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Abstract	

Recent	disastrous	flood	events	across	Small	Island	Developing	States	(SIDS)	have	reaffirmed	the	
extraordinary	risk	of	flooding	in	SIDS	following	extreme	rainfall	and	tropical	storms.	Estimating	flood	
hazard	for	disaster	risk	reduction	policy	requires	simulations	of	flood	extent	and	water	depths	from	
hydrodynamic	models.	In	many	SIDS	these	models	have	relied	upon	coarse,	global	spaceborne	
Digital	Elevation	Models	(DEMs)	such	as	the	~90m	Shuttle	Radar	Topography	Mission	data.	This	has	
limited	the	capacity	to	adequately	estimate	flood	hazard	at	the	localised	scale	(~10m)	suited	to	
many	SIDS	catchments.	Following	the	release	of	the	global	TanDEM-X	DEM	with	a	horizontal	
resolution	of	~12m,	there	is	an	opportunity	to	assess	whether	the	finer-resolution	TanDEM-X	can	be	
utilised	to	improve	flood	hazard	estimates	in	SIDS.		

The	first	section	of	this	thesis	synthesises	the	relevant	literature	on	flood	risk	in	SIDS	and	how	flood	
hazard	has	been	simulated	using	previous	DEMs.	The	results	of	this	literature	review	indicate	that	
there	is	a	mismatch	between	flood	risk	and	capacity	to	estimate	flood	hazard	in	SIDS.	A	key	reason	
for	this	is	a	lack	of	adequate	topographic	data	for	input	into	a	hydrodynamic	model	used	to	estimate	
flood	hazard.		

The	second	section	of	this	thesis	details	and	compares	methods	to	process	vegetation	surface	
artefacts	from	the	TanDEM-X	DSM	for	input	to	a	hydrodynamic	model	using	the	Ba	catchment	in	Fiji	
as	a	test	case.	Seven	TanDEM-X	DTMs	were	generated	by	combining	three	methods	that	remove	
vegetation:	Progressive	Morphological	Filtering	and	Image	Classification	of	two	TanDEM-X	auxiliary	
datasets	(Height	Error	Map	and	Amplitude).	The	seven	TanDEM-X	DTMs	were	input	into	the	
hydrodynamic	model	LISFLOOD-FP	to	compare	modelled	flood	extent	and	water	surface	elevation	
with	those	simulated	using	the	SRTM	(v4)	and	Multi	Error-Removed	Improved-Terrain	(MERIT)	
DEMs.	A	model	based	on	an	airborne	LiDAR	DTM	was	used	as	a	benchmark.	The	results	show	that	
the	unprocessed	TanDEM-X	DSM	does	not	improve	flood	estimates	over	the	MERIT	DTM,	but	does	
improve	flood	estimates	over	the	unprocessed	SRTM	DSM.	The	method	to	remove	vegetation	that	
combines	Progressive	Morphological	Filtering	with	Image	Classification	of	the	TanDEM-X	Amplitude	
map	has	the	best	fit	to	the	LiDAR	model	flood	extent	and	water	surface	elevation	estimates	in	
comparison	to	all	other	models.	The	findings	indicate	the	potential	for	TanDEM-X	to	improve	flood	
hazard	estimates	in	SIDS	when	processed	using	the	method	developed	in	this	thesis,	which	should	
be	applied	to	other	SIDS	catchments	and	used	to	improve	flood	hazard	estimates	in	flood	risk	
estimations	by	policy	makers.		
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Chapter	1	–Introduction	

Flood	risk	is	a	key	concern	for	policy	makers	globally	(Merz	et	al.,	2010a),	with	global	insured	losses	

caused	by	flooding	reaching	2.14	billion	USD	in	2017	(SwissRe,	2018).	Flood	risk	is	comprised	of	the	

probability	of	a	hazard	and	the	exposure	and	vulnerability	of	a	population	(UNISDR,	2015a).	

Modelling	of	flood	risk	has	proliferated	due	to	an	improvement	in	the	quality	and	resolution	of	

relevant	datasets	(Ward	et	al.,	2015),	such	that,	numerous	local	and	global	initiatives	have	

developed	methodologies	to	model	flood	risk	across	different	scales	(e.g.	Ward	et	al.,	2015;	EU	

Floods	Directive,	2017)	for	current	and	future	conditions	(Alfieri	et	al.,	2017).	Flood	hazard	is	often	

estimated	using	a	hydrodynamic	model	and	topographic	data,	mathematically	approximating	the	

propagation	of	a	flood	wave	downstream,	calculating	water	flow	in-channel	and	across	the	

floodplain	when	water	flows	out	of	bank	(Bates	et	al.,	2005).	Specifically,	the	estimation	of	flood	

hazard	has	become	a	data-rich	science	over	the	last	two	decades	due	to	the	dramatically	increased	

availability	of	high-quality	terrain	data	such	as	LiDAR	-	collected	using	airborne	altimetry	(Bates,	

2012).	LiDAR	has	improved	the	precision	with	which	flood	predictions	can	be	made,	due	to	a	high	

vertical	accuracy	(5-20cm:	Baltsavias,	1999)	and	horizontal	resolution	(1-2m),	although	acquisition	

incurs	high	economic	cost	(Sampson	et	al.,	2016).	Near-global	openly-accessible	datasets	collected	

using	spaceborne	technologies	such	as	the	~90m	resolution	Shuttle	Radar	Topography	Mission	

(SRTM)	have	also	unlocked	the	capacity	to	provide	predictions	of	flood	hazard	globally	where	LiDAR	

data	are	unavailable	(e.g.	Sampson	et	al.,	2015).	SRTM	is	a	~90m	DEM	initially	released	in	2000,	

following	acquisition	using	single-pass	interferometry	(Rabus	et	al.,	2003),	and	was	the	most	

complete	high-resolution	DEM	available	until	the	release	of	the	~30m	Advanced	Spaceborne	

Thermal	Emission	and	Reflection	Radiometer	(ASTER)	DEM	in	2009,	offering	coverage	from	60oN-

54oS	(Sampson	et	al.,	2016).	SRTM	has	improved	flood	hazard	information	for	insurance,	disaster	risk	

management,	local	authorities	and	planning	in	regions	where	open-access	high	resolution	

topographic	data	was	previously	unavailable	at	the	global	scale	(Bates,	2012).	Nonetheless,	SRTM	is	
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a	Digital	Surface	Model	(DSM),	measuring	surface	objects	such	as	buildings	and	vegetation,	and	so	

the	data	must	be	processed	to	a	Digital	Terrain	Model	(DTM)	measuring	the	‘bare	earth’	surface	

before	input	into	a	hydrodynamic	model.	Surface	artefacts,	as	well	as	other	errors	such	as	striping	

and	speckle,	mean	SRTM	has	a	high	vertical	error	(~10m:	Rodriguez	et	al.,	2006),	and	many	scholars	

have	identified	the	need	for	a	higher	accuracy	global	DEM	for	the	future	improvement	of	global	

flood	modelling	(Schumann	et	al.,	2014;	Sampson	et	al.,	2016).		

1.1 The	Case	of	Small	Island	Developing	States	

SIDS	–	a	37	island	nation	grouping	identified	at	the	1992	UNFCCC	Rio	Conference	–	share	a	unique	

risk	to	hydro-meteorological	hazards	such	as	hurricanes	and	flooding,	with	a	high	relative	exposure	

and	vulnerability	(Hay	and	Mimura,	2013).	Reinforcing	the	formidability	of	risk	experienced	by	SIDS,	

in	2017	the	Caribbean	experienced	the	worst	hurricane	season	in	recorded	history	and	disaster	aid	

relief	provided	by	the	Caribbean	Catastrophe	Risk	Insurance	Facility	topped	54	million	USD	(NASA,	

2017;	SwissRe,	2018).	In	2017,	Hurricane	Maria	was	the	largest	insured-loss	event	(32	billion	USD)	

reported	by	SwissRe	(2018),	devastating	several	Caribbean	SIDS.	In	2016,	Fiji	-	a	Pacific	SIDS	that	is	

the	focus	of	this	thesis	-	experienced	the	Southern	Hemisphere’s	strongest	ever-recorded	cyclone,	

Cyclone	Winston,	resulting	in	losses	equivalent	to	20%	of	GDP	and	affecting	62%	of	the	population	

(Government	of	Fiji,	2016).		

Despite	advances	in	global	flood	modelling,	assessing	flood	risk	in	SIDS	is	critically	disadvantaged	by	

a	lack	of	adequate	data	for	detailed	and	accurate	flood	hazard	assessments	(UN,	2015).	SIDS	are	

typically	data-sparse	locations	with	a	lack	of	accurate	topographic	data	such	as	LiDAR,	meaning	

coarser-scale	(~90m)	global	datasets	such	as	SRTM	are	relied	upon	(Gesch,	2009).	This	has	limited	

the	capacity	to	accurately	model	flood	hazard	in	SIDS	(see	Simpson	et	al.,	2009;	Gesch,	2009;	Albert	

et	al.,	2013),	for	three	key	reasons:		

a) The	scale	of	catchments	and	rivers	in	SIDS	are	small	meaning	a	localised	analysis	is	required.		
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b) Small-scale	features	important	for	accurate	flow	routing	are	not	well-resolved	by	~90m	

SRTM.	

c) The	vertical	accuracy	of	SRTM	(~10m)	inhibits	accurate	model	prediction	in	relation	to	the	

elevation	range	of	many	low-lying	SIDS	catchments.		

Most	SIDS	catchments	and	rivers	are	small	in	comparison	to	catchments	in	other	locations.	Chandler	

et	al.,	(2014)	define	a	catchment	as	‘small’	if	<1000km2,	meaning	that	most	drainage	basins	in	SIDS	

will	be	categorised	as	small	as	often	whole	islands	are	smaller	than	1000km2	–	although	Fiji’s	main	

island	of	Viti	Levu	has	a	total	land	surface	of	10,389km2	(Fiji	Bureau	of	Statistics,	2018).	For	example,	

the	estimated	drainage	area	of	the	Ba	River	–	the	study	site	selected	in	this	thesis	on	Fiji’s	main	

island	Viti	Levu	-	is	930km2	(McGree	et	al.,	2010).	This	is	the	fourth	largest	catchment	in	Viti	Levu,	

with	the	largest	catchment	2920km2	(McGree	et	al.,	2010).	In	comparison,	the	estimated	drainage	

area	of	the	River	Po	in	Italy,	defined	as	a	‘large	river’	by	(Schumann	et	al.,	2010)	and	used	as	a	study	

site	for	a	number	of	published	hydrology	papers	using	remotely	sensed	data	(e.g.	Di	Baldasserre	et	

al.,	2009)	is	71,000km2	(Montenari,	2012).	River	channels	in	SIDS	also	typically	have	a	width	less	than	

90m	in	many	places,	meaning	SRTM	is	not	able	to	resolve	the	river	channel	with	a	90m	resolution	

(Neal	et	al.,	2012a).	Furthermore,	Sanders	(2007)	suggests	no	DEM	can	resolve	a	river	channel	

smaller	than	twice	the	grid	resolution.	69%	of	the	Ba	river	in	Fiji	has	a	width	<90m	based	on	

measurement	using	Google	Earth™	imagery	and	48%	of	Ba	river	has	a	width	less	than	twice	the	

resolution	of	SRTM	at	90m,	demonstrating	the	likelihood	of	a	poorly-resolved	river	for	the	Ba	

catchment.	Most	river	reaches	in	Viti	Levu	are	also	undetected	by	Yamazaki	et	al.’s	(2014)	width	

database	for	rivers,	which	uses	the	90m	SRTM	and	USGS	Hydrosheds	data	(hydrographic	data	

derived	from	SRTM:	see	Lehner	et	al.,	2008)	as	river	reaches	with	a	width	<183m	are	not	well	

represented,	further	demonstrating	the	inability	to	accurately	resolve	smaller	river	reaches	using	

coarser	(~90m)	datasets.	As	river	width	is	a	basic	geometric	indicator	used	to	estimate	flow	

conveyance	in	hydrodynamic	models,	poorly-represented	channel	width	will	reduce	flow	calculation	

accuracy	in	the	model	(Yamazaki	et	al.,	2014)	and	likely	result	in	inaccurate	flood	extent	and	flow	
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velocity	in-channel	(Sanders,	2007).	As	a	result,	coarser	datasets	such	as	SRTM	are	unable	to	fully	

resolve	the	necessary	information	for	accurate	flood	simulation	in	small	catchments	(<1000km2).	

	

When	modelling	at	the	local	scale	(<1000km2),	as	is	typically	required	in	SIDS	catchments,	the	

representation	of	small-scale	features	(<10.5m:	US	Department	of	Agriculture,	1971)	such	as	dykes	

and	ditches	in	the	DEM	will	also	have	an	influence	on	floodplain	flow	(Horritt	and	Bates,	2001).	

Sanders	(2007)	demonstrates	simulation	differences	due	to	the	resolution	of	bridges	between	

datasets	in	their	study	site,	whereby	a	bridge	between	two	roads	is	relatively	well-resolved	in	the	

USGS	National	Elevation	Dataset	(NED)	dataset	up	to	30m	resolution,	but	best	resolved	in	the	LiDAR	

at	3m	resolution.	The	bridge	in	the	SRTM	data	at	30m	and	90m	is	not	visible,	highlighting	potential	

inability	to	resolve	small-scale	features	which	are	likely	to	affect	flow	routing	in	the	hydrodynamic	

model.	Horritt	and	Bates	(2001)	suggest	that	the	inclusion	of	small-scale	(<10.5m)	features	improves	

calculation	of	floodplain	water	storage	adjacent	to	the	channel	and	flood	wave	travel	times,	thus	

improving	flood	extent	accuracy.		

Furthermore,	the	vertical	accuracy	of	SRTM	(~6.2m	for	islands:	Rodriguez	et	al.,	2006)	and	ASTER	

(10-25m:	Fujisada	et	al.,	2012)	is	larger	than	the	elevation	range	of	many	SIDS	floodplains.	Vertical	

accuracy	refers	to	the	difference	in	observed	and	modelled	elevation	height	(Rizzoli	et	al.,	2017).	For	

example,	the	elevation	range	of	the	study	site	in	this	thesis	-	Ba	catchment,	Fiji	-	is	127m,	and	the	

majority	of	the	floodplain	has	an	elevation	range	<3m.	Furthermore,	the	vertical	error	of	SRTM	and	

ASTER	is	greater	than	the	amplitude	of	most	flood	waves	(typically	<2m	for	SIDS),	particularly	for	

rivers	in	Fiji	where	average	flood	wave	amplitudes	range	from	1-4m	(Yeo	et	al.,	2007).	Mason	et	al.,	

(2015)	suggest	that	the	more	accurate	a	DEM,	the	more	accurate	the	flood	estimation,	highlighting	

the	importance	of	a	DEM	with	a	high	vertical	accuracy.	Therefore,	these	key	reasons	demonstrate	

why	SRTM	at	~90m	is	unsuitably	matched	with	the	scale	of	analysis	necessary	for	SIDS.	It	is	clear	that	
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a	DEM	with	higher	spatial	resolution	and	vertical	accuracy	than	SRTM	is	required	to	provide	

improved	flood	estimates	for	SIDS.		

1.2 The	TanDEM-X	Mission:	An	Opportunity?	

Following	the	release	of	Digital	Elevation	Model	TanDEM-X	by	the	German	Aerospace	Center	in	

2016,	this	thesis	aims	to	provide	the	first	application	of	TanDEM-X	into	a	hydrodynamic	model,	and	

specifically	in	a	SIDS	context.	The	TanDEM-X	DEM	has	a	~12m	resolution	and	a	reported	vertical	

error	of	<2m	(Wessel	et	al.,	2018),	following	acquisition	using	an	X-band	bistatic	Interferometric	

Synthetic	Aperture	Radar	from	2010-2015	(Rizzoli	et	al.,	2017).	Scholars	such	as	Yan	et	al.,	(2015)	

and	Mason	et	al.,	(2015;	2016)	have	suggested	that	the	finer	resolution	and	lower	vertical	error	is	

likely	to	improve	flood	estimates,	although	no	published	research	has	yet	tested	this	hypothesis.	As	

this	is	a	critical	issue	for	SIDS,	it	is	important	to	determine	the	potential	for	TanDEM-X	in	this	

context.	However,	because	TanDEM-X	is	a	DSM,	pre-processing	TanDEM-X	to	a	Digital	Terrain	Model	

(DTM)	is	necessary	for	input	into	a	hydrodynamic	model.	Therefore,	this	thesis	also	aims	to	identify	a	

suitable	methodology	for	processing	TanDEM-X	to	a	DTM.		

1.3 Thesis	structure	

The	structure	of	this	thesis	is	as	follows.	In	Chapter	2,	a	succinct	review	of	the	literature	regarding	

the	concept	of	flood	risk	and	flood	risk	specific	to	SIDS	is	conducted,	providing	a	justification	for	the	

focus	on	SIDS	in	this	thesis.	Literature	on	hydrodynamic	models	and	the	use	of	DEMs	in	

hydrodynamic	modelling	is	outlined,	followed	by	the	key	research	describing	processing	methods	for	

DEM	error	reduction	and	DTM	processing.	This	literature	review	will	inform	the	reasons	for	

conducting	this	research,	as	well	as	providing	an	understanding	of	the	key	assumptions	made	

throughout	Chapter	2	and	informing	the	development	of	the	methodology	used	in	this	thesis.	In	

Chapter	3	(a	paper	chapter	published	by	Water	Resources	Research)	two	key	research	questions	are	

investigated:	
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1) How	can	artefacts	be	removed	from	TanDEM-X	to	create	a	suitable	Digital	Terrain	Model	for	

input	into	a	hydrodynamic	model?	

2) Are	flood	estimates	improved	using	TanDEM-X	in	comparison	to	SRTM	and	MERIT?	

Chapter	3	outlines	the	methodology	developed	to	process	TanDEM-X	from	a	DSM	to	a	DTM,	as	well	

as	discussing	the	key	hydrodynamic	model	results	comparing	unprocessed	TanDEM-X	DSM	and	the	

resultant	DTMs	with	LiDAR,	SRTM	and	MERIT	models.	The	results	determine	the	candidate	closest	to	

the	LiDAR	model	as	the	most	suitable	–	as	the	LiDAR	model	is	considered	as	an	appropriate	

benchmark	for	this	study	in	absence	of	ground	truth	information.	Finally,	the	thesis	concludes	in	

Chapter	4	by	relating	the	work	detailed	in	Chapter	3	to	the	wider	context,	noting	the	limitations	of	

the	research	and	outlining	the	potential	for	further	research	within	the	scientific	community	and	

SIDS.	
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Chapter	2	–	Literature	Review	

In	this	thesis,	a	newly-released	DEM	TanDEM-X	is	applied	in	a	hydrodynamic	modelling	test	case,	

with	the	aim	of	identifying	the	potential	to	improve	flood	hazard	estimates	in	a	SIDS	context	in	

comparison	to	existing	datasets	LiDAR,	SRTM	and	MERIT.	To	inform	this	analysis,	and	to	justify	and	

understand	the	importance	of	the	results	in	this	thesis,	there	must	be	a	wider	understanding	of	the	

context	in	which	this	thesis	is	situated	within	the	literature	and	wider	risk	management	community.	

Resultantly,	the	purpose	of	this	literature	review	is	to	synthesise	and	identify	the	key	themes	within	

the	literature,	starting	with	the	overarching	topic	of	flood	risk,	and	the	assumptions	made	when	

defining	risk	as	outlined	by	the	UNISDR	(2015a)	and	its	individual	components.	This	chapter	

acknowledges	this	widely-encompassing	topic,	before	narrowing	the	lens	on	one	key	component	of	

flood	risk	–	flood	hazard.	Furthermore,	as	one	of	the	research	questions	addressed	in	this	thesis	aims	

to	understand	how	TanDEM-X	might	be	processed	for	input	into	a	hydrodynamic	model	for	such	

flood	hazard	estimation,	this	literature	review	will	evaluate	how	DEMs	have	been	utilised	in	flood	

hazard	estimation,	as	well	as	associated	errors	and	pre-processing	methods.	This	synthesis	of	

information	is	used	to	inform	and	justify	the	methodology	for	TanDEM-X	vegetation	processing	

outlined	in	Chapter	3.		

In	Section	2.1	research	regarding	risk,	and	specifically	flood	risk	is	discussed,	considering	the	three	

key	components:	hazard,	exposure	and	vulnerability.	Following	this,	flood	risk	is	specifically	

described	in	the	context	of	SIDS,	providing	a	justification	for	the	focus	on	these	territories	in	this	

thesis.	Section	2.1	concludes	that	improving	estimation	of	flood	hazard	is	an	important	first	step	for	

improving	flood	risk	assessment	in	SIDS.	Accordingly,	Section	2.2	focuses	on	the	key	methodology	

used	to	estimate	flood	hazard	in	the	literature	and	this	thesis:	hydrodynamic	modelling.	

Hydrodynamic	modelling,	model	types	and	the	hydrodynamic	model	used	in	this	thesis	(LISFLOOD-

FP	are	described.	As	topographic	data	is	a	key	hydrodynamic	model	input	(Bates,	2012)	and	the	

focus	of	this	thesis,	Section	2.3	discusses	how	the	proliferation	of	DEMs	has	improved	the	
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capabilities	of	hydrodynamic	modelling,	and	outlines	the	key	DEM	products	used	in	the	literature.	

Section	2.4	outlines	key	errors	in	DEMs,	and	how	DEMs	have	previously	been	processed	from	a	

Digital	Surface	Model	to	a	Digital	Terrain	Model	for	suitable	use	in	a	hydrodynamic	model,	before	

identifying	potential	methods	for	developing	a	suitable	method	for	processing	vegetation	artefacts	

in	TanDEM-X.	

2.1 	Flood	Risk	

Flooding	is	generally	defined	by	Smith	(2013:309)	as	‘a	temporary	state	existing	when	a	body	of	

water	rises	to	inundate	land	not	normally	submerged’.	Flooding	is	one	of	the	world’s	most	

widespread	hazards,	affecting	most	countries	worldwide	(Blaikie	et	al.,	1994).	Globally,	flood	events	

accounted	for	50.5%	of	disasters	between	2006-2015,	affecting	36.8%	of	the	average	annual	

population	affected	by	disasters	in	the	same	period	(Guha-Sapir	et	al.,	2017).	Different	types	of	

floods	including	riverine,	coastal	and	flash	floods	(Kron,	2005)	affect	areas	with	differing	frequencies	

and	magnitudes.	

	

The	UNISDR	(2015a:26)	describes	disaster	risk	as	‘a	function	of	the	severity	and	frequency	of	the	

hazard,	of	the	numbers	of	people	and	assets	exposed	to	the	hazard,	and	of	their	vulnerability	or	

susceptibility	to	damage’.	A	disaster	refers	to	an	event	whereby	a	hazard	adversely	affects	a	

vulnerable	population,	resulting	in	loss	of	life	and	excessive	damage	to	buildings	and	infrastructure	

(Smith,	2013).	A	succinct	visualisation	adopted	by	the	UNISDR	(2015a)	and	the	IPCC	(2012)	Special	

Report	on	Managing	the	Risks	of	Extreme	Events	and	Disasters	to	Advance	Climate	Change	

Adaptation	to	understand	disaster	and	climate	change	risk	is:	

Risk	=	Probability	of	a	hazard	x	Vulnerability	x	Exposure	

Apel	et	al.,	(2009)	specifically	define	flood	risk	as	the	hazard	(expressed	as	the	return	period,	flood	

extent	and	inundation	depth)	combined	with	human	and	asset	exposure,	and	vulnerability	as	
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susceptibility	to	flood	damage.	Jonkman	et	al.,	(2008)	and	Thieken	et	al.,	(2005)	reiterate	this	by	

suggesting	that	to	understand	flood	risk,	one	must	determine	both	the	probability	of	the	flood	

hazard	and	the	consequences.	Two	key	models	have	been	used	to	describe	disaster	risk,	notably	the	

Pressure	and	Release	model	first	outlined	by	Blaikie	et	al.,	(1994),	which	demonstrates	the	

interaction	between	the	hazard,	and	several	socially-constructed	drivers	leading	to	the	underlying	

vulnerability	of	a	population	and	the	Source-Pathway-Receptor	model,	created	by	DETR	(2000),	

which	models	how	a	hazard	(source)	meets	the	vulnerable	population	(receptor)	through	a	pathway	

of	exposure	(Sayers	et	al.,	2002).	

2.1.1 The	Changing	Discourse	on	Flood	Risk	

In	recent	years,	the	discourse	on	flood	risk	has	changed	in	two	key	ways.	Firstly,	scholars	have	

suggested	that	flood	risk	is	increasing	as	the	climate	changes	and	human	populations	grow,	

become	wealthier	and	migrate	to	zones	with	higher	flood	hazard	(Merz	et	al.,	2010a). Secondly,	in	

tandem	with	the	increasing	number	of	flood	disasters,	the	discourse	on	how	to	assess	and	manage	

flood	risk	has	changed	from	a	focus	on	technocratic	modification	approaches	to	an	emphasis	on	

preparedness	and	holistic	management	(Apel	et	al.,	2009).	 

	

Regarding	the	issue	of	increasing	flood	risk,	it	is	apparent	in	the	literature	that	flood	risk	is	changing,	

and	in	most	regions	increasing	(Merz	et	al.,	2010a).	Of	the	3455	floods	reported	from	1980-2011	

globally,	there	is	an	upward	trend	in	the	number	of	flood	disasters	reported	(Munich	Re,	2016).	As	

well	as	an	increase	in	disaster	reporting,	two	main	explanatory	variables	are	presented.	Firstly,	

anthropogenic	warming	is	identified	as	a	potential	reason	for	an	increase	and	future	acceleration	in	

the	number	of	extreme	events,	although	the	IPCC	expresses	low	confidence	in	the	attribution	of	

anthropogenic	climate	change	to	flood	events	or	trends	(Cisneros	et	al.,	2014).	To	attribute	this	

trend	to	climate	change	would	require	the	detection	of	all	the	drivers	of	this	trend	and	their	

contributions.	This	is	not	usually	possible	due	to	the	number	of	potential	human	and	climatic	
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influences.	Secondly,	it	is	widely	accepted	that	an	increase	in	exposure	of	people	and	infrastructure	

to	floods	has	increased	the	number	of	flood	disasters,	particularly	in	low-lying	floodplains	in	

developing	countries	(Merz	et	al.,	2010a;	Hallegatte	et	al.,	2016;	Eckstein	et	al.,	2017).	For	example,	

in	Fiji	–	the	SIDS	study	site	selected	in	this	thesis	-	54%	of	the	population	are	urban	residents,	and	the	

flood-prone,	low-lying	town	of	Nadi	is	growing	by	2.5%	per	annum	due	to	tourism	sector	growth	

(Government	of	Fiji,	2017),	directly	increasing	the	exposure	of	persons	and	assets	and	increasing	the	

propensity	for	loss.			

	

Disaster	management	follows	two	main	pathways:	the	modification	of	an	at-risk	area	to	a	specific	

hazard	as	a	management	tool	or	the	holistic	management	of	the	overall	flood	risk	by	addressing	the	

underlying	stressors	which	increase	the	propensity	of	a	population	to	be	adversely	affected	by	the	

hazard	(Blaikie	et	al.,	1994).	Previously,	especially	in	developed	countries,	emphasis	on	modifying	

the	hazard	has	dominated,	investing	in	hard	engineering	solutions	such	as	levees	which	facilitate	the	

continuation	of	floodplain	development	(Jonkman	et	al.,	2003).	However,	a	paradigm	shift	in	

emphasis	from	modification	to	holistic	management	of	the	hazard	has	been	observed,	partly	out	of	

critique	for	the	over-emphasis	on	the	hazard	with	the	modification	approach,	and	the	

acknowledgement	that	the	modification	strategy	is	not	reducing	disaster	loss	trends	(Merz	et	al.,	

2010a).	The	successor	to	the	Hyogo	Framework	-	the	Sendai	Framework	2015-2030	-	identifies	the	

need	to	understand	risk	as	a	multi-dimensional	factor	of	the	hazard,	vulnerability,	exposure	of	assets	

and	people	and	the	capacity	to	cope	(UNISDR,	2015b).	Preparedness	is	emphasised	as	a	key	

component	of	this	risk	management	strategy	and	a	key	motivation	for	the	move	from	a	focus	on	

modification	to	holistic	management.	Preparedness	includes	the	presence	of	adequate	early	warning	

and	risk	identification	systems	that	enhance	response	and	protection	measures	to	a	flood	hazard	

(UNISDR,	2012).	Furthermore,	there	is	a	prominent	need	to	address	the	underlying	factors	that	

increase	vulnerability	to	stressors	within	society,	by	facilitating	sustainable	and	inclusive	
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development	which	leads	to	improved	resilience	to	the	flood	hazard	(Mileti	and	Gailus,	2005;	

Egorova	et	al.,	2008).	

	

To	better	understand	the	concept	of	flood	risk,	trends	and	management,	it	is	important	to	also	

consider	the	individual	components	that	influence	risk.	As	one	main	objective	of	this	thesis	is	to	

identify	whether	improved	estimates	of	flood	hazard	can	be	attained	in	SIDS	using	TanDEM-X,	flood	

hazard	is	considered	in	detail,	before	briefly	summarising	exposure	and	vulnerability.		

2.1.2 Hazard		

Fluvial	hazards	are	demarcated	by	the	magnitude	of	the	event	for	a	given	probability	(Kron,	2005).	

The	probability	of	an	event	occurring	in	a	year	is	often	described	as	a	‘return-period’	(Smith,	2013),	

for	example	the	depth	of	the	flood	water	in	metres	for	a	given	return	period.	A	return	period	event	

refers	to	the	inverse	probability	that	an	event	with	be	exceeded	in	a	given	year	(Bates,	2005).	For	

example,	a	100-year	return	period	event	will	have	a	1%	probability	of	occurrence	in	a	year.	It	is	

widely	acknowledged	that	inundation	depth	influences	risk,	as	the	greater	the	depth,	the	greater	the	

damage	potential	(Thieken	et	al.,	2005).	Less	often	considered	however,	are	the	velocity,	duration,	

lag	time	and	quality	of	the	floodwater.	This	is	largely	because	flood	policies	do	not	specify	them	in	

their	directives,	as	these	variables	are	more	difficult	to	simulate	and	are	therefore	less	certain.	For	

example,	the	EU	Floods	Directive	(2017)	requires	the	depths	of	medium-likelihood	and	extreme-

likelihood	events.	Yet	it	is	logical	that	all	these	characteristics	of	an	event	will	influence	the	damage	

potential	(Merz	et	al.,	2010b).		

2.1.2.1 Estimating	the	Flood	Hazard	

Policy	makers	are	often	interested	in	extreme	flood	events	that	pose	the	largest	threat	to	the	

population	(Blaikie	et	al.,	1994).	Extreme	event	analysis	calculates	the	return	period	of	a	flood	event	

by	analysing	the	statistical	spread	of	past	events	(Smith,	2013).	Data	on	extreme	events	are	usually	
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taken	from	flow	gauge	data	along	a	river.	A	distribution	is	then	fitted	to	the	annual	maximum	flows	

from	the	gauge	data	to	generate	peak	flows	for	a	specified	return	period.	However,	using	gauge	data	

can	be	problematic,	and	gauge	networks	are	in	decline	globally	(Buchele	et	al.,	2006).	Extreme	

magnitude	events,	e.g.	a	100-year	return	period,	are	unlikely	to	have	been	recorded	as	gauge	data	

often	has	a	limited	time	coverage	(typically	40-50	years)	meaning	an	extreme	event	with	a	low	

probability	of	return	may	not	have	occurred	within	the	recorded	time	(Reed,	2002).	Data	for	high-

flow	events	may	also	not	be	available	due	to	equipment	failure	or	inadequate	capture,	and	

incomplete	time-series	are	especially	common	in	data-sparse	catchments	such	as	in	Fiji	(Buchele	et	

al.,	2006).	For	example,	Yeo	et	al.,	(2007)	report	that	flow	gauges	along	Fijian	rivers	have	been	

known	to	wash	away	at	high	flows,	and	information	on	flood	height	or	extent	were	not	recorded	

during	recent	events	(McAneney	et	al.,	2017).	Limited	information	on	these	extreme	events	due	to	

incomplete	or	missed	data	thus	skew	the	statistical	distribution	of	events	to	lower-flow	events,	

making	return	period	calculation	more	uncertain	(Salinas	et	al.,	2013).	Extreme	flows	of	interest	for	

flood	event	simulation	are	also	often	less	accurate	because	an	extrapolation	from	the	observed	

flows	is	required.	Thus,	estimating	flood	discharges	in	ungauged	or	poorly-gauged	basins	is	a	

fundamental	challenge	for	measuring	flood	hazard	(Salinas	et	al.,	2013:	Smith	et	al.,	2015).	Where	

inadequate	gauge	data	exists,	key	methods	for	peak	flow	simulation	include:	Regional	Flood	

Frequency	Analysis	and	rainfall-runoff	models	whereby	rainfall	data	is	cascaded	through	a	model	to	

estimate	flow	(Blöschl	et	al.,	2013).	Methods	to	conduct	a	Regional	Flood	Frequency	Analysis	are	

summarised	here.		

	

A	Regional	Flood	Frequency	Analysis	is	often	conducted	to	determine	the	probability	of	an	event	

with	a	particular	peak	flow	discharge	in	comparison	to	the	mean	annual	flood	for	hydrologically-

similar	catchments	(Smith	et	al.,	2015).	This	technique	assumes	that	catchments	can	be	‘grouped’	

based	on	similar	characteristics	such	as	topography,	climate,	geology	and	land	use,	whereby	these	
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conditions	create	a	similar	hydrological	response	(Salinas	et	al.,	2013).	Typically,	catchments	are	

grouped	statistically	using	methods	such	as	cluster	analysis	(Rao	and	Srinivas,	2006),	regression	

(Laaha	and	Blöschl,	2006)	and	regions	of	influence	(Burn,	1990).	Smith	et	al.,	(2015)	pools	

catchments	using	a	hybrid-clustering	approach,	distributing	Global	Runoff	Data	Centre	flow	data	by	

Koppen-Geiger	classification	to	create	homogenously-pooled	regions.	Once	regions	have	been	

created,	a	number	of	methods	can	be	utilised	to	determine	the	flood	size,	based	on	the	flow	

information	in	the	area	of	interest	(Salinas	et	al.,	2013).	Peak	flow	information	for	a	particular	return	

period	flood	event	can	be	calculated	using	the	index	flood	method	(Dalrymple,	1960;	Meigh	et	al.,	

1997;	Zaman	et	al.,	2012),	regression	(Gupta	et	al.,	1994)	and	geostatistical	methods	(Merz	and	

Blöschl,	2005).	Smith	et	al.,	(2015)	use	the	index	flood	method,	whereby	the	Mean	Annual	Flood	is	

calculated	using	flow	data	within	the	region	of	interest,	before	scaling	the	flood	to	a	specified	return	

period	using	a	growth	curve.	The	Regional	Flood	Frequency	Analysis	method	detailed	in	Smith	et	al.,	

(2015)	was	adopted	in	this	thesis,	as	the	author	had	access	to	the	underlying	code	and	the	method	

was	utilised	in	the	most	recent	flood	risk	assessment	for	Fiji	(see	Government	of	Fiji,	2017).	

	

To	date,	hydrodynamic	modelling	has	been	the	most	useful	and	widely-used	method	for	simulating	

flood	inundation,	taking	available	or	predicted	extreme	event	information	and	modelling	how	the	

flood	event	translates	across	space	(Takeuchi,	2001).	Plate	(2002)	suggests	that	the	creation	of	flood	

hazard	maps,	identifying	regions	potentially	affected	by	a	flood,	is	the	most	appropriate	first	step	in	

identifying	flood	risk.	However,	Buchele	et	al.,	(2006)	and	Merz	et	al.,	(2010b)	have	suggested	that	

this	may	not	give	a	complete	identification	of	flood	hazard,	as	other	factors	that	will	affect	the	flood	

are	not	considered	such	as	water	quality.	As	a	main	tool	used	in	this	thesis,	flood	modelling	is	

discussed	in	more	detail	in	Section	2.2.		
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2.1.3 Exposure	and	Vulnerability	

Although	flood	hazard	is	of	particular	interest	to	this	thesis,	it	is	important	to	understand	the	other	

key	factors	influencing	flood	risk:	exposure	and	vulnerability.	Both	are	complex	concepts,	with	

bodies	of	literature	dedicated	to	the	discussion	and	definition	of	the	concepts	within	disaster	risk	

and	climate	change	discourse	(UNISDR,	2015a).	The	generally	accepted	definitions	and	key	points	

regarding	both	topics	are	broadly	summarised.	

	

Exposure	is	often	defined	as	the	presence	of	people	or	assets	located	in	a	hazardous	area	(UNISDR,	

2017),	and	is	sometimes	categorised	within	the	concept	of	vulnerability	(Blaikie	et	al.,	1994;	Smith,	

2013).	However,	it	is	considered	separately	in	this	thesis	following	the	widely-adopted	definition	of	

disaster	risk	by	the	UNISDR	(2015a)	which	presents	exposure	as	a	defining	feature.	The	UNISDR	

(2015a)	argue	that	exposure	and	vulnerability	are	not	synonymous,	as	exposure	to	a	hazard	does	not	

mean	you	are	vulnerable	(Cardona	et	al.,	2012).	Exposure	and	hazard	are	also	distinct	because	if	

there	is	no	exposed	population	or	assets,	there	is	no	risk.	

	

Broadly,	there	are	two	approaches	to	estimating	exposure:	population	and	asset	exposure	(Cardona	

et	al.,	2012).	To	quantify	population	exposure,	population	density	data	are	often	used	to	estimate	

the	number	of	people	exposed	to	an	event	(Apel	et	al.,	2009).	The	estimated	population	exposed	is	

then	divided	by	the	country	population	to	create	an	exposure	index	value	for	each	country.	For	

example,	exposure	is	calculated	as	an	indicator	in	the	global	risk	index	‘WorldRiskIndex’	compiled	by	

Bündis	Entwicklung	Hilft,	(2017)	by	calculating	the	probability	of	population	exposure	based	on	the	

population	exposed	and	the	probability	and	frequency	of	a	particular	hazard.	Asset	exposure	

estimates	the	value	or	number	of	assets,	such	as	buildings	and	infrastructure,	that	are	exposed	to	an	

event	(Jonkman	et	al.,	2003).	Asset	exposure	is	the	more	commonly-used	metric	because	it	can	be	
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easily	quantified	and	is	regularly	collected	by	insurance	companies.	Merz	et	al.,	(2010b)	suggests	

that	to	fully	assess	exposure,	ideally	several	variables	would	be	assessed	in	conjunction	to	holistically	

estimate	exposure.	It	is	recognised	that	these	methods	of	defining	exposure	are	not	necessarily	

robust	for	all	types	of	hazards,	and	that	the	scale	and	resolution	of	available	datasets	can	

significantly	limit	detailed	exposure	estimates	(Apel	et	al.,	2009;	Merz	et	al.,	2010b).	

Vulnerability	is	a	concept	that	has	been	widely	debated	in	the	literature	(Cutter,	1996).	Disciplines	in	

engineering,	disaster	management,	climate	science,	ecology	and	sociology	all	have	differing	criteria	

as	to	what	vulnerability	encompasses	(Adger,	2006).	In	the	field	of	disaster	management,	it	is	

generally	agreed	that	vulnerability	broadly	describes	a	set	of	physical,	social,	economic	or	

environmental	factors	or	conditions	which	increase	the	propensity	of	an	individual	to	be	negatively	

impacted	by	a	hazard	(UNISDR,	2017).	The	IPCC	(2012)	also	underline	the	importance	of	viewing	the	

concept	of	vulnerability	as	dynamic	over	space	and	time,	being	both	hazard-specific	and	

representative	of	the	underlying	social	system.	The	complexity	of	vulnerability	has	been	discussed	by	

many	scholars	to	better	categorise	and	understand	vulnerability	to	hazards	and	is	frequently	

conceptualised	as	a	product	of	a	mix	of	‘physical’	and	‘social’	factors	that	encompass	the	conditions	

outlined	in	the	UNISDR	(2017)	definition	(Cutter,	1996;	Brooks,	2003;	Adger,	2006;	Füssell	and	Klein,	

2006;	Cardona	et	al.,	2012).	These	categorisations	can	be	useful	when	trying	to	understand	how	

different	factors	drive	vulnerability	in	a	place-specific	capacity	(Cardona	et	al.,	2012).	Cutter	(1996)	

notably	distinguish	‘biophysical’	and	‘social’	vulnerability.	Biophysical	vulnerability	is	usually	

described	as	both	the	nature	of	the	hazard	and	the	physical	features	of	a	place	or	environment	that	

increase	vulnerability,	including	geographic	location	and	the	built	environment	(Brooks,	2003).	Social	

vulnerability	aims	to	describe	how	the	population	vulnerability	in	these	environments	are	further	

differentiated	by	demographics,	social	status	and	individual	conditions	(Cutter,	1996).		
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Vulnerability	is	perhaps	the	most	difficult	variable	of	risk	to	estimate	(Adger,	2006).	Social	

vulnerability	is	difficult	to	quantify,	and	data	is	not	always	available,	so	often	proxy	indicators	may	be	

used	to	infer	a	population’s	vulnerability	(UNISDR,	2012).	One	widely-used	example	is	Cutter	et	al.’s	

(2003)	Social	Vulnerability	Index	which	combines	a	number	of	social	and	demographic	indicators	in	

an	attempt	to	describe	the	social	vulnerability	of	a	place,	considering	the	underlying	social	systems	

as	well	as	individual	conditions.	

	

It	is	beyond	doubt	that	all	three	interlinking	and	complex	concepts	hazard,	exposure	and	

vulnerability,	as	well	as	the	overarching	risk,	could	be	discussed	in	far	greater	detail	than	in	the	

capacity	of	this	thesis,	dominating	the	scope	in	many	IPCC	and	UNISDR	reports.	Yet,	it	is	also	

important	to	contextualise	these	broad	encompassing	theories	in	the	frame	of	SIDS,	to	provide	a	

more	holistic	understanding	of	why	SIDS	have	such	a	high	flood	risk,	justifying	the	focus	in	this	

thesis.			

2.1.4 Flood	Risk	in	Small	Island	Developing	States	

SIDS	are	unduly	affected	by	flood	risk	in	comparison	to	the	rest	of	the	world	(UN,	2015).	Specifically,	

the	combination	of	high	hazard	frequency	and	intensity,	large	exposure	in	relation	to	size,	and	

underlying	vulnerability	propel	disaster	risk	(UNISDR,	2015a).		

	

Firstly,	SIDS	are	disproportionately	exposed	to	hydro-meteorological	hazards,	accounting	for	75%	of	

all	reported	disasters	between	1970-2006	(Julca	and	Paddison,	2010).	Within	the	top	fifteen	

countries	most	exposed	to	natural	disasters	worldwide,	eight	are	SIDS	because	of	the	high	hazard	

frequency	and	exposure	in	relation	to	population	size	and	geographical	area	(Radtke	et	al.,	2017).	

This	suggests	SIDS	are	frequently	affected	by	flood	hazards.	The	formidable	hurricane	season	
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experienced	by	Caribbean	SIDS	in	2017	reinforces	this	premise,	as	well	as	underlining	key	exposure	

and	vulnerabilities	within	the	region	(NASA,	2017).		

	

The	small	size	of	SIDS	also	means	that	cyclone	storm	tracks	leading	to	heavy	rainfall	can	span	entire	

islands,	so	a	large	percentage	of	the	total	population	and	assets	are	exposed	to	each	event	(Barnett	

and	Adger,	2003).	This	is	reflected	in	Annual	Average	Losses	for	all	hazards	globally	which	are	highest	

in	SIDS	as	a	percentage	of	GDP	(UNISDR,	2015a).	Annual	Average	Losses	for	all	hazards	across	SIDS	

(of	which	the	majority	are	associated	with	extreme	rainfall	and	cyclones/hurricanes)	are	equivalent	

to	10%	of	capital	investment	and	20%	of	government	social	spending,	in	comparison	to	1.2%	and	1%	

in	Europe.	This	depicts	the	high	exposure	of	assets	as	a	proportion	of	the	total	capital	stock	in	SIDS	

(Barnett,	2001).		

	

Moreover,	SIDS	such	as	Fiji	have	complex	and	widespread	vulnerabilities	that	make	flood	risk	greater	

than	areas	with	similar	flood	hazard	probabilities	(Nurse	et	al.,	2014).	Perhaps	most	notably,	

Briguglio	(1995)	provided	an	explanation	for	this	vulnerability	which	encompasses	a	range	of	

biophysical	and	social	factors	that	give	rise	to	vulnerability.	As	well	as	their	high	exposure	to	flood	

events,	SIDS	have	several	qualities,	labelled	as	‘Small	Island	Handicaps’	that	are	conducive	to	the	

increased	vulnerability	to	flooding.	Biophysical	‘handicaps’	include	their	isolated	location,	small	size	

and	low-lying	elevations.	Limited	access	to	international	markets,	narrow	economic	base	and	large	

urban	populations	can	be	classed	as	social	‘handicaps’	(Pelling	and	Uitto,	2001).	This	is	echoed	by	

Nurse	et	al.’s	(2014)	IPCC	AR4	‘Small	Islands’	chapter,	outlining	the	complex	interaction	between	a	

high	hazard	exposure	and	a	unique	set	of	vulnerabilities	which	cannot	be	easily	explained	by	simply	

combining	one	hazard	and	one	particular	vulnerability.		
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These	features	of	SIDS	thus	give	rise	to	an	extraordinarily	high	risk	to	flooding	(UNISDR,	2015a;	UN,	

2015;	Hallegatte	et	al.,	2016;	Eckstein	et	al.,	2017).	Most	recently,	Bündis	Entwicklung	Hilft’s	(2017)	

WorldRiskIndex	report	identifies	the	need	to	focus	on	disaster	risk	and	the	future	impacts	of	climate	

change	with	particular	reference	to	small	island	nations.	They	recognise	the	overwhelming	exposure	

SIDS	face	to	both	quick-onset	extreme	events,	and	slow-onset	hazards	(e.g.	ocean	acidification	or	

rising	sea	levels)	which	combine	with	underlying	vulnerabilities	to	further	exacerbate	risk	in	these	

locations.	Nevertheless,	there	is	little	research	that	provides	quantitative	flood	risk	assessments	

because	of	the	lack	of	appropriate	data	(Bettencourt	et	al.,	2006).	SIDS	are	predominantly	data-

sparse	locations,	meaning	flood	risk	assessment	has	relied	upon	use	of	global	datasets	for	risk	

assessment.	As	Plate	(2002)	and	Cardona	et	al.,	(2012)	suggest,	estimating	flood	hazard	is	a	useful	

first	step	in	determining	the	risk.	Thus,	if	flood	hazard	estimation	can	be	improved,	a	key	element	of	

flood	risk	assessment	can	be	improved.	DEM	quality	is	a	key	step	to	improving	flood	hazard	

estimation,	so	this	thesis	focuses	on	the	application	of	a	new	DEM	TanDEM-X,	to	determine	whether	

this	dataset	has	the	potential	to	improve	flood	hazard	estimates	in	a	SIDS	catchment.		

	

The	next	section	of	this	chapter	will	focus	on	synthesising	the	literature	on	how	flood	hazard	will	be	

estimated	in	this	thesis	–	using	the	hydrodynamic	model	LISFLOOD-FP	-	before	summarising	the	

literature	on	using	DEMs	in	hydrodynamic	modelling	and	how	these	datasets	can	be	appropriately	

processed.	This	literature	is	used	to	inform	the	methodology	for	processing	TanDEM-X	in	Chapter	3.		

2.2 	Flood	Modelling	

As	highlighted	in	Section	2.1,	a	key	component	in	estimating	flood	risk	is	estimating	the	flood	hazard	

(Bates	et	al.,	2000).	This	section	of	the	literature	review	aims	to	broadly	outline	how	hydrodynamic	

models	are	used	to	estimate	flood	hazard,	providing	an	overview	of	the	different	model	approaches	

before	narrowing	the	focus	to	the	LISFLOOD-FP	model	used	in	this	thesis.		
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Flood	models,	often	termed	hydrodynamic	models,	are	defined	as	predictive	models	used	to	

mathematically	estimate	flood	flows,	inundation	extents	and	depths	based	on	a	set	of	parameters	

(Bates	and	De	Roo,	2000).		

Hydrodynamic	models	primarily	need	three	key	inputs	(Hunter	et	al.,	2007):	

1) A	grid	representing	the	topographic	relief	of	the	channel	and	the	floodplain	e.g.	a	Digital	

Terrain	Model.	

2) A	value	of	resistance	to	flow	for	each	grid	cell	e.g.	Manning’s	coefficient	value.	

3) Boundary	flow	or	level	data	in	and	out	of	the	model	domain	e.g.	flow	time-series.	

	

However,	in	many	data-sparse	regions	such	as	SIDS,	detailed	and	accurate	information	on	these	

inputs	are	not	available	(Komi	et	al.,	2017).	Data-sparse	areas	are	typically	defined	as	areas	whereby	

a	lack	of	detailed	topographic	data,	flow	data	or	ground	truth	information	exists	(Schumann	et	al.,	

2014).	Methods	have	been	created	to	overcome	issues	with	data-sparsity	that	are	fundamentally	

useful	for	this	thesis	and	are	discussed	further	in	Section	2.2.5.		

	

Hydrodynamic	models	use	a	set	of	mathematical	functions	to	calculate	fluid	flows.	Most	

hydrodynamic	models	solve	either	the	complete	set,	or	a	variation	of,	the	Saint	Venant	equations,	

depending	on	the	number	of	dimensions	modelled	(Bates	et	al.,	2005).	Discussed	in	more	detail	in	

Section	2.2.2,	one-dimensional	(1D)	approaches	model	flow	of	water	longitudinally.	Two-

dimensional	(2D)	approaches	model	flow	longitudinally,	as	well	as	calculating	lateral	flows.	Three-

dimensional	(3D)	approaches	simulate	water	longitudinally,	laterally	and	vertically.	Only	in	the	event	

of	simulating	3D	turbulent	flow	in	a	hydrodynamic	model	does	the	entire	Reynolds-Averaged	Navier-

Stokes	equation	need	solving.	For	a	full	mathematical	explanation,	see	Ingham	and	Ma	(2005)	or	

Shaw	et	al.,	(2011).	More	often	however,	either	the	1D	or	2D	Saint	Venant	equations	are	used	to	
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simulate	1D	or	2D	flows	(Bates	et	al.,	2005).	Sometimes	referred	to	as	Shallow	Water	Equations	

(SWE),	these	equations	act	as	a	numerical	representation	of	a	flood	wave	attenuating	downstream,	

following	the	basic	premise	that	flood	waves	are	a	few	metres	high,	and	are	therefore	a	‘shallow	

water	phenomenon’	(Bates	et	al.,	2014:840).		

2.2.1 The	Saint	Venant	Equations	

The	1D	Saint	Venant	equations	consider	the	conservation	of	mass	and	momentum	on	a	1D	channel	

flow	(Ingham	and	Ma,	2005).	Equation	1	below	represents	the	continuity	equation	which	ensures	

the	conservation	of	water	volume,	and	Equation	2	represents	the	conservation	of	momentum.	These	

equations	can	be	used	to	calculate	the	velocity	and	depth	at	any	cross-section	along	a	river	channel,	

flowing	in	a	single	direction	(x)	(Bates	et	al.,	2005).	Often,	to	reduce	computational	demand,	three	

simpler	versions	of	the	momentum	equation	are	implemented,	ignoring	components	of	the	second	

equation.	Kinematic	waves	only	include	the	friction	and	bed	slopes,	meaning	it	is	difficult	to	simulate	

backwatering	adequately	(Bates	et	al.,	2013).	Diffusive	waves	ignore	local	and	convection	

acceleration,	and	local	inertial	waves	ignore	convective	acceleration.		
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Q	is	the	volumetric	flow	rate,	A	the	area	of	the	cross	section,	h	the	water	depth,	z	the	bed	elevation,	

g	is	gravity,	n	the	Manning’s	coefficient,	Sf	is	the	water	slope,	So	is	the	channel	bed	slope,	and	t	is	

time.	x	is	the	distance	in	the	x	Cartesian	direction,	where	y	can	be	substituted	when	calculating	the	

y-distance	in	the	2D	equations.	When	considering	2D	flood	flows,	the	2D	Saint	Venant	Equation	is	

applied	(Bates	et	al.,	2005).	The	2D	Saint	Venant	equations	calculate	depth-averaged	velocities	in	the	

x	and	y	Cartesian	directions	also	considering	local	acceleration,	convective	acceleration,	slope,	

Local	 
acceleration 

Convective	 
acceleration 

Bed	slope	 
term 

Friction	 
term 
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pressure	and	friction.	Equation	2	is	constructed	of:	local	acceleration,	convective	acceleration,	water	

slope	or	pressure	term	and	friction	term	respectively.		

1D	and	2D	models	have	been	the	most	widely-applied	models,	as	3D	models	have	a	high	

computational	demand	(Horritt	and	Bates,	2001).	Although	computational	capacity	has	dramatically	

increased	in	the	last	two	decades,	3D	model	computations	are	still	intensive	relative	to	

computational	power	and	are	not	significantly	more	skilful	based	on	typical	input	and	validation	data	

uncertainties	(Hunter	et	al.,	2007).	Often	when	considering	which	model	type	is	most	suitable,	the	

user	must	determine	the	scale,	computational	power	and	the	information	required	to	determine	

which	model	produces	the	most	suitable	outputs	for	the	intended	purpose	against	available	

validation	data	using	the	least	computational	power	(Bates	et	al.,	2005).	There	are	many	different	

commercial	hydrodynamic	modelling	packages	(see	Neelz	and	Pender,	2013).	As	this	thesis	uses	

LISFLOOD-FP,	other	packages	are	briefly	mentioned,	but	LISFLOOD-FP	is	described	in	more	detail	in	

Section	2.2.5.		

2.2.2 1D	Models	

Bates	and	De	Roo	(2000)	describe	1D	models	as	the	minimum	required	to	simulate	the	propagation	

of	a	flood	wave	along	the	cross-section	of	a	river,	as	more	simplistic	planar	surface	approximations	

do	not	capture	dynamic	flood	wave	behaviour	adequately.	1D	models	are	primarily	useful	for	in-

bank	flow	as	they	provide	a	one-dimensional	representation	of	a	flood	wave	attenuating	

downstream.	However,	most	1D	packages	solve	floodplain	flow	by	using	an	extended	cross	section	

to	represent	the	floodplain	and	channel	together,	or	by	treating	the	floodplain	as	a	separate	storage	

volume	when	water	flows	out	of	bank,	whereby	during	each	time-step	water	flows	in	and	out	of	a	

floodplain	reservoir	based	on	surface	height	gradients	between	cells	(Bates	et	al.,	2010).	Despite	the	

relative	simplicity	of	the	1D	model,	Horritt	and	Bates	(2002)	detail	similar	flood	event	simulations	

when	comparing	the	1D	HEC-RAS	model	with	the	2D	TELEMAC-2D	model	on	the	River	Severn,	

indicating	that	1D	models	can	provide	a	similar	level	of	simulation	skill	in	certain	cases.		
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Due	to	their	low	computational	requirements	1D	models	have	been	the	most	operationalised	to	

date,	providing	a	framework	for	several	flood	modelling	packages	such	as	HEC-RAS	and	MIKE11	

(Castellarin	et	al.,	2009).	The	1D	HEC-RAS	model	has	been	used	to	estimate	inundation	extents	for	

the	Waidina	tributary	on	the	Rewa	river	in	Fiji	(Rathnayake	et	al.,	2015);	one	of	two	published	

journal	papers	outlining	flood	modelling	in	Fiji	(Yeo	et	al.,	2007).		

2.2.3 2D	Models	

Although	they	are	more	computationally	intensive,	studies	that	are	particularly	interested	in	

floodplain	water	depths,	or	areas	where	there	are	extensive	floodplain	flows,	are	best	suited	to	2D	

models	such	as	TELEMAC,	LISFLOOD-FP	and	TUFLOW	(Neelz	and	Pender,	2013).	This	is	because	2D	

models	include	the	calculation	of	depth-averaged	velocities	in	the	2D	SWE	which	allows	the	

consideration	of	changing	inundation	extents	across	a	floodplain	over	time	(Horritt	and	Bates,	2001).	

For	example,	Wilson	et	al.,	(2007)	conduct	the	first	large-scale	2D	model	of	seasonal	flooding	in	the	

Amazon,	which	although	computationally	expensive,	was	justified	because	an	in-depth	view	of	the	

dynamic	flood	processes	over	time	was	required.		

2.2.4 3D	Models	

Despite	the	strengths	of	reduced-complexity	hydrodynamic	models	such	as	the	1D	and	2D	

approximations	outlined,	if	the	aim	of	the	model	is	to	accurately	simulate	a	flood	event,	then	3D	

may	have	the	most	realistic	flow	simulation;	although	this	is	difficult	to	demonstrate	conclusively	in	

practice	(Lane	et	al.,	1999).	Flood	flows	are	inherently	a	three-dimensional	phenomenon,	variable	

over	time	and	dominated	by	turbulence	(Ingham	and	Ma,	2005).	Thus,	the	models	producing	the	

most	valid	flow	estimations	are	likely	those	that	include	these	factors.	A	small	number	of	studies	

have	used	full	3D	derivations	of	the	Reynold’s-Averaged	Navier-Stokes	equation,	including	Stoesser	

et	al.,	(2003)	whom	model	a	3.5km	stretch	of	the	Rhine	River,	Germany.	Dye	tracing	experiments	
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showed	that	the	model	could	simulate	turbulent	flows	and	varying	velocity	in	the	channel.	Other	

examples	of	3D	model	codes	implemented	in	studies	include	CFX,	FLUENT	and	PHOENIX	(Castellarin	

et	al.,	2009).	

		

Several	factors	currently	constrain	the	widespread	application	of	3D	modelling	(Bates	et	al.,	2005).	

As	well	as	the	computational	power	required	which	inhibits	most	users,	data	used	to	parameterise	

and	validate	the	models	are	not	often	detailed	enough	to	justify	the	use	of	3D	models,	with	no	

additional	benefit	over	2D	models	unless	flume	data	is	available	(Lane	et	al.,	1999).	3D	models	may	

become	more	feasible	in	the	future	as	computational	power	and	the	quality	of	boundary	condition	

and	validation	data	improves	(Bates	et	al.,	2005).	Still,	Bates	and	De	Roo	(2000)	and	Bates	et	al.,	

(2005)	highlight	that	the	most	suitable	hydrodynamic	models	are	those	that	provide	the	required	

flood	information	in	the	simplest	form,	so	it	will	be	important	to	consider	whether	3D	models	can	

provide	more	information	than	the	current	models	to	justify	the	increased	complexity.		

2.2.5 LISFLOOD-FP	

Developed	from	the	viewpoint	that	a	model	providing	the	required	flood	information	in	the	simplest	

form	is	preferable	as	is	described	in	Occam’s	Razor,	LISFLOOD-FP	was	created	to	provide	accurate	

flood	inundation	simulations	using	a	simple	and	logical	process	(Bates	and	De	Roo,	2000).	This	

section	reviews	the	functionality	of	1D-2D	models	with	particular	reference	to	LISFLOOD-FP,	as	well	

as	providing	a	justification	for	choosing	this	model.	This	thesis	uses	the	1D-2D	subgrid	variant	of	the	

LISFLOOD-FP	model	(Neal	et	al.,	2012a),	whereby	both	a	1D	and	2D	solver	are	used	to	simulate	

channel	and	floodplain	flow	(Bates	et	al.,	2006).	

	

First	developed	and	described	by	Bates	and	De	Roo	(2000),	LISFLOOD-FP	is	a	raster-based	

hydrodynamic	model	that	has	been	continuously	developed	since	its	original	simple	storage	model	
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(Bates	et	al.,	2010).	1D,	2D	and	1D-2D	solvers	have	been	developed	for	use	within	the	model,	

dependent	on	the	needs	of	the	user.	The	user-manual	gives	details	on	the	different	solvers,	including	

the	kinematic,	adaptive,	diffusive	and	sub-grid	solvers,	which	solve	various	simplifications	of	the	

SWE	and	have	been	developed	over	time	since	the	Bates	and	De	Roo’s	(2000)	initial	release	(see	

Bates	et	al.,	2013).	The	LISFLOOD-FP	model	solvers	have	been	widely	implemented	and	validated	in	

the	flood	modelling	community	(Hunter	et	al.,	2008;	Neal	et	al.,	2012b).	Most	recently,	the	inertial	

formulation	of	LISFLOOD-FP	has	been	used	as	the	base	model	for	the	global	flood	model	developed	

by	Sampson	et	al.,	(2015).	

	

LISFLOOD-FP	is	predominantly	implemented	as	a	1D-2D	model	(Bates	et	al.,	2013).	First	described	by	

Cunge	et	al.,	(1980),	the	strengths	of	1D	and	2D	models	are	combined	to	improve	inundation	

prediction,	whilst	still	prioritising	the	simplest	method.	In-bank	flows	are	calculated	using	the	1D	

equations.	Once	bankfull	height	is	exceeded,	a	2D	model	solver	is	used	to	calculate	floodplain	flow	

(Bates	et	al.,	2006).	This	model	structure	has	the	benefit	of	the	reduced	computational	power	

needed	to	solve	the	1D	component	when	water	flow	is	in-bank,	whilst	utilising	the	strengths	of	the	

2D	model	for	areas	of	the	river	that	exceed	the	channel	confines,	allowing	a	more	accurate	

simulation	of	floodplain	flows	in	comparison	to	the	storage-volume	approach	(Neal	et	al.,	2012a).			

	

Within	LISFLOOD-FP,	a	solver	of	relevance	to	this	thesis	is	the	‘sub-grid’	model,	developed	by	Neal	et	

al.,	(2012a).	This	solver	takes	a	1D-2D	approach	and	is	useful	for	modelling	in	data-sparse	

catchments	where	most	input	datasets	are	derived	from	global-scale	DEMs	discussed	in	Section	2.3.	

The	key	feature	of	this	solver	is	that	river	channels	smaller	than	the	DEM	resolution	can	be	included	

in	the	model	simulation	(Komi	et	al.,	2017),	and	is	adopted	in	the	global	flood	model	described	in	

Sampson	et	al.,	(2015)	to	account	for	data-sparse	catchments	without	detailed	channel	information.	

In	Neal	et	al.’s	(2012a)	comparison	of	four	solvers	to	simulate	flows	along	the	River	Niger,	Mali,	the	
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sub-grid	model	significantly	improved	the	accuracy	of	simulated	water	depths,	flood	wave	timings	

and	inundation	extents.	The	main	assumption	is	that	increased	connectivity	of	small	river	channels	

over	floodplains	provides	an	improved	representation	of	the	flow	dynamics.	Fernández	et	al.,	(2016)	

used	the	sub-grid	LISFLOOD-FP	solver	to	simulate	flooding	on	the	data-sparse	Logone	floodplain,	

Cameroon,	and	found	agreement	with	Neal	et	al.’s	(2012a)	conclusion.		

	

There	are	four	key	justifications	for	the	use	of	the	subgrid	LISFLOOD-FP	solver	in	this	thesis.	Firstly,	

SIDS	are	inherently	data-sparse,	lacking	channel	information	such	as	bed	elevation	and	widths	

meaning	remotely-sensed	data	is	relied	upon.	Areas	of	the	river	cross-section	modelled	in	this	thesis	

are	also	smaller	than	the	grid	size	at	90m,	meaning	connectivity	would	be	reduced	if	the	sub-grid	

solver	was	not	used	(Yeo,	2015).	Thus	far,	of	the	two	published	studies	detailing	flood	inundation	in	

Fiji,	Rathnayake	et	al.,	(2015)	use	the	1D	HEC-RAS	model,	and	Nawai	et	al.,	(2015)	use	a	2D	rainfall-

runoff-inundation	model,	and	both	models	have	grid	cell	sizes	larger	than	the	smaller	river	channels.	

Moreover,	based	on	benchmarking	studies	of	different	model	types	such	as	Hunter	et	al.,	(2008)	and	

Horritt	and	Bates	(2002),	there	are	only	subtle	differences	between	the	numerical	simplifications	of	

the	shallow	water	equations	made	by	the	models,	which	means	the	choice	of	model	does	not	dictate	

the	representation	of	the	flood	wave.	This	thesis	has	access	to	the	model	source	code,	meaning	the	

representation	of	the	underlying	processes	can	be	better	understood.	Finally,	the	model	is	

inherently	fast,	making	it	methodologically	advantageous	(Fernández	et	al.,	2016).													

																																																																

Overall,	the	range	of	approaches	to	modelling	the	flood	hazard	as	a	component	of	a	flood	risk	

assessment	are	diverse,	based	on	a	number	of	different	mathematical	representations	of	flow,	user	

needs	and	computational	demand	(Bates	et	al.,	2005).	The	formation,	improvement	and	

implementation	of	hydrodynamic	models	has	proliferated	over	the	last	two	decades,	and	one	key	

reason	for	this	is	the	substantial	increase	in	remote	sensing	technology	(Bates,	2012).		
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2.3 	Digital	Elevation	Models	

Despite	the	numerous	processes	involved	in	simulating	river	flows,	adding	highly-accurate	

topography	data	into	a	hydrodynamic	model	is	paramount	for	the	valid	simulation	of	flooding	

(Marks	and	Bates,	2000).	A	DEM	is	defined	by	Sanders	(2007:1831)	as	a	‘grid	of	elevation	data’,	

whereby	each	elevation	assigned	to	a	cell	is	an	average	of	all	elevation	values	recorded	within	that	

cell.	Most	DEMs	are	Digital	Surface	Models	(DSM),	measuring	surface	objects	such	as	vegetation	and	

buildings.	However,	a	Digital	Terrain	Model	(DTM)	is	required	for	input	into	a	hydrodynamic	model,	

representing	‘bare	earth’	topography	(Sanders,	2007).			

	

Two	key	features	of	a	DEM	are	their	horizontal	resolution	-	or	grid	cell	size	–	and	their	vertical	

accuracy	(Sanders,	2007).	Vertical	accuracy	can	be	reported	as	either	absolute	or	relative	(Rodriguez	

et	al.,	2006).	Absolute	vertical	accuracy	refers	to	the	difference	in	elevation	height	between	DEM	

height	and	the	assigned	ellipsoid	or	geoid	depending	on	the	DEM’s	vertical	coordinate	system	

(Rizzoli	et	al.,	2017).	Relative	vertical	accuracy	refers	to	the	difference	in	elevation	heights	between	

the	modelled	and	the	observed	heights	and	is	more	commonly	used	to	describe	DEM	error	than	

absolute	vertical	accuracy	(Wise,	2000).		

2.3.1 Types	of	Digital	Elevation	Model	

Many	methods	can	be	used	to	collect	elevation	data	using	remote	sensing,	including	Airborne	Laser	

Altimetry	(LiDAR),	Interferometric	Synthetic	Aperture	Radar	(InSAR)	and	photogrammetry	(Bates	et	

al.,	2014).	Each	method	varies	in	cost,	accuracy,	resolution	and	coverage,	and	thus	the	needs	of	the	

user	and	availability	of	data	often	determine	which	method	is	used	(Smith	et	al.,	2006).		

	

	



	 	 	
	

27	
	

2.3.1.1 LiDAR	

Light	Detecting	and	Ranging	(LiDAR)	data	are	collected	using	an	airborne	laser	altimeter.	A	series	of	

laser	pulses	are	transmitted	from	an	aircraft	to	measure	the	ground	surface,	and	an	elevation	value	

is	determined	by	the	triangulation	of	the	time	taken	for	the	pulse	to	return	and	instrument	GPS	

location	(Baltsavias,	1999;	French,	2003).	LiDAR	data	has	greatly	advanced	the	application	of	

remotely-sensed	data	in	flood	modelling	(Bates,	2004;	2012).	There	are	four	key	reasons	for	this,	

including:	high	horizontal	and	vertical	accuracy,	high	density	(typically	>5	points	per	m2:	Pirotti	and	

Tarolli,	2010)	of	elevation	points	from	multiple	pulse	returns,	reduced	noise	from	radar	scatter	in	

comparison	to	radar	systems	and	swift	data-collection	(Marks	and	Bates,	2000).	LiDAR	datasets	

provide	an	accurate	representation	of	the	surface	because	of	the	average	relative	vertical	accuracy	

between	5-20	centimetres	and	the	density	of	multiple	returns	(Baltsavias,	1999;	Di	Baldassarre	and	

Uhlenbrook,	2012).	These	multiple	returns	include	the	first	and	last	returns,	which	are	often	used	to	

distinguish	‘bare	earth’	and	‘object’	heights	(Bates,	2004).		

	

LiDAR	data	are	suitable	for	flood	estimation	at	the	local	scale	(10-1000km2);	heralded	as	particularly	

useful	in	areas	with	fine-scale	(<10m)	topographic	variability	such	as	SIDS	and	urban	areas	(Gesch,	

2009).	As	the	vertical	accuracy	of	LiDAR	measurements	is	high	(5-20cm:	Baltsavias,	1999),	

predictions	are	improved	in	comparison	to	use	of	spaceborne	DEMs	with	lower	relative	vertical	

accuracy	(e.g.	SRTM	~10m:	Rodriguez	et	al.,	2006).	However,	high	accuracy	incurs	a	high	cost	

(Simpson	et	al.,	2009).	This	is	a	key	limitation	in	the	context	of	SIDS,	whereby	collection	of	LiDAR	for	

a	small	community	in	the	Pacific	(10-100km2)	is	estimated	to	cost	AUS$500,000-1,000,000	(Albert	et	

al.,	2013).	SIDS	have	few	local	technical	specialists	able	to	collect	and	process	the	data,	leading	to	a	

reliance	on	external	analysis	of	the	data,	reducing	community	participation	and	increasing	cost.	As	a	

result,	InSAR	datasets	such	as	SRTM	are	relied	upon	in	this	context	as	they	are	open	access	and	

therefore	freely-available	to	use	(Gesch,	2009).	Nonetheless,	recent	calls	for	improved	LiDAR	
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coverage	in	developing	regions	for	adequate	flood	risk	assessment	have	led	to	increasing	investment	

in	LiDAR	acquisition	of	localised	floodplains	in	developing	regions	(World	Bank,	2017).		

2.3.1.2 Interferometric	Synthetic	Aperture	Radar	(InSAR)	

Airborne	and	spaceborne	Interferometric	Synthetic	Aperture	Radar	(InSAR)	systems	are	based	on	the	

same	interferometric	physical	principles	and	create	DSMs	(Sanders,	2007).	Two	signal	pulses	

backscattered	from	the	Earth’s	surface	to	two	SAR	antennae	are	used	to	calculate	the	

interferometric	phase	difference	between	the	two	signals	to	produce	a	surface	elevation	height	

(Rodriguez	et	al.,	2006).	A	prominent	example	of	airborne	InSAR	application	is	TOPSAR,	a	C-band	

radar	used	to	create	airborne	DSMs,	with	a	RMSE	of	~1m	(Zebker	et	al.,	1992).	Airborne	DEMS	have	

limited	application	in	SIDS	(Gesch,	2009),	and	thus	this	thesis	focuses	on	the	spaceborne	InSAR	

applications.	

	

Regarding	spaceborne	InSAR,	the	greater	altitude	to	which	the	pulses	must	travel	leads	to	a	

decrease	in	RMSE	vertical	accuracy	in	comparison	to	airborne	InSAR,	with	relative	vertical	accuracies	

of	~10m	for	C-band	radar	SRTM	(Rodriguez	et	al.,	2006).	Nonetheless,	this	system	can	measure	

elevation	at	a	global	scale	in	a	much	smaller	timeframe	(11	days	for	SRTM;	Rabus	et	al.,	2003)	due	to	

the	velocity	of	the	satellite	orbit	(Rosen	et	al.,	2000),	making	it	a	comparatively	‘low-cost’	dataset	

per	kilometre	(Yan	et	al.,	2015).	Spaceborne	InSAR	is	conducted	using	two	methods:	repeat-pass	and	

single-pass	interferometry	(Rabus	et	al.,	2003).	Repeat-pass	interferometry	emits	the	radar	pulses	

using	the	same	system	at	two	different	intervals,	whereas	single-pass	interferometry	utilises	two	

Synthetic	Aperture	Radar	systems	operated	in	tandem	(Rosen	et	al.,	2000).	Spaceborne	DEMs	over	

the	last	decade	have	received	widespread	attention	in	flood	modelling,	primarily	due	to	their	global	

coverage	and	increased	resolution	in	comparison	to	earlier	DEMs	such	as	ACE	GDEM	and	GTOP30	

(Yan	et	al.,	2015).	
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2.3.1.3 Photogrammetry	

Previously,	photogrammetry	has	been	a	main	method	used	to	acquire	elevation	data	for	DEM	

production	(Lane,	2000;	Hohle,	2009).	Photogrammetry	uses	aerial	or	spaceborne	images	collected	

of	the	Earth’s	surface	to	produce	DEMs	(Pulighe	and	Fava,	2013).	DEMs	are	produced	in	a	two-step	

process	(Toutin,	2008).	Firstly,	aerial	images	are	captured,	using	digital	(and	previously	analogue)	

cameras.	Secondly,	through	manual	or	automated	stereoscopic	pairings	and	image	matching,	images	

taken	from	different	angles	are	matched	using	area-based	matching,	feature-based	matching	or	

relational	matching	to	produce	a	DEM	(Fabris	and	Pesci,	2005).	Matched	images	are	known	as	stereo	

pairs,	and	images	are	matched	from	the	same	date	using	along-track	stereo	pairs	or	from	multiple	

dates	using	across-track	stereo	pairs	(Toutin,	2008).	The	accuracy	of	DEMs	produced	using	

photogrammetric	techniques	are	highly	dependent	on	several	factors,	including:	flying	altitude,	

camera-object	distance,	image	resolution,	shadow	and	vegetation	(Pulighe	and	Fava,	2013).	Best	

practice	for	image	acquisition	suggests	images	should	be	captured	in	off-leaf	conditions	if	possible,	

considering	the	sun	angle	and	other	atmospheric	conditions,	meaning	a	number	of	factors	must	be	

considered	to	ensure	good	quality	image	capture	(Hohle,	2009).	As	a	result,	photogrammetric	

techniques	are	weather-dependent	and	influenced	by	cloud	cover	and	shadow,	often	reducing	

accuracy	of	the	resultant	DEM.	The	Advanced	Spaceborne	Thermal	Emission	and	Reflection	

Radiometer	(ASTER)	DEM	is	the	most	widely-applied	photogrammetric	DEM	applied	in	

hydrodynamic	modelling	(Sampson	et	al.,	2016),	and	is	discussed	in	Section	2.3.2.2.	Another	

example	of	a	photogrammetric	DEM	is	AW3D.	The	Advanced	Land	Observing	Satellite	with	the	

Panchromatic	Remote-Sensing	Instrument	for	Stereo	Mapping	(ALOS/PRISM)	was	a	mission	

launched	in	partnership	with	the	Japan	Aerospace	Exploration	Agency	(JAXA),	NTT	DATA	Corp.	and	

the	Remote	Sensing	Technology	Centre	of	Japan	in	2006	(Tadono	et	al.,	2015).	A	DSM	known	as	

AW3D	was	generated	using	optical	PRISM	data,	created	using	over	3	million	satellite	orthorectified	

images	to	produce	a	DSM	with	a	~5m	horizontal	resolution,	and	5m	height	accuracy.	The	AW3D	
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dataset	was	released	commercially	in	2014,	although	the	AW3D30	(~30m	version)	was	made	publicly	

available	from	JAXA	in	2015.		

2.3.2 Key	Global	Datasets	in	Flood	Model	Applications	

Spaceborne	datasets	have	provided	particularly	useful	for	applications	in	data-sparse	locations	such	

as	SIDS,	whereby	previously	the	cost	of	using	topographic	data	were	too	great	(Farr	et	al.,	2007).	The	

two	most	widely-applied	global	datasets	in	flood	modelling	studies	are	discussed	and	compared	

below,	before	outlining	the	research	suggesting	the	potential	of	the	most	recently-released	

TanDEM-X	DEM.	

2.3.2.1 Shuttle	Radar	Topography	Mission	(SRTM)	

The	Shuttle	Radar	Topography	Mission	(SRTM)	DEM	is	a	global	single-pass	spaceborne	

Interferometric	Synthetic	Aperture	Radar	(InSAR)	C	and	X-band	system,	flown	between	February	

11th-22nd,	2000,	in	a	joint	mission	performed	by	NASA,	the	German	Aerospace	Center	(DLR)	and	

Italian	Space	Agency	(Rabus	et	al.,	2003).	The	goal	of	the	mission	was	to	create	the	first	globally	

consistent	DEM	between	60oN-54oS	(Rodriguez	et	al.,	2006).	This	mission	was	the	first	global	single-

pass	InSAR	operation,	initially	released	as	a	3-arc	second	(~90m)	product	(Farr	et	al.,	2007)	and	re-

released	at	1-arc	second	(~30m)	in	2015.	It	has	a	quoted	relative	vertical	accuracy	of	<6m	for	the	X-

band	SAR	and	<10m	for	the	C-band	SAR	and	an	absolute	vertical	accuracy	of	<16m	(Farr	et	al.,	2007).	

The	SRTM	DEM	is	the	most	widely-used	global	DEM	in	flood	modelling	applications,	despite	the	

argument	that	a	6m	relative	vertical	accuracy	at	90m	resolution	is	greater	than	most	flood	waves	

(<2m)	(Wilson	et	al.,	2007).	Benchmark	comparisons	such	as	Sanders	et	al.,	(2007)	identify	25%	

difference	in	flooded	area	between	models	using	LiDAR,	USGS	National	Elevation	Dataset	(NED)	and	

SRTM	data,	despite	stark	differences	in	vertical	accuracy	(ranging	from	0.15m	for	LiDAR	to	15m	for	

SRTM).	Furthermore,	Berry	et	al.,	(2007)	show	concordance	between	SRTM	elevation	heights	and	

‘ground	truth’	altimeter	heights,	and	Jarvis	et	al.,	(2004)	demonstrates	an	improvement	of	12m	in	
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absolute	vertical	accuracy	in	comparison	to	the	coarser	GTOPO30	DEM.	However,	there	are	several	

limitations	of	the	SRTM	including:	noise	and	‘speckle’,	presence	of	vegetation	and	building	artefacts,	

striping	and	absolute	bias	(Rodriguez	et	al.,	2006;	Sampson	et	al.,	2016;	Yamazaki	et	al.,	2012).	

2.3.2.2 Advanced	Spaceborne	Thermal	Emission	and	Reflection	

Radiometer	(ASTER)	

ASTER	is	an	example	of	a	spaceborne	DEM	often	compared	with	SRTM	(Sanders,	2007;	Rexer	and	

Hirt,	2014).	In	collaboration	with	the	Japanese	Ministry	of	Economy,	Trade	and	Industry	and	NASA,	

the	ASTER	DEM	was	created	for	all	areas	covering	83oN-83os	with	a	horizontal	resolution	of	30m,	

improving	both	coverage	and	resolution	over	the	SRTM	(Fujisada	et	al.,	2012).	A	multispectral	

imaging	sensor	was	used	aboard	the	NASA	Terra	spacecraft,	capturing	a	series	of	stereoscopic	

images	that	are	stacked	and	correlated	to	process	a	DEM.	Version	1	(ASTERv1)	was	released	in	2009	

with	an	overall	relative	vertical	accuracy	of	10-25m,	followed	by	an	upgraded	version	in	2011	

(ASTERv2).		

	

Although	ASTER	has	a	finer	horizontal	resolution	than	SRTM,	SRTM	has	been	more	widely-

implemented	in	flood	modelling	studies	than	ASTER	(Sampson	et	al.,	2016).	Benchmarking	studies	

comparing	the	accuracy	and	usefulness	of	the	two	datasets,	found	vertical	accuracies	over	Australia	

of	5m	for	SRTM	compared	to	9m	for	ASTER,	thus	providing	justification	for	the	greater	

implementation	of	SRTM	(Hirt	et	al.,	2010;	Rexer	and	Hirt,	2014).	However,	Jing	et	al.,	(2013)	suggest	

that	ASTERv2	can	be	useful	in	areas	where	SRTM	artefacts	such	as	voids	are	widespread,	although	

artefacts	such	as	cloud	cover	in	the	ASTER	are	also	a	limiting	factor	(Chirico,	2004).		

	

As	SIDS	rely	on	global	datasets	such	as	SRTM	and	ASTER,	it	is	important	to	consider	how	these	

datasets	have	been	applied	in	this	context.	Bannari	et	al.,	(2017)	concluded	that	for	Bahrain,	
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ASTERv2	was	superior	to	SRTM	90m,	but	inferior	to	SRTM	30m,	showing	the	importance	of	

horizontal	resolution	in	areas	where	the	resolution	of	smaller-scale	features	is	necessary	for	

accurate	simulation.	Furthermore,	in	the	Caribbean	context,	and	echoed	by	Simpson	et	al.,	(2009),	

Chirico	(2004)	found	a	lower	RMSE	of	16m	for	the	SRTM	in	comparison	to	22.46m	for	ASTER,	thus	

identifying	SRTM	as	more	applicable	to	Caribbean	SIDS,	despite	the	argument	that	even	16m	is	much	

larger	than	the	range	of	floodplain	elevations	in	many	of	these	low-lying	areas.	

2.3.2.3 TanDEM-X	-	The	Future	of	Global	DEMs?	

The	TanDEM-X	mission	provides	a	potential	opportunity	to	meet	the	need	for	a	high-accuracy,	

global-scale	DEM	for	flood	inundation	modelling,	as	well	as	specifically	in	SIDS.	TanDEM-X	is	a	global,	

spaceborne	DEM,	acquired	at	least	twice	between	December	2010	and	January	2015	using	an	X-

band	bistatic	single-pass	Interferometric	Synthetic	Aperture	Radar	(InSAR)	system	in	a	public-private	

partnership	between	the	German	Aerospace	Center	(DLR)	and	Airbus	(Rizzoli	et	al.,	2017).	Two	SAR	

systems,	TerraSAR-X	and	TanDEM-X	were	flown	in	close	helix	orbit,	between	300-500m	apart,	

producing	a	high-precision,	globally-consistent	DEM	product	(Borla-Tridon	et	al.,	2016).	The	DEM	has	

a	posting	of	0.4	arc-seconds	(~12m),	and	a	relative	vertical	accuracy	of	2m	in	low	slope	(<20%)	areas	

and	4m	in	steep	slope	areas	(>20%),	providing	substantial	promise	of	improved	accuracy	in	

comparison	to	previous	global	spaceborne	DEMs	(Krieger	et	al.,	2007;	Rizzoli	et	al.,	2017).		

	

Nonetheless,	to	the	best	of	our	knowledge,	no	published	research	has	yet	applied	TanDEM-X	in	a	

hydrodynamic	modelling	test	case.	Hence,	a	key	objective	of	this	thesis	is	to	benchmark	the	capacity	

of	TanDEM-X	to	simulate	flood	extents	in	comparison	to	SRTM	and	LiDAR	datasets.	SRTM	was	

chosen	as	the	most	widely	used	spaceborne	DEM	in	flood	modelling	in	SIDS	(Albert	et	al.,	2013).	

LiDAR	was	chosen	because	it	is	the	most	accurate	DEM	available	in	the	study	site.	TanDEM-X	is	a	

DSM,	measuring	surface	objects	(Wessel	et	al.,	2018).	The	X-band	SAR	system	has	a	limited	capacity	

to	penetrate	vegetation,	leading	to	volume	decorrelation	over	densely-forested	areas	and	reduced	
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vertical	accuracy	(Martone	et	al.,	2012).	To	date,	a	limited	number	of	studies	have	validated	the	

TanDEM-X	DEM	(Gruber	et	al.,	2012;	Baade	and	Schmillius,	2016;	Rexer	and	Hirt,	2016).	Most	

recently,	Wessel	et	al.,	(2018)	validated	the	TanDEM-X	DEM	against	GPS	data,	calculating	the	

absolute	vertical	error	as	the	Root	Mean	Square	Error	(RMSE)	between	GPS	and	DEM	heights.	They	

reported	an	absolute	height	error	of	<2m	for	the	TanDEM-X	in	the	test	cases	they	examined.	Thus	

far,	results	indicate	a	superior	accuracy	in	comparison	to	SRTM	and	ASTER,	giving	the	promise	of	an	

improved	global	DEM	for	a	variety	of	geoscience	applications.	As	a	DTM	is	required	for	flood	

inundation	models,	a	suitable	method	for	TanDEM-X	processing	is	necessary,	and	potential	

processing	methods	used	to	guide	the	methodology	developed	in	this	thesis	are	discussed	in	Section	

2.4.2.	

2.4 	DEM	Error	and	Processing	

As	Bates	(2012)	argues	DEM	quality	is	an	important	factor	in	hydrodynamic	model	skill,	the	errors	

present	in	these	global	datasets	-	and	how	to	remove	or	process	them	–	are	a	key	discussion	point	in	

the	literature	surrounding	terrain	data	in	flood	modelling.	This	section	outlines	the	key	error	sources	

in	DEMs,	with	particular	reference	to	spaceborne	InSAR	DEMs,	as	well	as	synthesising	the	literature	

detailing	numerous	methods	used	to	process	SRTM	and	LiDAR,	as	these	are	the	main	datasets	used	

in	the	literature.	The	methodologies	are	significantly	different,	largely	due	to	the	difference	in	

horizontal	resolution	of	the	DEM	used,	and	thus	this	must	be	considered	when	determining	an	

appropriate	method	for	TanDEM-X,	in	which	horizontal	resolution	is	different	again.	For	these	

purposes,	methods	are	described	as	coarse-scale	if	suited	to	a	DEM	with	a	horizontal	resolution	of	

~90m	typically	used	for	SRTM	processing,	and	fine-scale	if	suited	to	a	DEM	with	a	horizontal	

resolution	of	<5m	which	are	typical	of	LiDAR	processing	methods.		
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2.4.1 DEM	Error	

When	comparing	global	DEM	products,	the	limitations	are	dictated	by	the	error	(Yan	et	al.,	2015).	

Error	can	be	both	vertical	and	horizontal,	although	vertical	error	is	more	widely	reported.	Wise	

(2000)	categorises	error	as	data-based,	whereby	error	resides	in	the	data	itself,	and	model-based,	

whereby	error	is	introduced	to	the	DEM	through	processing	and	creation	of	the	DEM.	Often,	error	is	

categorised	as	random,	systematic	or	a	blunder	(Wise,	2002;	Weschler,	2007).	Random	errors	are	

unpredictable	disparities	in	the	data	(Smith	et	al.,	2006).	Systematic	error	is	generated	during	the	

DEM	process	and	often	follows	fixed	patterns	e.g.	striping	error.	Blunders	are	associated	with	human	

error	or	equipment	failure	and	can	be	easily	removed	if	identified	(Weschler,	2007).	Error	in	a	DEM	is	

most	commonly	reported	as	a	RMSE,	bias,	standard	deviation	or	mean	error	statistic	(Smith	et	al.,	

2006).	These	statistics	provide	a	singular	assessment	across	the	whole	dataset,	assuming	that	error	

is	random	and	normally	distributed	(Carlisle,	2005).	Nonetheless,	a	number	of	scholars	have	

indicated	that	error	would	be	better	reported	with	consideration	of	the	spatial	distribution	(Carlisle,	

2005;	Weschler,	2007;	Fisher	and	Tate,	2006).		

Key	examples	of	DEM	error	such	as	speckle	noise,	voids,	sinks	and	striping	(Yamazaki	et	al.,	2012)	are	

summarised	in	Table	1.	Error	often	introduces	artefacts	into	the	DEM	surface,	affecting	vertical	

accuracy	(Weschler,	2007).	Hirt	(2018:5)	describes	an	‘artefact’	as	a	‘step-like	disruption’	that	is	not	

representative	of	actual	terrain.	It	is	necessary	to	remove	such	artefacts	to	successfully	process	a	

DSM	product	to	a	DTM	for	input	into	a	hydrodynamic	model.		

2.4.2 Processing	a	Digital	Surface	Model	to	a	Digital	Terrain	Model	

Due	in	part	to	the	widespread	use	of	SRTM,	several	limitations	have	been	outlined	with	processing	

SRTM	to	a	DTM	(Sampson	et	al.,	2016).	Many	methods	have	been	described	to	increase	the	

suitability	of	SRTM	for	flood	models,	including	vegetation	removal	(Baugh	et	al.,	2013;	O’Loughlin	et	

al.,	2016),	speckle	and	noise	filtering	(Yamazaki	et	al.,	2017),	hydrological	corrections	(Yamazaki	et	
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al.,	2012;	Jarihani	et	al.,	2015)	and	void-filling	processes	(Jarvis	et	al.,	2008;	Lehner	et	al.,	2008).	

These	methods	aim	to	process	the	DSM	model	to	a	model	better-representing	‘bare	earth’	or	a	DTM.	

The	most	common	errors	and	processing	methods	are	summarised	in	Table	1,	and	vegetation	

removal	is	discussed	further	as	this	is	the	key	processing	technique	of	interest	in	this	thesis.		

Table	1	-	Table	outlining	the	key	errors	found	in	Digital	Elevation	Models	and	the	processing	methods	detailed	in	the	
literature.	

	

2.4.3 Artefact	Removal	

Over	time,	SRTM	and	ASTER	products	have	been	improved	to	reduce	error.	For	example,	the	original	

release	of	SRTM	(Rabus	et	al.,	2003)	included	several	pits,	spikes	and	voids,	whereas	SRTM	(v2)	had	

Artefact	 Explanation	 Processing	methods	
Striping	error	 Medium	wavelength	(500m	–	

50km)	undulation	present	in	the	
DEM	(Rodriguez	et	al.,	2006).	

Two-dimensional	Fourier	transform	filter	
(Gallant	et	al.,	2012;	Tarakegn	and	Savama,	
2013;	Yamazaki	et	al.,	2017);	simple	cut	
filter	(Arrell	et	al.,	2008)		

Absolute	bias	 Average	elevation	shift	or	bias	
across	the	domain	(Yamazaki	et	
al.,	2017).	

Reference	to	ICESat	centroid	elevations	
(Yamazaki	et	al.,	2017)	

Voids	 Areas	of	‘no	data’	(Jarvis	et	al.,	
2008).	

Void	interpolation	(Jarvis	et	al.,	2008);	
Iterative	neighbourhood	analysis	(Lehner	et	
al.,	2008)	

Sinks	 Spurious	or	artificial	depressions	
in	elevation	(Wise,	2000).		

Fill	(Lehner	et	al.,	2008);	Lift	(Jenson	and	
Domingue,	1988);	Priority-flood	algorithm	
(Barnes	et	al.,	2014);	Simplified	erosion	
model	(Grimaldi	et	al.,	2007)	

Speckle	 Surface	reflectance	leads	to	
random	pixel	variation	(Yamazaki	
et	al.,	2017).	

Adaptive	smoothing	filter	(Gallant,	2011;	
Yamazaki	et	al.,	2017);	aggregating	DEM	
resolution	(Neal	et	al.,	2012b);	wavelet	
filter	(Falorni	et	al.,	2015)	

Hydrological	
corrections	

Unresolved	channel	identification	
or	hydrologically-disconnected	
surfaces	(Lehner	et	al.,	2008).	

Stream	burning;	carving	(Soille	et	al.,	2003;	
Lehner	et	al.,	2008);	surface	reconditioning	
(Callow	et	al.,	2007)	

Vegetation	 Peaks	in	elevation	in	locations	
where	vegetation	is	present.	

Uniform	height	removal	(Coe	et	al.,	2008;	
Paiva	et	al.,	2011);	spatially-distributed	
height	removal	(Baugh	et	al.,	2013);	least	
squares	estimation	of	vegetation	patch	
edges	(Gallant	et	al.,	2012);	Vegetation	
height	removal	related	to	canopy	density	
(O’Loughlin	et	al.,	2016).		
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pits,	spikes	and	minor	voids	removed	(Slater	et	al.,	2006)	and	SRTM	(v3)	used	the	ASTER	DEM	to	

further	remove	voids	(Abrams	et	al.,	2016).	The	most	widely-used	SRTM	(v4)	released	by	Jarvis	et	al.,	

(2008)	has	undergone	void-removal	processes	but	still	contains	surface	artefacts	such	as	buildings	

and	vegetation.	ASTER	(v2)	was	released	in	2011,	following	initial	release	in	2009,	adding	more	than	

260,000	stereo	pairs	to	the	DEM	to	improve	coverage	and	accuracy	(Fujisada	et	al.,	2012).		

Most	recently,	Yamazaki	et	al.,	(2017)	presented	the	first	global,	multiple	error-reduced	SRTM	

product,	known	as	Multi-Error-Removed	Improved-Terrain	(MERIT)	DEM.	The	key	vertical	errors	

present	in	SRTM,	such	as	absolute	bias,	stripe	error,	speckle	noise	and	tree	height	bias	are	reduced	

using	an	iterative	method	to	create	a	DTM	from	SRTM.	Firstly,	stripe	noise	was	removed	using	a	two-

dimensional	Fourier	transform	filter,	followed	by	absolute	bias	correction	using	ICESat	centroid	

elevations.	Tree	height	was	estimated	using	a	function	of	tree	density	and	height	using	Simard	et	al.,	

(2011).	Finally,	speckle	noise	was	removed	using	Gallant’s	(2011)	adaptive	smoothing	filter.	The	

dataset	is	freely	available	at	the	global	scale	for	non-commercial	purposes	and	global	validation	

against	ICESat	and	SRTM	datasets	suggests	MERIT	improves	relative	vertical	accuracy	(proportion	of	

points	with	error	<2m)	from	39%	to	58%	of	the	globe	over	SRTM	(Yamazaki	et	al.,	2017),	although	

building	artefacts	have	yet	to	be	removed	from	the	data.	Hirt	(2018)	most	recently	reported	greatly	

reduced	artefact	presence	in	the	MERIT	DEM	(108	artefacts)	in	comparison	to	SRTM	(v4.1)	(1341	

artefacts)	based	on	a	0.1°	x	0.1°	DEM	tile	comparison.	

2.4.4 Vegetation	Removal	

The	presence	of	vegetation	artefacts	in	DSMs	is	a	well-known	problem,	and	a	number	of	processing	

methods	have	been	developed	(Bates,	2012).	Of	specific	importance	to	flood	modelling,	vegetation	

artefacts	in	the	DSM	creates	areas	of	higher	elevation	on	a	floodplain	or	along	a	river	channel	which	

impact	the	simulation	of	flooding	(Baugh	et	al.,	2013;	Jarihani	et	al.,	2015).	Bank-lined	vegetation	

artificially	elevates	the	channel	bank	and	reduces	overbank	flow,	whilst	elevation	peaks	on	the	

floodplain	can	block	key	flow	pathways	along	the	surface,	as	well	as	increasing	surface	roughness	
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(Jarihani	et	al.,	2015).	Manual	methods	to	vegetation	removal	are	sometimes	used,	particularly	in	

the	commercial	setting,	but	fully	automated	methods	are	preferable	at	the	large	scale	due	to	lower	

user	expense	in	comparison	to	manual	methods	(Gallant	et	al.,	2012).		

	

Vegetation	processing	methods	differ	substantially	between	SRTM	and	LiDAR	processing,	due	to	

difference	in	DEM	acquisition,	horizontal	resolution	and	vertical	accuracy.	Methods	used	to	remove	

vegetation	for	each	method	are	summarised	below,	before	identifying	potential	methods	suitable	

for	TanDEM-X	vegetation	removal.		

2.4.4.1 SRTM	Processing	

The	SRTM	C-band	radar	signal	partially	penetrates	the	vegetation	canopy	(Bates,	2012).	The	radar	

has	a	short	operating	wavelength	(5.6cm)	-	a	similar	length	to	vegetation	scattering	elements	e.g.	

leaves	and	branches	(Hofton	et	al.,	2006)	-	and	thus	the	height	of	the	SRTM	elevation	over	a	

vegetated	area	represents	a	height	in	between	the	ground	surface	and	the	top	of	the	canopy	(Baugh	

et	al.,	2013).	Brown	et	al.,	(2010)	refer	to	this	as	the	scattering	phase	centre	height.	As	a	result,	

studies	have	tried	to	determine	the	penetration	capability	of	the	radar	to	determine	how	much	

vegetation	height	to	remove	from	the	DSM	when	processing	to	a	DTM.	Wilson	et	al.,	(2007)	

conducted	vegetation	height	surveys	for	a	reach	of	the	Amazon	basin	and	applied	a	50%	canopy	

penetration	depth	in	accordance	with	the	author’s	personal	communication	with	SRTM	developer	

Ernesto	Rodriguez.	Kellndorfer	et	al.,	(2004)	critically	identified	that	canopy	density	directly	affects	

penetrative	capacity,	and	thus	different	tree	types	will	produce	different	scattering	phase	centre	

heights.	Specifically,	Kenyi	et	al.,	(2009)	suggests	the	SRTM	scattering	phase	centre	is	60%	for	red	fir,	

53%	for	Sierra	mixed	conifer	and	50%	for	montane	hardwood-conifer	tree	species.		

Many	methods	include	the	use	of	additive	datasets	such	as	a	forest	cover	or	height	maps.	Several	

global	datasets	have	been	produced	to	indicate	land	cover	and	vegetation,	including	Hansen	et	al.’s	

(2013)	map	of	forest	change	between	2000	and	2012	at	30m	resolution	and	Shimada	et	al.’s	(2014)	



	 	 	
	

38	
	

global	forest	cover	map	derived	using	Advanced	Land	Observing	Satellite	(ALOS)	Phased	Arrayed	L-

band	Synthetic	Aperture	Radar.	Gallant	et	al.,	(2012)	used	the	Landsat	Thematic	Mapper	dataset	at	

30m	to	remove	tree	heights	from	SRTM.	Two	key	global	height	datasets	available	on	forest	cover	are	

Lefsky’s	(2010)	global	forest	canopy	height	map	produced	by	segmenting	MODIS	data	to	identify	

forest	patches,	followed	by	Simard	et	al.’s	(2011)	global	forest	canopy	map	which	has	been	most	

widely-utilised	for	SRTM	processing,	derived	using	spaceborne	ICESat	Geoscience	Laser	Altimeter	

System	LiDAR	data	(e.g.	Baugh	et	al.,	2013;	O’Loughlin	et	al.,	2016;	Yamazaki	et	al.,	2017).		

Using	a	uniform	height	removal	methodology,	Coe	et	al.,	(2008)	removed	a	standardised	height	of	

23m	from	the	SRTM	DEM	to	estimate	‘bare	earth’.	Recognising	the	problem	with	removing	a	

uniform	height,	Baugh	et	al.,	(2013)	subtracted	an	optimised	fixed	percentage	(60%)	of	the	spatially-

distributed	vegetation	height	from	the	SRTM	DEM	to	remove	vegetation	artefacts	over	the	Amazon	

basin,	using	Simard	et	al.’s	(2011)	vegetation	height	map	to	indicate	spatial	distribution	in	vegetation	

height.	The	optimised	percentage	was	determined	by	producing	ten	DEMs	with	between	10	–	100%	

of	the	vegetation	height	identified	in	Simard	et	al.’s	(2011)	forest	canopy	map,	before	filtering	

random	noise	and	optimising	floodplain	friction	values	in	the	model	setup.	The	flood	outputs	were	

assessed	for	all	10	DEMs	to	determine	which	percentage	height	subtraction	improved	simulation	

accuracy	the	most.	This	methodology	improved	model	accuracy	of	the	water	surface	elevation	with	

a	RMSE	of	1.84m	in	comparison	to	6.61m	with	no	vegetation	removal,	indicating	a	significant	

improvement.	Although	O’Loughlin	et	al.,	(2016)	suggest	that	any	vegetation	correction	improves	

the	SRTM	DEM	at	the	global	scale,	removing	a	spatially	uniform	percentage	height	from	SRTM	does	

not	account	for	spatial	variability	in	vegetation	height	based	on	varying	penetrability	(e.g.	Coe	et	al.,	

2008;	Paiva	et	al.,	2011;	Baugh	et	al.,	2013).	Pinel	et	al.,	(2015)	suggest	that	removing	a	uniform	

height	leads	to	inconsistent	elevations	across	a	floodplain	whereby	vegetation	is	likely	to	vary	in	

height,	leading	to	under	or	over-estimated	elevations	in	areas	whereby	vegetation	varies	above	or	

below	the	uniform	height.	As	a	result,	O’Loughlin	et	al.,	(2016)	validate	a	global	methodology	to	

remove	vegetation	heights	from	the	SRTM,	by	relating	vegetation	height	(using	Simard	et	al.,	2011)	
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to	canopy	density	to	determine	the	percentage	of	vegetation	height	to	remove	from	the	DEM	on	a	

pixel-by-pixel	basis.	Yamazaki	et	al.,	(2017)	utilise	this	concept	in	vegetation	removal	for	the	MERIT	

product.	Other	methods	have	included	Jarihani	et	al.’s	(2015)	adoption	of	Gallant’s	(2011)	adaptive	

smoothing	method	for	‘vegetation	smoothing’,	reduces	the	RMSE	from	3.25m	in	SRTM	(v4)	to	1.55m	

in	the	study	areas:	Diamantina	River	and	Cooper	Creek	catchments	of	the	Lake	Eyre	basin	in	

Australia.		

	

In	summary,	vegetation	removal	methods	for	SRTM	are	often	conducted	by	removing	a	uniform	or	

spatially-distributed	height	from	the	SRTM	data	to	identify	‘bare	earth’,	using	>90m	resolution	

datasets	to	aid	the	identification	of	vegetation	(e.g.	Simard	et	al.,	2011).		

2.4.4.2 LiDAR	Processing	

LiDAR	is	typically	a	Digital	Surface	Model,	but	several	methods	have	been	developed	to	process	the	

DSM	to	a	DTM	with	high	vertical	accuracy	(<20cm)	(Liu,	2008).	Four	key	steps	are	often	conducted	to	

produce	a	LiDAR	DTM	from	the	returns	(Meng	et	al.,	2010).	First,	outlier	points	are	identified	and	

removed,	before	interpolating	all	points	to	create	a	DSM	surface.	Then	a	filtering	algorithm	is	

selected	by	classifying	ground	and	non-ground	points	before	creating	the	final	DTM.		

	

Most	simply,	a	DTM	can	be	created	by	taking	the	last	ground	return	for	each	laser	pulse	as	the	

ground	measurement	(Bates,	2004).	When	a	LiDAR	pulse	hits	an	object	surface,	multiple	returns	will	

be	captured	as	the	pulse	continues	to	penetrate	further	towards	the	ground	e.g.	through	gaps	in	the	

canopy	if	the	object	is	vegetation	(Harding	et	al.,	2001).	Generally,	the	first	return	represents	the	

object	height	and	the	last	return	the	ground	height.	As	common	practice,	the	last	return	is	often	

used	to	create	a	LiDAR	‘bare	earth	DTM’,	assuming	that	the	last	return	represents	ground	elevation	

(French,	2003;	Bates,	2004;	Mason	et	al.,	2007).		
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Several	filter	algorithms	have	also	been	produced	to	classify	ground	and	non-ground	returns.	Meng	

et	al.,	(2010)	provided	a	good	summary	of	the	different	types	of	filters	commonly	adopted,	

suggesting	that	four	key	assumptions	guide	the	various	algorithms	when	separating	ground	and	non-

ground	points:	

1) The	lowest	points	within	an	area	are	often	ground	points.	

2) The	surface	slope	gradient	between	two	ground	points	is	often	lesser	than	between	a	

ground	and	non-ground	point.	

3) The	terrain	of	an	area	does	not	change	dramatically.	

4) Terrain	is	a	smooth,	continuous	surface.	

	

Liu	(2008)	classifies	LiDAR	ground	filters	into	three	types	based	on	the	methodology	adopted:	

interpolation-based,	slope-based	and	morphological-based.		

	

Interpolation-based	methods	calculate	the	‘bare	earth’	surface	by	approximating	a	surface	based	on	

all	LiDAR	points,	before	calculating	the	distance	from	the	surface	to	each	point.	The	process	is	then	

repeated	until	the	surface	represents	the	ground	points	(Lohmann	et	al.,	2000).	Kraus	and	Pfeifer	

(1998)	introduced	this	method	as	a	linear	prediction,	and	Lee	and	Younan	(2003)	introduced	a	

combined	modified	linear	prediction	which	can	accommodate	steep-sloped	areas.	Slope-based	

methods	classify	ground	and	non-ground	points	based	on	the	slope	between	two	points,	whereby	

slope	values	above	a	defined	threshold	are	indicative	of	a	non-ground	point,	assuming	terrain	

changes	slowly	and	smoothly,	and	objects	show	steep	gradients.	Vosselman	(2000)	first	detailed	this	

method	to	produce	a	LiDAR	DTM,	and	Sithole	(2001)	improved	the	method	by	introducing	a	varying	

threshold	to	produce	a	method	better-suited	to	varying	terrain.		
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Morphology-based	methods	build	upon	the	principles	of	mathematical	morphology,	often	used	in	

image	processing	(Zhang	et	al.,	2003).	Two	key	operators	–	erosion	and	dilation	–	are	used	to	

perform	an	opening	operation	on	an	image,	whereby	ground	and	non-ground	points	are	identified	

within	a	specified	window	across	the	entire	image.	The	lowest	points	identified	within	the	window	

are	then	considered	ground	points	and	used	to	create	a	DTM.	Zhang	et	al.,	(2003)	detail	a	popular	

method	known	as	a	Progressive	Morphological	Filter,	whereby	the	window	is	iteratively	increased	in	

size	to	identify	objects	of	different	sizes.	This	method	has	been	adopted	for	Intermediate-TanDEM-X	

processing	by	Geiß	et	al.,	(2015)	and	Schreyer	et	al.,	(2016)	and	will	be	discussed	further	within	this	

thesis	as	a	potential	processing	method	for	TanDEM-X	vegetation	removal.	Chen	et	al.,	(2007)	also	

detail	a	morphology-based	approach	whereby	the	assumption	is	that	a	sharp	boundary	between	

non-ground	and	ground	points	can	be	used	in	classification.		

	

Other	filters	used	to	process	LiDAR	data	include	segmentation,	directional-scanning,	contour-based	

and	TIN-based	(Meng	et	al.,	2010).	For	example,	Cobby	et	al.,	(2001)	separate	ground	and	non-

ground	points	using	a	segmentation	algorithm,	classifying	non-ground	points	as	short	or	tall	

vegetation	(see	also	Mason	et	al.,	2003).	Overall,	the	most	commonly-used	LiDAR	ground	filters	work	

on	a	fine	scale,	as	the	horizontal	resolution	of	LiDAR	data	is	extremely	high	(often	~1m:	Bates,	2012),	

and	so	objects	are	clearly-defined	in	the	DSM	model.		

2.4.4.3 TanDEM-X	processing	

As	the	resolution	of	TanDEM-X	is	significantly	different	to	LiDAR	(~1-2m)	and	SRTM	(~90m),	

application	of	current	DTM-processing	methods	is	likely	to	be	unsuitable	for	TanDEM-X	processing	in	

isolation	(Geiß	et	al.,	2015).	Schreyer	et	al.,	(2016)	show	that	the	Progressive	Morphological	Filtering	

method	was	most	successful	when	Intermediate-TanDEM-X	was	disaggregated	to	4m	in	comparison	
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to	analysis	at	~12m,	suggesting	that	the	method	works	best	at	a	finer	LiDAR-typical	resolution.	Geiß	

et	al.,	(2015)	also	suggest	that	TanDEM-X	is	still	too	coarse	for	use	of	LiDAR	processing	methods,	as	

the	minimum	window	size	(3x3	pixels)	used	in	the	Progressive	Morphological	Filter	is	still	too	large	to	

identify	small	vegetation	or	individual	buildings.	On	the	other	hand,	the	coarse-scale	(>90m)	

methods	applied	to	SRTM	(e.g.	Baugh	et	al.,	(2013)	and	Yamazaki	et	al.,	(2017))	are	also	likely	

unsuitable,	as	the	global	vegetation	map	used	to	remove	vegetation	has	a	resolution	of	90m	(see	

Simard	et	al.,	2011),	and	thus	does	not	have	a	high-enough	resolution	to	identify	areas	of	vegetation	

smaller	than	90m	that	are	well-resolved	in	the	TanDEM-X	DEM.	Vegetation	correction	of	the	SRTM	

C-band	radar	is	also	likely	to	differ	in	comparison	to	the	TanDEM-X,	as	X-band	radar	has	a	limited	

ability	to	penetrate	canopy,	and	thus	removing	a	percentage	of	vegetation	height	from	the	DEM	may	

not	be	suitable	as	the	scattering	phase	centre	height	is	likely	closer	to	the	top	(or	at	the	top)	of	the	

canopy.	Further	investigation	is	required	to	understand	the	scattering	phase	centre	height	of	

TanDEM-X	under	different	land	covers.		

	

Thus	far,	a	limited	number	of	studies	have	been	released	detailing	possible	processing	methods	for	

TanDEM-X	error.	Mason	et	al.,	(2016)	describe	a	method	to	use	flood	extent	SAR	images	to	improve	

the	Intermediate-TanDEM-X	error	against	LiDAR	data	for	the	potential	input	to	a	hydrodynamic	

model,	reducing	relative	vertical	error	to	60%	of	the	original	TanDEM-X	error	in	the	study	area.	The	

standard	deviation	between	the	original	Intermediate-TanDEM-X	heights	and	the	LiDAR	heights	was	

2.05m,	reduced	to	0.74m	after	correction.	Geiß	et	al.,	(2015)	and	Schreyer	et	al.,	(2016)	adopt	a	

LiDAR-style	ground	filtering	approach	to	identifying	buildings	and	vegetation	using	Progressive	

Morphological	Filtering.	Gallant	et	al.,	(2012)	suggest	that	the	least	squares	estimation	at	a	

vegetation	patch	edge	method	utilised	in	their	study	could	likely	be	applied	to	TanDEM-X	with	some	

adaptation,	but	no	further	study	applying	this	methodology	has	been	published.	As	a	result,	it	will	be	

important	in	this	thesis	to	thoroughly	understand	whether	information	can	be	utilised	from	previous	
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processing	methods	of	both	SRTM	and	LiDAR,	whilst	considering	the	limitations	of	using	datasets	

that	are	both	too	coarse	or	too	fine	for	the	~12m	resolution	of	TanDEM-X.	The	map	shown	in	Figure	

1	demonstrates	the	spatial	distribution	of	height	differences	between	the	LiDAR	DTM	and	TanDEM-

X.	Large	areas	of	vegetation	along	the	channel	and	downstream	boundary	are	identified,	as	well	as	

smaller	isolated	regions,	indicating	the	importance	of	a	method	that	considers	a	range	of	artefact	

sizes.			

	

Figure	1	-	Map	showing	the	difference	in	heights	between	the	LiDAR	DTM	and	TanDEM-X	DSM	in	the	Ba	study	area	

On	the	other	hand,	a	number	of	studies	have	been	published	outlining	how	vegetation	artefacts	may	

be	detected	in	the	TanDEM-X	DEM.	Martone	et	al.,	(2012)	suggest	the	pairing	of	polarimetric	and	

interferometric	measurements	to	infer	volume	scattering	information	collected	by	the	TanDEM-X	

mission	should	allow	inference	of	vegetation	height	in	the	TanDEM-X	DSM.	Based	on	analysis	by	
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Schlund	et	al.,	(2014)	and	Martone	et	al.,	(2012;	2018),	a	key	signifier	of	vegetation	artefacts	in	the	

TanDEM-X	DEM	is	interferometric	coherence.	Interferometric	coherence	signifies	the	normalised	

complex	correlation	coefficient	between	two	acquisitions,	indicating	the	amount	of	noise	or	

decorrelation	in	the	interferogram	(Martone	et	al.,	2012).		In	areas	of	vegetation,	volume	scattering	

of	the	signal	increases	(Kellndorfer	et	al.,	2014),	leading	to	a	higher	presence	of	interferometric	

decorrelation	and	thus	lower	interferometric	coherence.	Although	L	and	P-band	SARs	are	considered	

more	appropriate	for	forest	classification	than	X-band	SARs,	higher	volume	decorrelation	was	

observed	in	areas	whereby	vegetation	structure	was	denser,	as	the	X-band	signal	interacts	with	a	

higher	vegetation	volume,	thus	increasing	volume	decorrelation	(Schlund	et	al.,	2014).	

Interferometric	coherence	and	the	volume	correlation	in	the	TanDEM-X	was	the	main	indicator	used	

by	Martone	et	al.,	(2018)	in	the	classification	of	forested	areas	to	produce	the	Global	Forest/Non-

Forest	Classification	map	at	50m	resolution,	using	a	fuzzy	multi-clustering	classification	method.	

Although	the	map	is	stated	to	be	available	for	scientific	purposes,	it	is	not	yet	accessible	and	thus	

could	not	be	utilised	in	this	thesis	as	an	indicator	of	vegetation	artefact.		

	

Breidenbach	et	al.,	(2010)	suggest	that	the	backscatter	values	for	TerraSAR-X	images	are	higher	for	

vegetation	than	agricultural	land,	outlining	the	potential	use	to	separate	land	cover	classes.	Because	

the	TerraSAR-X	and	TanDEM-X	SARs	were	flown	as	a	bistatic	acquisition	(one	SAR	transmits	and	

receives	the	signal	and	the	other	SAR	only	receives	the	signal:	Willis,	2005),	the	presence	of	multiple	

scattering	coefficients	can	be	calculated,	allows	increased	object	detection	than	in	monostatic	mode	

(one	SAR	transmits	and	receives	the	signal).	Schlund	et	al.,	(2014)	suggest	that	calculating	the	

amplitude	(backscatter)	of	the	signal	from	each	SAR	can	be	used	to	classify	forest	areas,	although	

better	classification	is	observed	using	interferometric	coherence	than	amplitude.		

Accompanying	the	TanDEM-X	DEM	data	are	a	number	of	auxiliary	datasets	which	report	height	error	

and	artefacts	in	the	DEM,	including:	Height	Error	Map,	amplitude,	Water	Indication	Mask,	coverage,	
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consistency	and	a	shadow	mask	(see	Wessel,	2016).	Of	specific	interest	in	this	thesis,	the	Height	

Error	Map	represents	the	standard	deviation	of	height	error	for	each	pixel	within	the	DEM	based	on	

the	interferometric	coherence	estimates	derived	between	signal	returns.	The	Amplitude	map	

represents	radar	backscatter	as	a	mean	value	for	all	the	calibrated	amplitudes	between	SAR	images	

(Ferretti	et	al.,	2000;	Wessel,	2016).	To	the	best	of	our	knowledge,	no	published	study	has	utilised	

these	auxiliary	variables	to	process	the	TanDEM-X	DSM	to	a	DTM	thus	far,	although	on	visual	

inspection	the	pattern	between	surface	artefacts	in	Google	Earth	imagery	and	the	Height	Error	Map	

and	Amplitude	map	provide	promise	for	artefact	identification.	As	a	result,	the	Amplitude	map	and	

Height	Error	Map	may	provide	some	capacity	to	determine	vegetation	presence	in	the	DEM.	Figure	

2a	and	2b	demonstrate	the	pattern	for	the	Height	Error	Map	and	Amplitude	map	in	the	study	area	in	

this	thesis.	Section	3.1.4	will	discuss	how	this	thesis	utilises	these	datasets	to	remove	vegetation	in	

the	TanDEM-X.	

	

	

	

	

	

	

	

	

	

	

	

a)Amplitude b) Height Error Map 

Figure	2	-	Maps	showing	the	identification	of	vegetation	artefact	in	the	TanDEM-X	auxiliary	datasets	a)	Amplitude	and	b)	Height	
Error	Map.	
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2.5 	Chapter	Conclusion	

In	this	literature	review,	the	concepts	of	flood	risk,	flood	models	and	DEMs	have	been	discussed	

separately	to	categorise	and	synthesise	the	relevant	literature	in	each.	Flood	risk	was	discussed	as	a	

multi-factorial	concept	in	Section	2.1,	constructed	of	several	interactions	between	the	flood	hazard,	

asset	and	human	exposure,	and	the	vulnerability	of	the	population	(Apel	et	al.,	2009).	Flood	risk	

specifically	in	SIDS	was	identified,	justifying	the	focus	on	SIDS	in	this	thesis	and	emphasising	the	need	

for	improved	flood	risk	assessment.	A	number	of	different	hydrodynamic	models,	with	particular	

reference	to	LISFLOOD-FP,	were	identified	as	a	key	method	to	estimating	the	flood	hazard	in	Section	

2.2.	As	topography	is	a	key	input	into	a	hydrodynamic	model,	the	use	of	DEMs	undoubtedly	

influences	the	capacity	to	accurately	estimate	flood	hazard.	The	proliferation	of	DEMs	over	time	was	

discussed	in	Section	2.3,	identifying	the	key	types	of	DEM	and	the	main	DEM	products	used	in	flood	

modelling,	before	outlining	the	key	characteristics	of	the	DEM	of	focus	in	this	thesis:	TanDEM-X.	A	

thorough	investigation	into	the	different	methods	utilised	to	process	DEMs	from	a	DSM	to	a	DTM	

was	also	conducted	in	Section	2.4,	as	a	DTM	is	a	key	requirement	for	input	into	a	hydrodynamic	

model.	Critically,	this	literature	review	emphasised	that	a	method	for	processing	TanDEM-X	from	a	

DSM	to	a	DTM	that	has	been	tested	in	a	hydrodynamic	model	has	not	been	published,	providing	the	

key	justification	for	conducting	this	project.	By	understanding	how	other	DEM	products	have	been	

processed,	these	methods	are	used	to	inform	the	development	of	a	suitability	methodology	for	

processing	TanDEM-X	in	this	thesis.		

	

In	reality,	the	three	fields	of	research	are	intrinsically	related,	whereby	flood	modelling	and	the	use	

of	a	DEM	are	smaller	dolls	stacking	inside	the	largest	Russian	nesting	doll	that	is	measuring	flood	

risk.	There	is	an	emphasis	on	the	estimation	of	flood	hazard	in	this	thesis,	although	flood	risk	is	

composed	equally	of	the	three	key	components	(UNISDR,	2015a).	Nonetheless,	as	the	methods	

detailed	in	this	thesis	focus	on	improving	the	simulation	of	flood	hazard	through	the	appropriate	
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vegetation	processing	of	TanDEM-X	for	input	into	LISFLOOD-FP,	the	emphasis	on	flood	hazard	is	

justified.	

Chapter	3	will	outline	the	methodology,	results	and	discussion	sections	of	this	thesis,	outlining	and	

comparing	three	methods	to	processing	vegetation	in	the	TanDEM-X	data	to	create	seven	DTMs.	The	

seven	DTMs	will	be	input	in	to	hydrodynamic	model	LISFLOOD-FP	and	the	flood	output	extent	and	

water	surface	elevation	will	be	compared	with	LiDAR,	SRTM	and	MERIT	models	to	determine	a)	

which	vegetation	processing	method	is	the	most	suitable	for	input	into	a	hydrodynamic	model,	and	

b)	whether	the	TanDEM-X	DSM	and	DTMs	have	a	better	fit	to	the	LiDAR	model	simulation	in	

comparison	to	SRTM	and	MERIT	models.	
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Chapter	3	–	Paper	titled:	Comparing	TanDEM-X	data	with	
frequently-used	DEMs	for	flood	inundation	modelling	

3 Chapter	Introduction	

Framed	within	the	synthesis	of	literature	in	Chapter	2	regarding	flood	hazard	estimation	in	SIDS	

using	DEMs	in	hydrodynamic	models,	this	chapter	aims	to	answer	the	two	key	research	questions	

first	posed	in	Section	1.3:	

1) How	can	artefacts	be	removed	from	TanDEM-X	to	create	a	suitable	Digital	Terrain	Model	for	

input	into	a	hydrodynamic	model?	

2) Are	flood	estimates	improved	using	TanDEM-X	in	comparison	to	SRTM	and	MERIT?	

With	reference	to	the	first	research	question,	as	TanDEM-X	is	a	DSM	a	suitable	method	will	be	

required	to	process	TanDEM-X	to	a	DTM	for	input	into	a	hydrodynamic	model.	Fine	and	coarse	scale	

methods	developed	to	process	LiDAR	and	SRTM	were	identified	in	Section	2.4.4,	although	Geiß	et	

al.,	(2015)	suggest	that	these	are	unlikely	to	be	appropriate	in	isolation	for	TanDEM-X	processing.	

However,	several	authors	have	identified	potential	vegetation	detectors	in	the	TanDEM-X	data	(e.g.	

Martone	et	al.,	2018).	This	chapter	will	therefore	detail	three	key	processing	methods	for	TanDEM-X:	

Progressive	Morphological	Filtering	and	Image	Classification	of	the	Amplitude	and	Height	Error	Maps	

shown	in	Figure	6	in	the	methodology	section	of	this	chapter	(Section	3.1).	Hydrodynamic	modelling	

outputs	given	the	seven	resulting	TanDEM-X	DTMs	will	indicate	whether	the	methods	used	to	

process	the	TanDEM-X	DSM	produce	flood	extents	and	water	surface	elevation	with	a	better	fit	to	

the	LiDAR	model,	informing	the	most	appropriate	method	for	TanDEM-X	DSM	processing	for	input	

into	a	hydrodynamic	model.	Following	this,	the	model	outputs	of	the	TanDEM-X	DSM	and	DTMs	are	

compared	to	the	SRTM	and	MERIT	models	to	identify	whether	the	TanDEM-X	DSM	and	DTMs	

simulate	flood	extent	and	water	surface	elevations	closer	to	those	produced	by	the	LiDAR	model.	

These	results,	calculated	using	binary	pattern	matching	performance	metrics,	will	be	used	to	identify	
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whether	the	TanDEM-X	models	improve	flood	estimates	against	the	LiDAR	model	in	comparison	to	

SRTM	and	MERIT,	answering	the	second	research	question.		

This	paper	chapter	details	the	methodology	(Section	3.1),	results	(Section	3.2)	and	discussion	

(Section	3.3)	sections	of	the	thesis,	whereby	methods	for	processing	the	TanDEM-X	DSM	to	a	DTM	

are	compared	and	input	into	hydrodynamic	model	LISFLOOD-FP,	before	comparing	the	flood	extent	

and	water	surface	elevation	of	the	model	outputs	with	SRTM	and	MERIT	models.	

This	chapter	is	largely	based	on	a	publication	published	by	Water	Resources	Research:	

Archer,	L.,	Neal,	J.C.,	Bates,	P.D.,	House,	J.,	(2018),	‘Comparing	TanDEM-X	data	with	frequently	used	

DEMs	for	flood	inundation	modeling’,	Water	Resources	Research,	vol.	54,	no.	10,	10205-10222		

Figures	and	tables	as	part	of	the	Supporting	Information	for	the	publication	are	included	within	the	

main	body	of	the	thesis.	The	paper	introduction	is	omitted	and	is	instead	incorporated	into	the	

literature	review	in	Chapter	2	whereby	a	background	of	the	topics	covered	in	this	paper	are	

discussed.	Collaboration	with	other	authors	on	this	paper	include	the	review	of	the	publication	and	

the	role	as	supervisors.		

3.1 	Methods	

3.1.1 Study	Area	

The	study	was	conducted	in	Fiji	–	an	upper-middle	income	SIDS	located	in	the	South	Pacific	(see	

Figure	3a).	The	archipelago	is	made	up	of	330	islands,	of	which	approximately	100	are	inhabited	

(Brown	et	al.,	2014).	The	largest	island,	Viti	Levu	(see	Figure	3b)	has	an	area	of	approximately	

10,389km2	and	is	home	to	~60%	of	the	total	population	(Fiji	Bureau	of	Statistics,	2018).	Fiji	has	a	

tropical	maritime	climate	driven	by	trade	winds,	the	South	Pacific	Convergence	Zone	and	the	El	Niño	

Southern	Oscillation,	with	70%	of	annual	rainfall	falling	between	November	and	April	during	the	

cyclone	season	(Mataki	et	al.,	2006).	The	island	has	many	small	rivers	with	a	high	flood	frequency	
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(McAneney	et	al.,	2017),	experiencing	on	average	two	flood	events	and	one	cyclone	per	year,	with	

97%	of	disasters	reported	between	1983-2012	attributable	to	extreme	rainfall	(Holland,	2014).	

Nonetheless,	little	research	has	estimated	current	or	future	flood	hazard	in	Fiji	using	hydrodynamic	

modelling	(Yeo	et	al.,	2007).	The	most	recent	flood	assessment	for	Fiji	relies	on	MERIT	data	at	90m	

resolution,	which	is	relatively	coarse	in	comparison	to	the	scale	of	Fijian	catchments	(see	

Government	of	Fiji,	2017).		

	

	

	

	

	

	

	

	

	

	

	

	

	

	Figure	3	-	Map	of	the	study	site	a)	Map	of	Fiji	b)	Map	of	the	Ba	Catchment	on	the	main	island	of	Viti	Levu	c)	
Map	showing	the	model	domain	within	the	Ba	catchment,	including	Ba	town	
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The	Ba	catchment	on	the	island	of	Viti	Levu	(Figure	3c)	was	chosen	as	the	test	site	for	three	key	

reasons:	high	flood	frequency,	representative	floodplain	characteristics	and	availability	of	LiDAR	

data.	Recent	disastrous	flood	events	in	Fiji	(January	2009;	2012;	March	2012;	April	2018),	in	which	

the	Ba	catchment	was	worst	affected,	resulted	in	Fiji	ranking	3rd	in	the	2018	Global	Climate	Risk	

Index	(Eckstein	et	al.,	2017).	In	2016,	Fiji	experienced	the	strongest	cyclone	ever	recorded	in	the	

Southern	Hemisphere	–	Cyclone	Winston	–	affecting	62%	of	the	population	and	causing	damage		

equivalent	to	20%	of	the	nation’s	GDP	(Government	of	Fiji,	2016).	The	floodplain	along	the	Ba	river	is	

dominated	by	cropland	(63.85%:	Fiji	Bureau	of	Statistics,	2010),	with	isolated	areas	of	vegetation	and	

buildings,	representative	of	most	floodplains	in	SIDS	and	many	other	floodplains	globally.	It	is	

therefore	expected	that	the	study	results	are	likely	to	be	replicable	in	other	floodplains.	The	

21.72km	river	reach	in	Figure	3c	was	chosen	for	the	model	domain	as	LiDAR	data	were	available.	The	

LiDAR	data	shown	in	Figure	4	was	collected	and	pre-processed	to	a	DTM	using	the	last	returns	

method	in	2012	through	collaboration	with	the	Secretariat	of	the	South	Pacific	and	the	World	Bank	

(Thomas,	2012),	and	was	obtained	for	this	study	by	Dr	Nicholas	Rollings	at	the	University	of	the	

South	Pacific.	Access	to	LiDAR	data	provides	a	good	validation	data	source	in	the	absence	of	ground	

truth	information,	as	the	LiDAR	has	a	much	superior	vertical	accuracy	than	the	satellite	DEM	

products	(see	Table	2).	The	LiDAR	was	validated	against	ground	truth	data	by	Thomas	(2012)	for	27	

locations,	reporting	an	average	absolute	vertical	error	of	73.6mm.	As	a	result,	the	Ba	catchment	

provides	a	good	SIDS	test	case	whereby	TanDEM-X	can	be	adequately	validated	against	a	

benchmark.		

In	data-sparse	areas,	ground	truth	validation	data	are	often	unavailable	and	so	LiDAR	data	has	been	

used	as	a	proxy	(Yamazaki	et	al.,	2012).	The	LiDAR	model	is	not	necessarily	an	exact	representation	

of	floodplain	topography	as	the	LiDAR	sensor	also	returns	canopy	height	measurements	and	has	

been	processed	(LaLonde	et	al.,	2010).	Yet,	for	the	purposes	of	DEM	comparison,	this	was	
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considered	an	acceptable	limitation	as	the	LiDAR	data	is	likely	to	provide	the	most	reliable	

benchmark	available	(Yamazaki	et	al.,	2012).	Comparative	studies	have	concluded	that	LiDAR	

datasets	have	the	lowest	vertical	error	in	comparison	to	other	available	DEMs	due	to	density	of	

signal	returns	(Liu,	2008;	Saksena	and	Merwade,	2015).	Using	LiDAR	as	a	benchmark	when	

comparing	spaceborne	DEMs	is	common	practice	within	flood	modelling,	providing	justification	for	

the	adoption	of	this	approach	for	validation	purposes	(LaLonde	et	al.,	2010;	Mason	et	al.,	2016).		

	

Figure	4	-	Map	showing	LiDAR	DTM	for	the	Ba	study	area	
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3.1.2 Datasets	and	Pre-processing		

The	key	DEM	datasets	used	in	this	study	to	compare	against	TanDEM-X	DSM	and	DTMs	are	listed	in	

Table	2,	highlighting	the	variation	in	resolution	and	vertical	accuracy.	The	difference	in	resolution	

between	the	datasets	is	shown	in	Figure	5.		

Three	modifications	to	TanDEM-X	were	conducted	before	processing	from	a	DSM	to	a	DTM.	As	

water	bodies	in	the	TanDEM-X	were	incoherent	with	high	signal	disturbance,	a	water	mask	was	

created	to	exclude	these	pixels	from	further	analysis,	using	the	auxiliary	dataset	Water	Indication	

Mask	included	with	the	TanDEM-X	data	(Wessel,	2016)	and	a	rasterized	OpenStreetMap™	river	

network.	The	vertical	coordinate	system	was	converted	from	the	WGS	Ellipsoid	to	the	EGM96	Geoid,	

aligning	with	the	other	DEMs	using	the	open-source	conversion	software	NOAA	VDatum™	(v3.8).	

Finally,	a	block	elevation	offset	of	-0.5542m	was	applied	to	the	TanDEM-X,	SRTM	and	MERIT	datasets	

to	correspond	with	the	local	mean	sea	level	used	in	the	LiDAR	dataset	(Thomas,	2012).		
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Table	2	-	Summary	characteristics	of	DEMs	used	in	this	study.	

	

	

Section	3.1.3	describes	the	Progressive	Morphological	Filtering	approach	for	isolated	vegetation	

removal,	and	Section	3.1.4	details	the	Image	Classification	approach	used	to	remove	large	areas	of	

vegetation,	before	outlining	the	hydrodynamic	modelling	and	validation	in	Section	3.1.5	and	3.1.6.	

The	workflow	in	Figure	6	shows	three	different	method	routes:	Progressive	Morphological	Filtering,	

Image	Classification,	and	combination,	producing	seven	DTMs	for	all	possible	combinations	of	the	

DEM	 Horizontal	
resolution	

Global	relative	vertical	height	error	 Reported	relative	vertical	
height	error	in	SIDS	

Acquisition	
dates	

TanDEM-X	 ~12m	 <2m	for	low	slope	areas	(<20%)	and	
4m	for	high	slope	areas	(>20%)	
(mission	specification)	(Rizzoli	et	al.,	
2017);	90%	linear	absolute	error	
<2m	(Wessel	et	al.,	2018)	

Unknown	 2010-2015	

SRTM	
v4.1	

~90m	and	

~30m	

16m	(mission	specification)	
Rodriguez	et	al.,	2006);	<10m	(Farr	
et	al.,	2007);	3.6m	(Berry	et	al.,	
2007)	

6.2m	for	‘islands’	(Farr	et	al.,	
2007);	5-10m	Solomon	Islands	
(Albert	et	al.,	2013);	3m	
Bahrain	(Bannari	et	al.,	2017);	
25.53m	Grenada	(Chirico,	
2004)	

2000	

MERIT	 ~90m	 58%	<2m	(Yamazaki	et	al.,	2017)	 Unknown	 2000	

LiDAR	 1m	 5-25cm	(Baltsavias,	1999)	 73.6mm	(Thomas,	2012)	 2012	

a) b) c) d) 

Figure	5	-		Comparison	between	DEMs	on	a	section	of	floodplain	in	Ba	catchment.	a)	satellite	imagery	b)	LiDAR	c)	TanDEM-X	DSM	d)	SRTM	
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two	methods.	The	seven	DTM	outputs	are	identified	based	on	the	method	combination	used	to	

produce	the	DTM.	Reference	to	specific	tools	and	software	are	given	for	transparency	and	

replicability,	but	the	tools	are	based	on	generic	operations.	It	is	worth	noting	alternatives	to	these	

tools	-	particularly	open-source	options	–	are	available.	For	example,	Schreyer	et	al.,	(2016)	use	

open-source	statistical	programming	software	R	packages	“raster”,	“mmand”	and	“rgdal”	to	conduct	

their	Progressive	Morphological	Filtering	method	(R	Core	Team,	2018).	Similar	segmentation	and	

Image	Classification	workflows	can	be	utilized	in	open	source	software	such	as	Ilastik	(Available	

from:	https://github.com/ilastik/ilastik).		
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Figure	6	-	Diagram	showing	the	methodology	workflow	for	TanDEM-X	processing	and	the	names	of	the	output	DTMs	
created	using	each	combination.	‘OBJ’	refers	to	objects	and	‘BE’	refers	to	bare	earth.	HEM	refers	to	the	TanDEM-X	Height	
Error	Map,	AMP	to	amplitude	and	PMF	to	Progressive	Morphological	Filtering.	The	output	table	shows	the	7	different	DTMs	
produced	and	which	methods	have	been	used	to	produce	the	DTM.	
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3.1.3 Progressive	Morphological	Filtering	

Often	used	for	LiDAR	processing	(Zhang	et	al.,	2003),	Progressive	Morphological	Filtering	was	utilized	

by	Geiß	et	al.,	(2015)	and	Schreyer	et	al.,	(2016)	to	identify	buildings	and	vegetation	artefacts	in	the	

Intermediate-TanDEM-X	DEM.	A	Progressive	Morphological	Filter	conducts	an	iteration	of	opening	

operations	on	an	image	using	a	sequentially-increasing	window	size	to	identify	artefacts	of	a	defined	

smallest	to	largest	size	using	two	key	operators:	erosion	and	dilation	(Zhang	et	al.,	2003).	The	

erosion	operator	(Equation	3)	searches	the	pixels	 𝑥5,𝑦5 	within	the	window	size	(B)	to	find	the	

minimum	elevation	to	assign	the	defined	pixel	 𝑧5 .	The	dilation	operator	(Equation	4)	searches	for	

the	maximum	elevation	height	within	the	specified	window	using	the	same	principle.		

𝐸𝑟𝑜𝑠𝑖𝑜𝑛 = 	 𝜀5 = 	 𝑥5,𝑦5 ∈	B
CDE

𝑧5 	Equation	3	

𝐷𝑖𝑙𝑎𝑡𝑖𝑜𝑛 = 	𝛿5 = 	 𝑥5,𝑦5 ∈	B
CK'

𝑧5 	Equation	4	

An	opening	then	sequentially	applies	an	erosion	 𝛿5 	and	dilation	(𝜀5)	filter	to	each	pixel	in	the	DEM	

𝑧5 	(Equation	5),	lowering	objects	smaller	than	the	window	size	(B)	to	the	minimum	height	value	

through	erosion,	whilst	preserving	object	structure	through	dilation	(Zhang	et	al.,	2003).	

𝑂𝑝𝑒𝑛𝑖𝑛𝑔 = 	 𝛾5 = 𝛿5 ∘ 	𝜀5 𝑧5 	Equation	5	

The	morphological	opening	filter	was	applied	using	the	ENVI™	(v5.4)	Convolutions	and	Morphology	

tool.	The	opening	was	first	performed	on	the	unprocessed	TanDEM-X	DSM	using	a	minimum	window	

size	(B3x3).	Further	openings	were	applied	subsequently	using	an	increasing	window	size	of	three	

pixels	per	iteration	up	to	the	maximum	size	(B15x15),	totalling	five	consecutive	iterations.	Minimum	

and	maximum	window	sizes	and	thus	the	number	of	iterations	necessary	between	the	two	were	

selected	based	on	the	smallest	and	largest	object	sizes	present	in	the	TanDEM-X	through	visual	

inspection	of	Google	Earth™	imagery.	The	output	of	each	iteration	identified	anomalous	pixels	in	

comparison	to	the	other	pixels	within	the	window,	identifying	objects	of	increasing	size.	The	height	
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difference	(𝑑ℎ)	between	the	output	of	the	opening	and	the	original	DEM	was	established,	and	an	

elevation	threshold	(𝜃),	ranging	from	1-4m	was	applied	to	each	height	difference	pixel	(𝑑ℎ5),	

classifying	the	pixel	as	an	‘object’	if	above	the	threshold	and	‘bare	earth’	if	below	(Schreyer	et	al.,	

2016).	This	reduces	over-flattening	of	the	terrain	to	the	minimum	pixel	value	and	is	necessary	when	

using	highly-detailed	terrain	data	(Zhang	et	al.,	2003).	Once	all	objects	were	identified,	the	

corresponding	pixels	were	removed	from	the	unprocessed	TanDEM-X	DSM,	with	the	remaining	

pixels	considered	‘bare	earth’.		

𝐵𝑎𝑟𝑒	𝑒𝑎𝑟𝑡ℎ = 𝑑ℎ5 < 	𝜃	

𝑂𝑏𝑗𝑒𝑐𝑡 = 𝑑ℎ5 	> 𝜃		

Following	Geiß	et	al.,	(2015)	and	Schreyer	et	al.,	(2016),	an	additional	step	was	implemented	before	

interpolating	the	‘bare	earth’	pixels	to	create	a	DTM	to	reduce	omission	(false	negative)	and	

commission	errors	(false	positive).	A	segmentation,	using	the	ENVI™	(v5.4)	Segmentation	Image	tool,	

was	performed	on	each	output	to	identify	additional	‘object’	pixels	not	identified	during	the	

opening,	as	omitted	pixels	will	have	the	largest	effect	on	the	resulting	DTM.	The	segmentation	

reclassifies	‘bare	earth’	as	an	‘object’	if	a	certain	number	of	surrounding	pixels	within	a	defined	

neighbourhood	have	been	identified	as	‘objects’,	improving	homogeneity	of	‘object’	regions.	As	this	

process	results	in	the	removal	of	pixels	if	not	part	of	a	defined	region	size,	the	‘objects’	from	the	

segmentation	output	were	combined	with	the	original	‘objects’	identified	to	retain	the	individual	

pixels	identified	such	as	isolated	trees.		

All	identified	‘object’	pixels	were	removed	from	the	DEM,	as	the	opening	does	not	provide	adequate	

information	on	the	height	of	the	object.	An	Inverse-Distance-Weighting	(IDW)	interpolation	is	

performed	to	estimate	height	values	between	remaining	‘bare	earth’	pixels	to	create	the	PMF	DTM	

(after	Schreyer	et	al.,	2016).		

	



	 	 	
	

59	
	

3.1.4 Image	Classification	

A	second	method	was	employed	focusing	on	the	removal	of	large	dense	areas	of	vegetation.	Two	

auxiliary	datasets	that	accompany	the	TanDEM-X	data	were	utilized	to	identify	‘objects’	in	this	

method:	A	Height	Error	Map	and	a	map	of	Amplitude.	The	Height	Error	Map,	which	represents	the	

height	standard	deviation,	is	derived	using	interferometric	coherence	(Wessel,	2016).	The	Amplitude	

map	represents	radar	backscatter	as	a	mean	value	for	all	the	calibrated	amplitudes	between	SAR	

images.	These	auxiliary	datasets	were	chosen	for	two	reasons.	Firstly,	both	datasets	provided	the	

highest	correspondence	between	high	values	and	vegetated	areas	in	the	study	area	based	on	visual	

inspection	of	Google	Earth™	imagery	from	the	time	period	of	TanDEM-X	acquisition	(see	Figure	2).	

Secondly,	Martone	et	al.,	(2018)	suggest	that	areas	of	low	interferometric	coherence	in	the	TanDEM-

X	data	correlate	with	vegetated	areas,	due	to	an	increase	in	volume	decorrelation.	As	the	Height	

Error	Map	is	derived	using	interferometric	coherence,	this	dataset	is	a	suitable	proxy	in	the	absence	

of	raw	estimates	of	interferometric	coherence.		

An	Image	Classification	method	using	the	ENVI™	(v5.4)	Supervised	Image	Classification	workflow	was	

used	to	classify	the	Height	Error	Map	and	Amplitude	map	to	define	large	regions	of	vegetation.	A	

supervised	classification	uses	training	data	that	is	representative	of	a	specific	land	use	class	to	

determine	areas	of	the	corresponding	dataset	that	can	be	identified	as	the	same	class	(Canty,	2014).	

Areas	of	(i)	dense	vegetation,	(ii)	mangrove	and	(iii)	cropland,	were	identified	and	selected	from	

Google	Earth™	imagery	to	create	the	training	data	regions	representative	of	each	land	use	class.	

Cropland	was	used	as	a	proxy	for	‘bare	earth’,	instead	of	an	airplane	runway	or	another	land	use	

class,	as	this	was	the	dominant	land	cover	in	the	region,	and	other	more	suitable	land	use	cover	was	

not	present	in	the	domain.	The	corresponding	pixels	in	these	regions	for	each	map	were	then	used	

to	classify	the	remaining	pixels	using	a	maximum	likelihood	classification	based	on	the	discriminant	

function	by	Richards	(1999)	in	Equation	6.	The	class	defined	using	the	training	data	is	(𝑤D),	𝑥	refers	

to	the	dataset,	where	𝑛	is	the	number	of	bands,	𝑝 𝑤D 	refers	to	the	probability	that	class	(𝑤D)	occurs	
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in	the	DEM,	 𝑖	is	the	determinant	of	the	covariance	matrix	of	the	data	in	each	class	(𝑤D),	and	

𝑚D	the	mean	vector.	

𝑔D 𝑥 = 	1𝑛	𝑝 𝑤D − 	_
`
	1𝑛	 𝑖 − 	_

`
𝑥 − 𝑚D

a −1D (𝑥 − 𝑚D)	Equation	6		

To	determine	the	accuracy	of	the	Image	Classification,	a	confusion	matrix	was	calculated	for	the	

Height	Error	Map	and	Amplitude	classification	outputs,	using	three	alternative	regions	of	interest	to	

the	regions	used	as	training	data	for	the	classification,	referred	to	as	‘ground	truth’	regions	(see	

Figure	7)	(Congalton,	1991).	The	confusion	matrices	for	both	classifications	are	shown	in	Table	3,	

calculated	using	the	ENVI™	(v5.4)	post-classification	Confusion	Matrices	Using	Ground	Truth	ROIs	

tool,	demonstrating	the	percentage	of	pixels	classified	and	the	producer	and	user	accuracy	of	each	

class.	Producer	accuracy	refers	to	the	probability	of	correct	classification	and	user	accuracy	refers	to	

the	probability	that	a	given	class	classification	is	truly	that	class	(Canty,	2014).	Overall,	the	results	

demonstrate	a	79.11%	accuracy	for	the	Height	Error	Map	and	a	78.17%	accuracy	for	the	Amplitude	

map	by	calculating	correct	pixels/total	pixels.	The	Kappa	Coefficient	for	both	confusion	matrices	was	

0.64,	calculated	to	determine	the	agreement	between	the	ground	truth	and	classification	values,	

whereby	1	equals	complete	agreement	and	0	equals	no	agreement	(Congalton,	1991).	These	results	

suggest	good	overall	image	classification	accuracy,	signifying	that	the	‘objects’	identified	by	the	

process	are	representative.	Nonetheless,	Table	3a	shows	limited	capacity	to	classify	between	

mangrove	and	forest	in	the	Height	Error	Map	classification,	suggesting	the	height	error	values	for	

both	classes	are	similar,	thus	reducing	the	overall	classification	accuracy.	Table	3b	shows	a	relatively	

reduced	capacity	to	distinguish	between	forest	cover	and	cropland	in	the	Amplitude	map,	although	

mangrove	classification	is	superior,	suggesting	that	amplitude	values	between	forest	and	mangrove	

cover	are	dissimilar.	
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Table	3	-	Confusion	matrices	using	ground	truth	regions	of	interest	to	determine	image	classification	accuracy	of	the	a)	
TanDEM-X	Height	Error	Map	(HEM)	and	b)	Amplitude	map	(AMP).	Each	matrix	refers	to	percentages	of	pixels	classified	in	
each	class,	as	well	as	overall	producer	and	user	accuracy	in	percent.	

HEM	 Forest	 Mangrove	 Cropland	 User	
accuracy	

Forest	 82.23	 40.20	 2.35	 41.42	

Mangrove	 17.77	 53.62	 6.23	 73.70	

Cropland	 0	 6.17	 91.42	 96.69	

Producer	
accuracy	

82.23	 53.62	 91.42	 		

	

	

	

	

	

AMP	 Forest	 Mangrove	 Cropland	 User	
accuracy	

Forest	 59.91	 2.83	 25.97	 29.93	

Mangrove	 0	 96.83	 1.75	 96.56	

Cropland	 40.09	 0.34	 72.28	 90.03	

Producer	
accuracy	

59.91	 96.83	 72.28	 		

a) 

b) 
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Figure	7	-	Map	demonstrating	the	regions	of	interest	used	to	conduct	the	image	classification,	as	well	as	the	regions	of	
interest	used	for	ground	truth	comparison	in	the	confusion	matrices.	

	

For	the	purpose	of	‘object’	identification,	a	good	classification	between	‘objects’	(in	this	case	forest	

or	mangrove)	and	‘bare	earth’	(in	this	case	cropland)	is	required.	Despite	the	little	difference	in	

overall	classification	accuracy,	the	Height	Error	Map	may	have	a	higher	capacity	to	accurately	

identify	‘objects’	in	comparison	to	the	Amplitude	map	due	to	the	performance	of	the	‘cropland’	

classification.	Both	the	Height	Error	Map	and	Amplitude	map	have	limited	user	accuracy	for	forest,	

suggesting	forest	classification	has	the	most	limited	classification.	Despite	the	good	accuracy	of	the	

Image	Classification,	the	external	dataset	300m	resolution	Climate	Change	Initiative	2015	Land	Cover	

Classification	(Available	from:	https://www.esa-landcover-cci.org/)	was	used	to	further	assess	the	

general	classification	percentages	for	each	land	use	to	determine	whether	the	data	was	likely	to	be	

representative	of	the	floodplain	land	use	(Arino	and	Ramoino,	2017).	Overall,	cropland	was	the	

dominant	classification,	showing	good	agreement	(see	Table	4).	Vegetation	classification	in	the	
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Height	Error	Map	and	Amplitude	classification	was	higher	than	the	Climate	Change	Initiative	2015	

Land	Cover	Classification.	This	is	likely	due	to	the	higher	resolution,	meaning	smaller	areas	of	

vegetation	are	resolved	in	the	TanDEM-X-derived	datasets.	Running	an	unsupervised	classification	

showed	<10	percentage	point	differences	in	land	cover	classification,	identifying	potential	for	

automation	in	future	work.	

	

Table	4	-	Table	showing	the	percentage	of	pixels	classified	as	cropland,	vegetation	and	mangrove	in	the	supervised	image	
classification.	The	results	are	compared	to	the	300m	Climate	Change	Initiative	2015	Land	Cover	Map	pixel	classification.	

		

Supervised	
classification	pixels	
(%)	

CCI	land	use	
classification	(%)	

HEM	 AMP	

Cropland	 50.48	 42.71	 60.38	

Vegetation	 10.7	 16.15	 6.04	

Mangroves	 38.82	 41.14	 33.58	

	

Once	validated,	the	areas	identified	as	forest	or	mangrove	in	the	classification	were	identified	as	

‘objects’,	and	removed	from	the	DEM.	As	the	‘objects’	identified	in	this	method	removed	much	

larger	areas	than	in	the	Progressive	Morphological	Filtering,	the	IDW	interpolation	was	maintained	

for	localized	areas	but	an	Elevation	Void	Filling	function	in	ArcMap™	(v10.5)	was	used	to	interpolate	

larger	areas	using	a	plane	fitting	approach.		

3.1.5 Hydrodynamic	Modelling	

As	demonstrated	in	Figure	6,	seven	DTMs	were	produced	using	Progressive	Morphological	Filtering,	

the	Height	Error	Map	and	Amplitude	in	isolation	and	combination.	All	seven	DTMs,	as	well	as	the	

unprocessed	TanDEM-X	DSM,	LiDAR,	SRTM	and	MERIT	DEMs	were	used	as	the	topography	input	into	

the	sub-grid	variant	of	the	hydrodynamic	model	LISFLOOD-FP	(Neal	et	al.,	2012a).	The	MERIT	and	

SRTM	90m	models	were	run	in	0.67	minutes	and	SRTM	30m	in	9.5	minutes.	All	other	models	were	
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run	at	the	native	TanDEM-X	resolution	(~12m)	with	an	average	run	time	of	140	minutes.	The	LiDAR	

model	was	run	at	the	resolution	of	TanDEM-X,	not	at	native	resolution	(~1m),	as	minimal	

improvement	is	shown	with	resolutions	<50m	at	the	cost	of	a	large	computational	expense	by	an	

order	of	magnitude	every	time	DEM	resolution	is	reduced	by	half	(Savage	et	al.,	2016).	This	does	

mean	that	the	other	DEMs	were	compared	to	the	coarsened	LiDAR,	but	this	was	an	acceptable	

limitation	given	these	justifications.	Key	model	inputs	required	by	the	hydrodynamic	model	include	

topography-derived	variables	and	boundary	conditions	(Bates	et	al.,	2013).	The	input	variables	to	

the	model	were	identical	except	for	the	topography-derived	variables	(DEM,	bank	heights	and	bed	

elevation).	Manning’s	coefficient	friction	was	fixed	at	0.035	for	the	channel	and	0.040	for	the	

floodplain	in	all	models	based	on	a	typical	agricultural	floodplain	in	the	absence	of	roughness	

estimates	for	the	region.	The	sensitivity	of	the	model	to	a	range	of	coefficient	values	was	not	tested,	

despite	the	argument	that	this	could	lead	to	uncertainty	regarding	the	impact	of	roughness	on	the	

friction	slope	and	the	resultant	water	surface	elevation	of	the	model	output	(Baugh	et	al.,	2013).	

Nonetheless,	as	the	model	outputs	were	used	as	an	inter-comparison	and	not	tested	against	an	

actual	flood	event,	the	uncertainty	regarding	friction	sensitivity	was	acceptable.	

The	river	channel	in	the	sub-grid	variant	of	LISFLOOD-FP	is	estimated	using	bank	heights,	bed	heights	

and	channel	width	information	(Neal	et	al.,	2012a).	Bank	heights	were	extracted	along	the	perimeter	

of	the	river	channel	in	the	DEM.	Due	to	the	relatively	small	size	of	the	river	reach	the	widths	were	

measured	at	a	series	of	points	along	the	river	channel	whose	location	was	identified	using	Google	

Earth™	imagery.	Bed	elevation	was	estimated	using	bank	height,	river	width	and	return	period	

discharge	estimates,	such	that	the	channel	water	level	would	closely	match	the	banks	height	at	a	

given	return	period	flow	(1	in	2	year	in	this	case:	Pickup	and	Warner,	1976).	A	binary	channel	mask	

(1=water	and	0=data)	was	also	employed	to	overlay	the	water-masked	river	channel	in	the	

unprocessed	TanDEM-X	DSM	and	DTMs,	signalling	to	the	model	to	start	2D	floodplain	flow	at	the	

channel	boundary.		
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The	LISFLOOD-FP	model	requires	an	input	discharge	at	the	upstream	boundary	and	water	surface	

elevation	at	the	downstream	boundary	(Bates	et	al.,	2013).	The	downstream	boundary	of	the	model	

was	fixed	at	0m,	set	at	local	mean	sea	level	corresponding	with	the	DEMs.	The	upstream	boundary	

was	located	21.72km	upstream.	Due	to	a	lack	of	accurate	and	complete	flow	gauge	data	for	the	Ba	

river	(Yeo	et	al.,	2007),	a	historical	flood	event	time-series	could	not	be	used	to	simulate	discharge	in	

the	model.	Thus,	a	Regional	Flood	Frequency	Analysis	outlined	by	Smith	et	al.,	(2015)	was	conducted	

to	simulate	peak	discharge	estimates	(Table	5)	at	various	return	periods	based	on	available	flow	data	

in	hydrologically-similar	catchments	and	rainfall	data	from	the	Fiji	Meteorological	Office.		

Table	5	-	Peak	flow	discharges	for	the	modelled	return	period	events	estimated	using	Smith	et	al.'s	(2015)	Regional	Flood	
Frequency	Analysis	method.	

Return	period	event	 Estimated	peak	discharge	(m3s-1)	

50-year	 5106	
25-year	 3544	
10-year	 2130	
	

Hydrologically	similar	catchments	were	clustered	by	Köppen-Geiger	region	(tropical),	catchment	

area	and	average	annual	rainfall,	based	on	the	argument	that	catchments	with	similar	characteristics	

have	comparable	flow	behaviour	(Smith	et	al.,	2015).	These	variables	were	used	to	estimate	peak	

flow	for	a	particular	return	period	by	scaling	the	predicted	mean	annual	flood	using	a	growth	curve	

model.	As	tropical	catchments	had	a	mean	RMSE	of	0.39	between	modelled	and	observed	events	in	

Smith	et	al.,	(2015)	–	with	the	second	highest	error	after	arid	catchments	(0.61)	-	the	capacity	to	

represent	flow	events	may	be	poorer	in	tropical	catchments.	Despite	these	limitations,	this	method	

was	also	utilized	in	the	Government	of	Fiji’s	(2017)	Climate	Vulnerability	Assessment	due	to	a	lack	of	

alternative	flow	information,	but	was	found	to	have	reduced	predictive	capacity	for	flow	events	in	

Fiji’s	flashy	catchments.	Therefore,	an	indicator	of	extreme	rainfall	(Q98)	was	included	in	the	growth	

curve	model	to	improve	the	estimation	of	peak	flows	in	flashy	catchments	with	high	frequency	
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extreme	rainfall	events.	Q98	represents	the	percentage	of	average	annual	rainfall	falling	within	2%	

of	wet	days,	calculated	using	daily	rainfall	data	for	the	Ba	region	as	18%.		

A	hydrograph	was	created	using	the	Rational	Method	which	takes	the	peak	discharge	estimates	for	

the	50,	25	and	10-year	return	period	events,	and	the	catchment	time	to	concentration	of	5.43	hours	

to	produce	a	hydrograph	(see	Table	5	and	Figure	8).	The	total	simulation	duration	was	set	at	48-

hours	following	historical	events	in	the	region.	Time	to	concentration	was	calculated	using	the	

velocity	method	detailed	in	Woodward	et	al.,	(2010).	This	method	calculates	time	to	concentration	

by	the	sum	of	travel	times	from	the	most	hydraulically	distant	point	in	the	watershed	to	the	

downstream	outlet,	assuming	three	flow	types:	sheet	flow,	shallow	concentrated	flow	and	open	

channel	flow.	Three	return-period	events	were	simulated	as	larger	‘valley-filling’	floods	can	be	less	

sensitive	to	floodplain	dynamics	and	may	therefore	be	less	sensitive	to	DEM	error	(Schumann	et	al.,	

2009).		

Models	using	all	eleven	DEMs	for	the	three	return	period	events	were	simulated,	and	a	maximum	

flood	extent	map	was	produced	for	each	model	run.		

	

Figure	8	-	Rational	hydrograph	for	the	50,	25	and	10-year	flood	events,	using	peak	flow	estimations	from	the	Regional	Flood	
Frequency	Analysis.	The	event	simulated	was	48	hours,	with	a	time	to	concentration	of	5.23	hours	for	the	ascending	and	
descending	limb	of	the	hydrograph.	

3.1.6 Model	Evaluation	

The	flood	model	outputs	were	evaluated	using	binary	pattern-matching	performance	metrics	based	

on	a	contingency	table,	commonly-used	in	flood	modelling	to	validate	model	outputs	(Hunter,	2005;	

Pappenberger	et	al.,	2007;	Schumann	et	al.,	2009;	Stephens	et	al.,	2014).	As	the	LiDAR	model	is	
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considered	as	the	‘truth’	for	the	purposes	of	this	study,	the	DEM	that	produces	the	flood	extent	and	

water	surface	elevation	with	the	closest	fit	to	the	LiDAR	model	is	considered	the	most	successful	

candidate.	The	LiDAR	model	is	not	necessarily	an	exact	representation	of	floodplain	topography.	Yet,	

for	the	purposes	of	DEM	comparison,	this	was	considered	an	acceptable	limitation	as	the	LiDAR	data	

is	likely	to	provide	the	most	reliable	benchmark	available.	A	contingency	table,	as	described	in	

Stephens	et	al.,	(2014),	was	used	to	assess	whether	a	pixel	in	the	model	is	correctly/incorrectly	

identified	as	wet/dry	(see	Table	6).	The	metric	was	then	calculated	using	the	number	of	pixels	in	

each	category	(A,	B,	C	and	D)	to	assess	accuracy.			

Table	6	-	Contingency	table	(after	Stephens	et	al.,	2014).	

		 Present	in	
observation	

Absent	in	
Observation	

Present	in	
model	

A	 B	

Absent	in	model	 C	 D	

	

Hunter	(2005)	and	Stephens	et	al.,	(2014)	stress	the	importance	of	calculating	several	binary	metrics	

when	assessing	model	performance,	as	individual	metrics	can	present	a	bias	to	models	under	

predicting,	over	predicting,	or	with	large	dry	domains.	Three	binary	metrics	were	calculated,	as	well	

as	the	Root	Mean	Square	Error	(RMSE)	of	the	model	water	surface	elevation,	to	determine	the	most	

successful	model.	The	Critical	Success	Index,	or	F<1>	score,	is	the	most	commonly-used	binary	metric	

when	assessing	flood	model	skill	(Equation	7),	and	the	F<2>	and	F<3>	scores	penalise	under	prediction	

and	over	prediction	respectively	(Equation	8	and	9)	(Stephens	et	al.,	2014).	If	a	similar	pattern	is	

shown	in	all	three	metrics,	then	the	Critical	Success	Index	is	unlikely	to	display	bias	towards	over	

prediction	in	these	models	(Hunter,	2005).	

𝐶𝑆𝐼 = 	 "
"dBde

		Equation	7	

𝐹g`h	 	= 	 "ie
"dBde

		Equation	8	
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𝐹gjh	 	= 	 "iB
"dBde

		Equation	9	

Stephens	et	al.,	(2014)	suggest	that	calculating	the	RMSE	of	water	surface	elevation	between	a	

model	and	observation	provides	a	useful	metric	to	communicate	the	depth	prediction	skill	of	a	

model	(Equation	10).	The	RMSE	is	a	common	statistical	accuracy	measure	used	to	determine	error	

between	predicted	and	observed	values	(Wessel	et	al.,	2018).		

𝑅𝑀𝑆𝐸 = 	 (mnion)+p
nqr

E
		Equation	10	

3.2 	Results	

The	maximum	flood	extents	for	each	model	for	the	50-year	return	period	flood	event	are	outlined	

for	the	~12m	models,	followed	by	the	metric	results	for	all	three	return-period	events.		

3.2.1 How	Well	Does	the	Unprocessed	TanDEM-X	DSM	Perform?	

The	maximum	flood	extents	shown	in	Figure	9a	demonstrate	that	the	unprocessed	TanDEM-X	DSM	

has	an	improved	capacity	to	model	flooding	in	comparison	to	SRTM,	suggesting	improved	DSM	

quality	over	SRTM.	The	metric	scores	outlined	in	Table	7	also	indicate	a	marked	improvement	and	

are	echoed	by	the	F<2>	and	F<3>	scores	in	Table	8.		
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	The	MERIT	DTM	has	higher	skill	than	both	SRTM	and	TanDEM-X	DSMs	and	SRTM	30m	does	not	

improve	results	significantly	in	comparison	to	SRTM	at	90m,	indicating	the	relative	importance	of	a	

DTM	over	horizontal	resolution.	Two	key	areas	that	are	flooded	in	the	LiDAR	model	and	the	MERIT	

DTM	but	not	TanDEM-X	DSM	and	SRTM	are	the	mangroves	at	the	downstream	boundary	and	the	

dense	patches	of	vegetation	along	the	river	on	the	floodplain,	demonstrating	the	impact	of	

vegetation	artefacts	on	model	performance.	The	metrics	were	therefore	calculated	for	the	50-year	

model	including	and	excluding	the	mangroves	at	the	downstream	boundary	and	the	25	and	10-year	

models	were	calculated	excluding	mangroves,	as	the	poor	accuracy	over	mangrove	areas	reduces	

the	ability	to	assess	the	DTMs	upstream,	which	is	of	more	interest	in	flood	risk	assessment.	The	

mangroves	provide	a	tough	test	case	for	an	X-band	InSAR	such	as	TanDEM-X	and	are	inherently	

difficult	to	model.	Mangroves	have	a	closed	canopy	meaning	little	ground	return	is	available	for	the	

area	(Mitchell	et	al.,	2007),	so	the	TanDEM-X	DSM	has	a	particularly	difficult	time	measuring	‘bare	

earth’.	Furthermore,	LiDAR	ground	truthing	was	not	conducted	by	Thomas	(2012)	in	the	mangroves,	

so	the	authors	cannot	determine	the	accuracy	of	the	LiDAR	in	this	location.	This	creates	a	second	

justification	for	removal	of	mangroves	in	the	analysis,	as	the	benchmark	LiDAR	accuracy	over	these	

areas	is	unknown.	This	study	does	not	suggest	that	the	methods	detailed	can	entirely	remove	

mangrove	regions,	and	the	results	show	poorer	accuracy	in	mangrove-covered	areas.	An	artificial	

boundary	either	side	of	the	mangroves	at	the	downstream	boundary	is	produced	due	to	the	

constrained	model	domain	(see	Figure	3c),	dictated	by	the	LiDAR	data	coverage	used	as	the	
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benchmark.	

	

Figure	9	-	a)	Modelled	flood	extents	for	the	LiDAR,	TanDEM-X	DSM,	SRTM	and	MERIT	DEMs	for	the	50-year	return	period	
event	at	~12m	resolution.	b)	Modelled	flood	extents	for	the	7	TanDEM-X	DTMs	for	the	50-year	return	period	event.	
Acronyms	for	the	DTMs	correspond	with	the	method	used:	AMP	describes	use	of	TanDEM-X	Amplitude	map,	HEM	describes	
use	of	TanDEM-X	Height	Error	Map	and	PMF	Progressive	Morphological	Filtering.	
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3.2.2 TanDEM-X	DTM	Comparison	Analysis	

Figure	9b	shows	all	seven	TanDEM-X	DTM	model	flood	extents,	produced	using	combinations	of	the	

Image	Classification	of	the	Height	Error	Map	and	Amplitude	map	and	Progressive	Morphological	

Filtering	as	described	in	Figure	6.		

The	PMF	DTM,	produced	using	only	Progressive	Morphological	Filtering,	is	the	worst	performing	

TanDEM-X	DTM	when	input	into	the	hydrodynamic	model,	with	the	lowest	agreement	of	the	seven	

DTMs	in	maximum	flood	extent	simulation	and	Critical	Success	Index	(Table	7).	The	PMF	DTM	is	also	

the	worst-performing	DTM	created	using	one	method.			

The	AMP/PMF	is	overall	the	most	consistently	superior	DTM	when	visually	comparing	flood	outputs	

as	well	as	for	overall	model	skill,	despite	the	remaining	presence	of	artefacts	along	the	channel	edge	

in	the	model	output	(see	Figure	9b).	

DTMs	created	using	a	combination	of	methods	have	higher	agreement	with	the	LiDAR	model	when	

visually	comparing	and	assessing	binary	metric	performance	in	comparison	to	DTMs	created	using	

one	method.	AMP/PMF	is	the	most	successful	combination	method.	HEM/PMF	has	higher	model	

skill	than	HEM/AMP	and	ALL,	except	for	when	mangroves	are	included	in	binary	metric	calculation	

for	the	50-year	event.	There	is	little	difference	between	HEM/AMP	and	ALL	DTMs	metric	

performance	in	Table	7	and	the	visual	flood	extents.		

In	general,	when	Progressive	Morphological	Filtering	is	combined	with	Image	Classification	of	either	

the	Height	Error	Map	or	Amplitude	(AMP/PMF	and	HEM/PMF)	the	accuracy	of	the	flood	extent	is	

improved	in	comparison	to	when	the	methods	are	used	in	isolation	or	in	other	combinations.	This	

suggests	that	a	combination	of	a	coarse	and	fine	processing	methods	produces	the	best-performing	

DTMs	overall.		
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3.2.3 TanDEM-X	DTM	Selection	

When	analysing	all	11	flood	extents	in	Figure	9	and	Table	7	and	8,	AMP/PMF	was	the	DTM	selected	

as	the	most	successful	candidate	for	flood	inundation	and	water	surface	estimation	in	comparison	to	

the	LiDAR	model.	This	method	is	therefore	considered	the	most	suitable	TanDEM-X	processing	

method,	creating	a	DTM	with	a	higher	capacity	to	model	flooding	in	comparison	to	the	other	

TanDEM-X	DTMs	and	MERIT	DTM,	as	well	as	the	unprocessed	TanDEM-X	and	SRTM	DSMs.		

The	AMP/PMF	DTM,	as	well	as	the	other	combination	TanDEM-X	DTMs,	have	a	higher	model	skill	

than	the	MERIT	DTM.	As	the	MERIT	DTM	is	currently	most	often	used	in	data-sparse	flood	

inundation	modelling	whereby	LiDAR	data	is	unavailable,	it	is	important	to	directly	compare	the	

results	of	the	AMP/PMF	DTM	to	the	MERIT	DTM	to	consider	the	scale	of	improvement	shown	(see	

Figure	10).	The	AMP/PMF	DTM	has	a	Critical	Success	Index	score	of	12-14	percentage	points	higher	

than	the	MERIT	DTM	(Table	7)	and	performs	consistently	highest	when	tested	for	under	and	over	

prediction	(Table	8),	showing	improved	flood	extent	model	skill.	Water	surface	elevation	prediction	

skill	is	also	greater,	with	a	RMSE	of	0.11-0.21m	lower	than	the	MERIT	DTM	(Table	7).	

	

	

Figure	10	-	Modelled	flood	extents	of	the	two	TanDEM-X	DTMs	AMP/PMF	and	MERIT	in	comparison	to	the	
LiDAR	model	for	the	50-year	return	period	event.	
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Table	7	–	The	left	of	the	table	shows	the	scores	for	each	DEM	for	the	Critical	Success	Index	binary	performance	metric	for	
each	return	period	when	compared	to	the	LiDAR	flood	extent	which	is	taken	here	as	a	benchmark.	Scores	range	from	0	(no	
agreement)	to	1	(total	agreement).	The	right	side	of	the	table	shows	Root	Square	Mean	Error	(RMSE)	between	the	water	
surface	elevation	of	each	DEM	flood	output	and	the	LiDAR	model.	The	higher	the	score	the	higher	the	error,	reported	in	
meters.	The	red	highlighted	boxes	indicate	the	worst	performing	DEM	in	the	category	and	the	green	highlighted	boxes	
indicate	the	best	performing	DEM.	

	

	

	

	

	

	

	

	

	

	

	

DEM	 Critical	Success	Index	(0-1)	 Water	Surface	Elevation	RMSE	(m)	
50-yr		 25-yr		 10-yr		 50-yr	 25-yr		 10-yr		
Including	
mangroves		

Excluding	
mangroves		

Including	
mangroves		

Excluding	
mangroves		

TanDEM-X	
DSM	

0.61	 0.75	 0.70	 0.57	 0.72	 0.75	 0.65	 0.50	

SRTM	90m	 0.58	 0.69	 0.63	 0.48	 0.88	 0.95	 0.84	 0.66	
SRTM	30m	 0.58	 0.71	 0.65	 0.51	 0.85	 0.91	 0.81	 0.65	
MERIT	 0.77	 0.77	 0.72	 0.60	 0.63	 0.68	 0.62	 0.52	

PMF	 0.64	 0.77	 0.71	 0.58	 0.68	 0.70	 0.61	 0.46	

HEM	 0.67	 0.84	 0.78	 0.63	 0.62	 0.62	 0.55	 0.43	

AMP	 0.86	 0.84	 0.80	 0.66	 0.51	 0.59	 0.54	 0.45	

HEM/PMF	 0.84	 0.89	 0.85	 0.69	 0.52	 0.53	 0.49	 0.42	

AMP/PMF	 0.90	 0.89	 0.85	 0.74	 0.42	 0.49	 0.41	 0.37	

HEM/AMP 0.90 0.88 0.83 0.65 0.52 0.58 0.55 0.43 

ALL 0.90 0.88 0.83 0.67 0.51 0.57 0.54 0.48 
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Table	8	-	Scores	for	each	DEM,	ranging	between	-1	(no	agreement)	to	1	(total	agreement).	The	50-year	return	period	scores	
are	calculated	including	and	excluding	mangroves,	and	the	25	and	10-year	event	scores	are	calculated	excluding	
mangroves.	The	red	highlighted	boxes	indicate	the	worst	performing	DEM	in	the	category	and	the	green	highlighted	boxes		

indicate	the	best	performing	DEMs.	

DEM	

F<2>	(-1	to	1)	 F<3>	(-1	to	1)	

50-yr	

25-yr	 10-yr	

50-yr	

25-yr	 10-yr	Including	
mangroves	

Excluding	
mangroves	

Including	
mangroves		

Excluding	
mangroves	

TanDEM-X	
DSM	

0.56	 0.69	 0.64	 0.47	 0.28	 0.57	 0.46	 0.24	

SRTM	90m	 0.49	 0.59	 0.52	 0.34	 0.24	 0.48	 0.36	 0.1	

SRTM	30m	 0.22	 0.48	 0.37	 0.12	 0.53	 0.65	 0.58	 0.40	

MERIT	 0.65	 0.66	 0.61	 0.45	 0.65	 0.64	 0.56	 0.34	

PMF	 0.59	 0.71	 0.64	 0.48	 0.34	 0.61	 0.5	 0.27	

HEM	 0.64	 0.78	 0.72	 0.54	 0.42	 0.73	 0.62	 0.37	

AMP	 0.82	 0.79	 0.74	 0.56	 0.76	 0.73	 0.66	 0.41	

HEM/PMF	 0.8	 0.84	 0.79	 0.58	 0.71	 0.82	 0.75	 0.48	

AMP/PMF	 0.87	 0.84	 0.8	 0.64	 0.84	 0.81	 0.76	 0.59	

HEM/AMP	 0.85	 0.82	 0.77	 0.55	 0.84	 0.81	 0.73	 0.41	

ALL	 0.85	 0.83	 0.77	 0.56	 0.85	 0.82	 0.73	 0.47	

	

3.3 	Discussion	

Consistently	for	all	four	metrics,	TanDEM-X	DSM	has	a	higher	flood	estimation	accuracy	than	the	

SRTM	DSM,	but	worse	than	the	MERIT	DTM	and	the	TanDEM-X	DTMs.	Crucially,	just	because	

TanDEM-X	has	a	higher	resolution	and	higher	average	vertical	accuracy,	pre-processing	to	a	DTM	is	

still	required	to	remove	surface	artefacts,	aligning	with	previous	review	of	SRTM	and	LiDAR	in	

hydrodynamic	modelling	(Bates,	2004;	2012;	Sampson	et	al.,	2016).		

TanDEM-X	has	a	higher	accuracy	than	SRTM	in	comparison	to	LiDAR	for	three	key	reasons:	(i)	

acquisition	date	(ii)	spatial	resolution	(iii)	vertical	accuracy.	As	TanDEM-X	was	acquired	between	
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2010-2015	(Rizzoli	et	al.,	2017),	and	the	LiDAR	data	was	acquired	in	2012	(Thomas,	2012),	the	

characteristics	of	the	floodplain	captured	are	likely	to	be	more	similar	in	comparison	to	SRTM	which	

was	acquired	in	2000	(Rabus	et	al.,	2003),	following	changes	in	land	use	during	the	period	(Yeo,	

2015).	Furthermore,	as	TanDEM-X	has	a	higher	spatial	resolution	and	a	higher	specified	vertical	

accuracy	than	the	SRTM	mission	(Rizzoli	et	al.,	2017;	Wessel	et	al.,	2018),	the	finer-scale	

characteristics	of	the	floodplain	morphology	will	be	better-represented	than	in	the	SRTM.	

Although	the	MERIT	DTM	is	an	error-reduced	SRTM	product	at	90m,	the	unprocessed	TanDEM-X	

DSM	has	a	lower	flood	prediction	accuracy	for	flood	extent	and	water	surface	elevation.	It	is	

apparent	in	Figure	9a	that	the	main	areas	which	remain	dry	in	TanDEM-X	but	not	in	the	LiDAR	or	

MERIT	DTMs	are	the	mangroves	at	the	downstream	boundary	and	large	patches	of	tall	vegetation	

along	the	floodplain,	leading	to	poorer	flood	extent	prediction	skill.	Water	surface	elevation	RMSE	in	

the	TanDEM-X	DSM	is	also	higher	than	the	MERIT	DTM,	likely	due	to	vegetation	artefacts	blocking	

key	flow	pathways	across	the	floodplain	surface	(Mason	et	al.,	2011).	This	highlights	the	pronounced	

presence	of	vegetation	artefacts	in	the	TanDEM-X,	largely	because	the	X-band	SAR	system	has	

limited	penetration	of	the	canopy	(Martone	et	al.,	2018;	Wessel	et	al.,	2018).	Therefore,	presence	of	

mangroves	strongly	affects	the	overall	results	potentially	masking	the	capability	of	the	DEM	in	

upstream	areas.	The	skill	of	the	model	in	these	upstream	areas	is	in	fact	more	critical	as	these	are	

the	more	populated	areas	and	thus	of	more	interest	in	flood	risk	assessment,	especially	considering	

the	accuracy	of	the	LiDAR	benchmark	in	the	mangrove	area	is	also	unknown.	Although	mangroves	

appear	to	have	been	removed	in	Yamazaki	et	al.’s	(2017)	MERIT	DTM	using	height	information	

indicated	in	the	~90m	resolution	global	vegetation	height	map	(Simard	et	al.,	2011),	the	methods	

used	to	remove	these	are	coarse-scale	and	thus	not	suitable	for	TanDEM-X.	Therefore,	further	

investigation	is	required	to	optimize	mangrove-removal	for	TanDEM-X	for	the	DEM	to	be	applicable	

for	hydrodynamic	modelling	at	the	global	scale.			
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3.3.1 TanDEM-X	DTM	Processing:	A	Balance	

The	DTM	produced	using	the	AMP/PMF	method	is	the	most	suitable	candidate	for	modelling	both	

flood	extent	and	water	surface	elevation	in	comparison	to	the	LiDAR	model,	followed	by	HEM/PMF.	

This	underpins	the	argument	that	previously-established	DEM	processing	methods	used	for	both	

fine-resolution	(<5m)	LiDAR	data	(Zhang	et	al.,	2003;	Schreyer	et	al.,	2016)	or	coarse-scale	(>90m)	

InSAR	data	(Baugh	et	al.,	2013;	Yamazaki	et	al.,	2017)	cannot	be	directly	applied	to	the	TanDEM-X	

data	in	isolation,	indicating	the	need	for	a	balance	between	coarse	and	fine-scale	processing.	When	

the	methods	are	used	in	isolation	the	resulting	DTM	still	contains	too	many	artefacts	to	provide	a	

smooth	representation	of	‘bare	earth’	topography,	as	shown	in	the	binary	metric	performance	for	

PMF,	AMP	and	HEM	DTMs	in	comparison	to	AMP/PMF,	HEM/PMF,	HEM/AMP	and	ALL	DTMs	(see	

Table	7	and	8).	The	results	are	also	consistent	with	Geiß	et	al.’s	(2015)	argument	that	the	spatial	

resolution	of	TanDEM-X	still	limits	the	use	of	Progressive	Morphological	Filtering	in	isolation,	as	even	

the	smallest	window	size	(3x3	pixels)	is	larger	than	individual	trees	or	buildings,	with	the	PMF	DTM	

ranking	as	the	worst-performing	TanDEM-X	DTM.		

Initial	assumptions	would	suggest	that	the	more	artefacts	identified	and	removed	from	the	DEM,	the	

smoother	and	thus	more	representative	the	resulting	DTM,	justifying	the	iterative	procedure	(Geiß	

et	al.,	2015;	Yamazaki	et	al.,	2017).	However,	the	AMP/PMF	is	clearly	the	most	consistently-superior	

DTM	across	all	metrics	when	compared	against	the	other	combination	DTMs,	despite	using	fewer	

methods	to	remove	artefacts.	Although	the	ALL	DTM,	whereby	all	three	methods	are	combined,	has	

particularly	good	skill	for	the	50-year	return	period	event,	this	is	likely	influenced	by	the	‘valley-

filling’	flood	effect,	whereby	larger	floods	are	less	sensitive	to	floodplain	error,	meaning	little	

difference	in	performance	is	identified	using	the	binary	metric	assessment	between	the	combination	

methods	(see	Table	7).	The	ALL	DTM	also	shows	superior	performance	when	mangroves	are	

included	in	binary	metric	calculation	for	the	50-year	return	period	event,	suggesting	that	the	
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capacity	to	flood	the	mangrove	area	may	provide	a	bias	in	the	results	towards	the	ALL	DTM	in	

comparison	to	other	DTMs,	leading	to	an	overestimation	of	model	skill.		

Results	showing	that	HEM/AMP	and	ALL	DTMs	have	little	difference	between	metric	results	also	

reinforces	the	need	for	a	balance	between	large	and	fine	scale	artefact	removal,	as	the	results	

indicate	that	adding	another	method	to	remove	artefacts	doesn’t	necessarily	improve	the	output	

DTM.	This	is	echoed	by	Baugh	et	al.’s	(2013)	comparison	with	Coe	et	al.,	(2008)	and	Paiva	et	al.’s	

(2011)	SRTM	vegetation	removal	studies,	indicating	that	larger	modification	does	not	necessarily	

improve	accuracy.	Therefore,	although	a	combination	of	methods	improves	TanDEM-X	DTM	flood	

prediction	accuracy	over	methods	in	isolation,	a	delicate	balance	between	fine	and	coarse	scale	

processing	is	required	to	process	TanDEM-X	data,	as	the	AMP/PMF	DTM	(and	to	a	lesser-extent	

HEM/PMF	DTM)	demonstrate	the	best	performance	overall	for	the	various-sized	flood	events,	and	

particularly	for	the	smaller	events	whereby	DEM	error	is	more	influential	(Schumann	et	al.,	2009).		

Despite	the	successful	use	of	interferometric	coherence	estimates	to	detect	vegetation	in	the	

TanDEM-X	DSM	by	Martone	et	al.,	(2018)	and	the	superior	classification	accuracy	of	the	Height	Error	

Map	in	comparison	to	the	Amplitude	map	(see	Table	3),	the	finding	that	AMP/PMF	has	a	better	flood	

prediction	accuracy	than	when	the	Height	Error	Map	–	an	error	map	created	using	interferometric	

coherence	–	is	used	to	produce	the	output	DTMs	HEM,	HEM/PMF	and	HEM/AMP	suggests	that	

interferometric	coherence	is	not	necessarily	the	most	useful	indicator	for	vegetation	artefact	at	this	

site	when	compared	to	the	Amplitude	map.	Perhaps	because	the	Height	Error	Map	is	derived	using	

interferometric	coherence	as	opposed	to	being	a	direct	indicator	(Wessel,	2016),	the	capacity	to	

remove	vegetation	artefact	using	the	Height	Error	Map	as	opposed	to	true	interferometric	

coherence	estimates	may	be	different.	As	AMP/PMF	is	the	most	suitable	DTM	candidate,	the	

Amplitude	map	clearly	has	a	good	capacity	to	identify	vegetation	objects	despite	the	Image	

Classification	showing	relatively	lower	accuracy	between	‘forest’	and	‘cropland’	classification.	

Without	information	on	suggested	amplitude	and	interferometric	coherence	values	for	both	‘forest’	
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and	‘mangrove’,	explanation	for	this	result	is	limited,	so	further	investigation	into	the	use	of	

amplitude	as	an	indicator	of	surface	artefacts	in	the	TanDEM-X	DSM	should	be	conducted.		

3.3.2 Future	Application	

Overall,	this	study	outlines	the	first	results	using	TanDEM-X	as	an	unprocessed	DSM	and	a	processed	

DTM	in	a	hydrodynamic	model.	These	results	demonstrate	that	when	TanDEM-X	is	processed	to	

produce	a	DTM	using	a	combination	of	methods,	it	greatly	improves	flood	estimates	in	comparison	

to	both	SRTM	and	MERIT,	signifying	potential	for	use	of	higher	resolution,	globally-available	

TanDEM-X	data	for	flood	modelling.	Specifically,	the	TanDEM-X	AMP/PMF	DTM	greatly	improves	on	

the	capacity	to	model	both	flood	extent	and	water	surface	elevation.		

However,	this	study	only	investigates	the	TanDEM-X	DSM	and	DTMs	in	one	catchment,	despite	the	

argument	that	model	sensitivity	to	a	DEM	differs	between	catchments,	which	may	lead	to	divergent	

conclusions	when	applied	elsewhere.	The	method	was	not	applied	to	another	study	area	due	to	

limited	access	to	TanDEM-X	data,	meaning	there	are	several	ways	TanDEM-X	and	the	AMP/PMF	

method	should	be	tested	in	other	sites	to	validate	the	observations	of	TanDEM-X	performance	in	

this	study.	These	include	investigating	the	use	of	TanDEM-X	for	inundation	prediction	in	other	small	

data-sparse	catchments	within	SIDS	and	elsewhere,	urban	catchments	and	larger	river	basins.	

Modelled	flood	extents	using	both	the	TanDEM-X	DSM	and	AMP/PMF	DTM	should	also	be	validated	

against	Synthetic	Aperture	Radar	flood	observation	images	and	other	validation	data	to	determine	

whether	TanDEM-X	has	suitable	predictive	skill	in	comparison	to	actual	flood	events	(Bates,	2012).	

Yet,	despite	these	caveats,	the	accuracy	metrics	in	this	paper	are	concurrent	with	arguments	in	the	

literature	i.e.	the	results	show	that	having	a	DTM	improves	prediction	over	DSM	(Bates,	2012)	and	

higher	resolution	DTMs	produce	more	accurate	topographic	representations	and	hence	better	flood	

estimates	(Horritt	and	Bates,	2001;	Sanders,	2007).	Therefore,	it	is	likely	that	TanDEM-X	will	have	a	

capacity	to	improve	flood	estimates	in	other	locations	with	similar	characteristics,	but	additional	
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work	is	needed	to	verify	this.	Further	processing	is	also	likely	to	be	required	in	urban	catchments	due	

to	presence	of	building	artefacts	in	the	TanDEM-X	DSM.		

There	are	key	barriers	that	are	likely	to	reduce	the	use	and	further	validation	of	this	TanDEM-X	

AMP/PMF	DTM	approach	globally,	but	also	specifically	in	SIDS.	The	TanDEM-X	data	is	not	open-

source,	but	available	through	the	German	Aerospace	Center	(DLR)	following	an	application	process	

for	scientific	use	and	a	cost	of	~€100/tile	(Wessel,	2016).	As	it	is	much	easier	to	access	the	open-

source	globally-available	SRTM	or	MERIT,	e.g.	MERIT	has	been	released	free	for	non-commercial	use	

by	Yamazaki	et	al.,	(2017),	a	scientific	community	familiar	with	these	datasets	is	likely	to	continue	

using	these	DEMs	until	access	to	TanDEM-X	is	easier	and/or	proved	to	be	more	effective	(i.e.	worth	

the	additional	effort	to	both	get	the	data	and	apply	new	methods).	This	is	specifically	likely	to	

hamper	TanDEM-X	application	in	SIDS	due	to	the	limited	capacity	or	resources	to	implement	new	

methodologies	and	datasets	to	existing	flood	risk	assessment	(Yeo,	2015).	The	fact	that	almost	two	

years	after	the	release	of	the	TanDEM-X	DEM	(Moreira,	2017),	there	has	been	no	study	

demonstrated	the	suitability	of	TanDEM-X	for	flood	modelling	until	now,	despite	this	being	an	

obvious	application	area,	is	an	indication	of	these	access	and	capability	issues.		

	

It	is	worth	noting	that	a	suitable	error-reduced	DTM	from	SRTM	was	only	produced	17	years	after	

the	SRTM	DSM	release	despite	the	open-source	availability	of	SRTM	(Schumann	et	al.,	2014).	

Without	wider	accessibility	of	TanDEM-X,	the	capabilities	of	TanDEM-X	for	flood	modelling	may	be	

realized	much	more	slowly	than	SRTM,	and	quality	of	DEM	data	will	remain	the	key	limitation	to	

high-accuracy	hydrodynamic	modelling	for	years	to	come	(Schumann	et	al.,	2014;	Sampson	et	al.,	

2016).	This	would	be	a	significant	limitation	to	future	flood	modelling	in	data-sparse	areas,	and	

specifically	SIDS,	whereby	better	flood	risk	assessment	is	urgently	needed	(Hay	and	Mimura,	2013;	

Nurse	et	al.,	2014).	The	release	of	90m	TanDEM-X	in	October	2018	(DLR,	2018)	may	accelerate	the	

uptake	of	the	data	for	flood	applications,	although	as	was	the	case	with	SRTM	the	results	in	this	
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thesis	suggest	that	a	vegetation	removal	algorithm	will	be	needed.	Notably,	Airbus	(2019)	have	

released	a	global	DTM	product	WorldDEM™	from	the	TanDEM-X	DSM,	providing	‘bare	earth’	

elevation	values	at	12m	resolution.	Nonetheless,	this	data	must	be	purchased	privately	at	a	

significant	cost	of	$20	per	km2	and	a	minimum	purchasing	order	of	100km2,	reducing	the	likelihood	

of	uptake	by	economically-limited	SIDS.	No	information	has	been	published	regarding	the	processing	

method	used	to	produce	WorldDEM™.		

Thus,	it	is	timely	that	this	study	provides	an	insight	into	the	competency	of	TanDEM-X	for	flood	

modelling,	highlighting	key	methodological	approaches	to	process	the	data,	and	identifying	gaps	for	

further	investigation.	Continued	exploration	of	other	potential	artefacts	in	the	TanDEM-X	DSM	such	

as	possible	striping	error	causing	a	repetitive	undulation	in	the	elevation	heights	are	necessary	but	

were	beyond	the	scope	of	this	study.	Following	the	analysis	of	TanDEM-X	in	Ba,	Fiji,	there	is	

confidence	that	the	results	from	this	study	will	be	broadly	applicable	to	other	floodplains	that	share	

similar	characteristics.	Nevertheless,	the	AMP/PMF	method	should	be	applied	in	other	study	sites	to	

validate	the	results	of	this	study.		

3.4 Chapter	Conclusion	

The	aim	of	this	chapter	was	to	identify	whether	an	appropriate	method	can	be	used	to	process	

TanDEM-X	for	use	in	a	hydrodynamic	model,	and	whether	this	improves	flood	estimates	in	

comparison	to	already-existing	global	DEMs	SRTM	and	MERIT	in	a	SIDS	context.	The	unprocessed	

TanDEM-X	DSM	did	improve	flood	estimates	over	the	SRTM	DSM	when	input	into	a	hydrodynamic	

model,	but	not	the	MERIT	DTM,	emphasizing	that	although	TanDEM-X	has	a	higher	resolution,	this	

does	not	negate	the	need	for	surface	artefact	processing	from	a	DSM	to	a	DTM.	This	study	also	

demonstrates	the	first	application	of	a	method	to	process	the	TanDEM-X	DSM	to	a	DTM	for	use	in	a	

hydrodynamic	model.	The	results	identified	that	the	method	combining	the	Image	Classification	of	

the	TanDEM-X	auxiliary	Amplitude	map	and	Progressive	Morphological	Filtering	(AMP/PMF	DTM)	is	

the	most	appropriate	vegetation-removal	method	for	TanDEM-X.	When	using	the	AMP/PMF	method	
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to	produce	a	DTM,	the	Critical	Success	Index	measuring	flood	extent	accuracy	relative	to	the	LiDAR	

model	is	12-14	percentage	points	higher	than	the	MERIT	DTM,	and	the	water	surface	elevation	

RMSE	is	0.11-0.21m	lower	than	the	MERIT	DTM.	This	indicates	that	when	TanDEM-X	is	processed	

using	this	method,	flood	estimates	are	greatly	improved	in	comparison	to	already-existing	DEMs	

used	in	flood	modelling.	This	provides	substantial	promise	for	TanDEM-X	in	hydrodynamic	modelling,	

specifically	in	SIDS	whereby	a	high-resolution	but	comparatively	less-expensive	DEM	is	critical	to	

improve	flood	risk	assessment	in	relatively	small	catchments	typical	in	the	region,	under	both	

current	and	future	extreme	rainfall	scenarios.	The	improved	capabilities	for	flood	modelling,	along	

with	suitable	methods	for	processing	data	highlighted	for	the	first	time	in	this	study,	should	provide	

stimulus	for	the	application	of	this	data	and	approach	to	a	range	of	study	sites	to	both	validate	and	

extend	the	use	of	TanDEM-X	to	improve	future	flood	modelling.		
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Chapter	4	–	Thesis	Conclusion	
A	key	conclusion	of	Chapter	2	was	that	although	SIDS	undoubtedly	have	an	extraordinary	risk	to	

hydro-meteorological	hazards,	there	is	a	mismatch	between	the	level	of	risk	and	the	capacity	to	

estimate	risk	due	to	an	inadequacy	of	available	data.	Previous	estimates	of	flood	hazard	in	SIDS	have	

relied	upon	near-global	and	freely-available	datasets	such	as	the	SRTM	at	~90m	(Albert	et	al.,	2013).	

Such	datasets	facilitate	the	modelling	of	flood	hazard	but	are	limited	by	the	high	vertical	error	

(~10m:	Rodriguez	et	al.,	2006)	and	relatively-coarse	horizontal	resolution	(~90m)	in	relation	to	the	

scale	required	to	adequately	represent	small	SIDS	catchments	(<1000km2).	As	a	result,	flood	hazard	

estimates	relying	on	these	datasets	are	insufficient	for	the	assessment	of	flood	risk	in	SIDS,	but	to	

date	have	been	the	best-available	option	besides	expensive	LiDAR	acquisition	(Albert	et	al.,	2013).	

Based	on	the	argument	that	a	highly	accurate	topographic	dataset	is	a	key	input	for	improving	

accurate	flood	hazard	estimation,	this	thesis	aimed	to	address	this	deficit	by	focusing	on	whether	the		

recently-released	TanDEM-X	DEM	could	improve	flood	estimates	in	comparison	to	frequently-used	

datasets	SRTM	and	MERIT.	However,	as	TanDEM-X	is	a	DSM,	firstly	a	method	to	process	the	

TanDEM-X	to	a	DTM	was	required.	Chapter	2	summarised	the	different	DEMs	frequently	used	in	

flood	modelling	and	identified	the	key	ways	these	datasets	have	been	processed	to	DTMs.	Overall,	it	

was	determined	that	the	methods	used	to	process	LiDAR	at	the	fine-scale	(<5m)	and	methods	used	

to	process	SRTM	(~90m)	may	not	be	applicable	to	the	resolution	of	TanDEM-X	(~12m)	(Geiß	et	al.,	

2015,	Schreyer	et	al.,	2016),	although	indicators	of	amplitude	and	interferometric	coherence	

available	for	TanDEM-X	may	be	utilised	to	remove	vegetation	height	from	the	DSM	(Breidenbach	et	

al.,	2010;	Martone	et	al.,	2018).		

	

Given	this	clear	disparity	between	flood	risk	and	sufficient	data	identified	in	Chapter	2	and	calls	to	

investigate	whether	TanDEM-X	could	be	used	as	a	suitable	DEM	for	hydrodynamic	models	(e.g.	Yan	

et	al.,	2015;	Mason	et	al.,	2016),	Chapter	3	aimed	to	determine	whether	the	newly-released	
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TanDEM-X	could	firstly	be	processed	from	a	DSM	to	a	DTM	for	input	into	a	hydrodynamic	model.	

Three	methods	were	implemented	to	produce	seven	TanDEM-X	DTMs	using	combinations	of	

Progressive	Morphological	Filtering	and	Image	Classification	of	Amplitude	and	Height	Error	Maps.	

This	investigation	was	a	necessary	step	in	determining	whether	TanDEM-X	has	the	capacity	to	

improve	flood	estimates.	A	LiDAR	model	was	developed	as	a	benchmark	along	with	flood	extents	

produced	using	the	SRTM	DSM	and	SRTM-based	MERIT	DTM.		

Relating	back	to	the	two	research	questions	steering	the	investigation	in	this	thesis	as	shown	again	

below	for	reference,	two	conclusions	were	reached	in	Chapter	3.	

1) How	can	artefacts	be	removed	from	TanDEM-X	to	create	a	suitable	Digital	Terrain	Model	for	

input	into	a	hydrodynamic	model?	

2) Are	flood	estimates	improved	using	TanDEM-X	in	comparison	to	SRTM	and	MERIT?	

Firstly,	although	the	TanDEM-X	DSM	has	a	horizontal	resolution	(~12m)	and	relative	vertical	accuracy	

(<2m	in	low	slope	(<20%)	areas	and	<4m	in	high	slope	(>20%)	areas:	Rizzoli	et	al.,	2017),	it	does	not	

improve	flood	estimates	over	the	~90m	MERIT	DTM,	demonstrating	the	importance	of	artefact	

removal	for	improved	flood	estimates	regardless	of	horizontal	resolution.	This	suggests	that	having	a	

DTM	of	SIDS	catchments	is	of	greater	importance	for	flood	hazard	simulation	than	horizontal	

resolution.		TanDEM-X	does	improve	estimates	over	the	SRTM	DSM	however.	

Secondly,	the	results	of	the	DTM-processing	methods	showed	that	a	balanced	combination	of	

methods	produced	elevation	estimates	that	best	fit	the	LiDAR	model.	The	method	combining	the	

Image	Classification	of	the	TanDEM-X	Amplitude	map	and	Progressive	Morphological	Filtering	

produced	the	TanDEM-X	DTM	(AMP/PMF)	considered	as	the	most	suitable	candidate	for	improved	

flood	hazard	estimates	in	the	Ba	catchment.	The	research	identified	in	Chapter	2	detailing	the	use	of	

interferometric	coherence	and	amplitude	estimates	for	vegetation	detection	in	the	TanDEM-X	are	

supported	by	the	conclusions	of	Chapter	3,	suggesting	that	estimates	of	these	variables	can	be	
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utilised	in	a	DTM-processing	workflow	to	remove	vegetated	pixels	from	the	unprocessed	TanDEM-X	

DSM.	

As	a	result,	the	methodology	developed	in	Chapter	3	produced	a	DTM	from	the	TanDEM-X	DSM	that	

has	the	capacity	to	improve	flood	estimates	relative	to	the	benchmark	LiDAR	model	in	comparison	to	

commonly-used	DEMs	SRTM	and	MERIT,	providing	a	sufficient	conclusion	to	both	research	questions	

posed	at	the	start	of	this	thesis.	Therefore,	this	thesis	concludes	that	TanDEM-X	has	the	capacity	to	

improve	flood	hazard	estimates	in	SIDS,	offering	a	starting	point	for	improving	overall	flood	risk	

estimates	under	current	and	future	extreme	rainfall	event	scenarios.	However,	there	are	significant	

barriers	to	SIDS	adopting	the		TanDEM-X	DTM	for	flood	hazard	mapping	as	the	TanDEM-X	DEM	is	not	

open-access.	The	introduction	of	TanDEM-X	in	SIDS	may	therefore	be	slow,	and	thus	a	focus	on	

providing	the	TanDEM-X	data	for	SIDS	should	be	prioritised	to	determine	whether	TanDEM-X	can	be	

used	to	improve	flood	hazard	estimates	in	these	locations.		

4.1 	Key	Limitations		

The	method	outlined	in	this	thesis	provided	a	TanDEM-X	DTM	which	improved	flood	estimates	over	

SRTM	and	MERIT.	However,	it	is	important	to	understand	the	limitations	of	the	processes	and	

assumptions	made,	which	may	affect	the	conclusions	given.		

	

Although	the	TanDEM-X	DTMs	were	compared	with	a	LiDAR	model	as	a	benchmark	-	in	agreement	

with	common	practice	amongst	the	literature	(Yamazaki	et	al.,	2012)	-	it	is	important	to	reiterate	

that	while	the	LiDAR	data	has	an	extremely	small	vertical	error	(5-20cm:	Baltsavias,	1999),	the	

hydrodynamic	model	simulation	does	not	necessarily	represent	the	flood	event	because	of	

uncertainties	in	other	elements	of	the	model	structure,	boundary	conditions	and	parameters,	but	is	

likely	the	best	simulation	available.	As	topographic	data	is	a	key	model	input	affecting	the	

hydrodynamics	of	the	flood	model	(Bates,	2012),	the	data	with	the	highest	vertical	accuracy	are	
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likely	to	produce	the	most	reliable	simulations	(Mason	et	al.,	2015).	Thus,	without	information	

available	for	the	actual	flood	events	simulated	(e.g.	gauge	data,	flood	extent	and	depth	information	

for	a	historical	event),	there	is	a	level	of	uncertainty	as	to	whether	the	LiDAR	model	can	replicate	

characteristics	of	a	particular	flood	event.	However,	it	is	well-acknowledged	in	the	literature	that	

hydrodynamic	model	simulations	using	LiDAR	have	high	accuracy	(Marks	and	Bates,	2000;	Schumann	

et	al.,	2009),	and	thus	this	uncertainty	is	acceptable	for	benchmark	purposes	when	comparing	other	

DEMs	in	the	absence	of	other	available	validation	data.	

	

Evidently,	with	access	to	ground	truth	information	such	as	GPS-related	elevation	data,	or	validation	

data	such	as	Synthetic	Aperture	Radar	imagery	of	a	flood	extent,	the	different	DEMs	could	be	

additionally	evaluated.	Firstly,	to	validate	the	performance	of	the	LiDAR	model	to	determine	

whether	it	produces	the	most	accurate	flood	output,	and	subsequently	to	validate	overall	model	skill	

for	each	DEM.	Future	work	should	aim	to	incorporate	this	validation	data,	where	available,	for	the	

catchment	and	utilise	the	data	to	validate	the	methodology	in	other	test	sites.	Unfortunately,	as	is	

characteristic	of	many	other	data-sparse	locations,	these	datasets	were	not	available	to	the	author’s	

knowledge	at	the	time	of	this	project.	Nevertheless,	the	open-access	availability	of	Sentinel-1	

Synthetic	Aperture	Radar	imagery	through	the	European	Space	Agency’s	Copernicus	Open	Access	

Hub	(https://scihub.copernicus.eu/)	may	mean	that	future	flood	events	across	Fiji	and	other	SIDS	

could	be	captured	and	utilised	for	validation	purposes.		

	

Furthermore,	using	a	hydrodynamic	model	to	understand	the	performance	of	different	DEMs	can	

introduce	an	element	of	uncertainty	into	the	results.	Pinel	et	al.,	(2015)	criticised	Baugh	et	al.,	(2013)	

for	assessing	their	vegetation-removed	SRTM	using	hydrodynamic	model	simulations.	This	is	

because	although	a	model	attempts	to	simulate	the	real	world,	it	is	not	an	exact	representation,	and	

therefore	using	a	model	to	assess	the	performance	of	a	dataset	can	introduce	further	uncertainty	
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(Pinel	et	al.,	2015).	As	a	result,	many	studies	have	assessed	error	within	the	DEM	specifically	(e.g.	

O’Loughlin	et	al.,	2016;	Hirt	et	al.,	2018).	Assessing	vertical	error	within	the	DEM	would	allow	one	to	

determine	the	overall	error	of	each	TanDEM-X	DTM	in	comparison	to	SRTM	and	MERIT	against	the	

LiDAR	DEM.	However,	as	one	of	the	key	aims	of	this	thesis	was	to	determine	whether	TanDEM-X	can	

be	used	to	improve	estimates	of	flood	hazard	in	SIDS,	it	was	necessary	to	assess	the	different	DTM	

performance	within	the	hydrodynamic	model,	as	this	is	the	primary	way	flood	hazard	is	assessed.	

	

Regarding	the	TanDEM-X	DTMs,	one	error	likely	introduced	through	manipulation	of	the	data	is	

during	the	interpolation	of	the	‘bare	earth’	pixels	to	create	a	DTM	surface.	This	is	because	

interpolation	assigns	pixel	values	using	the	available	data	based	on	a	set	of	parameters,	and	thus	the	

resulting	pixels	are	largely	dependent	on	the	quality	of	original	data	and	the	parameter	selection	

(Weschler,	2007;	Meng	et	al.,	2010).	Interpolation	can	also	result	in	‘smoothness	artefact’	as	

identified	by	Hirt	(2018),	whereby	the	output	DEM	is	over-smoothed	in	comparison	to	actual	terrain.	

Nonetheless,	little	research	has	actively	compared	how	interpolation	affects	an	output	DEM	

(Weschler,	2007),	and	thus	the	error	is	difficult	to	quantify.	Results	comparing	interpolation	methods	

used	to	create	LiDAR	surfaces	by	Bater	and	Coops	(2009)	suggest	that	there	is	little	difference	

between	interpolation	methods	when	comparing	RMSE	of	output	DEMs,	although	natural	neighbour	

interpolation	was	favoured	due	to	its	easy	application	and	visual	appearance	of	the	results.	IDW	

interpolation	was	specifically	chosen	for	this	thesis	based	on	other	studies	that	have	created	DTMs	

using	Intermediate-TanDEM-X	data	(Geiß	et	al.,	2015,	Schreyer	et	al.,	2016).	Further	research	should	

be	conducted	into	the	specific	error	characteristics	introduced	to	the	TanDEM-X	DTMs	by	different	

interpolation	methods	to	determine	the	most	suitable	interpolation	method	for	use	on	the	TanDEM-

X	data.		
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Interpolation	would	not	be	necessary	if	vegetation	heights	could	be	removed	from	the	elevation	

heights	in	the	unprocessed	TanDEM-X	DSM,	as	is	characteristic	of	methods	used	to	remove	

vegetation	from	the	SRTM	(e.g.	Coe	et	al.,	2008,	Paiva	et	al.,	2011;	Baugh	et	al.,	2013).	However,	in	

the	absence	of	vegetation	height	maps	that	are	of	high	enough	spatial	resolution	(<12m)	to	identify	

small	patches	of	vegetation	present	in	the	TanDEM-X,	this	methodology	is	unlikely	to	remove	all	

vegetation	from	the	TanDEM-X	data.	The	~50m	resolution	Global	Forest/Non-Forest	Map	detailed	by	

Martone	et	al.,	(2018)	may	be	suitable	to	remove	large	patches	of	vegetation	from	the	TanDEM-X,	

and	thus	research	should	be	conducted	using	this	dataset	when	it	is	available	to	determine	whether	

this	method	of	vegetation-removal	is	suitable	for	TanDEM-X.			

4.2 	Recommendations	for	Further	Work	

The	two	main	aims	of	this	thesis	were	to	determine	whether	the	TanDEM-X	DEM	could	be	used	to	

improve	flood	hazard	estimates	in	SIDS	-	specifically	focusing	on	the	Ba	catchment	in	Fiji	–	and	to	

develop	and	test	a	method	to	suitably	process	the	TanDEM-X	DSM	to	a	DTM	for	input	into	

hydrodynamic	model	LISFLOOD-FP.	The	results	demonstrated	that	when	the	DTM	method	

combining	Image	Classification	of	the	Amplitude	map	and	Progressive	Morphological	Filtering	was	

utilised	to	create	a	DTM,	flood	estimates	were	greatly	improved	over	all	other	tested	DSMs	and	

DTMs	in	comparison	to	the	LiDAR	benchmark.	Thus,	the	impetus	should	now	focus	on	applying	this	

method	to	other	test	sites	in	SIDS	to	determine	whether	similar	results	are	obtained.	This	will	better	

allow	one	to	determine	whether	TanDEM-X	has	the	capacity	to	improve	flood	hazard	estimates	

across	SIDS	generally.	It	is	expected	that	the	results	will	be	replicable	in	other	catchments,	as	the	

study	site	selected	in	this	thesis	was	specifically	chosen	to	be	a	representative	site	for	many	

agricultural	catchments	in	SIDS.	Alternative	validation	data	sources	such	as	ground	truth	information	

and	Synthetic	Aperture	Radar	images	of	flood	extents	should	be	utilised	where	possible	to	validate	

the	results	of	the	flood	hazard	simulation,	although	it	is	acknowledged	that	these	data	are	rarely	

available	in	SIDS.		
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Further	work	should	also	be	conducted	to	determine	how	building	artefacts	can	be	removed	from	

the	unprocessed	TanDEM-X	DSM,	as	vegetation	removal	in	isolation	may	not	be	sufficient	to	

produce	a	DTM,	especially	for	flood	model	applications	in	urban	areas	whereby	buildings	will	be	

more	pronounced	than	the	agricultural	floodplain	in	this	study	site.	It	is	likely	that	the	methods	

described	in	Chapter	3	do	remove	some	building	artefacts,	as	the	Progressive	Morphological	Filter	is	

used	to	remove	buildings	from	LiDAR	and	Intermediate-TanDEM-X	data	in	Zhang	et	al.,	(2003)	and	

Geiß	et	al.,	(2015).	The	image	classification	may	have	misclassified	buildings	as	vegetation	depending	

on	the	similarity	of	interferometric	coherence	and	amplitude	values,	and	thus	this	should	also	be	

investigated.	This	will	likely	be	necessary	for	TanDEM-X	to	be	applicable	in	urban	catchments,	as	

currently	SRTM	and	MERIT	are	unable	to	provide	enough	detail	to	adequately	model	urban	

catchments	(Yan	et	al.,	2015).		

	

Although	the	focus	on	flood	hazard	has	dominated	within	this	thesis,	it	is	vital	to	reiterate	the	

importance	of	considering	flood	risk	as	a	function	of	hazard,	exposure	and	vulnerability	(UNISDR,	

2015a).	Beyond	this	thesis,	research	should	also	focus	on	the	application	of	datasets	providing	

better-resolved	and	more	detailed	estimates	of	exposure	and	vulnerability.	This	will	be	paramount	

to	improve	flood	risk	estimates	alongside	flood	hazard.	Global,	low-cost	datasets	on	exposure	and	

vulnerability	are	necessary	for	SIDS	applications	and	must	provide	a	high-enough	resolution	to	

provide	detailed	estimates	suitable	for	the	small	scale	of	SIDS.	Only	then	will	there	be	an	improved	

capacity	for	policy	makers	to	produce	a	detailed	and	holistic	estimate	of	flood	risk	in	SIDS.		
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