1,250 research outputs found

    Swarm-Organized Topographic Mapping

    Get PDF
    Topographieerhaltende Abbildungen versuchen, hochdimensionale oder komplexe Datenbestände auf einen niederdimensionalen Ausgaberaum abzubilden, wobei die Topographie der Daten hinreichend gut wiedergegeben werden soll. Die Qualität solcher Abbildung hängt gewöhnlich vom eingesetzten Nachbarschaftskonzept des konstruierenden Algorithmus ab. Die Schwarm-Organisierte Projektion ermöglicht eine Lösung dieses Parametrisierungsproblems durch die Verwendung von Techniken der Schwarmintelligenz. Die praktische Verwendbarkeit dieser Methodik wurde durch zwei Anwendungen auf dem Feld der Molekularbiologie sowie der Finanzanalytik demonstriert

    Data-Driven Supervised Learning for Life Science Data

    Get PDF
    Life science data are often encoded in a non-standard way by means of alpha-numeric sequences, graph representations, numerical vectors of variable length, or other formats. Domain-specific or data-driven similarity measures like alignment functions have been employed with great success. The vast majority of more complex data analysis algorithms require fixed-length vectorial input data, asking for substantial preprocessing of life science data. Data-driven measures are widely ignored in favor of simple encodings. These preprocessing steps are not always easy to perform nor particularly effective, with a potential loss of information and interpretability. We present some strategies and concepts of how to employ data-driven similarity measures in the life science context and other complex biological systems. In particular, we show how to use data-driven similarity measures effectively in standard learning algorithms

    Dissimilarity-based learning for complex data

    Get PDF
    Mokbel B. Dissimilarity-based learning for complex data. Bielefeld: Universität Bielefeld; 2016.Rapid advances of information technology have entailed an ever increasing amount of digital data, which raises the demand for powerful data mining and machine learning tools. Due to modern methods for gathering, preprocessing, and storing information, the collected data become more and more complex: a simple vectorial representation, and comparison in terms of the Euclidean distance is often no longer appropriate to capture relevant aspects in the data. Instead, problem-adapted similarity or dissimilarity measures refer directly to the given encoding scheme, allowing to treat information constituents in a relational manner. This thesis addresses several challenges of complex data sets and their representation in the context of machine learning. The goal is to investigate possible remedies, and propose corresponding improvements of established methods, accompanied by examples from various application domains. The main scientific contributions are the following: (I) Many well-established machine learning techniques are restricted to vectorial input data only. Therefore, we propose the extension of two popular prototype-based clustering and classification algorithms to non-negative symmetric dissimilarity matrices. (II) Some dissimilarity measures incorporate a fine-grained parameterization, which allows to configure the comparison scheme with respect to the given data and the problem at hand. However, finding adequate parameters can be hard or even impossible for human users, due to the intricate effects of parameter changes and the lack of detailed prior knowledge. Therefore, we propose to integrate a metric learning scheme into a dissimilarity-based classifier, which can automatically adapt the parameters of a sequence alignment measure according to the given classification task. (III) A valuable instrument to make complex data sets accessible are dimensionality reduction techniques, which can provide an approximate low-dimensional embedding of the given data set, and, as a special case, a planar map to visualize the data's neighborhood structure. To assess the reliability of such an embedding, we propose the extension of a well-known quality measure to enable a fine-grained, tractable quantitative analysis, which can be integrated into a visualization. This tool can also help to compare different dissimilarity measures (and parameter settings), if ground truth is not available. (IV) All techniques are demonstrated on real-world examples from a variety of application domains, including bioinformatics, motion capturing, music, and education

    Image Analysis Applications of the Maximum Mean Discrepancy Distance Measure

    Get PDF
    The need to quantify distance between two groups of objects is prevalent throughout the signal processing world. The difference of group means computed using the Euclidean, or L2 distance, is one of the predominant distance measures used to compare feature vectors and groups of vectors, but many problems arise with it when high data dimensionality is present. Maximum mean discrepancy (MMD) is a recent unsupervised kernel-based pattern recognition method which may improve differentiation between two distinct populations over many commonly used methods such as the difference of means, when paired with the proper feature representations and kernels. MMD-based distance computation combines many powerful concepts from the machine learning literature, such as data distribution-leveraging similarity measures and kernel methods for machine learning. Due to this heritage, we posit that dissimilarity-based classification and changepoint detection using MMD can lead to enhanced separation between different populations. To test this hypothesis, we conduct studies comparing MMD and the difference of means in two subareas of image analysis and understanding: first, to detect scene changes in video in an unsupervised manner, and secondly, in the biomedical imaging field, using clinical ultrasound to assess tumor response to treatment. We leverage effective computer vision data descriptors, such as the bag-of-visual-words and sparse combinations of SIFT descriptors, and choose from an assessment of several similarity kernels (e.g. Histogram Intersection, Radial Basis Function) in order to engineer useful systems using MMD. Promising improvements over the difference of means, measured primarily using precision/recall for scene change detection, and k-nearest neighbour classification accuracy for tumor response assessment, are obtained in both applications.1 yea

    NASA JSC neural network survey results

    Get PDF
    A survey of Artificial Neural Systems in support of NASA's (Johnson Space Center) Automatic Perception for Mission Planning and Flight Control Research Program was conducted. Several of the world's leading researchers contributed papers containing their most recent results on artificial neural systems. These papers were broken into categories and descriptive accounts of the results make up a large part of this report. Also included is material on sources of information on artificial neural systems such as books, technical reports, software tools, etc

    Learning vector quantization for proximity data

    Get PDF
    Hofmann D. Learning vector quantization for proximity data. Bielefeld: Universität Bielefeld; 2016.Prototype-based classifiers such as learning vector quantization (LVQ) often display intuitive and flexible classification and learning rules. However, classical techniques are restricted to vectorial data only, and hence not suited for more complex data structures. Therefore, a few extensions of diverse LVQ variants to more general data which are characterized based on pairwise similarities or dissimilarities only have been proposed recently in the literature. In this contribution, we propose a novel extension of LVQ to similarity data which is based on the kernelization of an underlying probabilistic model: kernel robust soft LVQ (KRSLVQ). Relying on the notion of a pseudo-Euclidean embedding of proximity data, we put this specific approach as well as existing alternatives into a general framework which characterizes different fundamental possibilities how to extend LVQ towards proximity data: the main characteristics are given by the choice of the cost function, the interface to the data in terms of similarities or dissimilarities, and the way in which optimization takes place. In particular the latter strategy highlights the difference of popular kernel approaches versus so-called relational approaches. While KRSLVQ and alternatives lead to state of the art results, these extensions have two drawbacks as compared to their vectorial counterparts: (i) a quadratic training complexity is encountered due to the dependency of the methods on the full proximity matrix; (ii) prototypes are no longer given by vectors but they are represented in terms of an implicit linear combination of data, i.e. interpretability of the prototypes is lost. We investigate different techniques to deal with these challenges: We consider a speed-up of training by means of low rank approximations of the Gram matrix by its Nyström approximation. In benchmarks, this strategy is successful if the considered data are intrinsically low-dimensional. We propose a quick check to efficiently test this property prior to training. We extend KRSLVQ by sparse approximations of the prototypes: instead of the full coefficient vectors, few exemplars which represent the prototypes can be directly inspected by practitioners in the same way as data. We compare different paradigms based on which to infer a sparse approximation: sparsity priors while training, geometric approaches including orthogonal matching pursuit and core techniques, and heuristic approximations based on the coefficients or proximities. We demonstrate the performance of these LVQ techniques for benchmark data, reaching state of the art results. We discuss the behavior of the methods to enhance performance and interpretability as concerns quality, sparsity, and representativity, and we propose different measures how to quantitatively evaluate the performance of the approaches. We would like to point out that we had the possibility to present our findings in international publication organs including three journal articles [6, 9, 2], four conference papers [8, 5, 7, 1] and two workshop contributions [4, 3]. References [1] A. Gisbrecht, D. Hofmann, and B. Hammer. Discriminative dimensionality reduction mappings. Advances in Intelligent Data Analysis, 7619: 126–138, 2012. [2] B. Hammer, D. Hofmann, F.-M. Schleif, and X. Zhu. Learning vector quantization for (dis-)similarities. Neurocomputing, 131: 43–51, 2014. [3] D. Hofmann. Sparse approximations for kernel robust soft lvq. Mittweida Workshop on Computational Intelligence, 2013. [4] D. Hofmann, A. Gisbrecht, and B. Hammer. Discriminative probabilistic prototype based models in kernel space. New Challenges in Neural Computation, TR Machine Learning Reports, 2012. [5] D. Hofmann, A. Gisbrecht, and B. Hammer. Efficient approximations of kernel robust soft lvq. Workshop on Self-Organizing Maps, 198: 183–192, 2012. [6] D. Hofmann, A. Gisbrecht, and B. Hammer. Efficient approximations of robust soft learning vector quantization for non-vectorial data. Neurocomputing, 147: 96–106, 2015. [7] D. Hofmann and B. Hammer. Kernel robust soft learning vector quantization. Artificial Neural Networks in Pattern Recognition, 7477: 14–23, 2012. [8] D. Hofmann and B. Hammer. Sparse approximations for kernel learning vector quantization. European Symposium on Artificial Neural Networks, 549–554, 2013. [9] D. Hofmann, F.-M. Schleif, B. Paaßen, and B. Hammer. Learning interpretable kernelized prototype-based models. Neurocomputing, 141: 84–96, 2014

    Kernel methods in machine learning

    Full text link
    We review machine learning methods employing positive definite kernels. These methods formulate learning and estimation problems in a reproducing kernel Hilbert space (RKHS) of functions defined on the data domain, expanded in terms of a kernel. Working in linear spaces of function has the benefit of facilitating the construction and analysis of learning algorithms while at the same time allowing large classes of functions. The latter include nonlinear functions as well as functions defined on nonvectorial data. We cover a wide range of methods, ranging from binary classifiers to sophisticated methods for estimation with structured data.Comment: Published in at http://dx.doi.org/10.1214/009053607000000677 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Integrating topological features to enhance cardiac disease diagnosis from 3D CMR images

    Full text link
    Treballs Finals de Grau de MatemĂ tiques, Facultat de MatemĂ tiques, Universitat de Barcelona, Any: 2023, Director: Carles Casacuberta i Polyxeni Gkontra[en] Persistent homology is a technique from the field of algebraic topology for the analysis and characterization of the shape and structure of datasets in multiple dimensions. Its use is based on the identification and quantification of topological patterns in the dataset across various scales. In this thesis, persistent homology is applied with the objective of extracting topological descriptors from three-dimensional cardiovascular magnetic resonance (CMR) imaging. Thereafter, topological descriptors are used for the detection of cardiovascular diseases by means of Machine Learning (ML) techniques. Radiomics has been one of the recently proposed approaches for disease diagnosis. This method involves the extraction and subsequent analysis of a significant number of quantitative descriptors from medical images. These descriptors offer a characterization of the spatial distribution, texture, and intensity of the structures present in the images. This study demonstrates that radiomics and topological descriptors achieve comparable results, providing complementary insights into the underlying structures and characteristics of anatomical tissues. Moreover, the combination of these two methods leads to a further improvement of the performance of ML models, thereby enhancing medical diagnosis
    • …
    corecore