logic is
installed on the SUT and anticipated operational occurrence related to the process
being evaluated are identified. These tasks require control logic translation and pro­
gramming as well as extensive evaluation o f the the process being evaluated. The
interface is then configured for the number of I /O required by the process being eval­
uated and the timing requirements identified in Chapter 3. Finally, prior to HIL
simulation, the HIL simulation platform is evaluated to assure proper variable trans­
mission.

During the interface development procedure of Chapter 3, the requirements
of the process being evaluated and the purpose for performing HIL simulation are
identified. Four likely scenarios are presented and challenges within each for interface
development are identified. Similarly, the challenges related to each scenario can be
identified for HIL simulation platform development.

• Know n process - no physics/truth model, or SUT have been selected. A simula­
tor is developed through process modelling, assuring that a method for connec­
tivity with the interface exists. Potential electronic control systems are selected
and control logic developed and installed according to the process being evalu­
ated.

• Existing SU T - the SUT has been selected as the electronic control system for

Chapter 5: Hardware-in-the-loop Shutdown System Simulation 82

the process being evaluated. Similar to the ‘known process’ scenario a simulator
is developed. Further, control logic is developed and installed on the electronic
control system.

• Existing software simulator - the functionality of an existing software simulator
is extended to include HIL simulation. Again, similar to the ‘known process’
scenario, potential electronic control systems are selected and control logic de­
veloped and installed according to the process being evaluated. Further, con­
trolled variable transceiver modules are developed for the software simulator.

• Existing S U T and software simulator - both the existing SUT and software
simulator scenarios are satisfied. Controlled variable transceiver modules are
developed for the software simulator.

To perform any HIL simulation, a software simulator and a electronic control
system must be connected to the interface. For this reason the interface introduced
in Chapter 3 includes flexible connectivity specifications. Though flexible, the con­
nectivity specifications are selected to assure connection to the existing NPP training
simulator and the Tricon v9 PLC installed in this chapter. The NPP training sim­
ulator supports both Ethernet communication and U D P/IP communication module
execution. Further, the Tricon v9 PLC is a standardized electronic control system
and supports common industrial analog and digital signal levels.

During interface development no electronic control system is connected. In­
stead, an analog feed-back loop is implemented. The installation of an SUT into an
HIL simulation platform involves interface terminal to SUT terminal wiring for each
controlled variable and Ethernet cabling to the software simulator. Details o f these
connections are not covered within this thesis. It is recommended that sub-platform
manuals are reviewed prior to physical connection. Once the two sub-systems are
connected to the interface, the HIL simulation platform illustrated in Figure 3.1 is
established.

An Ethernet signal transceiver is installed to simulate a physics/truth model
during interface development. This signal transceiver is designed to mimic the struc­
ture o f the C program modules installed on the NPP training simulator. Therefore,
the signal acquiring capabilities that are experienced during HIL simulation are iden­
tical to the sinusoidal signal packet transmissions evaluated in Chapter 3. This allows

Chapter 5: Hardware-in-the-loop Shutdown System Simulation 83

for fluent transition between HIL simulation and interface testing, verification and de­
velopment. In fact, the task o f modifying the controlled variable transceiver module
to satisfy the requirements o f the software simulator includes only the configuration
of the proper process variables for control.

Before HIL simulation is performed control logic is installed on the electronic
control system. The application being evaluated within this chapter is the SGLL
trip condition o f SDSl. Therefore, CANDU SDS1 SGLL logic is translated from
original source code to a language supported by the SUT. This process is known as
porting. The ported logic is installed on the SUT and if necessary the equivalent logic
is removed from or disabled within the software simulator.

HIL simulation can be executed at this point. However, it is recommended
that verification of the timing within the completed HIL simulation platform is per­
formed. The timing parameters from Chapter 3 including SUT delay, HIL timeout
and transmission delay are applied to the interface. HIL simulation platform verifica­
tion identifies parameter values which facilitate maximal availability of the interface.
This is achieved by comparing expected SUT outputs with current SUT outputs based
on the current state of SUT inputs. Initial configured timing parameters are derived
from from the equations and methods o f Chapter 3. Also, practical limitations for
interface delays are observed for higher fidelity processes. Restrictions introduced by
the execution interval o f the process may require lower availabilities and consequently
simulation accuracy may be reduced. If a timing configuration can not be verified, the
interface is not suitable for the process being evaluated and should be re-developed.

The final step prior to HIL simulation is the replication o f design basis events,
or suites for the process being evaluated within the software simulator. Proper identi­
fication of the operational states occupied by the electronic control system during an
anticipated operational occurrence is imperative for accurate HIL simulation. There­
fore, input sequences are developed which result in design basis event and eventually
SGLL trip conditions. To evaluate the functionality of SDSl to trip for a SGLL
condition, for example, specific events must occur in a specific sequence within the
NPP. Most importantly the reactor power should be reduced to a shutdown level.
Extensive evaluation of the process being evaluated is required to assure that the
proper functionality of the electronic control system can be identified independent of
auxiliary NPP systems. The method of identifying input sequences for proper process
simulation is not included within. However, the resulting shutdown system scenarios

Chapter 5: Hardware-in-the-loop Shutdown System Simulation 84

evaluated are described in detail.
Finally, evaluation o f the SUT within the HIL simulation platform is enabled.

Executing the evaluation requires repetitive tasks. Therefore, the development of a
script for automating the state of the software simulator and the SUT is recommended.
Again, this procedure varies significantly between software simulator platforms and
is not covered within. Also, acquiring data from an actual physics/truth model and
electronic control system introduces various problems. Therefore, some adaptation
to HIL simulation timing methods and connectivity are revealed while executing the
proposed procedure with the selected sub-systems.

5.2 NPP Hardware-in-the-loop Simulation
Platform Development

The NPP HIL simulation platform utilizes the interface developed in Chapter 3. A
NPP training simulator and the Tricon v9 are installed as the physics/truth model
and SUT respectively. Further, control logic is developed for the Tricon v9 to replicate
the electronic control system control system emulated in the NPP training simulator.
Therefore, the HIL simulation platform for SDS1 evaluation is comprised of five major
components:

• physics/truth models - Darlington NPP training simulator (DarlSIM) and com­
puter platform,

• interface: controlled variable Ethernet transceiver - provides similar function
to the Ethernet signal generator. However, signals are not generated but are
acquired from a simulated NPP process. This module executes during run-time
within DarlSIM,

• interface: physical adaptor and signal converter - conversion between Ethernet
(engineering units) and hard-wired signals (analog and digital signals). The
developed interface of Chapter 3 is installed as interface for all HIL simulation
routines.

• System under test (S U T): hardware - Invensys Triconex Tricon v9 safety PLC,

• System under test (S U T): control logic - replicated Darlington NPP SDS1 SGLL
logic. This logic is ported from Fortran source code available within DarlSIM.

Chapter 5: Hardware-in-the-loop Shutdown System Simulation 85

Configuration
configuration.cfg

Common Database

m odubjtabM B t El EP

module 1 m1EI m1EP

module 2 m2EI m2EP

module n mnEI mnEP

cdbmapping.h
process vaM vaM

process var2 val_2

process var3 val_3

process var4 val_4

process varo val_o

Restore
Restore Point
restorepointl .sto
parameter 1 vaM

parameter 2 val_2

parameters val_3
parameter 4 val_4

parameter p val_p

Figure 5.2: DarlSIM component interconnections.

5.2.1 Darlington NPP training simulator

OPG maintains a Unix based training simulator, referred to within this paper as
DarlSIM. DarlSIM simulates the operation of the entire Darlington NPP in real-time.
Therefore, DarlSIM encompasses an extensive collection of NPP plant models includ­
ing related control loops. The simulated control loops access plant specific process
variables and emulate the physical electronic control systems within the plant. In es­
tablishing an interface between the software simulated process variables and external
physical hardware, HIL simulation is performed. The main components of DarlSIM
relevant to performing HIL simulation include modules, a module table, configura­
tions, restore points and a common database. These components are described below.
The relationship between the four components of DarlSIM is illustrated in Figure 5.2.

Modules are compiled simulation models and auxiliary functions which repre­

sent unique NPP processes within DarlSIM. They are catalogued and scheduled for
execution within a module table. For a given configuration a module table is at­
tached. The module table specifies the processes to be executed within the connected
configuration. Modules are included for all major systems within the NPP and are
developed using C or Fortran programming languages. Therefore, modules provide
the core functionality of the simulated NPP. Further, modules access a CDB. The
CDB is a memory bank where DarlSIM process, temporary and related variables are
stored during run-time. Three modules, for example, are responsible for SDSl logic
execution. One module for each of channels D, E, and F. The modules access the
CDB in a shared memory configuration to communicate process variables, inputs,
outputs and other data between modules.

The module table is a list of the modules required for proper functionality
of the NPP. It is the primary method for scheduling module execution. This list

Chapter 5: Hardware-in-the-loop Shutdown System Simulation 86

1«____________-_______ _______ . __ inn _ J
*— 50ms — ►

•»wiin --- w

L Module A ! p ..Module A ..Module A ^Module Aw w ̂ ------ --------------p
■ - f. ” S V- -sS - «

«ModutrB______ ^Module B ..Module Bw w --------------w
1 1

1 J jSDS1 Channel D
1_____ T 1 w

Figure 5.3: Module execution interval and execution phase.

is complicated by two factors, execution interval and execution phase. Execution
intervals exist for 50ms, 100ms, 200ms, up to 2s. The execution interval specifies the
period over which the module must completely execute. In the case that a module is
too complex, or requires too much time to execute properly within the interval, the
simulator will produce a 'ru n n in g to s lo w ly ' error, fail and abort. Channel
specific SDSl logic modules have an execution interval of 200 ms and are therefore
executed every 200 ms.

Module execution phase is slightly more complicated. Execution phases are
available at multiples of 50 ms over the entire period of the execution interval for
any given module. Illustrated in Figure 5.3, the execution intervals of Module A and
Module B are 100 ms. However the execution phases are 50 and 0 ms respectively.
The time of execution of the two modules is offset by 50 ms. The third example
illustrates the configuration of the channelized SDSl modules implemented during
the HIL simulation performed in this chapter. Channel D has an execution interval
of 200 ms and an execution phase of 100 ms. This is the same for channels E and
F. Further, execution intervals initialization (INIT) and termination (TERM) exist
for those modules which should only execute on either initialization or termination
of the simulator.

The configuration is the simplest but most crucial of the four components.
The configuration includes links to all compiled modules referenced within a specific
module table. In other words, configurations and module tables are one in the same
in terms of included modules. The configuration simply compiles all of the required
modules and schedules module execution according to the attached module table.
The configuration creates a configuration file and directory. The configuration file
is the means of loading the simulator with a specific set of modules. Therefore,
there are different configurations for simulation. The platform for SDSl bench-mark
simulation used in Section 5.4.3, for example, is named ‘SDSl BM.cfg’. However,

Chapter 5: Hardware-in-the-loop Shutdown System Simulation 87

the configuration for SDSl HIL simulation is named ‘SDS1 HIL.efg’. The differences
between the two configurations axe outlined in experimental setup later in Sections
5.4.3 and 5.4 respectively.

Finally, DarlSIM restore points provide access to common NPP operating modes
and conditions. They represent instances in time during the operation of the NPP
and facilitate repetitive scenario simulation with automated initial conditions. During
simulator operation, the NPP within the simulator is manipulated and processes
altered. When a certain state is achieve, the simulator can be paused, or frozen. The
paused simulator instance may then be stored to a ‘restore point’.

In using an external script the NPP simulator is automatically restored to the
instance captured within a restore point. Using a script enables the repetition of a
scenario over a large number of iterations. To evaluate SDSl, for example, malfunc­
tions which would induce a shutdown procedure are instantiated, the simulator is
frozen, and a restore point created. The restore point is then reloaded multiple times
over a specified time interval from within a Unix terminal using a Perl script. How­

ever, it is important that the time interval dedicated to the simulation is sufficient to
allow the entire scenario to complete.

5.2.2 Controlled variable transceiver module

During interface development a C program is developed to generate, transmit and
receive signals. Conveniently DarlSIM supports modules developed using the C pro­
gramming language. Therefore, the source code used in the interface development for
Ethernet signal transceiver can be modified to transmit and receive process variables
from DarlSIM to an SUT.

The task of transmitting variables is divided into four functions. Each function
plays a specific role in enabling UDP/IP communication and variable transmission
between DarlSIM and the external SUT. The following functions are used during all
HIL simulations including verification and process evaluation procedures.

1. open UDP/IP connection,

2. SUT input transfer,

3. SUT output transfer, and

4. close UDP/IP connection.

Chapter 5: Hardware-in-the-loop Shutdown System Simulation 88

Source code of all functions is included in Appendix C as reference.
The open and close UDP/IP connection functions are scheduled in the initial­

ization (INIT) and termination (TERM) execution intervals of the module table.
Therefore the UDP/IP sockets remain open for the duration of the simulation and do
not impose additional time and system resources during signal transfer and training
simulator processing.

To enable HIL simulation, process variables transmitted to the SUT must be
accessible by the the SUT input function. A process variable that is an input or output
of the SUT is referred to as a controlled variable throughout evaluations performed
using HIL simulation. Within DarlSIM process variable access is supported through
shared memory, or the CDB. By using shared memory, either a DarlSIM NPP related
module or one of the functions listed above can read or write to the CDB at any
time. Therefore, the same technique which is used to update and transfer variables
between training simulator models is used to extract process variables. This is not
possible with all Ethernet based simulators. In some cases a program may have to be
developed to provide external access to the process variables.

The functions required for accessing the CDB are included with the training
simulator. Variable acquisition is achieved using memory pointers. For example, two
of the data access functions are:

C d b F l o a t P o i n t e r (v a r i a b l e _ l a b e l) , a n d

C d b B y t e P o i n t e r (v a r i a b l e _ l a b e l) .

Passing a process variable label with one of the two data access functions will return
the current value of the specified variable.

Transferring controlled variables between the training simulator and the SUT is
controlled completely by the SUT input and SUT output transfer functions. However,
various delays are required to achieve proper signal transfer. The process sequence is
as follows.

S U T input: read controlled variables from the CDB

S U T input: transmit controlled variables to interface (transmit delay)

S U T output: sleep (wait for SUT to execute)

S U T output: transmit controlled variable request packet to interface

S U T output: poll UDP/IP socket

Chapter 5: Hardware-in-the-loop Shutdown System Simulation 89

S U T output: receive controlled variables from interface

S U T output: write controlled variable to the CDB

The interface responds on demand to UDP/IP packet transmissions. It is ex­

pected that the capability of the interface will be reduced if too many variables are
transferred through the interface. However, this is not observed during the interface
development and analysis in Chapter 3. Therefore, the communication module can
maintain synchronization between the interface and DarlSIM. The only exception
from synchronization is the execution of the control logic within the SUT. Though
deterministic, the execution of the Tricon v9 PLC is asynchronous to the execution
of the modules within DarlSIM.

There are two delays and a timeout associated with variable transmission. The
first delay enables the interface to respond to consecutive SUT inputs. It is demon­
strated that the transmit delay does not affect the probability of the interface to
receive SUT input UDP/IP packets in Chapter 3. However, the delay is included
when the number of I/O required for simulation is relatively small.

A secondary delay is included to enable the proper and timely execution of the
SUT control logic and interface and SUT signal settling times. This delay provides
a guarantee that SUT outputs are not captured until the current inputs have been
processed by the SUT.

Finally, a timeout is required to enable the interface to respond when a variable
is requested. Again, without this delay, either the requested variable will not be re­
turned to the software simulator, or the UDP/IP packets received will include invalid
data.

5.2.3 Hardware-in-the-loop interface

The interface of Chapter 3 is designed to require minimal configuration when installed
into HIL simulation platforms for various applications. Firstly, the configuration of
Ethernet communication parameters including IP address and communication ports
is required. Other changes to interface configuration include; wiring the interface
DAQ cards to the Tricon v9 PLC analog and digital I/O terminals; and selection of
appropriate I/O configurations within the interface VI. For SGLL trip, the Ethernet
parameters are configured according to the NPP software simulator configuration.

Chapter 5: Hardware-in-the-loop Shutdown System Simulation 90

Also, four analog inputs and a single digital output are wired to the Tricon v9 PLC
and configured within the VI.

5.2.4 System under test: Tricon v9 PLC

The SUT implemented during the HIL simulation is the Tricon v9 PLC. Tricon v9 has
been certified by the USNRC [69] [17] to meet IEEE Class IE and 603-1991 standards
and was recently selected for the replacement of SDS1 controllers at Point Lepreau
NPP in New Brunswick. Therefore, the Tricon v9 PLC system is being installed
during the current refurbishment at Point Lepreau. The Tricon v9 PLC provides
complete triple redundancy from the input to output terminal. Extended review of
the Tricon v9 PLC system is provided in Appendix D.

The Tricon v9 PLC installed within the HIL simulation platform includes; trip­
licated 3008 Tricon enhanced main processors; a 4351 Tricon communication module;
32 points 3503/E discrete input 24V; 32 points 3604/E discrete output 24V; 32 points
3700/A analog input 5V; and 8 points 3805/E analog output 4-20 mA [50]. Tricon
v9 can be configured to execute over a range of execution intervals. However, the
requirements of the control loops within this study require only a 25 ms execution
interval. Other execution intervals are utilized for verification purposes and are stated
when used.

Of the Tricon v9 PLC hardware modules, four of the 32 points available on
the analog input module are used for the steam generator level measurements. The
steam generator level signals are industry standard 4-20 mA simulated differential
pressure level sensors. One of the 32 points of discrete outputs is used for SGLL
trip signal. The output is a 24VDC signal. However, this voltage is converted to a
5VDC signal for interface compatibility. In the actual plant this 24VDC signal would
be connected to the SDS1 trip circuit reviewed in Chapter 2. From the trip circuit,
a voltage triggered relay would de-energize the clutching mechanism releasing two
banks of shut-off rods into the reactor core.

5.2.5 System under test: trip detection logic

Current SDSl trip logic is comprised mostly of programmable digital comparators.
SGLL trip detection is no exception. The purpose of the SGLL trip detection is to
detect a low level in any of the four steam generators at the Darlington NPP. The

Chapter 5: Hardware-in-the-loop Shutdown System Simulation 91

SGLL trip detection logic includes a condition based on neutronic power sensor read­
ings. If the average of the highest 16 neutronic power sensors is less than a specific
percentage of the total reactor capacity, a reduced threshold is utilized. This feature
of the SGLL detection logic has been removed for the following HIL simulations. The
response of the NPP at low power is not required to evaluate proper SGLL trip detec­
tion. The logic also omits manual SGLL conditioning and log N rate neutronic power
conditioning. Finally, modified thresholds are implemented for SGLL detection. The
process of determining SGLL trip is otherwise identical.

Reference SGLL logic is an emulation of the code that exists within the pro­
grammable digital comparators at Darlington NPP. Similar Fortran code is executed
within DarlSIM. The logic is ported from Fortran source to block schematic diagrams
and pseudo-code. Block diagrams and pseudo-code are developed to provide simplified
reference for programming the SUT. The SGLL trip detection logic is developed using
Tristation 1131 Developers Workbench (1131DW). Though Tricon v9 PLC supports
ladder logic diagrams; structured text; and cause and effect programming language
editor; function block diagrams (FBDs) are preferred for the following reasons:

• Tricon v9 SDSl logic at Point Lepreau NPP will incorporate this method;

• proven performance of Wolsong 2, 3 and 4 and Qinshan 1 and 2 NPPs which
utilize a similar graphical engineering software approach or integrated approach
(IA), and;

• similarities in concepts and functions between existing IA function block lan­

guage and the available IEC61131-3 FBDs [39].

The implemented SGLL trip detection logic is illustrated in Figure 5.4. Once
4-20 mA signals are converted to digital signals and filtered within the PLC they
undergo validity range checks and comparison to SGLL trip thresholds. Thresholds
are chosen to mitigate physical damage to the steam generator units.

When all four steam generator levels are in normal operating range they are
greater than the SGLL hysteresis threshold. In this state the input of the select
function is low and the trip condition is false. However, the resulting trip output is
high. The shut-off rod clutch mechanism is energized and the reactor operates in a
non-shutdown mode.

If any of the four steam generator levels drops below the hysteresis threshold
the input of the select function becomes high. If the trip status is currently in a

Chapter 5: Hardware-in-the-loop Shutdown System Simulation 92

digital
output
(trip signal)

tripped state it remains tripped via a feed-back ‘or’ function. Therefore, a SGLL
trip condition will remain until the steam generator level rises above the hysteresis
threshold.

Standard hysteresis threshold level is approximately 10cm above the trip thresh­
old. If the trip condition was previously low the trip condition remains low. However,
the steam generator level is approaching the trip threshold. In this state, the input
of the select function is high and the trip status is dependent on the second condition
(<). If the trip signal then drops below the threshold, the (<) condition becomes high.
The resulting trip condition is high the shut-off rod clutch mechanism is de-energized
and the reactor enters shutdown mode,

In the NPP the decision-making unit for SDS1 is directly wired to sensors and
actuators. The analog and digital input signals that are received by Tricon v9 PLC
analog and digital input modules are conditioned by the interface to replicate real-
world connectivity. Therefore the SGLL trip detection logic believes that it is installed
in the actual NPP. Validity checks and error handling are performed to ensure that
safety critical controlled variables are within expected boundaries. Also, SGLL logic
is configured to execute at an interval of 25 ms on the Tricon v9 PLC.

Chapter 5: Hardware-in-the-loop Shutdown System Simulation 93

5.3 Hardware-in-the-loop Simulation Platform
Timing Verification

5.3.1 Method

Before performing an HIL simulation the HIL simulation platform, including the
interface must be verified. The performance of the interface is proven and a certainty
as to the accuracy of the system is observed in Chapter 3. However, installation of
an SUT can induce additional delay requirements and timing routine modifications.

Previous HIL simulation results reveal discrepancies in the received SDSl out­
put process variables from DarlSIM and the SUT output signals received from the
Tricon v9 PLC [73]. It is expected that the discrepancies are the result of a delay
that occurs during controlled variable transmission. The delay does not impact the
macroscopic evaluation of a shutdown scenario. In fact, the SUT appears to respond
as expected. However, without accurate, reliable controlled variable communication
between the simulator and the external hardware, the credibility of the HIL simulation
platform as a basis for SUT selection is diminished.

To resolve the identified delays, the proposed procedure for HIL simulation
platform development includes a timing verification and optimization routine. Veri­
fication is performed after the SUT is installed within the HIL simulation platform.
Therefore, signal transmission throughout the entire platform can be verified. The
verification procedure produces a measure of availability of the interface within the
developed HIL simulation platform.

Recommendations for the timing of the interface are proposed in Chapter 3.
These recommendations remain valid. However, some influences of the installed SUT
on the transmission of controlled variables may result in modifications to the timing
requirements within the HIL simulation platform. Without these modifications the
performance of the interface cannot be guaranteed.

When verifying interface functionality within the HIL simulation platform at
least two unique SUT output states are required. Proper transmission of signals
through the HIL simulation platform is analyzed by alternating SUT input signals
automatically every execution interval. It is important that the SUT input signals
induce unique identifiable SUT outputs. Then, by analyzing SUT input to SUT
output correlation the availability of the interface is calculated.

Chapter 5: Hardware-in-the-loop Shutdown System Simulation 94

Figure 5.5: Expected sequence of events during HIL simulation platform verification
for a 21 ms SUT execution interval.

The Tricon v9 PLC is programmed with the SGLL trip detection logic reviewed
in Section 5.2.5. Function block diagrams are used to program the logic within the
PLC and are available in Appendix E. Also, the Tricon v9 PLC is physically connected
to the interface through four analog SUT input channels and one digital SUT output
channel.

From Section 5.2.5, when one of four analog input signals drops below the trip
set-point, or threshold, the Tricon v9 PLC will generate a trip signal on the digital
output terminal. Alternatively, when the analog input signal rises above the specified
hysteresis threshold, the trip signal is removed. For verification purposes, one of the
four steam generator analog input signals is alternated between a non-trip state and a
trip state. The North-West steam generator level, for example, is alternated between
1 and 5m every execution interval, a period of 200 ms. The alternating process is
repeated over 6000 iterations, or 20min.

For non-SGLL, or generic applications, a simple digital loop back circuit includ­
ing SUT digital input and SUT digital output will provide adequate signal alternating
for interface availability analysis. However, if this method is performed the loop back
function should be scheduled following all other control routines which are scheduled
within the SUT for the process being evaluated. Therefore, a measure of the avail­
ability of the system can be obtained for the final control routine within the execution
interval of the SUT. The unavailability of the interface is equivalent to the inability
of the interface to produce the expected SUT output for given SUT inputs within the
allotted SUT delay.

The expected Tricon v9 PLC control logic execution interval during verification
procedures is 21 ms as illustrated in Figure 5.5. Figure 5.5 includes a single control
variable analog input (C V /A I) block. From Chapter 3 the recommended SUT delay
is recommended to be twice as long as the SUT execution interval. Equivalently,

ts U T = 2 x t SUTE r

Chapter 5: Hardware-in-the-loop Shutdown System Simulation 95

In Figure 5.5 the expected worse case scenario for controlled variable trans­
mission is illustrated. The SUT does not accept the SUT input immediately upon
generation by the interface. A maximum delay of 21 ms passes before the SUT C V /A I
function block executes appropriately. The SUT execution interval continues execut­
ing and SUT outputs are generated. SUT outputs are requested by the software
simulator and returned through the interface before the 10 ms timeout. In the worst
case scenario the maximum time for accurate HIL simulation transmission is slightly
greater than 50 ms or 2 x t g u T E I • It is necessary for the delay to be slightly larger
than 50 ms to allow for variance in all scheduled events within the HIL simulation
platform.

5.3.2 Assumptions

DarlSIM has a minimum execution interval of 50 ms. However, the SDS1 execution
interval is 200 ms. Therefore, for HIL simulation verification purposes, an execution
interval of 200 ms is implemented. It is assumed that the dynamics of the evaluated
process variable within DarlSIM are not updated during this interval.

The execution of the Tricon v9 PLC control logic is assumed to completely
execute at least once within two of SUT execution intervals. Control logic should
execute at least once within a 50 ms interval, for example, for a 25 ms execution
interval.

Consecutively alternating SUT outputs are expected throughout the verification
procedure. If the SUT output signals are delayed by an amount of time equal to the
transmission of an even number of variables the signals could be misidentified as
correlating with the expected output. If the output set [0,1,0,1,0,1] is expected, for
example, and the output set [-,-,0,1,0,1] is observed, the two sets correlate for the set
three through six. It is assumed that this does not occur for SUT delays which are
larger than the SUT execution interval.

5.3.3 Analysis of results

The results of the verification procedure are presented in Figure 5.6. The correlation
between the expected output and the actual output is illustrated. The correlation is
presented for a range of SUT delays and two SUT execution intervals.

Chapter 5: Hardware-in-the-loop Shutdown System Simulation 96

1

0.9

w 0.8<0£
<D

I 07O

(0
I 0.5(0C
0 3

0.4

0.3

CO
§ 0.2

0.1

1 1 1 ----,--------------“1----------------1-----------—j----------------r---->•------1 ----1-------
y

s’
s ’ _

y
y

y
y O_ / _

y
y y '

y / '_ y CT
y y

y y

/ y“
/

y

/
y

0/ y ' _

/ y

/ y

¥
y

— 0 —
/ y

/ y

/ y

/ y

/ 0
y

¥ y '
y y

y y

y .0
y

--K

Okmm 1 -------r°5._!____1_______ 1 _l___________!_______ 1 1__________1__________
20 30 40 50 60 70 80

SU T delay (ms)
90 100 110 120

- + - SU T El = 21ms - O - S U T El = 63ms

Figure 5.6: NPP HIL simulation platform availability vs. SUT delay with Tricon v9
PLC installed.

With the Tricon v9 PLC execution interval configured to 21 ms, to achieve 80
per cent availability the required SUT delay is approximately 83 ms. Further, 100
per cent availability is not achieved until 105 ms is implemented as SUT delay. An
approximation for an SUT delay to achieve 80 per cent availability and 100 per cent
availability are included in the following;

tSUTlQQ% = 5 x t s u t „riE l
(5.1)

t s U T g o % = 4 x * S U T E r (5-2)

Similarly, with the Tricon v9 PLC execution interval of 63 ms the required time
to 80 per cent is 113 ms. The 100 per cent availability of the Tricon v9 PLC for this
SUT execution interval is not observed during the verification procedure. However,
100 per cent availability for the 63 ms SUT execution interval is not expected until

Chapter 5: Hardware-in-the-loop Shutdown System Simulation 97

126 ms. An approximation for an SUT delay to achieve 80 per cent availability is the
following;

t s u T80% = x tsu T E r (5-3)

The resulting availabilities demonstrate significant overhead required for proper
Tricon v9 PLC execution. From Figure 5.6, it is expected that at twice the SUT
execution interval, all SUT output signals should accurately reflect the current SUT
input signals. However, only 80 per cent of the output signals correlate with the input
signals at almost four times the execution interval.

The ability o f the HIL simulation platform comes into question when extensive
delays are observed. Especially when these delay occur during simple system simu­
lation. However, inspection o f the entire sequence o f events is required to determine
the cause o f the increased delay requirements.

The interface has been proven in Chapter 3 to be capable of replicating process
variables transmitted through Ethernet using the developed U D P/IP structure. In
fact, the signals generated at the output terminals of the interface demonstrated a
maximum delay of 2 ms including the time required for the signal to return to the
software simulator. For this reason, it is not acceptable to suggest that the cause of
the above delays is the interface device.

A better understanding of the sequence o f events occurring during the HIL
simulation verification procedure is found when reviewing the operation of the Tricon
v9 PLC. A review of the Tricon v9 PLC is included in Appendix D. The process
within the Tricon v9 is as follows. The Tricon v9 PLC system contains three main
processor modules to control three separate legs o f I /O within the system. Each main
processor operates in parallel with the other two main processors, as a member of
a triad. A dedicated communication processor on each main processor manages the
data exchanged between the main processors and the I /O modules.

As each input module is polled, the new input data is transmitted to the main
processor over the appropriate leg of the I /O bus. Synchronization o f the main
processor is performed at the beginning of each scan. Each main processor sends
its data to its upstream and downstream neighbours. One o f two functions is then
performed. •

• Transfer o f data only - for I /O , diagnostic and communication data.

Chapter 5: Hardware-in-the-loop Shutdown System Simulation 98

200ms
Dari SIM cv SUT delay CV RQ CV RX c v •la

I* (21-110m*) TX (10m*) TX (1.10.51

__ ±___ L _ r
HIL interface w*»nQfor cv * * » — * "0 '" CV RQ CV CV

packet RX AO J RX AL TX TX I packe« RX conv AO

(D 1 t 1
Tricon v9 PLC 1 I CV I CV I CV CV CV

____________________________1__________________ I AI 1 AO 1 Ai AO __________________I__________________ I____________ Ai
I I «— 25ms —»

> 73.5m* — I

Figure 5.7: Sequence of events during HIL simulation platform verification for a 21
ms SUT execution interval.

• Comparing data and flagging disagreements -for previous scans output data and
memory of user written application.

The input data from each input module is assembled into a table in the main
processor and stored in memory for use in the hardware voting process. The individual
input table in each main processor is transferred to its neighbouring main processors.
During this transfer, hardware voting takes place. If a disagreement is discovered,
the signal value found in two out of three tables prevails, and the third table is
corrected accordingly. After the transfer and input data voting have corrected the
input values, these corrected values are used by the main processors as input to the
control program. The 32-bit main microprocessor and a math co-processor execute
the control program in parallel with the neighbouring main processor modules [72].

As the control program executes, a table of output values is generated. Using
the table o f output values, the I /O processor on each main processor generates smaller
tables, each corresponding to an individual output module in the system. Each small
table is transmitted to the appropriate leg of the corresponding output module over
the I /O bus. The transmittal of output data has priority over the routine, scanning
of all I /O modules.

It is apparent that the Tricon v9 PLC is a very complicated fault tolerant
electronic control system. There is significant overhead built into the PLC to assure
that all decisions are accurate. Further, the Tricon v9 PLC requires extensive voting
and redundant functionality to satisfy the strict requirements of the nuclear safety
critical control industry. For this reason, manufacturers recommended avoiding short
execution intervals within the Tricon v9 PLC. If the execution interval configured on
the Tricon v9 PLC is not adequate for overhead processing, communications, voting
and other tasks, the deterministic operation of the PLC is not guaranteed.

Figure 5.7 demonstrates hypothetical timing characteristics o f the HIL simu­
lation platform when an inadequate execution interval for the implemented control

Chapter 5: Hardware-in-the-loop Shutdown System Simulation 99

1 < - 200ms __________________________________d -
Dari SIM 1 CV CV RQ CV RX CV *

TX (21-110m«) TX TX (1.KLS

{ _ 1 _______ I___
HIL interface «mengfor CV «gnu CV CV RQ wfctng lor CV m i n i

pacfet RX eonv AO RX AJ.TX pochet RX c°n» 1 AO 1

Œ E IETricon v9 PLC

— > 126ms - »

Figure 5.8: Sequence of events during HIL simulation platform verification for a 63
ms SUT execution interval.

logic is configured. The expected Tricon v9 PLC control logic execution interval in
Figure 5.6 is 21 ms. Figure 5.7 also includes the 21 ms execution interval of the
Tricon v9 PLC. However, after observing interface availability within the HIL simu­
lation platform, the expected response illustrated in Figure 5.6 is not accurate. It is
expected that this is due to the configuration of an execution interval that does not
satisfy the proper operation of the triplicated Tricon v9 PLC central processing units
(CPUs).

The exact operation of the Tricon v9 PLC is not known. However, Figure 5.7
illustrates a sequence of events which could result from unsynchronized Tricon v9
PLC CPUs, inadequate time for voting, or other potential issues caused by lack of
processing time within the configured execution interval.

The Tricon v9 PLC does not accept the SUT input immediately upon gener­
ation, indicated by the circled arrow. A maximum delay of 21 ms passes before the
SUT C V /A I function block executes. The SUT input signal is not acquired due to
misaligned voting among the CPUs. On the next execution interval the SUT inputs
are acquired successfully as indicated by the green arrow. The SUT execution inter­
val continues to execute the control logic and the SUT outputs are generated. SUT
outputs are requested by the software simulator and returned through the interface
before the 10 ms timeout. Therefore, in the sample scenario the maximum time for
accurate HIL simulation transmission is greater than 70 ms. This sequence of events
would produce results similar to the availability observed with a 21 ms SUT execution
interval.

For comparison, Figure 5.8 illustrates the worst case scenario for the operation
of the Tricon v9 PLC configured with a 63 ms SUT execution interval. The addi­
tional time allotted for control logic execution is essential for the Tricon v9 PLC to
operate properly. Voting mechanisms are executed properly and synchronization is
maintained between the three CPUs with the lYicon v9 PLC.

Chapter 5: Hardware-in-the-loop Shutdown System Simulation 100

Again, the exact operation o f the Tricon v9 PLC is not known. However,
Figure 5.8 illustrates a probable scenario when synchronization between Tricon v9
PLC CPUs, voting routines, or other redundant functions are operating properly.

The Tricon v9 PLC C V /A I function executes immediately prior to SUT input
signal generation from the interface. Therefore, the SUT input signal is acquired in the
next execution interval after a maximum delay of < 63 ms. Voting among the 3 CPUs
commences. The SUT execution interval then continues to execute the control logic
and the SUT outputs are generated. The SUT outputs are requested by the software
simulator and returned through the interface before the 10 ms timeout. Therefore,
in the sample scenario the maximum time for accurate HIL simulation transmission
is greater than 120 ms. The expected time satisfies the observed operation of the
interface when a 63 ms SUT execution interval is configured. Again, the expectation
for an SUT delay of twice the SUT execution interval is due to the asynchronous
operation of the SUT and the software simulator, as covered in Section 3.2.2.2.

5.4 NPP Shutdown System Hardware-in-the-loop
Simulation

5.4.1 Method

W ith all preliminary development and verification tasks complete, a NPP shutdown
system HIL simulation is performed in this chapter. The control system being eval­
uated during the HIL simulation is SDSl of CANDU NPPs. More specifically, the
SGLL logic of SDSl is replicated in the installed SUT. SUT performance is then
evaluated during NPP design basis events and shutdown scenarios.

A Tricon v9 PLC is programmed with the SGLL trip detection logic reviewed in
Section 5.2.5. Function block diagrams are used to program the logic within the PLC.
Also, the Tricon v9 PLC is physically connected to the interface through four analog
SUT input channels and one digital SUT output channel. The same configuration
used during HIL simulation platform verification. For reference, PLC source function
block diagrams are available in Appendix E.

W ith the Tricon v9 PLC connected in the loop, the HIL simulation platform
is complete. The performance o f the Tricon v9 PLC within the NPP HIL simulation

Chapter 5: Hardware-in-the-loop Shutdown System Simulation 101

platform is evaluated against bench-mark SDS1 simulation. Bench-mark response to
the shutdown scenario is generated through an entirely software simulation.

5.4.1.1 Shutdown scenario

The shutdown scenario selected for the current study involves both the SCFW and a
valve position malfunction. SDSl shutdown scenarios are developed according to the
individual trip parameters presented in Figure 2.9. A set of design base event exist
for each o f the trip parameters. The SCFW initiates one such design base event , loss
of secondary side heat removal [74]. This design base event directly affects the steam
generator level. Upon initiating SCFW within the feed-water system of any of the
four steam generators, the corresponding steam generator level will decrease. If the
steam generator level decreases to an unsafe level the reactor will trip upon SGLL
detection.

For all SGLL simulations, the cause of SDSl channel D trip is the spurious
closure of LCV101 within the feed-water system illustrated in Figure 5.9. LCV101,
102 and 103 control flow of light water coolant to the North-West (NW) steam gen­
erator from the feed-heating system. When a spurious closure is detected on any of
the valves (e.g. LCV101), the steam generator level controller opens a parallel valve
(e.g. LCV103). The redundant design o f NPPs is essential to avoid single points of
failure resulting in costly reactor shutdown procedures. However, if this redundant
valve (LCV103) fails, the NPP experiences a design base event and the design is no
longer redundant. Therefore, to induce the design base event , LCV103 is restricted
to only open partially. W ith the steam generator feed-water flow below sustainable
level, LCV102 could be opened. However, the redundancy o f the system has been
compromised, the reactor must shutdown and repair procedures initiated.

The restore point associated with the design base event restores DarlSIM to the
instant that the SCFW is initiated. Both the partial opening and the spurious closure
occur the instant the simulator is removed from a frozen state. The performance of
the emulated SDSl logic within DarlSIM and the response o f the NPP to the SGLL
trip is performed over multiple iterations.

For proper identification o f SDSl channelized trip signals, channel E and F
steam generator levels are biased -0.2m and -l-l.OOm respectively. Biases are presented
in Table 5.1 and are included to force the Tricon v9 PLC, or the emulated channel D
electronic control system, to act as the general coincident trip signal for SDSl 2oo3

Chapter 5: Hardware-in-the-loop Shutdown System Simulation 102

steam

redundant pump (1)

steam
generators (4)

Figure 5.9: Steam generator feed-water system.

channel channel D ch-E ch-F
Tricon v9 DarlSIM SDSl DarlSIM SDSl

bias 0.00m -0.20m +0.95m
trip set-point 2.00m 2.20m 1.05m

Table 5.1: Channelized steam generator level biases and low level trip thresholds.

relay trip logic. Thus, the Tricon v9 PLC initiates the reactor shutdown procedure
and the release of the shut-off rods.

The eleven properties listed below are monitored during all SGLL simulations.
The properties are essential in demonstrating proper functionality of SDS1 during
the initiated design base event and are time stamped upon acquisition.

• channel D NW steam generator level (m)

• channel D NE steam generator level (m)

• channel D SW steam generator level (m)

• channel D SE steam generator level (m)

• reactor power (%)

• level control valve 101 position (%)

• level control valve 102 position (%)

Chapter 5: Hardware-in-the-loop Shutdown System Simulation 103

• level control valve 103 position (%)

• channel D trip signal (high/low)

• channel E trip signal (high/low)

• channel F trip signal (high/low)

All properties are stored within a CSV database. A database record is created
for each execution interval. Therefore, one record is collected for every 200 ms during
each simulation. Complete observation o f the shutdown scenario is performed over
120 seconds for a total of 600 execution intervals or equivalently 600 records. All
calculations are performed using both MatLAB and Microsoft Excel tools. All plots
are generated using MatLAB.

5.4.2 Assumptions

In performing bench-mark and HIL simulations o f SGLL trip logic, it is assumed that
the emulated logic within the bench-mark simulation is equivalent to the logic pro­
grammed within the SUT. The logic from DarlSIM is translated to compatible SUT
control logic. However, some functions are not easily translated between electronic
control system platforms.

No physical interconnections or simulations o f the delays between simulated
sensors and actuators and the terminals of the emulated electronic control system in
DarlSIM. Within the simulator, engineering units are converted to milli-volt/milli-
amp values. However, this conversion does not account for all dead and settling times
experienced during actual electrical signal transmission in a NPP. In evaluating the
effects o f the interface on SDS1, the delays induced by the interface and the Ethernet
network are assumed to be much larger than the propagation delays associated with
electrical signal transmissions.

5.4.3 Bench-mark SDS1 SGLL simulation

Figure 5.10 illustrates the bench-mark simulation functions within DarlSIM. The data
collection routines from the Ethernet signal transceiver module developed in Section
3.2.2 are installed as the illustrated data collection modules. The collected data is
referenced as the norm when evaluating SUT functionality.

Chapter 5: Hardware-in-the-loop Shutdown System Simulation 104

DarlSIM

data
collection

(sensors)
UPP/IP Tx

SDS1 logic (Ch-D)

other processes

data UPRflRRx
collection (actuators)

Figure 5.10: Simulation platform for bench-mark SDS1 evaluation.

The SDSl logic executed within DarlSIM during bench-mark simulation is an
emulation of the original Fortran source code programmed into the SDSl electronic
control system at Darlington NPP. During DarlSIM development the Fortran source
code is modified by O PG training simulation personnel to allow interfacing with the
remainder o f the training simulator modules. It is assumed that these modifications
have not compromised core SD Sl logic or simulator functionality.

Channel D SDSl logic is compiled as the d i a l 13d module and is included
in the normal DarlSIM configuration module table. The module is identified in the
module table by the corresponding label, ‘SDS 1 CH D TRIP COM PU TER’ . The
module is responsible for the execution o f the entire logic for channel D of SDSl.
However, only a segment o f the logic is evaluated in the following bench-mark and
HIL simulations. The logic evaluated in the following is the SGLL trip logic illustrated
in Figure 5.4. The execution interval is configured for 200 ms with an execution phase
of 100 ms from the module table.

Two data collection modules are added to the module table. The SDSl input
collecting routines is scheduled prior to execution of the channel D SDSl logic module.
To capture the corresponding outputs produced by SDSl a second data collection
routine is scheduled to execute immediately after the channel D SDSl logic module.

The following results provide analysis o f the data collected during bench-mark
simulation. The figures generated present a summary of the data collected. Every
effort is made to present relevant illustrations of the data which assist in determining
the proper operation of the NPP SDSl resulting from a design base event. Following
each figure, table or result is a discussion of the observations made from the material
presented.

Chapter 5: Hardware-in-the-loop Shutdown System Simulation 105

......... Cb-D SG le v e l lo w threshold
Ch-E SG level low threshold

-------- SG level (NW)
-------- SG level <NE, SW, SE)
~ ~ - Ch-D trip signal (DarlSIM)
- - - Ch-E trip signal (DarlSIM)
-------- Cumulative LCV101, LCV102 and LCV103 position
-------- Reactor power

Figure 5.11: Bench-mark SGLL trip detection, simulation of Darlington NPP
response to loss of secondary side heat removal design base event.

Figure 5.11 illustrates the response of SDSl to the shutdown scenario. All eleven
parameters are plotted. However, to simplify the plot, non-affected steam generator
levels are averaged and valve percentages are summed. Further, SGLL thresholds are
included. Each o f the parameters is plotted using per unit measurements. The per
unit value o f each variable is calculated using the following;

per unit = ----- ---------, (5.4)
cvmax ~ cvmin

where cv\ is the current controlled variable value and cvmax and cvmin are the maxi­
mum and minimum controlled variable values. The parameters cvmax and cvmin for
the parameters illustrated in Figure 5.11 are included in Table 5.2.

The initial conditions for all SCFW simulations are identified in Figure 5.11
at time 0 seconds. A reactor power o f near 100 per cent, a steam generator level of
approximately 4.35m and a cumulative LCV position of approximately 74 per cent
are observed. LCV101 is the only operating valve at the inception of the scenario.
This valve experiences a spurious closure immediately after the scenario begins.

The spontaneous closure o f LCV101 causes the level of the affected steam gen-

Chapter 5: Hardware-in-the-loop Shutdown System Simulation 106

Parameter cvmax C^min
Ch-D steam generator level low threshold
Ch-E steam generator level low threshold
SG level (NW)
SG level (NE, SW, SE)
Ch-D trip signal (PLC)
Ch-E trip signal (DarlSIM)
Cumulative LCV101, LCV102...
Reactor power

6 meters
6 meters
6 meters
6 meters

high
high
33%
100%

Ometers
Ometers
0 meters
0 meters

low
low
0%
0%

Table 5.2: Controlled variable values.

erator to begin decreasing (~15 seconds). This decrease occurs because feed-water
flow has been reduced from ~308kg/s to 0kg/s. However, the three additional steam
generators maintain feed-water flow and do not exhibit level reduction.

After 30 seconds the redundant valve (LCV103) opens. However, the backup
valve fails at 2.43 per cent, representing a 97.57 per cent blockage or a defective valve
(~40 seconds). Feed-water requirements cannot be achieved, the steam generator
level continues decreasing and the reactor power begins decreasing (~60 seconds).

The steam generator level continues decreasing toward the SGLL threshold.
Reactor power begins decreasing linearly (70-80 seconds). When the steam generator
level drops below the channel E steam generator level threshold (2.20meters) the
channel E trip signal de-energizes (~78 seconds). The general coincident two-out-of-
three (2oo3) relay voting logic has not been satisfied. The reactor power and steam
generator level continue to decrease.

When the steam generator level drops below the channel D steam generator
level threshold (2.00meters) the channel D trip signal de-energizes (~82 seconds).
The 2oo3 relay voting logic has now been satisfied as illustrated in Figure 5.12 and
the reactor shutdown procedure initiates.

After approximately 2 seconds the reactor power decreases rapidly. This re­
sponse indicates proper shut-off rod deployment into the reactor core. The brief
delay following the trip is expected during the shut-off rod insertion process. Though
the rods are released very quickly following trip activation, the process o f complete
insertion and the absorption of neutrons sufficient for power reduction requires addi­
tional time.

Chapter 5: Hardware-in-the-loop Shutdown System Simulation 107

CHANNEL
TRIP
PARAMETERS

CABLE

Figure 5.12: General co-incidence trip logic satisfied by channel D and E SGLL trip
parameters.

The shutdown scenario is executed over 50 instances. All instances are reviewed
to ensure proper system response and repeatability. Four of the instances are illus­
trated in Figure 5.13. All instances depict proper shutdown signal production by
the simulated electronic control systems. Only slight variances in the times of the
redundant valves opening and the time of channel E and D trip de-energization are
observed.

5.4.4 Hardware-in-the-loop SDS1 SGLL simulation

Figure 5.14 illustrates the signal transmission functions within the HIL simulation
platform. Modified routines from the Ethernet signal transceiver module developed in
Section 3.2.2 are installed, including data collection and process variable acquisition
and transmission. The module accesses the steam generator level sensors and trip
contacts within the simulated NPP and communicates the variables between the
interface.

The SDS1 logic executed within the Tricon v9 PLC during HIL simulation is also
an emulation of the original Fortran source code programmed into the SDS1 electronic
control system at Darlington NPP. During Tricon v9 PLC development the Fortran

Chapter 5: Hardware-in-the-loop Shutdown System Simulation 108

Figure 5.13: Four consecutive bench-mark simulation shutdown scenarios.

source code was translated from the source code used with DarlSIM. Again, only a
segment of the SDS1 logic is evaluated in the following HIL simulations. The logic
evaluated is the SGLL trip logic illustrated in Figure 5.4. SGLL logic is translated to
function block diagrams and programmed onto the Tricon v9 PLC using the Invensys
Tristation 1131 Developer’s Workbench. It is assumed that logic modifications have
not compromised the core SDS1 or SGLL logic.

To enable the replacement o f the SDSl controller from within DarlSIM the
channel D SDSl logic module is disabled within the HIL simulation configuration
and module table. Disabling the SDSl module removes the watchdog event from the
simulated NPP safety systems. To replicate the shutdown system watchdog signal
required by auxiliary safety systems, the SUT input and SUT output modules are
modified to produced alternating watchdog signals. Therefore, DarlSIM can run
without the SDSl module enabled.

The two data collection modules added to the module table for bench-mark
simulation remain. However, now the SDSl data collecting routines are scheduled

Chapter 5: Hardware-in-the-loop Shutdown System Simulation 109

DaiiSIM

data
collection

(sensors)
UDP/IP Tx

SDS1 toflio (Ch-D)

other procoasoo

data UDP/IP Rx
collection (actuators)

Nl Workstation
VI

UDP/IP Rx

signal conditioning

UDP/IP Tx

DAQ AO, DO

DAQAI.DI 4

Tricon v9
PLC

..► Al, Dl module

SDS1 logic (Ch-D)

AO, DO module

----- ^ process variables (Ethernet)
^ process variables (analog signal)

Figure 5.14: HIL simulation platform for SDS1 evaluation using the Tricon v9 PLC.

prior to the disabled channel D SDSl logic module. Both data collection modules are
placed within a single module includes signal transmission and delay routines. With
channel D SDSl logic removed, the controlled variable transceiver is compiled as the
d l a c v t module and is included in the HIL simulation configuration module table.
The module is responsible for the transmission of controlled variables throughout the
HIL simulation platform. The procedure executed within the module is very similar
to the Ethernet signal transceiver in Section 4.1.1 and Section 4.2.1 . The adapted
procedure follows:

begin

- Initialize global variables - socket connection, data collection, etc...,

- Open U D P /IP sockets - outgoing/incoming,

fo r : execution interval t ^ j - C module is loaded (200 ms),

- Initialize local variables - packet buffer, controlled variable, etc...,

- Controlled variable capture - acquire steam generator level sensor values from
CDB

fo r : current number o f S U T inputs

- Controlled variable Tx - format and transmit the controlled variable, id, divisor
and intercept through outgoing U D P /IP socket,

end fo r

- Sleep - t s u T (100 m s),

- Flush U D P /IP socket - clear the incoming U D P/IP socket,

Chapter 5: Hardware-in-the-loop Shutdown System Simulation 110

- Request controlled variable return - transmit id, divisor and intercept through
outgoing U D P /IP socket,

- Wait fo r interface - poll incoming U D P /IP socket ifjjIL - 10 ms),

if: U D P /IP packet detected

- Controlled variable R x - receive data on incoming U D P /IP socket and
extract controlled variable and id,

if: received ID equal to transmitted ID

- Controlled variable store - capture the received controlled variable and
store to CDB,

end fo r

end

The execution interval is configured for 200 ms with an execution phase of 100 ms from
the module table. To achieve high interface availability an SUT execution interval of
40 ms is utilized as well as an SUT delay of 100 ms and an HIL timeout o f 10 ms.

The following results provide analysis o f the data collected during bench-mark
simulation. The figures generated present a summary of the data collected. Every
effort is made to present relevant illustrations of the data which assist in determining
the proper operation o f the NPP SDS1 resulting from a design base event. Following
each figure, table or result is a discussion o f the observations made from the material
presented.

Figure 5.15 illustrates the response o f SDSl to the shutdown scenario. All
eleven parameters are plotted. Again however, to simplify the plot, non-affected
steam generator levels are averaged and valve percentages are summed. Further,
SGLL thresholds are included. Also, each o f the parameters is plotted using per unit
measurements. The per unit value of each variable is calculated using (5.4). The
cvmax and cvm{n for the parameters illustrated in Figure 5.15 are included in Table
5.2.

The response of the NPP to the SCFW and resulting design base event is
almost exactly as the bench-mark simulation. A reactor power of near 100 per cent,
a steam generator level o f approximately 4.35m and a cumulative LCV position of
approximately 74 per cent are observed. LCV101 is the only operating valve at the

Chapter 5: Hardware-in-the-loop Shutdown System Simulation 111

......... Ch-D SG level low threshold
Ch-E SG level low threshold

-------- SG level (NW)
-------- SG level (NE, SW, SE)
- - - Ch-D trip signal (PLC)
- - - Ch-E trip signal (DarlSIM)
- - ■ Cumulative LCV101, LCV102 and LCV103 position
 Reactor power

Figure 5.15: Hardware-in-the-loop SGLL trip detection, Tricon v9 PLC induced
response to loss o f secondary side heat removal design base event.

inception o f the scenario. This valve experiences a spurious closure immediately after
the scenario begins.

The remaining events are all the same as within the bench-mark, including the
spontaneous closure o f LCV101 causes the level of the affected steam generator to
begin decreasing (~15 seconds). The redundant valve opening after 30 seconds. The
backup valve failing at 2.43 per cent, representing a defective valve (~40 seconds). The
steam generator level continues decreasing and the reactor power begins decreasing
(~60 seconds).

Similarly, the steam generator level continues decreasing toward the SGLL
threshold. Reactor power begins decreasing linearly (70-80 seconds). When the steam
generator level drops below the channel E steam generator level threshold (2.20me-
ters) the channel E trip signal de-energizes (~78 seconds). This signal is generated
within DarlSIM. The channel E SDS1 logic is still enabled within the module ta­
ble. The general coincident two-out-of-three (2oo3) relay voting logic has not been
satisfied. Therefore, the reactor power and steam generator level continue to decrease.

When the steam generator level drops below the channel D steam generator

Chapter 5: Hardware-in-the-loop Shutdown System Simulation 112

20 40 60
Time (sec)

80 100

Figure 5.16: Four consecutive hardware-in-the-loop simulation shutdown scenarios.

level threshold (2.00meters) the channel D trip signal de-energizes (~82 seconds).
However, this signal is not generated within DarlSIM. The Ch-D trip signal (PLC)
is generated by the Tricon v9 PLC. The signal is transmitted back to the software
simulator within the same execution interval as occurrence o f the trip condition. In
other words, the steam generator level which causes the trip is transmitted within
the same execution interval as the Ch-D SDS1 SUT trip output, or Tricon v9 PLC
digital output. The 2oo3 relay voting logic has now been satisfied and the reactor
shutdown procedure initiates. Proper shut-off rod deployment into the reactor core
is performed after approximately 2 seconds.

The shutdown scenario is executed over 50 instances. All instances are reviewed
to ensure proper system response and repeatability. Four of the instances are illus­
trated in Figure 5.16. All instances depict proper shutdown signal production by
the simulated electronic control systems and the Tricon v9 PLC. Again, only slight
variances in the times of the redundant valves opening and the time of channel E and
D trip de-energization are observed.

Chapter 5: Hardware-in-the-loop Shutdown System Simulation 113

time (sec) time (sec) time (sec)

------Ch-D SG level threshold
SG levei (NW)
SG level (NE)
SG level (SW)
SG level (SE)

-i— Ch-D trip signal (PLC)
------Calculated trip signal

Figure 5.17: Hardware-in-the-loop SGLL trip detection, detailed analysis of Tricon
v9 PLC induced response to loss of secondary side heat removal design base event.

In Section 5.3.1 previous discrepancies in HIL simulation results are discussed.
The discrepancies are the result of inadequate delays within the HIL simulation plat­
form. The purpose o f the verification procedure of Section 5.3.1 is to assure that the
transmission of SUT inputs and the resulting SUT outputs occurs within the same
execution interval.

Figure 5.17 illustrates the detailed response of SDS1 to the shutdown scenario.
Seven parameters are plotted. Each parameter is plotted for steam generator level
and SGLL trip analysis. It is apparent in all five consecutive shutdown scenarios that
the Tricon v9 PLC trip signal is produced within the same execution interval (200
ms) as the calculated trip signal.

114

Chapter 6
Conclusions

The research performed and presented in this thesis focuses on the application of HIL
simulations in NPP safety control system replacement routines and shutdown system
control logic evaluation. The research began with the proposal o f a procedure for
developing an interface. The procedure included developmental testing and verifica­
tion routines. Ultimately, the proposed procedure resulted in the development of an
interface. The HIL interface was then verified for proper connection and transmission
capabilities. The interface was designed to be compatible with a range of electronic
control systems and software simulators. Extensive observations and discussion were
included to determine the proper timing o f process variables during HIL simulation
and physical limitations o f the developed interface.

The remainder of the thesis included a procedure for installing the developed
HIL interface into an HIL simulation platform. The procedure was executed for NPP
safety critical systems. More specifically, a Tricon v9 safety PLC is programmed to
replicate the SGLL logic o f CANDU SDSl. The HIL simulation platform was verified
to assure proper signal transmission capabilities. Finally, a bench-mark response
o f the simulated Darlington NPP to a design basis event with SDSl initiated by
the simulated electronic control system within the simulator was compared with the
response o f the NPP to a design basis event with SDSl trip logic installed with the
Tricon v9 PLC.

6.1 Summary of contributions
The major contributions of the work presented in this thesis included the following:

• The functionality of an existing software-based NPP training simulator was ex­
tended to include HIL simulation capabilities. Through the developmental pro­
cedure proposed and executed in Chapter 3, an interface device was developed

Chapter 6: Conclusions 115

which supports the existing Unix NPP training simulator. Though communi­
cation with the simulator by external hardware was accomplished prior to HIL
interface device development, only simple communications including few I /O
transmission were performed. The introduced interface development procedure
provides a method o f assuring that proper connectivity and signal transmissions
occur for a range of evaluated processes and I /O configurations on the software
simulator. Therefore, electronic control system verification was enabled and a
measure level o f confidence in the simulations performed was established.

• A generic procedure for developing HIL interface devices was proposed. Exe­
cution o f the proposed procedure included a variable transmission verification
procedure. Verifying an interface performance prior to performing HIL simu­
lation revealed the expected timing requirements within HIL controlled vari­
able transmission routines. Further, signal reproduction biases and an interface
availability are measured. These parameters are essential in performing accu­
rate HIL simulations. In a secondary study, limitations for multiple variable
transmissions were revealed. The procedure can be applied to the development
of any interfacing device.

• A flexible interface device, including customized NI Lab VIEW VI, was created.
In following the developed procedure, an interface device is developed. The de­
vice was not limited to the original application of NPP training simulator HIL
simulation. Throughout the developmental procedure, the device was designed
to be flexible. Therefore, the requirement for connectivity to the device included
Ethernet communication media and industry standard analog and digital sig­
nals.

• A Tricon v9 safety PLC was installed along with the NPP training simulator
and the interface device to perform HIL simulations. Chapter 5 included a
procedure for installing sub-systems within an HIL simulation platform. The
procedure included verification of interface transmission capabilities following
interface installation. During HIL simulation platform development, the timing
requirements for performing actual HIL simulations were revealed. The require­
ments differ from those found during interface analysis due to the installation of
an SUT. W ithin this procedure a measure o f the availability of the platform for
a specified application was observed. This availability is essential to ensuring

Chapter 6: Conclusions 116

accurate HIL simulation results.

• The Tricon v9 PLC was programmed as a CANDU SDS1 Ch-D control logic and
installed within the NPP HIL simulation environment. Again, the Tricon v9
PLC integration was verified. An availability of over 99 per cent was achieved
for the PLC using the developed HIL interface device. However, this availability
was only realized at above expected delays within the HIL simulation platform.
Even so, the delays are suitable for a range of applications.

• A NPP shutdown scenario is illustrated, where Ch-D SGLL trip is induced by
the Tricon v9 PLC. The response of the NPP was compared against a bench­
mark response and determined to be nearly identical. Therefore, it was demon­
strated that the HIL simulation environment is appropriate for evaluation of
NPP processes. Upon closer inspection the Ch-D trip signal acquired by the
software simulator occurred exactly when the software simulator would normally
realize an internal trip.

In the end, all research objectives were successfully met. A method for hardware
connectivity to the software NPP simulator was achieved, modules were developed for
the acquisition of process variables and an interface that supports connection to the
Tricon v9 PLC was developed. Further, the procedures proposed within this thesis
can be applied in many industries, and the functionality of many existing simulators
can be extended to include HIL simulation.

The three distinct motivations behind the research performed in this thesis are
satisfied to some degree. The preliminary steps have been established in the need
for both a process and a platform for the qualification of shutdown system hard­
ware and software based on relevant standards through HIL simulation. Further, the
replacement of obsolete digital and analog shutdown system hardware and software
was enabled. The HIL simulation platform supports the installation of potential elec­
tronic control system for evaluation, and provides a measure availability or assurance
for the accuracy o f the HIL simulation. However, the dynamics of the process eval­
uated should be reviewed. Finally, though the integration of the enhanced function­
alities was only performed by installing an advanced PLC for safety critical control,
the implementation of enhanced functions was supported and HIL simulation can be
performed.

Chapter 6: Conclusions 117

6.2 Suggestions for future work
The following subjects axe suggested for the continuation of work on HIL platform
development:

• The highest frequency process supported by the HIL interface was not revealed
within. The frequency does depend on number of I/O . However, it would be
useful to understand the capabilities of the platform for average HIL simulations.

• The developed HIL interface device was installed and executed within a Mi­
crosoft Windows OS. It is recommended that the interface be converted to an
independent OS platform.

• Parallel application of the developed HIL interface should be performed and
analyzed. Understanding the limits of the interface includes examining the
capabilities of the connectivity media.

The following subjects are suggested for the continuation of work on HIL sim­
ulation of NPP processes:

• Within the Tricon v9 PLC, the entire SDS1 logic should be replicated. Only
SGLL was implemented within this thesis.

• The enhanced capabilities of modern controllers should be evaluated further. In
this thesis a modern controller was installed. However, the enhanced capabilities
of the controller were not evaluated.

• A modified UDP/IP structure including byte-wise transmission capabilities for
process variables should be developed.

• A comparison of the performance of the Tricon v9 PLC against other NPP
qualified safety critical controllers (Teleperm XS (T3000), Common Q, etc.)
should be performed.

The suggested future work is an extension of the research performed within
this thesis. The above are problems that are the result of the work performed to
solve previously identified problems. However, the two major problems identified
prior to the research presented in this thesis were satisfied. The development of an
HIL simulation platform for NPP process evaluation was extensively covered and
included assurances for simulation performance. Also, the problem of simulating

References 118

a NPP process, or more specifically the SDS1 logic of a CANDU NPP, has been
addressed. Though there are obsolete systems in NPPs, the developed platform can
be used to minimize the amount of work required to replace these systems.

119
\

References
[1] International Atomic Energy Agency. Factors relevant to the recycling or reuse

of components arising from the decommissioning and refurbishment of nuclear
facilities. (293), Feb. 1989.

[2] International Atomic Energy Agency. Guidebook on spent fuel store. (240), Apr.
1991.

[3] International Atomic Energy Agency. Principle for intervention for protection of
the public in a radiological emergency. (63):22p, 1991.

[4] International Atomic Energy Agency. Modern instrumentation and control for
nuclear power plants: A guidebook. (387):629p, Sep. 1999.

[5] International Atomic Energy Agency. Specification of requirements for upgrades
using digital instrumentation and control systems, Jan. 1999.

[6] International Atomic Energy Agency. Verification and validation of software
related to nuclear power plant instrumentation and control, page 126p, May
1999.

[7] International Atomic Energy Agency. Assessment and management of ageing
of major nuclear power plant components important to safety: Candu reactor
assemblies. (1197):54p, Feb. 2001.

[8] International Atomic Energy Agency. Instrumentation and control systems im­
portant to safety in nuclear power plants safety guide, page 91p, Apr. 2002.

[9] International Atomic Energy Agency. Evaluation of seismic hazards for nuclear
power plants safety guide. (NS-G-3.3):31p, Mar. 2003.

[10] International Atomic Energy Agency. Managing change in the nuclear industry:
The effects on safety. (18):12p, Feb. 2003.

[11] International Atomic Energy Agency. Solutions for cost effective assessment of
software based instrumentation and control systems in nuclear power plants,
page 136p, Jan. 2003.

[12] International Atomic Energy Agency. Use of control room simulators for training
of nuclear power plant personnel. (1411):101p, Sep. 2004.

References 120

[13] International Atomic Energy Agency. Assessment of defence in depth for nuclear
power plants. (46):120p, Apr. 2005.

[14] International Atomic Energy Agency. Fundamental safety principles, page 21p,
Nov. 2006.

[15] International Atomic Energy Agency. Guidelines for upgrade and modernization
of nuclear power plant training simulators. (1500):89p, Aug. 2006.

[16] International Atomic Energy Agency. Energy, electricity and nuclear power es­
timates for the period up to 2030. (l):56p, July 2007.

[17] International Atomic Energy Agency. On-line monitoring for improving perfor­
mance of nuclear power plants: Instrument channel monitoring, page 109p, Oct.
2008.

[18] International Atomic Energy Agency. The role of instrumentation and control
systems in power uprating projects for nuclear power plants. (NP-T-1.3), Dec.
2008.

[19] International Energy Agency. World energy outlook 2007 executive summary:
China and india insights, page 18p, 2007.

[20] Nuclear Energy Agency. Nuclear energy today, page 112p, 2005.

[21] Nuclear Energy Agency. Nea annual report 2007. page 48p, 2008.

[22] Canadian Nuclear Association. Canada’s nuclear energy: Reliable, affordable
and clean electricity, page 31p, 2008.

[23] Canadian Nuclear Association. Candu nuclear reactor performance 2007.
page lp, 2008.

[24] V.V. Balashov, A.G. Bakhmurov, M.V. Chistolinov, R.L. Smeliansky, D.Yu.
Volkanov, and N.V. Youshchenko. A hardware-in-the-loop simulation environ­
ment for real-time systems development and architecture evaluation. Dependabil­
ity o f Com puter System s, 2008. D e p C o s -R E L C O M E X ’08. Third International
Conference on, pages 80-86, June 2008.

[25] I.D. Baxter and M. Mehlich. Reverse engineering is reverse forward engineering.
R everse Engineering, 1997. Proceedings o f the Fourth Working Conference on,
pages 104-113, Oct. 1997.

[26] G. Bereznai. Heat transport, page 19p, Nov. 1996.

[27] G. Bereznai. Overall unit, page 31p, Nov. 1996.

References 121

[28] G. Bereznai. Reactor and moderator, page 19p, Nov. 1996.

[29] G. Bereznai. Special safety systems, page 35p, Nov. 1996.

[30] G. Bereznai. Steam, turbine and feedwater, page 19p, Nov. 1996.

[31] Atomic Energy Control Board. Requirements for shutdown systems for candu
nuclear power plants, Feb. 1991.

[32] F.E. Celier and L.C. Schooley. Computer-aided design of intelligent controllers:
Challenge of the nineties. Recent Advances in Com puter-Aided Control Systems,
pages p53-77, 1992.

[33] K.C. Chang and C.A. Lomasney. Obsolete integrated circuit replacement
methodology using advanced electronic design automation technology. Circuits
and System s, 1999. IS C A S ’99. Proceedings o f the 1999 IE E E International Sym ­
posium on, Vol. 1:400-403, July 1999.

[34] D. M. Chapin. Digital instrumentation and control systems in nuclear power
plants safety and reliability issues, 1997.

[35] S.W. Cheon, J.S. Lee, K.C. Kwon, D.H. Kim, and H. Kim. The software verifica­
tion and validation process for a plc-based engineered safety features-component
control system in nuclear power plants. Industrial Electronics Society, 200f .
IE C O N 2004- 30th Annual Conference o f IE E E , Vol. 1:827-831, Nov. 2004.

[36] Canadian Nuclear Safety Commission. Trip parameter acceptance criteria for
the safety analysis of candu nuclear power plants, page 14p, 2006.

[37] Ontario Power Generation Review Committee. Pickering, pages p47-71, Mar.
2004.

[38] Hewlett-Packard Company. AlphaServer ds25 owner’s guide, page 281p, Apr.
2003.

[39] D. Craigen, S. Gerhart, and T. Ralston. Case study: Darlington nuclear generat­
ing station [software-driven shutdown systems]. Software, IE E E , Vol. 11(1):30—
32, Jan. 1994.

[40] L.E. Crossley, J.R. Finlay, and N.R. Pillai. The development of a programmable
controller system for use in Ontario hydro nuclear power plants. IE E E Transac­
tions on P ow er Apparatus and System s, Vol. PAS-102(1): 123-126, Jan. 1983.

[41] R. M. Edwards. Testbed for nuclear plant instrumentation and control vali­
dation. Proc. American Nuclear Society Int. Topical Meeting on Nuclear Plant
Instrumentation, Control and Human Machine Interface Technologies, May 1996.

References 122

[42] L. Ferraxini and R. Ciancimino. Modular simulation for logic, distributed,
real-time control systems. Proceedings o f the IE E E /IF A C Joint Sym posium on
Com puter-Aided , pages p225-30, Mar. 1994.

[43] H. Gall. Functional safety iec 61508 / iee 61511 the impact to certification and
the user. Com puter System s and Applications, 2008. A IC C S A 2008. I E E E /A C S
International Conference on, pages 1027-1031, Apr. 2008.

[44] W . J. Garland. Design basis accidents, page 5p, 1998.

[45] Ontario Power Generation. Energy balance, pages pl28-135, Apr. 1993.

[46] Ontario Power Generation. Major components of candu reactors, pages p58-73,
Apr. 1993.

[47] Ontario Power Generation. Unit operational control, pages pl36-138, Apr. 1993.

[48] O. Glockler. Testing the dynamics of shutdown systems instrumentation in re­
actor trip measurements. Vol. 43:p91-96, 2003.

[49] M. Gomez. Hardware-in-the-loop simulation. Nov. 2001.

[50] J. de Grosbois, G. R. Mitchel, and R. Brown. Application-specific qualification
of digital i&c products in a safety-related nuclear context, page 28p, Nov. 2007.

[51] J.M Hopwood and P. J. Allen. Candu 6 evolution. Proceedings o f the Canadian
Nuclear Association Annual Conference, Vol. l:2p, June 1997.

[52] N. M. Ichiyen, D. Chan, and P. D. Thompson. Point lepreau refurbishment
project programmable digital comparison (pdc) replacement for sdsl and sds2.
Proceedings o f the 24th Annual Canadian Nuclear Society Conference, June 2003.

[53] J. S. Janosy. Simulator-aided instrumentation and control system refurbishment
at paks nuclear power plant. Modelling & Simulation, 2007. A M S ’07. First Asia
International Conference on, pages 53-58, Mar. 2007.

[54] M.N. Khajavi, M.B. Menhaj, and A.A. Suratgar. Fuzzy adaptive robust optimal
controller to increase load following capability of nuclear reactors. P ow er System
Technology, 2000. Proceedings. P ow erC on 2000. International Conference on,
Vol. 1:115-120, 2000.

[55] M.N. Khajavi, M.B. Menhaj, and A.A. Suratgar. Comparison of three modern
controllers for wide range power regulation of nuclear reactors. Fuzzy System s,
2001. The 10th IE E E International Conference on, Vol. 3:1235-1238, 2001.

[56] H. Klee. Simulation and design of a digital control system with tutsim. Education,
IE E E Transactions on, Vol. 34(l):76-82, Feb. 1991.

References 123

[57] K. C. Kwon and C. S. Ham. Proposed plan for the development of advanced
instrumentation and control technology in korea. Proceedings of the IAEA Tech­
nical Committee Meeting on Advanced C M Systems in NPPs, June 1994.

[58] K. C. Kwon, S. J. Song, M. N. Park, and S. P. Lyu. The real-time functional
test facility for advanced instrumentation and control in nuclear power plants.
Nuclear Science, IE E E Transactions on, Vol. 46(2):92-99, Apr. 1999.

[59] Zhen Li, M. Kyte, and B. Johnson. Hardware-in-the-loop real-time simulation
interface software design. Intelligent Transportation System s, 2 0 0 f. Proceedings.
The 7th International IE E E Conference on, pages 1012-1017, Oct. 2004.

[60] L. Lu and G. Lewis. Reliability evaluation of standby safety systems due to
independent and common cause failures. Autom ation Science and Engineering,
2006. C A S E ’06. IE E E International Conference on, pages 264-269, Oct. 2006.

[61] C. J. Luxat. Safety analysis technology: Evolution, revolution and the drive to
re-establish margins, page 19p, Sep. 2000.

[62] D.A. Meneley and Y.Q. Ruan. Comparison of phwr and pwr. page 25p, Sep.
1998.

[63] D.A. Meneley and Y.Q. Ruan. Moderator, hts, heavy water, page 15p, Sep.
1998.

[64] D.A. Meneley and Y.Q. Ruan. Reactor and fuel handling, page 12p, Sep. 1998.

[65] A. Meyer, L. Pretorius, and J.H.C. Pretorius. A model using an obsolescence
mitigation timeline for managing component obsolescence of complex or long life
systems. Engineering M anagem ent Conference, 2004■ Proceedings. 2004 IE E E
International, Vol. 3:1310-1313, Oct. 2004.

[66] A.I. Miller and H.M. van Alstyne. Heavy water: A distinctive and essential
component of candu. (10962):lip , June 1994.

[67] J.F. Miller and R.W. McDowell. Significance of analog instrumentation-design
philosophy of replacement dump arrest unit at pickering station candu reactor.
Nuclear Science, IE E E Transactions on, Vol. 44(3): 1081-1083, June 1997.

[68] B. Mishra and R. Harrington. Hybrid simulation and digital controller design
for a nuclear propulsion plant. O C E A N S , Vol. 7:629-633, Sep. 1975.

[69] J. Murray. Qualification lifecycle and method of obsolescence management of
the invensys tricon. Technical M eeting on Impact o f M od em Technology on In ­
strumentation and Control in Nuclear P ow er Plants, page 9p, Sep. 2005.

References 124

[70] Institute of Electrical and Electronics Engineers. Ieee standard for qualification
of class le static battery chargers and inverters for nuclear power generating
stations. A N S I /IE E E Std 650-1979, Oct. 1979.

[71] V. Okol’nishnikov and A. Zenzin. Use of simulation for development of process
control system. Computational Technologies in Electrical and Electronics Engi­
neering, 2008. S IB IR C O N 2008. IE E E Region 8 International Conference on,
pages 248-251, July 2008.

[72] Drew J. Rankin. Tricon and shutdown system one (sdsl), June 2007.

[73] Drew J. Rankin. Hardware-in-the-loop nuclear power plant training simulation
platform design and validation, June 2008.

[74] Drew J. Rankin, Jingke She, and Jin Jiang. Evaluation of safety pics and fpgas
for shutdown systems in candu nuclear power plants, Sep. 2008.

[75] B. Rouben. Introduction to reactor physics, page 54p, Sep. 2002.

[76] J.J. Sammarco. Programmable electronic and hardwired emergency shutdown
systems: A quantified safety analysis. Industry Applications, IE E E Transactions
on, Vol. 43(4): 1061-1068, July 2007.

[77] M.H. Sanwarwalla and A.J. Alsammarae. Program for life extension and pre­
serving existing resources for motor control center components [nuclear plants].
Nuclear Science, IE E E Transactions on, Vol. 42(4):1000-1004, Aug. 1995.

[78] C.K. Scott, R. Jeppesen, A.R. McKenzie, M.A. Petrilli, and P.D. Thompson.
Integrated safety review for the point lepreau refurbishment for life extension,
page 8p, June 2002.

[79] S.M. Shah and M. Irfan. Embedded hardware/software verification and val­
idation using hardware-in-the-loop simulation. Emerging Technologies, 2005.
Proceedings o f the IE E E Sym posium on, pages 494-498, Sep. 2005.

[80] V. G. Snell. Safety of candu nuclear power stations. (6329):17p, Nov. 1978.

[81] Ki Chang Son, Chong Son Chun, Se Do Sohn, Byung Chai Lee, Byeong Joo
Lee, and B.R. Whittall. A study on software verification for shutdown system
no.l of wolsong 2, 3 and 4 in candu. Proceedings o f the 1996 Am erican Nuclear
Society International Topical M eeting on Nuclear Plant Instrumentation, Control
and Hum an-M achine Interface Technologies, N P IC & H M IT , (2):pl259-64, May
1996.

[82] CANDU 6 Program Team. Candu 6 technical summary, page 62p, June 2005.

References 125

[83] P. Thomas. Safety regulation and the not-so-level playing field. Energy Trading
and Risk Managem ent, 2005. The IE E International Conference on (R ef No.
2 0 0 5 /1 1 2 4 5), pages 9-12, Nov. 2005.

[84] Invensys Triconex. Communication and installation guide for tricon systems.
June 2005.

[85] Invensys Triconex. Field terminations guide for tricon systems. June 2005.

[86] Invensys Triconex. Tristation 1131 developer’s guide for tricon systems. June
2005.

[87] L. Tsoukalas, R.C. Berkan, and A. Ikonomopoulos. Uncertainty modelling in
anticipatory systems [nuclear reactor operator emulation]. Uncertainty Modelling
and Analysis, 1990. Proceedings., First International Symposium on, pages 366-
371, Dec. 1990.

[88] A. G. Wikjord. The disposal of Canada’s nuclear fuel waste. July 1996.

[89] X. Wu, H. Figueroa, and A. Monti. Testing of digital controllers using real-time
hardware in the loop simulation. P ow er Electronics Specialists Conference, 2004-
P E S C 04■ 2004 IE E E 35th Annual, Vol. 5:3622-3627, June 2004.

[90] G. Yan and J. V. R. L’Archeveque. On distributed control and instrumentation
systems for future nuclear power plants. Nuclear Science, IE E E Transactions
on, Vol. 23(l):431-435, Feb. 1976.

126

Appendix A
Darlington Nuclear Power Plant Design

Specifications

Appendix A : Darlington Nuclear Power Plant Design Specifications 127

Parameter Value
General
Owner, operator Ontario Power Generation
Designers Ontario Hydro
Number of units Four
Rated output per unit Generator output 935 MW(e)
Self-consumption 54 MW(e)
Net electrical 881 MW(e)
Overall net efficiency 31.70%
Fuel Natural Uranium Dioxide (U02)
Moderator Deuterium Oxide (D20-heavy water)
Coolant Pressurized heavy water
Type Horizontal pressure tube
Construction Start of construction late 1977
In-service dates: Unit 1-1990, Unit 3-1991, Unit 2-1990, Unit 4-1992
Reactor Core
Pressure Tubes
Quantity 480 tubes (24 x 24 array)
Core Radius 3 532 mm
Core Length 5 944 mm
Fuel load 6 240 bundles (108 Mg U)
Maximum channel power 6.4 M W
Fuel Elements
Type 37 element bundles, 495 mm long
No. per channel 13 bundles
Total weight of bundle 23.5 kg
Maximum bundle power 787 kW (time averaged)

Table A .l: Darlington NPP general and reactor core design specifications.

Appendix A : Darlington Nuclear Power Plant Design Specifications 128

Parameter Value
Reactor Control
Reactor control
Reactivity control Units

164 MW.h per kg. U
2 digital computers per unit

Control system - liquid zone control units
Purpose

Quantity
Type

suppress unwanted changes in neutron flux distri­
bution
14 separate zones
Light water compartments

Control system - control a Dsorber rods
Purpose

Quantity

Inserted if reactivity rate of change of Liquid Zone
Control system is inadequate
4 rods

Control system - adjuster rods
Purpose

Quantity
Type

Normally inserted to limit fuel power; can be with­
drawn to provide increased eactivity
24 rods
Stainless steel

Reactor Shutdown
Shutdown systems - shut-off rods
Purpose

Quantity
Type

Orientation
Reactivity worth
Drive mechanism

Safety devices to quickly terminate reactor opera­
tion
32 rods
Stainless steel - cadmium - stainless steel sandwich
in the form of a tube
Vertical through lattice
-49 mk within 2.0 sec.
Winch and cable driven via an electro magnetic fric­
tion clutch by a constant speed induction motor

Shutdown system - liquid injection
Purpose
Type
Reactivity worth
Injection method

Safety system to terminate reactor operation
Gadolinium nitrate solution
-55 mk
Pressurized helium to drive solution into bulk mod­
erator through nozzles

Table A .2: Darlington NPP reactivity control and shutdown system specifications,
continued.

129

Appendix B
Coverage of Process Failures by Shutdown

Systems no. 1 and 2

Appendix B: Coverage of Process Failures by Shutdown Systems no. 1 and 2 130

No. Process Failure Trip Parameter Alternative Trip
Parameter

Loss of Regulation from
High Power:

1. Fast High Rate Neutron Power High Neutron Power/High
Heat Transport Pressure

Slow High Neutron Power High Heat Transport
Pressure/Manual(1)

Loss of Regulation from
Decay Power Levels:

2. Pressurized/Pumps On

Fast High Rate Neutron Power High Heat Transport
Pressure

Slow High Heat Transport
Pressure

High Neutron Power®
Manual®

3. Pressurized/Pumps Off

Fast High Rate Neutron Power Low Gross Coolant Flow
(2) (6)

Slow Low Gross Coolant Flow
(2) (6)

High Heat Transport
Pressure

4. Reduced Pressure/Pumps Off

Fast High Rate Neutron Power
(2) (6)

Low Heat Transport
Pressure/Low Gross
Coolant F1ow(2)(6)

Slow Low Gross Coolant Flow(2) (6) Low Heat Transport
Pressure (2)(6)/Manual(1)

5. Reduced Pressure/Pumps On

Fast High Rate Neutron Power Low Heat Transport
Pressure(2)(6)

Slow Low Heat Transport
Pressure(2) (6)

Manual

6. Loss of Class IV Power Low Gross Coolant
F1ow(2)

High Heat Transport
Pressure

Table B .l : Coverage of process failures by shutdown system no. 1 and
independently by shutdown system no. 2.

Appendix B: Coverage of Process Failures by Shutdown Systems no. 1 and 2 131

No. Process Failure Trip Parameter Alternative Trip
Parameter

Loss of Coolant Into Containment:

7. Large High Rate Neutron Power High Neutron Power/High
reactor building Pressure

8. Intermediate High Neutron Power High reactor building
Pressure

9. Small

With Regulation High reactor building
Pressure

Low Heat Transport
Pressure(2)/Low Pressurizer
Level

With Regulation -
Pressurizer Isolated

High reactor building
Pressure

Low Heat Transport
Pressure

Without Regulation High reactor building
Pressure

High Neutron Power

10. Very Small

With Regulation Low Heat Transport
Pressure*2*

Low Pressurizer Level/
Manual

With Regulation-
Pressurizer Isolated

Low Heat Transport
Pressure*2*

Manual

Without Regulation High Neutron Power Manual*1*

11. Loss-of-Coolant Into Calandria

With Regulation Low Heat Transport
Pressure*2*
Moderator High Level

Low Pressurizer Level/
Manual*1*

With Regulation -
Pressurizer Isolated

Low Heat Transport
Pressure(2)
Moderator High Level

Manual*1*

Without Regulation High Neutron Power
Moderator High Level

Manual*1*

Table B.2: Coverage of process failures by shutdown system no. 1 and
independently by shutdown system no. 2, continued.

Appendix B: Coverage of Process Failures by Shutdown Systems no. 1 and 2 132

No. Process Failure Trip Parameter Alternative Trip
Parameter

Loss of Coolant Into Containment:

7. Large High Rate Neutron Power High Neutron Power/High
reactor building Pressure

8. Intermediate High Neutron Power High reactor building
Pressure

9. Small

With Regulation High reactor building
Pressure

Low Heat Transport
Pressure(2)/Low Pressurizer
Level

With Regulation - High reactor building Low Heat Transport
Pressurizer Isolated Pressure Pressure

Without Regulation High reactor building
Pressure

High Neutron Power

10. Very Small

With Regulation Low Heat Transport
Pressure*2*

Low Pressurizer Level/
Manual

With Regulation-
Pressurizer Isolated

Low Heat Transport
Pressure®

Manual

Without Regulation High Neutron Power Manual*1*

11. Loss-of-Coolant Into Calandria

With Regulation Low Heat Transport
Pressure*2*
Moderator High Level

Low Pressurizer Level/
Manual*1*

With Regulation -
Pressurizer Isolated

Low Heat Transport
Pressure(2)
Moderator High Level

Manual*1*

Without Regulation High Neutron Power
Moderator High Level

Manual*1*

Table B.3: Coverage of process failures by shutdown system no. 1 and
independently by shutdown system no. 2, continued.

Appendix B: Coverage of Process Failures by Shutdown Systems no. 1 and 2 133

No. Process Failure Trip Parameter Alternative Trip
Parameter

15. Loss of Feedwater Control
(e.g., Closure of Feedwater
Valves to a steam generator)

Low steam generator Level High Heat Transport
Pressure(3)(1) /Manual^

16. Feedwater Pumps Trip Low Steam generator Level High Heat Transport
Pressure(3)(1) / Low steam
generator Feedline Pressure
0)(4)

17. Loss of Moderator Cooling High Moderator Level Manual

18. Moderator Pipe Break Low Moderator Level Manual/High Neutron
Power

Notes:

(1) Alternative trip parameters which provide trip coverage over a limited range of event scale (e.g.,
break size).

(2) The low coolant flow and low heat transport system pressure trips are conditioned out on log
power < 0.3 percent.

(3) If 4 percent feedwater flow is available after trip.

(4) The low steam generator feedline pressure trip is conditioned out when log power <10 percent.

(5) Feedline pressure may precede steam generator low level.

(6) Trip acts as high power trip in effect since power is increasing - this instigates a trip by removing
the conditioned-out state.

Table B.4: Coverage of process failures by shutdown system no. 1 and
independently by shutdown system no. 2, continued.

134

Appendix C
C Program Modules for Simulation and

Development Analysis

Timing Analysis C Module (1000)

1000 ^in clu d e < s y s / t y p e s . h>
1001 #in clu d e < s y s / socket . h>
1002 ^in clu d e C n e t i n e t / i n . h>
1003 #in clu d e < a r p a / i n e t . h>

1004 #in clu d e <ne tdb .h>
1005 ^in clu d e < u n i s t d . h >
1006 #in clu d e < s i g n a l . h >
1007 #in clu d e < s t d i o . h >
1008 #in clu d e < f c n t l . h >
1009 #in clu d e < e r r n o .h >
1010 #in clu d e < s y s / t i m e . h >
1011 ^in clu d e < s t d l i b . h >
1012 ^in clu d e <memory.h>
1013 ^in clu d e <math.h>
1014 ^in clu d e < s y s / p o l l . h >
1015 #in clu d e < s t d i o . h >
1016 ^in clu d e < s t d l i b . h >
1017 ^in clu d e ” / u s r / m a i n l c / s i m / t y p e s . h”
1018 #in clu d e ” /u sr / release /com20050705 / inc lude/cdbmapping . h”

1019
1020 / * D e f i n e d a t a c o l l e c t i o n p a r a m e t e r s * /

1021 ^ d e fin e MAXDATA 100000 / * N u m ber o f data s a m p l e s to

c a p t u r e * /

Appendix C: C Program Modules for Simulation and Development Analysis 135

1022 / * D e f i n e t h e s i n e w ave p a r a m e t e r s * /

1023 # d e fin e Fs 1000.0 / * s a m p l i n g f r e q u e n c y in h e r t z * /

1024 # d e fin e Fo 1.0 / * s a m p l i n g w ave f r e q u e n c y in h e r t z * /

1025 ^ d e fin e NUM 1000 / * g e n e r a t e n u m ber o f s a m p l e * /

1026 # d e fin e sineWave.OFF 3 / * s i n e w ave o f f s e t t r a n s l a t i o n * /

1027 # d e fin e sineWave_AMP 3 / * s i n e w ave a m p l i t u d e * /

1028 / * S i n e w a ve ” o n / o f f ” c o n t r o l m a c r o s * /

1029 # d e fin e s i n eOn (sampleNum , s i n e A m p l i t u d e) { \
1030 i f (n = sampleNum) x l m p u l s e = s i n e A m p l i t u d e ;\
1031 i f (n = sampleNum + 1) x l m p u l s e = 0 . 0 ;\
1032 }
1033 # d e fin e s i n e O f f (s a m p l e N u m) i f (n = sampleNum) U [0] = U [1] =

0 ;

1034
1035 / * D e f i n e s o c k e t a d d r e s s s t r u c t u r e s and v a r i a b l e s * /

1036 stru ct sockaddr_in s inai ;
1037 stru ct sockaddr. in sinbo ;

1038 int si ;
1039 stru ct sockaddr_in sinao ;
1040 stru ct sockaddr. in s inbi ;

1041 int so ;
1042 / * D e f i n e d a t a c o l l e c t i o n v a r i a b l e s * /

1043 long int t ime-array [MAXDATA] ;
1044 int i d x _ t i m e _ a r r a y = 0;
1045 f lo a t tx_array [MAXDATA] ;
1046 f lo a t rx_array [MAXDATA];
1047 / * D e f i n e s i n e W a v e g e n e r a t o r v a r i a b l e s * /

1048 int sineSpot = 0;
1049 double sineWave [NUM] ;
1050 int d e l a y _ H I L ;
1051 int d e l a y . S U T ;
1052 / * O pen and i n i t i a l i z e UDP c o n n e c t i o n b e t w e e n A l p h a s e r v e r

and N I w o r k s t a t i o n * /

1053 void dlaludpo (void) {

Appendix C: C Program Modules for Simulation and Development Analysis 136

1054 / * U D P /IP v a r i a b l e s * /

1055 in t e r r or _ i n ;

1056 in t er ror .out ;
1057 / * S in e W a v e v a r i a b l e s * /

1058 double U [3] ,
1059 xlmpulse = 0 . 0 ;
1060 in t n ;

1061 const double C l = 2 . 0 , C 2 = 1 . 0 , D 2 = 1 .0 ;
1062 const double pi = 4 .0 * a t a n (l . O) ;
1063 double D l, K, B, M, N;
1064 idx_time_array = 0;
1065 / * A l p h a s e r v e r c o n n e c t i o n c o n f i g u r a t i o n (i n p u t) * /

1066 sinai . s i n . f a m i l y = AFJNET;
1067 sinai . s i n .p o r t = h t o n s (9 9 9 9) ;
1068 sinai . sin_addr . s_addr = i n et _addr (” 1 9 2 . 1 6 8 . 1 . 1 ”) ;

1069 / * s i n a i . s i n . a d d r . s . a d d r = i n e t . a d d r (”# # # . # # # . # # # . # # # ”) ; * /

1070 / * N I w o r k s t a t i o n c o n n e c t i o n c o n f i g u r a t i o n (o u t p u t) * /

1071 sinbo . s i n_ fami ly = AFJNET;

1072 sinbo . s in_port = htons (10001) ;
1073 sinbo . s in .addr . s_addr = inet .addr (” 1 9 2 . 1 6 8 . 1 . 2 ”) ;
1074 / * s i n b o . s i n . a d d r . S - a d d r = i n e t - a d d r (”# # # . # # # . # # # . # # # ”) ; * /

1075 si = socket (AFJNET, SOCXDGRAM, 0) ;
1076 / * A l p h a s e r v e r c o n n e c t i o n c o n f i g u r a t i o n (o u t p u t) * /

1077 sinao . s i n . f a m i l y = AFJNET;
1078 sinao . s i n .p o r t = htons (9 9 9 8) ;
1079 sinao . s in .addr . s .addr = inet .addr (” 1 9 2 . 1 6 8 . 1 . 1 ”) ;

1080 / * s i n a o . s i n . a d d r . s . a d d r = i n e t . a d d r (’’f t # # . # # # . # # # . # # # ”) ; * /

1081 / * N I w o r k s t a t i o n c o n n e c t i o n c o n f i g u r a t i o n (i n p u t) * /

1082 sinbi . s i n . f a m i l y = AFJNET;
1083 sinbi . s i n .p o r t = htons (10000) ;
1084 sinbi . s in .addr . s .addr = inet .addr (” 1 9 2 . 1 6 8 . 1 . 2 ”) ;

1085 / * s i n b i . s i n . a d d r . s . a d d r = i n e t . a d d r f ”# # # . # # # . # # # . # # # ”) ; * /

1086 so = socket (AFJNET, SOCKDGRAM, 0) ;
1087

1088
1089

1090
1091
1092
1093
1094
1095
1096
1097

1098
1099
1100

1101
1102

1103
1104
1105
1106
1107
1108
1109
1110

1111

1112

1113
1114
1115
1116
1117
1118
1119

Appendix C: C Program Modules fo r Simulation and Development Analysis 137

/ * D e t e c t i n p u t e r r o r * /

e r r o r _ i n = b i nd (s i , (s t r u c t s o c k a d d r *)&;sinai , s i z e o f (
s i n a i)) ;

i f (e r r o r _ i n < 0) {
c l o s e (s i) ;
p r i n t f (’’UDP^In^Bind^Er ror ^code^=^%d\n” , e r r o r _ i n) ;
e x i t (2) ;

}

/ * D e t e c t o u t p u t e r r o r * /

e r r o r _ o u t = b i n d (s o , (s t r u c t s o c k a d d r *) & s i n a o , s i z e o f (
s i n a o)) ;

i f (e r r o r . o u t < 0) {
p u t s (’’ UDP ^Out ^Bi nd ^Error ”) ;
p r i n t f (” E rror ^code^=^%d” , e r r o r _ o u t) ;
c l o s e (s o) ;
e x i t (2) ;

}

/ * S in e W a v e G e n e r a t o r * /

/ * C a l c u l a t e v a r i a b l e p a r a m e t e r s * /

B = (F s / (p i * F o)) * t a n (p i * F o / F s) ;
M = 2 . 0 * p i * F o * B ;
N = 2 . 0 * Fs ;

/ * S y n t h e s i s c o e f f i c i e n t s * /

D1 = 2 . 0 * (M*M-N*N) /(M*M+N*N) ;
K = M *B*Fs / (M*MbN*N) ;

/ * G e n e r a t e NUM s a m p l e s * /

f o r (n=0;n<MJM;++n) {
s i n e O n (l , s ineWave_AMP) ;
s i n e O f f (NUM) ;
/ * S i n e w a v e s y n t h e s i s * /

Appendix C: C Program Modules fo r Simulation and Development Analysis 138

1120 / * B iq u a d H R f i l t e r */

1121 U[2] = x l m p u l s e —D1*U[0] — D 2 * U [1] ;
1122 s i n e W a v e [n] = K*(U[2] + C 1 * U [0] + C 2 * U [1]) + s i n e W a v e . O F F ;
1123 / * U pdate r e g i s t e r s */

1124 U [l] = U [0] ;
1125 U [0] = U [2] ;
1126 }
1127 }
1128
1129 /* O u t p u t v a r i a b l e to U P D /IP s o c k e t */

1130 v o i d SDSl .HI L (v o i d) {
1131 /* D e f i n e p r o c e s s v a r i a b l e p o i n t e r s */

1132 # d e f i n e NUMPROCVAR 1
1133 ^ d e f i n e NUMJRECVAR 1
1134
1135 i n t d a t a . m u l t = 600;
1136 l o n g i n t t i m e _ d i f f = 0 ;
1137 s t r u c t t i m e s p e c t i m e . s e n d ;
1138 s t r u c t t i m e s p e c t i m e . r e c e i v e ;
1139 i n t s t a t , i , j , r c v . d a t a ;
1140 f l o a t d e l a y _ l o o p ;
1141 f l o a t PROCVAR[NUMPROCVAR];
1142 f l o a t RECVAR[NUMJ1ECVAR];
1143 t i m e . t r a w t i m e ;
1144 /* D e f i n e r e c e i v e p o l l i n g v a r i a b l e s */

1145 in t r v ;
1146 s t r u c t p o l l f d u f d s [2] ;
1147 / * D e f i n e t r a n s m i t m e s s a g e p o i n t e r */

1148 c h a r m s g . o u t [1 8] ;
1149 /* D e f i n e r e c e i v e m e s s a g e p o i n t e r */

1150 c h a r * m s g _ i n ;
1151 c h a r * m s g _ i n _ i d ;
1152 u n s ig n e d i n t s i n . l e n g t h ;
1153 /* C o n f i g u r e i n p u t t i m i n g r e q u i r e m e n t s */

Appendix C: C Program Modules fo r Simulation and Development Analysis 139

1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165

1166
1167
1168

1169
1170
1171

1172
1173
1174

1175
1176
1177

1178
1179
1180

1181

stru ct t i m e v a l t i m e o u t ;
f d _ s e t r e a d - h a n d l e s ;
int n u m b e r - d a t a = 0;
stru ct tm * t i m e i n f o ;
t ime (&rawtime) ;
t i m e i n f o = l o c a l t i m e (&rawt ime) ;

i f (i d x - t i m e . a r r a y % (5 * d a t a _ m u l t) = = 0) {
i f (i d x _ t i m e _ a r r a y < 5 * d a t a _ m u l t) {

d e l ay_ HI L = 1; de lay_SUT = 0;

}
else i f (i d x _ t i m e _ a r r a y > = 5 * d a t a _ m u l t &&;

i d x _ t i m e _ a r r a y < 1 0 * d a t a _ m u l t) {
d e la y_ HI L = 1; de la y_SUT = 10000 ;

}
else i f (i d x _ t i m e _ a r r a y > = 1 0 * d a t a _ m u l t &&

i d x _ t i m e _ a r r a y < 1 5 * d a t a _ m u l t) {
d e l a y . H I L = 1; de lay_SUT = 2000 0 ;

}
else i f (i d x _ t i m e _ a r r a y > = 1 5 * d a t a _ m u l t &&

i d x _ t i m e _ a r r a y < 2 0 * d a t a _ m u l t) {
d e la y_ HI L = 2; de lay_SUT = 0;

}
else i f (i d x _ t i m e _ a r r a y > = 2 0 * d a t a _ m u l t &&

i d x _ t i m e _ a r r a y < 2 5 * d a t a . m u l t) {
d e l a y . H I L = 2; de la y_SUT = 10000 ;

}
else i f (i d x _ t i m e _ a r r a y > = 2 5 * d a t a _ m u l t &&

i d x _ t i m e _ a r r a y < 3 0 * d a t a _ m u l t) {
d e l a y . H I L = 2; d e l a y . S U T = 2 00 00 ;

}
else i f (i d x _ t i m e _ a r r a y > = 3 0 * d a t a _ m u l t &&

i d x _ t i m e _ a r r a y < 3 5 * d a t a . m u l t) {
d e l a y . H I L = 3; d e l a y . S U T = 0;

1182
1183

1184
1185
1186

1187
1188
1189

1190
1191
1192

1193
1194
1195

1196
1197
1198

1199
1200
1201

1202
1203
1204

1205
1206

}
e l s e i f (i d x _ t i m e _ a r r a y > = 3 5 * d a t a _ m u l t &&;

i d x _ t i m e _ a r r a y < 4 0 * d a t a _ m u l t) {
d e l a y_ H I L = 3; de la y_SUT = 10000 ;

}
e l s e i f (i d x _ t i m e _ a r r a y > = 4 0 * d a t a _ m u l t &&;

i d x _ t i m e _ a r r a y < 4 5 * d a t a _ m u l t) {
d e l a y . H I L = 3; d e l a y . S U T = 2 00 00 ;

}
e l s e i f (i d x _ t i m e _ a r r a y > = 4 5 * d a t a _ m u l t &&;

i d x _ t i m e _ a r r a y < 5 0 * d a t a _ m u l t) {
d e l a y . H I L = 4; d e l a y . S U T = 0;

}
e l s e i f (i d x . t i m e . a r r a y > = 5 0 * d a t a _ m u l t &&

i d x . t i m e . a r r a y < 55* d a t a . m u l t) {
d e l a y . H I L = 4; d e l a y . S U T = 10000 ;

}
e l s e i f (i d x . t i m e . a r r a y > = 5 5 * d a t a _ m u l t &&

i d x . t i m e . a r r a y < 60* d a t a . m u l t) {
d e l a y . H I L = 4; d e l a y . S U T = 2 00 00 ;

}
e l s e i f (i d x . t i m e . a r r a y > = 6 0 * d a t a _ m u l t &&

i d x . t i m e . a r r a y < 6 5 * d a t a . m u l t) {
d e l a y . H I L = 5; d e l a y . S U T = 0;

}
e l s e i f (i d x . t i m e . a r r a y > = 6 5 * d a t a _ m u l t &&

i d x . t i m e . a r r a y < 7 0 * d a t a _ m u l t) {
d e l a y . H I L = 5; d e l a y . S U T = 10000 ;

}
e l s e i f (i d x . t i m e . a r r a y > = 7 0 * d a t a _ m u l t &fc

i d x . t i m e . a r r a y < 7 5 * d a t a _ m u l t) {
d e l a y . H I L = 5; d e l a y . S U T = 2000 0 ;

}

Appendix C: C Program Modules fo r Simulation and Development Analysis 140

Appendix C: C Program Modules fo r Simulation and Development Analysis 141

1207

1208
1209
1210

1211

1212
1213

1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233

1234
1235
1236

e l s e i f (i d x _ t i m e _ a r r a y > = 7 5 * d a t a _ m u l t &&;
i d x _ t i m e _ a r r a y < 8 0 * d a t a _ m u l t) {
d e l a y . H I L = 10; d e l a y . S U T = 0;

}
e l s e i f (i d x . t i m e . a r r a y > = 8 0 * d a t a _ m u l t &&

i d x _ t i m e _ a r r a y < 8 5 * d a t a _ m u l t) {
d e l a y . H I L = 10; d e l a y . S U T = 10000 ;

}
e l s e i f (i d x _ t i m e _ a r r a y > = 8 5 * d a t a _ m u l t &&;

i d x _ t i m e _ a r r a y < 9 0 * d a t a _ m u l t) {
d e l a y . H I L = 10; d e l a y . S U T = 2000 0 ;

}
e l s e {

d e l a y . H I L = 0; d e l a y . S U T = 0;

}
p r i n t f (’W o ld , J3%ld\n” , d e l a y . H I L , d e l a y _ S U T) ;

}

PROCVAR[0] = s ineWave [s i n e S p o t] ;
s i n e S p o t + + ;
i f (s i n e S p o t > = NUM) s i n e S p o t = 0 ;

/ * S t a r t HI L i n t e r f a c e t i m e r * /

s t a t = c l o c k . g e t t i m e (CLOCKJlEALTIME, & t i m e _ s e n d) ;

/ * T r a n s m i t p r o c e s s v a r i a b l e s * /

f o r (i = 0; i < NUMPROCVAR; i + +) {
s p r i n t f (m s g . o u t , ” % 0 2 d 0 3 7 5 % 0 1 2 . 6 f ” , i ,PRDCVAR[i]) ;
t x . a r r a y [i d x . t i m e . a r r a y] = PROCVAR[i] ;
s e n d t o (s o , m s g . o u t , s t r l e n (m s g . o u t) + 1 , 0 , (s t r u c t

s o c k a d d r *) & s i n b i , s i z e o f (s i n b i)) ;

}

/ * D e l a y f o r HI L i n t e r f a c e and S U T * /

1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249

1250

1251
1252
1253
1254
1255
1256

1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267

u s l e e p (d e l a y _ S U T) ;
FD_ZERO(&r ead_handles) ;
F D _ S E T (s i , & r e a d _ h a n d l e s) ;
t i m e o u t . t v . s e c = 0;
t i m e o u t . t v . u s e c = 1;

/ * S e t t h e v a l u e o f i n p u t — i n d e p e n d a n t v a r i a b l e s * /

msg_in = ” 1 2 1 2 3 4 1 2 3 4 5 6 7 8 ” ;
m s g _ i n _ i d = ” 12” ;
r c v _ d a t a = 0 ;

/ * F l u s h i n c o m i n g U D P /IP p a c k e t s b e f o r e r e t u r n r e q u e s t * /

w h i l e (s e l e c t (s i + l , & x e a d _ h a n d l e s , NULL, NULL, ¿ ¿ t i m e o u t)

> 0) {
r e c v f r o m (s i , msg_in , 10, 0 , (s t r u c t s o c k a d d r *) & s i n b o ,

& s i n _ l e n g t h) ;

}

f o r (i = 50; i < 50+NUMEECVAR; i + +) {
/ * R e q u e s t p r o c e s s v a r i a b l e s r e t u r n * /

s p r i n t f (m s g . o u t , ” % 0 2 d 0 3 7 5 0 0 0 0 0 0 0 0 0 0 0 0 ” , i) ;
s e n d t o (s o , msg_out , s t r l e n (m s g _ o u t) + 1 , 0 , (s t r u c t

s o c k a d d r *)&;s inbi , s i z e o f (s i n b i)) ;

u f d s [0] . f d = si ;
u f d s [0] . e v e n t s = POLLIN;
u f d s [1] . fd = so ;
u f d s [1] . e v e n t s = POLLIN;
rv = p o l l (u f d s , 2 , d e l a y _ H I L) ;

i f (r v = - 1) { p e r r o r (" p o l l ”) }
e l s e i f (r v = 0) {

p r i n t f (’’ T i m e o u t ^ o c c u r r e d ! \ n ”) ;

}

Appendix C: C Program Modules fo r Simulation and Development Analysis 142

Appendix C: C Program Modules fo r Simulation and Development Analysis 143

1268
1269
1270
1271

1272

1273
1274
1275
1276

1277
1278
1279
1280
1281
1282
1283
1284
1285
1286

1287
1288
1289
1290
1291
1292
1293
1294
1295

1296

e l s e {
/ * p r i n t f (” D a t a . \ n ”) ; * /

/ * R e c e i v e r e t u r n e d v a r i a b l e s * /

r e c v f r o m (s i , m s g J n , 10, 0 , (s t r u c t s o c k a d d r *)&
s in b o , & s i n _ l e n g t h) ;

/ * p r i n t f (” % 0 2 d %s on % s \ n ” , i , m s g - i n , a s c t i m e (t i m e i n f o

)) ; * /
n u m b e r _ d a t a + + ;

}
i f (n u m b e r - d a t a = 0) {

p r i n t f (” W a r n i n g : ^N o^D ata^(% d) ^on^%s” , i , a s c t i m e (
t i m e i n f o)) ;

r x . a r r a y [i d x _ t i m e _ a r r a y] = 1001;

}
e l s e {

/ * R em ov e i d e n t i f i e r * /

/ * p r i n t f (” E n t i r e : % s \ n ” , m s g - i n) ; * /

s t r n c p y (m s g - i n _ i d , msg_in , 2) ;
s t r n c p y (m s g _ i n _ i d + 2 , ” \0” , 2) ;
s t r n c p y (msg_in , msg_in + 2 , 8) ;
s t r n c p y (msg_in + 8 , ” \0” , 2) ;
/ * p r i n t f (” V a r i a b l e : % s , V a l u e : % s \ n ” , m s g - i n - i d ,

m s g - i n) ; * /

/ * V e r i f y i d e n t i f i e r * /

i f (i ^ a t o i (m s g _ i n _ i d)) {
/ * V e r i f y i d e n t i f i e r * /

RECVARf i —50]= a t o f (m s g - i n) ;
r x . a r r a y [i d x _ t i m e _ a r r a y] = RECVAR[i — 50];

}
e l s e {

p r i n t f (’’ Warning : ^ I n v a l i d ̂i d e n t i f i e r ~(%d) ^onJ%s”
, i , a s c t i m e (t i m e i n f o)) ;

r x _ a r r a y [i d x _ t i m e _ a r r a y] = 1002;

1297
1298
1299
1300
1301

1302

1303
1304
1305

1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

1320
1321
1322
1323
1324

Appendix C : C Program Modules fo r Simulation and D evelopm ent Analysis 144

}
}
s t a t = c l o c k . g e t t i m e (CLOCK-REALTIME, & t i m e . r e c e i v e) ;
i f (t i m e _ r e c e i v e . t v . n s e c < t i m e . s e n d . t v . n s e c) {

t i m e . d i f f = 1000000000 — (t i m e . s e n d . t v . n s e c —
t i m e . r e c e i v e . t v _ n s e c) ;

/ * p r i n t / (” % l d , % l d ” , t i m e s e n d . t v - n s e c , t i m e - r e c e i v e .

t v - n s e c) ; * /

}
e l s e {

t i m e . d i f f = t i m e _ r e c e i v e . t v . n s e c — t i m e . s e n d . t v . n s e c

}
t i m e . a r r a y [i d x _ t i m e _ a r r a y] = t i m e . d i f f ;
i d x . t i m e . a r r a y + + ;
/ * p r i n t / (” Tim e D i f f e r e n c e : % l d \ n ” , t i m e - d i f f) ; * /

}

}
/ * C l o s e UDP c o n n e c t i o n * /

v o id d l a l u d p c (v o i d) {
i n t i ;
c h a r f i l e n a m e ;
FILE * h F i l e ;
h F i l e = f o p e n (” H I L . t i m i n g . o u t ” , ” w”) ;
f o r (i = 0; i < i d x _ t i m e _ a r r a y ; i + +) {

f p r i n t f (h F i l e , ” % ld , JPcf , J%f\n” , t i m e . a r r a y [i] , t x . a r r a y [i
] , r x . a r r a y [i]) ;

}
f c l o s e (h F i l e) ;
c l o s e (s o) ;
c l o s e (s i) ;

Appendix C: C Program, Modules fo r Simulation and Development Analysis 145

Scalability Analysis C Module (2000)

2000 #in clu d e < s y s / t y p e s . h>
2001 ^ i n c l u d e < s y s / s o c k e t . h>
2002 #in clu d e < n e t i n e t / in . h>
2003 #in clu d e < a r p a / i n e t .h>
2004 #in clu d e < n e t d b . h >
2005 #in clu d e < u n i s t d . h >
2006 #in clu d e < s i g n a l . h >
2007 #in clu d e < s t d i o . h >
2008 ^in clu d e < f c n t l . h >
2009 ^in clu d e < e r r n o . h >
2010 #in clu d e < s y s / t i m e . h >
2011 #in clu d e < s t d l i b . h >
2012 ^in clu d e <m em ory. h>
2013 ^in clu d e <math.h>
2014 ^in clu d e < s y s / p o l l . h >
2015 ^in clu d e < s t d i o . h >
2016 #in clu d e < s t d l i b . h >
2017 ^¿include ” / u s r / m a i n l c / s i m / t y p e s . h”
2018 ^in clu d e ” / u s r / r e l e a s e / c o m 2 0 0 5 0 7 0 5 / i n c l u d e / c d b m a p p i n g . h”
2019
2020 / * D e f i n e dat a c o l l e c t i o n p a r a m e t e r s * /

2021 # d e fin e MAXDATA 100000 /* N um ber o f dat a s a m p l e s to

c a p t u r e */

2022 / * D e f i n e t h e s i n e w a ve p

2023 # d e fin e Fs 1000.0
h e r t z * /

2024 # d e fin e Fo 1.0
h e r t z * /

2025 # d e f in e NUM 1000
*/

2026 # d e fin e sineWave.OFF 3
t r a n s l a t i o n * /

a r a m e t e r s * /

/ * s a m p l i n g f r e q u e n c y in

/ * s a m p l i n g w ave f r e q u e n c y in

/ * g e n e r a t e n u m ber o f s a m p l e

/ * s i n e w ave o f f s e t

2027
2028
2029
2030
2031
2032
2033
2034

2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059

d e fin e sineW ave_AM P 3 / * s i n e w ave a m p l i t u d e */

/ * S i n e w a ve ” o n / o f f ” c o n t r o l m a c r o s * /

d e fin e s i neOn (sam pleN um , s i n e A m p l i t u d e) {\
i f (n = sam pleNum) x l m p u l s e = s i n e A m p l i t u d e ;\
i f (n = sampleNum + 1) x l m p u l s e = 0 . 0 ; \

}
d e fin e s i n e O f f (s a m p l e N u m) i f (n = sampleNum) U[0] = U [1]

0 ;

/ * D e f i n e s o c k e t a d d r e s s s t r u c t u r e s and v a r i a b l e s * /

stru ct s o c k a d d r _ i n s i n a i ;
stru ct s o c k a d d r . i n s i n b o ;
int s i ;
stru ct s o c k a d d r . i n s i n a o ;
stru ct s o c k a d d r . i n s i n b i ;
int so ;

/ * D e f i n e d at a c o l l e c t i o n v a r i a b l e s * /

long int t i m e . a r r a y [MAXDATA];
int i d x . t i m e . a r r a y ;
f lo a t t x . a r r a y [MAXDATA] ;
f lo a t r x . a r r a y [MAXDATA] ;
long int n o d a t a . a r r a y [MAXDATA];
long int i n v a l i d - a r r a y [MAXDATA];

/ * D e f i n e s i n e W a v e g e n e r a t o r v a r i a b l e s * /

int s i n e S p o t = 0;
double s ineWave [NUM] ;
int NIMPROCVAR;
int NUMLRECVAR;
int d e l a y . S U T ;

int w r i t e . i ;
char f i l e n a m e ;
FILE * h F i l e ;

Appendix C: C Program Modules fo r Simulation and Development Analysis 146

Appendix C: C Program Modules fo r Simulation and Development Analysis 147

2060

2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077

2078

2079
2080
2081
2082

2083
2084
2085
2086
2087
2088

/ * O pen and i n i t i a l i z e UDP c o n n e c t i o n b e t w e e n A l p h a s e r v e r

and N I w o r k s t a t i o n * /

void d l a l u d p o (void) {
/ * U D P /IP v a r i a b l e s * /

int e r r o r - i n ;
int e r r o r . o u t ;
/ * S in e W a v e v a r i a b l e s * /

double U[3] ,
x l m p u l s e = 0 . 0 ;
int n ;
const double C l = 2 . 0 , C 2 = 1 . 0 , D 2 = 1 . 0 ;
const double pi = 4 . 0 * a t a n (l . O) ;
double D l , K, B, M, N;
i d x _ t i m e _ a r r a y = 0;
/ * A l p h a s e r v e r c o n n e c t i o n c o n f i g u r a t i o n (i n p u t) * /

s i n a i . s i n _ f a m i l y = A F JN E T ;
s i n a i . s i n . p o r t = h t o n s (9 9 9 9) ;
s i n a i . s i n _ a d d r . s _ a d d r = i n e t . a d d r (” 1 9 2 . 1 6 8 . 1 . 1 ”) ;
/ * s i n a i . s i n . a d d r . s . a d d r = i n e t . a d d r

/ * N I w o r k s t a t i o n c o n n e c t i o n c o n f i g u r a t i o n (o u t p u t)

*/
s i n b o . s i n _ f a m i l y = A F JN E T ;
s i n b o . s i n . p o r t = h t o ns (1 0 0 0 1) ;
s i n b o . s i n . a d d r . s . a d d r = i n e t . a d d r (” 1 9 2 . 1 6 8 . 1 . 2 ”) ;
/ * s i n b o . s i n ^ a d d r . s . a d d r = i n e t . a d d r

* /
si = s o c k e t (A F J N E T , SOCKHGRAM, 0) ;
/ * A l p h a s e r v e r c o n n e c t i o n c o n f i g u r a t i o n (o u t p u t) * /

s i n a o . s i n _ f a m i l y = A F JN E T ;
s i n a o . s i n . p o r t = h t o ns (9 9 9 8) ;
s i n a o . s i n . a d d r . s . a d d r = i n e t . a d d r (” 1 9 2 . 1 6 8 . 1 . 1 ”) ;
/ * s i n a o . s i n . a d d r . s . a d d r = i n e t . a d d r

(’’# # # ■ # # # ■ # # # ■ # # # ”) ; * /

2089
2090
2091
2092
2093

2094
2095
2096
2097

2098
2099
2100

2101
2102

2103
2104
2105

2106
2107
2108
2109
2110
2111
2112

2113
2114
2115
2116
2117
2118

/ * N I w o r k s t a t i o n c o n n e c t i o n c o n f i g u r a t i o n (i n p u t) * /

s i n b i . s i n _ f a m i l y = A F J N E T ;
s i n b i . s i n _ p o r t = h t o n s (1 0 0 0 0) ;
s i n b i . s i n . a d d r . s _ a d d r = i n e t . a d d r (” 1 9 2 . 1 6 8 . 1 . 2 ”) ;
/ * s i n b i . s i n - a d d r . s „ a d d r = i n e t - a d d r

(”# # # .# # # .# # # ■ # # # ”) ; */
so = s o c k e t (A F J N E T , SOCPLDGRAM, 0) ;

/ * D e t e c t i n p u t e r r o r * /

e r r o r _ i n = b i n d (s i , (s tru c t s o c k a d d r *) & s i n a i ,
s iz e o f (s i n a i)) ;

i f (e r r o r . i n < 0) {
c l o s e (s i) ;
p r i n t f (” U DP ^I n^B ind ^Er r or ^c od e^= ^% d\ n” ,

e r r o r _ i n) ;
e x i t (2) ;

}

/ * D e t e c t o u t p u t e r r o r * /

e r r o r . o u t = b i nd (s o , (s tru c t s o c k a d d r *) & s i n a o ,
s iz e o f (s i n a o)) ;

i f (e r r o r . o u t < 0) {
p u t s (” U DP ~Out ^B ind ~E rr or ”) ;
p r i n t f (” E r r o r ^code^=^% d” , e r r o r . o u t) ;
c l o s e (s o) ;
e x i t (2) ;

}

/ * S in e W a v e G e n e r a t o r * /

/ * C a l c u l a t e v a r i a b l e p a r a m e t e r s * /

B = (F s / (p i * F o)) * t a n (p i * F o / F s) ;
M = 2 . 0 * p i * F o * B ;
N = 2 . 0 * F s ;
/ * S y n t h e s i s c o e f f i c i e n t s * /

Appendix C: C Program Modules fo r Simulation and Development Analysis 148

Appendix C: C Program Modules fo r Simulation and Development Analysis 149

2119
2120
2121
2122

2123
2124
2125
2126
2127
2128
2129

2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151

D1 = 2 .0 * (M*M-N*N) / (M*M+N*N) ;
K = M*B*Fs / (M*MfN*N) ;

/ * G e n e r a t e NU M s a m p l e s * /

for (n=0;n<NUM;++n) {
s ineO n(l , sineWave_AMP) ;
s in eO ff (NUM) ;=
/ * S i n e w a v e s y n t h e s i s * /

/ * B i q u a d H R f i l t e r * /

U[2] = xlmpulse—D 1 * U [0] -D 2 * U [1] ;
sineWave [n] = K*(U[2] + C1*U[0] + C 2*U [1]) +

sineWave_OFF;

/ * U p d a t e r e g i s t e r s * /

U [l] = U [0] ;
U[0] = U [2] ;

}
hFile = fopen (” HIL_scaling . out” , ”w”) ;

}

/ * O u t p u t v a r i a b l e t o U P D / I P s o c k e t * /

void SDS1.HIL (v o id) {
d e f i n e delay.HIL 10

/ * D e f i n e p r o c e s s v a r i a b l e p o i n t e r s * /

int data_mult = 3;
long int t i m e _ d i f f = 0 ;
s tru c t timespec time.send ;
s tru c t timespec t im e .r e c e iv e ;
int stat , i , j , rcv_d ata ;
f lo a t d e la y - lo o p ;
f l o a t PROCVAR[5 0] ;
f l o a t RECVAR[5 0] ;
/ * D e f i n e r e c e i v e p o l l i n g v a r i a b l e s * /

int rv ;
s tru c t p o l l fd ufds [2] ;

2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169

2170
2171

2172
2173

2174

2175
2176

2177

Appendix C: C Program Modules fo r Simulation and Development Analysis______150

t i m e .t rawtime;
/ * D e f i n e t r a n s m i t m e s s a g e p o i n t e r * /

char msg_out [1 8] ;
/ * D e f i n e r e c e i v e m e s s a g e p o i n t e r * /

char *msg_in;
char *m sg_in_id ;
unsigned int s i n . l e n g t h ;
/ * C o n f i g u r e i n p u t t i m i n g r e q u i r e m e n t s * /

s tr u c t timeval timeout ;
fd _set re ad -h an d les ;

int number-data = 0;
s tr u c t tm * t im einfo ;
time (&rawtime) ;
t imeinfo = loc a lt im e (&rawtime) ;

i f (idx_tim e_array %(5*data_mult)= = 0) {
i f (idx_tim e_array < 5*data_mult) {

NUMPROCVAR = 1 ; NUMRECVAR = 1 ;
delay-SUT = 10000;

}
e lse i f (idx_tim e_array > = 5*data_mult M l

idx_tim e_array < 10*data_mult) {
NUMPROCVAR = 1; NUMRECVAR = 1; delay_SUT

= 25000 ;

}
e lse i f (idx_tim e_array > = 10*data_mult M l

idx_tim e_array < 15*data_mult) {
NUMPROCVAR = 1 ; NUMRECVAR = 1 ;

delay_SUT = 50000;

}
e lse i f (idx_tim e_array > = 15*data_mult M l

idx_tim e_array < 20* data_mult) {
NUMPROCVAR = 1 ; NUMRECVAR = 1 ;

delay-SUT = 100000;

Appendix C: C Program Modules fo r Simulation and Development Analysis 151

2178
2179

2180

2181
2182

2183

2184
2185

2186

2187
2188

2189

2190
2191

2192

2193
2194

2195

2196
2197

else i f (idx_tim e_array > = 20*data_mult &&
idx_tim e_array < 25*d a ta _m u lt) {

NUMPROCVAR = 1; NUMRECVAR = 1;
delay _SUT = 150000;

}
else i f (idx_time_array > = 25*data_mult &&

idx_tim e_array < 30* data_m ult) {
NUMPROCVAR = 3 ; NUMJRECVAR = 3;

delay _SUT = 10000;

}
else i f (idx_time_array > = 30*data_mult &&

idx_tim e_array < 35*d a ta _m u lt) {
NUMPROCVAR = 3 ; NUMJRECVAR = 3;

delay _SUT = 25000;

}
else i f (idx_time_array > = 35*data_mult &&

idx_tim e_array < 40*d a ta _m u lt) {
NUMPROCVAR = 3 ; NUMJRECVAR = 3;

delay _SUT = 50000;

}
else i f (idx_time_array > = 40*data_mult &&;

idx_tim e_array < 4 5 * data_m ult) {
NUMPROCVAR = 3 ; NUMJRECVAR = 3;

delay _SUT = 100000;

}
else i f (idx_tim e_array > = 45*data_mult &&;

idx_tim e_array < 5 0 * d a t a .m u lt) {
NUMPROCVAR = 3 ; NUMJRECVAR = 3;

delay.SUT = 150000;

}
else i f (idx_tim e_array > = 50*data_mult &&

idx_tim e_array < 5 5 * d a t a .m u lt) {

Appendix C: C Program Modules fo r Simulation and Development Analysis 152

2198

2199
2200

2201

2202
2203

2204

2205
2206

2207

2208
2209

2210

2211

2212

2213

2214
2215

2216

2217

NUMPROCVAR = 5 ; NUMRECVAR = 5;
delay_SUT = 10000;

}
else i f (idx_tim e_array > = 55*data_mult &&

idx_tim e_array < 6 0*da ta_m u lt) {
NUMPROCVAR = 5 ; NUMRECVAR = 5;

delay_SUT = 25000;

}
else i f (idx_tim e_array > = 60* data_mult &&:

idx_tim e_array < 6 5*da ta_m u lt) {
NUMPROCVAR = 5 ; NUMRECVAR = 5;

delay.SUT = 50000;

}
else i f (idx_tim e_array > = 65*data_mult &&

idx_tim e_array < 70* d a t a .m u lt) {
NUMPROCVAR = 5; NUMRECVAR = 5;

delay_SUT = 100000;

}
else i f (idx_tim e_array > = 70*data_mult &&

idx_tim e_array < 75*data_m ult) {
NUMPROCVAR = 5; NUMRECVAR = 5;

delay _SUT = 150000;

}
else i f (idx_tim e_array > = 75*data_mult &&:

i d x . t i m e .a r r a y < 80* data_m ult) {
NUMPROCVAR = 10; NUMRECVAR = 10;

delay _SUT = 10000;

}
else i f (idx_tim e_array > = 8 0 * data_mult &&

idx_tim e_array < 8 5*d a ta_m u lt) {
NUMPROCVAR = 10; NUMRECVAR = 10;

delay_SUT = 25000;

}

Appendix C: C Program Modules fo r Simulation and Development Analysis 153

2218

2219

2220

2221

2222

2223
2224

2225

2226
2227

2228

2229
2230

2231

2232
2233

2234

2235
2236

2237

else i f (i d x _ t i m e _ a r r a y > = 8 5 * d a t a _ m u l t &&
i d x _ t i m e _ a r r a y < 90* d a t a _ m u l t) {

NIMPROCVAR = 10 ; NUMPECVAR = 10;
delay _SUT = 5000 0 ;

}
else i f (i d x _ t i m e _ a r r a y > = 9 0 * d a t a _ m u l t &&;

i d x _ t i m e _ a r r a y < 95* d a t a _ m u l t) {
NIMPROCVAR = 10 ; NIMRECVAR = 10;

d e l a y - S U T = 1 00000 ;

}
else i f (i d x _ t i m e _ a r r a y > = 9 5 * d a t a _ m u l t &&;

i d x _ t i m e _ a r r a y < 1 0 0 * d a t a _ m u l t) {
NUMPROCVAR = 10 ; NUMPECVAR = 10;

de lay_SUT = 1 50000 ;

}
else i f (i d x _ t i m e _ a r r a y > = 1 0 0 * d a t a . m u l t &&

i d x _ t i m e _ a r r a y < 105* d a t a . m u l t) {
NIMPROCVAR = 25 ; NIMPECVAR = 25;

delay _SUT = 10000 ;

}
else i f (i d x _ t i m e _ a r r a y > = 1 0 5 * d a t a . m u l t &&

i d x _ t i m e _ a r r a y < 1 1 0 * d a t a _ m u l t) {
NIMPROCVAR = 2 5 ; NUMPECVAR = 25 ;

d e l a y - S U T = 2 50 00 ;

}
else i f (i d x _ t i m e _ a r r a y > = 110* d at a _ m u l t &&

i d x _ t i m e _ a r r a y < 115* d a t a . m u l t) {
NUMPROCVAR = 2 5 ; NUMPECVAR = 25 ;

de lay_SUT = 5000 0 ;

}
else i f (i d x _ t i m e _ a r r a y > = 115* d a t a . m u l t M z

i d x _ t i m e _ a r r a y < 1 2 0 * d a t a . m u l t) {
NUMPROCVAR = 2 5 ; NUMPECVAR = 25;

de lay_SUT = 1 00000 ;

Appendix C: C Program Modules fo r Simulation and Development Analysis 154

2238
2239

2240

2241
2242

2243

2244
2245

2246

2247
2248

2249

2250
2251

2252

2253
2254

2255

2256
2257
2258

else i f (i d x _ t i m e _ a r r a y > = 120* d a t a . m u l t M l

i d x . t i m e . a r r a y < 1 2 5 * d a t a _ m u l t) {
NUMJPROCVAR = 25 ; NUMRECVAR = 25;

d e l a y . S U T = 150000;

}
else i f (i d x _ t i m e _ a r r a y > = 125* d a t a _ m u l t M l

i d x _ t i m e _ a r r a y < 1 3 0 * d a t a . m u l t) {
NUMPROCVAR = 50 ; NUMPECVAR = 50;

delay _SUT = 10000;

}
else i f (i d x _ t i m e _ a r r a y > = 130* d a t a . m u l t M l

i d x . t i m e . a r r a y < 1 3 5 * d a t a _ m u l t) {
NUMPROCVAR = 50 ; NUMRECVAR = 50;

de lay_SUT = 25000 ;

}
else i f (i d x _ t i m e _ a r r a y > = 135* d a t a . m u l t M l

i d x _ t i m e _ a r r a y < 140* d a t a . m u l t) {
NUMPROCVAR = 50 ; NUMRECVAR = 50;

d e l a y . S U T = 50000 ;

}
else i f (i d x . t i m e . a r r a y > = 140* d a t a . m u l t M l

i d x . t i m e . a r r a y < 1 4 5 * d a t a _ m u l t) {
NUMPROCVAR = 50 ; NUMRECVAR = 50;

d e l a y . S U T = 100000;

}
else i f (i d x . t i m e . a r r a y > = 1 4 5 * d a t a _ m u l t M l

i d x . t i m e . a r r a y < 150* d a t a . m u l t) {
NUMPROCVAR = 50 ; NUMJRECVAR = 50;

d e l a y . S U T = 150000 ;

}
else {

NUMPROCVAR = 1; NUMRECVAR =1 ;
d e l a y . S U T = 0;

Appendix C: C Program Modules fo r Simulation and Development Analysis 155

2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272

2273

2274

2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289

}
p r i n t f (’W o l d , J3%ld\n” , de lay_HIL , d e lay_SUT) ;

}

/ * S t a r t HI L i n t e r f a c e t i m e r * /

s t a t = c l o c k . g e t t i m e (CLOCK_REALTIME, & t i m e . s e n d) ;

/ * T r a n s m i t p r o c e s s v a r i a b l e s * /

for (i = 0; i < NUMPROCVAR; i + +) {
PROCVAR[i] = s ineWave [s i n e S p o t] ;
s i n e S p o t + + ;
/ * p r i n t f (” % f \ n ” , P R O C V A R [0]) ; * /

i f (s i n e S p o t > = NUM) s i n e S p o t =0 ;
s p r i n t f (msg _out , ” %02d0375%012.6 f ” , i ,PROCVAR[

i]) ;
i f (i=N U M -P R O C V A R -l) t x . a r r a y [

i d x _ t i m e _ a r r a y] = PROCVAR[i] ;
s e n d t o (s o , msg_out , s t r l e n (m s g _ o u t) + l , 0 , (

struct s o c k a d d r *) & s i n b i , s iz e o f (s i n b i)) ;

}

/ * D e l a y f o r HIL i n t e r f a c e and S U T * /

u s l e e p (d e l a y . S U T) ;

FD_ZERO(&r ead_ha ndles) ;
F D _ S E T (s i , & r e a d _ h a n d l e s) ;
t i m e o u t . t v . s e c = 0;
t i m e o u t . t v _ u s e c = 1;

/ * S e t t h e v a l u e o f i n p u t —i n d e p e n d a n t v a r i a b l e s * /

msg_in = ” 1 2 1 2 3 4 1 2 3 4 5 6 7 8 ” ;
m s g _ i n _ i d = ” 12” ;
r c v _ d a t a = 0 ;

Appendix C: C Program, Modules fo r Simulation and Development Analysis 156

2290 /* F l u s h i n c o m i n g U D P / I P p a c k e t s b e f o r e r e t u r n

r e q u e s t */

2291 while (s e l e c t (s i + l , & r e a d _ h a n d l e s , NULL, NULL, &
t i m e o u t) > 0) {

2292 r e c v f r o m (s i , msg_in , 10, 0 , (struct s o c k a d d r
*) & s i n b o , & s i n _ l e n g t h) ;

2293
2294

}

2295 for (i = 50 ; i < 50+NUMJRECVAR; i + +) {
2296 / * R e q u e s t p r o c e s s v a r i a b l e s r e t u r n */

2297 s p r i n t f (m s g _ o u t , ” %0 2d037 5 00 0 0 0 0 0 0 0 0 0 0 ” , i) ;
2298 s e n d t o (s o , m s g . o u t , s t r l e n (m s g _ o u t) + l , 0 , (

2299
struct s o c k a d d r *) & s i n b i , s i z e o f (s i n b i)) ;

2300 u f d s [0] . fd = si ;
2301 u f d s [0] . e v e n t s = POLLIN;
2302 u f d s [1] . fd = so ;
2303 u f d s [1] . e v e n t s = POLLIN;
2304
2305

rv = p o l l (u f d s , 2 , d e l a y . H I L) ;

2306 i f (r v —1) {
2307 p e r r o r (” p o l l ”) ;
2308 }
2309 else i f (r v = 0) {
2310 p r i n t f (” T imeout ^ o c c u r r e d ! \ n ”) ;
2311 }
2312 else {
2313 / * p r i n t f (” Data . \ n ”) ; */

2314 / * R e c e i v e r e t u r n e d v a r i a b l e s */

2315 r e c v f r o m (s i , m s g _ i n , 10, 0 , (struct
s o c k a d d r *) & s i n b o , & s i n _ l e n g t h) ;

2316 / * p r i n t f (” % 0 2 d %s on % s \ n ” , i , m s g . i n ,

a s c t i m e (t i m e i n f o)) ; * /

2317 n u mb e r _ d a t a + + ;

Appendix C: C Program Modules fo r Simulation and Development Analysis 157

2318
2319
2320

2321

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331

2332
2333
2334
2335
2336
2337

2338
2339
2340

2341

2342

}
i f (n u m b e r - d a t a = 0) {

p r i n t f (’’ Wa rning : ^No^Data^(%d) ^onJ%s
” , i , a s c t i m e (t i m e i n f o)) ;

i f (i = = 5 0) r x _ a r r a y [
i d x _ t i m e _ a r r a y] = 1001;

n o d a t a . a r r a y [i d x _ t i m e _ a r r a y] + + ;

}
else {

/ * R e m o v e i d e n t i f i e r * /

/ * p r i n t f (” E n t i r e : % s \ n ” , m s g - i n) ; * /

s t r n c p y (m s g _ i n _ i d , msg- in , 2) ;
s t r n c p y (m s g _ i n _ i d + 2 , ” \0” , 2) ;
s t r n c p y (msg_in , msg_in + 2 , 8) ;
s t r n c p y (m s g _ i n + 8 , ” \0” , 2) ;
/ * p r i n t f (” V a r i a b l e : % s , V a l u e : % s \ n ” ,

m s g - i n A d , m s g - i n) ; * /

/ * V e r i f y i d e n t i f i e r * /

i f (i = a t o i (m s g _ i n _ i d)) {
/ * V e r i f y i d e n t i f i e r * /

RECVAR[i—50]= a t o f (m s g - i n) ;
i f (i = = 5 0) r x _ a r r a y [

i d x _ t i m e _ a r r a y] = R E C V A R [i
- 5 0] ;

}
else {

p r i n t f (’’ Warning: ^ I n v a l i d ^
i d e n t i f i e r ~(%d) ^on^%s” , i ,
a s c t i m e (t i m e i n f o)) ;

i f (i = = 5 0) r x _ a r r a y [
i d x _ t i m e _ a r r a y] = 1002;

i n v a l i d - a r r a y [i d x _ t i m e _ a r r a y

Appendix C: C Program Modules fo r Simulation and Development Analysis 158

2343
2344
2345
2346

2347

2348

2349

2350
2351
2352

2353
2354

2355
2356
2357

2358
2359 }
2360
2361 v o i d
2362

2363

}
}
i f (i ==50-HWMJRECVAR— 1) {

s t a t = c l o c k _ g e t t i m e (CLOCKJ1EALTIME,
& t i m e _ r e c e i v e) ;

i f (t i m e . r e c e i v e . t v . n s e c < t i m e . s e n d .
t v . n s e c) {

t i m e . d i f f = 1000000000 - (
t i m e _ s e n d . t v . n s e c —
t i m e . r e c e i v e . t v _ n s e c) ;

/ * p r i n t f (”% l d , %l d ” , t i m e s e n d

. t v - n s e c , t i m e - r e c e i v e .

t v - n s e c) ; * /

}
else {

t i m e _ d i f f = t i m e _ r e c e i v e .
t v _ n s e c — t i m e _ s e n d .
t v _ n s e c ;

}
t i m e _ a r r a y [i d x _ t i m e _ a r r a y] =

t i m e _ d i f f ;
i d x _ t i m e _ a r r a y + + ;

}
/ * p r i n t f (” T im e D i f f e r e n c e : % l d \ n ” , t i m e - d i f f)

; * /

}

d a t a w r i (v o i d) {
f o r (w r i t e . i = 0; w r i t e . i < i d x _ t i m e _ a r r a y ; w r i t e _ i

+ +) {
f p r i n t f (h F i l e , ” % ld , J V o f , J U , -% ld , . % l d \ n ” ,

t i m e . a r r a y [w r i t e _i] , t x . a r r a y [w r i t e _i] ,
r x . a r r a y [w r i t e . i] , n o d a t a . a r r a y [w r i t e . i] ,

Appendix C: C Program Modules fo r Simulation and Development Analysis 159

i n v a l i d _ a r r a y [w r i t e _ i]) ;
2364 }

2365 }
2366
2367 / * C l o s e UDP c o n n e c t i o n * /

2368 void d l a l u d p c (vo id) {
2369 f c l o s e (h F i l e) ;
2370 c l o s e (s o) ;
2371 c l o s e (s i) ;
2372 }

Controlled Variable Transceiver Module (3000)

3000 ^ in c lu d e
3001 # in c lu d e
3002 # in c lu d e
3003 ^ in c lu d e
3004 # in c lu d e
3005 ^ in c lu d e
3006 ^ in c lu d e
3007 ^ in c lu d e
3008 # in c lu d e
3009 ^ in c lu d e

3010 # in c lu d e
3011 # in c lu d e
3012 # in c lu d e
3013 # in c lu d e
3014 ^ in c lu d e
3015 # in c lu d e
3016 ^ in c lu d e
3017 i n c l u d e
3018 # in c lu d e
3019

< s y s / t y p e s . h>
< s y s / S o c k e t . h>
C n e t i n e t / i n . h>
< a r p a / i n e t . h>
C n e t d b . h>
< u n i s t d . h>
< s i g n a 1 . h>
< s t d i o . h>
< f c n 11 . h>
< e r r n o . h >
< s y s / t i me . h>
< s t d l i b . h>
<m em ory . h>
< m a t h . h>
< s y s / p o i l . h>
< s t d i o . h>
< s t d 1 i b . h>
” / u s r / m a i n l c / s i m / t y p e s . h ”
” / u s r / r e l e a s e / com20050705 / i n c lu de / cdbm appin g . h ”

3020 / * D e f i n e d at a c o l l e c t i o n p a r a m e t e r s * /

3021

3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047

3048
3049
3050
3051
3052

#d e f in e MAXDATA 100000 / * N um ber o f data s a m p l e s to

c a p t u r e * /

/ * D e f i n e s o c k e t a d d r e s s s t r u c t u r e s and v a r i a b l e s * /

Appendix C: C Program Modules fo r Simulation and Development Analysis 160

struct s o c k a d d r _ i n s i n a i ;
struct s o c k a d d r . i n s i n b o ;
int s i ;
struct s o c k a d d r _ i n s i n a o ;
struct s o c k a d d r . i n s i n b i ;
int s o ;

/ * D e f i n e d at a c o l l e c t i o n v a r i a b l e s * /

double t i m e . a r r a y [MAXDATA] ;
int i d x _ t i m e _ a r r a y ;
long int n o d a t a . a r r a y [MAXDATA];
long int i n v a l i d - a r r a y [MAXDATA];
f lo a t s g l l _ a r r a y [MAXDATA];
f lo a t s g l 2 _ a r r a y [MAXDATA];
f lo a t s g l 3 _ a r r a y [MAXDATA];
f lo a t s g l 4 _ a r r a y [MAXDATA] ;
f lo a t r p _ a r r a y [MAXDATA] ;
f loa t l c v l 0 1 _ a r r a y [MAXDATA];
f lo a t l c v l 0 2 _ a r r a y [MAXDATA];
f lo a t l c v l 0 3 _ a r r a y [MAXDATA];
f lo a t f l o w _ a r r a y [MAXDATA];
c h a r S D S l _ t r i p D [MAXDATA];
c h a r S D S l _ t r i p E [MAXDATA];
c h a r S D S l _ t r i p F [MAXDATA];

/ * O pen and i n i t i a l i z e UDP c o n n e c t i o n b e t w e e n A l p h a s e r v e r

and N I w o r k s t a t i o n * /

void d l a l u d p o (void) {
/ * U D P /IP v a r i a b l e s * /

int e r r o r . i n ;
int e r r o r . o u t ;
i d x _ t i m e _ a r r a y = 0;

Appendix C: C Program Modules fo r Simulation and Development Analysis 161

3053
3054
3055
3056
3057

3058

3059
3060
3061
3062

3063
3064
3065
3066
3067
3068

3069
3070
3071
3072
3073

3074
3075
3076
3077

3078
3079

/ * A l p h a s e r v e r c o n n e c t i o n c o n f i g u r a t i o n (i n p u t) * /

s i n a i . s i n _ f a m i l y = A F J N E T ;
s i n a i . s i n _ p o r t = h t o n s (9 9 9 9) ;
s i n a i . s i n . a d d r . s _ a d dr = i n e t _ a d d r (” 1 9 2 . 1 6 8 . 1 . 1 ”) ;
/ * s i n a i . s i n - a d d r . s . a d d r = i n e t . a d d r

C###-###.###.###”) ; * /
/ * N I w o r k s t a t i o n c o n n e c t i o n c o n f i g u r a t i o n (o u t p u t)

*/

s i n b o . s i n . f a m i l y = A FJN E T ;
s i n b o . s i n _ p o r t = h t o n s (1 0 0 0 1) ;
s i n b o . s i n . a d d r . s . a d d r = i n e t _ a d d r (” 1 9 2 . 1 6 8 . 1 . 2 ”) ;
/ * s i n b o . s i n . a d d r . s . a d d r = i n e t . a d d r

(”# # # ■ # # # ■ # # # ■ # # # ”) ; * /
si = s o c k e t (A F J N E T , SOOODGRAM, 0) ;
/ * A l p h a s e r v e r c o n n e c t i o n c o n f i g u r a t i o n (o u t p u t) * /

s i n a o . s i n . f a m i l y = A F JN E T ;
s i n a o . s i n . p o r t = h t o n s (9 9 9 8) ;
s i n a o . s i n . a d d r . s . a d d r = i n e t . a d d r (” 1 9 2 . 1 6 8 . 1 . 1 ”) ;
/ * s i n a o . s i n - a d d r . s - a d d r = i n e t - a d d r

/ * N I w o r k s t a t i o n c o n n e c t i o n c o n f i g u r a t i o n (i n p u t) * /

s i n b i . s i n . f a m i l y = A F JN E T ;
s i n b i . s i n . p o r t = h t o ns (1 0 0 0 0) ;
s i n b i . s i n . a d d r . s . a d d r = i n e t . a d d r (” 1 9 2 . 1 6 8 . 1 . 2 ”) ;
/ * sinbi . sin-addr . S-addr = inet-addr

(”# # # ■ # # # ■ # # # ■ # # # ”) ; */
so = s o c k e t (A F J N E T , SOCKDGRAM, 0) ;

/ * D e t e c t i n p u t e r r o r * /

e r r o r . i n = b i n d (s i , (s t r u c t s o c k a d d r *) & s i n a i ,
s i z e o f (s i n a i)) ;

i f (e r r o r . i n < 0)
c l o s e (s i) ;

{

Appendix C: C Program Modules fo r Simulation and Development Analysis 162

3080

3081
3082
3083
3084
3085

3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111

p r i n t f (”UDP^I n ^ B i n d ^ E r r o r ^code,_.=J%d\n” ,
e r r o r _ i n) ;

e x i t (2) ;

/ * D e t e c t o u t p u t e r r o r * /

error_out = bind (s o , (s t r u c t sockaddr *)&sinao ,
s i z e o f (s in a o)) ;

i f (e rror .ou t < 0) {
puts (’’UDP^Out^Bind^Error”) ;
p r in t f (” Error ^code^=^,%d” , e r r o r _ o u t) ;

c l o s e (s o) ;
exit (2) ;

}
}

/ * O u tp u t v a r i a b l e to U P D /IP s o c k e t * /

void SDSl-HIL (void) {
^ d e f i n e NUMPROCVAR 4
d e f i n e NUMMONVAR 8
d e f i n e NUM-RECVAR 1
d e f i n e delay_HIL 10
d e f i n e delay_SUT 115500
d e f i n e delay_TX 1000

/ * D e f i n e p r o c e s s v a r i a b l e p o i n t e r s * /

long int t i m e _ d i f f = 0 ;
s tr u c t timespec time_send ;
s tru c t timespec tim e_receive ;

int stat , i , j , r c v .d a t a ;
f l o a t d e lay - loo p ;
f l o a t PROCVAR[NUMPROCVAR];
f l o a t RECVAR[NUMBECVAR];
/ * D e f i n e c o n t r o l l e d v a r i a b l e p o i n t e r s S U T IN P U T S * /

Appendix C: C Program Modules fo r Simulation and Development Analysis 163

3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145

f lo a t *PR0CVART1;
f loa t *PROCVAR_T2;
f loa t *PR0CVAR_T3;
f lo a t *PR0CVAR_T4;
/ * D e f i n e m o n i t o r e d v a r i a b l e p o i n t e r s * /

f loa t *M0NVAR_T1 ;
f lo a t *M0NVAR_T2;
f lo a t *MONVAR_T3;
f loa t *MONVAR_T4;
f lo a t *MONVAR_T5;
char *M0NVAR_T6;
char *MONVAR_T7;
char *MONVAR_T8;
/ * D e f i n e p r o c e s s v a r i a b l e p o i n t e r s IN P U T * /

char *TRIPOUTPUT_T ;
/ * D e f i n e a u x i l i a r y v a r i a b l e p o i n t e r s WATCHDOG * /

char *WIMGt;
char FW M Ï;
/ * D e f i n e r e c e i v e p o l l i n g v a r i a b l e s * /

int r v ;
struct p o l l f d u f d s [2] ;
t i m e _ t r a w t i m e ;
/ * D e f i n e t r a n s m i t m e s s a g e p o i n t e r * /

char msg_out [1 8] ;
/ * D e f i n e r e c e i v e m e s s a g e p o i n t e r * /

char *msg _i n ;
char * m s g _ i n _ i d ;
unsigned int s i n . l e n g t h ;
/ * C o n f i g u r e i n p u t t i m i n g r e q u i r e m e n t s * /

struct t i m e v a l t i m e o u t ;
f d _ s e t r e a d - h a n d l e s ;
int n u m b e r - d a t a = 0 ;
struct tm * t i m e i n f o ;
t ime (&rawt ime) ;

Appendix C: C Program Modules fo r Simulation and Development Analysis 164

3146
3147
3148

3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178

t i m e i n f o = l o c a l t i m e (&rawtime) ;

/ * A t t a c h p r o c e s s v a r i a b l e s to CDB l o c a t i o n in m em ory

*/
PROCVAR-T1 = C d b F l o a t P o i n t e r (” L3DAI042” , NULL) ;
PROCVART2 = C d b F l o a t P o i n t e r (’’ L3DAI043” , NULL) ;
PROCVAR_T3 = C d b F l o a t P o i n t e r (” L3DAI044” , NULL);
PROCVAR.T4 = C d b F l o a t P o i n t e r (’’ L3DAI045” , NULL);
MONVAR.T1 = C d b F l o a t P o i n t e r (’’ LJIVPTHP” , NULL);
MONVAR.T2 = C d b F l o a t P o i n t e r (” f w a c v l O l ” , NULL) ;
MONVAR.T3 = C d b F l o a t P o i n t e r (” f w a c v l 0 2 ” , NULL) ;
MONVART4 = C d b F l o a t P o i n t e r (” f w a c v l 0 3 ” , NULL) ;
MONVAR.T5 = C d b F l o a t P o i n t e r (”FFWB” , NULL) ;
MONVAELT6 = C d b B y t e P o i n t e r (’’ L3DD0008” , NULL) ;
MONVAFLT7 = C d b B y t e P o i n t e r (’’ L3ED0008” , NULL);
MONVAPLT8 = C d b B y t e P o i n t e r (’’ L3FD0008” , NULL) ;
/ * C r e a t e c o n t r o l l e d v a r i a b l e a r r a y * /

PROCVAR [0] = *PROCVAR_Tl;
PRDCVAR[1] = *PROCVAR_T2;
PROCVAR [2] = *PROCVAR_T3;
PR0CVAR[3] = *PROCVAR_T4;
/ * C r e a t e m o n i t o r e d v a r i a b l e a r r a y * /

s g l l . a r r a y [i d x _ t i m e _ a r r a y] = *PROCVAR_Tl;
s g l 2 _ a r r a y [i d x _ t i m e _ a r r a y] = *PROCVAR.T2;
s g l 3 _ a r r a y [i d x _ t i m e _ a r r a y] = *PROCVAR_T3;
s g l 4 _ a r r a y [i d x _ t i m e _ a r r a y] = *PROCVAR_T4;
r p . a r r a y [i d x _ t i m e _ a r r a y] = *MONVARTl;
l c v l 0 1 _ a r r a y [i d x _ t i m e _ a r r a y] = *MONVAR_T2;
l c v l 0 2 _ a r r a y [i d x _ t i m e _ a r r a y] = *MONVAR.T3;
l c v l 0 3 _ a r r a y [i d x _ t i m e _ a r r a y] = *MONVART4;
f l o w . a r r a y [i d x _ t i m e _ a r r a y] = *MONVAFLT5;

/ * T r a n s m it p r o c e s s v a r i a b l e s * /

f o r (i = 0; i < NUMPROCVAR; i + +) {

Appendix C: C Program Modules fo r Simulation and Development Analysis 165

3179

3180

3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194.

3195
3196
3197
3198
3199
3200

3201

3202

3203
3204
3205
3206

s p r i n t f (msg _o ut , ” % 0 2 d 0 3 7 5 % 0 1 2 . 6 f ” , i ,PROCVAR[

i]) ;
s e n d t o (s o , m s g . o u t , s t r l e n (m s g . o u t) + 1 , 0 , (

s t r u c t s o c k a d d r *) & s i n b i , s i z e o f (s i n b i)) ;
/ * D e l a y f o r HI L i n t e r f a c e and S U T * /

i f (i < NUMPROCVAR-1) u s l e e p (de lay _ T X) ;

}
/ * D e l a y f o r HI L i n t e r f a c e and S U T * /

u s l e e p (de lay_SUT) ;
FD_ZERO(&r ead _ha nd les) ;
F D _ S E T (s i , & r e a d _ h a n d l e s) ;
t i m e o u t . t v _ s e c = 0;
t i m e o u t . t v - u s e c = 1;
/ * S e t t h e v a l u e o f i n p u t —i n d e p e n d a n t v a r i a b l e s * /

m s g . i n = ” 1 2 1 2 3 4 1 2 3 4 5 6 7 8 ” ;
m s g - i n _ i d = ” 12” ;
r c v _ d a t a = 0 ;
/ * A t t a c h p r o c e s s v a r i a b l e s to CDB l o c a t i o n in m em ory

*/
TRIPOUTPUT_T = C d b B y t e P o i n t e r (” L3DDO016” , NULL) ;
W 3 W G= C d b B y t e P o i n t e r (” L3DD0005” , NULL);
KWCMG = *\TOG;
i f (KAO\G = 1)*W M G = 2;
e l s e *V\LMG = 1;

/ * F l u s h i n c o m i n g U D P /IP p a c k e t s b e f o r e r e t u r n

r e q u e s t * /

w h i l e (s e l e c t (s i + l , & r e a d _ h a n d l e s , NULL, NULL, &
t i m e o u t) > 0) {

r e c v f r o m (s i , m s g . i n , 10 , 0, (s t r u c t s o c k a d d r
*)&;sinbo , & s i n _ l e n g t h) ;

}
f o r (i = 50; i < 50+NUMJRECVAR.; i + +) {

/ * R e q u e s t p r o c e s s v a r i a b l e s r e t u r n * /

s p r i n t f (m s g . o u t , ” % 0 2 d 0 3 7 5 0 0 0 00 0 00 00 0 0” , i) ;

Appendix C: C Program Modules fo r Simulation and Development Analysis 166

3207 s e n d t o (s o , m sg .ou t , s t r l e n (m s g . o u t) + 1 , 0 , (
s tr u c t s o c k a d d r *) & s i n b i , s i z e o f (s i n b i)) ;

3208 u f d s [0] . fd = si ;
3209 u f d s [0] . e v e n t s = POLLIN;
3210 u f d s [1] . fd = so ;
3211 u f d s [1] . e v e n t s = POLLIN;
3212 rv = p o l l (u f d s , 2 , d e l a y . H I L) ;
3213 i f (r v = - 1) {
3214 p e r r o r (” p o l l ”) ;
3215 }
3216 e lse i f (r v = 0) {
3217 p r i n t f (” T i m e o u t s o c c u r r e d ! \ n ”) ;
3218 }
3219 e lse {
3220 / * p r i n t f (’’ D a t a . \ n ”) ; */

3221 / * R e c e i v e r e t u r n e d v a r i a b l e s */

3222 r e c v f r o m (s i , msg_in , 10, 0 , (s tr u c t
s o c k a d d r *) & s i n b o , & s i n _ l e n g t h) ;

3223 / * p r i n t f (” % 0 2 d %s on % s \ n ” , i , m s g .in ,

a s c t i m e (t i m e i n f o)) ; */

3224 n umb er _ d a t a + + ;
3225 }
3226 i f (n u m b e r - d a t a = 0) {
3227 p r i n t f (’’ W a r n i n g : ^NouData~(%d) ~onJ%s

” , i , a s c t i m e (t i m e i n f o)) ;
3228 n o d a t a _ a r r a y [i d x _ t i m e _ a r r a y] + + ;
3229 }
3230 e lse {
3231 / * R em ov e i d e n t i f i e r */

3232 / * p r i n t f (” E n t i r e : % s \ n ” , m s g A n) ; * /

3233 s t r n c p y (m s g _ i n _ i d , m s g . i n , 2) ;
3234 s t r n c p y (m s g . i n . i d + 2 , ” \0” ,2) ;
3235 s t r n c p y (m s g . i n , m s g . i n + 2 , 8) ;
3236 s t r n c p y (m s g . i n + 8 , ” \0” , 2) ;

Appendix C: C Program Modules fo r Simulation and Development Analysis 167

3237

3238
3239
3240
3241
3242
3243
3244
3245
3246

3247

3248
3249
3250
3251
3252
3253

3254
3255
3256

/ * p r i n t f (” V a r i a b l e : % s , V a l u e : % s \ n ” ,

m s g A n - i d , m s g A n) ; */

}
i f

/ * V e r i f y i d e n t i f i e r */

i f (i = a t o i (m s g _ i n _ i d)) {
/* V e r i f y i d e n t i f i e r */
RECVAR[i —50]= a t o f (m s g . i n) ;
*TRIPOUTPUT_T = RECVAR[0] ;

}
e l s e {

p r i n t f (” W a r n i n g : ^ I n v a l i d ^
i d e n t i f i e r ^(%d) ^onJ% s” , i ,
a s c t i m e (t i m e i n f o)) ;

i n v a l i d - a r r a y [i d x _ t i m e _ a r r a y

] + + ;
}

(i ==50+NUM_RECVAR-1) {
i d x _ t i m e _ a r r a y + + ;

}
/ * p r i n t f (” Tim e D i f f e r e n c e : % l d \ n ” , t i m e - d i f f)

; * /

}
s t a t = c l o c k . g e t t i m e (CLOCKJREALTIME, & t i m e _ s e n d) ;
s p r i n t f (msg_out , ” %ld . % 0 9 1 d ” , t i m e _s e n d . t v _ s e c ,

t i m e _ s e n d . t v _ n s e c) ;
3257 t i m e _ a r r a y [i d x _ t i m e _ a r r a y —1] = a t o f (m s g _ o u t) ;
3258 S D S l - t r i p D [i d x _ t i m e _ a r r a y —1] = R E C V A R [0] ;
3259 S D S l _ t r i p E [i d x _ t i m e _ a r r a y —1] = *MONVAFLT7;
3260 S D S l _ t r i p F [i d x _ t i m e _ a r r a y —1] = *MONVAFLT8;
3261 }
3262
3263 /* C l o s e UDP c o n n e c t i o n */

3264 v o i d d l a l u d p c (v o i d) {

Appendix C: C Program Modules fo r Simulation and Development Analysis 168

3265
3266
3267
3268
3269
3270

3271
3272
3273
3274
3275 }

int i ;
char f i l e n a m e ;
FILE * h F i l e ;
h F i l e = f o p e n (” HIL. o u t ” , V) ;
f o r (i = 0; i < i d x _ t i m e _ a r r a y ; i + +) {

f p r i n t f (h F i l e , ” %f , T f , T f , T>f , T f ̂ ~ -
%f , T f , T f , T f , T f , T c , Toe , Toe , „ , Told , T old
\n” , t i m e - a r r a y [i] , s g l l - a r r a y [i] ,
s g l 2 _ a r r a y [i] , s g l 3 _ a r r a y [i] , s g l 4 _ a r r a y [i
] , r p _ a r r a y [i] , l c v l O l . a r r a y [i] ,
l e v 1 0 2 - a r r a y [i] , l e v 1 0 3 - a r r a y [i] ,
f l o w _ a r r a y [i] , S D S l - t r i p D [i] , S D S l _ t r i p E [i
] , S D S l - t r i p F [i] , n o d a t a . a r r a y [i] ,
i n v a l i d - a r r a y [i]) ;

}
f c l o s e (h F i l e) ;
c l o s e (s o) ;
c l o s e (s i) ;

169

Appendix D
Invensys Tricon v9 Safety Programmable
Logic Controller and Shutdown System

no. 1
Rankin, Drew J. (June 3-6 2007) Tricon and Shutdown System One (S D S l). Pro­

ceedings o f the 31st Canadian Nuclear Society Student Conference. Saint John, New

Brunswick.

Overview

Tricon v9 fault tolerant control system is described by Invensys as their most trusted
safety controller. It is also the first controller developed by Invensys to be com­
pletely triple redundant and industrially ruggedized. Tricon v9 is a state-of-the-art
controller based on a triple modular redundant (TM R) architecture. TM R provides
three isolated control systems that work in parallel. Additionally the controller boasts
extensive diagnostics integrated into a single system and there is no single point of
failure within Tricon which would cause the system to respond abnormally. High
integrity process operation is provided through two out of three voting procedures for
all decisional logic and signal verification.

Tricon provides simplified application development for a T M R system as it
operates as a single control system from the user’s point of view. The diagnostic
capabilities, as within most advanced controllers is transparent to the programmer,
who needs only access various related flags, status bytes and system variables.

Tricon controllers have been installed in over fifty countries in various appli­
cations. A summarized list of the most current applications includes; emergency
shutdown systems (ESD), burner management systems (BMS), fire and gas systems
(F&G), critical turbo-machinery control, railway switching, semiconductor life safety
systems (SEMI S2) and nuclear IE safety systems.

Appendix D: Invensys Tricon v9 Safety Programmable Logic Controller and
Shutdown System no. 1 170

Figure D. l : Tricon v9 triple modular redundant (TMR) controller

Tricon v9 controller provides safety critical control capabilities at the highest
levels of certification. Designing an advanced controller to meet the stringent stan­
dards of current Nuclear regulations requires rigorous testing and satisfying all re­
quirements takes years of development. The following is intended to reveal the major
functionalities Tricon v9 controller possesses that will enhance SDSl control proce­
dures. The review of nuclear instrumentation and controls standards or qualifying
techniques is not included in this assessment.

General system characteristics

Overview of the general characteristics of Tricon controller is provided in Table D .l
as a precursor to extended functionality assessment.

Redundancy

Tricon v9 controller is based on extensive TM R architecture which ensures system
functionality in the probable scenario that a single channel may become faulty within
the systems expect useful lifetime. TM R architecture ensures fault tolerance and
provides error-free, uninterrupted control in the presence of either hard failures of
components or transient faults from internal or external sources [Dl]. The redundancy

Appendix D: Invensys Tricon v9 Safety Programmable Logic Controller and
Shutdown System no. 1 171

Feature Invensys Tricon v9
Main processor Motorola MPC860, 32-bit, 50 MHz
Memory 16 MB DRAM (without battery back-up)

32 KB SRAM (with battery back-up)
6 MB Flash PROM

Clock Typical drift: 2 seconds/day
Maximum drift: 8.6 seconds/day

System bus 25 megabits/second
32-bit CRC-protected
32-bit DM A, fully isolated

Communication processor
Communication interface

Motorola MPC860, 32-bit, 50 MHz
Protocol: RS-485
Baudrate: 2M bit/sec

I /O interface Protocol: RS-485
Baud rate: 375kbit/sec
Logic power: 10W

Table D. l : General characteristic of Tricon v9 controller

of the entire system is important as relying on a common components can significantly
decrease likelihood o f proper safety system response during abnormal conditions.

The main processor of Tricon v9 is triplicated, each processor controlling in
parallel one o f three channels. Dedicated I /O processors with each of the three
main processors manage the transfer of data to and form the I /O modules. This
communication is performed via a triplicated I /O bus located on the backplane of
the chassis. Extending this bus to additional chassis is achieved using I /O bus cables.
These cables maintain triplication capabilities to additional chassis.

There are three independent channels within every I /O module (analog input,
analog output, digital input, digital output, thermocouple, etc.) o f Tricon v9. Each
channel 1 /O processor processes channel specific data in parallel and concurrently send
the information to the channel specific main processor. Through rigorous triplication
of the communication channels and I /O modules the probability of complete system
malfunction on single point of failure is unrealizable. Through proper maintenance,
monitoring and testing procedures Tricon v9 provides excellent candidacy for safety
critical control application.

In addition to the process specific redundancy, each Tricon v9 controller contains

Appendix D: Invensys Tricon v9 Safety Programmable Logic Controller and
Shutdown System no. 1 172

two power modules arranged in dual-redundant configuration. The dual-redundant
power is available throughout the backplane and additional chassis. Individual I /O
module channels obtain power from independent power regulator connecting to each
of the power channels. The power modules are designed to support the entire system
in case o f complete loss of the alternate power module. Tricon v9 controller also
contains dual-redundant batteries to provide memory backup in case of a complete
power failure of the controller. In the absence of field power, a sole battery can sustain
the control program in the main processor RAM for a cumulative time period o f six
months.

Expandable modular system and online
replacement
Tricon v9 system extends redundancy with modular capabilities. Varying combina­
tions o f up to 118 modules on 15 chassis may be utilized within a system. Providing
the flexibility to incorporate even the most intricate safety critical systems. Addi­
tionally, there are two available slots for each I /O module. If a fault is detected on
one module, control is switched to the functioning healthy module through bump-less
transition. To facilitate maximum controller run-time, the modules can be replaced
while the controller is online. This replacement allows for module repair and substi­
tution routines and uninterrupted system functionality.

Alarms and status indicators
Status indicators (Pass, Fault and Active) in the form o f light emitting diodes (LED)
are provided on the front panel o f every module. These common status indicators
provide module specific status, however additional status indicators which relay both
internal and external module information may be present. All indications are gener­
ated through internal diagnostic and alarm status data. This data is available through
isolated network interfacing for remote logging and report generation. There are two
general levels of indicator within Tricon v9; fault indicators which identify potentially
serious module specific problems and alarm conditions which identify abnormal field
conditions such as loss of power or loss o f communication [D2].

Appendix D : Invensys Tricon v9 Safety Programmable Logic Controller and
Shutdown System no. 1 173

The type of indicators included in Tricon v9 include:

• Status indicators which identify the processing state of the module. Each mod­
ule includes a pass, fault, and active indicator.

• Field power and power load indicators which identify whether a power problem
has occurred. (Only on some I /O modules.)

• Communication indicators which identify the type of communication occurring.
(Only on main processor and communication modules.)

• Points indicators which identify whether the point is energized. (Not on analog
input, analog output, or thermocouple modules.)

Programming and simulation environments
The programming and configuration environment for Tricon v9 controller is provided
through Tristation 1131 Developers Workbench. The workbench provides designers
with tools required for generating the configurations and applications for execution
in Tricon controllers. Programming the controller on the workbench can be accom­
plished by function block diagrams, ladder logic diagrams or structured text as defined
per the IEC 61131-3 standard (libraries included). Developers may also develop their
own libraries and import them to other TriStation projects, or use Triconex standard
libraries which are designed for compressor surge control, turbine governor control,
automatic voltage regulation, burner management, and fire and gas applications. Ad­
ditional to the three programming methods, the workbench also includes a cause and
effect programming language editor (CEMPLE) to support the use of cause and ef­
fect matrix methodology. Overall the software suite is very intuitive and provides all
functions within a well organized user friendly application.

Tricon v9 simulation environment is provided by TriSim. System models and
data can be configured as would be implemented into real controllers and simulated
on a PC prior to build. The troubleshooting capabilities available through simulation
are endless. Further steady-state design, operational analysis, dynamic simulation,
operator training, performance monitoring, and real-time optimization are all possible
through the simulation engine SIM4ME. The following can be realized through pre­
development with Tricon simulation platform.

Appendix D: Invensys Tricon v9 Safety Programmable Logic Controller and
Shutdown System no. 1 174

• Reduction of time to commission and startup

• Superior design quality verification in real-time control software

• Analysis and troubleshooting prior to integration

• Operator training capabilities

• Excellent offline simulation platform to facilitate rapid development

National and international standards
The following standardizations have been achieved by the current Tricon v9 sys­
tem. The following list is not a complete review of all the certifications of Tricon
v9 controller, however a summarized list of those certifications related to either nu­
clear application or Canadian standards. Related regulatory bodies and complying
standards follow.

Canadian Standards Association (CSA) has certified Tricon v9 controller com­
pliant with the following summarized international electrical safety standards.

• CAN/CSA-C22.2 No.0-M91 - General Requirements-Canadian Electrical Code,
Part II

• CSA Std C22.2 No.0.4-M1982 - Bonding and Grounding of Electrical Equipment
(Protective Grounding)

• CSA Std C22.2 No. 142-M1987 - Process Control Equipment

• UL Std No. 508 - Industrial Control Equipment

Certification from T V is critical to comply with controller integration into the
following industries, applications and jurisdictions. This list is adapted from [D3].

• Emergency safety shut-down or other critical control applications requiring SIL
1-3 certification per the functional safety requirements of IEC 61508 9 (only
Tricon v9.6 or later)

Appendix D: Invensys Tricon v9 Safety Programmable Logic Controller and
Shutdown System no. 1 175

• Emergency safety shut-down or other critical control applications requiring AK
1-AK6 3 certification per the functional safety requirements o f DIN V 19250
and DIN V VDE 0801

• All applications for use in European Union or other jurisdictions requiring com­
pliance with the EMC Directive No. 89/336/EE C and Low Voltage Equipment
Directive No. 72/23/E EC

Finally for direct implementation into the nuclear industry, though not by Cana­
dian standards the United States Nuclear Regulatory Commission (NRC) has certi­
fied that Tricon v9 controller is suitable for use in nuclear IE applications within the
limitations and guidelines referenced in the NRC Safety Evaluation Report (SER)
ML013470433, Review of Triconex Corporation Topical Reports 7286-545, ’’ Qualifi­
cation Summary Report” and 7286-546, ’’ Amendment 1 To Qualification Summary
Report,” Revision 1. This qualification was based upon EPRI TR-107330, Generic
Requirements Specification for Qualifying a Commercially Available PLC for Safety-
Related Applications in Nuclear Power Plants [D4].

Tricon v9 controller would not be considered an advanced controller if it did not
include extensive dynamic functional capabilities. Though the static characteristics
provide a basis for safety controller design, it is the intelligence within the controller
that can be utilized to significantly increase safety assurance within the shutdown
system cycle. Table D.2 presented the dynamic self checking capabilities o f the Data
General M P/100 and the conformance of Tricon v9. The following will describe the
beneficial assets related to SDS1 o f Tricon v9.

Two-out-of-three (2oo3) voting
At a rate o f once per scan, synchronization between the main processors is performed
over the TriBus. TriBus is a proprietary high speed bus system specifically for com­
munication between the triple redundant controllers. Digital input data from all input
modules, through analog to digital conversion or directly from digital inputs is voted
on prior to arriving at the main processor. Following control process execution, the
data is sent to the output modules. The data is then voted on again and evaluated
to assure no errors have been introduced prior to being output. This is performed as

Appendix D: Invensys Tricon v9 Safety Programmable Logic Controller and
Shutdown System no. 1 176

close to the output terminal as possible to reduce the probability of internally caused
faults.

The following is provided for better understanding of the input voting proce­
dures. Each digital input modules has three independent channels for independent
processing. The microprocessor for each channel scans every input point and trans­
mits the data to the main channel specific processor upon demand. Once the data
has been requested by the main processor, the data is voted on (compared with the
other two independent processor input values), and if two out o f three are similar,
that two similar signals are considered valid. The third signal is simply ignored.

The voting at analog output modules is performed following I /O processor
receiving the output signals from the main processors on each of three channels.
Each set of data is voted on similarly to the input method (two out of three) and the
decidedly valid data is driven to the output terminals.

Runtime-diagnostics, self check and self testing
There are extensive diagnostic procedures built into the system to evaluate the func­
tionality o f each main processor, I /O module and communication channel. Main
processor diagnostics include: verifying fixed-program memory and the static por­
tion o f RAM , testing all basic processor instructions and operating modes as well as
basic floating-point processor instructions and verifying the shared memory interface
with I /O processors and each I/O processor, communication processor, local memory,
shared memory access, and loop-back of RS-485 transceivers. Further verification of
the TriClock and TriBus interface are also performed as well as comparative checks
between processors via TriBus.

Power modules have diagnostics built-in to check for out of range voltages and
over temperature conditions. In the case of a short on a channel, the power regulator
for that channel and module is disabled if possible rather than the entire power bus.
Isolation of the system from external systems is also assured and diagnosed to prevent
against ground faults.

The built-in capabilities of controllers to detect internal malfunction and per­
form signal monitoring and verification provide major benefit for advanced controller
integration. Verifying system functionality and correct operation during runtime is
critical in safety applications. If the controller fails to react during abnormal plant

Appendix D: Invensys Tricon v9 Safety Programmable Logic Controller and
Shutdown System no. 1 177

Function M P/100 Description Tricon v9 Description
Watchdog Timer Failure to update and exter­

nal device periodically, within
a specified time period, causes
digital outputs to be placed in
the safe state.

Independent timers verify the
timely execution o f the I /O
module and main processor
firmware and diagnostics. If
a problem is identified, the
faulty processors are disabled
and control is transferred to
the health processors.

Sequence Check The actual module execution
sequence is checked against the
expected sequence.

If a main processor fails to re­
port the proper sequence of
execution, the I /O processor
causes the main processor to
enter the fail-safe state.

Checksums A calculated checksum for a
block of ROM, and a block of
secure RAM , is compared to
the expected.

Verification of fixed program
memory

RAM Read-
/W rite

A word of RAM is tested with
various bit patterns every pass,
and then is restored.

Verification of static RAM,
processor instructions and op­
erating modes (specific rou­
tines not available).

Analog I /O
Loopback

Checks the values read from
the self-check A /Is to those
written to the corresponding
self-check A /O s . The A /O val­
ues are ramped up and down
through the operating range.

Provided internal to controller
(details in assessment)

Digital I /O
Loopback

Compares values read from the
self-check D /Is to those writ­
ten to the self-check D /O s.
The D /O s are toggled periodi­
cally.

Provided internal to controller
(details in assessment)

Table D.2: Comparison o f self checking capabilities across two controllers

operation the consequences could be devastating and possibly catastrophic. The ba­
sic self checking functions performed by controllers have not changed greatly through
the development of digital control systems. Table D.2 demonstrates the self checking
capabilities provided in the Darlington NGS trip computer software design in 1995.

Appendix D: Invensys Tricon v9 Safety Programmable Logic Controller and
Shutdown System no. 1 178

Function M P/100 Description Tricon v9 Description
A /I and A /O
Device Ready

If the applicable hardware is
not ready (response time), the
fatal error handler is invoked.

Verification o f all I /O proces­
sors is performed

D /I and D /O
Device Ready

If the applicable hardware is
not ready (response time), the
fatal error handler is invoked

Verification o f all I /O proces­
sors is performed

Real-time Clock
Tests

The number of real-time clock
interrupts is tested against the
range o f the expected number
o f interrupts.

Verification o f TriClock inter­
face

Recei ve / Transmit
Data Checks

Data is checked for validity. A
fatal error occurs if the amount
o f receive and transmit data
exceeds an upper limit.

All communication processors
are verified and data are time
checked and verified as well as
two of three voted.

Range Checks These are application checks
on critical values immediately
before their use to determine
if they fall within the specified
valid range.

All process variables will trig­
ger indicators or alarms if they
are outside of the designated
range.

Spread Checks Process inputs and calcula­
tions are periodically transmit­
ted to an external computer to
be checked for reasonableness.

Performed between triplicated
processors via TriBus

Table D.3: Comparison o f self checking capabilities across two controllers

Included in Table D.2 are the same characteristics as performed by Tricon v9.
The are two versions of self-test features which continuously verify the ability

o f Tricon v9 controller to detect the transition o f a circuit. The versions include the
following characteristics:

• Circuit stuck-on self-test feature that verifies the ability to detect transitions
from a normally energized circuit to the off state

• Circuit stuck-on or stuck-off self-test feature that verifies the ability of a Tricon
controller to detect transitions to the opposite state, either from on to off or
from off to on.

Appendix D: Invensys Tricon v9 Safety Programmable Logic Controller and
Shutdown System no. 1 179

Loop-back capabilities - Digital output modules perform output voter diag­
nostic (OVD). The purpose o f this feature is to distinguish multiple fault scenarios
from normal controller operation. OVD execution momentarily reverses the com­
manded state of each point within an output module. Integrated loop-back within
the module allows the I /O processor to read the output value and determine if a fault
exists at the output circuit.

Additional digital output modules are available and provide both voltage and
current loop-back. The fault coverage performed by this function is to allow for both
energized to trip and de-energized to trip conditions. Further, the module performs
a continuous circuit continuity check and annunciates any loss of field load by the
module.

Similarly, each channel on the analog output module has a current loop-back
circuit which verifies the accuracy and presence o f analog signals independent of load
presence or channel selection [D5j. This function identifies a malfunction if current
does not flow to one or more outputs because of an open loop.

Watchdog timer - Every I /O module and main processor is protected by an
independent watchdog timer. The timer verifies the execution of 1 /0 module firmware
and diagnostics in a timely manner. A fail-safe state is entered if the execution order
is not correct or the watchdog timer (500ms) does not reset. In fail-safe state all
outputs for the faulty channel are disabled, and control is passed to the remaining
healthy channels. Appropriate alarms and indicators will trigger accordingly.

Sequence of events - Communications modules allow for implementation of
the sequence of events (SOE) procedures in Tricon v9. SOE performs inspection of
designated variables for changes o f state (events). When an event occurs the main
processors save the current state o f the variable along with a time stamp in memory
buffer. Triconex SOE Recorder software may then be installed on a workstation and
utilized to track the events that are performed by any given controller.

Summary
Through static and dynamic assessment, Tricon v9 controller appears to provide all of
the capabilities apparent in the previously implemented systems. Comparative review
to previous controller specifications is provided and demonstrates the compliance and

Appendix D: Invensys THcon v9 Safety Programmable Logic Controller and
Shutdown System no. 1 180

extension of Tricon to previous technologies. Though the information regarding the
previous systems is not extensive in this documentation, it is apparent that the en­
hanced processing power o f Tricon controller allows for extended functionality within
the simple logic o f SDS1.

Evaluating Tricon v9 system for implementation into SDSl requires further atten­
tion. This paper simply overviews the functionalities that are available and could
be utilized within SDSl. The process o f implementing Tricon v9 controller into real­
time simulation o f the Darlington NPP is necessary. Current efforts at the University
of Western Ontario have achieved communication between real-time NPP simula­
tion and DCS hardware. The immediate future will see the integration of Tricon v9
controller among other control systems into the NPP environment for process perfor­
mance and power generation indices evaluation. Once this is accomplished, detailed
results as to enhanced methods for NPP control, both safety and non-safety critical,
may be tabulated and presented.

References
[D 1] Rooney, J.P., ’’ Aging in Electronic Systems” , Proceedings Annual Reliability and

Maintainability Symposium, 1999, pp.293-299
[D2] de Grosbois, J., Hepburn, G.A., Olmstead R., ’’ Qualification of Programmable Elec­

tronic System (PES) Equipment Based on International Nuclear I&C Standards,” ,
American Nuclear Society Annual Meeting 2006 Proceedings, 2006

[.D3] O ’Connor, T., ’’ Instrumentation, Control, and Human-Machine Interface to Support
DOE Advanced Nuclear Energy Programs” , Idaho National Laboratory, 2007

[DA] ’’ Modern Instrumentation and Control for Nuclear Power Plants: A Guidebook” ,
International Atomic Energy Agency, Vienna, 1999

[Z>5] ” Planning and Installation Guide for Tricon v9 Systems” , Invensys Triconex, 2004

181

Appendix E
Invensys Tricon v9 PLC Function Block

Diagrams

Appendix E: Invensys Tricon v9 P L C Function Block Diagrams 182

Figure E .l: Invensys Tricon v9 safety PLC steam generator level low function block
diagram logic (Tristation 1131 Developer’s Workbench)

183

Appendix F
National Intruments Lab VIEW HIL

Interface Virtual Instrument

U
D

P
R

ec
ei

ve
 P

ro
ce

du
re

184

Figure F .l : National Intruments LabVIEW HIL interface virtual instrument (G
programming language)

To
ta

l
Ite

ra
tio

ns

s
M

 R
ec

ei
ve

185

Figure F.2: National Intruments LabVIEW HIL interface virtual instrument (G
programming language), continued

186

■ S M

Figure F.3: National Intruments LabVIEW HIL interface virtual instrument (G
programming language), continued

	Development of a Hardware-in-the-loop Simulation Platform for Safety Critical Control System Evaluation
	Recommended Citation

	tmp.1689790336.pdf.ECbZt

