9,481 research outputs found

    Fiber Based Multiple-Access Optical Frequency Dissemination

    Full text link
    We demonstrate a fiber based multiple-access optical frequency dissemination scheme. Without using any additional laser sources, we reproduce the stable disseminated frequency at an arbitrary point of fiber link. Relative frequency stability of 3E10^{-16}/s and 4E10^{-18}/10^4s is obtained. A branching fiber network for highly-precision synchronization of optical frequency is made possible by this method and its applications are discussed.Comment: 5 pages, 3 figure

    Ultra-stable long distance optical frequency distribution using the Internet fiber network

    Full text link
    We report an optical link of 540 km for ultrastable frequency distribution over the Internet fiber network. The stable frequency optical signal is processed enabling uninterrupted propagation on both directions. The robustness and the performance of the link are enhanced by a cost effective fully automated optoelectronic station. This device is able to coherently regenerate the return optical signal with a heterodyne optical phase locking of a low noise laser diode. Moreover the incoming signal polarization variation are tracked and processed in order to maintain beat note amplitudes within the operation range. Stable fibered optical interferometer enables optical detection of the link round trip phase signal. The phase-noise compensated link shows a fractional frequency instability in 10 Hz bandwidth of 5x10-15 at one second measurement time and 2x10-19 at 30 000 s. This work is a significant step towards a sustainable wide area ultrastable optical frequency distribution and comparison network

    Long-distance remote comparison of ultrastable optical frequencies with 1e-15 instability in fractions of a second

    Full text link
    We demonstrate a fully optical, long-distance remote comparison of independent ultrastable optical frequencies reaching a short term stability that is superior to any reported remote comparison of optical frequencies. We use two ultrastable lasers, which are separated by a geographical distance of more than 50 km, and compare them via a 73 km long phase-stabilized fiber in a commercial telecommunication network. The remote characterization spans more than one optical octave and reaches a fractional frequency instability between the independent ultrastable laser systems of 3e-15 in 0.1 s. The achieved performance at 100 ms represents an improvement by one order of magnitude to any previously reported remote comparison of optical frequencies and enables future remote dissemination of the stability of 100 mHz linewidth lasers within seconds.Comment: 7 pages, 4 figure

    High-resolution microwave frequency dissemination on an 86-km urban optical link

    Full text link
    We report the first demonstration of a long-distance ultra stable frequency dissemination in the microwave range. A 9.15 GHz signal is transferred through a 86-km urban optical link with a fractional frequency stability of 1.3x10-15 at 1 s integration time and below 10-18 at one day. The optical link phase noise compensation is performed with a round-trip method. To achieve such a result we implement light polarisation scrambling and dispersion compensation. This link outperforms all the previous radiofrequency links and compares well with recently demonstrated full optical links.Comment: 11 pages, 5 figure

    Avoiding Aliasing in Allan Variance: an Application to Fiber Link Data Analysis

    Get PDF
    Optical fiber links are known as the most performing tools to transfer ultrastable frequency reference signals. However, these signals are affected by phase noise up to bandwidths of several kilohertz and a careful data processing strategy is required to properly estimate the uncertainty. This aspect is often overlooked and a number of approaches have been proposed to implicitly deal with it. Here, we face this issue in terms of aliasing and show how typical tools of signal analysis can be adapted to the evaluation of optical fiber links performance. In this way, it is possible to use the Allan variance as estimator of stability and there is no need to introduce other estimators. The general rules we derive can be extended to all optical links. As an example, we apply this method to the experimental data we obtained on a 1284 km coherent optical link for frequency dissemination, which we realized in Italy
    corecore