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ABSTRACT 

 

 Due to the age and operating experience of Bruce Power units, equipment ageing and 

obsolescence has become one of the main challenges that need to be resolved for all systems, 

structures and components in order to ensure a safe and reliable production of energy.  

The research objectives of this thesis will focus on methodology for modernization of Start-

Up Instrumentation (SUI), both in-core and Control Room equipment, using a new 

generation of detectors and cables in order to manage obsolescence. The main objective of 

this thesis is to develop a new systematic approach to SUI installation/replacement procedure 

development and optimization. Although some additional features, such as real-time data 

monitoring and storage/archiving solutions for SUI systems are also examined to take full 

advantage of today’s digital technology, the objective of this thesis does not include detailed 

parametrical studies of detector or system performance. Instead, a number of technological, 

operational and maintenance issues associated with Start-Up Instrumentation systems at 

Bruce Power will be identified in this project and a structured approach to developing a 

replacement/installation procedure that can be standardized and used across all of the 

domestic CANDU stations is proposed. Finally, benefits of Hierarchical Control Chart 

(HCC) methodology for all stages of plant life management, such as system design, 

development, operation and maintenance are demonstrated.  

 Keywords: Task Breakdown and Analysis methodology, installation/removal procedure 

development and optimization, risk-based analysis and optimization, Hierarchical Control Chart 

(HCC) methodology for system maintenance and troubleshooting, Start-Up Instrumentation 

(SUI), Ion Chambers, Fission Chambers, proportional counters, Shutdown System 1 (SDS1), 

Shutdown System 2 (SDS2). 
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CHAPTER 1: INTRODUCTION  

 

1.1  Introduction  

 In thermal nuclear reactors such as CANDU®, the process of splitting nuclear fuel and 

producing fission heat is induced by thermal neutrons, i.e. the neutrons that at room 

temperature have an average energy of about 0.025 eV [1]. Typically, neutron activity and 

neutron flux detectors designed for CANDU reactors are concerned with neutron detection 

and are not designed to measure neutron energies or distinguish between different neutron 

categories, such as fast or slow neutrons. Reactor regulation and power measurements rely on 

neutronic detectors for power adjustments, neutron overpower protection and safety system 

initiation. Detection and measurement of neutronic activities during all stages of reactor start-

up, operation and shutdown is, therefore, of utmost importance.  

 Start-Up Instrumentation (SUI) is used at existing CANDU power plants following a 

prolonged shutdown and during a re-start phase at low and very low power levels. The main 

goal is to provide neutron overpower (NOP) protection via Shutdown System 1 (SDS1) trip 

circuits on high neutron count rate and to allow continuous monitoring of neutron flux level 

and rate. In general, SUI instrumentation is required to provide a reliable indication of the 

reactor power for a period of up to several weeks with the required range of sensitivity of the 

Start-Up Instrumentation is from 10-14 to 10-6 of reactor Full Power (F.P.) [2]. 

 At Bruce A Nuclear Generating Station (NGS), which will be used as a case study for 

this paper, the SUI system is normally engaged once the reactor power level falls below -5 

decades (10-5 F.P.) and provides a reliable bump-less transfer of core monitoring function 
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from RRS Ion Chambers to SUI system at -6 decades. Once the power levels decay below 

10-6 F.P., SUI detectors become the primary means of flux monitoring, with typical power 

levels between -7 and -8 decades during unit outages and shutdowns.  

 In this paper, challenges and limitations of the current SUI systems at Bruce Power 

units will be analyzed both in terms of the existing detector technologies and the overall 

current approach to system design and operation.  

 The two most common types of neutron detectors currently used in CANDU Start-Up 

Instrumentation (SUI) systems, Boron Trifluoride (BF3) and Helium (3He), will be examined 

along with the main disadvantages and system performance limitations. A new type of 

detector based on fission chamber technology will be proposed in order to overcome the 

current ageing and obsolescence issues affecting existing SUI detectors at Bruce Power 

(Bruce A) units 3 and 4.  

 Next, a new design and installation scheme will be proposed for existing CANDU 

reactors 3 and 4 at Bruce Power Nuclear Generating Station (NGS) in order to improve the 

overall SUI system functionality, and reduce dose rates and production losses that commonly 

result from the maintenance and operational challenges due to current system design 

limitations. 

 Next, a risk-based replacement and installation algorithm will be developed in order 

to formalize project phases and steps with the main objective of verification of the proposed 

work activity model. The case study of SUI instrumentation at Bruce Power Unit 3 and Unit 

4 will be used in order to define and standardize the essential activities that can be used for 

all future SUI replacement/installation projects at domestic CANDU stations.  
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 Next, risk analysis will be performed in order to identify potential hazards and risks 

associated with this project and the project activity model will be optimized in order to 

achieve maximum cost, time and radiation dose reduction benefits.  

 

 

1.2  Motivation of Thesis 

 The main motivation for this thesis stemmed from the large number of technological, 

operational and maintenance issues associated with Start-Up Instrumentation (SUI) systems 

at Bruce Power and the need for a structured approach to developing a 

replacement/installation procedure that can be standardized and used across all domestic 

CANDU stations.  

 Given the age of the Bruce Power plant equipment, particularly in Units 3 and 4, 

detector ageing and obsolescence are perhaps the main issue affecting plant instrumentation 

and components. Currently SUI instrumentation at Bruce Power consists of older Centronic 

detectors combined with obsolete Tennelec and Canberra signal processing electronics. 

There are currently no spares or replacement parts available for amplifiers, portable panels 

and Multi-Channel Analyzer (MCA) computers. This situation is not unique to Bruce Power 

reactors. IAEA-TECDOC-1402 released in 2004 [3] highlighted the trend formed over the 

last two decades where many major manufacturers of components for Nuclear Power Plants 

(NPPs)  have ceased to supply or support products with which the plants were built [3]. 

 Another main motivation for this thesis is the fact that the existing Bruce Power SUI 

system design has a reputation for being both time and labour intensive to implement, and 
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has been a causal factor to human errors, equipment disturbances and failures resulting in 

poor equipment performance.  

 Finally, radiological dose increases and outage extensions are among other 

undesirable outcomes associated with the existing SUI systems at Bruce Power units.  

 Presently, work packages for refurbishment projects at Bruce Power are usually 

developed based on previous experience or references to similar undertakings in other 

industries. No formal methodology is being used to identify potential hazards and risks and 

to optimize work packages in terms of time, cost and dose reduction. This, in its turn, results 

in many deficiencies and delays, where work packages have to be returned for re-assessment 

and re-work. With the current Bruce Unit 1 and 2 Restart project running significantly over 

time and over budget, process improvement and “Lean” approach have become some of the 

most important challenges that need to be overcome in order for time/cost savings and dose 

reduction to occur. An obvious demand for standard tools and practices has been identified, 

so that work packages and activity planning can be systematically examined from start to 

finish and optimized in order to eliminate their “wastes”, or steps that add no value, and 

enable a selection of the most optimal risk-based solution. 
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1.3  Objectives of Thesis 

 The main objective of this thesis is to analyze the main challenges with existing SUI 

technology at Bruce Power stations and to develop a risk-based optimization framework for 

replacement/installation of the next generation SUI systems.  This will be achieved in the 

following steps: 

1. Current operating challenges of SUI systems at Bruce Power units will be identified 

and analyzed. 

2. Possible alternative solutions to conventional gas-filled detector technology will be 

analyzed and a new type and model of SUI detectors will be selected in order to 

address the technological limitations of the existing aged detectors. The new detector 

type and model will be selected based on the existing design specifications in order to 

demonstrate the proposed methodology for the SUI installation procedure 

development and optimization. This thesis will not include detailed parametrical 

studies or detector design validation analysis.   

3. A new SUI system architecture and layout will be designed in order to address the 

existing operational and maintenance challenges at Bruce Power units. This enhanced 

SUI system architecture is shown in order to demonstrate the proposed framework for 

the SUI installation procedure development and optimization. This thesis will not 

include detailed physical system design, validation or performance optimization. 

4. The installation procedure for SUI replacement will be developed and verified. Task 

analysis, hazard identification and barrier analysis as well as risk analysis will be 

performed and a method for procedure verification and optimization will be shown.   
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5. Hierarchical Control Chart (HCC) methodology will be proposed as a means for 

future use by system engineers, designers and maintainers to aid in system 

maintenance and fault troubleshooting. 

 

 This is shown in Figure 1.1 below in the Integration Definition Language 0 (IDEF0) [4] 

activity model format. Each process is shown as a box/arrow relationship. Inputs enter from the left 

side of the function box and are transformed by the function to produce outputs. Arrows leaving the 

right side are outputs. Controls entering on top specify the conditions required for the function to 

produce correct outputs. On the bottom of the function box are the mechanism and the call. The 

mechanisms are the tools used to generate outputs and the call enables the sharing of detail between 

models. 

FunctionINPUT OUTPUT

CONTROL

MECHANISM
 

Figure 1. 1: IDEF0 activity model that will be used in this thesis. A sample process is shown with its 
associated input, output, controls and mechanisms. 
 
 

Following this methodology, the framework for the proposed SUI design can presented in a 

series of steps, or processes, with feedback ties and decision points as shown in Figure 2.  

 The first process or activity can be described as “Analysis of Current SUI 

Challenges”. This is the initial step in this research and is being performed to identify and 
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analyze the main challenges and limitations that the existing SUI systems present for the 

Bruce Power units. This analysis will involve both technological aspects of the aged Bruce 

Power SUI detectors, e.g. reduced sensitivity, as well as operational challenges such as 

outage extensions and high dose rates incurred by Maintenance personnel due to the current  

design and operating policies. This process is described in Chapter 2. 

 The second process corresponding to Chapter 3 can be described as “Analysis of 

alternative detector technologies” and will include the investigation of other detector types 

that are available on the market besides the conventional gas-filled proportional counters. 

The output of this process will conclude to selection of a new detector prototype that will be 

used for the proposed new SUI system design.  
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Figure 1. 2: Thesis Organization and Activity Model, where five main phases (or activities) are shown using IDEF0 activity model.
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 The third process shown in Figure 1.2 describes the development of a new SUI 

system architecture. It includes a conceptual design of the entire SUI system instrumentation 

loop, from the detectors in-core to the portable SUI equipment in the Main Control Room 

(MCR) and is described in Chapter 4. This chapter also includes a proposed new 

enhancement for the SUI systems, where networking and data storage capabilities are shown 

for the proposed design.  

 The fourth process shown in Figure 1.2 as “Development of SUI installation/removal 

procedure” is described in Chapter 5. In this Chapter, the need for a standardized procedure 

development approach will be examined, followed by detailed task analysis and procedure 

verification. A sample task in the proposed procedure will be used as an example to 

demonstrate a formal approach to procedure development and verification.  

 The last process shown in Figure 1.2 as “HCC methodology for future system 

maintenance and troubleshooting” will be described in Chapter 6. In this chapter, a 

“Hierarchical Control Chart” methodology will be proposed as a means to aid system 

engineers and operators, as well as helping designers with troubleshooting and routine 

verification tasks.  
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1.4  Organization of Thesis 

 In Chapter 1, an introduction to the research and background is given with the 

motivation and objectives of the thesis.  

 In Chapter 2, methodologies and techniques used in this thesis are given. 

 In Chapter 3, a detailed analysis of the existing technological and operational 

challenges associated with the existing SUI detectors and system architecture at Bruce Power 

units is given. 

 In Chapter 4, fission chamber based detectors are proposed as an alternative to the 

aged Bruce Power SUI detectors. A comparison between detector design, sensitivity ranges, 

signal discrimination capabilities, and other parameters is given for conventional gas-filled 

proportional counters and the new proposed detector technology. Three potential candidates 

for Bruce Power detector replacement are selected from the pool of immediately available 

detectors on the market based on the detector selection criteria. Rational for the selection of 

the Photonis CFUF-43 detector is given also. Next, a new SUI system architecture and layout 

addressing the current SUI challenges at Bruce Power units is proposed. Additional features, 

such as information storage and retrieval capabilities and real-time remote system monitoring 

features are given. 

 In Chapter 5, an installation/removal procedure for the proposed new SUI detectors 

and system architecture is developed and a methodology based on formal language-meta-

operations is used to verify the procedure consistency and completeness. Risk-based 

optimization methodology for replacement/installation project is used to achieve the 

maximum cost/benefit ratio in terms of resource allocation, project timeline forecasting and 

budget estimation. 
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 In Chapter 6, Hierarchical Control Chart (HCC) methodology is presented as a new 

tool for system designers, engineers and operators that can be used as an aid for system 

troubleshooting and verification tasks.  

 Finally, conclusions of the findings for this research and future work 

recommendations are given in Chapter 7. 
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CHAPTER 2: METHODOLOGY AND TECHNIQUES  

 

 The aim of this thesis is to develop a framework for systematic planning and 

optimizing installation/replacement procedures for Start-Up Instrumentation.  By providing a 

formal structure and process for planning and executing the work, the proposed procedure for 

installation/replacement of SUI instrumentation can be modified to be used across various 

CANDU facilities as well as for further optimization and automation in the future.  

The process that will be used in this thesis can be described in the following stages: 

1. Analysis of Opportunity 

2. Analysis of Current Challenges 

3. Problem Definition 

4. Proposal of a suitable solution 

5. Solution Optimization 

6. Performance Monitoring 

7. Feedback and Modification for future implementation – Lessons Learned 

 
This process is shown in Figure 2.1 below and further expanded in Figure 2.2 
 

Analysis of 
Opportunity

Analysis of 
Current 

Challenges

Problem 
Definition

Proposed 
Solution

Optimization of 
Solution

Performance 
Monitoring

FEEDBACK

FEEDBACK

Figure 2. 1: Thesis development methodology. 
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Opportunity 
Analysis

Analysis of 
Current 

Challenges

Equipment

Design

Human Factors

Maintenance 

Operation

Problem 
Identified ?YES

Propose Solution 
Framework

Solution 
Optimization

Verification 
pass?

Implementation
Performance 
Monitoring,

E.g. HCC

Meets 
Requirements

?

Verification
Recipe Formal Definition 

Language (RFDL)

Design Verification

Procedure verification 
with seeded errors

YES

NO

NO

Resource

Budget

Time

Pass?

YES

NO

DocumentationYES

NO

 
 
 
 
Figure 2. 2: Thesis framework development methodology where the stages of Opportunity Analysis, 
Analysis of Current Challenges, Proposed Solution, Solution Optimization and Implementation are 
shown. 
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2.1  Opportunity Analysis  

 
 
 In order to identify the existing gaps and limitations of current SUI systems at Bruce 

Power units, a thorough review of historical data, maintenance and Engineering records and 

Station Condition Records was conducted. Station Condition Record database (SCR) 

database was searched for the period between 2003 and present time. The following 

keywords were used: “SUI”, “Start-Up Instrumentation”, “Start-Up detectors”, “SUI 

detectors”, “Outage extensions”, “Human Performance issues”, “Equipment Reliability clock 

reset”, “ER clock reset” as well as by the unique system identification number used at Bruce 

Power. All entries that were found relevant were categorized by the nature/type of issue, e.g. 

equipment degradation, human error, outage extensions and delays, dose reduction areas for 

improvement, etc.  

 Next, Ventix Passport Suite used at Bruce Power was searched to investigate SUI 

system maintenance and equipment history. All work requests and work orders related to SUI 

equipment were reviewed and categorized in terms of detector failure, connector/cable 

failure, electronic modules/component failures and other types of faults that have occurred at 

Bruce Power stations between the year 2003 and present time.  

 Next, engineering records, such as System Health Reports and System Performance 

Monitoring Plans were reviewed to confirm the repetitive nature of failures and other issues 

with SUI equipment. It was determined that there is a large number of such issues that had 

been recorded and tracked in these documents.  
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 Next, interviews with Engineers from Fuel & Physics department, Performance 

Engineering and Control Maintenance technicians were conducted to discuss the issues with 

the existing equipment.  

 Next, COG (CANDU Owners Group) records and IAEA technical documentation 

(TECDOC) were reviewed in order to determine the extent of condition throughout nuclear 

industry in Canada and worldwide.  IAEA documentation is available in hard copy format 

through Bruce Power record management system as well as online through the Internet. COG 

records were reviewed online as well as during COG workshop meeting that took place in 

June 2010 where engineers representing various domestic and foreign CANDU power plants 

were interviewed to determine whether the SUI equipment concerns are common among 

other CANDU stations. The process of “Analysis of Opportunity”  is shown in Figure 2.2 

below. 

 

Figure 2. 3: Analysis of Opportunity model where various inputs, such as System Health Reports, 
interviews with Maintenance and Operations and others, are shown. 
 
  

 Finally, a research plan, shown in Chapter 1, was developed using Integration 

Definition Language 0 (IDEF0) methodology for the thesis activity model. IDEF0 standard was 

selected as the most suitable for developing a structured graphical representation for a complex 

process with multiple stages and interconnected inputs/outputs in order to provide a clear, consistent 

plan for thesis organization and objectives.  Each chapter of this thesis is logically mapped to a 
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process, e.g. “Analysis of Current SUI Challenges”, as shown in Figure 1.2 in Chapter 1. Following 

IDEF0 standard guidelines, each process is shown along with its tools, mechanisms, processes, 

operations information or objects, e.g. in Figure 1.2 the process of “Analysis of Current SUI 

Challenges” is shown in its inputs, such as Engineering Records, System Health Report, SCR 

Database Review, etc. that were used to determine and categorize the existing SUI system challenges 

as discussed earlier. Standard Operating Policies and Procedures, Radiation Protection Requirements 

and other standards and regulations are shown as controls that must be considered for the 

development of formulated technological challenges of this process, i.e. process output. Design 

Manuals, Vendor Documentation, COG database, SCR database, COG database and other tools used 

in this analysis are shown as “mechanisms” for this process.  

 Overall, the use of IDEF0 standard was found very successful for this task as it provided the 

required means for the analysis and development of a complex, multi-stage research framework as 

well as to incorporate both technical and business requirements in the same process analysis.  

 

2.2  Analysis of Current Challenges and Problem Definition 

 Once the opportunity for improvement was identified, Analysis of Current Challenges 

was conducted and presented in Chapter 3 of this thesis. The existing deficiencies and 

limitations of Bruce Power SUI systems were analysed in greater depth. Station Condition 

Records were analysed in order to determine the main existing challenges due to obsolete 

SUI equipment as well as to categorize the root causes of the issue, such as technical 

specifications of the equipment, design, operation policies and procedures, human errors, etc. 

Detailed maintenance history, outage history, system notebooks and data ledgers were 

examined and data was compiled using MS Excel spreadsheets.  
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Figure 2. 4: Categorization of SUI related challenges at Bruce Power. 
 

 Next, COG meeting documentation was reviewed to find out whether other CANDU 

stations, such as G-2, Darlington, Pickering, etc. are affected by the same issues, e.g. Hydro-

Quebec presentation by Denis Brissette at COG Workshop for “Start-Up Instrumentation & 

Physics Monitoring” that took place on 22-23 October 2003 where the current challenges of 

SUI instrumentation at Point Lepreau Nuclear Generating Stations was examined.  

 Next, existing literature, listed in the References section of this thesis, was reviewed 

to gather more background information regarding the technical specifications and design of 

conventional gas-filled detectors. Bruce Power SUI design manuals and specialized detector 

studies conducted by T. Qian, P. Tonner, N. Keller and other researchers at Chalk River 

Laboratories (available as restricted materials for Bruce Power internal use only) were 

reviewed as well.  

 Next, several physical plant walk-downs were conducted to assess condition of the 

equipment in the warehouse, Control Maintenance shop and the field locations, such as the 

Main Control Room portable SUI equipment rack and panel connections. Several photos that 

were taken during these walk-downs are used in this thesis for demonstration, e.g. Figure 

3.11 where Bruce A Unit 2 SDS2 Horizontal Reactivity Management Deck is shown.   
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 Next, vendor manuals for the existing Bruce Power SUI systems were reviewed to 

determine technical specifications for detectors, timers, counters, power supplies and other 

components of the system as well as to determine the applicable standards and regulations, 

shown in Appendix B.  

 Finally, additional interviews with subject matter experts, such as Jerry Cuttler 

(former AECL), Tom Tamagi (former AECL) and Navindra Persauld (Bruce Power Pressure 

Boundary Program) were conducted to finalize Chapter 3. 

 

 

2.3  Proposed Solution 

 In Chapter 4, in order to address the identified gaps and limitations of the aged Bruce 

Power detectors, a comparative study of the alternative detector technologies and market 

trends were reviewed in order to propose a new detector model. Fission chamber 

characteristics were analysed using existing scientific literature, listed in the References 

section of this thesis, and compared to the requirements for Bruce power detectors identified 

in Chapter 3.  

 Next, a proposed enhancement to the design was developed based on the modern 

digital equipment and network capabilities. A physical walk-down was conducted along the 

proposed route of the new system installation. Location of the 6” Viewing Port on the Unit 3 

Vertical Reactivity Deck, shown in Figure 4.11 in Chapter 4, was examined as well as the 

instrument racks and Main Control Room Modules and connection terminals.  

 The proposed design block diagram was developed using the Plant Instrumentation 

(PI) graphical module to demonstrate the proposed changes to the system architecture in 
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order to develop a proposed framework for the installation procedure analysis and 

optimization. As discussed earlier, this thesis does not include detailed studies or 

optimization model for the new SUI architecture or parametric studies of specific 

components.  

 

2.4  Solution Optimization 

 In Chapter 5, in order to develop SUI installation/replacement procedure, an activity 

model was created using IDEF0, as shown in Figure 5.1, and described in detail in sections 

5.1 through 5.2.  S-88.01 Standard guidelines were used to formally present the steps in the 

installation tasks in a sequential manner in order to produce a formal installation recipe. 

Following the process sequence identified in this model, all procedure tasks were broken 

down into smaller steps and assigned unique TaskID’s using the guidelines of Recipe Formal 

Definition Language (RFDL), described in section 5.3, under the guidelines of ISA 

standards. RFDL standard methodology was selected in order to convert the procedure steps 

in to English-like statements so that the proposed approach could be standardized and used 

for other similar installations throughout the CANDU industry as well as to minimize the 

possibility of human error due to poor communication, elevated noise levels, personnel  

familiarity with descriptive English language, etc. 

 This was further used to produce Unit Procedure (UP) steps that were converted into 

a control recipe.  Next, a proposal for the procedure verification using meta-operation 

language methodology was developed. In this proposal, an approach based on “seeded-error” 

technique is suggested for procedure verification and logic validation. In this approach error 

seeding is the process of purposefully adding known faults and logical hold points into a 
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program in order to verify and eliminate unwanted logical loops and uncertainty conditions. 

In this thesis, this methodology is proposed for procedure task sequence verification and 

optimization.  This is described in more detail in section 5.4.1 “Procedure Verification 

Methodology”. 

 Next, Hazard Operability Analysis was conducted for each procedure task, followed 

by Barrier Analysis in order to determine the potential hazards and develop the 

mitigating/control measurements. A risk matrix was developed and a proposal for further 

risk-based procedure optimization was made.  

 As a result of this analysis, several possible alternatives were developed, each 

presenting certain benefits in terms of time, budget or resource allocation. Thus, in order to 

select the best solution, a methodology for multi-objective optimization was needed, so that 

the best solution could be selected. In order to address this task, a Multi-Objective Genetic 

Algorithm (MOGA), given in section 5.5-5.8, based on Pareto optimal solution approach was 

proposed.  Pareto-based approach was chosen in order to find the best possible choice out of 

a set of possible alternatives as described below.  

 

2.4.1  Multi-Objective Optimization Methodology 

 As discussed earlier, during the risk-based optimization process it was determined 

that there are several possible solutions, each addressing certain parameters or constrains, e.g. 

time or budget, better than the others.  

 The need for a methodology for model optimization emerged during World War II 

where it was used to solve large-scale military logistics problems and has since been 

successfully used in many engineering, finance and other disciplines where the target is to 
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make the most efficient use of resources such as time, money, time, staff, inventory and 

others. 

 To address this condition the optimization problem can be described using 

mathematical symbols and expressions, e.g. in a format of a function, so that it could be 

manipulated to achieve maximization, i.e. achieve the highest possible value or to be 

minimized, e.g. determine the least possible value where the function is still valid.  

  There are many various methods and approaches to model optimization, both 

mathematical and through the use of “off-the-shelf” computer applications such as LINDO 

optimization software available for Windows-based platforms that allows users to work with 

linear, non-linear, stochastic, integer and other types of models.  

 As discussed earlier, during the risk-based analysis portion of this thesis it was 

revealed that there are several alternative solutions, each with its associated benefits. Thus, 

the optimization methodology selected for this task will have to be able to address several 

equally important criteria, such as resource vs. time allocation or budget vs. time problem 

rather than a single objective one. Naturally, it is more desirable to achieve the target goal of 

installation/replacement of SUI equipment with the minimum cost, time and resource 

loading. This, however, may not always be possible. Quite often, it is necessary to spend 

additional funding in order to expedite execution of work or to assign more physical 

resources in order to meet the deadline. Thus, the problem of optimization comes to making a 

choice of which constrains will be given a priority, i.e. minimum cost, or which must be 

reduced, i.e. project time.  

 This condition can be represented by a mathematical model, where the alternatives 

are restricted by certain variables. Such mathematical model will, therefore, consist of an 
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objective function f(x) and a set of constrains as shown in Equation 5.8-5.9 in Chapter 5. This 

approach of using mathematical modelling to solve complex problems is very typical and is 

often used in design, decision-making or financial portfolio development. 

 As mentioned earlier, there are many optimization methods and algorithms available, 

with over 4000 solution algorithms for different kinds of optimization problems: convex 

programs, separable programs, quadratic programs and the geometric programs. Some of 

these methods are better suited for certain problems that others. It is important to recognize 

the nature of a problem in order to choose the appropriate solution technique. Different 

optimization methods may vary in computational requirements, convergence properties, and 

so on. For example, Single-Objective Genetic Algorithms may not be the best approach to 

solving the problem with several competing priorities. Therefore, in this thesis Multi-

Objective Genetic Algorithm (MOGA) based approach is selected for the proposed 

framework of SUI installation/replacement procedure so that several different objectives may 

be optimized at once. 

 Next, a set of feasible solutions will have to be determined, as shown in Equation 5.4 

in Chapter 5.  Any of the possible solutions xi where all of the problem constraints are 

satisfied will be considered a feasible solution. Once the set of feasible solutions is 

developed, the algorithm can be further improved to find the solution with which the 

objective function has reached its maximum or minimum as shown in Equations 5.5-5.9. This 

result is called an optimal solution and will present the best cost-benefit answer to the 

procedure optimization. This is further explained in Chapter 5 for the selected case study of 

installation/replacement of SUI equipment for Bruce Power.  
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2.5  Performance Monitoring  

 In Chapter 6, Hierarchical Control Chart (HCC) methodology was developed and 

illustrated as a new interactive aid tool for system designers, developers and operators to be 

used for system troubleshooting and maintenance. The existing tools and aids available for 

control system designers, engineers and maintenance personnel at Bruce Power were 

analysed and the existing gaps and limitations were identified. For example, such tools as 

MatLab Simulink has been successfully used to design and simulate control circuits at AECL 

Chalk River Laboratories but by no means provide a good indication of the physical 

components of a system or their interconnections so that this information can be used for 

future system maintenance and troubleshooting.   

 Following this analysis, a set of requirements and functionalities for was formulated 

and Hierarchical Control Chart (HCC) methodology was developed to be used for nuclear 

power plant systems and components modeling in order to provide a single view of all 

elements and systems across a power plant. The objective of the new proposed automated 

HCC methodology is  to aid  system designers, operators and maintenance personnel with an 

automated tool for equipment, process lines and operations mapping, which offers a fast, 

intelligent and highly automated visual support for design as well as a troubleshooting and 

fault diagnostic tool. 

 Finally, several HCC functionalities were developed and implemented using 

Microsoft Visio and Visual Basic programming for graphical user interface set-up and a 

connection to MS Access database was developed to demonstrate the proposed interactive 

data capabilities.  
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2.6  Feedback and Modification for future implementation – Lessons 

Learned 

 This thesis will concentrate on the framework for installation/replacement of SUI 

equipment is will not include the installation process. In the future, should the proposal take 

place and the installation data become available, it can be used for feedback to fine tune the 

proposed framework in order to optimize the proposed solution and methodology.  
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CHAPTER 3: ANALYSIS OF OPERATIONAL CHALLENGES 

ASSOCIATED WITH THE EXISTING BRUCE POWER SUI SYSTEMS 

 

3.1  Background – SUI System Purpose and Description 

 In a normal nuclear operations lifecycle, it is often necessary to shut down the reactor 

for maintenance, refurbishment, or due to a surplus of electrical power on the market. 

Following the shutdown, a reactor is normally placed in one of the shutdown states, such as 

Overpoisoned Guaranteed Shutdown State (OPGSS), or brought back to criticality. In either 

case, following a shutdown, activity of neutron sources in the reactor core decreases 

exponentially with time. During the normal start-up and operation at power, neutron flux is 

generated in the fuel pellets undergoing fission. This results in photo-neutron production   

that remains steady until the reactor is shutdown. Following continuous operation for a 

sufficient amount of time, fission product activity builds up to a level where it can be 

monitored by either in-core vertical flux detectors or out-of-core ion chambers. After a 

shutdown, the fission product activity decays away and might diminish below the levels 

where Shutdown System 1 and 2 (SDS 1&2) and Reactor Regulating System (RRS) ion 

chambers (IC) can accurately detect reactor neutron power and rate of change.  

 Thus, a means to monitor neutron activity at low and very low power levels is 

required once the SDS1 and SDS2 and RRS ion chambers go off-scale to ensure that the 

operators in the Main Control Room (MCR) can monitor neutron flux and obtain timely and 

accurate information on the status of the reactor in question. Table 3.1 below shows the 

nuclear instrumentation employed in CANDU reactors at various power levels.  
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Table 3. 1:Sensitivity ranges of CANDU Nuclear Instrumentation [2]. 
  

Power Range Start-Up 
Instrumentation 

RRS/SDS Ion 
Chambers 

RRS/SDS In-Core 
Flux Detectors 

Lower Limit 10-14 F.P. 10-7 F.P. 10-1 F.P. and above 
High Limit 10-6 F.P. 1.5 F.P. 

 
 

Figure 3.1 below shows neutron count decrease as a function of number of shutdown days at 

Bruce A, where nv (Φ) or Neutron Flux (n/cm2/s) is plotted versus the shutdown time.  

Ostensibly, the neutron activity decays quite noticeably, as can be seen below, and reduces to 

half of its original value after one week of outage time.  
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Figure 3. 1: Neutron Decay Curve as a Function of a Number of Shutdown Days, shown for a period of 1 
week during Unit 8 Outage. Graph compiled using historical data manually recorded and stored in the 
system binder for “September 2003” outage.



 For a specific case of prolonged outages when the moderator level  is decreased or 

drained (Low Level Drained State or Drained Guaranteed Shutdown State), the SUI 

detectors will observe much higher counts than those shown in Figure 2.2 with the 

maximum read-out obtained when the moderator level is just below the location of the 

detectors. This happens mainly due to a number of thermal neutrons that escape from the 

over-poisoned moderator and form a cloud above the surface level. Figure 3.2 below 

shows a typical count rate rc output as a function of moderator level lmod.  

 

 

Figure 3. 2: Bruce Power Unit 4 Count Rates vs. Moderator Level (data sampled on 29-Mar-2003) [6] 
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 Once the guaranteed reactor shutdown state is achieved and poison is being pulled 

from the moderator to enable approach to criticality, SUI continues to provide flux and 

rate monitoring. SDS1 trip capabilities are in place while RRS ion chambers provide an 

accurate and reliable reading and RRS can resume normal control of the reactor as shown 

in Figure 3.3 below.  
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Figure 3. 3: Unit 8 Approach to Criticality Neutron Flux and SUI Counts, Unit 8, January 2004. 
Graph compiled using historical data manually recorded and stored in the system binder for 
“January 2004” outage. 

 
 
 Start-Up Instrumentation most commonly used today in CANDU-based power 

plants typically consists of thermal neutron detectors, electronic modules, cables and 

connectors. There is typically a dedicated computer terminal located in the main control 

room that is used for SUI data collection and processing. There are two major categories 

of Start-Up Instrumentation equipment used in CANDU power plants – in-core and out-

of-core SUI modules.   
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 In-core SUI Instrumentation can be positioned at various locations throughout the 

reactor core, both in a stationary and mobile manner. Stationary SUI detectors are 

permanently fixed at particular locations in the core to provide detailed information about 

the neutron flux distribution and magnitude. Mobile detectors could be of a “traveling 

type” where a detector assembly is outfitted with a mechanical drive unit and could be 

moved within the reactor core as needed. There are various types of in-core 

instrumentation available on the market, however they all share similar characteristics of 

size and shape restrictions imposed by the core geometry and available space between 

fuel channels. One of the main advantages of using in-core SUI instrumentation is that it 

requires lower neutron sensitivity. This, however, is somewhat offset by the stresses 

imposed on the system due to the extremely hostile environment inside the reactor core, 

which leads to faster component degradation and maintenance challenges due to physical 

inaccessibility. 

 Out-of-core SUI instrumentation is located outside the reactor core and is 

therefore better suited to provide bulk neutronic activity measurements. It is less affected 

by the reactor size and geometry factors as well as the high-temperature and pressure 

environment in the pressure vessels. Out-of-core SUI instrumentation is more easily 

accessible for maintenance and inspection; however it requires higher sensitivity and 

gamma discrimination capabilities than the in-core models. 

 Either type of SUI instrumentation is connected to the main control room 

indicators via a number of cables and connectors. A number of amplifiers, pre-amplifiers, 

signal analyzers, power supplies and other components may be used to comprise a 
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complete SUI circuit. For reliability and redundancy reasons the SUI equipment is 

typically triplicated. Figure 3.4 below shows a typical arrangement for SUI equipment.  
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Figure 3. 4: Typical SUI Channel Set-Up [6].



 Each of the three channels consists of a neutron detector, pre-amplifier, an 

amplifier, and a high-voltage power supply. Thermal neutron detector types vary 

depending on the plant location and application. However, all of them (irrespective of the 

technology used) serve the purpose of detecting neutron activity or so-called “neutron 

counts” and discriminating it from the associated gamma noise. The majority of neutron 

detectors used for reactor Start-Up Instrumentation are of the gas-filled type [1]. For 

CANDU power plants in Canada, the two most common detector types used are 

uncompensated ionization chambers with Boron Trifluoride (BF3) and Helium (3He) 

detectors. Both are of the thermal neutron-sensitive type. The type of detector chosen as 

well as the size and the gas filled pressure depend on the reactor power level and 

installation methods. A detailed description and comparison between the BF3 and 3He 

detectors will be provided in the following sections.  

 A signal received from a neutron interaction in the detector is sent through the 

pre-amplifier to the spectroscopy amplifier. The amplifier shapes the pulse proportionally 

to the charge deposited on the detector during the neutron interaction event and is 

consequently transmitted to the main control room through a series of cables penetrating 

the containment. It is important to note that the amplifier boosts both the detector signal 

and the noise picked up at the detector lead, connectors or along the cable. Therefore, 

cables and connectors used for the SUI instrumentation should be low-noise, 

environmentally qualified, as well as very high quality splicing and insulation materials 

should be used.  

 Once the signal is received in the main control room, it is connected by the single 

channel analyzer for information processing and interconnected to the SDS1 trip circuits 
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for implementation of NOP protection. Single Channel Analyzer (SCA) is used to 

process the incoming signal to distinguish the true neutron activity response and the 

instrumentation and gamma noise. This signal is, in its turn, used by the counter and rate-

meter components to determine the number of neutron counts per unit time, e.g. per 

second. This allows for translating the amplifier signal into a number of neutron counts 

representing the neutron source activity in the core as well as rate of change to determine 

whether it is increasing or decreasing over time.  Figure 3.5 below shows a sample SUI 

pulse waveform as seen on oscilloscope.  

 

Figure 3. 5: A typical SUI Pulse Waveform As Seen on Oscilloscope [7]. 
  

 Multi-channel Analyser (MCA) is normally connected to the SUI electronics, 

particularly during prolonged shutdown phases, to record the initial neutron count 

activities and count increase information. MCA creates a plot composed of the frequency 

with which specific pulse height voltages are recorded as function of the peak voltage via 
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discretizing the voltage range into small portions or so-called channels. Each time the 

pulse height falls into the corresponding channel, its counter is incremented by “1”, and 

thus a neutron count is obtained even though the SUI detector does not directly interact 

with incident neutrons. Figure 3.6 below provides a sample output of SUI multi-channel 

analyzer (MCA) where a neutron peak can clearly be seen at 5.9 V versus low-energy 

(0.9-2.0 V) gamma noise.  

 

Figure 3. 6: SUI Multi-Channel Spectrum Analysis Sample with BF3 detector taken on 27 July 1993. 
The 5.9V peak on the right-hand side corresponds to a neutron count, while the lover energy gammas 
can be seen on the left at 0.9 and 2.0V [6]. 
 

 There is typically an alarm unit with high and low level alarm capabilities on the 

SUI main control room equipment. The high level alarm provides an indication that a 

potential loss of regulation may occur or the unit might be experiencing count rates 

higher than the design basis, which may lead to sensor damage or degradation. Low level 
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alarms indicate to the control room personnel that the SUI detectors might be reading off-

scale low or a loss of power for the SUI equipment has occurred. 

 To provide a good visual indication of the neutronic activity in the core there is 

typically a dedicated computer and printer installed in the main control room to be used 

with SUI equipment. This computer integrates the data obtained from the SUI channels 

and builds a graph that can be analyzed by the control room operators or station engineers 

and nuclear scientists to determine the accuracy of the SUI detector readings and to 

confirm the level of neutronic activity in the core. 

 

 

3.2  Overview of Conventional SUI Detectors at Bruce Power  

 There is a wide variety of neutron detectors available on today’s market. 

However, when it comes to nuclear power plant application, not all detectors perform 

well due to harsh environments inside the reactor containment, general inaccessibility for 

maintenance and the need to accurately discriminate between neutron and gamma 

activities.  

 In CANDU power plants in Canada the two of the most commonly used types of 

neutron detectors, Boron Trifluoride (BF3) and Helium (3He), belong to a family of gas-

filled detectors. All gas-filled detectors share the ability to discriminate between neutron 

and gamma ray energies and are typically well suited to work over a wide dynamic range.  

Scintillation-based detectors are less suitable because of higher sensitivity to gammas and 

semiconductor detectors are significantly more susceptible to radiation damage.  
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 Boron Trifluoride (BF3) or Helium (3He) detectors have also been selected as the 

technology of choice for SUI instrumentation in CANDU power plants, such as Bruce 

Power Nuclear Generating Station (NGS). It is often the case that high levels of gamma 

radiation are present in the reactor core during low power or start-up which makes BF3 

and 3He detectors’ ability to discriminate between a gamma-ray process and a neutronic 

reaction an important factor.  

 Both BF3 and 3He detectors are implemented based on the proportional counter 

principle. The detector gas tubes are constructed using a cylindrical outer cathode and a 

thin inner wire anode. Following exposure to neutron flux a number of charged particles, 

or so-called ion pairs, are created as a result of gas interaction with the incident neutrons. 

The charged particles recoil at high speed creating primary ion pairs and thus ionizing the 

gas inside the chamber resulting in a current flow between the cathode and anode. This 

current is subsequently detected and converted into voltage pulses, which are 

subsequently translated into neutron flux measurements. Table 3.2 below shows Bruce A 

Neutron Power Measurement and voltage conversion guidelines.  

 

Table 3. 2: Bruce A Neutron Power Measurement and Voltage conversion [5]. 
 

Flux Amps Volts % Power Decimal 10^ Decade 
2.85x1014 
n/s/cm2 

10-4 4.0 100 1 100 0 
10 0.1 10-1 -1 
1 0.01 10-2 -2 
0.1 0.001 10-3 -3 
0.001 0.0001 10-4 -4 
0.0001 0.00001 10-5 -5 
0.00001 0.000001 10-6 -6 

10-11 0.5 0.000001 0.0000001 10-7 -7 
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 One of the important features of all gas-filled detectors, including BF3 and 3He 

detectors is a so-called wall-effect. The wall effect occurs when charged particles, both 

the alphas and the other ions, e.g. lithium ion, to reach the detector wall before they had 

an opportunity to loose their excess kinetic energy in the gas. This will result in a pulse 

smaller than the one produced if the charged particle deposited their entire energy in the 

gas. The ions’ energy ends up being deposited in the detector wall material and becomes 

neutralized there. The wall effect is typically present on all SUI spectrum readings and is 

an important factor in selection of SUI multi-channel resolution and discriminator 

bounds.  

 BF3 and 3He detectors that are currently used for Bruce Power SUI applications 

along with their associated limitations will be analysed in more detail further in this 

paper. 

 

3.2.1  Bruce Power SUI Detectors – BF3 Type 

 All BF3 detectors are based on a well-known principle of indirect neutron 

detection. In BF3 detectors, Boron Trifluoride serves both as a target for thermal neutrons 

and a proportional gas. The detector gas is highly enriched in 10B, up to 96% [1] to 

provide the necessary efficiency. The thermal cross section for the 10B (n, α) reaction is 

3840 barns [1], which makes it extremely suitable for applications in thermal reactors. 

Another main advantage of BF3 detectors is that Boron is a readily available element. 

Neutronic activity is derived from the 10B interaction with an incident neutron, as shown 

below [8]: 

    10B + n → 7Li* + α + 0.48 MeV γ-ray +2.31 MeV (94%)      (3.1) 
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10B + n →7Li + α +2.79 MeV (6%)       (3.2) 

 Typically, the resultant reaction statistically falls into two main categories – each 

with the reaction product 7Li in a ground or in an exited state as shown above. It is well 

described in literature [1] [8] that about 94% of all reactions result in an exited state with 

the remaining 6% being in ground state. The produced alpha and lithium ions possess 

kinetic energies summing to b 2.4 MeV. If the entire kinetic energies are dissipated in the 

counter gas by ionization, approximately 80,000 primary ion-pairs are created. When a 

polarizing voltage of 1,800-2,000 Volts is applied, the avalanche results in 2x10 

secondary ion-pairs. The conversion gain of the preamplifier is about -235 mV/(M ion-

pair) so a positive pulse of 500 mV is obtained and passed on to the preamplifier. The 

pre-amplifier functions well up to 5V DC corresponding to the count rates up to 5x105 

counts per second, which is well within the system requirements for SUI equipment [5].  

  BF3 detectors are commonly used in all Bruce A SUI instrumentation. Bruce A 

SUI detectors are tube-shaped Reuter-Stokes (Model No: RS-P1-0403-102) counters 

made of 1100 aluminium alloy with alumina ceramic detector insulation material. Their 

physical dimensions are 1.27 cm OD by 15.6 cm long with the fill gas being 96% 

enriched Boron-10 with BF3-gas fill pressure of 55-60 cm/Hg. Table 3.3 below shows a 

summary of Bruce A BF3 detector specifications.  
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Table 3. 3: Technical specifications summary for SUI BF3 detectors at Bruce A [2]. 
 

Parameter Value 
Diameter 5/8”      (16 mm) 
Overall Length  
                   with MHV Connector 

5 ½ “    (140 mm) 
addl. 7/8” 

Active Length  1”  (24 mm) 
Cathode  Brass (0.035”) 
Anode 1 mil tungsten 
Connector MHV-teflon 
Insulators Ceramic and glass 
Gas filling  Enriched BF3 (96% B10) 
Gas Pressure 60 cm  Hg 
Temperature  -80 to +80°C 
Neutron sensitivity  appx. 0.35 cps/nv  
Neutron flux range  0.25 to 2.5x104 nv 

 

 
 Bruce A BF3 detectors typically possess a sensitivity of 0.35 neutrons per second 

per square centimetre (cps/nv). This is quite sufficient for all normal and long shutdowns 

and subsequent approach to criticality. The BF3 detectors are deemed to perform well 

with the count rates as low as 5 counts per second. The RSN137 model currently used is 

designed to withstand a range of flux of 0.25 to  104 n/cm2/s and a gamma dose rate of up 

to 100 Rad/h  for 24 hours without significant deterioration [9].  

 Detection efficiency of a BF3 detector for thermal energy neutrons (0.025) eV is 

approximately 91.5%, which makes it very suitable for start-up instrumentation 

applications. A sample print out of a SUI spectrum analysis using a typical BF3 detector 

at Bruce A is shown in Figure 3.7 below.  
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Figure 3. 7: BF3 Detector Spectrum Analysis Sample at Bruce A, data taken Dec 15, 2007 for Unit 3, 
currently stored in a hard-copy format in the system binder for December 2007 outage. 
 

Please note the poor quality of the printout due to obsolescence of printer components 

and unavailability of replacement ribbon. As discussed earlier, MCA plot is an 

instantaneous snapshot of data. The current SUI system MCR equipment has no data 

storage capability, so that the data cannot be reproduced later should there be a need for a 

better graph quality or further analysis. Also, the current system has no data transfer 

capabilities or connection ports for any external data processing software or hardware. As 

a result, the snapshot shown above cannot be reprinted or reproduced. This drawing is an 

ideal example why the system has to be upgraded in order to sustain a reliable 

performance and to ensure that data archiving and storage features are developed. This 

will be discussed in more detail in the proposed SUI System design enhancements. 

 



41 
 

3.2.2 Bruce Power SUI Detectors – 3He Type 

 A 3He proportional counter is another type of detector widely used for SUI 

applications. Bruce B SUI instrumentation is typically implemented via 3He detectors. 

3He gas possesses a cross-section for thermal neutrons of 5330 barns [1], which is 

noticeably higher than that of B10.  

3He + n → T + p         (3.3) 

Ep=0.573 MeV, ET=0.191 MeV       (3.4) 

 

 Compared with BF3 detectors, 3He gas-filled tubes are of the same size and 

pressure. The traveling distances of the reaction products are much longer, which results 

in a more significantly wall effect [10]. This is largely due to the fact that 3He has a very 

low atomic mass. Therefore, a small amount of a heavier gas, such as CO2 or Ar is used 

in the fill-gas mixture to increase stopping power. Overall, 3He filled tubes can be 

operated at much higher pressures and temperatures and can provide an acceptable 

performance output at temperatures as high as 200-250° degrees C. 3He-based SUI 

detectors used at Bruce Power are GE Reuter-Stokes models. A summary of their 

technical specifications is provided in Table 3.4 below. 
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Table 3. 1: Technical Specifications Summary for SUI 3He detectors at Bruce A [5]. 
  

Parameter Value 
Diameter 2.28”   (57.9 mm) 
Overall Length  15.69 “    (398.5 mm) 
Connector Type HN 
Body Material 304 S.S. 
Connector Material Brass, silver plated 
Insulators Alumina Ceramic  
Gas filling  3He 
Gas Pressure 60 cm  psig (0.41 MPa) 
Temperature  -25  to +100° C 
Plateau 200 V 
Neutron sensitivity  110 cps/nv  +/-10 % 
Neutron flux range  1.004E-04 to 5.00E+02 nv 

 
 

Another main difference between BF3 and 3He detectors is that the latter shows a 

much higher sensitivity and is capable of working with very low neutron counts. 

Typically, 3He detectors can still produce an accurate indication of neutronic activities in 

the reactor core with neutron counts below 5 counts per second and are known to have 

been successfully used for power levels approaching the source level with the counts as 

low as 0.3 counts per second [11]. Figure 3.8 below shows a typical SUI 3He detector 

spectrum analysis sample at Bruce A. 
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Figure 3. 8: 3He Detector Spectrum Analysis Sample at Bruce A, data taken 13 March 1980 for U-3. 
 

 

 

3.3  Analysis of Existing Challenges Associated with Bruce power SUI 

systems 

3.3.1  Bruce Power BF3  Detector Ageing and Performance Limitations  

 There are quite a few disadvantages and limitations associated with using existing 

BF3 detectors as a means of neutron detection in CANDU reactors, particularly in SUI 

instrumentation at Bruce Power A and B stations.  
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There are several known disadvantages and limitation associated with BF3 detectors. 

 First, BF3 proportional gas detectors show degraded performance when operated 

at high pressure [8]. Therefore, the absolute pressure of gas inside the detector tube 

should be limited to 0.5-1.0 atm [1] and should be carefully monitored.   

 Also, because of high excitation voltage current, leakage through the detector 

insulators is common. This becomes particularly troublesome in high humidity 

environments, such as CANDU reactors.  

 Performance degradation due to ageing and radiation damage [12] is another main 

issue affecting BF3 detectors.  In 2003, degradation of Bruce Power SUI BF3 detectors 

resulted in failure of five of these while in-service [13].    

 Contamination of the anode and cathode components by the disassociation 

products of avalanche reactions is another factor contributing to detector ageing and 

performance degradation. According to Dr. G. Knoll studies [1] this typically happens 

after 1010-1011 counts.    

 Another limitation of BF3 counters is susceptibility to vibration and shock [1]. 

Mechanical shocks against the HV detector cables or detectors themselves result in large 

noise pulses that get interpreted by the SUI electronics as large spurious increases in 

neutron counts.  This becomes a significant limiting factor as the BF3 SUI detectors at 

Bruce Power A and B are used in a mobile out-of-core configuration which requires 

frequent handling and positioning during unit outage periods. This will be discussed in 

more detail in the following sections where main operational challenges and concerns 

associated with current SUI instrumentation at Bruce Power are analyzed. 
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3.3.2 Bruce Power  3He Detector Ageing and Performance Limitations  

 Some of the main limitations of 3He detectors include the fact that 3He is a noble 

gas and must be used in its gaseous form to fill the detectors. Although 3He gas is widely 

available for commercial applications [1], it could present higher costs associated with 

obtaining and maintaining the detectors. Performance degradation also results from the 

loss of containment on the detector, where gas escapes and air enters.  

 Although the high neutron sensitivity of 3He detectors may be an important 

advantage in many applications, such as radiation detection in the biomedical industry or 

research, it becomes a hindering factor for SUI instrumentation in commercial CANDU 

reactors such as Bruce Power NGS. Neutron sensitivity as high as 110 cps/nv [8] might 

result in slow response of the detector electronics and the maximum count it can handle 

before burn-out damage occurs to the internal components. 

 3He detectors are also prone to build-up of electronegative poisons in the gas with 

time. Bruce Power operational history shows that 3He detectors are more susceptible to 

problems with electronic equipment saturating at high powers than the BF3 tubes. It is a 

regular operational concern that a rapid increase in reactor power at start-up might result 

in neutron fields being too high for the detectors’ electronics to handle.  

 Another main limitation of 3He detectors is their low neutron-gamma 

discrimination capability. They are significantly more sensitive to both gammas and 

neutrons with much lower ability to discriminate between the two, often times counting 

both as one simultaneous count. As a result of this, BF3 detectors have to be shielded in 

lead even when positioned in-core. 
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3.3.3 Bruce Power Challenges With Current SUI System Operation and Maintenance 

 As per current Bruce Power operational practices, SUI detectors are installed in 

spare horizontal SDS2 Ion Chambers. Detectors are installed 7-10 days following reactor 

shutdown and stay in service during approach to criticality and until reactor power is 

raised up to 10-5 decades when RRS Ion Chambers can reliably indicate current neutron 

flux in the core.This practice involves a number of steps before the SUI equipment can be 

placed in service.  

 First, SUI detectors have to be shop calibrated. Next, the detectors, scaffolding 

materials and tools have to be transported to the accessible area. Once the scaffolding is 

installed, the shield plugs are removed to allow the insertion of detectors in to the spare 

SDS2 Ion Chamber (IC) housing.  

 Next, the SUI neutron detectors are installed in each of the three SDS2 Ion 

Chamber housings, in the tube that normally hosts the spare ion chamber. To 

accommodate SUI detector the spare IC is removed and replaced by a SUI detector as 

shown schematically in Figure 3.9 below. 

 

Figure 3. 9: Schematical Arrangement for SUI Detectors in SDS2 Ion Chamber Housing [2]. 
 

SDS2 in-service IC

SDS2 spare IC 
SUI detector goes here 

Shutter
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This is further illustrated in Figure 3.10, where the photo shot of an actual SDS2 Ion 

Chamber is shown with the spare Ion Chamber shield plug removed and SUI detector 

installed in service.  

 

 

Figure 3. 10: SDS2 Ion Chamber Housing with Spare Ion chamber Removed and SUI Detector 
Installed in Service. Photo taken during SUI detector installation performed in September 2009 
outage and stored in the online system folder for engineering records.  
 

 Next, the detector is wired to the portable intrumentation rack positioned on the 

north side of the vault. The rack contains a pre-amplifier and a high voltage power supply 

unit.   

 Once the equipment is installed in the vault, it is connected to the main control 

room (MCR) panels via a number of cables so that output signal from the amplifier is 

sent to the MCR via a fixed-penetration junction box. Both vault and MCR equipment is 
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powered up from the same 120 V Class II bus. Next, the alarm unit output from the MRC 

panel is connected to SDS1 Channel D, E, and F trip logic. 

 Following a prolonged shutdown, it is expected to encounter core conditions 

where the gamma flux from the fission product buildup may be significantly higher than 

the neutron flux. It may become necessary to vary the detector’s sensitivity to the 

magnitude of neutron flux. This is achieved by adjusting the depth of detector insertion in 

the tube. Initially, following a reactor shutdown, the detectors are inserted at various 

depths depending on the recommendations given by SUI engineers and Fuel & Physics 

specialists. Detectors are moved inside the access tube through the shield tank following 

the neutron decay pattern in the reactor core. During extended outages with very low 

power levels BF3 detectors can be further inserted into the IC housing lead shielding to 

maintain sensitivity.   

 To reduce sensitivity of detectors for subsequent start-up and approach to 

criticality this process is repeated in reverse, the detectors are pulled back away from the 

calandria wall, out of the lead shielding and into the outer shield tank wall area. BF3 

detectors are typically repositioned several times until the maximum distance of 24 

inches is reached. Neutron count rates half with every 4 to 5 inches of withdrawal, so that 

at 24-inches of distance the detector’s sensitivity can be reduced by a factor of 100, or 2 

decades in count rates. 

 Another typical scenario that routinely occurs during extensively long outages and 

shutdowns is when BF3 detectors need to be swapped for 3He detectors due to a need for 

higher sensitivity. Detector change-out routines result in additional delays, dose rates and 

error-likely situations as the SUI BF3 detectors have to be removed from service and 3He 
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detectors have to be obtained from the storage facility. Once obtained, they are then 

calibrated and placed in service following the steps described earlier. Once the unit is on 

a ramp up to power and moderator purification columns are valved in, the 3He detectors 

can no longer be used due to their high susceptibility to saturation at high power. Thus, 

the detectors have to be swapped again for BF3 counters, which in their turn will have to 

be re-positioned several times during approach to criticality.  

 

3.3.4 Challenges Due To Mechanical Disturbance and RF/EMI Effects  

 At very low power, any work performed on the SDS2 platform in the vault has the 

potential to trip SDS2, particularly if IC cables are jarred or even touched. It is therefore 

extremely important to make sure that only one IC is being approach at a time, so that the 

chance for a rated trip on more than one channel is minimized. There have been a number 

of trips and plant upsets resulting from arc-welding jobs taking place in the close vicinity 

of instrument rooms as well as trips resulting from personnel walking near SUI cables 

[14].  One of the most significant events occurred at Bruce A in 2003 while work was 

being done by U4 outage crews in a congested area near the SUI location. Channels E 

and F tripped multiple times with count rates increasing dangerously close to an alarm 

level. It is believed that this may have been the result of inadvertent contact with SUI 

cabling during scaffolding modification work. Figure 3.11 below shows a snapshot of U2 

SDS2 platform where SUI installation and repositioning tasks are taking place.  
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Figure 3. 11: Bruce A Unit 2 SDS2 Horizontal Reactivity Management Deck. Photo taken during SUI 
detector installation performed in September 2009 outage and stored in the online system folder for 
engineering records.  

 
 

 Following this event, operating policies and procedures were modified to ensure 

that access to SUI instrumentation areas is strictly controlled. However, as can be seen 

from the photo above, this policy cannot completely eliminate the challenges associated 

with movement of personnel or equipment in the tight congested areas of the vault.   

 Another famous event occurred on the 8th of March, 2007, when some SUI 

instrumentation was discovered missing from the Bruce Power Unit 6 vault [15]. The 

following investigation revealed that SUI equipment was unintentionally removed to 

another area. It was also discovered that there was garbage and other items left in the 
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dedicated SUI area that could potentially cause contamination and mechanical damage to 

SUI units.  

 EMI/RF noise induced SUI trips have been another long standing issue for Bruce 

A. SUI detectors have been known to pick up noise from portable radios in and around 

the instrument rooms as well as that produced by motors, pumps and other rotating 

equipment. SUI connectors and cables that are presently in service at Bruce A are 

showing significant visible signs of wear and tear, as well as ageing related degradation. 

Control maintenance personnel routinely find that constant positioning and repositioning 

of cables results in accelerated wear and tear, which in turn results in additional tasks and 

work orders that have to be completed prior to SUI installation as well as throughout the 

unit shutdown. Even though best efforts are made to improve signal cable connections 

and shielding in order to eliminate or minimize noise affecting SUI channels, it is still a 

strong contributor to the number of spurious trips that occur every outage.  

 

3.3.5 Outage Extensions and Delays to Critical Path Challenges 

 Delays in SUI installation have been a long standing issue at Bruce Power due to 

the detector assemblies’ degradation problems, installation challenges and SUI equipment 

reliability.  Since SUI instrumentation must be placed in service before the reactor power 

decays below -7 decades, any delays resulting from unavailability of SUI equipment 

presents very significant challenges to the operation, engineering and maintenance staff 

and results in elevated work load, dose rates and delays to the critical path. 

 For example, on 5 April 2007, Unit 4 was in a shutdown state with all three 

channels of SDS1 ion chamber readings of -7 decades.  As per current operating policies 
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and procedures, Start-up Instrumentation had to be installed before any SDS1 Ion 

chamber signal decays to -7.0 decades ( as shown below) as there was no other means 

available for Engineering to monitor Bruce A SDS1 or SDS2 ion chamber signals at this 

power level.  

April 5 2007 Log Neutron Power indication for SDS1: 

63725-RIA2D – 1.4x10-7 
63725-RIA3D – 1x10-7 
63725-RIA2E – 1.4x10-7 
63725-RIA3E – 1x10-7 
63725-RIA2F – 1.4x10-7 
63725-RIA3F – 1x10-7 

 

 The readings shown above were obtained with SDS1 Shutters already jumpered 

open on April the 3rd in order to increase the ion chamber signals. The actual readings, 

therefore, would have to be 0.1-0.2 decades lower that the ones shown above if the 

shutters were in the closed position. There also were several moderator level changes that 

affected the indicated power.  SUI instrumentation, however, was not installed until April 

8 with several delays in the process resulting in impairment to the neutron monitoring 

system as well as elevated stress on the operators, engineering and control room 

personnel during those uncertain times.   

 Similarly, for the Unit 8 outage there was approximately 13 hours delay with the 

installation.  For unit 6 the System Engineer spent 16 hours on site for SUI installation. 

There were also multiple issues and delays for the installation of SUI during the A731 

outage.   

   Overall, it is estimated that positioning of SUI detectors takes at least 4-8 hours of 

critical time. In the year 2009 alone Bruce Power lost approximately 70 reactor-days of 
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generation because of extensions to planned outages, partially due to SUI equipment 

installation and condition issues. 

 

3.3.6 Bruce Power SUI Challenges Due to Human Performance Errors  

 It can be appreciated that the described earlier process of detector selection and 

installation/repositioning in service is quite a complex one, where input from multiple 

disciplines, e.g. Fuel and Physics, Engineering, Maintenance, Instrumentation 

&Components (I&C) department, etc., is often required several times throughout the unit 

outage work. Inadequate understanding of differences and specifics of Start-up 

Instrumentation detectors and neutron-gamma activities in the shutdown reactor core has 

resulted in multiple incidents and events. In 2002, SUI instrumentation was found 

impaired during U7 outage due to a wrong type of detector, namely 3He, being selected 

and placed into service [16]. The following investigation identified several causes 

contributing to the event: 

• Premature and incorrect installation of BF3 detectors 

• Inadequate knowledge of SUI in Engineering 

• Inadequate knowledge of SUI in Fuel & Physics  

• Inadequate understanding of procedure content 

• Inadequate operating manuals and procedures 

• Inadequate training on SUI 

 Failure of SUI instrumentation to properly respond to the removal of moderator 

poison on approach to criticality resulted in an emergency shutdown and return to over-
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poisoned state (OPGSS). This resulted in additional delays in the outage schedule, stress 

to the plant equipment and dose rates to the maintenance crews.  

 Furthermore, impairment to SUI equipment and intent function could have had a 

direct impact on nuclear safety, as it is believed that the SUI detectors provided an invalid 

indication of neutron flux from November 30 until December 24, 2002 [16]. 

 

3.3.7 Radiological Hazards of SUI Systems at Bruce Power 

 Installation, re-positioning and removal of SUI equipment as per current mobile 

scheme involve significant radiological hazards. Control maintenance personnel working 

in the vault have to be aware of high gamma fields present at SDS2 platform.  

 Another source significantly contributing to radioactive exposure is the SDS2 

piping located near the Shield Tank. High gamma fields in the range of Rem/hr exist at 

the IC access tube openings and around the neutron flux monitors (NFM) as well, but 

none is as high as the gamma and neutron beams emitting from empty SDS2 ion 

chambers access tubes.  

 This was also reflected in the annual CNSC Staff Report [17], where the final 

collective annual doses to workers at all stations in Canada are consistently higher than 

the projected dose targets, particularly at Bruce A and Bruce B plants. This is attributed 

mainly to human factors, increase in outage scopes or durations and equipment problems. 

With that in mind, it can be appreciated that installation of SUI instrumentation alone 

contributing a dose of 1 REM per person per outage [18] at Bruce A is a significant area 

for improvement.   
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3.3.8 Conventional Hazards of SUI Equipment at Bruce Power 

 Some of the main conventional hazards associated with detector installation and 

re-positioning involve electrical hazards and chemical toxic substances.  

 Installation of SUI equipment in service and frequent adjustment and re-

positioning of cables requires control maintenance personnel to work in tight confined 

spaces in the vault. This results in elevated risks of inadvertently coming into contact 

with terminals of high voltage power supplies in the portable equipment racks.  

 Boron Trifluoride (BF3) fill-gas in the current Bruce A SUI detectors is a known 

severe lung, eye and skin irritant. Detectors have to be checked and the area monitored to 

ensure no gas leaks are present during the detector calibration phase in the shop.  
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CHAPTER 4: PROPOSED SOLUTION FOR BRUCE POWER SUI 

SYSTEM REFURBISHMENT 

 

4.1  New SUI Detector Technology and Prototype 

 

4.1.1 Past Experience with Refurbishment of Aged Gas-filled Detectors 

 Attempts to resolve the degradation and short life expectancy of neutron detectors 

has been an on-going effort since the outset of commercial power generation industry 

throughout the world.  In 1966 Stokes proposed to use activated charcoal as fluorine 

absorbent [29], however this technique was not investigated further or used by Reuter 

Stokes. Mitsubishi Electric has also been working on resolving the limitations of BF3 

detectors [20, 21] in an attempt to create a detector with much higher resistance to 

degradation at exposures 1000 times larger than in the previous models by using 

activated charcoal [21]. 

 In 1995 CANDU Owners Group (COG) SUI team made a recommendation to 

investigate the possibility and potential advantages of using modified BF3 detector types 

that may be left in CANDU stations [22], following which various other types and 

models of detectors have been proposed and tested over the years as an alternative to the 

traditional BF3 detectors. Imaging and Sensing Technologies (IST) BF3, modified BF3 

detector from Reuter Stokes and N. Wood detectors were thoroughly examined at CRL 

laboratories to determine the extent and nature of degradation for each detector type and 

model [23].  
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 To date, these attempts have been unsuccessful mainly due to the lack of a 

practical solution to address degradation mechanisms affecting both BF3 and 3He 

detectors resulting from detector irradiation and burn out. Short useful life time and 

undesirable degradation/recovery characteristics remain the main obstacles for 

implementation of permanent SUI equipment installation in CANDU power plants. 

 Given that no significant progress has been achieved to-date that allows 

improving life cycle characteristics of the existing BF3 and 3He detectors currently used at 

Bruce Power and age-related performance degradation, it is clear that a need for a newer 

approach to implementing detector technology has to be found. In the following sections 

a proposal will be made to implement SUI detectors via miniaturized Fission Chamber 

technology and exploration of this approach to overhaul Start-up Instrumentation system 

at Bruce Power Stations will be taken. 

 

4.1.2  Alternative Detector Technology - Fission Chambers  

 In addition to the conventional gas-filled proportional counters, such as BF3 or 

3He detectors, an alternative family of “fission-chambers” or ‘fission-counters” based 

detectors are currently widely used throughout the nuclear industry. Fission based 

counters as a method for neutron detection is not a new development and has been known 

and used in the nuclear industry for quite some time. Large amounts of kinetic energy 

from fission fragments, 168 MeV [24], released in a fission reaction inside the fission 

chamber can be easily detected and distinguished from gamma-noise effects and other 

activities. This makes it an extremely attractive option for Start-up Instrumentation 

detectors, as this detection mechanism is very effective even with very low count rates.  
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4.1.3 Fission Counters Design and Principle of Operation  

  Typically fission detectors are implemented similar to ionization chamber 

principles with the inner surface coated with a fissile material that produces fissions in 

response to incident neutrons. The products of fission reactions inside the chamber will 

ionize the fill gas in the manner similar to the proportional counter principle. The ion 

current from the fission chamber is then used to detect and measure neutronic activities in 

the reactor.  A typical design for a fission chamber detector used in Boiling Water 

reactors (BWR) is shown in Figure 4.1 below. For the body of a typical fission chamber, 

similar to the one shown below, stainless steel is used for the walls and aluminium for the 

electrodes with an operating voltage in the range of 50V to 300V [1]. The operating 

voltage is an important factor in the selection of a fission chamber model as an increased 

voltage is required at higher count rates to achieve ion current saturation and prevent 

recombination [1].  

 

Figure 4. 1: Typical In-core Fission Chamber Used in BWR NFMS [1]. 
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Highly enriched uranium is a common choice of fissile material. Fissile material 

selection initially presented some challenges as the neutron sensitive material, such as U-

235, will gradually burn up, thus causing a decrease in the detector’s sensitivity. An 

exposure to a neutron flux of about 1.7x1021 n/cm2 will result in a 50% detector 

sensitivity decrease [25]. This limitation was subsequently solved by combining fertile 

and fissile material in the lining. While the original fissile material is being used in the 

burn up process, it will be replaced by fertile to fissile isotope conversion. Several 

mixture compositions have been studied over the years and the results show that no more 

than +/-5%  change over 4.8x1021 n/cm2 flux has been achieved [26] using a mixture of 

U-234 and U-235 as well as U-238 and Pu-239.  

 For typical fission chambers with a very thin fissile layer it is common to obtain 

the energy spectrum where light and heavy fission products are distributed according to 

their fission product yield curve shown in Figure 4.2 below. 
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Figure 4. 2: Energy Spectra of Fission Fragments emerging From Flat UO2 Deposits of Two Different 
Thicknesses [27]. 
 
 
 As shown in Figure 4.2, changes in the thickness of UO2 deposits produces 

changes in the spectrum shape. Thus, material thickness and number of layers of detector 

lining can be manipulated to achieve the desired detector characteristics depending on the 

practical application they are used for. 

 The two fission fragments produced in the fission reaction induced by thermal 

neutrons are born with kinetic energies and large positive charges, and conservation of 

momentum means that they move in opposite directions. As the initial charge of 

fragments is in the order of 15 to 20 electronic charges [1], the energy losses at the 

beginning of their trajectory are most significant. As the energy loss continues and the 

fragments slow down, more and more additional charges are picked up on the way. This 

may result in only one fragment reaching the active volume of the chamber. To 

counteract this phenomenon, various designs for fission chamber linings and backing 
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materials have been developed, but typically a common choice for fill gas for all detector 

models has been Argon or Nitrogen. The detector is filled up to several atmospheres to 

ensure that the range of travel of fission fragments is within the dimensions of the 

detector. 

 One of the main challenges initially encountered with the fission chamber 

counters is the fact that the fissionable material used is typically an alpha emitter. This 

results in a consistent alpha particle production that cannot be eliminated or minimized. 

This feature, however, can be overcome quite easily since the alpha particle and the 

fission fragments have very distinctive energy signatures. Average alpha particle 

fragment typically possesses 5 MeV of energy while a typical fission fragment’s energy 

is 10 times larger [1]. No gas multiplication is required and fission chambers can be used 

in pulse-counting mode. Discrimination between alphas and fission fragments is based on 

the pulse amplitude with subsequent arrangement of signal processing components to 

suppress alpha pulse pile-ups [28]. 

 

4.1.4  Industry Experience with Fission Chamber Detectors  

 Fission chambers are widely used in Pressurised Water Reactors (PWR), Boiling 

Water Reactors (BWR) at various commercial nuclear power plants throughout the 

world. The French Atomic Energy Commission (CEA) selected fission chamber 

technology for in-core , start-up, intermediate and wide power range monitoring. Today, 

each Areva (formerly FRAMATOME) power plant uses 5 or 6 of CFUF43 fission 

chambers [29].   
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 A special wide range of CFUE32 fission chamber operating in pulse mode has 

been developed for Studsvik Instrument Sweden to be used during start-up mode for six 

ABB-ATOM BWR plants in Sweden and two in Finland.  [29].  

 Beznau Nuclear Power Plant, Switzerland, employs LOCA and post-LOCA 

qualified CFUG08 wide-range fission chambers for the safety instrumented channels. To 

date, four detectors have been installed in Westinghouse PWR blocks to provide wide 

range neutron flux indications over a range of 11 decades [29].  

 WWER-based REKON Bohunice V1 plant in Slovakia has adapted CFUL08 

fission chambers for wide-range safety instrumentation and 12 fission chambers have 

been installed in the safety instrumentation channels of both blocks [29]. 

 French COGEMA fuel reprocessing plants in Marcoul and La Hague are using 

fission chambers as well.  Fission chambers are also used for non-destructive analysis 

(NDA) measurements for the DUPIC fuel cycle.  Safeguard verification of mixed oxide 

(MOX) and spent-fuel assemblies are performed by a combination of a pair of U235 

fission chambers and an ion chamber in a fork-shaped holder to verify the declared burn-

up [30]. A complete list of nuclear facilities where Photonis fission chamber technology 

is used is provided in Appendix B. 

 Fission chambers are also routinely used in Test Research and Training Reactors 

(TRTR) and medical isotope reactors such as MDS Nordion reactor at AECL Chalk 

River Laboratories in Canada. 

 CANDU 6 technical summary [31] released in June 2005 mentions two sets of 

triplicated fission chambers that are used to cover a very low flux range of 10-14 to 10-10 

F.P. and  10-11 to 10-6 F.P.  without explicitly naming the facility where this takes place. It 
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is, however, believed to be based on Pickering A’s reactor example, where signals from 

fission chambers are used for reactor trip function and for monitoring the reactor power 

on a continuous basis [32]. 

 Another CANDU neutron detection system based on fission chambers mounted in 

housings on the calandria shell is proposed for the Advanced CANDU Reactor ACR-700 

[33] as supplementing in-core flux detectors; however no practical implementation of this 

technology on the domestic CANDU market has been achieved yet. 

 

 

4.2  New Detector Model Selection and Validation 

 There are many different types of neutron detectors widely available on the 

market. However, in order to be useful for Start-Up Instrumentation purposes they have 

to possess certain specific characteristics such as: technical specifications, size, cost 

efficiency and environmental qualifications.  

 In order to satisfy the existing technical specifications, new SUI detectors must 

respond to relatively low neutron counts common during routine and prolonged 

shutdowns and have good discriminatory capabilities to distinguish between neutron and 

gamma activities.  

 Secondly, as detectors are required for use in existing reactor cores, detector size 

and shape becomes an important factor. New detectors must possess small dimensions 

and specific geometry in order to become a viable option for existing CANDU reactors.   

 Cost efficiency is another important factor affecting new detector selection. 

Complex research-grade systems are expensive, both to obtain and maintain, particularly 
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in harsh environments that exist in large commercial Pressurised Heavy Water (PHWR) 

reactors.  

 New SUI detectors must possess certain environmental qualifications in order to 

be considered as a feasible alternative for refurbishment of existing SUI systems. 

Prolonged detector exposure to high temperature, pressure and radiation must not impede 

their ability to provide stable, reliable output signals.  

 

4.2.1  Physical Design and Geometry  

 Both ion chambers and fission chambers belong to a family of gas-filled chambers 

where the same concept of proportional counter is used. Similar to BF3 and 3He detectors 

described earlier in this paper, fission chambers are composed of coaxial electrodes 

where the inner electrode is the anode. Once the excitation DC supply voltage is applied, 

a charged particle or a gamma-ray entering the inter-electrode space ionizes the filling 

gas. The electrons created are collected by the anode, and the ions are attracted to the 

cathode, thus resulting in a current pulse proportional to the energy of incident particles.  

In a fission chamber the incident neutrons are captured by the converter material, e.g. U-

235, which then produces ionizing particles as a result of a nuclear reaction. 
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Figure 4. 3: Fission Chamber Design (a) and Boron-lined Detector Design (b) [26] 
 

 As shown in Figure 4.3, both conventional gas filled and fission chamber based 

detectors are designed with the same conceptual principle in mind. Modern fission 

chambers typically follow the same detector geometry and sizing conventions as the older 

BF3 or 3He detectors.  

 

4.2.2 Detector Sensitivity Ranges  

 One of the main requirements for the proposed Bruce Power Start-Up 

Instrumentation is that the detector should provide accurate and reliable readings at low 

and very low power levels. That is another reason why U-235 lined fission chambers are 

proposed as an alternative solution to the replacement of ageing BF3 and 3He detectors 

that are currently in use. U-235 fission chambers possess sensitivity ranges down to -10 

decades F.P. Figure 4.4 below shows reactor power ranges for thermal neutron detection 

in CANDU reactors, including fission chamber detector range, to illustrate how detectors 

based on fission chambers technology can be utilized in SUI applications in CANDU 

reactors.  
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Figure 4. 4: Reactor Power Ranges for Thermal Neutron Detection in CANDU Reactors [32]. 
 

 As can be noted from Figure 4.4, the expected power ranges in CANDU reactors 

reach as low as 10-14 [32] F.P during initial start-up (shown in blue). As discussed earlier, 

at 10-6 F.P. the reactor power monitoring function can be transferred to the RRS ion 

chambers. Thus, in order to successfully satisfy the requirements for continuous 

monitoring of neutron power while the RRS Ion Chambers remain off-scale, the proposed 

SUI detectors must provide accurate readings for the power levels ranging from 10-14 F.P. 

to 10-6 F.P. for both routine outage shutdowns as well as prolonged shutdowns required 

for unit refurbishments when fresh fuel is used for the start-up.  
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4.2.3 Signal Discrimination Characteristics  

 A traditional method of assessing performance of neutron detectors is through 

analyzing their signal discrimination curve to see how the counting rate changes in 

response to the discriminator threshold voltage applied to a detector in question with all 

other parameters being constant. The discrimination curve is also the most significant 

indicator that the detector is functioning correctly. A typical discrimination curve for a 

conventional proportional ion chamber is shown in Figure 4.5 below.  

 

Figure 4. 5: Ion Chamber Discrimination Curve [32]. 
 

 To produce this curve correctly for a conventional gas-filled ion chamber, the 

neutron flux should be stable and the background gamma radiation should be as low as 

possible. Also, the counting rate should be high enough to obtain good statistical 

accuracy but not exceeding the detector’s dead time. From the discriminator curve, the 

detector sensitivity, S, can be calculated for a given threshold voltage as: 
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S [c·s-1/nv] = N [c·s-1]/Φ[nv]        (4.1) 

 
 

where nv stands for  [n·cm-2·s-1] [32]. 

  

The slope, P, of the curve around a specific operating threshold voltage can be described 

as [32]: 

 

P[%] = (N1 - N3 )/N2 × 100         (4.2) 

 

Monitoring changes in the curve slope will provide an indication of the fluence seen by 

the counter and can indicate with good accuracy the remaining life of the detector.  

 For fission chambers the discrimination curve can be used to determine the 

detector sensitivity S, for a certain threshold voltage of a determined α count.  First, the 

“α” count rate is measured without any neutron flux present and plotted as an α curve. 

This represents the count rate due to the “α” activity of the uranium layer itself and the 

electronic background noise at the smaller threshold voltages. Next, the (α + n) counts are 

measured with a neutron source present and (α + n) curve is plotted as shown in Figure 

4.6 below. 
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Figure 4. 6: Fission Chamber Discrimination Curve [32]. 
 

Once the discrimination curve is plotted, the detector sensitivity S, for a certain threshold 

voltage of a determined α count rate can be obtained as shown below: 

 

S [c·s-1/nv] = N [c·s-1] /Φ [nv]        (4.3) 

 
where nv stands for  [n·cm-2-·s-1] [32]. Depending on the detector type, it is typically 1, 

0.1 or 0.01 c·s-1. 

 

4.2.4 Resistance to Gamma Radiation 

 For low and intermediate gamma ray intensity, ion chambers are proven to 

provide an accurate and consistent reading. Since gamma rays are less ionizing than the 

“α” and Li ions from the B-10 fission process, they result in lower pulse amplitudes easy 

to discriminate from pulses caused by neutrons. As the gamma dose rate increases, a 

‘pile-up’ effect deforms the discrimination curve, resulting in less accurate count rates. 
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Furthermore, with the increase in total ionization ion chamber space charge phenomenon 

occurs resulting in reduction of the electric field and decrease of the multiplication factor. 

This, in its turn, leads to increase in the slope of the discrimination curve. 

 For a typical fission chamber, at low threshold voltages the high counting rate is 

mainly due to “α” activity plus some electronic background as well as some small-

amplitude pulses due to gamma radiation. Once the operating voltage has reached 

saturation, ionisation multiplication no longer occurs. This results in the pulse amplitude 

being constant even if the electric field between electrodes increases.  

 Also, since there is no ionization due to gamma radiation, it has no effect on the 

amplitude of the neutron-induced pulses and the count rate. Although at extremely high 

gamma dose rates, the ‘pile-up’ effect disturbs a correct response of the chamber, it has 

been proved to properly operate in gamma flux of up to 104 Gy/h [32]. 

 

4.2.5 Summary of Detector Comparison Discussion 

 To summarize the comparison between the conventional ion chambers and fission 

chambers presented in the sections above, a side-to-side comparison of main key 

characteristics is complied and presented in Table 4.1 below.  
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Table 4. 1: Comparison of Ion Chamber and Fission Chamber based Flux Monitoring Systems, 
based 28th Annual CNS Conference materials on Fission Chambers [32]. 
 

Characteristics  Ion chamber based flux 
monitoring system  

Fission chamber based flux 
monitoring system  

Principle of 
operation  

(n,α) reaction with B
10

 Neutron induced fission of enriched 
U

235
 

Signal sensitivity  Signal is sensitive to thermal 
neutrons and gamma rays.  

Designed to be sensitive to thermal 
neutrons and operate in high gamma 
radiation fields.  

Sensitivity 
lifespan  

Small decrease of sensitivity over 
time. Have operated satisfactorily 
for up to 25 years in more than 30 
CANDU

® 
reactors with no 

significant impact on 
performance.  

Maintains specified performance and 
very small decrease in sensitivity over 
40 years, through proper selection of 
the coating material, which is made up 
of fissile plus fertile material.  

Post-accident 
application  

Gamma radiation at low power 
levels complicates monitoring.  

Designed to meet post-accident 
conditions.  

Start-Up 
application  

Can only be used above 10
-7 

F.P.  Provides monitoring for:  
1) Start-up from fresh fuel – initial core 
condition.  
2) Start-up after fuel channels 
replacement / refurbishment.  
 

Inherent 
discrimination 
feature  

Needs a lead shield to shield 
against gamma radiation.  

1) In the counting mode, pulse 
amplitude discrimination is used.  
2) In MSV mode, provides large 
amount of inherent discrimination 
against alpha and gamma pulses.  

 
 
 
 
4.2.6 Proposed Fission Chamber Detector Model Selection 

 Several fission-chamber detector models were considered as an alternative to the 

ageing Bruce A gas-filled detectors. Three models, IST WX-33073 made by Mirion 

Technologies/IST, 300i Neutron Flux Monitoring System (NFMS) by Thermo Scientific, 

and Photonis Fission Chambers were selected as suitable candidates for replacement. 

Their features and characteristics will be described and compared below to determine the 

best model to satisfy Bruce Power Start-Up Instrumentation requirements.   
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4.2.6.1 Alternative 1 - IST WX-33073 by Mirion Technologies/IST 

 The first detector that was considered for this project was IST WX-33073 made 

by Mirion Technologies/IST. WX-33073 detectors belong to a family of miniature fission 

chambers designed for monitoring thermal neutron flux levels. Detector chamber (shown 

below in Figure 4.7) is made of stainless steel with entire inorganic high purity aluminum 

oxide insulation to be used in-core in any position and is able to withstand temperature 

ranges up to 300°C (572°F) in a wet or dry environment. The type of fissionable isotope 

can be selected from a variety of U-235, U-238 and Th-232 inventory depending on the 

application range. The WX-33073 provides neutron sensitivity of 0.7 x 10-18 a/nv to 1.7 x 

10-18 a/nv and a maximum gamma sensitivity of 7.0 x 10-15 amperes/roentgen/hour [33].  

 

Figure 4. 7: IST Miniaturized Fission Chamber and Assembly [33]. 
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 Detector’s chamber coaxial connector cable is equipped with Inconel-600 jacket 

and aluminum oxide insulation [33]. The coaxial cable can be adjusted from a nominal of 

29 meters (95 feet) to any length per application requirement up to 2,000 feet of 

continuous cable run. All cables, connectors and assemblies are made of purely inorganic 

materials, including insulators to provide highest degree of resistance to high temperature 

and high radiation. Also, ceramic to metal seals are used for cable terminations to prevent 

contamination of the high purity mineral insulation required to produce the assembly’s 

electrical resistivity.  

 IST’s fission chamber, connectors and assemblies  have been qualified as Class 

1E post-accident neutron flux monitors meeting the requirements of Regulatory Guide 

1.97 [34] and IEEE 323 Standard for both LOCA (Loss of Coolant Accident) and seismic 

conditions [35]. The IST WX-33073 Fission Chamber Assembly can be used with 

specially designed pre-amplifiers, amplifiers, compensators, panel alarm meters and test 

circuits to implement a complete signal processing system. The main characteristics of 

IST WX-33073 Fission Chamber Assembly are summarized below. 
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Table 4. 2. Summary of main characteristics of IST WX-33073 Fission Chamber Assembly. 
 

Parameter Measurement/Type 
Mechanical 

Chamber Diameter (max/min) 
3.00 ±0.05 / 0.118 ±0.002 
(mm/inch) 

Cable Diameter (max/min) 1.570.05 / 0.062 ±0.002 (mm/inch)
Length: Chamber (maximum) 36 / 1.4 (mm/inch) 
Sensitive Length  13 / 0.5 (mm/inch) 
Connector  Standard Male BNC 

Materials 
Cable Sheath Inconel 600 
Reduces Induced Radioactivity material 0.3% Mn and 0.1% Co by weight 
Detector Outer Case 304 Stainless Steel 
Inner Electrode 304 Stainless Stee 
Detector Insulation Al2O3 
Cable Insulation Al2O3 

Neutron Sensitive Material 
U3O8 Uranium enrichment ≥ 90% 
U235 

Gas Fill   Argon 
Ratings 
Temperature, excluding internal heating (max) 300°C / 572°F 
Pressure (max) 3.5 / 50 (kg/cm2 / psig) 
Thermal Neutron Flux (max) 4.0 x 1014 (nv) 

Total Integrated Neutron Flux at 300°C (572°F) 
3.0 x 109 (R/Hr) for 10% loss in 
sensitivity (min) 

Typical Operation 
Thermal Neutron Flux Range 7 x 1010→ 4.0 x 1014 (nv) 
Thermal Neutron Sensitivity (TRIGA Test 
Reactor)  0.7 → 1.7 x 10-18 (A/nv) 
Maximum Gamma Sensitivity 7.0 x 10-15 (A/R/Hr) 
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4.2.6.2 Alternative 2 - Thermo Scientific 300i Source Range/Intermediate Range 

Neutron Flux Monitoring System (NFMS) 

 The Thermo Scientific 300i Neutron Flux Monitoring System (NFMS) is 

designed with a single, 40-year-life, fission chamber-based system. 300i NFMS is a 

system designed to provide neutron activity monitoring from cold reactor shutdown to 

200% F.P. or, in other words, for ranges more than 11 decades [36]. The 300i Neutron 

Flux Monitoring system is designed to operate under normal service conditions and to 

operate through a design basis event (DBE). It is qualified for Safety Grade Class 1E and 

US NRC RG 1.97 Post-Accident Monitoring applications [35]. A summary of technical 

specifications for 300i NMFS system is provided below.  

 

Table 4. 3. Summary of technical specifications for Thermo Scientific 300i NMFS system. 
 

Source Range  
Sensitivity .20 cps/nv (thermal) 
Flux Range 10-2 nv to 104 nv 
Output Range  1.0 cps to 106 cps   
Mechanical Specifications  
Detector Housing 152 cm (60 in) x 14.3 cm (5.625 in) O.D. 
Amplifier  61 cm (24 in) x 51 cm (20 in) x 25 cm (10 in) 
Temperature Specifications 
Detector Normal .0°C to +93°C (+32°F to +200°F) 

 

 Thermo Scientific 300i NFMS system is well built with modern electronic 

components to provide high reliability and immunity to electromagnetic interference and 

noise. Its modular design allows easy component swapping and replacing for low 

maintenance.  

 



76 
 

4.2.6.3 Alternative 3 - Photonis Fission Chambers Detection Instrumentation 

 Photonis fission chambers are another famous example used for wide-range 

neutron flux control in a complete operational range of WWER-1000 and WWER-440 

reactor installations. More than sixty AREVA reactors use PHOTONIS neutron detectors 

in their safety instrumentation channels [26]. Photonis fission chambers function in the 

range from 1 to 1x106 n⋅сm-2/s for start-up applications and are designed for the detection 

of thermal neutrons in a state of high flux. The fissile material used in the chamber is 

enriched U-235 (>90%) with the typical layer thickness of 0.06 - 2 mg/cm2. A typical 

detector design is shown in Figure 4.8 below. 

 

 

 
Figure 4. 8: Photonis Fission Chamber [26] 
 

 Photonis fission chambers are made of two to six high-purity aluminum 

concentric electrodes. For in-core detectors that are designed to operate in 250 to 600°C 

environment stainless steel or Inconel are used. Some types have an inner sealed 

subassembly protected by an external shell/housing of aluminum, stainless steel or 

Inconel to strengthen the construction and to provide post-LOCA protection. 

 Pure Argon is typically used as fill gas for ‘slow-response’ chambers used in 

high-temperatures up to 600°C. The composition of the fill gas can be modified by 
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addition of 4% of Nitrogen to allow for faster response. This however, comes at the cost 

of reduced operating temperature of 400°C.  The gas pressure varies in the range of 100-

800 kPa depending on the mode of operation. 

 Only high purity Al2O3 material is used for the detector’s insulation to provide the 

required resistance to radiation. The detector assembly comes with an integrated long 

non-organic mineral-insulated cable.  

 As can be seen from the discussion above, these detectors are well adapted for in-

core measurements under very severe environmental conditions such as high temperature, 

high humidity and high gamma flux. As declared by the manufacturer, the chamber 

source life expectancy is at least 30 years [26]. A summary of Photonis detection 

specifications are shown in Figure 4.9 below. 

 

Figure 4. 9: Photonis Fission Chambers Detector Summary [26]. 
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4.2.7 Detector Selection Discussion and Results 

 Based on the discussion above, it is believed that the Photonis fission chamber 

detector family will be best suited for implementation in upgrading and refurbishing of 

older Start-Up Instrumentation modules at Bruce Power. It should also be noted that the 

detector length and geometry was a key factor influencing the selection, since the 

detector will have to be installed into the existing Bruce Power reactor units. As such, 

CFUF-43 detector was selected as possessing high sensitivity while operating in 

temperature ranges up to 350° C.  

 

 

4.3  Proposed New SUI System Design – Permanent In-core Installation 

 Potential benefits of placing SUI detectors in service once and leaving them in the 

reactor core include: eliminating a complicated SUI installation procedure minimizing 

wear and tear on SUI instrumentation and perhaps, most importantly, significantly 

reducing downtime and outage extensions due to SUI installation challenges and spurious 

trips. This in turn will greatly reduce the additional dose rates incurred by the control 

maintenance personnel involved in SUI installation and removal phases as well as 

Operation and Maintenance (O&M) costs. Outage planning, scheduling, and coordination 

would be greatly simplified once the necessity to install SUI instrumentation is 

eliminated. The control maintenance personnel involved in SUI installation and 

placement in service has to possess highly specialized skills and knowledge as well as 

field experience. These qualifications are in great demand due to so few personnel having 

the required training, particularly during busy shutdown schedule. With permanently 
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installed SUI equipment, outage crews will be able to proceed to pertinent tasks and jobs 

without delays due to SUI detector installation and removal.  

 Several attempts and initiative have been made in the past to determine the 

feasibility of setting up SUI instrumentation permanently in reactor. These will be 

discussed in more detail below. 

 

4.3.1 Past Experiences and Results 

 Originally Bruce Power stations were designed with the intent for SUI 

instrumentation based on N. Wood BF3 detectors to be permanently installed in the core. 

However, degradation of SUI detectors over time became a significant factor in the 

decision to remove SUI in-core instrumentation and use it temporarily on as-needed 

basis. Laboratory degradation tests at Chalk River Laboratories (CRL) [23] showed that 

the standard BF3 detectors originally used at Bruce A, as well as at most domestic 

CANDU stations, displayed undesirable degradation issues which could not be resolved 

at the time.   

 As a result, Centronic BF3 detectors were chosen as the model showing the least 

amount of degradation [23] and subsequent changes were made to operating procedures 

and work management practices to incorporate installation and removal of SUI 

instrumentation into planned outage scopes.  

  By 1984, original SUI detector guide tubes and assemblies were removed from 

viewing ports and SDS2 spare ion chamber housing was adapted to accommodate 

temporary SUI detector installation in both Bruce A and Bruce B units. 
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 Following this, a comprehensive suite of procedures, guidelines and training 

materials were developed for installation and removal of SUI detectors using spare SDS2 

ion chamber housings at Bruce A. Control maintenance procedures and operating 

manuals had to be updated and modified to incorporate the specific requirements for the 

installation and change over procedures for SUI detectors. Although this helped to 

improve detector useful life time and to slow down the degradation rates, significant 

“side effects”, such as additional dose rates, spurious trips and outage extensions were 

produced.  

 With the new fission chambers-based detector technology, a proposal to 

implement permanently installed SUI detectors has become a viable alternative to the 

existing SUI system design at Bruce Power units.  

 

4.3.2 Proposed New SUI System Conceptual Design 

 With the CFUF-43 detectors permanently installed in the reactor core, a complete 

new SUI system will consist of the following components:  

• Source range detector assembly CFUF-43 (with integral cable)  

• Junction box  

• In-containment cable assembly (from junction box to inside penetration)  

• Amplifier cable assembly (from outside penetration to amplifier)  

• Amplifier assembly  

• Optical isolator assembly  

• Signal processor cables  

• Source range signal processor  
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• Shut down margin monitor assembly  

• Wall mount signal processor assembly  

 

 A conceptual block diagram for the proposed system outlining the installation in 

the wall, containment penetrations and connections to the portable NimBins and the 

MCR panels are shown in Figure 4.10 below. The physical location of the 6”Viewing 

Port on the Vertical Reactivity Deck is shown in Figure 4.11. This location and the Port’s 

geometry are typical and are identical across all Bruce Power units and are ideally suited 

to house the new SUI detectors as they are easily accessible during unit shutdowns. It is 

also accessible at power, although with higher gamma and neutron dose rates than during 

shutdown periods. However, this is a substantial improvement to using the SDS2 

horizontal platform that is not accessible at power at all. The Viewing Port plugs will be 

removed and the new fission counters will be lowered down the guide tube. Once the 

detector position and orientation in relation to fuel channels are confirmed, the port will 

be sealed again using compression bungs and the modified shield plugs.  

 The SUI instrumentation loop starts when the signal is obtained from the detector 

in core and is transmitted via a junction box to the amplifier assembly located in the 

existing Instrumentation Rooms outside the containment.  

 Next, the signals from the wide range amplifier are received by the rack mount 

signal processors located in the main control room (MCR). This panel will be dedicated 

to the SUI equipment and will be permanently installed in the MCR. The new Photonis 

neutron monitoring systems (NMS) are designed with the consideration that they will be 

used to replace existing Start-Up Instrumentation at older nuclear plants. Therefore, a 
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request to Photonis will be made to ensure that the new signal processors look similar in 

appearance to existing equipment to minimize training of plant personnel and changes to 

plant operating procedures. As a result, very little interruption to the normal operating 

policies and procedures are expected as a result of this addition. 



 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

Figure 4. 10: SUI Detector Arrangement in the Vault and Connection to the Portable SUI Bin [38]. 

JB

JB

JB

channel D

channel E

channel Fjunction 
boxes

portable SUI 
instrumentation 

cabinet

out-of-core 
detectors

spare SDS2 ion 
chamber access 
tubes

calandria

shield tank

containment wall

viewing port on 
Reactivity 

Mechanism deck

in-core 
detectors

three
compartment 

guide tube

interface 
panel at 

bottom of 
SDS1 panel

Ch E

Ch D

Ch F

portable 
electronics 

cabinets

JB

JB

JB

junction 
boxes

Ch E

Ch D

Ch F

portable 
electronics 

cabinets

vault equipment MCR equipment

approx. location: row D



  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 4. 11: Proposed New Location for the Permanently Installed SUI Detectors - 6” Viewing Port, Reactivity Deck. Photo taken during SDS1 walk-
down for February 2010 outage and stored in the online system folder for engineering records.  

Viewing port 



 Next, the MCR monitors convert the signals from the amplifiers into signals that 

represent the source range count rate and the rate-of-change of reactor power level. There 

are also alarm functions provided to alert the MCR operators when neutron activity in the 

core exceeds the set points. The Source Range signal processors used for Start-Up 

applications are designed in standard 19 inch rack mounted enclosures with LCD-digital 

screens and bar graph meters. 

 The output of the SUI MCR panel will be connected to the SDS1 trip logic on the 

MCR panel in the same way it is done today. The connection to the SDS trip circuits will 

be normally jumpered out during routine operations and will be activated only as required 

during outage periods. 

 

4.3.3 Proposed SUI System Design Enhancements - Data Logging and Archiving 

Solution 

 Currently Start-Up Instrumentation at Bruce A has no dedicated tags in the Plant 

Information, or so-called PI system [39] to enable real time data logging. Therefore, 

neither SUI engineers nor control room operators have the means to store SUI data for 

future trending and analysis electronically. SUI counts have to be printed from the MCR 

via a printer and are processed and logged manually in paper format.  

 Should it be desired to have the SUI connected to the PI interfaces, it is done at a 

custom request from the engineering personnel via spare unassociated tag circuits. This 

requires specialized knowledge of the station DCCs (Digital Control Computers) and PI 

application architecture, so an experienced professional from the Computer Design 

Group has to be closely involved in the set up of this arrangement. It can be appreciated 
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that this arrangement is highly undesirable and is used very often due to complexity and 

time constrains.  

 To address this limitation, particularly in the view of upcoming prolonged reactor 

outages for Unit 3 and 4 refurbishment projects, it is proposed to establish connections 

between SUI channels and the PI servers as shown in Figure 4.12 below with an 

additional archiving server dedicated to viewing, documenting and copying of the SUI 

archive data.   

 

 

 

 

 



 

Figure 4. 12: New SUI System Including PI Server and Archive Server Connections Conceptual Block Diagram created using PI graphical module to 
demonstrate the proposed system architecture and enhancements. 
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CHAPTER 5: INSTALLATION PROCEDURE DEVELOPMENT 

AND OPTIMIZATION  

 

 In this chapter a risk-based installation methodology for the proposed SUI system 

will be developed. First, the task installation sequence will be produced and analyzed in 

order to identify main steps and to create mitigation/control barriers. Next, these control 

and mitigation barriers will be incorporated into the installation procedure in order to 

verify the step-by-step installation sequence against all known hazards and adverse 

results. Next, the installation procedure will be verified using a proposed methodology of 

using formal language definitions and meta-operation language. Finally, the procedure 

will be analysed in further detail in order to achieve maximum risk, time and cost 

optimization.  

 

 

5.1  Activity Model for Procedure Development and Verification 

In order to follow this approach, the analysis will be conducted in the following 

sequence: 

1. Develop a step-by-step task procedure for transportation and installation steps in 

order to identify probable hazards.  

2. Verify the procedure. 

3. Develop Task Hazard Identification and Risk Assessment matrix along with the 

list of Preventative measures/controls. 
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Finally, in the last section, an attempt will be made to show that how the proposed SUI 

installation/replacement procedure can be optimized.  

 These phases are described below using IDEF0 (Integration Definition Language 

0 [4] in order to model those activities formally, using a structured graphical 

representation of the steps rather than an informal flow-chart style models. The main 

stages of the framework development/verification are composed of hierarchical layers of 

process diagrams that gradually display increasing levels of detail describing functions 

and their interfaces within the system. Figure 5.1 below shows the algorithm 

development and optimization process with four main stages shown with their expected 

outcomes.  
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Figure 5. 1: Activity Model for Procedure Development and Verification developed using IDEF0 standard.
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 The first process is in the IDEF0 diagram above is “Develop a step-by-step task 

procedure and convert into Control recipe”.  The initial step in this task is to perform the 

task analysis and breakdown into smaller actions/steps that can be easily represented by a 

sequential flow chart diagram, so that the task sequence can be converted into a formal 

language and the proposed procedure can be written in a control recipe format.  

 Next, this control recipe is sent to the second process known as “Procedure 

Verification”. The second process analyses the control recipe and verifies that all 

conditions and constraints have been satisfied as well as ensures that the procedure is 

structurally and logically sound and free of unknown references or conditions. 

 In the next step, the procedure is analyzed task by task in order to determine the 

potential hazards and their consequences. At this step, a Risk Matrix is created and the 

identified hazards are evaluated against the criteria set in the matrix. A list of barriers or 

control measures is also developed at this stage in order to address or minimize the 

adverse effects of the potential hazards.  

 The last process, labeled “Risk-based optimization”, uses the data produced at the 

previous stage in order to determine whether the proposed SUI installation/replacement 

procedure can be optimized to reduce the risks associated with each task.  Each Process 

will be discussed in more detail in the following sections of the report. 
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5.2  Procedure Task Analysis and Breakdown 

 In this chapter, a portion of the proposed Bruce SUI systems replacement project 

will be used as a case study in order to develop a structured approach to 

replacement/installation procedure and automate it for future applications across any 

existing CANDU units.  

 Presently, at most nuclear power plants in Canada installation procedures and 

work packages with detailed task instructions are produced using the so-called “tribal 

knowledge”. Procedures are typically put together by the most experienced person that 

has performed a similar job in the past. Tasks are analyzed using a traditional “barrier-

analysis” method in order to identify “what can go wrong” scenarios and come up with 

potential mitigation solutions. Next, a procedure is written using native language in a 

descriptive manner, e.g. “Obtain jumper tool No.141-06-00. When using a jumper, use 

caution to ensure no ground faults are introduced on the circuit which could cause a loss 

of the 90Vdc”. One can appreciate that this approach is not desirable (in general) as it 

largely depends on the individual’s level of experience, knowledge and situational 

awareness. Also, for infrequently performed tasks and evolutions this approach presents a 

highly likely possibility of human or organizational errors since none or very limited 

previous personal experience exists. In addition to the challenges of following such 

procedures during the execution stages, the manual approach for procedure development 

requires significant time, effort and expertise from plant personnel which contributes to 

outage extensions and delays.  

The other main challenges encountered in any task analysis typically fall under one of the 

following categories: 
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• The need to handle stochastic processes: e.g. work duration is best expressed by a 

probability distribution 

• The need to allow iteration 

• The need to analyze activities or processes of arbitrary complexity 

 

 In order to address the challenges described above, the installation procedure 

using a formal language will be developed in order to provide a structured approach that 

can be used for similar projects at Bruce Power or any other CANDU based stations. 

ANSI/ISA-S88 standards were selected to develop a hierarchical definition of task 

sequence procedure and to map them to plant structure. ISA standards were also chosen 

as a means to standardize procedure tasks and sequence across the nuclear industry 

worldwide. This will allow for procedure development and verification that can be easily 

adapted to any similar process of installation/replacement of SUI systems at Bruce 

Power, OPG and other CANDU stations, as well as any other type of reactor technology. 

 First, the overall project was divided into several distinctive stages, namely 

“Development”, “Implementation”, “Commissioning/QA”, and “Plant Operation” as 

shown in Figure 5.2 below. 

 

Figure 5. 2: SUI Replacement/Installation Project Phases developed to demonstrate the breakdown 
for procedure stages such as “D0” – Development, “I0” – Implementation, etc. 
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In this thesis, the focus will be made on the “Implementation” phase which involves the 

actual replacement/installation activities. “Development”, “Commissioning/QA”, and 

“Plant Operation” will not be included in this analysis.  

 The analysis of “Implementation” phase of the project was subsequently broken 

down into three functional stages – “Preparation” where materials and tools are 

manufactured, inspected and transported to the Reactivity Management Deck, 

“Replacement” where the shield plug of the Viewing Port is removed and the new SUI 

detectors are placed and secured in the guide tube, and “Connection” phase, where the 

signal cables are connected to the junction boxes and signal/data processing 

instrumentation.  

 Next, each phase was broken into sub-tasks, e.g. “Preparation” phase was divided 

into “In-house” and “External” based on whether the tasks are to be performed at Bruce 

Power facility or, alternatively, by Bruce Power personnel or by an external third party. 

Next, the tasks were further subdivided based on the nature of what is to be done, e.g. 

mechanical, electrical, I&C, transportation, etc. as shown in Figures 5.3. Each step was 

given a formal description using key words to describe of what is occurring in each unit 

procedure step in formal language and assigned a Task ID, e.g. M1.1.1 for the task of 

performing checks for the scaffold material. A formal language approach was chosen in 

order to make the task descriptions sound less complex [40] in order for the tasks to make 

sense to any user, whether familiar or unfamiliar, with the proposed procedure and 

eliminate any ambiguity or doubt as to what each individual task is supposed to be. 

Formal language implies absolutely accurate and precise definitions of the underling 

system, which can be used to validate the system/process [41].  
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Figure 5. 3: Procedure Task Breakdown Diagram, where each task is defined using a formal key word and assigned a unique TaskID.
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Next, M1.1 “Prepare” tasks were broken down into further detail and each assigned a 

unique identifier and definition. e.g.  M1.1.2.1 “Load” for the task of loading the scaffold 

parts onto the delivery vehicle. 

 

Figure 5. 4: Three levels of task analysis breakdown for In-house Mechanical task of prepare scaffold 
material shown in three different colors to distinguish task hierarchy. 
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5.3  Control Recipe Development for the Procedure Task Sequence 

 According to S-88.01, a recipe is defined as the necessary set of information that 

uniquely identifies the production requirements for a specific product [42]. For the 

purpose of the installation procedure, these guidelines can be adapted to formally present 

the steps in the installation task in a sequential manner in order to produce a formal 

installation recipe. The tasks have to occur in a specific sequence with the preceding 

tasks being successfully completed in order to proceed on to the next task. 

Following this approach, a sample task of delivering scaffolding parts to the designated 

staging location could be described by the following sequence of task IDs: 

 

 

Figure 5. 5: Task sequence presentation via a number of subsequent TaskID's. 
 

 Next, this sequence of tasks can be converted into a control recipe-style list of 

instructions. A control recipe gives the step-by-step sequence for execution of the tasks 

outlined in the general procedure in a formal language rather than a descriptive manner or 

flow chart diagrams. The control recipe for the tasks in Figure 5.5 is created using Recipe 
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formal definition language (RFDL) [41] under the guidelines of ISA standards in order to 

use  a common language so that miscommunication is prevented between various 

operators and facilities across the nuclear industry worldwide. Therefore, the proposed 

RFDL formal language is written in the form of English-like statements, where each 

statement is composed of a sequence of keywords called tokens. This allows producing a 

description of what is occurring in each Unit Procedure step (UP) using clear, concise 

statements in a language that can be easily understood by the Engineering and 

Maintenance community worldwide. The functions required at each step of the procedure 

can be further described in terms of a control recipe language (i.e. Procedure_Action, 

Structure_Action, Control_Action, etc.) in order to clarify the nature of the action as well 

as to list the initiating and terminating conditions for each step as shown below:  

• Procedure_Action refers to starting, restarting, or ending a function.  

• Structure_Action refers to a specific physical task that the user has to 

execute, e.g. physically load scaffolding components on the transport track.  

• Control_Action refers to the specific parameters that need to be controlled 

within a specified range or value, such as maximu weight that can be lifted at a 

time during “Load” task or the maximum speed the transporter can travel through 

the plan during “Deliver” task phase.   

• Init_trigger means that step is initiated if the condition specified inside the 

bracket is met.  

• Term_trigger is the termination trigger meaning the step ends if the condition 

in the bracket is satisfied.  
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• The token “|” is used to show that either the tokens before or after can be 

used, e.g. stop delivery if the light or horn on the transport vehicle is not 

functioning.  

 This methodology was used to develop the control recipe for the example of 

M1.1.2 “Transport” portion of the procedure in the following way. First, the assumption 

was made that any procedure will contain a description, initiation trigger, termination 

trigger, and action that need to be executed. Each task in will be initiated by the initiation 

trigger, e.g. successful completion of the previous task, and will be terminated by the 

termination trigger, e.g. an obstruction on the designated delivery route will result in the 

termination of the Delivery task. An example of RFDL – based control recipe is for 

M1.1.2 Transport phase and its subtasks – “Load”, “Deliver”, “Unload” is shown below.  

Objective: Load, transport and off-load the material for 46 ft scaffold to the designated 
area at the Vertical reactivity Deck.  
 
Procedure:  
UP001. This step occurs first. The material received from the Stores has to be loaded on 
the transport vehicle according to the lifting/rigging procedures and restrictions. All 
components of the scaffold have to be loaded and accounted for in order to start the 
delivery. This step will be terminated if a wrong number of parts is identified.  
  
Init_trigger(COMPLETE_RECEIVING)  
Procedure_Action(START_LOAD) 
Structure_Action[LOAD_MATERIAL] 
Structure_Action [COUNT_MATERIAL) 
Structure_Action [CONFIRM_DESTINATION) 
Term_trigger (COUNT IS FALSE) 
 
UP002. This step occurs after and if the LOAD action is complete and all material has 
been counted and loaded on the transport vehicle with no missing parts or components 
identified. The delivery has to be performed safely with warning lights/horn functioning 
to warn the by-passers of the potential danger. This step will terminate if scaffold 
components fall off the vehicle, or the warning system is not functioning, or there is an 
obstruction on the route.  
 
Init_trigger (LOAD IS TRUE)  
Procedure_Action (START_DELIVERY)  
Structure_Action [START_ENGINE] 
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Structure_Action [ON_LIGHT|HORN]  
Term_Trigger (ENGINE|COUNT|DESTINATION LIGHT|HORN IS FALSE) 
Term_Trigger (OBSTRUCTION IS TRUE) 
 
UP003. This step occurs after and if the DELIVERY action is complete and all material 
is delivered to the correct location. The material has to be counted to confirm that all 
required components have been delivered. The step will terminate if a wrong number of 
components have been delivered, or the delivery location was identified to be wrong.   
 
Init_trigger (DELIVERY_TRUE)  
Procedure_Action (START_UNLOAD_PROCEDURE) 
Structure_Action [CONFIRM_LOCATION] 
Structure_Action [UNLOAD_MATERIAL] 
Structure_Action [COUNT_MATERIAL]  
Term_Trigger (COUNT|DESTINATION IS FALSE) 

 
Figure 5. 6: Sample Control Recipe for the task of transporting scaffold material developed using 
Recipe formal definition language (RFDL) [41] under the guidelines of ISA standards in order 
prevent miscommunication between various operators and facilities across the nuclear industry 
worldwide. 
 

Once the control recipe for the installation procedure is established, it can be verified as 

shown in the next section.  

 

 

5.4  Procedure Verification 

 As mentioned earlier, the final step in the task analysis and procedure 

development is verification. The accident report for Three Mile Island [43] describes “a 

series of events - compounded by equipment failures, inappropriate procedures, and 

human errors and ignorance – that escalated into the worst crisis yet experienced by the 

nation's nuclear power industry”. Inappropriate or inadequate procedures or work 

coordination plans are often among the top causes contributing to failures and accidents 

in nuclear industry.  

 Although the importance of using validated, comprehensive procedures is 

currently well understood, at Bruce Power stations the phase of independent procedure 
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verification is conducted through a subject matter expert review typically done by System 

Engineers or Maintenance Assessors. Procedure documentation is usually written in a 

natural language, as discussed earlier, and is submitted at various stages of completion, 

e.g. draft or pre-approved stage in order to identify any deficiencies or risks. The 

reviewer analyzes the proposed documentation for technical integrity, regulatory 

compliance and conventional/radiological safety aspects. The aspects of clarity and 

consistency as well as comprehensiveness are typically open to interpretation. For those 

well-familiar with the job, an additional level of detail appears unnecessary and 

distractive as it is increases the complexity of the document. For those not familiar or 

barely familiar with the proposed project, a more detailed description and a 

comprehensive list of precautions is deemed to be a necessary and mandatory part of the 

procedure. Similar to manual procedure development methodology, this greatly relies on 

the person’s experience, skills and knowledge of the subject and often results in time 

delays and cost increase even at this early stage of the proposed project. Also, since it 

greatly relies on human factors, this approach is difficult to capture and quantify, so that 

it could be repeated for a similar procedure or work coordination plan again at a different 

facility. This is particularly important since the proposed task analysis and 

installation/replacement for obsolete SUI detectors is meant to be used for any 

subsequent projects at other facilities. Therefore, a structured approach to procedure 

verification, as well as task analysis, is needed to ensure consistency and ease of 

transparency for future installations.  
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5.4.1  Procedure Verification Methodology 

 The ultimate goal of procedure verification is to confirm that following the 

proposed procedure the intended tasks or objectives are achieved as expected. Another 

main goal of procedure verification is to eliminate inconsistencies or structural errors 

when the steps of the proposed procedure are written out of order or no hold/back out 

conditions are provided for all possible scenarios. 

 For the selected case study of the proposed SUI installation/replacement 

procedure and its associated tasks, a meta-operation language similar to “PROMELA” 

process meta-language developed by the formal methods and verification group at Bell 

Laboratories [44] will be used in this thesis. The main advantage of the Meta-operations 

language method is that it is well suited to describe actions and sequences of actions in a 

chronological manner, as well as conditions that allow or forbid advancing to the next 

step, until a clearly stated hold point or back-out condition is specified. This will be 

demonstrated in more detail below, however it is important to point out that this approach 

is proposed as a general methodology and will not be explored further into the script and 

parser development.  

 First, the proposed installation procedure or work coordination package can be 

converted into Meta-operation language programs using the same formal-language task 

ID’s developed earlier. For example, for tasks in M1.1.2 “Transport”, actions such as 

‘Load” or “Deliver” can be easily converted into a processes object, e.g. LOAD. In Meta-

operation language processes are global objects that represent the concurrent entities of 

the system with the behavior of a process defined by a “proctype” declaration. For 
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example, the following declares a process type “LOAD” with a Boolean variable stating 

“True” that corresponds to a successful completion of the task: 

proctype LOAD() 

{ 

bool state; 

state = True; 

} 

 

Since the scaffolding material for 46 ft scaffold construction will have to be loaded in 

sequence, one component after another, further sub-tasks in “LOAD” process can be 

represented through a loop structure with the number of repetitions set to the number of 

the components to be loaded: 

do 

:: count = count + 1 

:: scaf = scaf +1 

:: (count == 0) -> goto done 

od 

done: 

skip; 

 

Next, we can write the code to represent a “proceed” condition, i.e. once the task of 

“LOAD” is completed and is “true”, the user can proceed to the next task of 

“DELIVER”: 

if 

:: (LOAD == true) -> DELIVER; 

:: else ->; fallthrough_option; 

If 
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Following this logic, the entire work coordination package or procedure could be 

converted into a meta-language in order to verify process interactions. Depending of the 

level of verification that is required, the model can be expanded into the required number 

of levels and verified with different type of assumptions or risks, e.g. for the task ID 

M1.1.3.1 “Notify”, used for notification of RM crew members that the scaffold material 

has been delivered to the correct location, it could be verified against the risks that the 

message will get lost.  Parsing the model against this assumption, or the so-called seeded 

error, will ensure that a correct barrier is thought of and build into the proposed 

procedure, in this case ensuring that there is a message delivery confirmation mechanism 

specified in the procedure. Since condition can only be executed (successfully passed) 

when it holds, it will be blocked and paused until an alternative step is provided. For the 

purpose of the procedure verification, this translates into a hold point or back-out actions 

clearly stated for the future user, outlining the steps they need to take in case this 

condition cannot be met, e.g.  place the “LOAD” task on hold and contact supervisor if 

the number of scaffold parts received from store is less than stated in the procedure. This 

way, personnel that will be executing the procedure in the future won’t have to deal with 

the uncertainty of what direction to take if faced with the situation for which the 

procedure does not provide clear instructions. 

 Once the correctness of a sample procedure or work coordination package has 

been verified, the proposed installation procedure can be analyzed in terms of the 

potential hazards and their associated consequences in an effort to develop and 

implement a list of control measures or barriers to the known and anticipated hazards 

and, finally, to optimize the installation procedure.  
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5.5  Risk Matrix Development and Criteria 

  In order to perform the proposed design modifications and installation of new 

SUI detectors and electronics at Bruce Power, a task analysis of the major project steps, 

outlined in the previous section, was performed with the main intent of identifying 

potential hazards and risks associated with each project phase. 

The following definitions were used in order to identify and assess the risk associated 

with the installation procedure: 

• Hazard – something that has the potential to cause harm 

• Probability – the chance of occurrence of an unwanted event 

• Consequence – the extent of harm or severity of event 

• Risk – probability of occurrence multiplied by consequence of occurrence.  

 In order to quantify the risk associated with the proposed installation procedure, 

certain ranking has to be assigned to probability of occurrence as well as severity of 

consequences. Although it is fairly easy to estimate the severity of consequence, the 

probability of occurrence of unwanted events or conditions has to be roughly estimated 

based on previous knowledge and the overall complexity of the project, rather than real 

data as no current procedures exist and the proposed installation project is the first of its 

kind.  
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Shown below is the ranking table for magnitude of consequences with the highest 

ranking assigned to the most significant outcome – “Catastrophic” event resulting in 

multiple human fatalities.  

 
Table 5. 1: Ranking for Magnitude of Consequences shown, where the highest ranking of 10 is 
assigned to the most significant consequence. 
 

 
Consequences Ranking 

Catastrophic (multiple fatalities, complete failure of the project) 10 
Disaster (a few fatalities, significant challenges to the project). 8 
Accident (one fatality, lost time/production challenges). 6 
Event (serious injury, serious damage to equipment, outage 
extensions). 4 
Incident (no injuries, damage to plant, serious schedule interruptions) 2 
Near miss (no consequence, lessons learned) 1 

 
 
 
 It is important to note that other impacts, both real and potential, have to be 

considered in this analysis in addition to human casualties (conventional safety). For 

example, impact to nuclear safety, environmental safety, radiation safety, reputation, 

regulatory compliance, production, cost, schedule, outage, etc. resulting from unwanted 

or adverse impact of the installation procedure may cause a serious financial or 

regulatory damage to the generating station and have an adverse negative impact for the 

rest of the nuclear industry. However, for the purpose of this assessment and following a 

conservative decision making approach generally adopted for the nuclear industry in 

Canada, the magnitude of consequences are ranked based primarily on their effect on 

conventional safety, i.e. human casualties or injuries.   

 Similarly, the probability of occurrence of an adverse condition or failure during 

the installation procedure can be ranked as shown in Table 5.2 below, with the highest 

ranking of 10 assigned to the most probable occurrence.  
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Table 5. 2: Ranking Probability of occurrence is shown, where the highest ranking of 10 is assigned 
to the events that are most likely or “expected” to happen. 
 

Probability Ranking 
Most likely and expected 10 
Quite possible (50/50). 8 
 Unusual but possible. 6 
Remotely possible (has happened somewhere). 4 
Unlikely 2 
Practically impossible  1 

 
 

 

5.6  Barrier Analysis and Development of Mitigating Measures/Controls  

 Following the ranking criteria in the previous section, the project step M 1.1.2 

“Prepare material for 46 ft scaffold”- “Transport” was analyzed to determine 

barriers/control actions required at each step in order to mitigate the known and 

anticipated hazards. This is shown as an iterative process in Figure 5.7, where the output 

of the Task Hazard Analysis process is used for Barrier Analysis. This will allow 

identifying an appropriate barrier, whether procedural or physical, for each task during at 

the Barrier Analysis stage. Next, the output result of barrier analysis will be used as a 

feedback-input for the Task Analysis process in order to use this information for the task 

analysis stage. This iteration enables a maximum procedure optimization where 

mitigating actions or controls are identified and included during the procedure 

development stages for maximum risk optimization.  
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F
Figure 5. 7: Procedure optimization using feedback from Barrier Analysis and Risk Analysis process as input to the Task Analysis stage, developed 
using IDEF0 standard.
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For example, for the task of loading of scaffolding material onto the transport vehicle, 

one of the main expected hazards is bodily damage to the crews due to scaffold 

components falling off the transport or lifting mechanism. The main preventative 

measure procedural barrier for this hazard is strict adherence to the lifting/rigging 

procedure written under the guidelines of OHSA. The main preventative physical barrier 

is the use of Personal Protective Equipment, such as safety footwear, by the loading 

personnel and the use of brackets/restrains to keep the parts properly locked in place.  

 

 

5.7  Tabulated Risk Assessment Matrix and Analysis Results  

 As discussed in section 4.6, the results of hazard analysis will be used in the next 

step of the process in order to develop a task risk matrix. The product of probability of 

risk and magnitude of possible consequences will be used to quantify the projected risk of 

each task. For this particular example, a sample risk analysis was conducted for the task 

of transporting scaffold material from the load bay to the Reactivity Deck where it will be 

assembled. The results of risk assessment for the task of transporting, including the 

estimated probability of occurrence as well as the magnitude of consequence of the 

adverse conditions produced by each hazard are shown in Table 5.3 below. During this 

analysis the highest score in terms of risk was determined to be due to a high probability 

that the scaffold components may cause bodily damage during the loading/unloading 

operation with the consequences reaching as high as 4 in ranking, i.e. a chance of causing 

a serious injury or serious damage to equipment. Similarly to Barrier Analysis process, 

the results of risk assessment stage will be used as feedback-input into the procedure 



 110

development process where the identified risks can be minimized for maximum 

procedure optimization.  
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Table 5. 3: A sample table showing hazards, their estimated probabilities, consequences, and risks are shown for the task of loading the scaffold 
material M1.1.2.1. 
 

Process 
ID 

Process 
Desc Activity Hazard Cons Prob Risk Controls 

M 1.0  Mechanical 
M 1.1 Prepare material for 46 ft scaffold 
M 1.1.2 

 

Failure to deliver correct scaffold material to RM deck (Qty/Qlty) 

M 
1.1.2.1 Load 

Damage to components due 
to falling/improper handling 2 8 16 

Use correct procedure for lifting/rigging/stacking. 
Ensure personnel receive correct training.  

Damage to transport vehicle 2 6 12 
Use correct procedure for lifting/rigging/stacking. 
Ensure personnel receive correct training.  

Bodily injuries due to weight of 
the components 4 10 40 

Wear protective clothing - gloves, hardhats, safety 
footware, googles. Use correct procedure for 
lifting/rigging. Conduct training for proper 
lifting/rigging techniques 

Transport not available 2 8 16 Schedule verification and confirmation 

Personnel not available or 
wrong number of people 2 8 16 

Verification for resource planning and loading. 
Arrangement to be made to have addt'l on-call 
personnel available 

Lifting/rigging equipment not 
available  2 6 12 

Equipment to be obtained from Stores and staged 
prior to execution  

Procedure missing 2 4 8 Job Assessment and walk-down prior to execution 
Personnel not trained for the 
job  4 6 24 Personnel qualifications reviewed prior to assignment 
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5.8  Installation/Replacement Procedure Optimization 

 In this section, the proposed SUI installation/replacement procedure will be 

further analyzed to determine whether it can be optimized for even better results. In 

general, optimization is the process of selecting the best available alternative or 

modifying the proposed solution in order to take maximum advantage of the resources 

available, minimize the costs and reduce the anticipated risk. The analysis of these three 

factors will be given in the following sections with the recommendations as to the most 

efficient solution to adopt.  

 

5.8.1  Risk-based Procedure Optimization  

 Once the formal work coordination plan or “procedure’ has been developed and 

verified and hazards and risks associated with each step have been determined, it is 

possible to optimize the algorithm in order to minimize or eliminate those risks. This will 

be described in this chapter.  

 First, let’s consider the “Preparation” tasks, where the material required for 46ft 

scaffold has to be prepared. The fist step in this process would be the selection of the 

scaffold parts as shown below: 

 

Figure 5. 8: Breakdown of the M1.1 task for scaffold material preparation, broken down in to 
further sub-tasks of M1.1.1 “Check”, M1.1.1.1 “CatID”, etc. 
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This process can be presented in a Cause-Failure Mode-Consequence format, as shown 

below: 

 

Figure 5. 9: Cause-Failure Analysis for M1.1 Task of preparation of scaffold material, showing the  
relation between potential causes and consequences, e.g. Lack of Skills/Training may lead to selection 
of wrong quantity, quality or material or wrong material type (i.e. wrong CatID). 
 

 Here, for the task of checking the material three main causes are shown. For 

example, for lack of skill/training of the personnel retrieving the material from the stores 

would result in either wrong CatID, or wrong quantity being selected. It also could result 

in the wrong quality of material being selected, e.g. if the correct CatID is picked up from 

a scrap location where the discarded scaffold parts are store until the time they could be 

shipped off the site. Thus an expression: 

Ci*Mi           (5.1) 

can be used to represent the product of causes (for Check and Material respectively) 

contributing to the task failures, while 

Cj*Mj           (5.2) 

can be used to present the product of consequences to check the correct material.  
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Next a set of related State Variables (SV) can be developed as shown below: 

 

Figure 5. 10: State Variable Tree, where the possible State Variables are shown,  e.g. Process 
Variable (PV) may include Temperature, Pressure, etc. Similarly, Human Variable (HV) may 
include such factors as physiological or psychological stress, fatigue, etc. 
 
 
Next, it is possible to define the list of SV’s related to the selected task “Check-Material” 

and to determine the possible deviations, or Δi, which will result in possible Risk or Ri. 

This is shown below: 

SVi + Δi  Ri + ΔRi         (5.3) 

where Δi  coefficient varies depending on the task scenario.  

 

 Thus, for the same task of checking the material depending on how the task is 

performed the deviation Δi could be quite different. To illustrate that, three different 

alternatives for this task are described below.  

 First alternative consists of designated Stores (plant wear-house) personnel 

performing the material retrieval and verification. The Stores personnel are trained and 

qualified for this task, which reduces the possibility that they would select wrong CatID 

or quantity of the material. The main constraint for this alternative is that although the 
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Stores are open 24x7, the Stores personnel are only present during the day shifts and only 

on Mon-Fri schedule. Therefore, should the task of checking the material be scheduled 

for after-hours, this job will have to be performed by the scaffolding crews who may not 

be qualified or experienced to do so.  This option, however, carries the least amount of 

additional cost as the existing Stores personnel are already trained and qualified for the 

job and possess the most experience with the Master Material Catalog and storage 

location. 

 The second alternative is to assign the task of checking the material to the scaffold 

personnel and to provide a pre-job training so that they would have the formal 

qualification and knowledge to perform this task. This would eliminate the constraints of 

the first alternative, namely the need to perform this task during Mon-Fri business hours. 

This alternative, however, would have the associated risk of assigning an important step 

to the personnel who has no experience with the task and received formal training only. 

Since the scaffold crews are not normally admitted into the Stores warehouse area, this 

may result in a significant time delay to the task and increases the chance that the wrong 

material or not enough material will be picked up. Also, this option carries the additional 

costs associated with the training material, instructor’s fees and facility booking as well 

as time required to complete the training. 

 The third alternative is to outsource this task to the trade’s union and have them 

deliver the scaffold parts to the loading bay. This alternative will eliminate the need to 

train Bruce Power personnel or to manipulate the project schedule to coordinate between 

the two groups. This, however, will have its own risk of not having the control over the 

quality of the scaffolding parts, e.g. amount of stress, rust, cracking, life expectancy and 
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storage conditions. Also, this alternative will introduce the element of risk in terms of 

delivery time and possible delays due to road conditions, labor strikes or adherence to 

schedule by non-Bruce Power employees. This option carries the highest costs as the 

union and contractors’ fees will likely need to be added to the project budget.  

This is shown in Table 5.7 below, where the highest ranking of 3 is assigned to the factor 

that has the most significant effect on the risk.  

 
Table 5. 4: Definition of SV deviations defined for three alternatives to task M1.1 
 

 
Alt Description Hazard Cause Consequence 

Dev 
cost 
Δ1  

Dev 
time 
Δ2 

1 

Task 
performed by 
the Stores 
Personnel 

task scheduled during 
after-hours 

Lack of 
coordination 

material not 
available OR 
wrong Qty/Qlty 
is selected 1 2 

2 

Task 
performed by 
the scaffold 
crew 

lack of 
experience/familiarity 
with the storage area 

Lack of 
training/experience 

material not 
available OR 
wrong Qty/Qlty 
is selected 2 2 

3 

Task 
performed by 
an external 
contractor 

risk to schedule 
adherence, quality  

no control or 
oversight over the 
external contractor 

material not 
available OR 
wrong Qty/Qlty 
is selected OR 
time delay  3 3 

 

 
 
 As can be seen from the table above, several Δi’s have been estimated to have the 

same value, thus this approach faces the challenge of deciding between conflicting 

criteria. The next step of this analysis is, therefore, developing an optimization algorithm 

where both deviations, in terms of time and cost, are considered. Since it is desirable to 

keep both to the minimum in order to minimize the risks of the project, the next step is to 

determine the alternative with the minimum cost and time. This will be addressed by 
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using an algorithm similar to the MOGA – Multi Objective Genetic Algorithm method, 

typically used for the cases where the mathematical description of performance criteria 

are used for cases when they are usually in conflict which each other [45].   

The approach used for this analysis begins with defying the Pareto set solutions xi [46] 

for a feasible region F: 

Fxxx ∈210 ,,               (5.4) 

The Pareto optimal solution in the minimization problem will be 0x  with the following 

criteria satisfied: 

if )( 1xf  is said to be greater than )( 2xf , i.e. nixfxf ii ,...,2,1),()( 21 =∀≥         (5.5) 

and 

nixfxf ii ,...,2,1),()( 21 =∃> ,            (5.6) 

then  

1x  is said to be dominated by 2x  

therefore, if there is no Fx∈  such that  x dominates 0x , then 0x  is the Pareto optimal 

solution. Next, a weighted sum can be used to combine multiple objectives into single 

objective [16] as such: 

)()()()( 2211 xfwxfwxfwxf nn+⋅⋅⋅++=           (5.7) 

 

For this case study, the weights are the ranking that is assigned to each option’s Δi, e.g. 

the ranking of 3 is the highest and corresponds to the worst, i.e. having the most impact, 

on the risk of the project. Also, numerically for this case study there are two objective 

functions that are being considered, namely minimal cost and minimal time:  
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)()()( 2211 xfwxfwxf ⋅+⋅=                 (5.8) 

or 

timetxf ⋅Δ+⋅Δ= 21 cos)(
            (5.9) 

 

where: 

)(1 xf = cost, )(2 xf = time 

 

The goal of the solution is to achieve the condition when f(x) is minimal. The optimal 

solution will, in this case, occur when both Δi are minimal, thus contributing minimal 

deviations to the estimated project risks. It is also the most desirable in terms of project 

planning and execution.  

 To illustrate that, a case where the lest-costly alternative is achieved at the 

expense of a significant additional time is not desirable as it involves other costs, e.g. 

facility use costs or additional costs of storage. Similarly, the alternative option 3, where 

the time is minimized to the least possible value but at the cost of additional budget that 

is required, as it is typical in a case of contracting the tasks out to an external 

organization, the deviation to the project risk is significantly increased due to the need for 

additional budget. This decision, regarding the tradeoff between cost and time deviations 

becomes significantly more complicated once the number of tasks goes up as well as 

other constraints, e.g. investor confidence and delays to project schedule, are taken into 

consideration. 
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 This methodology could be further explored with MOGA-Multivariable Object 

Genetic Algorithm [47] for analysis of the entire project with multiple stages and options 

for each alternative.  

 

5.8.2  Project Time Allocation and Optimization 

 One of the main challenge for resource allocation and optimization that was not 

discussed in the previous section is due to the fact that a very few work activities are 

performed in a constant or predictable amount of time. The risk minimization strategy 

above assumed that a certain fixed amount of time is required to perform a specific task, 

e.g. a task of loading the scaffold component onto the transport will always take 10 

minutes.  

 In reality, the same task can vary in duration every time it is performed, even by 

the same individual. Currently, the time allocation for task execution, particularly for a 

new procedure, is done subjectively, based on the assessor’s personal experience or level 

of knowledge of what is required in order to complete the task. It also highly depends on 

the overall work schedule and personnel availability, e.g. during planned outages it is 

commonly anticipated that more resources are available because of the increase in the 

number of external contractors, trades-people and other personnel. This common practice 

routinely results in situations where a significantly lower number of work hours are 

allocated to a particular project. The tasks of pre-job briefing, checking the drawings, 

verifying the correct tools and consumables are routinely omitted from the estimate. As a 

result, the time allocated to the project tasks is typically assigned arbitrarily and 

inconsistently.  
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 Therefore, it is required that this gap be addressed to show that there might be 

more benefit to using a consistent methodology for time allocation for project tasks. A 

method of statistical analysis of the previous operating experience data was used on the 

case of the sample task of loading the components of the 46ft scaffold onto the transport 

truck, which is one of important steps in the proposed procedure.  

 The analysis of the previous operating experience showed that the same task of 

lifting and rigging a similar component was performed with the duration ranging from 0.3 

min to 13.8 min as shown below: 

 

Table 5. 5: Historical data for the duration of loading the scaffold components ranging from 0.3 to 
13.8 minutes. 
 

Task Duration (min) Frequency 
0.30 1.00 
1.00 3.00 
2.20 2.50 
3.50 7.00 
4.80 12.00 
6.10 18.00 
7.40 20.00 
8.60 18.00 
9.90 6.00 
11.20 6.00 
12.50 5.00 
13.80 2.50 
15.00 0.00 
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Plotting this numbers shows that this closely follows a normal distribution pattern: 
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Figure 5. 11: Plotting statistical data shows that the task duration follows a normal distribution. 
 
 
Therefore, the shape of this curve can be approximated by the “Gaussian” probability 

distribution.  
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Next, σ and t can be determined from the table of the data collected during past operating 

experience review: 
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Further defining as T50: the time interval point when 50% of the work is done and T90 as 

the time interval point when 90% of the work is done would reveal the following: 

50Tt =   ( )5090...415,188.1 TT −=σ         (5.12) 
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Therefore, a more realistic estimate of the time required to complete this task for the 

proposed procedure can be derived based on the previous statistic, rather than arbitrary 

“guesstimating” this value.   

 For the selected task of loading the scaffold material onto the truck, the following 

assumptions were made. One crew member, labeled as Joe, loading a part of a scaffold 

material is considered for this example. The scaffold component is handed to the crew 

member at a rate of λ = 1 part /10 minutes = 0.1/min. When Joe receives the part, he has 

to examine the part to determine its physical condition. Joe also has to check the serial 

number on the part and cross-reference it with the list of components that he has been 

given during the pre-job brief. Once the component passes the two acceptance criteria 

above, Joe loads it onto the truck. This process of inspection and verification takes on 

average 9 min (as shown earlier, it can range from 0.3 to 13.8 min based on the previous 

experience). This can be represented as “service time” and expressed as μ = 1 permit/9 

minutes = 0.111…/min 

The average job duration from the queuing theory is: 

r = 1/(μ – λ) = 1/(0.111 – 0.1) = 90 min        (5.13) 

 

Running more simulation data we get the following: 

 

Table 5. 6: Average job duration versus number of components. 
 

Number of Parts 
Avg. Job Duration  

(min) 
Error  
(%) 

10 27.2 69.8 
100 85.6 4.9 
1000 88.5 4.7 
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 This analysis can be further fine-tuned until the optimum forecasted job duration 

can be determined with an acceptable error and the time allocation for execution of the 

procedure tasks can be optimized for maximum efficiency so that that over-allocation of 

time, resulting in project extensions and cost increase, can be prevented. 

 Another main advantage of applying a formal approach to the time allocation 

process is that automated solutions for time allocation can be developed based on one of 

many formal methods, similar to the automated resource planning solutions used in the 

airline industry.  In addition to reducing the human factors, such as the assessor’s 

familiarity with the job or level of understanding of the complete task sequence, it can 

also reduce the time during the project planning stage as well as minimize the room for 

error.  

 

5.8.3 Resource Allocation and Optimization 

 As discussed earlier, the proposed SUI installation/replacement procedure can be 

described as a dynamic, real-time process or system since the personnel executing the 

task sequence will be operating in a continuously changing environment. As shown 

during the task hazard analysis stage, there is a significant probability of workflow 

interruptions due to various reasons, both equipment and human-factor related. An 

example of this could be that a wrong number of personnel are assigned to the job, or 

there may be enough physical bodies to perform the job, but the operators/maintainers 

may not have the right training or skill-set to perform the job in a timely fashion if at all.

 With all of this in consideration, the projected workload during this stage will 

fluctuate, thus challenging the resources allocated for the job, which in its turn results in 
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an additional risk factor challenging the successful execution of the procedure. Therefore, 

the resource allocation for this project should be robust enough in order to mitigate those 

potential adverse conditions but at the same time should attempt to keep the allocated 

resources to a reasonable minimum in order to comply with the allocated budget and 

availability.   

 Some of the questions in resource allocation process are how the resource should 

be assigned. For example, should the resource be assigned based on one of the following: 

• First available 

• Lowest cost 

• Best fit (skill-set and training) 

  

 Currently, the practice of resource allocation for projects at Bruce Power is 

conducted in a conventional way, where the need for resource loading is “guesstimated” 

by the task assessors based on their level of familiarity or understanding of the job in 

question.  In order to optimize this process, similar to the project time allocation, a formal 

method can be adopted in order to ensure that the optimal balance between the job 

duration and the resource loading is achieved. To illustrate that, the same example of 

loading the components of the scaffold onto the transport track can be used. The 

proposed methodology for this case study is loosely based on the Integer Programming 

model used for resource allocation. It is commonly used for sales resource allocation 

[49], or transit fleet resource management. The Integer Programming approach is well-

suited for these tasks as it allows trying all the alternatives in terms of adding resources, 

reordering or combined tasks, or using different resources which is routinely done due to 
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personnel unavailability. It also takes into the account that often the procedure tasks get 

reassigned to others, equally trained and capable resources, if the originally assigned 

personnel is needed to work on another, higher priority job.  

 Previously, as described in the previous chapter, there was one technician “Joe” 

loading the scaffold components. For the case when one more resource is “loaded”, i.e. 

assigned to the same tasks, the following can be derived from queuing theory: 

average job duration  r = 9.866,824 min. 

Running a simulation will reveal: 

 
Table 5. 7 Average job duration versus the number of parts analysis for the case when an additional 
person is assigned to perform the same task. 
 

Number of 
Parts 

Avg. Job Duration 
(min) 

Error 
(%) 

10 9.17 7.1 
100 9.52 3.5 
1000 9.72 1.5 

 

 This exercise can be repeated until the optimum number of crew members can be 

selected in order to optimize the task duration with the required degree of accuracy. 

Similar to time allocation solutions, an automated resource loading solution can be 

developed in order to assign optimal personnel numbers while running the optimization 

algorithms for the accuracy of the qualifications, experience, industrial safety regulations, 

collective agreements and government regulations. 
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5.8.4 Project Budget Allocation and Optimization 

 Refurbishment of older CANDU nuclear plants requires billions of dollars in 

capital with no immediate “visible” return on investment. Over the course of years since 

Bruce Power Unit 1 and 2 Restart project, there has been a consistent tendency for 

project cost and budget overruns. An important lesson that was learned from these 

challenges is that for any future refurbishment project an accurate and effective budget 

allocation and optimization of cash flow is a key to the project success.  

 The selected case study of installation/refurbishment of the SUI instrumentation 

for Bruce Power units is estimated to be in the range of $1.5 M. Although this number 

may appear high, it is worth noticing that the budget for such a project includes not only 

the costs of purchasing the new hardware, i.e. detectors, cables, servers, etc, but also the 

cost of engineering work, such as design and verification, installation, commissioning, 

QA assurance, as well as other costs associated with human and facility resources, 

maintenance costs, tools and equipment needed for the project, etc. Currently, as is the 

case with the Unit 1 and 2 Restart project, the project budget has to be drawn from the 

company’s investors and partners resources. Based on the history of the Restart 

activities to date, it does not appear that the financial resources are forecasted and 

allocated in a systematic manner. Therefore, as part of the project preparation stage, a 

better budget analysis and optimization approach may prove to be more effective.  

 With a number of large, medium and small scale projects happening 

simultaneously, the investors have a wide variety of options to choose from. Assuming 

that jc  is the contribution resulting from the j- th investment and that ija  is the amount 
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of resource i , such as cash or manpower, used for the j th investment, the problem can 

be defined as the need to maximize  

∑
=

n

j
jj xc

1
           (5.14) 

that is subject to: 

∑
=

≤
n

j
ijij bxa

1

             (5.15) 

where  (i=1, 2,…m) xj = 0  or  1 (j=1, 2,…m) 

  

The objective is to maximize total contribution from all investments without exceeding 

the limited availability bi of any resource. This, however, is a much bigger job and is 

typically performed by Projects or Investor Relations department.  

 Another main challenge during a project of this magnitude stems from the multi-

phase nature of the tasks and their sequencing. It typically involves a lot of coordination 

between various work groups in order to align the resource loading, equipment and 

facility use and plant status conditions. This results in extended time lines for the project 

completion. Historically, this resulted in a situation where the project budget was released 

in portions, either based on a fixed schedule of completion progress. This can be 

mathematically described as  

∑
=

≤
n

j
iiij bxa

1

            (5.16) 

to show the incremental balance in each time period. Here the coefficients aij represent 

the net flow of finances from investor j in time period i. If the project requires additional 

budget in period i , then aij > 0. It is important to note that aij is always going to be greater 
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than zero, i.e. aij < 0, since there is no expectation that the investment will generate 

immediate profit. Coefficients bi in this equation represents the incremental exogenous 

cash flows. If additional budget is provided during time period i , then bi > 0. Similar to 

aij coefficient, it is reasonable to assume that the project budget will not be recalled or 

reduced, thus bi can never be less than 0, i.e. bi < 0. Further analysis can be conducted 

detailing down to the task level and automated for a more thorough investigation or for 

better planning. This, however, will not be discussed in this paper as it represents a very 

specialized area of finance and accounting operations.  

 What is important is that there are tools and techniques available on the market 

that would allow determining and optimizing the project budget to be within 10% of the 

final value. This is done through a formal task analysis approach with procedure 

standardization, verification, optimization of resources and effective time allocation as 

discussed earlier.  
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CHAPTER 6: HIERARCHICAL CONTROL CHART 

METHODOLOGY FOR FUTURE SUI SYSTEM MAINTENANCE 

AND TROUBLESHOOTING 

 
6.1  The Need for a New Methodology 

 In today’s industry, in order to successfully design and operate plant and systems, 

engineers and designers are required to have right tools for analysis of plant layout, 

physical interconnections, functions and control hierarchy, which requires knowledge of 

all measured and control variables as well as determination of all of the components, 

processes and their relation.  

 Typically, in order to describe the way a system operates, system engineer’s 

designers use text documents and process flow diagrams [49]. This might work for 

designing a small brand new plant with no existing process or control systems in service. 

For a case of refurbishing or design modifications to the existing ageing or obsolete 

nuclear reactor units, such as Bruce Power SUI systems, this presents significant 

challenges. The existing paper-based or microfiche drawings are routinely outdated, with 

many plant modifications that take place over the years not being reflected. There are 

components and parts found in the plant that have incorrect specifications, that cannot be 

found on the associated drawings or simply have no documentation at all.  

 Another challenge system engineers have to deal with on a daily basis is the fact 

that the existing drawings are of poor quality, often bearing hand-made comments or 

remarks and exhibit soiled, faded or worn-out ink. Although efforts are being made to 

digitize the Bruce Power drawing library, there is still a large number of drawings that 
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exist only on microfiche cards. Engineers have to rely on older microfiche viewers and 

printers to print out a paper copy, which often is too blurry or too dark or otherwise 

barely readable. There are also a very limited number of microfiche stations. Confounded 

by a long warm up time, unreliable performance, missing or jammed cards, and a long 

manual search through the card drawers makes this system quite an obstacle during 

troubleshooting of faults. This results in additional delays to critical path and increases 

the levels of frustration and stress during troubleshooting process.  

 On the plant drawings that do exist electronically or in paper format, individual 

system components are shown with equipment labels, e.g. 3-63743-LT2D-MV2D, which 

provides only basic indication of what the component specifications are. Although it is 

possible to deduct that MV2D stands for a motorized valve, no further information 

regarding the make/model or technical specifications, i.e. flow range or temperature 

cannot be determined from the drawing along. Information on component availability, if 

required for replacement, cannot be determined either and requires an additional manual 

search in the plant master material catalogue.  

 Another major limitation of the existing paper-based design tools is that the 

existing old system drawings are very specific where the system under consideration is 

often shown on its own, with no identified interconnections or process flow lines to other 

systems. In order to verify system interconnections, a design engineer has to physically 

trace the line on the microfiche reader screen or paper drawing through a series of valves, 

pumps and tanks carefully paying attention to their functions and states and the direction 

of process flow. 
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 Operational flow sheets, on the other hand, show the process connections but 

provide no detail information on the system components. Neither type of sheet has any 

indication of the type of information exchange, e.g. sensor data sent or control command 

issued, and is meant to show only material or energy exchange. This may work well for 

process systems but becomes a major limitation for control or I/C systems, where data 

processing and information exchange functions are just as important as terminal locations 

or line bus numbers.  

 

6.2  Existing Troubleshooting Tools and Their Limitations 

 There are a few products currently available on the market that are designed to aid 

designers, engineers and system maintainers in getting access to the required data 

electronically. Although all of them have their own advantages, there is currently no tool 

that can provide the capabilities of the proposed Hierarchical Control Chart (HCC).  

 

6.2.1 Open Text ECM Suite Tools 

 Open Text ECM Suite [50] has developed a search technology that incorporates 

full-text indexing and string-search technology through their Livelink application. A user 

is able to search for a specific item of interest, e.g. JB902 (junction box 902) in alpha-

numeric format. The Livelink search engine is designed so that any record, e.g. purchase 

order, bill of material, design or operating manual referencing JB902 will be pulled from 

the document repository and made available for the end user. This is achieved through 

Open Text Federated Query Server which provides a single access point to query 
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multiple repositories to obtain a unified set of results, enabling instant access to 

information from across the enterprise [50].  

 The main limitation of this method is that a user must search for a component by 

manually entering its name into the search engine. A vast list of all associated 

documentation will be produced in textual .pdf format. Next, the user has to manually 

search for the required information by opening and searching through each of these 

documents until the required data is found. This method is ideal for augmenting paper-

based design process but is very time and labor consuming for system troubleshooting 

and diagnostics.  

 

6.2.2  ECM Documentum Tools 

 ECM Documentum introduced its Electronic Document Management System 

(EDMS), which is a client-server product for electronic document management, in 1993 

[51]. This product managed access to unstructured information stored within a shared 

repository, running on a central server. It included an integrated full-text search engine 

for retrieving documents from the repository. Although Documentum has proved to be a 

very successful solution for document management, the process of information search 

and retrieval is similar to the one described for Livelink. Drawings and blueprints can be 

retrieved both in .pdf and various CAD formats for authorized users, but no interactive 

information retrieval function is available.  
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6.2.3 Ventyx PassPort V10 Asset Suite 

 Ventyx PassPort V10 Asset Suite [52] is another popular solution for information 

management at CANDU power plants. Asset Suite enables users to gain access to stored 

electronic documents and drawing as well as check the existing parts inventory and 

equipment maintenance history. This application, however, still does not address the need 

for a fast instantaneous access to the information on a specific component or connector. 

In an example of obtaining temperature ratings on a specific connector for the proposed 

SUI system, in order to find this data, a user has to find the number of the system wiring 

diagram first. This number, e.g. NK21-EGAN- 63176, for the proposed system will be 

searched for in the PassPort application in order to determine that: a) such a drawing 

exists, and b) the revision number for the latest master copy. Next the latest approved 

master copy of the drawing is selected and retrieved from LiveLink and viewed in Brava! 

Server. The retrieved drawing is a scanned .pdf version of an old manually paper-based 

drawing produced by hand in 1973. It can be appreciated that in addition to poor 

readability, this drawing does not provide much information about the connector under 

investigation other than an equipment tag name.  

 Next, in order to access its specifications it is necessary to go access a different 

module of passport and do Equipment/Component header search. Next, the required 

component is selected and searched to determine its Catalog ID (CatID). This, however, 

will only provide system engineers with a unique numerical tag for this connector with no 

technical specifications, such as temperature rating or restrictions. In order to obtain that 

data, system engineers have to contact personnel in the Procurement Engineering 

department. Based on the CatID provided, they will be able to search for the 
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manufacturer’s specifications document for that particular component through their own 

electronic material catalogues or paper-based records in the records vault. Once this 

information is received, a system engineer will be able to determine whether the 

connector under investigation is subject to high temperature effects or is environmentally 

qualified for the environment it is currently installed, therefore temperature fluctuations 

need not to be included in the FMEA for this component. 

 

6.2.4 Anark Interactive PMI Pro Tools 

 Anark Interactive PMI Pro is an interactive CAD modeling solution used in 

manufacturing industry to produce 3D PDF documents that contain geometric 

dimensions, manufacturing tolerances, and other 3D annotations [53]. By adding 

advanced model interrogation capabilities to new and existing 3D PDFs, Anark 

Interactive PMI Pro enables clear communication of original design intent between 

internal and external stakeholders across the extended manufacturing enterprise. Once the 

3D PDF is processed and enhanced, the PMI data may be interrogated on any version of 

Acrobat Pro or Acrobat Pro Extended with or without the Anark plug-in [53]. 

 Although the Anark solution has shown to be quite successful in the 

manufacturing industry, it lacks the functionality of showing a component’s connections 

and hierarchy and provides no indication of where in the overall plant design this 

component is located. Specific data that is reflected on the 3D drawing, such as 

geometrical dimensions, tolerances, etc. is quite useful for a mechanical designer or 

component engineer for mechanical systems, but offers no help for system engineers or 

troubleshooters in cases of I&C systems or complex systems and their interconnections.  
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6.2.5 Attachmate Online Wiring Tool 

 Attachmate Corporation Extra! Online Wiring solution [54] is another tool widely 

used for system wiring and interconnection design and troubleshooting. It provides an 

excellent tool to I&C engineers and technicians, but offers only a tabular list of data 

associated with each component or connection. Although this is sufficient for I&C 

designers or electrical maintenance personnel, it provides no overview of component 

hierarchy across the plant domain or possess interactive features for instantaneous 

information retrieval. The process of obtaining more detailed data, e.g. for the example 

below the EQ specifications of Panel-2651, is again performed manually via a number of 

other means, such as PassPort Searches, LiveLink or manual document retrievals. 

 

6.2.6  MatLab/Simulink  

 Existing control system design tools, such as MatLab and Simulink commonly 

used by AECL designers for CANDU reactors, is another conventional tool used to 

implement a high fidelity real-time control models. Although they have proved to be an 

excellent method for time and frequency response analysis or system logic stability tests, 

MatLab models by no means provide a good indication of system physical components 

and their interconnections. Systems, Structures and Components (SSC) and their parts are 

presented as mathematical models with no data on physical aspects of the elements, i.e. 

make, model, EQ, etc., plant layout or maintenance strategy.  

 This is further illustrated in Figure 6.1 and 6.2 below. Figure 6.1 shows a process 

flow diagram of Maple reactor flux control. Figure 6.2 gives a MatLab model of the same 

process.  
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Figure 6. 1: Maple Reactor Flux Control model Process Flow Diagram (PFD) [55]. 
 

 

Figure 6. 2: Maple Reactor Simulink Model [55]. 
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Performing a basic visual comparison between the two models of the same system shown 

above illustrates the concept that the Plant model and a Control model are rather difficult 

to reference to each other.  

 
 
   
6.3  Summary of Current Limitations and Requirements for Additional 

Functionalities 

 Currently Bruce Power engineers are using a combination of the tools described 

earlier, the most popular being PassPort, Online Wiring and Livelink, while AECL 

system designers are typically using MatLab Simulink models. With all the limitations of 

each tool described earlier, the existing process of data mining and cross-referencing that 

needs to be done during system troubleshooting becomes time and labor consuming and 

results in multiple iterations and switching between various applications.  

 

6.3.1 Design Stage Limitations 

 This becomes particularly important during design validation and verification 

stages and may present certain challenges during implementation stages. The Plant model 

based on PFD or P&ID tools has no fault forecasting or behaviour analysis capabilities 

while mathematical models developed in Simulink provide no means for effective 

equipment troubleshooting or parts specifications. Procurement and supply chain 

personnel will have to find a component that is available on the market that could fit into 

its required specifications and serve its intended function. As can be seen from Figure 6.1 

above, a logical model of a reactor offers no indication of which manufacturer would be 
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able to fabricate and procure the required components. The models that are used will 

have to be rendered and cross-referenced into a PFD and P&ID designs, after which each 

component will have to be looked up manually in the existing material catalogues or 

custom-fabricated to suit its design basis.  

 

Figure 6. 3: Plant Process and Control Models developed via traditional methods. 
 

 A clear disconnect between Plant Process and Control model might result in 

significant changes and modifications to the system design during implementation stages 

when the current design limitations are discovered.  This may result in a need to design 

re-works and re-validation or plant modifications done in-situ at later stages, after which 

system design basis will have to be evaluated and re-assessed in order to prove that the 

required safety margin is not compromised.  With most of nuclear refurbishment projects 

running over time and over budget, this additional extensions and time losses present 

significant challenges to project deliverables that have to be met within timelines and 

budget constraints. Investor and public confidence in the industry’s ability to deliver both 
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new installations and refurbishing old units can be greatly affected by unanticipated 

delays and modification backlog. 

  

6.3.2  Online Troubleshooting Limitations 

 For the systems that are already installed and are in production, quite often the 

troubleshooting process spans over several components or parts of the system and the 

exercise of looking up the relevant data and establishing process connections and 

information exchange paths has to be repeated many times. Even for redundant 

components, e.g. serial fuses, it is erroneous to assume that the same technical 

characteristics are applicable to all items with the same functionality. Due to the age of 

the plant, many components and parts have been replaced in the past resulting in a 

situation when several different models produced by various manufacturers are installed 

in the same system. Conservative thinking approach to engineering decision making, 

particularly in a case of special safety systems and nuclear installations, requires that a 

system engineer analyses every part and component of the system with due diligence. 

 

6.3.3 Summary of Required Functionalities and Requirements 

 Following the discussion above, it is obvious that a better tool is needed to aid 

system engineers, designers and trouble-shooters. Current set-up where plant information 

is stored in various many databases is valid and well grounded. It provides for a better 

information ownership where each group has a better control of how their data is 

handled, modified and protected. It also reduces a number of Single Points of 

Vulnerability (SPV) where malfunction or failure of one data storage will not affect 
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information quality and integrity of others. An example of this could be a failure of a 

firewall on a Livelink archive server where documental information, such as design 

manuals or drawings, is stored. Since no direct bi-directional connection exists between 

LiveLink document servers and MatLab, control system models in Simulink will not be 

compromised.  

 This however, results in a gap where a system engineer has to manually conduct 

searches using various tools on different existing applications and gather the data needed 

for a basic analysis and evaluations through engaging personnel in other departments, 

spending time and effort tracing system components across mechanical, electrical and 

logical models and search engines. Thus, there is a clear need for a new tool where 

immediate, fast and accurate information can be obtained for any component or 

connection in the system: 

• Conceptual design of the plant system process.  

• Preliminary design of the plant system process and preliminary design of system 

functions.  

• Detailed design of the plant functions, preliminary design of operation state. 

• Design verification and validation 

• Risk Analysis 

• Fault forecasting, barrier analysis and implementation 

• Troubleshooting and Root Cause Analysis 

• Maintenance Planning and Optimization 

The main objective is, therefore, to create a highly modular solution that allows easy 

corrections, extensions, migration and data import/export on as needed basis for an easy 
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integration and collaboration as well as to provide convenience of smooth and easy 

customization capabilities.  

 

 

6.4  Hierarchical Control Chart Methodology 

 Hierarchical Control Chart (HCC) is a proposed new methodology that was 

developed to be used for nuclear power plant systems and components modeling in order 

to provide a single view of all elements and systems across a power plant. The proposed 

Hierarchical Control Chart (HCC) technology enables automation of information 

exchange between system designers, operators and maintenance personnel on the basis of 

ISA S-95/S-88 [56, 57]. This also allows standardizing the terminology and object 

models at various stages of system design, development, operation and troubleshooting. 

 HCC is integrated with interactive data access and information retrieval 

capabilities that enables a fast, automated access to the information about processes and 

parameters across the power plant domain. The information stored in the database 

captures data at different levels of process and control hierarchy, as well as specifies how 

each piece of knowledge in the system is interconnected with the others.  The proposed 

knowledge base contains trace information for each piece of knowledge defined which 

makes it easy to reuse, extend, and translate the contents in the future. The entire existing 

knowledge bases could be reused or incorporated into the new systems in their entirety or 

only in the relevant portions. 

 The objective of the new proposed automated HCC methodology is  to aid  

system designers, operators and maintenance personnel with an automated tool for 
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equipment, process lines and operations mapping, which offers a fast, intelligent and 

highly automated visual support for design as well as a troubleshooting and fault 

diagnostic tool. In this thesis it will be used as a modeling technique for risk-based 

analysis of new generation SUI systems as well as to aid in developing a safety control 

recipe. 

 

6.4.1 HCC Main Functions and Features 

 
The proposed new HCC system will serve for all, but not limited to, the following 
purposes: 
  

• Promotes visual recognition of equipment location and process connections across 

the power plant domain; 

• Improves operator awareness of the overall structure of the power plant, which is 

particularly useful for new employees and operators in training;  

• Allows to access required initial information in  a fast, consistent and  error-free 

manner; 

• Helps to visually map process alarms and faults to the corresponding physical 

location of the equipment throughout the plant, thus promoting communication 

with the maintenance department and assisting in troubleshooting activities; 

• Make more efficient use of available control room resources through support for 

visualization of operation and improved standardized naming conventions, hence 

reducing operating errors, time and workload, and improving operation efficiency 

and communication between various departments and individual employees. 
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6.4.2 HCC Design and Implementation Process 

 Figure 40 below shows the processes and tools involved in the design and 

implementation of the proposed HCC.  

 

Figure 6. 4: Overall View of the HCC Design Process and Inputs, developed with IDEF0 standard. 
 

 
 As shown in Figure 6.4, the design of the proposed HCC solution was based on 

the existing ISA S-95/S-88 and IEC 61131/61511 standards and follows the guidelines 

and regulations of Canadian Nuclear Safety Commission (CNSC) as well as corporate 

operating policies and procedures.  A number of existing tools and computer 

applications, such as Microsoft VB. LabView and CoDeSys were used along with widely 

available Microsoft Office tools in order to create HCC User Interface (UI).  The step-by-

step HCC development process is shown below in Figure 6.5.  
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Figure 6. 5: Activity model for proposed HCC solution design process showing the data acquisition, block diagram design, database design, and 
integration and testing & verification stages. IDEF0 standard is used for model development.
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 In HCC, the plant hierarchy is described in Layers, e.g. all process systems reside 

on Process Layer, all control systems reside on Control Layers, sensors and data loggers 

reside on Data Acquisition & Processing Layer, etc. Next, all Systems, Structures or 

Components (SSC) in HCC are categorized as Process Blocks, Control Blocks or Data 

Storage Blocks and their respective connections are classified as either Process (material 

or energy), Control (regulation) or Data (information) exchange lines. Therefore, the first 

step in the development process was to identify and categorize all SUI components and 

connections for the proposed new design.  

 
Figure 6. 6: Analysis of SUI System Components. 
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 Next, a stencil is developed for each object or connecting line in order to 

represent these components in GUI. HCC stencil represents a standardized library of 

plant components is identified along with the legend describing the blocks and lines 

naming and graphical conventions used throughout the HCC. A sample stencil is shown 

below in Figure 6.7: 

 

 

Figure 6. 7: HCC Legend describing the graphical and naming conventions and objects available in 
the stencils template. 
 

 Next, the plant hierarchy can be developed at any level, starting from the most 

general and can be further expanded to a component level. Through the integrated 

Knowledge DB, HCC will retain all information about the objects along with their 

connections and termination data and type of information exchange, e.g. material, sensor 

data, control instruction, etc.  
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Figure 6. 8: HCC Plant Overview Where All Plant Systems Are Categorized as Objects in Either 
Process or Control Layer. 
 
 

 This general view can be further expanded to the desired level of detail, as shown 

in Figure 6.9, where reactivity control block is shown in HCC. While the plant hierarchy 

is being defined and saved via GUI, all the information associated with HCC objects, e.g. 

name, model, process variables, etc. is automatically recorded along with the direction, 

termination points and type of information exchanged between the objects, e.g. flow, 

steam, control instruction or sensor data.  
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Figure 6. 9:  HCC user interface – reactivity control block, where SDS1 trip logic and components 
are shown along with power monitoring equipment and RRS software ties. 
 
 
 This view can be further expanded to incorporate SUI components for the 

proposed new SUI system design. The main function of the SUI system is to provide 

continuous accurate neutron monitoring capabilities during prolonged outages or when 

RRS Ion Chamber (IC) detectors are off-scale low. Thus, SUI system has no process or 

control function and will be identified at Data Acquisition and Processing Layer as 

shown below. 
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Figure 6. 10: HCC preliminary model for SUI Components. 
 
 

 It is important to note that HCC Graphical User Interface is integrated with the 

HCC Knowledge Database, where information for various components and connections 

is entered when a new graphical object is created and automatically stored. Process 

connections and termination points are also automatically recorded and can be 

interactively retrieved whenever required. A snapshot of HCC user interface and its 

capabilities is shown below. 
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Figure 6. 11: HCC user interface with some of the available capabilities. 



Once a plant hierarchy is established and all system and component related information is 

entered in the Knowledge DB, it can be converted in to FBD-style diagram, as shown in 

Figure 6.12 and the proposed activities could be mapped into control instructions using 

control recipes on the basis of IEC-61131-3 standard.  

 

 
Figure 6. 12 IEC 61131-3 reactivity device selection FBD diagram. 
 

 The proposed HCC approach is highly modular and  allows easy corrections, 

extensions, migration and data import/export on as needed basis for an easy integration 

and collaboration with the existing control systems already in use in Canada and 

worldwide, as well as providing the convenience of smooth and easy customization for 

proprietary software and applications. 
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6.4.3 Hierarchical Control Chart (HCC) Methodology Application for Nuclear Power 

Plants 

 The proposed Hierarchical Control Chart solution (HCC) is a new tool that can 

prove to be a useful aid at all stages of the NPP control system design, development and 

operation. Its interactive user interface combined with the integrated knowledge database 

provides control system designers, testers, troubleshooters or users with a single view of 

all elements and systems across a power plant with an accurate and fast information 

retrieval capabilities reducing the time spent on proofing and verification of the NPP 

control system paper-based or still CAD drawings, hence increasing the process 

efficiency and eliminating unnecessary grounds for human error.  

 The objective of the new proposed automated control chart and operations 

mapping solution is to aid the control room operators with an automated tool for 

equipment, process lines and operations mapping, which is offering a fast, intelligent and 

highly automated visual support for daily routine operations as well as a troubleshooting 

and fault diagnostic tool. Its standardized ISA S-95/S-88 [56] [57] interface enables 

interoperability of control systems in CANDU-based plants in Canada as well as with 

other members of international nuclear community at all levels of involvement of control 

system design, implementation, operation and troubleshooting.  

  

6.4.3.1 HCC Application for Control System Designers 

The importance of well-designed operator interfaces for reliable human 

performance and nuclear safety is widely acknowledged [58] [59]. The design of modern 

control systems starts with the analysis of control goals and control hierarchy, which 
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requires knowledge of all measured and control variables as well as determination of all 

of the components, processes and their relation. Should a control system designer chose 

to use the existing paper-based process and connection diagrams they will be faced with 

time-consuming engineering materials that cannot be easily translated into CAD 

software, often bear hand-made comments or remarks and  exhibit soiled, faded or worn-

out ink. Should they chose to use the existing plant simulators or graphical interfaces for 

the plant processes, they will be faced with multiple objects with bright contrasting colors 

as well as excessive labelling contributing to clatter on the user’s screen and providing 

highly specialized highly detailed level of information with the lack of distinction 

between process and control lines, making it hard for the user to trace the line’s origin 

and function [60]. In order to address these and other limitations, the proposed HCC 

solution could be employed among other tools to aid the control system designers.  

Figure 6. 13: A break-down of Control System Design process with HCC utilization at the data 
acquisition and solution design stages. 
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As shown in Figure 6.13, the proposed HCC solution could be used both at the data 

gathering stage as well as during the control system conceptual design period.  

 

6.4.3.2  HCC Application for Control System Developers 

Once the system has been designed and transferred to programming stage for 

implementation, to verify the system performance a control system programmer will 

often need to physically trace the line on the screen or paper diagram through a series of 

valves, pumps and tanks carefully paying attention to their status and functions. In 

modern nuclear power plants, software developers create logic ranging from something 

fairly simple, e.g. simulating current device conditions, to actuating safety alarms and 

reactor trip functions, which are vital to the plant safety and productivity. A minor 

mistake in a pipe or valve connection could be considered quite excusable for a control 

system programmer, most of whom are highly specialized IT experts or 

electric/electronic engineers, but could lead to absolutely devastating consequences for 

the power plant operation and public safety. This leads to enormous amount of time spent 

on verification and proofing of new control system at all stages of development prior to 

installation. The proposed HCC solution could be used to aid the control system 

developers and programmers during the implementation stage as well as for testing and 

verification purposes. 
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Figure 6. 14: Implementation stage of the control system development showing that the proposed 
HCC can be used to benefit the control system programmers as well as testers and troubleshooters. 
 
 
 
6.4.3.3  HCC Application for Control System Operators 

 
 Once the control system is complete and installed at a power plant, it is a common 

scenario, well described in literature [61], that quite often a process operator is faced with 

an emergency situation where the operator is overwhelmed by a huge amount of 

information that has to be processed at a very high speed in a limited time, which 

increases the operator workload and making it almost impossible to deal with the 

emergency [61].  

 This is even more crucial for the nuclear power plants, where the control room 

operators supervise and monitor all major plant systems and equipment, often mentally 

translating and interpreting information from multiple sources. Typically, control room 
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personnel comprise five or six operating crews working around the clock. Each crew 

spends part of their four, five or six week cycle rotating on each of the shifts - days, 

afternoons, and nights lasting up to 12 hours.  This system has proven itself to be very 

successful in CANDU-based power plants, however, it is highly dependent on the 

knowledge and expertise of the control room operators who have to be carefully selected 

and spend approximately eight years in training. Even though increased advancements in 

evolution of digital technology and process automation have lead to the replacement of 

operating panels with dedicated instruments by general-purpose workstations, time 

required for analysis of operating events with potential fault propagation scenarios and 

consequences across the power plant domain still remains the leading cause of the loss of 

plant production and operational availability.  Long working hours as well as the effects 

of concentrated mental work (including prolonged visual work) can cause the excessive 

fatigue and reduce the operators’ ability to maintain awareness of equipment location and 

the process relations across the plant, leading to the obvious implications for workplace 

and public safety. Field studies [59] showed that in a scenario where the plant procedures 

are written on paper, the operators have to browse the paper procedures volumes 

continually, going from general diagnostic flow charts to the detailed manual actions and 

procedure check-lists and vice-versa, which consumes valuable time during emergency 

situations, as well as routine fluctuations. Considering the complexity of modern nuclear 

power plants, the amount of time spent on retrieving and filtering paper-based 

information by plant operators increased up to a point where it became a factor in 

hindering operators’ performance and creating additional grounds for operation errors. 

Operational experience worldwide has demonstrated that the accuracy, completeness and 
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efficiency with which work is performed in the plant control centre is a key enabling 

factor in attaining effective plant operation. [62]. The proposed automated HCC control 

chart solution is a highly automated, visually-enhanced system that provides nuclear 

power plant operators with a single view of all elements and systems across the power 

plant domain.  
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CHAPTER 7: SUMMARY AND CONCLUSIONS 

 
7.1  Summary and Conclusions 

 
 
 Gas-filled detectors, such as BF3 and 3He, for Start-Up Instrumentation in 

domestic CANDU reactors have been the primary means of monitoring neutron activity 

at low power to provide sufficient neutron overpower protection during unit shutdowns 

for routine maintenance.  

 However, several inherent disadvantages of gas-filled detectors have been well-

known since the early day of CANDU program and several efforts have been made to 

provide a solution to address this issue. Originally SUI systems in domestic CANDU 

power plants, such as Bruce A were designed to be permanently installed in the vault to 

provide immediate core monitoring activities following a shutdown and subsequent start-

ups. Since no progress was made to overcome rapid detector degradation in high gamma 

fields, SUI implementation was re-visited and a portable, temporary solution was 

adopted. Original SUI guide tubes and view ports were removed and a complex, multi-

step process of positioning, re-positioning and removal of detectors from service was 

developed and refined over the years. Presently, following prolonged unit outages it is 

often necessary to use two different types of detectors, namely BF3 and 3He at various 

stages of reactor power decay and inversely during moderator poison pull and approach 

to critical.  

 Although this method helped prolong the detectors’ useful life, it resulted in 

significant additional time and labour costs, with a solid history of plant upsets, spurious 
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trips, equipment misplacement, noisy signals, losses of critical path time and additional 

REM-dose to the plant personnel.   

 In the view of upcoming Bruce A Unit 3 and Unit 4 refurbishment project, it is 

quite likely that the neutron flux in the reactors in question might decay to low and very 

low levels, potentially down to 10-14 decades. It is expected that monitoring reactor 

powers after such an extensive shutdown with potential de-fuelling of some or all 

channels might present significant challenges for the ageing BF3 and 3He detectors and 

worn out SUI cables and connectors. Once the reactors are fuelled with fresh un-

irradiated fuel the approach to criticality process will require especially accurate 

instrumentation readings and timely response.  

 Features and characteristics of several neutron detectors based on fission 

chambers technology that are available on the market, such as Mirion Technologies/IST, 

Thermo Scientific and Photonis, were analyzed in addition to the conventional BF3 and 

3He detectors presently used at Bruce Power. Their main key features have been analyzed 

and compared and a selection was made in favour of Photonis CFUF-43 fission chambers 

as the most suitable alternative to the ageing and obsolescent SUI gas-filled detectors at 

Bruce A. 

 Also, a proposal for permanently installed SUI instrumentation system based on 

the new fission-chamber technology was made, as opposed to the existing temporary SUI 

installation approach, in an attempt to eliminate the challenges and hurdles incurred by 

the Bruce A maintenance personnel during every outage due to time, effort and radiation 

dose involved in temporary SUI installations. Additionally, new SUI data logging and 

archiving capabilities were proposed to provide SUI engineers and control room 



 160

personnel with the options of computerized data analysis and trending as well as 

electronic SUI data storage facility.  

 Also, a clear need for a formal approach to installation/replacement procedure and 

project optimization was identified and several suggestions were made in order to address 

this limitations, e.g. using formal language and Meta-operations approach for procedure 

verification and risk-based analysis for optimization and minimization of risk, cost and 

time factors.  

 Finally, a new Hierarchical Control Chart Methodology (HCC) was shown as a 

new interactive tool that can be used for system designers, engineers and operators for 

future system troubleshooting and maintenance tasks.  

 

7.2  Recommendations 

 The framework for SUI procedure development and optimization presented in this 

thesis can be further expanded to include development of Post-Accident Monitoring 

capabilities for Bruce Power units using the proposed framework for new generation SUI 

system as currently the stations do not posses this capability.   

 Additionally, the framework for installation of fission chambers shown in this 

thesis could be further developed to provide a solution for Prompt Fraction Test 

Requirements for Bruce Power Neutron Overpower (NOP) system. Currently several 

NOP detectors at both Bruce A and Bruce B stations are trending down and showing 

accelerated degradation and burnout. With new fission chambers technology in place a 

new methodology can be developed to address this limitation using a systematic 

structured approach as discussed in this research. 
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7.3  Future Work  

 Upgrading the existing Bruce Power SUI instrumentation with fission chamber 

detectors permanently placed in service will be able to provide neutron over-power 

coverage throughout the units’ refurbishment project well into the future of the station, as 

well as a long-term reliability and significant economical benefits.  

 However, given the complexity of the project and the important nature of the 

special safety systems further detailed technical feasibility studies involving reactor 

component designers, nuclear safety assessment experts, DCC computer design group 

and manufacturer’s product line specialists will be required to finalize this proposal in 

terms of financial investment, time and labour costs that will be incurred. As this work 

expands and matures, it is expected to develop into a sustainable approach for ongoing 

improvement to all critical and safety system refurbishment projects. 
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APPENDIX A: MODERN NUCLEAR POWER PLANTS WHERE 

PHOTONIS FISSION CHAMBERS ARE USED  

AREVA (PWR) 900 MW(e) EDF reactors, France 
Detectors: 2 CPNB44P and 5 CFUF43P per block 
 
• Bugey 4 blocks 
• Fessenheim 2 blocks 
• Dampierre 4 blocks 
• Gravelines 6 blocks 
• St Laurent 2 blocks 
• Chinon 4 blocks 
• Le Blayais 4 blocks 
• Cruas 4 blocks 
• Tricastin 4 blocks 
 

AREVA (PWR) 1300 MW(e) EDF reactors, France 
Detectors: 4 CPNB44P and 6 CFUF43P per block 
 
• Cattenom 4 blocks 
• Nogent 2 blocks 
• Penly 2 blocks 
• Paluel 4 blocks 
• Flamanville 2 blocks 
• Belleville 2 blocks 
• St Alban 2 blocks 
• Golfech 2 blocks 
 

AREVA (PWR) 1450 MW(e) EDF reactors, France 
Detectors: 4 CPNB44P and 6 CFUF43P per block 
 
• Chooz 2 blocks 
• Civaux 2 blocks 
 

AREVA (PWR) 900 MW(e), Belgium 
Detectors: 2 CPNB44P and 5 CFUF43P per block 
 
• Doel 1 block 
• Tihange 2 blocks 
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AREVA (PWR) 900 MW(e), Republic of China 
Detectors: 2 CPNB44P and 5 CFUF43P per block 
 
• Daya Bay 2 blocks 
• Ling Ao 2 blocks 
• Quinshan 3 blocks 
• Tianwan 2 blocks 
 

AREVA (PWR) 900 MW(e), South Africa 
Detectors: 2 CPNB44P and 5 CFUF43P per block 
 
• Koeberg 2 blocks 
 

AREVA (PWR) 900 MW(e), South Korea 
Detectors: 2 CPNB44P and 5 CFUF43P per block 

• Ulchin 2 blocks 
 

WESTINGHOUSE (PWR) 360 MW(e), Switzerland 
Start-up and intermediate range Detectors: CFUG08 
 
• Beznau 1 4 detectors 
• Beznau 2 4 detectors 
 

ABB-Atom (BWR) 
Start-up and intermediate range Detectors: CFUE32S 
 
• Forsmark 3 Sweden 8 detectors 
• Oskarshamn 3 Sweden 8 detectors 
• Barsebäck 1 Sweden 4 detectors 
• Oskarshamn 1 Sweden 4 detectors 
• Barsebäck 2 Sweden 4 detectors 
• Oskarshamn 2 Sweden 4 detectors 
• Olkiluoto 1 Finland 8 detectors 
• Olkiluoto 2 Finland 8 detectors 
 

VVER (PWR) 410 MW(e), Czech Republic 
Start-up and intermediate range Detectors: CPNB44K 
 
• Dukovany 6 detectors 
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VVER (PWR) 440 MW(e) 
Start-up and intermediate range Detectors: CFUL08, CPNB44 
 
• Bohunice 1,2,3,4 Slovakia 26 detectors 
• Paks 1 Hungary 3 detectors 
 

VVER (PWR) 440 MW(e), Bulgaria 
Start-up range - safety instrumentation Detectors: CPNB44K 
 
• Kozloduy 1 6 detectors 
• Kozloduy 2 6 detectors 
 

VVER (PWR) 950 MW(e), Ukraine 
Start-up and intermediate range Detectors: CFUL08 
 
• Khmelnitski 8 detectors 
• Rovno 8 detectors 
• Zaporozhe 24 detectors 
 

BREEDERS, France 
Detectors: Numerous R&D fission chambers 
 
• Marcoule PHENIX 
• Greys-Malville SUPERPHENIX 
 

AREVA FUEL REPROCESSING PLANTS 
Detectors: Numerous fission chambers 
 
• Marcoule France 
• La Hague France 
• Rokkasho Japan 
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APPENDIX B: LIST OF CANADIAN STANDARDS AND 

COMPLIANCE REGULATIONS FOR ELECTRICAL, 

ELECTRONIC AND I&C EQUIPMENT 

Canadian Standards Association; Quality Program - Category 3, CSA Z299.3. 

Canadian Standards Association; CSA 22.2 NO142 - Process Control Equipment 
Industrial Products-General Instruction No 1-5. 

Institute for Interconnecting and Packing Electrical Circuits; IPC-A-600 - Acceptability 
of Printed Circuit Boards. 

Institute for Interconnecting and Packing Electrical Circuits; IPC-A-610 - Acceptability 
of Printed Board Assemblies. 

Institute for Interconnecting and Packing Electrical Circuits; IPC-A-770 - PC Component 
Mounting. 

Institute for Interconnecting and Packing Electrical Circuits; J-STD-001 - Requirements 
for Soldering Electrical and Electronic Assemblies. 

CSA CAN3-N289.4; Testing Procedures for Seismic Qualification of CANDU Nuclear 
Power Plants. 

MIL-STD-756B, N1, Reliability Modeling and Prediction, 31 August 1982. 

MIL-STD-785B, Reliability Program for Systems and Equipment Development and 
Production, 15 September 1980. 

MIL-HDBK-217F(N1/2), Reliability Prediction of Electronic Equipment, 10 July 
1992/28 February 1995. 

TR-332, Issue 6, Technical Reference, Bellcore Method 1, "Reliability Prediction 
Procedure for Electronic Equipment (A Module of RQGR, FR-796)," December 1997. 

Underwriters Laboratories; UL94 - Test for Flammability of Plastic Materials. 

American National Standards Institute; ANSI C83.86 Criteria for Inspection for 
Highly Reliable Soldered Connections in Electronic and Electrical Applications. 

IEC 61000-4-3, Electromagnetic compatibility (EMC) - Part 4-3:  Testing and 
measurement techniques - Radiated, radio-frequency, electromagnetic field immunity 
test-Second Edition. 
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IEC-61000-4-4, Electromagnetic compatibility (EMC) - Part 4-4:  Testing and 
measurement techniques - Electrical fast transient/burst immunity test-Second Edition. 
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