1,673 research outputs found

    Simple cyclic movements as a distinct autism feature - computational approach

    Get PDF
    Diversity of symptoms in autism dictates a broad definition of Autism Spectrum of Disorders(ASD). Each year percentage of children diagnosed with ASD is growing. One common diag-nostic feature in individuals with ASD is the tendency to atypical simple cyclic movements.The motor brain activity seems to generate periodic attractor state that is hard to escape.Despite numerous studies scientists and clinicians do not know exactly if ASD is a result ofa simple but general mechanism, or a complex set of mechanisms, both on neural, molecularand system levels. Simulations using biologically relevant neural network model presentedhere may help to reveal simplest mechanisms that may be responsible for specific behavior.Abnormal neural fatigue mechanisms may be responsible for motor as well as many if notall other symptoms observed in ASD

    Precis of neuroconstructivism: how the brain constructs cognition

    Get PDF
    Neuroconstructivism: How the Brain Constructs Cognition proposes a unifying framework for the study of cognitive development that brings together (1) constructivism (which views development as the progressive elaboration of increasingly complex structures), (2) cognitive neuroscience (which aims to understand the neural mechanisms underlying behavior), and (3) computational modeling (which proposes formal and explicit specifications of information processing). The guiding principle of our approach is context dependence, within and (in contrast to Marr [1982]) between levels of organization. We propose that three mechanisms guide the emergence of representations: competition, cooperation, and chronotopy; which themselves allow for two central processes: proactivity and progressive specialization. We suggest that the main outcome of development is partial representations, distributed across distinct functional circuits. This framework is derived by examining development at the level of single neurons, brain systems, and whole organisms. We use the terms encellment, embrainment, and embodiment to describe the higher-level contextual influences that act at each of these levels of organization. To illustrate these mechanisms in operation we provide case studies in early visual perception, infant habituation, phonological development, and object representations in infancy. Three further case studies are concerned with interactions between levels of explanation: social development, atypical development and within that, developmental dyslexia. We conclude that cognitive development arises from a dynamic, contextual change in embodied neural structures leading to partial representations across multiple brain regions and timescales, in response to proactively specified physical and social environment

    Recursive Behavior Recording: Complex Motor Stereotypies and Anatomical Behavior Descriptions

    Get PDF
    A novel anatomical behavioral descriptive taxonomy improves motion capture in complex motor stereotypies (CMS) by indexing precise time data without degradation in the complexity of whole body movement in CMS. The absence of etiological explanation of complex motor stereotypies warrants the aggregation of a core CMS dataset to compare regulation of repetitive behaviors in the time domain. A set of visual formalisms trap configurations of behavioral markers (lateralized movements) for behavioral phenotype discovery as paired transitions (from, to) and asymmetries within repetitive restrictive behaviors. This translational project integrates NIH MeSH (medical subject headings) taxonomy with direct biological interface (wearable sensors and nanoscience in vitro assays) to design the architecture for exploratory diagnostic instruments. Motion capture technology when calibrated to multi-resolution indexing system (MeSH based) quantifies potential diagnostic criteria for comparing severity of CMS within behavioral plasticity and switching (sustained repetition or cyclic repetition) time-signatures. Diagnostic instruments sensitive to high behavioral resolution promote measurement to maximize behavioral activity while minimizing biological uncertainty. A novel protocol advances CMS research through instruments with recursive design

    A New Perspective on Assessing Cognition in Children through Estimating Shared Intentionality

    Get PDF
    This theoretical article aims to create a conceptual framework for future research on digital methods for assessing cognition in children through estimating shared intentionality, different from assessing through behavioral markers. It shows the new assessing paradigm based directly on the evaluation of parent-child interaction exchanges (protoconversation), allowing early monitoring of children’s developmental trajectories. This literature analysis attempts to understand how cognition is related to emotions in interpersonal dynamics and whether assessing these dynamics shows cognitive abilities in children. The first part discusses infants’ unexpected achievements, observing the literature about children’s development. The analysis supposes that due to the caregiver’s help under emotional arousal, newborns’ intentionality could appear even before it is possible for children’s intention to occur. The emotional bond evokes intentionality in neonates. Therefore, they can manifest unexpected achievements while performing them with caregivers. This outcome shows an appearance of protoconversation in adult-children dyads through shared intentionality. The article presents experimental data of other studies that extend our knowledge about human cognition by showing an increase of coordinated neuronal activities and the acquisition of new knowledge by subjects in the absence of sensory cues. This highlights the contribution of interpersonal interaction to gain cognition, discussed already by Vygotsky. The current theoretical study hypothesizes that if shared intentionality promotes cognition from the onset, this interaction modality can also facilitate cognition in older children. Therefore in the second step, the current article analyzes empirical data of recent studies that reported meaningful interaction in mother-infant dyads without sensory cues. It discusses whether an unbiased digital assessment of the interaction ability of children is possible before the age when the typical developmental trajectory implies verbal communication. The article develops knowledge for a digital assessment that can measure the extent of children’s ability to acquire knowledge through protoconversation. This specific assessment can signalize the lack of communication ability in children even when the typical trajectory of peers’ development does not imply verbal communication.publishersversionPeer reviewe

    Stride-level analysis of mouse open field behavior using deep-learning-based pose estimation.

    Get PDF
    Gait and posture are often perturbed in many neurological, neuromuscular, and neuropsychiatric conditions. Rodents provide a tractable model for elucidating disease mechanisms and interventions. Here, we develop a neural-network-based assay that adopts the commonly used open field apparatus for mouse gait and posture analysis. We quantitate both with high precision across 62 strains of mice. We characterize four mutants with known gait deficits and demonstrate that multiple autism spectrum disorder (ASD) models show gait and posture deficits, implying this is a general feature of ASD. Mouse gait and posture measures are highly heritable and fall into three distinct classes. We conduct a genome-wide association study to define the genetic architecture of stride-level mouse movement in the open field. We provide a method for gait and posture extraction from the open field and one of the largest laboratory mouse gait and posture data resources for the research community

    Proceedings of Abstracts Engineering and Computer Science Research Conference 2019

    Get PDF
    © 2019 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Note: Keynote: Fluorescence visualisation to evaluate effectiveness of personal protective equipment for infection control is © 2019 Crown copyright and so is licensed under the Open Government Licence v3.0. Under this licence users are permitted to copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. Where you do any of the above you must acknowledge the source of the Information in your product or application by including or linking to any attribution statement specified by the Information Provider(s) and, where possible, provide a link to this licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/This book is the record of abstracts submitted and accepted for presentation at the Inaugural Engineering and Computer Science Research Conference held 17th April 2019 at the University of Hertfordshire, Hatfield, UK. This conference is a local event aiming at bringing together the research students, staff and eminent external guests to celebrate Engineering and Computer Science Research at the University of Hertfordshire. The ECS Research Conference aims to showcase the broad landscape of research taking place in the School of Engineering and Computer Science. The 2019 conference was articulated around three topical cross-disciplinary themes: Make and Preserve the Future; Connect the People and Cities; and Protect and Care

    Etude expérimentale des dynamiques temporelles du comportement normal et pathologique chez le rat et la souris

    Get PDF
    155 p.Modern neuroscience highlights the need for designing sophisticated behavioral readout of internal cognitive states. From a thorough analysis of classical behavioral test, my results supports the hypothesis that sensory ypersensitivity might be the cause of other behavioural deficits, and confirm the potassium channel BKCa as a potentially relevant molecular target for the development of drug medication against Fragile X Syndrome/Autism Spectrum Disorders. I have also used an innovative device, based on pressure sensors that can non-invasively detect the slightest animal movement with unprecedented sensitivity and time resolution, during spontaneous behaviour. Analysing this signal with sophisticated computational tools, I could demonstrate the outstanding potential of this methodology for behavioural phenotyping in general, and more specifically for the investigation of pain, fear or locomotion in normal mice and models of neurodevelopmental and neurodegenerative disorders

    Definition and classification of hyperkinetic movements in childhood

    Get PDF
    Hyperkinetic movements are unwanted or excess movements that are frequently seen in children with neurologic disorders. They are an important clinical finding with significant implications for diagnosis and treatment. However, the lack of agreement on standard terminology and definitions interferes with clinical treatment and research. We describe definitions of dystonia, chorea, athetosis, myoclonus, tremor, tics, and stereotypies that arose from a consensus meeting in June 2008 of specialists from different clinical and basic science fields. Dystonia is a movement disorder in which involuntary sustained or intermittent muscle contractions cause twisting and repetitive movements, abnormal postures, or both. Chorea is an ongoing random-appearing sequence of one or more discrete involuntary movements or movement fragments. Athetosis is a slow, continuous, involuntary writhing movement that prevents maintenance of a stable posture. Myoclonus is a sequence of repeated, often nonrhythmic, brief shock-like jerks due to sudden involuntary contraction or relaxation of one or more muscles. Tremor is a rhythmic back-and-forth or oscillating involuntary movement about a joint axis. Tics are repeated, individually recognizable, intermittent movements or movement fragments that are almost always briefly suppressible and are usually associated with awareness of an urge to perform the movement. Stereotypies are repetitive, simple movements that can be voluntarily suppressed. We provide recommended techniques for clinical examination and suggestions for differentiating between the different types of hyperkinetic movements, noting that there may be overlap between conditions. These definitions and the diagnostic recommendations are intended to be reliable and useful for clinical practice, communication between clinicians and researchers, and for the design of quantitative tests that will guide and assess the outcome of future clinical trials. © 2010 Movement Disorder SocietyPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77973/1/23088_ftp.pd

    Motion and emotion estimation for robotic autism intervention.

    Get PDF
    Robots have recently emerged as a novel approach to treating autism spectrum disorder (ASD). A robot can be programmed to interact with children with ASD in order to reinforce positive social skills in a non-threatening environment. In prior work, robots were employed in interaction sessions with ASD children, but their sensory and learning abilities were limited, while a human therapist was heavily involved in “puppeteering” the robot. The objective of this work is to create the next-generation autism robot that includes several new interactive and decision-making capabilities that are not found in prior technology. Two of the main features that this robot would need to have is the ability to quantitatively estimate the patient’s motion performance and to correctly classify their emotions. This would allow for the potential diagnosis of autism and the ability to help autistic patients practice their skills. Therefore, in this thesis, we engineered components for a human-robot interaction system and confirmed them in experiments with the robots Baxter and Zeno, the sensors Empatica E4 and Kinect, and, finally, the open-source pose estimation software OpenPose. The Empatica E4 wristband is a wearable device that collects physiological measurements in real time from a test subject. Measurements were collected from ASD patients during human-robot interaction activities. Using this data and labels of attentiveness from a trained coder, a classifier was developed that provides a prediction of the patient’s level of engagement. The classifier outputs this prediction to a robot or supervising adult, allowing for decisions during intervention activities to keep the attention of the patient with autism. The CMU Perceptual Computing Lab’s OpenPose software package enables body, face, and hand tracking using an RGB camera (e.g., web camera) or an RGB-D camera (e.g., Microsoft Kinect). Integrating OpenPose with a robot allows the robot to collect information on user motion intent and perform motion imitation. In this work, we developed such a teleoperation interface with the Baxter robot. Finally, a novel algorithm, called Segment-based Online Dynamic Time Warping (SoDTW), and metric are proposed to help in the diagnosis of ASD. Social Robot Zeno, a childlike robot developed by Hanson Robotics, was used to test this algorithm and metric. Using the proposed algorithm, it is possible to classify a subject’s motion into different speeds or to use the resulting SoDTW score to evaluate the subject’s abilities
    corecore