83 research outputs found

    Energy harvesting technologies for structural health monitoring of airplane components - a review

    Get PDF
    With the aim of increasing the efficiency of maintenance and fuel usage in airplanes, structural health monitoring (SHM) of critical composite structures is increasingly expected and required. The optimized usage of this concept is subject of intensive work in the framework of the EU COST Action CA18203 "Optimising Design for Inspection" (ODIN). In this context, a thorough review of a broad range of energy harvesting (EH) technologies to be potentially used as power sources for the acoustic emission and guided wave propagation sensors of the considered SHM systems, as well as for the respective data elaboration and wireless communication modules, is provided in this work. EH devices based on the usage of kinetic energy, thermal gradients, solar radiation, airflow, and other viable energy sources, proposed so far in the literature, are thus described with a critical review of the respective specific power levels, of their potential placement on airplanes, as well as the consequently necessary power management architectures. The guidelines provided for the selection of the most appropriate EH and power management technologies create the preconditions to develop a new class of autonomous sensor nodes for the in-process, non-destructive SHM of airplane components.The work of S. Zelenika, P. Gljušcic, E. Kamenar and Ž. Vrcan is partly enabled by using the equipment funded via the EU European Regional Development Fund (ERDF) project no. RC.2.2.06-0001: “Research Infrastructure for Campus-based Laboratories at the University of Rijeka (RISK)” and partly supported by the University of Rijeka, Croatia, project uniri-tehnic-18-32 „Advanced mechatronics devices for smart technological solutions“. Z. Hadas, P. Tofel and O. Ševecek acknowledge the support provided via the Czech Science Foundation project GA19-17457S „Manufacturing and analysis of flexible piezoelectric layers for smart engineering”. J. Hlinka, F. Ksica and O. Rubes gratefully acknowledge the financial support provided by the ESIF, EU Operational Programme Research, Development and Education within the research project Center of Advanced Aerospace Technology (Reg. No.: CZ.02.1.01/0.0/0.0/16_019/0000826) at the Faculty of Mechanical Engineering, Brno University of Technology. V. Pakrashi would like to acknowledge UCD Energy Institute, Marine and Renewable Energy Ireland (MaREI) centre Ireland, Strengthening Infrastructure Risk Assessment in the Atlantic Area (SIRMA) Grant No. EAPA\826/2018, EU INTERREG Atlantic Area and Aquaculture Operations with Reliable Flexible Shielding Technologies for Prevention of Infestation in Offshore and Coastal Areas (FLEXAQUA), MarTera Era-Net cofund PBA/BIO/18/02 projects. The work of J.P.B. Silva is partially supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UIDB/FIS/04650/2020. M. Mrlik gratefully acknowledges the support of the Ministry of Education, Youth and Sports of the Czech Republic-DKRVO (RP/CPS/2020/003

    SUSTAINABLE ENERGY HARVESTING TECHNOLOGIES – PAST, PRESENT AND FUTURE

    Get PDF
    Chapter 8: Energy Harvesting Technologies: Thick-Film Piezoelectric Microgenerato

    Compact circular polarization filtenna for wireless power transfer applications

    Get PDF
    Nowadays, Internet of Things (IoT) electronic devices are needed to realize the fifth generation (5G) device-to-device communication. Obviously, current developments tend to focus more towards structure compactness for mobility purposes. However, the main weakness for mobile devices is its power supply. This can be improved by increasing the individual battery capacity or having external batteries. These proposed solutions will increase the weight of the devices, hence making them heavier to carry around. Most total IoT devices are also required to be multi-functional depending on different radio frequencies (RF). Commonly, the RF signal radiated is solely used for data communication. This useful RF signal can also be converted into small energy, instead of being left to disperse into the environment. This relates to wireless energy harvesting called as rectifying antenna (rectenna) which converts RF signal to direct current (DC). A generic rectenna consists of the combination of several components such as antenna, filter, diode and resistive load. The aim of this research is to develop a compact or miniaturized RF front-end component for the rectenna. Compactness can be achieved by embedding the filter into the antenna to form a filtenna. Non-contacted electromagnetic coupling technique with the circular patch antenna operated at 2.45 GHz is selected as the basic design and the simulation work was done using the Computer Simulation Technology (CST) software. To enhance the quality of propagation and the multi-functional properties, the proposed design optimized for circular polarization (CP) and wider bandwidth. Therefore, the modification of the basic design change to proximity coupled feeding technique with double layered configuration is presented. Analysis of the slot line resonator near to the transmission line on several locations is discussed to realize a filtenna. In this research, several different designs of antennas and filters are presented with different compactness, CP, and higher resonant rejection properties. All proposed designs are fabricated and validated through measurement studies. Good agreement is shown between simulation and measurement results. By having approximately 45-50 % of size reduction as compared to the conventional 2.45 GHz microstrip patch antenna, the developed antennas are compact in size with higher resonant rejection up to third harmonic and exhibit 5.2 dB gain

    Simultaneous Data Communication and Power Transfer Technique with Multiport Interferometric Receiver

    Get PDF
    RÉSUMÉ Le problème de la communication est généralement présenté comme un problème de trans-mission d’un message généré d’un point a un autre. Certains systèmes de communication modernes sou˙rent de contraintes énergétiques sévères. Avec le développement rapide des systèmes électroniques sans fil de faible puissance, d’innombrables activités de recherche ont été menées en vue d’explorer la faisabilité d’une alimentation à distance ou sans fil de ces systèmes. Par conséquent, la transmission d’énergie sans fil (WPT) est en cours de développe-ment en tant que technique prometteuse pour alimenter des appareils électroniques à distance et pour prolonger la durée de vie des réseaux sans fil à contrainte d’énergie. Parmi les éner-gies renouvelables récoltées dans l’environnement, les signaux RF rayonnés par les émetteurs peuvent être une ressource viable pour le transfert d’énergie sans fil, tandis que les signaux RF ont été largement utilisés comme véhicule pour la transmission d’informations sans fil (WIT). Par conséquent, le transfert simultané d’informations et la plateforme de transfert de puissance sans fil (SWIPT) deviennent bénéfiques, car il réalise les deux utilisations utiles des signaux RF en même temps et il o˙re ainsi potentiellement une grande commodité aux utilisateurs mobiles. L’antenne redresseuse, qui combine des fonctionnalités du redresseur et de l’antenne, est un élément clé pour la transmission et la récolte d’énergie sans fil. L’eÿcacité de conversion du circuit de redressement détermine les performances globales de l’antenne redresseuse. Par conséquent, pour concevoir une antenne redresseuse à haute eÿcacité qui peut garantir la qualité d’un système WPT, il convient de se concentrer davantage sur l’investigation, l’analyse et le développement de redresseurs axés sur les performances en référence à une eÿcacité de conversion radio fréquence à courant continu. D’un autre côté, les circuits redresseurs peuvent simplement récupérer l’énergie et ils ne peuvent pas décoder le signal transmis pour fins de communication. Cependant, la transmission de données est une exigence essentielle des systèmes de communication sans fil. Par conséquent, si la capacité de détection et de traitement du signal peut être ajoutée à une architecture antenne redresseuse, un récepteur avec transmission de puissance sans fil et communication de données simultanées peut être réalisé. Ce mémoire vise à étudier et à démontrer un récepteur de multifonction et de multiport qui a la capacité de collecter simultanément l’énergie sans fil et les données de communication fonctionnant à la fréquence des microondes.----------ABSTRACT The problem of communication is usually cast as one of transmitting a message generated at one point to another point. Some modern communication systems are known to suffer from severe energy constraints and power consumptions. With the rapid development of low power wireless electronic systems, countless research activities have been carried out to explore the feasibility of a remote or wireless powering of those systems. Therefore, wireless power transmission (WPT) is being developed as a promising technique, for powering electronic devices over distance and for prolonging the lifetime of energy constrained wireless networks. Among the renewable energy harvested from the environment, the RF signals radiated by transmitters can be a viable resource for wireless power transfer, while RF signals have been widely used as a vehicle for wireless information transmission (WIT). Therefore, simultaneous wireless information and power transfer (SWIPT) platform becomes appealing since it realizes both useful utilizations of RF signals at the same time, and thus potentially offers great convenience to mobile users. The rectenna, combining the functionalities of rectifier and antenna, is a key element for wireless power transmission and harvesting. The conversion efficiency of the rectifying circuit determines the overall performance of the rectenna. Therefore, to design a high-efficiency rectenna that can guarantee the quality of a WPT system, more focus should be concentrated on the investigation, analysis and development performance-driven rectifiers with reference to high RF-to-DC conversion efficiency. On the other hand, rectenna circuits can just scavenge energy and they cannot decode the transmitted signal for communication purpose. How-ever, the data transmission is an essential requirement of wireless communication systems. Therefore, if the ability of signal detection and processing can be added to a rectenna architecture then a multi-function receiver with simultaneous wireless power transmission and data communication can be realized.This dissertation aims to investigate and demonstrate a multi-function and multi-port receiver with the capability of simultaneous wireless energy harvesting and data communication operating at microwave frequency. To achieve these goals, it becomes interesting when a single receiver chain is able to convert the RF power to DC power, while at the same time converting the RF modulated signal to BaseBand (BB) signal. Therefore, the fundamental methodology to receive and convert the RF signal to BB while simultaneously harvesting power is derived and analyzed in this work

    Improving the mechanistic study of neuromuscular diseases through the development of a fully wireless and implantable recording device

    Get PDF
    Neuromuscular diseases manifest by a handful of known phenotypes affecting the peripheral nerves, skeletal muscle fibers, and neuromuscular junction. Common signs of these diseases include demyelination, myasthenia, atrophy, and aberrant muscle activity—all of which may be tracked over time using one or more electrophysiological markers. Mice, which are the predominant mammalian model for most human diseases, have been used to study congenital neuromuscular diseases for decades. However, our understanding of the mechanisms underlying these pathologies is still incomplete. This is in part due to the lack of instrumentation available to easily collect longitudinal, in vivo electrophysiological activity from mice. There remains a need for a fully wireless, batteryless, and implantable recording system that can be adapted for a variety of electrophysiological measurements and also enable long-term, continuous data collection in very small animals. To meet this need a miniature, chronically implantable device has been developed that is capable of wirelessly coupling energy from electromagnetic fields while implanted within a body. This device can both record and trigger bioelectric events and may be chronically implanted in rodents as small as mice. This grants investigators the ability to continuously observe electrophysiological changes corresponding to disease progression in a single, freely behaving, untethered animal. The fully wireless closed-loop system is an adaptable solution for a range of long-term mechanistic and diagnostic studies in rodent disease models. Its high level of functionality, adjustable parameters, accessible building blocks, reprogrammable firmware, and modular electrode interface offer flexibility that is distinctive among fully implantable recording or stimulating devices. The key significance of this work is that it has generated novel instrumentation in the form of a fully implantable bioelectric recording device having a much higher level of functionality than any other fully wireless system available for mouse work. This has incidentally led to contributions in the areas of wireless power transfer and neural interfaces for upper-limb prosthesis control. Herein the solution space for wireless power transfer is examined including a close inspection of far-field power transfer to implanted bioelectric sensors. Methods of design and characterization for the iterative development of the device are detailed. Furthermore, its performance and utility in remote bioelectric sensing applications is demonstrated with humans, rats, healthy mice, and mouse models for degenerative neuromuscular and motoneuron diseases

    Sensores passivos alimentados por transmissão de energia sem fios para aplicações de Internet das coisas

    Get PDF
    Nowadays, the Wireless Sensor Networks (WSNs) depend on the battery duration of the sensors and there is a renewed interest in creating a passive sensor network scheme in the area of Internet of Things (IoT) and space oriented WSN systems. The challenges for the future of radio communications have a twofold evolution, one being the low power consumption and, another, the adaptability and intelligent use of the available resources. Specially designed radios should be used to reduce power consumption, and adapt to the environment in a smart and e cient way. This thesis will focus on the development of passive sensors based on low power communication (backscatter) with Wireless Power Transfer (WPT) capabilities used in IoT applications. In that sense, several high order modulations for the communication will be explored and proposed in order to increase the data rate. Moreover, the sensors need to be small and cost e ective in order to be embedded in other technologies or devices. Consequently, the RF front-end of the sensors will be designed and implemented in Monolithic Microwave Integrated Circuit (MMIC).Atualmente, as redes de sensores sem fios dependem da duração da bateria e,deste modo, existe um interesse renovado em criar um esquema de rede de sensores passivos na área de internet das coisas e sistemas de redes de sensores sem fios relacionados com o espaço. Os desafios do futuro das comunicações de rádio têm uma dupla evolução, sendo um o baixo consumo de energia e, outro, a adaptação e o uso inteligente dos recursos disponíveis. Rádios diferentes dos convencionais devem ser usados para reduzir o consumo de energia e devem adaptar-se ao ambiente de forma inteligente e eficiente, de modo a que este use a menor quantidade de energia possível para estabelecer a comunicação. Esta tese incide sobre o desenvolvimento de sensores passivos baseados em comunicação de baixo consumo energético (backscatter) com recurso a transmissão de energia sem fios de modo a que possam ser usados em diferentes aplicações inseridas na internet das coisas. Nesse sentido, várias modulações de alta ordem para a comunicação backscatter serão exploradas e propostas com o objectivo de aumentar a taxa de transmissão de dados. Além disso, os sensores precisam de ser reduzidos em tamanho e económicos de modo a serem incorporados em outras tecnologias ou dispositivos. Consequentemente, o front-end de rádio frequência dos sensores será projetado e implementado em circuito integrado de microondas monolítico.Programa Doutoral em Engenharia Eletrotécnic

    Low-profile antenna systems for the Next-Generation Internet of Things applications

    Get PDF

    Miniaturized Printed Antennas for RF Energy Harvesting Applications

    Get PDF

    Sistemas eficientes de transmissão de energia sem-fios e identificação por radiofrequência

    Get PDF
    Doutoramento em Engenharia EletrotécnicaIn the IoT context, where billions of connected objects are expected to be ubiquitously deployed worldwide, the frequent battery maintenance of ubiquitous wireless nodes is undesirable or even impossible. In these scenarios, passive-backscatter radios will certainly play a crucial role due to their low cost, low complexity and battery-free operation. However, as passive-backscatter devices are chiefly limited by the WPT link, its efficiency optimization has been a major research concern over the years, gaining even more emphasis in the IoT context. Wireless power transfer has traditionally been carried out using CW signals, and the efficiency improvement has commonly been achieved through circuit design optimization. This thesis explores a fundamentally different approach, in which the optimization is focused on the powering waveforms, rather than the circuits. It is demonstrated through theoretical analysis, simulations and measurements that, given their greater ability to overcome the built-in voltage of rectifying devices, high PAPR multi-sine (MS) signals are capable of more efficiently exciting energy harvesting circuits when compared to CWs. By using optimal MS signals to excite rectifying devices, remarkable RF-DC conversion efficiency gains of up to 15 dB with respect to CW signals were obtained. In order to show the effectiveness of this approach to improve the communication range of passive-backscatter systems, a MS front-end was integrated in a commercial RFID reader and a significant range extension of 25% was observed. Furthermore, a software-defined radio RFID reader, compliant with ISO18000-6C standard and with MS capability, was constructed from scratch. By interrogating passive RFID transponders with MS waveforms, a transponder sensitivity improvement higher than 3 dB was obtained for optimal MS signals. Since the amplification and transmission of high PAPR signals is critical, this work also proposes efficient MS transmitting architectures based on space power combining techniques. This thesis also addresses other not less important issues, namely self-jamming in passive RFID readers, which is the second limiting factor of passive-backscatter systems. A suitable self-jamming suppression scheme was first used for CW signals and then extended to MS signals, yielding a CW isolation up to 50 dB and a MS isolation up 60 dB. Finally, a battery-less remote control system was developed and integrated in a commercial TV device with the purpose of demonstrating a practical application of wireless power transfer and passive-backscatter concepts. This allowed battery-free control of four basic functionalities of the TV (CH+,CH-,VOL+,VOL-).No contexto da internet das coisas (IoT), onde são esperados bilhões de objetos conectados espalhados pelo planeta de forma ubíqua, torna-se impraticável uma frequente manutenção e troca de baterias dos dispositivos sem fios ubíquos. Nestes cenários, os sistemas radio backscatter passivos terão um papel preponderante dado o seu baixo custo, baixa complexidade e não necessidade de baterias nos nós móveis. Uma vez que a transmissão de energia sem fios é o principal aspeto limitativo nestes sistemas, a sua otimização tem sido um tema central de investigação, ganhando ainda mais ênfase no contexto IoT. Tradicionalmente, a transferência de energia sem-fios é feita através de sinais CW e a maximização da eficiência é conseguida através da otimização dos circuitos recetores. Neste trabalho explora-se uma abordagem fundamentalmente diferente, em que a otimização foca-se nas formas de onda em vez dos circuitos. Demonstra-se, teoricamente e através de simulações e medidas que, devido à sua maior capacidade em superar a barreira de potencial intrínseca dos dispositivos retificadores, os sinais multi-seno (MS) de elevado PAPR são capazes de excitar os circuitos de colheita de energia de forma mais eficiente quando comparados com o sinal CW tradicional. Usando sinais MS ótimos em circuitos retificadores, foram verificadas experimentalmente melhorias de eficiência de conversão RF-DC notáveis de até 15 dB relativamente ao sinal CW. A fim de mostrar a eficácia desta abordagem na melhoria da distância de comunicação de sistemas backscatter passivos, integrou-se um front-end MS num leitor RFID comercial e observou-se um aumento significativo de 25% na distância de leitura. Além disso, desenvolveu-se de raiz um leitor RFID baseado em software rádio, compatível com o protocolo ISO18000-6C e capaz de gerar sinais MS, com os quais interrogou-se transponders passivos, obtendo-se ganhos de sensibilidade dos transponders maiores que 3 dB. Uma vez que a amplificação de sinais de elevado PAPR é uma operação crítica, propôs-se também novas arquiteturas eficientes de transmissão baseadas na combinação de sinais em espaço livre. Esta tese aborda também outros aspetos não menos importantes, como o self-jamming em leitores RFID passivos, tido como o segundo fator limitativo neste tipo de sistemas. Estudou-se técnicas de cancelamento de self-jamming CW e estendeu-se o conceito a sinais MS, tendo-se obtido isolamentos entre o transmissor e o recetor de até 50 dB no primeiro caso e de até 60 dB no segundo. Finalmente, com o objetivo de demonstrar uma aplicação prática dos conceitos de transmissão de energia sem fios e comunicação backscatter, desenvolveu-se um sistema de controlo remoto sem pilhas, cujo protótipo foi integrado num televisor comercial a fim de controlar quatro funcionalidades básicas (CH+,CH-,VOL+,VOL-)
    • …
    corecore