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Abstract
The use of terrestrial laser scanning (TLS) to provide accurate estimates of 3D forest can-
opy structure and above-ground biomass (AGB) has developed rapidly. Here, we provide 
an overview of the state of the art in using TLS for estimating forest structure for AGB. We 
provide a general overview of TLS methods and then outline the advantages and limita-
tions of TLS for estimating AGB. We discuss the specific type of measurements that TLS 
can provide, tools and methods that have been developed for turning TLS point clouds into 
quantifiable metrics of tree size and volume, as well as some of the challenges to improv-
ing these measurements. We discuss the role of TLS for enabling accurate calibration and 
validation (cal/val) of Earth observation (EO)-derived estimates of AGB from spaceborne 
lidar and RADAR missions. We give examples of the types of TLS equipment that are 
in use and how these might develop in future, and we show examples of where TLS has 
already been applied to measuring AGB in the tropics in particular. Comparing TLS with 
harvested AGB shows r2 > 0.95 for all studies thus far, with absolute agreement to within 
10% at the individual tree level for all trees and to within 2% in the majority of cases. Cur-
rent limitations to the uptake of TLS include the capital cost of some TLS equipment, pro-
cessing complexity and the relatively small coverage that is possible. We argue that com-
bining TLS measurements with the existing ground-based survey approaches will allow 
improved allometric models and better cal/val, resulting in improved regional and global 
estimates of AGB from space, with better-characterised, lower uncertainties. The develop-
ment of new, improved equipment and methods will accelerate this process and make TLS 
more accessible.
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1 Introduction

Terrestrial laser scanning (TLS) is a relatively new technology, developed since the early 
2000s for surveying applications, i.e. for measuring very precise distances and angles. 
TLS works by using laser pulses to measure distance and 3D (x, y, z) location to within 
mm potentially over hundreds of metres. TLS has largely been developed in its current 
form by commercial instrument developers such as RIEGL (http://www.riegl .com/), Leica 
Geosystems (https ://leica -geosy stems .com/en-gb), Faro (https ://www.faro.com/), Zoller 
and Fröhlich (https ://www.zf-laser .com/Home.91.0.html?&L=1) and others. The utility of 
TLS for measuring tree properties was explored in the early 1990s by the forestry commu-
nity, particularly for providing new ways to measure properties already measured for for-
est surveying. These include tree height, diameter-at-breast-height (DBH), crown size and 
basal area. However, while TLS has proved useful for these applications (Hopkinson et al. 
2004; Calders et  al. 2015; Newnham et  al. 2015), it is the potential to provide cm and 
even mm-accurate 3D structural detail (albeit at the individual branch, rather than plot 
scale), particularly for estimating 3D full-tree volume, and from this above-ground bio-
mass (AGB), that has seen a rapid increase in interest in TLS for measurement of AGB. 
There is particular interest in how these measurements can be used in support of space-
borne Earth observation (EO) estimates of AGB, from new laser and RADAR missions, 
particularly via calibration and validation. The capability of TLS has also been extended 
to the spectral domain, via research-led development of multi- and even hyperspectral 
lidar instruments (Danson et al. 2014; Hakala et al. 2012; Douglas et al. 2015). Figure 1 
shows an example of the 3D information provided by TLS, in this case TLS point clouds 
from deciduous broadleaf woodland in the UK (Calders et al. 2018) and tropical forests in 
Brazil and Gabon (Burt 2017).

The importance of AGB and forest structure more generally has driven the develop-
ment of spaceborne EO missions targeting these properties (GCOS 2010). Estimating 
AGB accurately and consistently on regional to global scales is critical for reducing cur-
rent uncertainties in carbon stocks and deforestation fluxes, which differ in magnitude but 
also location (Saatchi et al. 2011; Harris et al. 2012; Baccini et al. 2012;). Some of these 
uncertainties arise from observation and methodological differences (Avitabile et al. 2016) 
as well as in assumptions of wood density � (Mitchard et al. 2013, 2014), but there is also 
considerable uncertainty in the upscaling of spatial estimates and magnitude as well. New 
EO missions can reduce these uncertainties, but to fulfil their mission requirements in 
terms of both accuracy and precision will depend on accurate and independent ground-
based estimates of AGB to calibrate EO retrieval methods and validate the resulting prod-
ucts. The difficulty of measuring AGB manually via forestry methods means that it is chal-
lenging to obtain validation data; TLS is one way to address this gap (Stovall and Shugart 
2018). The Committee on Earth Observation Satellites (CEOS) has identified TLS as a key 

Fig. 1  Point clouds from three contrasting forests (all collected using a Riegl VZ-400 TLS) and detail 
of a single tree and branch. In the plot cases, 1 ha is shown either oblique or in elevation and the point 
clouds of individual trees are shown in different colours. Top row: from Calders et al. (2018), a 1 ha sec-
tion of deciduous woodland, Wytham Woods, UK, containing 559 trees (232 with diameter-at-breast-
height (DBH) > 0.2  m); second row: moist tropical forest at Caxiuanã, Brazil, showing 151 trees with 
DBH > 0.2 m; third row: moist tropical forest at Lopé, Gabon, with 107 trees of DBH > 0.2 m; bottom row, 
left panel: single tree from Caxiuanã (H = 30 m, DBH = 0.65 m); bottom row, right panel: ~ 1.5 m section of 
left-most branch, showing resolution of branches of < 4 cm diameter. These trees are the result of process-
ing the raw plot TLS data to extract only the points for each tree, to remove all other points, i.e. understory 
and trees with DBH < 0.2 m and to remove any topographic variations

▸

http://www.riegl.com/
https://leica-geosystems.com/en-gb
https://www.faro.com/
https://www.zf-laser.com/Home.91.0.html%3f%26L%3d1
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approach to providing accurate calibration and validation data for EO-derived AGB (CEOS 
LPV WGCV Biomass 2019). Here, we summarise developments in TLS for AGB estima-
tion in support of EO retrievals.

2  Above‑Ground Biomass (AGB)

Estimating above- and belowground (root) biomass of a tree directly requires careful har-
vesting and weighing. This is destructive and difficult, particularly for anything other than 
‘small’ trees, e.g., trees with diameter-at-breast-height DBH < 30 cm and height, H < 30 m. 
As such, destructive harvesting is done infrequently, tends to focus on smaller trees in more 
easily accessible areas, and of course precludes repeat measurements to capture dynamics. 
And yet spatial estimates of AGB are almost entirely based on extrapolating the masses 
of these harvested trees, using empirical size-to-mass allometric scaling equations (ASEs) 
(Baskerville 1972; Brown and Lugo 1984; Chave et al. 2005). The wide use of ASEs is a 
consequence of their reliance on only simple, rapid measurements, as well as being the 
only way we have to extrapolate estimates of AGB spatially. ASEs typically take the form 
AGB = a

(

D2H�

)b , where D and H are DBH and height, respectively, � is the wood den-
sity (g/cm3), and a, b are empirically derived constants (Feldpausch et  al. 2010; Chave 
et al. 2014). This ASE approach broadly represents a tree as a tapered cylindrical volume. 
Coefficients a, b can be derived via destructive sampling, and assuming a density � , AGB 
can then be estimated. However, the purely empirical nature of the ASE approach means 
a wide range of slightly different model forms and parameters have been developed, for 
site- and species-specific or more general regional versions, with often little to distinguish 
them in terms of suitability, particularly for upscaling (Ahmed et  al. 2013). Further, the 
small sample of destructive harvests on which ASEs are based means that uncertainties 
in upscaled AGB is potentially large and hard to quantify (Ketterings et al. 2001; Sileshi 
2014; Duncanson et al. 2015). As an example, the most comprehensive pan-tropical ASE 
yet developed is that of Chave et al. (2014) which contains around 4000 destructively har-
vested trees, only around 10% of which have DBH > 70 cm and/or height, H > 30 m. To 
estimate pan-tropical AGB, this sample is extrapolated across the hyperdiverse tropics (Ter 
Steege et al. 2013), containing an estimated 1.4 tn (1.4 × 1012) trees of 46,500 species (Pan 
et al. 2011; Lewis et al. 2013; Crowther et al. 2015; Slik et al. 2015). Other ASEs con-
tain far fewer samples, typically a few dozen in the case of most locally calibrated models 
(Stovall et al. 2018).

3  Uncertainty

Uncertainty is used here to mean the mismatch between an estimate of AGB and the true 
but unknown value, and can be described by a probability density function (PDF) charac-
terising the range and likelihood of possible values (IPCC 2006). Uncertainty in AGB esti-
mates arises from various sources (Chave et al. 2004; Réjou-Méchain et al. 2017). Firstly, 
the form and appropriateness of ASE will impact resulting AGB estimates (Molto et  al. 
2013; Burt et al. 2018). The fundamental ability (or otherwise) of a simple regression equa-
tion to represent tree volume and hence AGB, across regions and biomes, is limited. Esti-
mating uncertainty due to model form is also hard in the face of small samples of destruc-
tively harvested and weighed trees, particularly as these are potentially biased to smaller 
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trees (Ahmed et al. 2013; Sheil et al. 2016; Burt et al. 2018). Lutz et al. (2018) show that 
across a wide range of forests, the largest 1% of all trees with DBH > 1 cm comprise 50% 
of total live tree AGB overall, with trees of D ≥ 0.6 m comprising 41% of total AGB. This 
disproportionate partitioning of AGB in large trees leads to potentially large uncertainties 
in AGB derived from ASEs with few large trees. This is further compounded by the fact 
that bigger trees have fundamentally greater variance in AGB (Mascaro et al. 2011; Clark 
and Kellner 2012). As a result, uncertainty in ASE-derived AGB grows rapidly with DBH.

Wood density, �, is another major source of uncertainty in estimating AGB using allom-
etry (Niklas 1993; Chave et al. 2006; Swenson and Enquist 2007; Mitchard et al. 2013). 
The choice of � is what translates the ASE-derived volume to mass, but � is highly variable 
within individual trees radially and with height, let alone within and between species and 
across regions (Chave et al. 2006; Swenson and Enquist 2007). Databases of wood density 
do exist, but are still limited given the diversity observed in practice (Chave et al. 2009; 
Zanne et al. 2009; Momo et al. 2018).

A further fundamental issue is that all estimates other than destructive harvests are indi-
rect, leading to the so-called fallacy of misplaced concreteness, i.e. indirect estimates of 
AGB are not measurements (Clark and Kellner 2012; Sileshi 2014). The problem is that if 
ground-based estimates of AGB, derived from plot-scale DBH measurements upscaled via 
ASEs, are used to ‘validate’ EO-derived estimates of AGB based on H to DBH ASEs, then 
the resulting spatial estimates (regional, pan-tropical, etc.) will have these uncertainties 
potentially exacerbated due to the upscaling process (Hill et al. 2013; Sileshi 2014). This 
leads to potentially unknown uncertainties as well as inconsistencies in comparing AGB 
estimates derived from different data and using different upscaling methods (Mitchard 
et al. 2013; Hill et al. 2013).

These issues of heteroscedasticity, i.e. growing variance with tree size, choice of ASE 
form, small sample size and variability within-species variability across locations and stud-
ies, are illustrated clearly in Fig. 2.

Fig. 2  From Ahmed et al. (2013). An illustration of the variation in estimated AGB values from different 
ASEs in Ter-Mikaelian and Korzukin (1997) for two deciduous broadleaf species: red maple (Acer rubrum) 
and paper birch (Betula papyrifera). The estimated biomass is plotted against dbh, the diameter-at-breast-
height of the trees. The shaded region represents an estimate of what Ahmed et al. (2013) term σs, the site 
error in estimated AGB introduced by using ASE model coefficients developed at a different site (estimated 
via bootstrapping). The growth in uncertainty with D is clearly apparent, even for these relatively small 
trees
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The most comprehensive attempts to assess the uncertainty of stand-scale AGB derived 
from ASEs suggest an uncertainty of around 10%, with potential variation between 5 and 
23% (Chave et al. 2004; Réjou-Méchain et al. 2017) arising from plot-level structural vari-
ations. These estimates are based on analysis of the statistical properties of the underly-
ing data and models but are potentially conservative in assumptions of measurement error 
distributions (normally distributed) and the ability of simple ASE models to capture large-
scale ecological variations in tree form (Burt 2017; Burt et al. 2018). The uncertainty in 
AGB at the plot level is less than at the individual tree level, due to the impact of meas-
urement errors reducing with increasing sample size. This plot-scale uncertainty, however, 
may be less important than the potential issues of bias and heteroscedasticity as outlined 
above, particularly for larger trees.

These issues mean that in developing accurate EO-derived estimates of AGB with real-
istic uncertainty, care must be taken to develop appropriate ASEs spanning the full range 
of biomass likely to be observed, with uncertainty due to ASE form, wood density and 
upscaling, quantified as far as possible (Ahmed et  al. 2013; Hill et  al. 2013). Terrestrial 
laser scanning (TLS) has the capability to address many of these problems, by providing 
tree- and plot-level AGB estimates which are independent of allometry, unbiased in terms 
of tree size distributions and with well-quantified uncertainty (Burt 2017; Stovall and Shu-
gart 2018). TLS estimates collected widely and reliably can reduce current uncertainties 
in terrestrial C stocks, enable improved calibration and validation of AGB products, par-
ticularly from EO, and form the basis of improved allometric models. Here, we describe 
key developments in the use of TLS to estimate AGB, present analysis of uncertainties that 
should be addressed, and highlight challenges that remain.

4  TLS for AGB Applications

Terrestrial laser scanning has developed significantly over the last decade in terms of its 
ability to deliver highly detailed 3D structural measurements. This has been due in part to 
the development of robust new sensors and systems at prices that, while still high (approxi-
mately few $10 s to ~ $100 K), are becoming more affordable for researchers both in real 
terms, and as their benefits become more apparent. This in turn has led to the development 
of tools and methods to exploit the resulting point cloud data for ecological applications 
(Calders et al. 2015; Wilkes et al. 2017; Disney et al. 2018; Disney 2018). This has allowed 
the use of TLS to move from generalised structural metrics of tree size and shape such as 
height, DBH, crown size and volume (considered as an enclosing envelope), trunk size 
and shape, to full reconstruction of 3D tree architecture down to higher order branches, 
comprising the majority of tree woody biomass. This has been critical to the use of TLS 
for AGB applications: if full-tree volume can be reliably and near-automatically recon-
structed, then estimating AGB is simply a case of multiplying by wood density, � . Perhaps 
even more importantly, given that ASEs represent the woody volume of trees, compari-
son between ASEs and TLS measurements can be made at the volume level, allowing the 
impact of uncertainty due to � to be considered separately from ASE model uncertainty. 
Reliable automation of 3D architecture reconstruction is important for comparisons with 
EO, where the benefits of TLS measurements of large numbers of tree measurements are 
key.

A range of methods have been proposed to extract full-tree 3D architecture automati-
cally from TLS data (e.g., Yan et al. 2009; Preuksakarn 2012; Raumonen et al. 2013, 2015; 
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Hackenberg et al. 2014, 2015, etc.). Disney (2018) outlines some of the various assump-
tions and trade-offs underpinning them and challenges remaining to improve them. These 
include: mm-accurate co-registration of multiple point clouds in forest environments, and 
optimising data collection to achieve this (Wilkes et  al. 2017; Paynter et  al. 2018); reli-
able separation of individual trees from large point clouds, particularly in dense, tall forests 
(Burt et  al. 2018); overcoming fundamental limitations of TLS data including occlusion 
and variable point density; separating wood and leaf points in leaf-on point clouds (Yun 
et  al. 2016; Boni Vicari et  al. 2019). Figure 3 shows an example of individual tree seg-
mentation from a 1 ha TLS point cloud from a tropical forest canopy and highlights the 
challenges of extracting individual trees routinely from larger point clouds. As a general 
guide, taller and more dense canopies will require more dense TLS sampling to minimise 
the impacts of occlusion in the upper canopy. Wilkes et al. (2017) show that a 10-m grid 
sampling pattern allows for reconstruction of branching in dense tropical forest canopies 

Fig. 3  (reproduced from Burt et  al. 2018). Segmenting individual trees from large plot-scale TLS point 
clouds (collected with a Riegl VZ-400) using Treeseg. Panels show: (i) iterative pass-through filtering to 
fit enclosing cylinder (red); (ii) plane fitting to remove ground points; (iii), (iv) and (v) iterative clustering 
and region-based segmentation (multiple colours representing separate segments) to remove neighbouring 
vegetation; and finally (vi) cylinder fitting to determine the location of first branching and hence the height-
to-crown
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taller than 50 m, up to branches of ~ 5 cm diameter in the upper canopy. Increasing the scan 
density provides diminishing returns; the additional cost of data collection and processing 
more than offset the slight improvement in the very uppermost branches, which in any case 
contribute the least to AGB.

Various tools are now available to process and analyse TLS data for 3D reconstruc-
tion. Most commercial TLS instrument manufacturers provide commercial software tools 
to allow co-registration, including Leica Cyclone (https ://hds.leica -geosy stems .com/en/
Leica -Cyclo ne_6515.htm), RIEGL RiScan Pro (http://www.RIEGL .com/produ cts/softw 
are-packa ges/risca n-pro/), etc. Non-commercial software aimed at TLS processing include 
pylidar (http://www.pylid ar.org/en/lates t/) and 3D Forest (Trochta et  al. 2017 and http://
www.3dfor est.eu/). Other non-commercial tools developed for 3D point clouds more gen-
erally (particularly ALS and now point clouds derived from structure-from-motion, e.g., 
from UAVs) are also useful for TLS, for example CloudCompare (https ://www.danie lgm.
net/cc/). This has various features for downsampling, editing and manipulating point clouds 
as well as for extracting general metrics.

Specific tools developed for addressing 3D reconstruction include:

Treeseg (Burt et  al. 2018): codes to segment and isolate individual tree point clouds 
from much larger point clouds, prior to reconstruction (https ://githu b.com/apbur t/trees 
eg);
TreeQSM (Raumonen et al. 2013): full 3D reconstruction based on fitting cylinder seg-
ments to TLS point cloud data. The resulting so-called quantitative structural model 
(QSM) contains the total and per-branch volume, as well as branch connectivity and 
insertion angles for each branch (https ://githu b.com/Inver seTam pere/TreeQ SM). Oper-
ates on single trees, or potentially at the stand-scale in less dense, more uniform cano-
pies.
SimpleTree (Hackenberg et al. 2015): a full-tree reconstruction approach based on point 
cloud segmentation (https ://githu b.com/Simpl eTree ).
3D Forest (http://www.3dfor est.eu/): provides tree size and shape metrics based on man-
ual segmentation and voxellisation, i.e. not explicit 3D and so differing slightly from the 
largely automated full 3D methods above.
Computree (Othmani et  al. 2013): a more forestry-based software platform, designed 
to be extensible and to derive forestry-related metrics rather than 3D architecture per se 
(http://compu tree.onf.fr/?lang=en).
Forestr (Atkins et al. 2018): software tools (in the programming language R) to provide 
general structural metrics of canopy structural complexity (CSC) metrics, based on the 
x, z, or x, y, z position of LiDAR hit density expressed as vegetation area index (VAI) 
(https ://githu b.com/atkin sjeff /fores tr).

A key problem is how to assess the accuracy and uncertainty of the resulting 3D tree vol-
umes. The only way to do this really is via destructive harvesting. The practical obstacles 
to this mean it is very difficult and so has been done in only a few cases. Figure 4, from 
Disney (2018) and reproduced here, compares examples from Calders et al. (2015 for three 
Eucalyptus species, Australia, Gonzalez de Tanago et al. (2018) in Guyana, Indonesia and 
Peru; and Momo Takoudjou et  al. (2017) in eastern Cameroon. These efforts in validat-
ing TLS-derived AGB show that the method agrees with destructive harvest values with 
r2 > 0.95 in all cases. This is robust across varying canopy types, including large tropical 
trees and trees with buttressed trunks. Absolute agreement between TLS-derived and har-
vested AGB agrees to within 10% at the individual tree level for all trees in these studies 

https://hds.leica-geosystems.com/en/Leica-Cyclone_6515.htm
https://hds.leica-geosystems.com/en/Leica-Cyclone_6515.htm
http://www.RIEGL.com/products/software-packages/riscan-pro/
http://www.RIEGL.com/products/software-packages/riscan-pro/
http://www.pylidar.org/en/latest/
http://www.3dforest.eu/
http://www.3dforest.eu/
https://www.danielgm.net/cc/
https://www.danielgm.net/cc/
https://github.com/apburt/treeseg
https://github.com/apburt/treeseg
https://github.com/InverseTampere/TreeQSM
https://github.com/SimpleTree
http://www.3dforest.eu/
http://computree.onf.fr/?lang=en
https://github.com/atkinsjeff/forestr
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and to within 2% in the majority of cases. Buttressed trees are important for tropical forests 
as they can make up significant numbers of large trees in tropical plots. Disney et al. (2018) 
show that the buttressed trunks can introduce greater uncertainty in TLS-derived AGB at 
the single tree level (up to 10% over/under-estimation), due to the issue of fitting cylin-
ders to non-cylindrical trunk forms. However, these fitting errors are randomly distributed 
and so tend to cancel out at the plot level. Buttressed trunks are known to be an issue for 
DBH-based allometry more generally, and TLS can help address this (Noelke et al. 2015). 
Less automated but more flexible volume fitting approaches such as mesh grids (ibid.) 
and outer hull models (OHMs; Stovall et al. 2017) can also be used to potentially address 
this issue. This is another area where TLS may help in cal/val of AGB derived from EO 
or survey methods, based on ASEs where buttressed trunk form is not well represented. 
Additionally, AGB derived from plot survey measurements of DBH have to contend with 
the issue of where and how DBH is measured for buttressed trees (http://www.rainf or.org/
uploa d/Manua lsEng lish/RAINF OR_field _manua l_versi on_2016.pdf) and then how this is 
accounted for in the tapered cylinder assumption of ASE form.

These direct validation efforts illustrated in Fig. 4 demonstrate very clearly that TLS-
derived AGB is both accurate and robust, across all tree size classes. This is the strongest 
and most direct evidence that TLS can be used to test the existing ASEs, as well as to aug-
ment allometric datasets, to include more, larger trees. This potentially addresses one of the 
fundamental limitations of ASEs highlighted above.

More generally, Disney et  al. (2012) proposed using simulated TLS point clouds 
of 3D model trees where instrument, acquisition and tree architecture properties are 
known a priori. This allows for sensitivity and uncertainty analysis and has been used 
to test some of the approaches above (Raumonen et al. 2013; Hackenberg et al. 2014; 
Burt et  al. 2018). The utility of this 3D simulation approach can also be tested by 
comparing simulations from the retrieved 3D architectural models with other, indirect 
estimates of canopy properties, including reflectance, leaf area index (LAI), etc. The 
advantage of this is that many of these EO-derived estimates of canopy properties have 
uncertainty which is much better-characterised than for estimates of AGB. Figure  5 
illustrates this approach, showing a comparison of simulated and actual top-of-canopy 

Fig. 4  From Disney (2018). Comparison of TLS-derived estimates of tree AGB and volume, with values 
from destructive harvests: a Calders et  al. (2014) TLS-derived and weighed AGB for three Eucalyptus 
species, Australia; b Gonzalez de Tanago et  al. (2018) TLS-derived and destructive volume across three 
tropical sites, with buttressed and non-buttressed trees marked a, b, respectively; c Momo Takoudjou et al. 
(2017) TLS-derived and destructive volume from eastern Cameroon. In the latter two cases, the shaded area 
is the 95% confidence interval of the regression fit

http://www.rainfor.org/upload/ManualsEnglish/RAINFOR_field_manual_version_2016.pdf
http://www.rainfor.org/upload/ManualsEnglish/RAINFOR_field_manual_version_2016.pdf
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red/green/blue (RGB) values obtained using an unmanned autonomous vehicle (UAV) 
and hemiphoto, where the simulations are derived from a 3D canopy architectural 
model derived from 1 ha TLS point cloud collected in Wytham Woods, UK (Calders 
et al. 2018).

An additional, very useful software tool in the context of AGB uncertainty, which 
can and should be applied once new ASEs are developed, from TLS or elsewhere, is the 
R package developed by Réjou-Méchain et  al. (2017) to allow the uncertainty in new 
ASEs to be quantified (https ://cran.r-proje ct.org/web/packa ges/BIOMA SS/index .html).

Fig. 5  Adapted from Calders et al. (2018). Upper row: simulated image of a deciduous woodland (left) and 
UAV RGB image over the canopy on which this model simulation is based (right). This is intended to be an 
indicative simulation rather than an exact representation, due to lack of leaf spectral and size information in 
the upper canopy. Lower row: simulated (left) and measured (right) hemiphotos in leaf-off conditions from 
the same location within the canopy. In this case, the model canopy structure is intended as a direct copy of 
the observed

https://cran.r-project.org/web/packages/BIOMASS/index.html
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5  TLS to Underpin Satellite‑Derived AGB: Developments 
and Challenges

As outlined above, TLS can provide several new advantages to AGB estimation which are 
likely to make it a significant development for satellite-derived estimates. All EO-derived 
estimates of AGB depend on indirect retrievals, typically via height allometry for lidar and 
RADAR estimates, but also via empirical backscatter–biomass relationships. The benefits 
of TLS can make vital contributions to calibration and validation (cal/val) efforts, includ-
ing: improving the existing ASEs via the inclusion of many more trees across a much wider 
distribution of size and shape across different biomes; testing assumptions underlying, and 
form of, ASEs to better characterise uncertainty; to provide independent estimates of AGB 
to validate retrievals, particularly in tropical and other high biomass regions where ground-
based estimates are rare or non-existent; to allow development of new highly detailed 3D 
radiative transfer (RT) models for simulating EO signals. This allows for new algorithm 
development and testing and benchmarking of simpler RT models, where canopy structural 
properties are known a priori (Widlowski et al. 2013; Calders et al. 2018; and Fig. 5 above).

The benefit of TLS for EO-derived AGB is exemplified by its inclusion by CEOS as a 
key method in its recommended protocol for cal/val of AGB. Stovall and Shugart (2018) 
present a framework for how TLS can be used to improve EO estimates of AGB, and this is 
reproduced in Fig. 6. They point out that TLS can figure prominently in both the measure-
ment of plot-scale biomass and structure for improving EO retrievals, new allometric mod-
els, for pre-launch calibration and post-launch validation of EO estimates via plot measure-
ments of biomass.

Some additional benefits of TLS for EO cal/val are shown in Fig. 7. This illustrates 
how volume estimates derived from TLS measurements can be used to understand the 
EO signal, as well as quantifying forest structural differences across biomes. Figure 7 
illustrates differences between sites in how wood volume (and hence biomass) is distrib-
uted across branch size classes, with volume skewed towards smaller branches higher in 
the canopy in French Guiana; or across a wider range of branch sizes in Ghana. The two 

Fig. 6  From Stovall and Shugart (2018). A flow diagram outlining how TLS can be used to address the 
limitations of ASEs for EO-derived estimates of AGB, specifically via calibration and validation. They note 
that in a TLS can provide unbiased (by size class) estimates of standard forestry properties (DBH, height, 
etc.); b non-destructive estimates of AGB to test and develop improved ASEs; c and d plot-level volume/
biomass estimates for calibration and validation of EO products
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UK sites stand out as we would expect (and hope!), particularly the plantation conifer 
canopy (Sitka spruce). When expressed as a function of canopy height (lower panel), 
the differences between the tropical and UK forests are less pronounced, except for the 
conifer which shows a characteristic dominant trunk and small crown biomass. Informa-
tion of this sort is critical for understanding the dependence of ASE-derived estimates 
of AGB based on height. This is particularly true for RADAR retrievals of biomass 
at longer wavelengths, e.g., for ESA BIOMASS at P-band (70  cm). These retrievals 
assume the dominant portion of the P-band backscatter signal over tropical forests arises 
from a peak of biomass in the upper part of the canopy (Le Toan et al. 2011; Garestier 
and Le Toan 2010). Smaller branches and leaves in the upper part of the canopy become 

Fig. 7  From Tang (2017). Comparison of the TLS-derived volume as a function of tree size across four 
tropical sites (Caxiuanã, Brazil; Lopé, Gabon; Nouragues, French Guiana and Ankasa, Ghana), plantation 
conifer (Harwood, UK) and deciduous woodland (Wytham Woods, UK). Volume is derived from Quantita-
tive Structural Model (QSMs) fitted to TLS data, separated into 11 × 5 cm size diameter classes from < 5 cm 
to ≥ 50 cm, with the proportion of volume in each size class shown (top panel). The lower panel shows the 
same information as a function of relative tree height
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more important for backscatter–AGB relationships from shorter wavelength RADAR, 
L-band for example (Mermoz et al. 2015). Measuring these components accurately from 
TLS is likely to be a greater challenge, as outlined below.

Figure 8, reproduced from Stovall and Shugart (2018), is an explicit example of how 
TLS can provide improved ASEs for biomass estimation from EO. They show that for 
species-specific ASEs, uncertainty in allometric estimates of AGB can be nearly halved 
through the use of TLS-derived ASEs compared to destructive harvest alone. Perhaps even 
more importantly, the TLS estimates have low or no bias (Calders et al. 2015; Gonzalez de 

Fig. 8  From Stovall et  al. (2018). Comparison of species-specific AGB derived from full volume QSM 
reconstruction of TLS measurements (x axis in each case), with previously published species-specific DBH 
and H-DBH ASEs (left column). The right hand panels compare AGB estimated from ASEs derived from 
TLS measurements of DBH (top right) and DBH and H (bottom right), with the full TLS-derived biomass



 Surveys in Geophysics

1 3

Tanago et al. 2018; Momo Takoudjou et al. 2017), compared to ~ 7 to 20% for the ASEs 
from destructive harvesting.

Stovall et al. (2018) conclude that TLS can produce unbiased AGB estimates, impor-
tantly by including larger diameter trees. They suggest that ASEs should be developed with 
sample sizes of at least 100 individuals to ensure equations have high precision and low 
bias. The issue of bias is discussed by Burt et al. (2018) who note that measurements of 
unbiased size distributions, and larger trees in particular, are vital to reduce uncertainty 
in AGB estimated via allometry. They note that the issue of heteroscedasticity means 
that uncertainty in ASE-derived AGB will always tend to be greater in higher biomass 
areas, but quantifying this uncertainty drastically improves the usefulness of resulting EO 
estimates.

One other area where TLS has the potential to improve EO-derived AGB is in the 
impact of uncertainty in wood density, � . Stovall et al. (2018) note that biomass estimates 
will vary as a function of intra-specific and site-level variation in wood density from pub-
lished average values, as well as throughout individual trees. They conclude that quantify-
ing wood density variability is essential for quantifying uncertainty in TLS-based biomass 
estimates. However, accurate estimates of wood density are critical to estimating AGB 
either from both allometry and TLS. As noted above, by comparing at the volume level 
wherever possible, as facilitated by TLS, the issue of wood density can be separated from 
the problem of uncertainty in the ASE or TLS-derived volume. Improved estimates of site 
and species level � can then be added where possible, to improve biomass estimates. 3D 
models from TLS are also opening the possibility for exploring the relationship between 
wood density and tree mechanical properties (Jackson et al. 2019).

The challenges to wider adoption of TLS for AGB estimation are broadly technical, cost 
and scaling and are all linked. The technical challenges lie in how to collect TLS data at 
plot scales and then retrieve structural properties, notably full 3D tree volume, with suffi-
cient accuracy and quantified uncertainty. Resolving smaller branches in tall, dense leaf-on 
canopies is a challenge for TLS, which will tend to increase uncertainty in these compo-
nents of AGB at the tree-scale. Comparisons between TLS-derived and harvested AGB 
at the individual tree level seem to show little or no bias, in part because the most poorly 
resolved branches are the smallest. This is potentially improved with higher density point 
clouds and with more effective methods to separate wood and leaf points (Boni Vicari 
et al. 2019). However, published comparisons tend not to look at these smaller components 
explicitly; more work is needed to quantify the impact of these possible sources of bias.

An additional challenge is how to do this for different groups using TLS instruments 
with different properties and across various environments. As outlined above, the develop-
ment of standardised measurement protocols and software tools that aimed at processing 
TLS data for ecological applications specifically is helping to reduce these technical barri-
ers. However, until acquisition and processing becomes ‘routine’, TLS for 3D volume esti-
mates will still be the preserve of a relatively small number of groups and users. The cost 
of TLS is another potential barrier, with instruments costing upwards of $100 K being out 
of reach for many/most researchers. However, if the value of the measurements provides 
demonstrably unique, important information for addressing key uncertainties in large-scale 
estimates of AGB, then funding is likely to become available. Wider adoption of TLS also 
provides impetus for development of new tools and instruments. Compact, lightweight and 
lower-cost TLS (e.g. ~ $20  K) has been developed which provides shorter-range, lower-
precision measurements, but may provide some of the benefits of the higher-cost instru-
ments for AGB estimates, e.g., by rapidly capturing tree volume for the larger parts of trees 
(Bauwens et al. 2016; Paynter et al. 2016). Figure 9 shows an example of Hemlock trees 
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scanned in Harvard Forest, using lightweight TLS systems that are $10–20  K and have 
been developed for more general 3D measurements, both ecological or also for mobile 
mapping. The inset views in this case show where the TLS is unable to resolve separate 
branches and needles.

The rapid development of new low-cost TLS instruments has the potential to provide 
cal/val information with specific benefits. While it is desirable to make the most accu-
rate ground measurements possible of tree volume and AGB for EO cal/val, CEOS LPV 
recognises the need for a hierarchical approach, to allow for collecting the best ground 
data within the constraints of resources (cost, time, personnel, access, etc.) and to allow 
for improvement over time (CEOS LPV 2019). Useful measurements can be taken using 
lower-cost, lower-precision TLS systems, potentially by more groups, over larger areas 
and/or more often, despite the resulting lower accuracy and detail. The accuracy require-
ment for cal/val for EO will depend on the nature of the EO estimates themselves and the 
region of interest. Duncanson et al. (2019 this volume) list the requirements for AGB accu-
racy for a range of space missions, all of which (where specified) set ≤ 20% as the accuracy 
requirement. This suggests that ground measurements capable of doing better than this will 

Fig. 9  Left: TLS data from a Leica BLK360 of an Eastern Hemlock (Tsuga canadensis) measured in the 
Smithsonian Institute ForestGeo plot at Harvard Forest, MA, USA. The tree is suffering from defoliation 
due to infestation by the Hemlock Woolly Adelgid (HWA). From the TLS, the tree has DBH 81.5, H 24.1 m 
and volume of 10.5 m3. Right: TLS data from the wide beam Canopy Biomass Lidar (CBL) of an Eastern 
Hemlock Tree unaffected by HWA, with TLS-derived DBH—12.3 cm, H = 9.65 m and volume 0.35 m3. 
Insets in each case show close-up views of a branch from each tree, at the same scale
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provide useful cal/val data. Lower-cost TLS instruments will not produce accurate volume 
estimates of trees > 30 m in dense forests but are certainly capable of providing height and 
DBH for shorter, less dense canopies. The rapid development and improvement of these 
lower-cost instruments and associated processing software mean that their utility is only 
likely to increase. Such instruments will increasingly have a place in wider adoption of 
TLS methods for AGB estimation, particularly where cost is the primary barrier.

Lastly, the challenge of scale is how to integrate TLS, which excels at the individual 
tree to plot scale (~ ha), with other measurements including manual survey measurements, 
manned and unmanned aerial lidar systems (ALS, UAS), and satellite observations. TLS 
has the potential to provide additional opportunities to exploit these measurements for 
AGB estimates, but the choice of scales at which to collect TLS and the type of plots to use 
are open questions. The application of TLS for AGB estimation and comparison to manual 
census, air- and spaceborne estimates is still new, and very much in development. Thus far, 
TLS survey plots have typically been selected to match the size and shape of the base unit 
of the other core measurements for a given application. For forest inventory applications, 
this is typically plots of 0.04–0.25 ha, circular or rectangular (Edwards 1998; USFS 2019); 
for tropical forest studies, plots are typically 1 ha square (Phillips et al. 2002). Wilkes et al. 
(2017) discuss the impact of varying density and arrangement of TLS scan locations for 
AGB estimation specifically. In particular, they show that the trade-off between more, 
smaller plots or fewer larger plots is not straightforward. The former may be tempting to 
enable sampling a wider range of forest type, climate, soil and other conditions, but the 
quality of the resulting TLS point cloud will be much lower than for larger plots. The larger 
the plot, the more TLS locations there will be that can contribute to the point cloud of a 
specific tree. This is particularly true for tall, dense canopies typical of tropical forests. For 
a 1 ha plot and with a 10-m scanning grid, there are 121 locations from which a tree might 
be ‘seen’, from 100 m away (or more from corner to corner). A 0.25 ha plot will only have 
36 scan locations and the resulting extracted tree volume models will be of much lower 
quality, particularly in the upper canopy. Moreover, locations further from a tree often con-
tribute more to the upper part of the tree than locations close by, due to the oblique angle 
through the canopy.

A related issue is how TLS measurements required for specific forest inventory applica-
tions may be used in the context of EO-derived AGB cal/val. Liang et al. (2018) present 
a comparison of forestry parameter extraction methods using a common TLS dataset that 
highlights some important issues of the impact of forest structure on the resulting point 
cloud. The comparison is carried out on smaller plots (0.1 ha) than those more suited for 
EO-derived AGB comparisons and using phase-shift TLS which has limitations of range 
and partial hits for tall forests (Newnham et  al. 2012). These issues notwithstanding, an 
important conclusion is that the higher the density of smaller stems (DBH < 20 cm) in a 
plot, the greater the impacts of occlusion will be. TLS data collection for AGB estimation 
in this type of canopy, particularly young, dense or plantation forests, or forests dominated 
by lianas (Krishna Moorthy et al. 2018), will need to consider these possible limitations: 
increasing the scan density, plot size and by using time-of-flight longer range TLS will all 
help, but at increased cost.

An additional challenge comes for integration of TLS data with ALS or unmanned Aer-
ial Lidar Systems (UAS). To match clouds at the crown-scale and finer requires accurate 
(cm-scale) co-location of the different lidar datasets, requiring very accurate RTK GPS or 
equivalent. Even then, the various point clouds may need manual co-registration, particu-
larly for ALS point clouds where the absolute geolocation accuracy may be lower. The 
denser the airborne point cloud, the easier it will be to identify possible ground control 
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points and leading to better manual matching, i.e. typically likely to be easier for UAS than 
ALS. Methods for merging these data are likely to develop and improve as they become 
more widely used. Specific issues of ALS and UAV lidar acquisition and characteristics for 
AGB estimation are discussed elsewhere.

The requirement for ASEs will remain, to enable wide-scale assessment of AGB, par-
ticularly from EO but also to provide continuity with the large body of the existing plot-
scale census measurements. Consequently, we foresee the main role of TLS in EO-derived 
estimates of AGB will be initially to enable improved ASEs from a much larger sample 
of trees across a wider size distribution than is currently possible (calibration). TLS will 
also provide estimates of AGB at the same scale as those derived from EO, particularly 
from spaceborne measurements, allowing for improved validation of these products. In the 
longer term, TLS can potentially provide a better understanding of the impacts of struc-
tural variations (trunk form, crown size and shape) and within-tree wood density on the 
ASE approach. Lastly, 3D data derived from TLS enable development of more realistic 
3D radiative transfer models to help quantify uncertainty in spaceborne observations (Cal-
ders et al. 2018). Structurally consistent models across optical and microwave domains will 
improve our ability to combine spaceborne data for AGB across these domains.

6  Conclusions

Terrestrial laser scanning offers considerable benefits to improving estimates of above-
ground biomass from satellite observations. These benefits lie in a number of areas: 
improvement of the existing allometric scaling equations used to relate tree H and DBH 
to AGB, via the inclusion of many more samples of tree volume/biomass; the reduction of 
bias in ASEs by incorporating more large trees into ASEs to help address the fundamen-
tal issue of heteroscedasticity of AGB allometry; help develop new EO retrievals, through 
testing the assumptions of the existing retrieval models and by the use of full 3D radiative 
transfer models with which to simulate EO signals with known structural and radiometric 
uncertainties; by quantifying uncertainty in retrieved AGB estimates through pre-launch 
modelling and calibration, and post-launch validation at the plot scale; and lastly by pro-
viding a link between measurements made at the tree and plot scale, particularly manual 
forestry measurements and observations of varying spatial scales from airborne, unmanned 
aerial systems (UAS) and beyond. The interest in TLS has prompted many advances 
including new lower-cost TLS systems, methods to process TLS data more rapidly and 
consistently and protocols specifically aimed at collection of TLS data specifically for 
AGB applications. Further assessment of the uncertainty in the TLS model reconstructions 
is required, particularly in tall, dense canopies. Comparisons of TLS-derived and harvested 
AGB may agree very closely at the tree level, but this may overlook divergence within dif-
ferent size components. Further standardisation of data acquisition, automation of process-
ing and more detailed testing of the resulting 3D reconstructions will bring TLS further 
into the mainstream for biomass estimation from space.
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