3,997 research outputs found

    A Comparative Analysis of Phytovolume Estimation Methods Based on UAV-Photogrammetry and Multispectral Imagery in a Mediterranean Forest

    Get PDF
    Management and control operations are crucial for preventing forest fires, especially in Mediterranean forest areas with dry climatic periods. One of them is prescribed fires, in which the biomass fuel present in the controlled plot area must be accurately estimated. The most used methods for estimating biomass are time-consuming and demand too much manpower. Unmanned aerial vehicles (UAVs) carrying multispectral sensors can be used to carry out accurate indirect measurements of terrain and vegetation morphology and their radiometric characteristics. Based on the UAV-photogrammetric project products, four estimators of phytovolume were compared in a Mediterranean forest area, all obtained using the difference between a digital surface model (DSM) and a digital terrain model (DTM). The DSM was derived from a UAV-photogrammetric project based on the structure from a motion algorithm. Four different methods for obtaining a DTM were used based on an unclassified dense point cloud produced through a UAV-photogrammetric project (FFU), an unsupervised classified dense point cloud (FFC), a multispectral vegetation index (FMI), and a cloth simulation filter (FCS). Qualitative and quantitative comparisons determined the ability of the phytovolume estimators for vegetation detection and occupied volume. The results show that there are no significant differences in surface vegetation detection between all the pairwise possible comparisons of the four estimators at a 95% confidence level, but FMI presented the best kappa value (0.678) in an error matrix analysis with reference data obtained from photointerpretation and supervised classification. Concerning the accuracy of phytovolume estimation, only FFU and FFC presented differences higher than two standard deviations in a pairwise comparison, and FMI presented the best RMSE (12.3 m) when the estimators were compared to 768 observed data points grouped in four 500 m2 sample plots. The FMI was the best phytovolume estimator of the four compared for low vegetation height in a Mediterranean forest. The use of FMI based on UAV data provides accurate phytovolume estimations that can be applied on several environment management activities, including wildfire prevention. Multitemporal phytovolume estimations based on FMI could help to model the forest resources evolution in a very realistic way

    Biomass Representation in Synthetic Aperture Radar Interferometry Data Sets

    Get PDF
    This work makes an attempt to explain the origin, features and potential applications of the elevation bias of the synthetic aperture radar interferometry (InSAR) datasets over areas covered by vegetation. The rapid development of radar-based remote sensing methods, such as synthetic aperture radar (SAR) and InSAR, has provided an alternative to the photogrammetry and LiDAR for determining the third dimension of topographic surfaces. The InSAR method has proved to be so effective and productive that it allowed, within eleven days of the space shuttle mission, for acquisition of data to develop a three-dimensional model of almost the entire land surface of our planet. This mission is known as the Shuttle Radar Topography Mission (SRTM). Scientists across the geosciences were able to access the great benefits of uniformity, high resolution and the most precise digital elevation model (DEM) of the Earth like never before for their a wide variety of scientific and practical inquiries. Unfortunately, InSAR elevations misrepresent the surface of the Earth in places where there is substantial vegetation cover. This is a systematic error of unknown, yet limited (by the vertical extension of vegetation) magnitude. Up to now, only a limited number of attempts to model this error source have been made. However, none offer a robust remedy, but rather partial or case-based solutions. More work in this area of research is needed as the number of airborne and space-based InSAR elevation models has been steadily increasing over the last few years, despite strong competition from LiDAR and optical methods. From another perspective, however, this elevation bias, termed here as the “biomass impenetrability”, creates a great opportunity to learn about the biomass. This may be achieved due to the fact that the impenetrability can be considered a collective response to a few factors originating in 3D space that encompass the outermost boundaries of vegetation. The biomass, presence in InSAR datasets or simply the biomass impenetrability, is the focus of this research. The report, presented in a sequence of sections, gradually introduces terminology, physical and mathematical fundamentals commonly used in describing the propagation of electromagnetic waves, including the Maxwell equations. The synthetic aperture radar (SAR) and InSAR as active remote sensing methods are summarised. In subsequent steps, the major InSAR data sources and data acquisition systems, past and present, are outlined. Various examples of the InSAR datasets, including the SRTM C- and X-band elevation products and INTERMAP Inc. IFSAR digital terrain/surface models (DTM/DSM), representing diverse test sites in the world are used to demonstrate the presence and/or magnitude of the biomass impenetrability in the context of different types of vegetation – usually forest. Also, results of investigations carried out by selected researchers on the elevation bias in InSAR datasets and their attempts at mathematical modelling are reviewed. In recent years, a few researchers have suggested that the magnitude of the biomass impenetrability is linked to gaps in the vegetation cover. Based on these hints, a mathematical model of the tree and the forest has been developed. Three types of gaps were identified; gaps in the landscape-scale forest areas (Type 1), e.g. forest fire scares and logging areas; a gap between three trees forming a triangle (Type 2), e.g. depending on the shape of tree crowns; and gaps within a tree itself (Type 3). Experiments have demonstrated that Type 1 gaps follow the power-law density distribution function. One of the most useful features of the power-law distributed phenomena is their scale-independent property. This property was also used to model Type 3 gaps (within the tree crown) by assuming that these gaps follow the same distribution as the Type 1 gaps. A hypothesis was formulated regarding the penetration depth of the radar waves within the canopy. It claims that the depth of penetration is simply related to the quantisation level of the radar backscattered signal. A higher level of bits per pixels allows for capturing weaker signals arriving from the lower levels of the tree crown. Assuming certain generic and simplified shapes of tree crowns including cone, paraboloid, sphere and spherical cap, it was possible to model analytically Type 2 gaps. The Monte Carlo simulation method was used to investigate relationships between the impenetrability and various configurations of a modelled forest. One of the most important findings is that impenetrability is largely explainable by the gaps between trees. A much less important role is played by the penetrability into the crown cover. Another important finding is that the impenetrability strongly correlates with the vegetation density. Using this feature, a method for vegetation density mapping called the mean maximum impenetrability (MMI) method is proposed. Unlike the traditional methods of forest inventories, the MMI method allows for a much more realistic inventory of vegetation cover, because it is able to capture an in situ or current situation on the ground, but not for areas that are nominally classified as a “forest-to-be”. The MMI method also allows for the mapping of landscape variation in the forest or vegetation density, which is a novel and exciting feature of the new 3D remote sensing (3DRS) technique. Besides the inventory-type applications, the MMI method can be used as a forest change detection method. For maximum effectiveness of the MMI method, an object-based change detection approach is preferred. A minimum requirement for the MMI method is a time-lapsed reference dataset in the form, for example, of an existing forest map of the area of interest, or a vegetation density map prepared using InSAR datasets. Preliminary tests aimed at finding a degree of correlation between the impenetrability and other types of passive and active remote sensing data sources, including TerraSAR-X, NDVI and PALSAR, proved that the method most sensitive to vegetation density was the Japanese PALSAR - L-band SAR system. Unfortunately, PALSAR backscattered signals become very noisy for impenetrability below 15 m. This means that PALSAR has severe limitations for low loadings of the biomass per unit area. The proposed applications of the InSAR data will remain indispensable wherever cloud cover obscures the sky in a persistent manner, which makes suitable optical data acquisition extremely time-consuming or nearly impossible. A limitation of the MMI method is due to the fact that the impenetrability is calculated using a reference DTM, which must be available beforehand. In many countries around the world, appropriate quality DTMs are still unavailable. A possible solution to this obstacle is to use a DEM that was derived using P-band InSAR elevations or LiDAR. It must be noted, however, that in many cases, two InSAR datasets separated by time of the same area are sufficient for forest change detection or similar applications

    Innovations in ground and airborne technologies as reference and for training and validation : terrestrial laser scanning (TLS)

    Get PDF
    The use of terrestrial laser scanning (TLS) to provide accurate estimates of 3D forest canopy structure and above-ground biomass (AGB) has developed rapidly. Here, we provide an overview of the state of the art in using TLS for estimating forest structure for AGB. We provide a general overview of TLS methods and then outline the advantages and limitations of TLS for estimating AGB. We discuss the specific type of measurements that TLS can provide, tools and methods that have been developed for turning TLS point clouds into quantifiable metrics of tree size and volume, as well as some of the challenges to improving these measurements. We discuss the role of TLS for enabling accurate calibration and validation (cal/val) of Earth observation (EO)-derived estimates of AGB from spaceborne lidar and RADAR missions. We give examples of the types of TLS equipment that are in use and how these might develop in future, and we show examples of where TLS has already been applied to measuring AGB in the tropics in particular. Comparing TLS with harvested AGB shows r(2)>0.95 for all studies thus far, with absolute agreement to within 10% at the individual tree level for all trees and to within 2% in the majority of cases. Current limitations to the uptake of TLS include the capital cost of some TLS equipment, processing complexity and the relatively small coverage that is possible. We argue that combining TLS measurements with the existing ground-based survey approaches will allow improved allometric models and better cal/val, resulting in improved regional and global estimates of AGB from space, with better-characterised, lower uncertainties. The development of new, improved equipment and methods will accelerate this process and make TLS more accessible

    Estimation of 3D vegetation structure from waveform and discrete return airborne laser scanning data

    Get PDF
    This study presents and compares new methods to describe the 3D canopy structure with Airborne Laser Scanning (ALS) waveform data as well as ALS point data. The ALS waveform data were analyzed in three different ways; by summing the intensity of the waveforms in height intervals (a); by first normalizing the waveforms with an algorithm based on Beer-Lambert law to compensate for the shielding effect of higher vegetation layers on reflection from lower layers and then summing the intensity (b); and by deriving points from the waveforms (c). As a comparison, conventional, discrete return ALS point data from the laser scanning system were also analyzed (d). The study area was located in hemi-boreal, spruce dominated forest in the southwest of Sweden (Lat. 58° N, Long. 13° E). The vegetation volume profile was defined as the volume of all tree crowns and shrubs in 1 dm height intervals in a field plot and the total vegetation volume as the sum of the vegetation volume profile in the field plot. The total vegetation volume was estimated for 68 field plots with 12 m radius from the proportion between the amount of ALS reflections from the vegetation and the total amount of ALS reflections based on Beer-Lambert law. ALS profiles were derived from the distribution of the ALS data above the ground in 1 dm height intervals. The ALS profiles were rescaled using the estimated total vegetation volume to derive the amount of vegetation at different heights above the ground. The root mean square error (RMSE) for cross validated regression estimates of the total vegetation volume was 31.9% for ALS waveform data (a), 27.6% for normalized waveform data (b), 29.1% for point data derived from the ALS waveforms (c), and 36.5% for ALS point data from the laser scanning system (d). The correspondence between the estimated vegetation volume profiles was also best for the normalized waveform data and the point data derived from the ALS waveforms and worst for ALS point data from the laser scanning system as demonstrated by the Reynolds error index. The results suggest that ALS waveform data describe the volumetric aspects of vertical vegetation structure somewhat more accurately than ALS point data from the laser scanning system and that compensation for the shielding effect of higher vegetation layers is useful. The new methods for estimation of vegetation volume profiles from ALS data could be used in the future to derive 3D models of the vegetation structure in large areas
    • 

    corecore