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Abstract

Prototype-based classifiers such as learning vector quantization (LVQ) often
display intuitive and flexible classification and learning rules. However, clas-
sical techniques are restricted to vectorial data only, and hence not suited
for more complex data structures. Therefore, a few extensions of diverse
LVQ variants to more general data which are characterized based on pair-
wise similarities or dissimilarities only have been proposed recently in the
literature.

In this contribution, we propose a novel extension of LVQ to similar-
ity data which is based on the kernelization of an underlying probabilistic
model: kernel robust soft LVQ (KRSLVQ). Relying on the notion of a pseudo-
Euclidean embedding of proximity data, we put this specific approach as well
as existing alternatives into a general framework which characterizes different
fundamental possibilities how to extend LVQ towards proximity data: the
main characteristics are given by the choice of the cost function, the interface
to the data in terms of similarities or dissimilarities, and the way in which
optimization takes place. In particular the latter strategy highlights the dif-
ference of popular kernel approaches versus so-called relational approaches.

While KRSLVQ and alternatives lead to state of the art results, these
extensions have two drawbacks as compared to their vectorial counterparts:
(i) a quadratic training complexity is encountered due to the dependency of
the methods on the full proximity matrix; (ii) prototypes are no longer given
by vectors but they are represented in terms of an implicit linear combination
of data, i.e. interpretability of the prototypes is lost.

We investigate different techniques to deal with these challenges: We
consider a speed-up of training by means of low rank approximations of the
Gram matrix by its Nyström approximation. In benchmarks, this strategy
is successful if the considered data are intrinsically low-dimensional. We
propose a quick check to efficiently test this property prior to training.

We extend KRSLVQ by sparse approximations of the prototypes: instead
of the full coefficient vectors, few exemplars which represent the prototypes
can be directly inspected by practitioners in the same way as data. We
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compare different paradigms based on which to infer a sparse approxima-
tion: sparsity priors while training, geometric approaches including orthog-
onal matching pursuit and core techniques, and heuristic approximations
based on the coefficients or proximities.

We demonstrate the performance of these LVQ techniques for benchmark
data, reaching state of the art results. We discuss the behavior of the methods
to enhance performance and interpretability as concerns quality, sparsity, and
representativity, and we propose different measures how to quantitatively
evaluate the performance of the approaches.

We would like to point out that we had the possibility to present our
findings in international publication organs including three journal articles
[50, 53, 40], four conference papers [52, 49, 51, 33] and two workshop contri-
butions [48, 47].
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Chapter 1

Introduction

Motivation

Since electronic data sets increase rapidly with respect to size and complexity,
humans have to rely on automated methods to access relevant information
from such data. Apart from classical statistical tools, machine learning has
become a major technique in the context of data processing since it offers
a wide variety of inference methods. Today, a major part of applications
is concerned with the inference of a function or classification prescription
based on a given set of examples, accompanied by data mining tasks in
unsupervised machine learning scenarios and more general settings as tackled
for example in the frame of autonomous learning. Example applications are
widespread, including network intrusion detection, image recognition, protein
structure prediction, speech processing, robot navigation, and so forth. In
this contribution, we focus on classification problems as one of the most
widespread machine learning applications, meaning the task to classify data
into a finite number of known classes based on given training examples.

There exist many different classification techniques in the context of ma-
chine learning ranging from symbolic methods such as decision trees to sta-
tistical methods such as Bayes classifiers. Because of its often excellent classi-
fication and generalization performance, the support vector machine (SVM)
constitutes one of the current flagships in this context, having its roots in
learning theoretical principles as introduced by Vapnik and colleagues [12].
Due to its inherent regularization of the result, it is particularly suited if
high dimensional data are dealt with. Further, the interface to the data
is given by a kernel matrix such that, rather than relying on vectorial rep-
resentations, the availability of the Gram matrix is sufficient to apply this
technique. Other top classifiers available today include random forests, neu-
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ral networks, or boosting ensembles [25].
With machine learning techniques becoming more and more popular in

diverse application domains and the tasks becoming more and more complex,
there is an increasing need for models which can easily be interpreted by
practitioners. For complex tasks, often, practitioners do not only apply a
machine learning technique but also inspect and interpret the result such
that a specification of the tackled problem or an improvement of the model
becomes possible [94]. In this setting, a severe drawback of many state-of-the-
art machine learning tools such as the SVM occurs. They act as black-boxes.
In consequence, practitioners cannot easily inspect the results and it is hardly
possible to change the functionality or assumptions of the model based on
the result of the classifier. This is the case for all classifiers ranked best in
the recent comparison [25].

Prototype-based methods enjoy a wide popularity in various application
domains due to their very intuitive and simple behavior. They represent their
decisions in terms of typical representatives contained in the input space and
a classification is based on the distance of data as compared to these pro-
totypes [61]. Thus, models can be directly inspected by experts since pro-
totypes can be treated in the same way as data. Popular techniques in this
context include standard learning vector quantization (LVQ) schemes and
extensions to more powerful settings such as variants based on cost func-
tions or metric learners such as generalized LVQ (GLVQ) or robust soft LVQ
(RSLVQ), for example [81, 84, 88, 85]. These approaches are based on the
notion of margin optimization similar to SVM in case of GLVQ [84], or based
on a likelihood ratio maximization in case of RSLVQ, respectively [88]. For
GLVQ and RSLVQ, learning rules which closely resemble standard LVQ2.1
result, whereby the performance is superior to this latter heuristics, in par-
ticular excellent generalization ability can be observed [85]. A few recent ap-
plications of LVQ technology can be found in the context of biomedical data
analysis or life-long learning, as an example [22, 31, 59]. These applications
crucially rely on the representation of the models in terms of representative
prototypes which opens the way towards model interpretability and compact
model representation, respectively.

With data sets becoming more and more complex, input data are often
no longer given as simple Euclidean vectors, rather structured data or dedi-
cated formats can be observed such as sequences, graphs, tree structures, time
series data, functional data, relational data and so forth as occurs in bioin-
formatics, linguistics, or diverse heterogeneous databases. Several techniques
extend statistical machine learning tools towards non-vectorial data. Kernel
methods such as SVM using structure kernels, recursive and graph networks,
functional methods, relational approaches, and similar [26, 82, 29, 78, 41].
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Recently, popular prototype-based algorithms have also been extended to
deal with more general data. Several techniques rely on a characterization
of the data by means of a matrix of pairwise similarities or dissimilarities
only rather than explicit feature vectors. In this setting, median clustering
as provided by median self-organizing maps, median neural gas, or affinity
propagation characterizes clusters in terms of typical exemplars [28, 62, 20,
70]. More general smooth adaptation is offered by relational extensions such
as relational neural gas or relational learning vector quantization [39]. A
further possibility is offered by kernelization such as proposed for neural gas,
self-organizing maps, or different variants of learning vector quantization [75,
14, 76, 96]. By formalizing the interface to the data as a general similarity or
dissimilarity matrix, complex structures can be easily dealt with. Structure
kernels for graphs, trees, alignment distances, string distances, and so forth
open the way towards these general data structures [73, 29].

Contribution of the thesis

This thesis will center around extensions of learning vector quantization tech-
nology towards general data structures by means of its representation in
terms of proximities such as a kernel matrix or general distances. There
exist a few successful attempts in this realm, such as relational GLVQ or
kernel GLVQ, which extend the powerful GLVQ scheme towards dissimilar-
ities or kernels, respectively [76, 43]. We will develop yet another approach
in this realm which is based on a probabilistic treatment of prototype-based
classification and extends this technique by means of the kernel trick to-
wards similarity data, showing superior results which are comparable to the
performance of an SVM.

Albeit these different techniques to extend LVQ towards proximities seem
very similar, classification results are not always equivalent. Hence the ques-
tion occurs what the differences and what the similarities of the techniques
are. We answer this question by developing a general framework which sum-
marizes these techniques under a common umbrella. The core observation
consists in the fact that all type of proximity data represented by a symmetric
proximity matrix can be associated to an implicit vector space embedding,
the so-called pseudo-Euclidean embedding [73]. This vectorial counterpart
opens the possibility of an LVQ scheme in this pseudo-Euclidean vector space.
Since the computation of this embedding is costly, proximity-based learning
methods perform it only implicitly. The techniques essentially differ in the
way how this embedding is implicitly accessed and how it is integrated into
the update rule for learning the classifier. Interestingly, there do not only
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result different classification accuracies, but also different mathematical guar-
antees as concerns convergence of the learning rules and generalization ability
of the classifier.

Besides this general view, we address two issues which are of great practi-
cal relevance in this thesis, in particular the efficiency of the model and model
interpretability. Unlike their vectorial counterparts, proximity-based LVQ
variants display a quadratic time complexity, hence the techniques become
infeasible already for medium-sized data sets. We investigate the so-called
Nyström technique which enables a low-rank matrix approximation of the
proximity matrix resulting in a linear time scheme. While the Nyström ap-
proximation has been used earlier in a similar context [35, 83], it is not clear
a priori in which cases it enables a nearly lossless result. We develop a quick
check which can test the suitability of the Nyström approximation efficiently
and prior to training. It essentially relies on an estimation of the variance
which results when approximating proximities based on different landmarks.
Hence a linear technique together with a reliable test about its suitability
results.

Another problem consists in the fact that LVQ variants which are based
on proximities represent prototypes in a distributed way as a virtual linear
combination of data points. This not only slows down the classification time,
but it also prohibits an intuitive interpretation and inspection of the result-
ing prototypes by experts. We address this issue by investigating different
possibilities to approximate the prototypes by sparse counterparts which can
be represented in terms of few data points only. We identify different prin-
cipled possibilities how such an approximation can efficiently be realized,
and we elucidate the suitability of the different techniques in an extensive
comparison based on benchmarks.

We had the opportunity to present large parts of the results which are
contained in this thesis in a number of international journals, conferences
and workshops, as referenced in the following:

Journal articles

[40] B. Hammer, D. Hofmann, F.-M. Schleif, and X. Zhu. Learning vector
quantization for (dis-)similarities. Neurocomputing, 131: 43–51, 2014.

[50] D. Hofmann, A. Gisbrecht, and B. Hammer. Efficient approximations
of robust soft learning vector quantization for non-vectorial data. Neu-
rocomputing, 147: 96–106, 2015.
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[53] D. Hofmann, F.-M. Schleif, B. Paaßen, and B. Hammer. Learning in-
terpretable kernelized prototype-based models. Neurocomputing, 141:
84–96, 2014.

Conference articles

[27] B. Frenay, D. Hofmann, A. Schulz, M. Biehl, and B. Hammer. Valid
interpretation of feature relevance for linear data mappings. Computa-
tional Intelligence and Data Mining, 149–156, 2014.

[33] A. Gisbrecht, D. Hofmann, and B. Hammer. Discriminative dimension-
ality reduction mappings. Advances in Intelligent Data Analysis, 7619:
126–138, 2012.

[49] D. Hofmann, A. Gisbrecht, and B. Hammer. Efficient approximations
of kernel robust soft lvq. Workshop on Self-Organizing Maps, 198:
183–192, 2012.

[51] D. Hofmann and B. Hammer. Kernel robust soft learning vector quanti-
zation. Artificial Neural Networks in Pattern Recognition, 7477: 14–23,
2012.

[52] D. Hofmann and B. Hammer. Sparse approximations for kernel learn-
ing vector quantization. European Symposium on Artificial Neural
Networks, 549–554, 2013.

Workshop contributions

[47] D. Hofmann. Sparse approximations for kernel robust soft lvq. Mit-
tweida Workshop on Computational Intelligence, 2013.

[48] D. Hofmann, A. Gisbrecht, and B. Hammer. Discriminative probabilis-
tic prototype based models in kernel space. New Challenges in Neural
Computation, TR Machine Learning Reports, 2012.

Structure of the thesis

In this contribution, cost function based learning vector quantization (LVQ)
[60] variants such as Robust Soft LVQ (RSLVQ) [88] or Generalized (GLVQ)
[81] are introduced in Chapter 2. We consider the question how to extend
these methods to similarity or dissimilarity data, respectively in Chapter 3.

5



Existing techniques such as kernel GLVQ [76], relational GLVQ [42], and
relational RSLVQ [44] are covered and we investigate the novel possibility of
kernel RSLVQ.

We propose a general way to extend LVQ methods based on an implicit
pseudo-Euclidean embedding of the data, in Chapter 4 and discuss in how
far instantiations of this framework differ from each other. Using it, we cover
existing techniques, which offer valid classifiers and training methods for an
arbitrary symmetric similarity or dissimilarity. Some mathematical proper-
ties, however, such as an interpretation via a likelihood ratio or interpretation
of learning as exact gradient, are only guaranteed in the Euclidean case for
some of the possible choices. In this context, we investigate the effect of cor-
rections of the matrix to make data Euclidean. The effectivity of the novel
technique kernel RSLVQ is demonstrated in a couple of benchmarks, where
it will be extensively tested in comparison to popular alternatives such as
k-nearest neighbor classifiers and the SVM.

Afterwards, we will focus on kernel RSLVQ which allows to priorly specify
the model complexity, meaning the number of prototypes which represent
the classifier. Unlike RSLVQ, it represents prototypes implicitly by means
of a linear combination of data in kernel space, which has two drawbacks.
On the one hand, an adaptation step does no longer scale linearly with the
number of data points, rather, quadratic complexity is required. This makes
the technique infeasible if large data sets are considered. Due to this we
consider the Nyström approximation of Gram matrices in Chapter 5, which
has been proposed in the context of SVMs in [97]. It constitutes a low
rank approximation of the matrix based on a small subsample of the data.
Assuming a fixed size of the subsample, a linear adaptation technique results.
This approximation technique accounts for an efficient update and the effects
on the accuracy are tested in a variety of benchmarks. Additionally we
suggest a quick check for an a priori performance estimation of the Nyström
approximation, based on the correlation.

On the other hand, prototypes are no longer directly interpretable, since
the vector of linear coefficients is usually not sparse. Hence, in theory, all
data points can contribute to the prototype. We propose a few possibilities
to approximate prototypes in a relational LVQ scheme by sparse approxima-
tions in Chapter 6, thereby partially relying on classical solutions, but also
taking into account simple heuristics which are motivated by the underlying
geometrical background. Thereby, we propose one technique which empha-
sizes sparsity already while training, comparing this to two mathematical
approximation schemes of the representation, namely classical orthogonal
matching pursuit [15] and core techniques to approximately solve the mini-
mum enclosing ball problem for the receptive fields of prototypes [4]. As an
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alternative, we investigate two simple heuristics, namely an approximation of
the prototypes by their closest exemplars, and a simple numerical rounding
of the coefficient vector obtained by full training. We investigate the perfor-
mance of these different techniques as concerns their classification accuracy
and degree of sparsity. As one quantitative measure which can be related
to the model interpretability, we use Rissanen’s minimum description length
principle in a supervised setting as well as the overall data entropy to judge
the representativity of prototypes in an unsupervised perspective [77].

We conclude with a discussion in Chapter 7.

Funding acknowledgment
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• The Cognitive Interaction Technology Center of Excellence (CITEC),
funded by the German Science Foundation (DFG).
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1.
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Chapter 2

Vectorial learning vector

quantization

Chapter overview In this chapter, we introduce the vectorial LVQ classi-
fier, we have a short glimpse at traditional heuristic learning schemes, and
we introduce two popular learning schemes. Generalized LVQ can be related
to a maximization of the hypothesis margin, whereas robust soft LVQ relies
on a likelihood ratio optimization. These methods, which are derived from
explicit cost functions, will form the foundation for the extension of LVQ to
proximity data. An abstract formalization of the form underlying this classi-
fication rule and learning schemes will pave the way towards these extensions.

Learning vector quantization (LVQ) constitutes a very popular class of
intuitive prototype based learning algorithms with successful applications
ranging from telecommunications to robotics [61]. LVQ as originally pro-
posed by Kohonen bases its decision on a winner-takes-all scheme and its
learning rule on variants of Hebbian learning. Original LVQ1 is surprisingly
good in typical model situations such as investigated for example in [9] and
improvements such as LVQ2.1, LVQ3, or OLVQ aim at a higher convergence
speed or better approximation of the Bayesian borders. These types of LVQ
schemes have in common that their learning rule is essentially heuristically
motivated and cannot be interpreted as direct optimization of a valid cost
function [10, 11]. Against this background, researchers have proposed vari-
ants of LVQ which can directly be derived from an underlying cost function
which is optimized during training for example by means of a stochastic gra-
dient ascent or descent. One of the first attempts relates to large margin
maximization [45, 84] and can be found in [81] with an exact computation
of the validity at class boundaries in [85]. Later, a very elegant LVQ scheme
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which is a statistical approach and which can be seen as a more robust prob-
abilistic extension of LVQ2.1 has been proposed in [88].

2.1 Learning vector quantization

Assume data ξi ∈ R
n with i = 1, . . . , N are labeled yi where labels stem from

a finite number of different classes. A LVQ classifier is characterized by m
prototypes wj ∈ R

n with priorly fixed labels c (wj). Classification takes place
by a winner takes all scheme

ξ 7→ c (wj) where d (ξ, wj) is minimum (2.1)

with squared Euclidean distance d (ξ, wj) = ‖ξ − wj‖2, breaking ties arbi-
trarily. We refer to the data ξi which are closest to a given prototype wj as
the receptive field Rj of the prototype.

LVQ learning aims at a positioning of prototypes such that the resulting
classification error is minimized [60, 61]. Since optimization of the classifi-
cation error itself is an NP-hard problem, the original learning rules rely on
heuristics. Given a data point ξi, LVQ1 recursively modifies the winner wj

by the update

∆wj =

{

α (ξi − wj) if c (wj) = yi

−α (ξi − wj) if c (wj) 6= yi
(2.2)

where α ∈ (0, 1) is the learning rate. This update can be interpreted as
stochastic gradient descent on the cost function as analyzed in [81]

CostLVQ =
∑

i

fLVQ (d (ξi, w+) , d (ξi, w−)) (2.3)

where w+ constitutes the closest prototype to ξi labeled with yi and w−

denotes the closest prototype with a different label than ξi and where

fLVQ (d (ξi, w+) , d (ξi, w−)) =

{

(ξi − w+)
2 if (ξi − w+)

2 ≤ (ξi − w−)
2

(ξi − w−)
2 if (ξi − w+)

2 > (ξi − w−)
2

(2.4)

Unfortunately, this cost function is discontinuous and has stability problems
for overlapping data distributions. Further, it does not constitute a valid
global cost function but a local one only, in the sense that its value is smaller
(negative) if more data are misclassified due to the discontinuity.

fLVQ2.1 (d (ξi, w+) , d (ξi, w−)) = v
(

(ξi − w+)
2 − (ξi − w−)

2) as choice of
the term in the above sum yields the cost function of LVQ2.1 as explained
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in [60], where v restricts updates to data points which fall into a window
around the decision boundary. This produces an instable dynamic, meaning
prototypes diverge because repelling forces might be larger than attracting
forces. The window must be chosen carefully to prevent this behavior. w+

and w− are changed if the data point is far from the winners and they belong
to different labels, meaning

min

( |ξi − w+|
|ξi − w−|

,
|ξi − w−|
|ξi − w+|

)

>
1− v

1 + v
(2.5)

with 0 < v ≤ 1. This leads to the following update rule

∆w+ = α (ξi − w+) , ∆w− = −α (ξi − w−) (2.6)

For training, it is usually assumed that the number and classes of proto-
types are fixed. In practice, these are often determined using cross-validation,
or a further wrapper technique or incremental learning [99, 64] is added to
obtain model flexibility. In the following, we will not consider the issue of
model selection, but rely on standard techniques such as cross-validation.

We will rather focus on more recent alternatives which prevent these di-
vergence problems and which are derived from suitable cost functions, instead
of considering these heuristic LVQ learning schemes. Interestingly, all LVQ
classification schemes can be accompanied by large margin generalization
bounds [21], comparable to support vector machine (SVM) [19].

2.2 Generalized learning vector quantization

As before, generalized LVQ (GLVQ) as introduced in [81] relies on training
data ξi ∈ R

n accompanied by labels yi. A GLVQ network is determined by
m prototypes wj ∈ R

n, where the labels of prototypes c (wj) are fixed.
Training is formalized in terms of a cost function which aims at finding

positions of the prototypes such that the classification accuracy of the train-
ing set is optimized and, in addition, the generalization ability is taken into
account

∑

i

F

(

d (ξi, w+)− d (ξi, w−)

d (ξi, w+) + d (ξi, w−)

)

(2.7)

where w+ constitutes the closest prototype to ξi labeled with yi and w− de-
notes the closest prototype with a different label than ξi and where F is taken
as monotonic function such as the sigmoid function, the hyperbolic tangent
function, or the identity function. In the following, we will only use the
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identity function and, in consequence, drop the symbol. As recently shown,
however [57, 56] a careful adjustment of F can be beneficial in practice. d
refers to the squared Euclidean metric. The nominator is negative if and
only if ξi is classified correctly, thus GLVQ tries to maximize the number of
correct classifications. In addition, it aims at an optimization of the hypoth-
esis margin d (ξi, w−)− d (ξi, w+) which determines the generalization ability
of the method [84].

Training takes place by a simple stochastic gradient descent, meaning
given a data point ξi, adaptation takes place via the update rules

∆w+ ∼ − 2 · d (ξi, w−)

(d (ξi, w+) + d (ξi, w−))
2 · ∂d (ξi, w+)

∂w+

∆w− ∼ 2 · d (ξi, w+)

(d (ξi, w+) + d (ξi, w−))
2 · ∂d (ξi, w−)

∂w−

(2.8)

2.3 Robust soft learning vector quantization

Robust soft LVQ (RSLVQ) as introduced in [88] models data by a mixture
of Gaussians and derives learning rules as a maximization of the log likeli-
hood ratio of the given data. In the limit of small bandwidth σ, a learning
rule which is similar to LVQ2.1 but which performs adaptation in case of
misclassification only is obtained.

Assume, again, that data ξi ∈ R
n are given accompanied by labels yi. A

RSLVQ network represents a mixture distribution, which is determined by
m prototypes wj ∈ R

n, where the labels of prototypes c (wj) are fixed. In
addition, a parameter σj denotes the bandwidth. Then mixture component
j induces the probability

p (ξ|j) = constj · exp
(

f
(

ξ, wj, σ
2
j

))

(2.9)

with normalization constant constj and function f

f
(

ξ, wj, σ
2
j

)

= −‖ξ − wj‖2 /σ2
j (2.10)

The probability of a data point ξ is given by the mixture

p (ξ|W ) =
∑

j

P (j) · p (ξ|j) (2.11)

with prior probability P (j) of mixture j and parameters W of the model.
The probability of a data point ξ and a given label y is

p (ξ, y|W ) =
∑

c(wj)=y

P (j) · p (ξ|j) (2.12)
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Learning aims at an optimization of the log likelihood ratio

L =
∑

i

log
p (ξi, yi|W )

p (ξi|W )
(2.13)

A stochastic gradient ascent yields the following update rules, given a data
point (ξi, yi)

∆wj = α ·























(Py (j|ξi)− P (j|ξi)) · constj
·∂f

(

ξi, wj, σ
2
j

)

/∂wj if c (wj) = yi

−P (j|ξi) · constj
·∂f

(

ξi, wj, σ
2
j

)

/∂wj if c (wj) 6= yi

(2.14)

with the learning rate α > 0. The probabilities are defined as

Py (j|ξi) =
P (j) exp

(

f
(

ξi, wj, σ
2
j

))

∑

c(wj)=yj
P (j) exp

(

f
(

ξi, wj, σ
2
j

)) (2.15)

and

P (j|ξi) =
P (j) exp

(

f
(

ξi, wj, σ
2
j

))

∑

j P (j) exp
(

f
(

ξi, wj, σ2
j

)) (2.16)

If class priors are equal, and small bandwidth is present, a learning rule
similar to LVQ2.1 results.

Given a novel data point ξ, its class label is the most likely label y corre-
sponding to a maximum value p (y|ξ,W ) ∼ p (ξ, y|W ). For typical settings,
this rule can be approximated by a simple winner takes all rule, meaning ξ is
mapped to the label c (wj) of the closest prototype wj . It has been shown in
[88], for example, that RSLVQ often yields excellent results while preserving
interpretability of the model due to prototypical representatives of the classes
in terms of the parameters wj .

2.4 Abstract formulation

From an abstract point of view, we can characterize LVQ as a classifier, which
classification rule is based on the quantities

D (ξ, w) := (d (ξi, wj))i=1,...,N,j=1,...,m (2.17)

for example selecting the minimum of these terms. Training aims at an
optimization of a cost function of the form

f (D (ξ, w)) (2.18)
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with suitable function f by means of the gradients

∂f (D (ξ, w))

∂wj
=

N
∑

i=1

∂f (D (ξ, w))

∂d (ξi, wj)
· ∂d (ξi, wj)

∂wj
(2.19)

with respect to the prototypes wj or the corresponding stochastic gradients
for one point ξi. This observation will constitute the key to transfer LVQ
variants towards general proximity data in Chapter 4. So far, the distance
measure d is chosen as squared Euclidean distance, but extensions are possi-
ble. A very popular choice which has been published under the umbrella of
relevance or matrix learning substitutes the standard Euclidean distance by
an adaptive quadratic form, which can autonomously infer a suitable scaling
and ranking of the feature dimensions and their correlation based on given
data [84]. We will not consider this extension in the following, rather we will
focus on settings where pairwise distances d are given in terms of a general
proximity matrix.

We would like to point out that not only modern LVQ variants are charac-
terized by the essential ingredients given by Equation 2.17 and Equation 2.18,
but also many unsupervised prototype based techniques can be written in
this form. Popular examples include, for example, neural gas (NG) or the
self-organizing map (SOM) in the form proposed by Heskes, or probabilistic
counterparts [67, 46]. Due to this observation, the general framework which
we will develop is not restricted to supervised prototype-based methods but
the arguments directly transfer to unsupervised prototype-based techniques
provided the latter are derived from a suitable cost function, such that kernel
or relational extensions of SOM and NG are covered [39]. For the sake of
simplicity, however, we will not elucidate this link in the following.

2.5 Discussion

We have introduced the basics of modern LVQ variants which are derived on
cost functions, notably GLVQ and RSLVQ, which will be used later on. Due
to their intuitive learning and classification rule based on a winner-takes-all
scheme, these techniques enjoy a great popularity in diverse application do-
mains ranging from telecommunication and robotics up to bioinformatics and
data mining [61, 8, 30]. Apart from an only linear training time and its suit-
ability for online scenarios, such as demonstrated for example in [59, 23], one
of its benefits is given by the fact that models are represented in terms of few
prototypes which can be inspected by practitioners in the same way as data.
Hence this inherent representation scheme lends itself as an intuitive inter-
face to the model, unlike many black box alternatives in machine learning
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which offer state-of-the-art results but, usually, do not provide a justification
why a certain classification takes place [2]. In complex settings where the
overall task is not necessarily clear a priori or in settings where the human
has to take responsibility for a subsequent action, interpretability becomes
crucial. Here, human insight is often the only way to further specify a priorly
unclear training setting or to substantiate mere observations by causalities.
Due to this reason, there is an increasing demand of interpretable models
which provide a human understandable interface to their decisions besides
excellent classification accuracy in areas such as biomedical data analysis or
interactive data inspection [94].

Apart from prototype based data representations, quite a few approaches
have addressed the interpretability of powerful machine learning algorithms,
including, for example, intelligent approximation techniques and feature se-
lection mechanisms for SVM, blind signal separation, enhanced score meth-
ods, or visualization techniques [80, 6, 13, 7, 38]. For LVQ, interpretability is
guaranteed per the design of the model [11]. Interestingly, some LVQ tech-
niques can be easily enhanced such that they additionally provide an inherent
low dimensional visualization of their decisions [16], or an extension of the
models by directly interpretable relevance terms is possible [84, 85]. Fur-
ther, as already mentioned, strong learning theoretical guarantees substan-
tiate LVQ algorithms as classification models with excellent generalization
behavior [5, 9, 84].

These classical LVQ methods as introduced above are restricted to vecto-
rial data. In recent years, data are often no longer vectorial in many appli-
cation domains for example due to improved sensor technology or dedicated
data formats. Rather, complex structures are dealt with for which a problem
specific similarity or dissimilarity measure has been designed. This measure
accounts for the structural form of the data such as alignment techniques for
bioinformatics sequences, dedicated functional norms for mass spectra, the
compression distance for texts, or metabolic networks, where complex align-
ment techniques, background information, or general information theoretical
principles, for example, drive the comparison of data points [74, 66, 54]. In
these settings, it is possible to compute pairwise similarities or dissimilarities
of the data rather than to arrive at an explicit vectorial representation, which
LVQ methods are limited to. In the following, we will therefore investigate
how LVQ schemes can be extended to proximity data instead of standard
Euclidean vectors.
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Chapter 3

LVQ for proximities

Chapter overview The goal of this chapter is to introduce a few extensions
of LVQ versions towards more general proximity data rather than vectors, in
particular summarizing the three existing techniques relational GLVQ, rela-
tional RSLVQ, and kernel GLVQ. In doing so, we also introduce the so-called
pseudo-Euclidean embedding of proximity data, which is necessary for the
derivation of the relational LVQ variants, and which will form the mathe-
matical base for the general framework we will introduce in Chapter 4. In
addition to this summary, we propose the novel technique kernel RSLVQ,
which extends the probabilistic RSLVQ in a very clear way towards general
kernels. Parts of this chapter are based on the publications [51, 47].

As discussed in Chapter 2 prototype-based methods often display very
intuitive classification and learning rules. However, the introduced LVQ
variants are restricted to vectorial data only such that they cannot be ap-
plied if data are non-vectorial and represented in terms of pairwise sim-
ilarities or dissimilarities. Examples for such settings include structured
data such as graphs, trees, sequence data, extensible markup language, or
the like [26, 29, 82]. Often, these data can be addressed by means of
a dedicated similarity measure or kernel, including for example sequence
alignment, the normalized compression distance, graph kernels, or similar
[29, 18, 17, 74, 41, 54, 65, 68]. As such, the similarity or dissimilarity mea-
sure can serve as a canonical interface of the model towards the given data
set, as is the case for example in popular kernel approaches. In the following
we will discuss techniques how to extend LVQ algorithms to more general
data characterized by pairwise similarities or dissimilarities only.

Two different principles have been proposed in the literature. Kernel
GLVQ assumes a valid Gram matrix and extends GLVQ by means of ker-
nelization, see [76]. In contrast, relational GLVQ assumes the more general

17



setting of possibly non-Euclidean dissimilarities, and extends GLVQ to this
setting by an alternative expression of distances based on the given dissimilar-
ity data [42]. Both techniques can analogously be applied to RSLVQ [51, 44].
We introduce these four techniques, including the novel kernel RSLVQ which
has been proposed by us. In Chapter 4, we will argue that both instances
can be unified as LVQ variants referring to the pseudo-Euclidean embedding
of similarity or dissimilarity data, respectively. First, we will address ker-
nel LVQ variants, before coming to relational extensions and its underlying
pseudo-Euclidean embedding.

3.1 Kernel GLVQ

Based on the minimum error classification criterion [55], which is a discrim-
inant training criterion that minimizes an overall expected loss function by
using a gradient descent procedure, the GLVQ algorithm [81] as introduced
in Section 2.2 has been proposed. This algorithm can yield accurate and
stable classification results because the piecewise linear boundaries of the
receptive fields of all prototypes try to approximate the optimal Bayesian
boundaries. However, it is hard to specify a reasonable number of proto-
types to approximate complex boundaries, when borders between classes are
non-linear, especially when many substructures exist in each class.

The kernel GLVQ algorithm as introduced in [76] makes use of the same
cost function as the original algorithm but with the distance calculations done
in a higher dimensional feature space, the kernel space. For this purpose, the
existence of a non-linear function Φ that maps data points ξi from the input
space to a possibly high dimensional feature space is assumed. Without
need of the knowledge about the specific form of Φ, the dot product of two
points Φ (ξi) and Φ (ξl) can be implicitly computed by using the Mercer kernel
function kil [87] defined in the data space, characterized by the identity

kil := k (ξi, ξl) = Φ (ξi)
tΦ (ξl) (3.1)

for all data points ξi, ξl. Using this kernel function any computations in the
feature space can be efficiently converted into operations in the data space
[90].

Under this setting the prototypes cannot explicitly be expressed as vectors
in the feature space due to lack of knowledge about the feature space. Instead,
the feature space can be regarded as being spanned by all images Φ (ξi), thus
inducing a description of a prototype vector by some linear combination of
the feature space data samples wj =

∑

m γjmΦ (ξm). This induces a formula
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to compute the distance d (Φ (ξi) , wj) directly by means of kil

‖Φ (ξi)− wj‖2 =
∥

∥

∥

∥

∥

Φ (ξi)−
∑

m

γjmΦ (ξm)

∥

∥

∥

∥

∥

2

= kii − 2 ·
∑

m

γjmkim +
∑

s,t

γjsγjtkst

(3.2)

where the norm in the feature space is referred to by ‖·‖2.
This observation extends the classification rule. Given an input vector

ξi the updating rule in Equation 2.8 of the original GLVQ algorithm can be
generalized from the original data space into the feature space as follows

∆
∑

m

γ+mΦ (ξm) ∼− 2 · d (Φ (ξi) , w−)

(d (Φ (ξi) , w+) + d (Φ (ξi) , w−))
2

·
(

Φ (ξi)−
∑

m

γ+mΦ (ξm)

)

∆
∑

m

γ−mΦ (ξm) ∼
2 · d (Φ (ξi) , w+)

(d (Φ (ξi) , w+) + d (Φ (ξi) , w−))
2

·
(

Φ (ξi)−
∑

m

γ−mΦ (ξm)

)

(3.3)

where γ+m and γ−m correspond to the best matching prototype vector w+ of
Φ (ξi) with the same class label yi and the best matching prototype vector
w− of Φ (ξi) with a different class label yi. This update rule for the proto-
type vector in the feature space is equivalent to the following update of the
coefficients γ

∆γ+m ∼



































(

1− 2 · d (Φ (ξi) , w−)

(d (Φ (ξi) , w+) + d (Φ (ξi) , w−))
2

)

γ+m if ξm 6= ξi

(

1− 2 · d (Φ (ξi) , w−)

(d (Φ (ξi) , w+) + d (Φ (ξi) , w−))
2

)

γ+m

+
2 · d (Φ (ξi) , w−)

(d (Φ (ξi) , w+) + d (Φ (ξi) , w−))
2 if ξm = ξi

∆γ−m ∼



































(

1 +
2 · d (Φ (ξi) , w+)

(d (Φ (ξi) , w+) + d (Φ (ξi) , w−))
2

)

γ−m if ξm 6= ξi

(

1 +
2 · d (Φ (ξi) , w+)

(d (Φ (ξi) , w+) + d (Φ (ξi) , w−))
2

)

γ−m

− 2 · d (Φ (ξi) , w+)

(d (Φ (ξi) , w+) + d (Φ (ξi) , w−))
2 if ξm = ξi

(3.4)
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where the distance calculations can be based on the kernel function through
the Equation 3.2. While retaining the merits of the original algorithm, this
kernel GLVQ (KGLVQ) algorithm can more effectively cope with datasets
with non-linear boundaries between classes and non-vectorial data by means
of a sufficiently powerful kernel such as a structure kernel. It might be
advisable to restrict prototype positions towards convex combinations of the
data, which corresponds to the restriction that the coefficients γjm are non-
negative and sum up to 1.

3.2 Kernel RSLVQ

Similar to GLVQ, RSLVQ [88] in its original form as introduced in Section 2.3
is restricted to Euclidean vectors. Here, we derive a novel kernel extension
similar to kernel GLVQ which is suited for more general data structures.
As before, we assume the existence of a feature map Φ which corresponds
to a kernel k. Prototypes can be implicitly represented in terms of linear
combinations of data wj =

∑

m γjmΦ (ξm) with coefficients γjm. Again, if
appropriate, we can restrict the coefficients γjm to non-negative values which
sum up to 1. This corresponds to the assumption that prototypes are located
in the convex hull of data, which is a reasonable assumption provided the
LVQ scheme should yield representative prototypes.

Having made this assumption, it is possible to formalize the cost function
of kernel RSLVQ

L =
∑

i

log

∑

c(wj)=yi
P (j) p (Φ (ξi) |j)

∑

j P (j) p (Φ (ξi) |j)
(3.5)

which relies on the Gaussian probabilities, implicitly in terms of the Gram
matrix of data and coefficients of prototypes only. The Gaussian p (Φ (ξi) |j)
constitutes an exponential function on the distance, which can be computed
similarly to Equation 3.2 implicitly by means of the equality ‖Φ (ξi)− wj‖2 =
‖Φ (ξi)−

∑

m γjmΦ (ξm)‖2 = kii − 2 ·∑m γjmkim +
∑

s,t γjsγjtkst where the

distance in the feature space is referred to by ‖·‖2.
We assume equal bandwidth σ2 = σ2

j , for simplicity. More complex ad-
justment schemes based on the data have been investigated in [86], for ex-
ample, usually leading to only a minor increase of accuracy. Note that the
position of prototypes is not clear a priori, such that a prior adaptation of
the bandwidth according to the data density is not possible. Further, we
assume constant prior P (j) and mixture components induced by normalized
Gaussians.
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There are two ways to optimize the cost function of kernel RSLVQ as
we will see in Chapter 4 where we introduce a general framework for non-
vectorial LVQ schemes for proximity data. The cost function L can be opti-
mized directly with respect to the model parameters γjm by relying on some
standard numeric optimization procedure such as gradient techniques. As an
alternative, the cost function can be optimized with respect to the prototypes
wj, and the resulting update rules can be decomposed into contributions of
the coefficient vectors γjm, resulting in update rules for the latter. Note that
there is no guarantee that the gradient commutes with linear combinations
of parameters such that the two update rules yield numerically different be-
havior, albeit the same local and global minima are present. Further, it is
not clear a priori whether a decomposition of the update rule of wj in terms
of coefficients is possible. Whenever this is the case, kernelization is possible,
such as for kernel GLVQ and, as we will see, kernel RSLVQ. We will later see
that Euclideanity of the embedding space constitutes a crucial prerequisite
for this fact.

The RSLVQ updates in Equation 2.14 can be rephrased as follows

∆wj = ∆
∑

m

γjmΦ (ξm)

∼











































(Py (j|Φ (ξi))− P (j|Φ (ξi)))

·
(

Φ (ξi)−
∑

m

γjmΦ (ξm)

)

if c (wj) = yi

−P (j|Φ (ξi))

·
(

Φ (ξi)−
∑

m

γjmΦ (ξm)

)

if c (wj) 6= yi

(3.6)

which decomposes into the following adaptation rules for γjm

∆γjm ∼



























































− (Py (j|Φ (ξi))− P (j|Φ (ξi)))

·γjm if ξm 6= ξi, c (wj) = yi

(Py (j|Φ (ξi))− P (j|Φ (ξi)))

· (1− γjm) if ξm = ξi, c (wj) = yi

P (j|Φ (ξi))

·γjm if ξm 6= ξi, c (wj) 6= yi

−P (j|Φ (ξi))

· (1− γjm) if ξm = ξi, c (wj) 6= yi

(3.7)

with respectively P (j|Φ (ξi)) =
P (j) exp(f(Φ(ξi),wj ,σ2

j))
∑

j P (j) exp(f(Φ(ξi),wj ,σ2
j ))

and Py (j|Φ (ξi)) =
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P (j) exp(f(Φ(ξi),wj,σ
2
j ))

∑

c(wj)=yj
P (j) exp(f(Φ(ξi),wj,σ2

j ))
. Note that these probabilities depend on dis-

tances of data and prototypes in the feature space only, such that they can
be computed based on the given kernel. We refer to this learning scheme as
kernel RSLVQ (KRSLVQ).

This scheme performs exactly the same updates as RSLVQ in the fea-
ture space if prototypes are in the linear span of the data. Often, a further
restriction of the parameters to the convex hull takes place to ensure a repre-
sentative location of the prototypes. We will follow this principle by applying
a correction to guarantee non-negativity and normalization after every adap-
tation step to already boost the interpretability of the prototype coefficients
while training. As an alternative, barrier techniques could be used, or the
restrictions could be dropped entirely allowing more general linear combina-
tions as solutions.

The derivative of kernel RSLVQ in this form can be used whenever a
fixed kernel k is given together with the data, or the Gram matrix itself is
given, implicitly representing the data [73]. Note that it can easily be checked
whether a symmetric matrix constitutes a valid Gram matrix by referring to
the eigenvalues, which should be non-negative. In this case, the adaptation
rule as introduced above mimics the standard vectorial update of RSLVQ
in the feature space, but without the necessity of explicitly computing this
embedding.

Provided the similarity matrix of the data is not positive semidefinite,
meaning we do not face a valid kernel, the validity of kernel RSLVQ and
kernel GLVQ is not clear. We will deal with this issue in Chapter 4. Before,
we introduce the so-called pseudo-Euclidean embedding [73], which enables a
vectorial embedding of general similarity matrices and which forms the base
for alternative, so-called relational extensions of LVQ variants.

3.3 Pseudo-Euclidean embedding

Kernels constitute a specific way to compare given data, and they have the
benefit that an underlying embedding in a possibly high dimensional feature
space is present. Here we consider the more general setting that data are
characterized by pairwise similarities sij = s (ξi, ξj) such as pairwise inner
products for Euclidean data or dissimilarities dij = d (ξi, ξj) such as pairwise
squared Euclidean distances for Euclidean data only. As before, no explicit
vectors are given. In addition, it is not clear whether these values stem from a
kernel, hence whether a substantiating vectorial embedding exists. We refer
to the corresponding matrices as S and D, respectively, its dimensionality
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given by the number of observed objects. Since data are given by pairwise
relations only rather than vectors or a kernel, corresponding approaches are
often referred to as relational approaches. We always assume symmetry,
meaning S = St and D = Dt as well as zero diagonal in D, meaning dii = 0.
We do not assume Euclideanity, however. First we have a closer look at
the data and its properties, ending up with a vectorial embedding which
can be regarded as an extension of a kernel embedding, based on which a
generalization of LVQ techniques to such data is possible.

Relation of S and D

The first question is how these two representations S and D are related.
There exist classical methods to turn similarities to dissimilarities and vice
versa, see for example [73]. Given a similarity, a dissimilarity is obtained by
the transformation

X : S → D, dij = sii − 2sij + sjj (3.8)

while the converse is obtained by double centering

Ψ : D → S, sij = −1

2

(

dij −
1

N

∑

i

dij −
1

N

∑

j

dij +
1

N2

∑

i,j

dij

)

(3.9)

While it holds that the composition of these two transforms Ψ ◦ X = I,
I being the identity, the converse, X ◦ Ψ yields the identity if and only if
data are centered, since offsets of data which are characterized by dissimi-
larities are arbitrary and hence not reconstructable from D. That means, if
S is generated from vectors via some quadratic form, the vectors should be
centered in the origin. So essentially, for techniques which rely on dissimilar-
ities of data, we can treat similarities or dissimilarities as identical via these
transformations. The same holds for similarity based approaches only if data
are centered. However, even if this transformation is possible it is usually
costly, such that techniques which can directly be used for either similarities
or dissimilarities are preferred.

Vectorial embedding

A crucial step to extend LVQ variants to non-vectorial data consists in the
construction of an implicit embedding space, such as a kernel embedding
for kernel variants. In that case we assumed a non-linear mapping Φ of
data points to a high dimensional or infinite dimensional Hilbert space H
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equipped with the inner product 〈·, ·〉H. Opposed to that a Krein space is
an indefinite inner product space endowed with a Hilbertian topology. An
inner product space (K, 〈·, ·〉K) with an indefinite inner product 〈·, ·〉K is a
Krein space if two Hilbert spaces H+ and H− exist spanning K such that
∀g ∈ K, g = g+ + g− with g+ ∈ H+ and g− ∈ H− and ∀g, h ∈ K, 〈g, h〉K =
〈g+, h+〉H+

− 〈g−, h−〉H−
. A finite dimensional Krein space is a so-called

pseudo-Euclidean space. For general data, the key observation is that every
finite data set which is characterized by pairwise similarities or dissimilarities
can be embedded in such a pseudo-Euclidean vector space [36]. Essentially,
this is a finite dimensional real-vector space of dimensionality N , charac-
terized by the signature (p, q, N − p− q), which captures the degree up to
which elements are Euclidean. N refers to the number of given data points.
Distances along the first p dimensions are Euclidean whereas the next q
dimensions serve as correction factors to account for the non-Euclidean ele-
ments of the dissimilarity d. We follow the presentation of pseudo-Euclidean
spaces as derived in [73].

Assume a similarity matrix S or corresponding dissimilarity matrix D is
given. Since S is symmetric, a decomposition

S = QΛQt = Q |Λ|1/2 Ipq |Λ|1/2Qt (3.10)

with diagonal matrix Λ and orthonormal columns in the matrix Q can be
found. Ipq denotes the diagonal matrix with the first p elements 1, the next
q elements −1, and N − p − q elements 0. By means of this representation,
the number of positive and negative eigenvalues of S is made explicit as p
and q, respectively. We set ξi =

√

|Λii|qi, qi being column i of Q. Further,
we define the quadratic form

〈u, v〉pq = u1v1 + . . .+ upvp − up+1vp+1 − . . .− up+qvp+q (3.11)

Then we find

sij = 〈ξi, ξj〉p,q (3.12)

For a given dissimilarity matrix, we can consider the matrix Ψ (D) ob-
tained by double centering in Equation 3.9. This similarity matrix can be
treated in the same way as S leading to vectors ξi such that

dij = ‖ξi − ξj‖2p,q (3.13)

where the symmetric bilinear form is associated to the quadratic form in
Equation 3.11

‖u− v‖2pq = |u1 − v1|2 + . . .+ |up − vp|2

− |up+1 − vp+1|2 − . . .− |up+q − vp+q|2
(3.14)
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Thus, in both cases, vectors in a vector space can be found which induce
the similarity or dissimilarity, respectively. The quadratic form in this vec-
tor space, however, is not positive definite. Rather, the first p components
can be considered as standard Euclidean contribution whereas the next q
components serve as a correction. This vector space is referred to as pseudo-
Euclidean space with its characteristic signature (p, q, N − p− q).

Note that dissimilarities defined via ‖u− v‖2pq or similarities defined via
〈u, v〉pq can become negative, albeit, often, the negative part is not large in
practical applications. Similarities or dissimilarities stem from a Euclidean
vector space if and only if q = 0 holds. Exactly in this case, a kernel embed-
ding of the data exists, meaning the similarities are in fact a kernel.

Distance computation in LVQ for (dis-)similarities

The pseudo-Euclidean embedding allows us to transfer LVQ based classi-
fiers to similarity or dissimilarity data in a very generic way, which covers
relational and kernel GLVQ and RSLVQ as a special case. Essentially, we
embed data and prototypes in pseudo-Euclidean space and we instantiate the
squared ‘distance’ d (ξi, wj) used in LVQ algorithms by the pseudo-Euclidean
dissimilarity ‖ξi − wj‖2pq. Albeit this is no longer a ‘distance’ strictly speak-
ing, we will address this quantity as such in the following. Before introducing
relational GLVQ and relational RSLVQ, we elucidate how to compute dis-
tance terms as occur in the classification prescription and learning rules of
LVQ variants provided data are given as proximities only.

In principle, we could explicitly embed data and perform vectorial LVQ
variants in the embedding space. However, this has cubic complexity, so the
question is whether this can be avoided. As before, we restrict the position
of prototypes to the convex hull of the data. Thus, we assume

wj =
∑

l

γjlξl (3.15)

where γjl ≥ 0. Then, we can compute for a given data point ξi:

‖ξi − wj‖2pq = sii − 2
∑

l

γjlsil +
∑

ll′

γjlγjl′sll′ (3.16)

Hence we can compute distances of all data points and prototypes based on
pairwise data similarities only in quadratic time. Further, we do not need to
represent prototypes wj explicitly, rather, the coefficients γjl are sufficient.
Similarly, we find

‖ξi − wj‖2pq =
∑

l

γjldil − 1/2 ·
∑

ll′

γjlγjl′dll′ (3.17)
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provided
∑

l γjl = 1 [39].
This way, it is possible to compute an LVQ classifier based on pairwise

dissimilarities or similarities only, representing prototypes only implicitly in
terms of the coefficients γjl.

To provide out-of-sample extensions for a novel data point ξ we assume
that novel data points are represented in terms of their similarity or dissimi-
larity to the training points s (ξi, ξ) or d (ξi, ξ), respectively. Then, similarly,
we obtain the distance

‖ξ − wj‖2pq = s (ξ, ξ)− 2
∑

l

γjls (ξ, ξl) +
∑

ll′

γjlγjl′sll′ (3.18)

which is based on known similarities and the coefficients only. Since the first
term is a constant, we can simply drop it to compute the closest prototype
for ξ. As an alternative, we find

‖ξ − wj‖2pq =
∑

l

γjld (ξ, ξl)− 1/2 ·
∑

ll′

γjlγjl′dll′ (3.19)

based on known dissimilarities and the coefficients of the prototypes.
We have just derived formulas which compute distances in terms of the

similarities/dissimilarities only. Hence the result of the classification is en-
tirely independent of the chosen embedding of prototypes and any other em-
bedding which yields the same similarities/dissimilarities will give the same
result. Further, we can even ensure that the training process is independent
of the concrete embedding, provided that learning rules are expressed in a
similar way in terms of similarities or dissimilarities only. We now turn to
possible training algorithms for these classifiers.

3.4 Relational GLVQ

For GLVQ [81], a kernelized version has been proposed in Section 3.1. How-
ever, this refers to a kernel matrix only, meaning it requires Euclidean sim-
ilarities instead of general symmetric dissimilarities. Here we assume that
pairwise dissimilarities dil = d (ξi, ξl) are given which do not necessarily cor-
respond to a Euclidean, but pseudo-Euclidean embedding only, meaning we
assume symmetry dil = dli and zero diagonal dii = 0. Based on the pseudo-
Euclidean embedding, for training, we use the cost function in Equation 2.7
where we substitute the distance computations by Equation 3.17

∑

i

(Dγ+)i − 1
2
· γT

+Dγ+ − (Dγ−)i +
1
2
· γT

−Dγ−

(Dγ+)i − 1
2
· γT

+Dγ+ + (Dγ−)i − 1
2
· γT

−Dγ−
(3.20)
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where the closest correct and wrong prototype are referred to, indicated by
the superscript + and −, respectively. A stochastic gradient descent leads to
adaptation rules for the coefficients γ+ and γ−. Component l of these vectors
is adapted by the rules

∆γ+l ∼ − 2 · d (ξi, w−)

(d (ξi, w+) + d (ξi, w−))
2 · ∂

(

(Dγ+)i − 1
2
· γT

+Dγ+
)

∂γ+l

∆γ−l ∼
2 · d (ξi, w+)

(d (ξi, w+) + d (ξi, w−))
2 · ∂

(

(Dγ−)i − 1
2
· γT

−Dγ−
)

∂γ−l

(3.21)

where the later derivative can be computed easily as dil −
∑

l′ γ±ldll′. This
way, the relational GLVQ (RGLVQ) algorithm as introduced in [42, 43],
which adapts prototypes in a supervised manner similar to GLVQ is given
for general dissimilarity data, whereby prototypes are implicitly embedded
in pseudo-Euclidean space. Clusters are represented in terms of prototypes
for general dissimilarity data by the resulting classifier. These prototypes
can usually not be inspected directly, although they correspond to vector po-
sitions in pseudo-Euclidean space, because the pseudo-Euclidean embedding
is not computed directly.

3.5 Relational RSLVQ

In a similar way, RSLVQ can be extended to general dissimilarity data [44]:
Prototype wj is represented implicitly by means of the coefficient vectors
γj. Then, the equivalent characterization of distances can be used in the
RSVLQ cost function in Equation 2.13 leading to the costs of relational
RSLVQ (RRSLVQ)

∑

i

log

∑

c(wj)=y P (j) · constj · exp
(

(D · γj)i − 1
2
· γT

j Dγj/σ
2
j

)

∑

j P (j) · constj · exp
(

(D · γj)i − 1
2
· γT

j Dγj/σ2
j

) (3.22)

A stochastic gradient descent leads to the adaptation rule

∆γjl ∼







































(Py (j|ξi)− P (j|ξi))

·
∂
(

(Dγj)i − 1
2
· γT

j Dγj
)

∂γjl
if c (wj) = yi

−P (j|ξi)

·
∂
(

(Dγj)i − 1
2
· γT

j Dγj
)

∂γjl
if c (wj) 6= yi

(3.23)

27



As before, the probabilities are defined as P (j|ξi) =
P (j) exp(f(ξi,wj ,σ

2
j ))

∑
j P (j) exp(f(ξi,wj ,σ2

j ))

and Py (j|ξi) =
P (j) exp(f(ξi,wj ,σ2

j ))
∑

c(wj)=yj
P (j) exp(f(ξi,wj ,σ2

j ))
like for the Equation 2.14. Note

however, that these terms do not necessarily have a valid counterpart as
probabilities due to the fact that distances can become negative in pseudo-
Euclidean space.

3.6 Discussion

We have introduced four extensions of prototype-based methods to general
distances or kernels. Thereby, two of these approaches rely on a kerneliza-
tion and can be used for valid kernels only, two alternatives focus on general
dissimilarity data. Besides these approaches, there do exist further alter-
natives in the literature. Median approaches, as an example, restrict the
prototype positions to exemplars, such that distances are always well de-
fined. The challenge is to find efficient schemes which can locate suitable op-
tima in this discrete space of possible solutions, example optimization relying
on expectation-maximization schemes [70]. Alternatives further restrict the
considered similarity measures, and focus on differentiable kernels or general
divergences, for which smooth adaptation is possible by means of gradient
techniques [96, 95].

We will not consider these alternatives in the following. Rather, the main
focus is on two aspects, on the one hand what the main principle behind
these four approaches is and in how far they are similar / different and on
the other hand how these techniques can efficiently be used for applications.
We will elucidate these questions by introducing a general framework which
covers these approaches and points out their differences / similarities. Fur-
ther, we will deliver extensive comparisons of the techniques for a variety of
benchmarks. Afterwards, we will have a glimpse at questions which occur
when applying the techniques, namely their efficiency and interpretability.
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Chapter 4

General view

Chapter overview The goal of this chapter is to stratify the proposed ap-
proaches for non-vectorial LVQ within a general framework, and to elucidate
the differences of the different realizations. Further, the behavior of the tech-
niques in practical applications will be considered and compared to alternative
state-of-the-art techniques. Since the latter also includes SVMs, we discuss
techniques how general proximities can be transferred to a valid kernel. Parts
of this chapter rely on the publication [40].

As discussed previously, original LVQ can be used for standard Euclidean
vectors only, but kernel and relational variants of generalized LVQ or ro-
bust soft LVQ extend their scope towards data characterized by pairwise
proximities. We discussed in Chapter 3 techniques how to extend GLVQ
and RSLVQ, respectively, to deal with pairwise similarities or dissimilarities.
Now the question occurs about the differences of these techniques. We will
propose a general framework how the methods can be combined based on the
background of a pseudo-Euclidean embedding of the data. This does not only
cover the approaches kernel GLVQ, relational GLVQ, kernel RSLVQ, and re-
lational RSLVQ, but also unsupervised prototype based techniques which are
based on a cost function can be put into this framework including kernel and
relational neural gas and kernel and relational self-organizing maps based on
Heskes’ cost function.

The principled way how to train such LVQ classifiers is essentially inde-
pendent of the precise form of the cost function. For similarity or dissimilarity
data, there exist two different possibilities to arrive at valid training rules for
online learning, concrete instances of which are given by kernel variants or
relational variants. Here, we give a more fundamental view on these two
possibilities of the optimization of the cost function by stochastic gradient
techniques and their mathematical background.
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4.1 Optimization concerning the coefficients

The cost function of both, GLVQ in Equation 2.7 and RSLVQ in Equa-
tion 2.13 has the form f (D (ξ, w)) with D (ξ, w) = (d (ξi, wj))i=1,...,N,j=1,...,m

as already stated in Section 2.4. Provided prototypes are given by lin-
ear combinations of data in the underlying pseudo-Euclidean embedding
wj =

∑

γjΦ(xj), these costs become

f





(

sii − 2
∑

l

γjlsil +
∑

ll′

γjlγjl′sll′

)

i=1,...,N,j=1,...,m



 (4.1)

for similarities or

f





(

∑

l

γjldil − 1/2 ·
∑

ll′

γjlγjl′dll′

)

i=1,...,N,j=1,...,m



 (4.2)

for dissimilarities based on Equation 3.16 and Equation 3.17 respectively. We
can smoothly vary prototypes wj in pseudo-Euclidean space by adapting the
coefficients γjl. The latter can be adapted by a standard gradient technique
as proposed in relational RSLVQ [44] and relational GLVQ [42, 43]. In both
cases, a gradient method with respect to γjl is driven by the term

∂f

∂γjl
=
∑

i

∂f (D (ξ, w))

∂d (ξi, wj)
·
(

−2sil + 2
∑

l′

γjlsll′

)

(4.3)

if similarities are considered or by the term

∂f

∂γjl
=
∑

i

∂f (D (ξ, w))

∂d (ξi, wj)
·
(

dil −
∑

l′

γjldll′

)

(4.4)

for dissimilarities, providing adaptation rules for both cost functions by
means of a gradient descent or ascent, or corresponding single summands
only in case of a stochastic gradient technique. In particular, in these rules,
only pairwise similarities or dissimilarities of data are required, meaning it is
not necessary to compute the pseudo-Euclidean embedding.

As an example the corresponding adaptation rule of RSLVQ in Equa-
tion 2.14 for dissimilarities, which we refer to as relational RSLVQ (RRSLVQ)
as introduced in Section 3.5, yields by optimization of the cost function with
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respect to γjl the update rule, given a data point ξi

∆γjl ∼























(Py (j|ξi)− P (j|ξi)) ·
(

dil −
∑

l′

γjldll′

)

if c (wj) = yi

−P (j|ξi) ·
(

dil −
∑

l′

γjldll′

)

if c (wj) 6= yi

(4.5)

where the probabilities Py (j|ξi) and P (j|ξi) are computed as before based
on the dissimilarities d (ξi, wj) which are expressed via dij.

Analogously, the corresponding adaptation rule of GLVQ in Equation 2.8
for dissimilarities, which we refer to as relational GLVQ (RGLVQ) as intro-
duced in Section 3.4, yields the update rule, given a data point ξi

∆γ+l ∼ − 2 · d (ξi, w−)

(d (ξi, w+) + d (ξi, w−))
2 ·
(

dil −
∑

l′

γ+ldll′

)

∆γ−l ∼
2 · d (ξi, w+)

(d (ξi, w+) + d (ξi, w−))
2 ·
(

dil −
∑

l′

γ−ldll′

) (4.6)

Note that the parameters γjl are not yet normalized. This can be achieved
in different ways, for example by explicit normalization after every adapta-
tion step, or by the inclusion of corresponding barrier functions in the cost
function, which yields additional regularizing terms of the adaptation. We
will use an explicit normalization in the following, meaning after every adap-
tation step, we divide the vector of coefficients by its component-wise sum.

This principle gives an explanation of relational LVQ, and it opens a way
to directly use LVQ variants provided similarities rather than dissimilarities
are given, since the gradient scheme in Equation 4.3 can be used alternatively.

4.2 Optimization concerning the prototypes

Kernel variants follow a different principle as compared to these relational
variants. We consider the more general case of a similarity or dissimilarity
matrix, for the moment. The gradient of the cost function with respect to
the prototype wj yields

∑

i

∂f (D (ξ, w))

∂d (ξi, wj)
· ∂d (ξi, wj)

∂wj
(4.7)

which is a computation which refers to the embedding space provided by a
pseudo-Euclidean embedding. The dissimilarity d is defined as d (ξi, wj) =
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(ξ − wj)
t · Ipq · (ξ − wj) in pseudo-Euclidean space, where Ipq is the diago-

nal matrix with p entries 1 and q entries −1 as before. Thus, we obtain
∂d (ξi, wj) /∂wj = −2 · Ipq (ξi − wj). This yields the stochastic gradient up-
date, given one data point ξi

∆wj ∼ −
∂f
(

(d (ξi, wj))i,j

)

∂d (ξi, wj)
· Ipq

(

ξi −
∑

l

γjlξl

)

(4.8)

The idea of the learning rule as proposed in kernel RSLVQ [51] and kernel
GLVQ [76], respectively, is to decompose this update into the contributions
of the coefficients γjl, such that updates can be computed without an explicit
reference to the embedding space. This is possible if and only if the update
rule decomposes into a sum of the form

∑

l ∆γjlξl. In this case, an update of
the coefficients which is proportional to the terms ∆γjl of this decomposition
mimics the effect of a stochastic gradient for the prototype wj, and updates
can be performed implicitly by updates of the coefficients only.

This decomposition, however, is usually not possible. While most com-
ponents of the update in Equation 4.8 can be decomposed into contributions
of the coefficients since they do not refer to components of the vector ξi, the
ingredient Ipq refers to a vectorial operation which depends on the pseudo-
Euclidean embedding. Thus, it is in general not possible to turn this adapta-
tion rule into a rule which can be done implicitly without explicit reference
to the pseudo-Euclidean embedding.

In one very relevant special case, however, a decomposition can be found.
Assume data are Euclidean, meaning q = 0, in other words a valid kernel
is present. In this case, we can assume without loss of generality that p
equals the dimensionality of the vectors ξi, since components beyond p do
not contribute to the distance measure in the embedding. Thus, the learning
rule in Equation 4.8 becomes

∆wj ∼
∂f
(

(d (ξi, wj))i,j

)

∂d (ξi, wj)
·
(

∑

l

(γjl − δil) ξl

)

(4.9)

with Kronecker symbol δil. Hence we obtain the update

∆γjl ∼































∂f
(

(d (ξi, wj))i,j

)

∂d (ξi, wj)
· γjl if l 6= i

∂f
(

(d (ξi, wj))i,j

)

∂d (ξi, wj)
· (γjl − 1) if l = i

(4.10)
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As an example the corresponding adaptation rule of RSLVQ in Equa-
tion 2.14 for Gram matrices, which we refer to as kernel RSLVQ (KRSLVQ)
as introduced in Section 3.2, yields by optimization of the cost function with
respect to wj the update rule, given a data point ξi

∆γjm ∼



























































− (Py (j|Φ (ξi))− P (j|Φ (ξi)))

·γjm if ξm 6= ξi, c (wj) = yi

(Py (j|Φ (ξi))− P (j|Φ (ξi)))

· (1− γjm) if ξm = ξi, c (wj) = yi

P (j|Φ (ξi))

·γjm if ξm 6= ξi, c (wj) 6= yi

−P (j|Φ (ξi))

· (1− γjm) if ξm = ξi, c (wj) 6= yi

(4.11)

where the probabilities Py (j|ξi) and P (j|ξi) are computed as before based
on the kernel k (ξi, wj) which is expressed via kij.

Analogously, the corresponding adaptation rule of GLVQ in Equation 2.8
for Gram matrices, which we refer to as kernel GLVQ (KGLVQ) as introduced
in Section 3.1, yields the update rule, given a data point ξi

∆γ+m ∼



































(

1− 2 · d (Φ (ξi) , w−)

(d (Φ (ξi) , w+) + d (Φ (ξi) , w−))
2

)

γ+m if ξm 6= ξi

(

1− 2 · d (Φ (ξi) , w−)

(d (Φ (ξi) , w+) + d (Φ (ξi) , w−))
2

)

γ+m

+
2 · d (Φ (ξi) , w−)

(d (Φ (ξi) , w+) + d (Φ (ξi) , w−))
2 if ξm = ξi

∆γ−m ∼



































(

1 +
2 · d (Φ (ξi) , w+)

(d (Φ (ξi) , w+) + d (Φ (ξi) , w−))
2

)

γ−m if ξm 6= ξi

(

1 +
2 · d (Φ (ξi) , w+)

(d (Φ (ξi) , w+) + d (Φ (ξi) , w−))
2

)

γ−m

− 2 · d (Φ (ξi) , w+)

(d (Φ (ξi) , w+) + d (Φ (ξi) , w−))
2 if ξm = ξi

(4.12)

Note that this update constitutes a gradient technique only for Euclidean
data, and it exactly resembles the underlying vectorial counterpart. One can
nevertheless apply this update rule also for non-Euclidean settings, where the
update step often at least improves the model since the positive parts of the
pseudo-Euclidean space are usually dominant. However, it is not guaranteed
that a valid gradient technique is present in this case. Note that, again,
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normalization of the coefficients can take place in different ways, via direct
normalization, which we will use in the following, or barrier functions, for
example.

4.3 Characteristics of the methods

In Figure 4.1, we put these specific approaches into a general framework
which characterizes different fundamental possibilities how to extend non-
vectorial LVQ classifiers towards similarities or dissimilarities based on the
background of a pseudo-Euclidean embedding of the data. The main char-
acteristics are given by the choice of the cost function, the way in which
optimization takes place, and the interface to the data in terms of similari-
ties or dissimilarities.

The most obvious difference of these two ways to update the coefficients
consists in the fact that updates with respect to the coefficients follow a gra-
dient technique whereas updates with respect to the weights, if done implic-
itly without explicit reference to the embedding, constitute a valid gradient
method only if data are Euclidean.

But also in the Euclidean case where both updates follow a gradient tech-
nique, differences of the two update rules are observed. Prototypes depend
linearly on the coefficients. Hence every local optimum of the cost function
with respect to the weights corresponds to a local optimum with respect to
the coefficients and vice versa. As a consequence, the solutions which can be
found by these two update rules coincide as regards the entire set of possible
solutions provided the gradient techniques are designed in such a way that
local optima are reached.

However, the single update steps of the two techniques are not identical,
since taking the gradient does not commute with linear operations. Thus, it
is possible that different local optima are reached in a single run even if the
methods are started from the same initial condition.

Other differences of the techniques rely on the choice of the cost function,
where besides GLVQ and RSLVQ, also unsupervised counterparts could be
used. Further, the techniques differ in their data access which can take place
via similarities or dissimilarities. In summary, when extending LVQ schemes
to general similarities or dissimilarities, we have the choices as described in
Table 4.1. Interestingly, quite a few further techniques could be designed,
corresponding to alternative combinations of the basic constituents, for exam-
ple relational LVQ variants which work on similarity rather than dissimilarity
data.
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generalized LVQrobust soft LVQ

Cost (Φ (ξi) , wj)

Cost (Φ (ξi) ,
∑

m γjmΦ (ξm))6	∆wj = . . .

ke
rn

el

relation
al

∆γjm

‖Φ (ξi)− wj‖2

sii − 2
∑

l γjlsil +
∑

ll′ γjlγjl′sll′
∑

l γjldil − 1/2 ·∑ll′ γjlγjl′dll′

wj =
∑

m γjmΦ (ξm)∂Cost/∂wj

∂Cost/∂γjm
wj =

∑

m γjmΦ (ξm)
iff kernel

dissimilaritiessimilarities

Figure 4.1: General framework for non-vectorial LVQ schemes for proximity
data.
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data representation training technique
dissimilarities similarities gradient concerning

or kernel γjl wj

kernel GLVQ x x
kernel RSLVQ x x
relational GLVQ x x
relational RSLVQ x x

Table 4.1: Different possible choices when applying LVQ schemes for (dis-)-
similarity data.

4.4 Transferability of the mathematical back-

ground

We have already observed that one of the adaptation rules as proposed in
the literature constitutes a valid gradient technique if and only if data are
Euclidean. There are more severe reasons why it constitutes a desired prop-
erty of the data to be Euclidean if referring to the theoretical motivation of
the method in case of RSLVQ.

This algorithm is derived as a likelihood ratio optimization technique.
Since distances in pseudo-Euclidean space can become negative, a Gaus-
sian distribution based on these distances does no longer constitute a valid
probability distribution. Thus, Euclidean data are required to preserve the
mathematical motivation of RSLVQ schemes as a likelihood optimization for
(dis-)similarities.

GLVQ, in contrast, relies on the idea to optimize the hypothesis margin,
which is the distance that the classifier can travel without changing the way
it labels any of the sample points. In comparison the distance between an
instance and the decision boundary induced by the classification rule is the
sample margin, which is maximized by the support vector machine (SVM).
Generalization bounds which depend on this hypothesis margin can be found
which are based on the so-called Rademacher complexity of the function class
induced by prototype based methods. Essentially, wide parts of the argumen-
tation as given in [84] can be directly transferred to the pseudo-Euclidean
setting, although the situation might be more difficult if the rank of the
space is not limited and Krein spaces come into the play. The article [84]
considers the more general setting where, in addition to adaptive prototypes,
the quadratic form can be learned. Here, we consider the more simple func-
tion associated to GLVQ networks. Thereby, we restrict to the classification
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problems incorporating two classes 0 and 1 only, similar to [84].
In our case, the classification is based on the real-valued function

ξ 7→
(

min
wi : c(wi)=0

‖wi − ξ‖2pq − min
wi : c(wi)=1

‖wi − ξ‖2pq
)

(4.13)

the sign of which determines the output class, and the size of which deter-
mines the hypothesis margin. This function class is equivalent to the form

ξ 7→
(

min
wi : c(wi)=0

(

‖wi‖2pq − 2〈wi, ξ〉pq
)

− min
wi : c(wi)=1

(

‖wi‖2pq − 2〈wi, ξ〉pq
)

) (4.14)

It is necessary to estimate the so-called Rademacher complexity of this func-
tion class relying on techniques as introduced for example in [5], to bound
the generalization error. Since we do not refer to specifics of the definition of
the Rademacher complexity, rather we refer to well-known structural results
only, we do not introduce a precise definition at this place. Essentially, the
complexity measures the amount of surprise in LVQ networks by taking the
worst case correlation to random vectors.

As in [84] a structural decomposition can take place. This function can
be decomposed into the linear combination of a composition of a Lipschitz-
continuous function (min) and the function ‖wi‖2pq − 2〈wi, ξ〉pq. We can re-

alize the bias ‖wi‖2pq as additional weight if we enlarge every input vector
by a constant component 1. Further, the sign of the components of wi can
be arbitrary, thus the signs in this bilinear form are not relevant and can be
simulated by appropriate weights. Thus, we need to consider a linear func-
tion in the standard Euclidean vector space. As shown in [5] its Rademacher
complexity can be bounded by a term which depends on the maximum Eu-
clidean length of ξ and wi and the square root of the number of samples for
the evaluation of Rademacher complexity. The Euclidean lengths ξ and wi

can be limited in terms of the a priorly given similarities or dissimilarities.
The vectorial representation of ξ corresponds to a column of Q |Λ|1/2 with
unitary Q and diagonal matrix of eigenvalues Λ. Thus, the Euclidean length
of this vector is limited in terms of the largest eigenvalue of the similarity
matrix S or Ψ (D). Since wi is described as a convex combination, the same
holds for wi.

As a consequence, the argumentation of [84] can be transferred immedi-
ately to the given setting, meaning large margin generalization bounds hold
for GLVQ networks also in the pseudo-Euclidean setting. Since only the
form of the classifier is relevant for this argumentation, but not the training
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technique itself, the same argumentation also holds for a classifier obtained
using the RSLVQ cost function in pseudo-Euclidean space, and it holds for
both training schemes as introduced above.

4.5 Techniques to enforce that data are Eu-

clidean

Albeit large margin generalization bounds transfer to the pseudo-Euclidean
setting, it might be beneficial for the training prescription to transform data
to obtain a purely Euclidean similarity or dissimilarity.

There exist two prominent approaches to turn a given similarity matrix
into a valid Gram matrix, see for example [17, 73]:

• clip: set all negative eigenvalues of the matrix Λ associated to the sim-
ilarities to 0, meaning use only the positive dimensions of the pseudo-
Euclidean embedding. The corresponding matrix is referred to as Λclip.
This preprocessing corresponds to the linear transformation QΛclipQ

t

of the data, where Q stems from the pseudo-Euclidean embedding, see
Equation 3.10. The assumption underlying this transformation is that
negative eigenvalues are caused by noise in the data, and the given
matrix should be substituted by the nearest positive semidefinite one.

• flip: take |Λ| instead of the matrix Λ, meaning use the standard Eu-
clidean norm in pseudo-Euclidean space. This corresponds to the linear
transform Q |Λ|Qt of the similarity matrix. The motivation behind this
procedure is the assumption that the negative directions contain rele-
vant information. Hence the simple Euclidean norm is used instead of
the pseudo-Euclidean one.

Since both corrections correspond to linear transformations, their out-of-
sample extension is immediate. It has already been tested in the context of
SVM in [17] in how fare these preprocessing steps yield reasonable results,
in some cases greatly enhancing the performance.

4.6 Experiments

We test the various LVQ variants from Chapter 3 in a couple of benchmark
data sets. Relational RSLVQ is trained using dissimilarities and gradients
with respect to γjl and kernel RSLVQ is trained based on similarities and
gradients with respect to wj . In the literature, the corresponding settings for
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GLVQ can be found [76, 42]. We compare the methods to the SVM and a
k-nearest neighbor classifier (k-NN) on a variety of benchmarks as introduced
in [17].

Results for SVM and k-NN are recomputed using the setting as described
in [17], leading to the same or better results. Thereby, data are preprocessed
using clip or flip to guarantee positive definiteness for SVM, if necessary. The
latter is used with the RBF kernel and optimized meta-parameters in [17].
For multi-class classification, the one versus one scheme has been used. For
k-NN k ∈ {1, 3, 5} is chosen. In comparison, we train kernel and relational
GLVQ and RSLVQ networks using the preprocessing steps clip and flip in
comparison to a direct application of the methods for the original data.

Results of a 20-fold cross-validation with the same partitioning as pro-
posed in [17] are reported. Note that a decomposition of a data set character-
ized by a similarity matrix into training and test set corresponds to a selection
of a set of indices I. The sub-matrix formed by (kij)i,j∈I characterizes the
training set and distances of prototypes to test points for a classification of
the test set can be computed based on (kij)i∈I,j 6∈I .

For training, prototypes are initialized by means of normalized random
coefficients γjm. Class labels are taken into account, setting the coefficient
m to zero if the label of point ξm does not coincide with the prototype label
c (wj), which among others was used in [76] in order to stabilize the kernel
GLVQ algorithm. Meta-parameters are optimized on the data sets using
cross-validation. Further, while training, we guarantee that prototypes are
contained in the convex hull of the data by setting negative coefficients to
zero after every adaptation step and adding a normalization of the vector γi
to 1 after every adaptation step.

Meta-parameters specifically for kernel RSLVQ such as the learning rate
have only a minor influence on the final result, but on the speed of conver-
gence only. As already discussed in [88], the bandwidth of the model for
the RSLVQ variants influences the result and the prototype location, and
strategies to also adapt the bandwidth in parallel to the prototype locations
have been proposed in [86, 89], for example. Since the bandwidth should be
adapted on a slower scale than the prototype positions, very time consuming
algorithms result this way, because of which we simply optimize σ by cross-
validation in the range between 0.05 and 1.0 with a step size of 0.05. The
variance between the optimum parameters was mostly in a range of 10−5.

Benchmark data sets

We compare the presented techniques with different methods on a variety of
benchmarks. The data sets represent a variety of similarity matrices which
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are, in general, non-Euclidean. It is standard to symmetrize the matrices
by taking the average of the matrix and its transposed. Further, the substi-
tution of a given similarity by its normalized variant constitutes a standard
preprocessing step, arriving at diagonal entries 1. Even in symmetrized and
normalized form, the matrices do not necessarily provide a valid kernel. There
exist two prominent approaches to turn a given similarity matrix into a valid
Gram matrix as discussed in Section 4.5.

We also report the signatures of the data whereby a cutoff at 0.0001 is
made to account for numerical errors of the eigenvalue solver. Additionally,
the number of used prototypes is reported, which is chosen as a small multiple
of the number of classes. We use a fixed number of prototypes only, taking
the values from previous experimental settings [51], noticing that the exact
number of prototypes is not severely influencing the result since no overfitting
takes place.

Six benchmark data sets were used as introduced in [17]:

• Amazon47 : This data set consists of 204 books written by 47 different
authors. The similarity is determined as the percentage of customers
who purchase book j after looking at book i. This matrix is fairly sparse
and mildly non-Euclidean with signature (192, 1, 11). Class labeling of
a book is given by the author. The number of prototypes which is
chosen in all LVQ settings is 94.

• Aural Sonar : This data set consists of 100 wide band sonar signals
corresponding to two classes, observations of interest versus clutter.
Similarities are determined based on human perception, averaging over
2 random probands for each signal pair. The signature is (61, 38, 1).
Class labeling is given by the two classes target of interest versus clutter.
The number of prototypes chosen in LVQ scenarios is 10.

• Face Rec: 945 images of faces of 139 different persons are recorded.
Images are compared using the cosine-distance of integral invariant
signatures based on surface curves of the 3D faces. The signature is
given by (45, 0, 900). Labeling corresponds to the 139 different persons.
The number of prototypes is 139.

• Patrol : 241 samples representing persons in seven different patrol units
are contained in this data set. Similarities are based on responses
of persons in the units about other members of their groups. The
signature is (54, 66, 121). Class labeling corresponds to the eight patrol
units. The number of prototypes is 24.
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• Protein: 213 proteins are compared based on evolutionary distances
comprising four different classes according to different globin families.
The signature is (169, 38, 6). Labeling is given by four classes corre-
sponding to globin families. The number of prototypes is 20.

• Voting : Voting contains 435 samples with categorical data compared
by means of the value difference metric. The signature is (16, 1, 418).
Class labeling into two classes is present. The number of prototypes is
20.

Note that the rank of the Gram matrix is given by the number of positive
eigenvalues if clip is used as preprocessing, and the sum of non-negative
eigenvalues if the original data or flip are used. The eigenvalue spectra of
the data sets are depicted in Figure 4.2. As can be seen from the graphs,
the data sets FaceRec and Voting are almost Euclidean, while all others
contain a considerable percentage of negative eigenvalues. Interestingly, the
intrinsic dimensionality as mirrored by the number of eigenvalues which have
a relevant absolute value is high for Amazon47 and Patrol.

Results

The results obtained by the kernelized and relationalized versions of GLVQ
and RSLVQ, which were introduced in Chapter 3, in comparison to k-NN
and SVM are reported in Table 4.2. Due to its almost Euclidean nature,
preprocessing by clip and flip has hardly an effect for FaceRec and Voting.
For the data sets Patrol and Protein, flip and clip change the similarity
severely, as can be spotted by the change of the k-NN error. Albeit all other
data sets also display a considerable non-Euclideanity as can be seen by the
spectrum, flip or clip do have a minor effect on these data only, resulting in
up to 3% change of the classification accuracy. Note that it depends very
much on the data set and the used technique, which preprocessing yields
best results. In general, SVM can show instabilities for non-positive definite
data because some numeric schemes used for parameter optimization in SVM
built on positive definite similarity matrices. Unless data are Euclidean,
where preprocessing using clip or flip has no effect, it is not clear a priori
which technique is best, and it can happen that the best preprocessing also
depends on the different learning algorithms as can be seen for the Patrol
data.

Interestingly, for all data sets, one or several of the kernel or relational
LVQ techniques display a quality which is at least competitive to if not bet-
ter than k-NN and SVM on the data set or an appropriate preprocessing.
There is an interesting outlier when comparing the different LVQ techniques.
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Figure 4.2: Characteristic spectrum of the considered similarities. The
data sets differ as concerns negative eigenvalues corresponding to non-
Euclideanity, and the number of eigenvalues which are different from zero,
corresponding to a high dimensional feature space.
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Kernel GLVQ yields more than 50% error for the FaceRec data, correspond-
ing possibly to a local optimum in this case with large basin of attraction.
Overall, both, relational GLVQ and kernel RSLVQ yield constantly good
classification accuracy.

Interestingly, there are big differences of the different LVQ variants, point-
ing out the relevance of the different modeling schemes. In general, kernel
variants seem to work better for RSLVQ than relational counterparts, pos-
sibly due to the unclear interpretation of the notion of probability for the
latter. Differences of kernel and relational variants indicate that different
basins of attraction are found also in case of GLVQ. Moreover, the different
cost functions yield different results, which is a known effect from its vecto-
rial counterpart already [85]. It is hard to determine which method is best
over all data sets. Notably, kernel RSLVQ provides best results for half of
the data sets, and SVM does not provide the best result for any data set.

Note that the computational complexity of LVQ for similarities or dis-
similarities increases as compared to vectorial LVQ schemes. The space com-
plexity for prototype storage becomes O (N), N being the number of data
points, assuming a fixed number of prototypes m. The time complexity is
dominated by a matrix multiplication in every adaptation step to compute
the dissimilarity which is of order O (N2). For SVM, depending on the im-
plementation, space and time complexity are similar, the number of support
vectors being usually a fraction of the training set, and training having worst
case complexity O (N3) unless speedup for example via sequential minimal
optimization or core techniques are used.

Usually the storage of the distance matrix constitutes the main bottleneck
concerning space – albeit the final classifier requires linear space only, the
matrix required to represent the training data is quadratic. We will, however,
discuss one speedup technology in Chapter 5, which severely reduces time and
memory complexity of the technique.

4.7 Discussion

In summary, when extending LVQ schemes to general similarities or dissim-
ilarities, we have the choices as described in Table 4.1. These yield to eight
different possible combinations. In addition, we can further preprocess data
into Euclidean form using for example clip or flip. Additional preprocessing
steps have been summarized in [17], for example. Interestingly, the results
of these different techniques can differ severely on given data sets, and the
techniques yield state-of-the-art results in a variety of benchmarks compa-
rable to SVM but easing the burden of preprocessing which is necessary for
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k-NN SVM KGLVQ RGLVQ KRSLVQ RRSLVQ

Amazon47 28.54 (0.83) 21.46 (5.74) 22.80 (5.38) 18.17 (5.39) 15.37 (0.36) 22.44 (5.16)
clip 28.78 (0.74) 21.22 (5.49) 21.95 (5.65) 23.78 (7.20) 15.37 (0.41) 25.98 (7.48)
flip 28.90 (0.68) 22.07 (6.25) 23.17 (6.10) 20.85 (4.58) 16.34 (0.42) 22.80 (4.96)
Aural Sonar 14.75 (0.49) 12.25 (7.16) 13.00 (7.70) 13.50 (5.87) 11.50 (0.37) 13.00 (7.50)
clip 17.00 (0.51) 12.00 (5.94) 14.50 (8.30) 13.00 (6.96) 11.25 (0.39) 13.25 (7.12)
flip 17.00 (0.93) 12.25 (6.97) 12.30 (5.50) 13.00 (6.96) 11.75 (0.35) 13.50 (7.63)
Face Rec 7.46 (0.04) 3.73 (1.32) 3.35 (1.29) 3.47 (1.33) 3.78 (0.02) 7.50 (1.49)
clip 7.35 (0.04) 3.84 (1.16) 3.70 (1.35) 3.81 (1.67) 3.84 (0.02) 7.08 (1.62)
flip 7.78 (0.04) 3.89 (1.19) 3.63 (1.16) 3.78 (1.48) 3.60 (0.02) 7.67 (2.21)
Patrol 22.71 (0.33) 15.52 (4.02) 11.67 (4.60) 18.02 (4.65) 17.50 (0.25) 17.71 (4.24)
clip 9.90 (0.16) 13.85 (4.39) 8.96 (3.90) 17.29 (3.45) 17.40 (0.29) 21.77 (7.10)
flip 10.31 (0.16) 12.92 (5.09) 9.74 (4.90) 18.23 (5.10) 19.48 (0.34) 20.94 (4.51)
Protein 51.28 (0.77) 30.93 (6.79) 27.79 (7.60) 28.72 (5.24) 26.98 (0.37) 5.58 (3.49)
clip 25.00 (0.74) 12.56 (5.46) 1.63 (2.10) 12.79 (5.36) 4.88 (0.17) 11.51 (5.03)
flip 7.79 (0.18) 1.98 (2.85) 12.33 (6.10) 3.49 (3.42) 1.40 (0.05) 4.42 (3.77)
Voting 5.00 (0.01) 5.06 (1.84) 6.55 (1.90) 9.14 (2.10) 5.46 (0.04) 11.26 (2.23)
clip 4.83 (0.02) 5.00 (1.84) 6.55 (1.90) 9.37 (2.02) 5.34 (0.04) 11.32 (2.31)
flip 4.66 (0.02) 4.89 (1.78) 6.49 (1.90) 9.14 (2.22) 5.34 (0.03) 11.26 (2.43)

Table 4.2: The mean classification error of different classifiers for benchmark data are reported. Standard deviations
are given in parenthesis. The best results are shown in boldface.

44



SVM for invalid kernels.
The design decisions to arrive at LVQ for (dis-)similarities differ in the

following sense, as explained above:

• The cost functions of RSLVQ in Equation 2.13 and GLVQ in Equa-
tion 2.7 obey different principles, relevant differences being observable
already in the Euclidean setting [85]. The motivation of RSLVQ as
likelihood transfers to the Euclidean setting only, while large margin
bounds of GLVQ can be transferred to the pseudo-Euclidean case.

• When turning dissimilarities into similarities and backwards, the iden-
tity is reached. When starting at similarities, however, data are cen-
tered using this transformation.

• Training can take place as gradient with respect to the parameters
γjl or the prototypes wj. The latter constitutes a valid gradient only
if data are Euclidean, while the former follows a gradient also in the
pseudo-Euclidean setting. In the Euclidean setting, the same set of
local optima is valid for both methods, but the numerical update steps
can be different resulting in different local optima in single runs.

A common feature both the kernel and relational extensions share, is the
squared training complexity as opposed to cubic complexity for an explicit
embedding, which is encountered due to the dependency of the method on
the full Gram matrix or a matrix of dissimilarities respectively in contrast
to vectorial LVQ, which scales linearly with the number of data points. One
approach which is taken in this context and will be discussed in Chapter 5
is the Nyström approximation, which can improve the complexity to linear
time [50].

In the following, we will focus on only one approach, kernel robust soft
LVQ as proposed in Section 3.2, since it offers an intuitive representation of
data in terms of a mixture of labeled Gaussians, and it provides excellent
overall results as compared to the investigated alternatives.
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Chapter 5

Efficiency

Chapter overview Within this chapter, we will deal with the Nyström
technique which offers a low rank approximation of a given proximity matrix
based on few landmarks. By integrating this method into kernel RSLVQ or,
alternatively, kernel GLVQ or relational approaches, a linear time method
results. We will introduce this technique and demonstrate how it can be in-
tegrated into kernel RSLVQ. Further, we elucidate in which cases this ap-
proximation is successful, and we develop a quick check which can test the
suitability of this approximation prior to training. Parts of this chapter rely
on the publications [49, 50].

In Chapter 4, we have introduced relational and kernel extensions of
GLVQ and RSLVQ, making it suitable for complex data sets described in
terms of pairwise relations only. In the following, we will exemplarily ad-
dress kernel RSLVQ which extends the applicability of vectorial LVQ to data
which are described by a general Gram matrix as mentioned in Section 3.2,
due to its superior performance in benchmark data. While leading to state
of the art results, all these relational or kernel extensions have the drawback
that quadratic training complexity is encountered due to the dependency of
the method on the full Gram matrix or a matrix of dissimilarities respectively
in contrast to vectorial LVQ. Even more severely, these techniques require
the storage and computation of the full proximity matrix, which is infeasible
for large data sets. We investigate the possibility of a speed-up of training
by means of a low rank approximation of the Gram matrix. Thereby, we rely
on insights from kernel techniques, where a low rank approximation dubbed
Nyström method has been integrated in the approach [97]. It turns out that
this efficient Nyström approximation can also be integrated into LVQ vari-
ants for proximity data, and it yields excellent results if data are intrinsically
low dimensional. We show that this latter property can efficiently be checked
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by sampling the variance of the approximation prior to training. We demon-
strate the behavior of these approximations in a couple of benchmarks which
were introduced in Section 4.6. Now, we introduce the Nyström technique
and its motivation, first. Then we show how it can efficiently be embedded
into the LVQ scheme which was introduced in Chapter 3. Finally, we propose
a novel quick check based on sampling which can estimate the suitability of
the Nyström technique prior to training.

5.1 Nyström approximation of the Gram ma-

trix

The Nyström technique has been presented in [97] in the context of support
vector machines. It allows to approximate a Gram matrix by a low rank
approximation [34]. Interestingly, as demonstrated in the latter work [34],
the use of the Nyström approximation is not restricted to kernel matrices,
meaning positive semidefinite forms, rather it can also be used for more
general symmetric matrices which are not necessarily valid Gram matrices.
Here, for simplicity, we only consider a kernel as one example. Then this
approximation can be integrated into the learning rules in such a way that
updates with linear complexity result.We shortly review the main idea behind
this approach in the following.

A valid kernel k (ξj, ξl) can be expanded by orthonormal eigenfunctions
φi and non-negative eigenvalues λi in the form

k (ξj, ξl) =
∞
∑

i=1

λiφi (ξj)φi (ξl) (5.1)

The eigenfunctions and eigenvalues of a kernel are the solutions of an integral
equation

∫

k (ξj, ξ)φi (ξ) p (ξ)dξ = λiφi (ξj) (5.2)

which can be approximated based on the Nyström technique by sampling ξ
independent and identically distributed according to p, denoting the sampled
values as ξ1, . . . , ξm after possible reenumeration

1

m

m
∑

l=1

k (ξj, ξl)φi (ξl) ≈ λiφi (ξj) (5.3)

We denote the submatrix corresponding to the m sampled points of the Gram
matrix by Km,m. The eigenvalues and eigenvectors of this matrix are denoted
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by U
(m) and Λ

(m), respectively, characterized by the eigenvalue equation

Km,mU
(m) = U

(m)
Λ

(m) (5.4)

These solutions enable an approximation of the eigenfunctions and eigenval-
ues

λi ≈
λ
(m)
i

m
, φi (ξl) ≈

√
m

λ
(m)
i

kξlu
(m)
i (5.5)

where u
(m)
i is the ith column of U(m) and we use the vector of kernel values

kξl = (k (ξ1, ξl) , ..., k (ξm, ξl))
T (5.6)

This allows us to approximate a given full Gram matrix K by a low-rank
counterpart, since we can use these approximations in the kernel expansion.
Subsampling corresponds to a choice of m rows and columns of the matrix,
the corresponding submatrix is denoted by Km,m as before. The correspond-
ing m rows and columns are denoted by Km,N and KN,m, respectively. These
are transposes of each other, since the matrix is symmetric. The approxima-
tion as introduced above leads to the following approximation of the kernel
expansion by orthonormal eigenfunctions

K̃ =
m
∑

i=1

1/λ
(m)
i ·KN,mu

(m)
i

(

u
(m)
i

)T

Km,N (5.7)

where λ
(m)
i and u

(m)
i correspond to the m × m eigenproblem as above. In

the case that some λ
(m)
i are zero, we replace the corresponding fractions with

zero. Thus we get, K−1
m,m denoting the Moore-Penrose pseudoinverse,

K̃ = KN,mK
−1
m,mKm,N (5.8)

For a given matrix K with rank m, this approximation is exact, if the m
chosen m-dimensional points are linearly independent resulting in a low rank
approximation problem.

5.2 Nyström approximation for LVQ

Hence we can approximate the full Gram matrix as used in kernel RSLVQ
which was introduced in Section 3.2 by a low rank approximation. This equa-
tion for K̃ can directly be integrated into the computation of the distances
in Equation 3.16 which determine the Gaussians using the identity

‖Φ (ξi)− wj‖2 = e
t
iKei − 2 · etiKγj + γt

jKγj (5.9)
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where ei denotes the ith unit vector. Using K̃ instead, linear complexity
results if the matrix vector multiplications are computed first.

We can apply this result for kernel RSLVQ, using this approximation for
the kernel matrix

‖Φ (ξi)− wj‖2 ≈
(

e
t
iKN,m

)

·K−1
m,m · (Km,Nei)

− 2
(

e
t
iKN,m

)

·K−1
m,m · (Km,Nγj)

+
(

γT
j KN,m

)

·K−1
m,m · (Km,Nγj)

(5.10)

Since the full matrix K̃ is never explicitly computed this way, using
rather matrix vector operations in dimensionality m only, the complexity
O (m3 +Nm) results. Hence the computation is of complexity O (m3N)
instead of O (N2) for the original matrix, meaning that it is linear in the
number of data points N , provided the sample size m is fixed. The Nyström
approximation is exact if the number of samples m is chosen according to the
rank of K, meaning the m chosen points are linearly independent. Bounds
on the quality of the approximation for a chosen subsample can be derived
as presented for example in [98].

Originally the Nyström method was presented for positive semidefinite
Gram matrices, but a direct transfer is possible for dissimilarity data [34]. A
symmetric dissimilarity matrix D is a normal matrix and can be diagonalized
D = UΛU

T according to the spectral theorem with an unitary matrix U

whose column vectors are the orthonormal eigenvectors of D and a diagonal
matrix Λ with the eigenvalues of D. Therefore the dissimilarity matrix can be
seen as an operator d (ξj, ξl) =

∑∞
i=1 λiφi (ξj)φi (ξl) where λi ∈ R correspond

to the diagonal elements of Λ and φi denote the eigenfunctions. Thus, the
same treatment as before is possible, the only difference to an expansion
of a kernel being that the eigenvalues are allowed to be negative for non-
Euclidean distances. All further mathematical manipulations can be applied
in the same way.

Using the approximation in Equation 5.8 for the distance matrix allows
to approximate the Equation 3.17 in the way

‖Φ (ξi)− wj‖2 ≈
(

e
t
iDN,m

)

·D−1
m,m · (Dm,Nγj)

− 1

2
·
(

γT
j DN,m

)

·D−1
m,m · (Dm,Nγj)

(5.11)

which is again linear in the number of data points N , assuming a fixed
approximation m. Once more, the approximation is exact if m suits the rank
of the matrix.
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5.3 Quick check

As we will see in experiments, the Nyström approximation yields good results
in a variety of benchmark problems, but it leads to a severe deterioration of
the classification accuracy in others. Further, one crucial question is which
number of landmarks m is sufficient for a good approximation. Therefore, it
would be advisable to devise a test which can check the suitability of the Nys-
tröm approximation with a certain number of landmarks m prior to training
without the necessity to compute the full matrix K̃ on the one hand, or to
train the classifier, on the other hand. Since LVQ relies on a winner-takes-all
scheme, the exact values of the considered proximities are less important than
their ordering. We take this observation as a starting point for a quick check
whether a considered Nyström approximation is suitable. The basic idea is to
test exemplarily regarding few samples whether the observed approximation
preserves the ordering of proximities.

Thus, we first consider ways to computationally evaluate order preser-
vation. Assume two vectors of identical dimensionality are given. Then,
their principled shape is characterized by their correlation. There exist pos-
itive and negative correlations, though large correlation coefficients are no
guarantee that there exists a causal relation between these variables. The
Spearman rank correlation goes a step further by abstracting from the ex-
act values. It is comparing rank orderings, which means that the entries of
both vectors are examined for simultaneously monotonic relationships. This
non-parametric correlation of statistical dependence yields numerical values
between −1, suggesting a negative correlation of the induced ordering, and
+1, revealing a positive correlation or the ordering, where values around zero
indicate no association between the vectors.

Formally assume two vectors x, y ∈ R
n are given, and their ranks are

denoted as rnk (ck) = |{ci < ck, i = 1 . . . n}|, the measure is received by com-
puting the normalized squared Euclidean distance

ρ (x, y) = 1− 6

n · (n2 − 1)
·

n
∑

k=1

(rnk (xk)− rnk (yk))
2 (5.12)

The computational complexity of this formula is O (n · log (n)) due to the
sorting. Spearman rank correlation can be interpreted in terms of the amount
of mutual information between two variables and has many applications, for
example the analysis of gene expression data [63]. It converts a non-linear
ordinal data space into a rank based Euclidean space, where a compression of
outliers and an enlargement of close values takes place due to the substitution
of vector entries by their ranks. In the absence of ties this results in a uniform
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distribution with unit spacing and invariant statistical moments of the data
vectors.

For the Nyström approximation, we would like to check whether the ap-
proximation K̃ preserves the ordering of distances in the original matrix K.
Therefore a natural measure for the suitability of the approximation is the
Spearman correlation of exemplary rows of these matrices, meaning the av-
erage over the Spearman correlations of all rows i within a sample of indices
I

1

|I| ·
∑

i∈I

ρoriginal :=
1

|I| ·
∑

i∈I

ρ
(

[K]i ,
[

K̃

]

i

)

(5.13)

This indicates whether the ordering induced by the approximation would be
consistent with the original ordering of the respective closest data points for
every row. Since the Spearman correlation and the Nyström approximation
values have to be computed for |I| rows, the complexity of this computation
is of order O (|I| ·N logN +m3 + |I| ·mN). It is possible to lower this com-
plexity by referring to a random sample of the coefficients of the rows only
of constant size, which leads to a scalable complexity depending on m, |I|
and the size of this sample rather than the number of data N .

Albeit this measure constitutes a good indicator whether the Nyström
approximation is successful, it is often not suitable in practice since the full
kernel matrix K is not available. One remedy is to substitute the measure in
Equation 5.13 by a statistical estimation which relies on the variance of two
approximations rather than the original matrix. The statistical argument
underlying this rational relies on the fact that the Nyström approximation is
derived as a sampling algorithm, and it converges towards the true values in
the limit see for example [32] for a proof of this fact for general proximities.

Hence we can consider the following quantity

1

|I| ·
∑

i∈I

ρpairwise :=
1

|I| ·
∑

i∈I

ρ
(

[

KN,J1K
−1
J1,J1

KJ1,N

]

i
,

[

KN,J2K
−1
J2,J2

KJ2,N

]

i

)

(5.14)

where different subsets J1, J2 ⊂ {1, . . . , N} of the data points of the same
size m are taken for the Nyström approximation. This value computes the
Spearman correlation which results from the Nyström approximation taking
different samples of the reported size, and it is advisable to not only consider
two such samples, but more choices for example stemming from a cross-
validation. The computational complexity of this technique is the same as
before, including the possibility of a further speedup by referring to a fixed
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number of entries in the rows only. However, this method does not require the
existence of the original Gram matrix. Therefore, we will use this measure in
the following experiments as an efficient method, which gives some indication
of the expected performance of the Nyström approximation prior to training.

5.4 Experiments

We compare kernel RSLVQ as one of the best performing variants of LVQ
methods for proximity data and the quality for the Nyström approximation
for different sizes of the approximation matrix maintaining the same experi-
ment setup as described in Section 4.6 considering valid kernels by applying
clip or flip preprocessing as introduced in Section 4.5.

The results for the Nyström approximation based on a subsample of 10%
or 25%, respectively, are reported in Table 5.1. It preserves the excellent
performance of kernel RSLVQ in four of the cases enabling a linear technique
with excellent performance in these settings. For the two cases Amazon47
and Patrol, the Nyström approximation yields a degradation by more than
100%. As can be seen from the eigenvalue spectra as shown in Figure 4.2, a
good performance of the Nyström approximation is directly correlated with
the intrinsic dimensionality of the data set as measured by the number of
eigenvalues with significant contribution. The two data sets Amazon47 and
Patrol display eigenvalue profiles where a large number of values is very differ-
ent from 0. Since the Nyström approximation is exact if the sampled points
match the intrinsic rank of the given data, and it looses information of the re-
maining span, otherwise, it can be expected that the Nyström approximation
fails in these two cases, which it does.

We can see that an intrinsically low dimensional matrix correlates to
a good approximation of the Nyström approximation of the Gram matrix.
Additionally, we report results of the Spearman correlation for the rows of
the Nyström approximation and the original data matrix ρoriginal and for
pairwise different Nyström samples ρpairwise, as proposed in the Section 5.3.
Interestingly, ρoriginal displays particularly low values, smaller than .4, for the
two data sets Amazon47 and Patrol. The result of ρpairwise, averaged over 10
different approximation sets, yields very low values, < 0.1, for the valid Gram
matrices if and only if the Nyström approximation fails, otherwise resulting
in values of at least 0.5. Hence, by sampling only a constant number of
rows and computing their correlation this way, we obtain an efficient method
to estimate whether the Nyström approximation can be successful prior to
training.
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kernel RSLVQ Nyström ρoriginal ρpairwise

10% 25% 10% 25% 10% 25%

Amazon47
clip 15.37 (0.41) 64.15 (0.33) 77.93 (0.51) 0.22 (0.15) 0.35 (0.06) 0.02 (0.01) 0.05 (0.04)
flip 16.34 (0.42) 65.73 (0.30) 76.71 (0.62) 0.22 (0.19) 0.36 (0.08) 0.02 (0.02) 0.05 (0.03)
Aural Sonar
clip 11.25 (0.39) 15.00 (0.63) 13.00 (0.43) 0.61 (0.25) 0.81 (0.02) 0.54 (0.53) 0.74 (0.03)
flip 11.75 (0.35) 16.25 (0.84) 14.50 (0.55) 0.56 (0.29) 0.75 (0.02) 0.53 (0.82) 0.71 (0.06)
FaceRec
clip 3.84 (0.02) 3.47 (0.02) 3.49 (0.01) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
flip 3.60 (0.02) 3.52 (0.02) 3.47 (0.01) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Patrol
clip 17.40 (0.29) 47.50 (0.78) 34.79 (0.60) 0.18 (0.08) 0.31 (0.17) 0.04 (0.01) 0.08 (0.01)
flip 19.48 (0.34) 45.94 (0.66) 35.10 (0.39) 0.21 (0.02) 0.38 (0.02) 0.04 (0.01) 0.08 (0.02)
Protein
clip 4.88 (0.17) 12.21 (0.36) 7.44 (0.23) 0.88 (0.12) 0.95 (0.01) 0.88 (0.07) 0.93 (0.03)
flip 1.40 (0.05) 8.02 (0.38) 3.95 (0.14) 0.88 (0.13) 0.94 (0.02) 0.87 (0.14) 0.92 (0.11)
Voting
clip 5.34 (0.04) 5.17 (0.03) 5.69 (0.03) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
flip 5.34 (0.03) 5.34 (0.04) 5.52 (0.03) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)

Table 5.1: Results of kernel RSLVQ compared to a Nyström approximation of the Gram matrix using 10% and 25%
of the data are reported. Additionally Spearman correlation coefficients ρoriginal and ρpairwise are given. Standard
deviations are given in parenthesis. The best results of the Nyström approximations are shown in boldface.
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5.5 Discussion

We have investigated the possibility to obtain efficient approximations of
kernel RSLVQ by means of the Nyström approximation. This method aims at
an advanced computational achievement of the technique, resulting in faster
classification performance, thus addressing one of the most severe drawbacks
of kernel RSLVQ.

We have shown that the excellent accuracy obtained by kernel RSLVQ
can be preserved using the Nyström approximation, provided data have an
intrinsically low dimensionality. The latter can efficiently be tested by refer-
ring to the correlation of different Nyström samples. Using this technique, we
have taken a further step to bring kernel RSLVQ towards efficient methods
with linear training time.

There exists another severe drawback of kernel or relational LVQ in com-
parison to its vectorial counterpart. Vectorial LVQ provides a direct interface
for the applicant, who can directly inspect the prototypes in the same way
as data. For proximity LVQ, this property is lost, since prototypes depend
on all data points and are given only implicitly. This does not only have a
crucial impact on the interpretability of the given models, but it also results
in an increasing computational complexity and space complexity for the clas-
sification, which is linear instead of constant. In Chapter 6, we address this
problem by means of sparse approximations of prototypes. In this case, pro-
totypes are represented by one or few exemplars only, whereby the latter can
be directly inspected by practitioners in the same way as data. At the same
time, training benefits from the larger flexibility of a continuous adaptation
space as provided by the full model.
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Chapter 6

Interpretability

Chapter overview Within this chapter, we address the fact that proto-
types are no longer explicit within proximity extensions of LVQ but repre-
sented implicitly. We investigate different ways to substitute these models
by sparse representations of the prototypes. For this purpose, we introduce
different principles how to do so, and extensively evaluate the performance
of these methods on benchmarks as well as one further illustrative data set
with known semantical background. We do not only address the accuracy for
model evaluation, but also investigate quantitative measures for the sparsity
and representativity of the found solutions. Parts of this chapter rely on the
publications [47, 48, 49, 50, 52, 53].

As already stated, one of the benefits of vectorial LVQ techniques consists
in the fact that solutions are represented by a small number of representative
prototypes which constitute members of the input space. In consequence,
prototypes can be inspected in the same way as data in the vectorial setting.
Since the dimensionality of points ξ is typically high, this inspection is often
problem dependent. Images, for example, lend itself to a direct visualization,
oscillations can be addressed via sonification, spectra can be inspected as a
graph which displays frequency versus intensity. Moreover, a low-dimensional
projection of the data and prototypes by means of a non-linear dimensionality
reduction technique offers the possibility to inspect the overall shape of the
data set and classifier independent of the application domain.

Prototypes in relational or kernel settings correspond to positions in
pseudo-Euclidean space which are representative for the classes if measured
according to the given similarity/dissimilarity measure. Thus, prototype
inspection faces two problems. On the one hand the pseudo-Euclidean em-
bedding is usually only implicit, on the other hand it is not clear whether
dimensions in this embedding carry any semantic information. Thus, al-
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beit prototypes are represented as linear combinations of data also in the
pseudo-Euclidean setting, it is not clear whether these linear combinations
correspond to a semantic meaning.

One approach which we will follow is to approximate a prototype by one
or several exemplars, meaning members of the data set, which are close by
[52]. Thereby, the approximation can be improved if sparsity constraints for
the prototypes are integrated while training. This way, every prototype is
represented by a small number of exemplars which can be inspected in the
same way as data. Another possibility is to visualize data and prototypes us-
ing some non-linear dimensionality reduction technique. We will very shortly
address visualizations in one illustrative example. This enables an investi-
gation of the overall shape of the classifier just as in the standard vectorial
setting. However, since visualizations are usually non-linear, its semantic
meaning is often not clear since the dimensions in the plane do not carry
semantic information. Therefore, we will focus mostly on the first approach.
Naturally, both techniques, a representation of prototypes by few exemplars
as well as a projection to low dimensions incorporate errors depending on
the dimensionality of the pseudo-Euclidean space and its deviation from the
Euclidean norm.

As discussed for example in the seminal work [72], the principle of sparsity
constitutes a common paradigm in nature-inspired learning. Interestingly,
apart from an improved complexity, sparsity can often serve as a catalyzer
for the extraction of semantically meaningful entities from data. In our case,
the basic entities are represented by the data itself, and the task is to approx-
imate given prototypes by sparse counterparts, thereby minimizing the loss
of accuracy. It is well known that the problem of finding smallest subsets of
coefficients such that a set of linear equations can still be fulfilled constitutes
an NP-hard problem, being directly related to NP-complete subset selection.
Because of this fact, approximation techniques have to be considered, one
popular approach being for example a l1-relaxation of the problem [24] such
as used in LASSO.

Instead of the full coefficient vectors, few exemplars which represent the
prototypes can be directly inspected by practitioners in the same way as data
by applying sparse approximations to kernel RSLVQ. The validity of this as-
sumption, however, strongly depends on the way in which prototypes are
substituted by sparse approximations. We investigate different possibilities
to approximate a prototype by a sparse counterpart during or after train-
ing relying on different heuristics or approximation algorithms, respectively,
in particular sparsity constraints while training [72], geometric approaches,
orthogonal matching pursuit [15], and core techniques for the minimum en-
closing ball problem [4]. We discuss the behavior of these methods in several
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benchmark problems as introduced in Section 4.6 as concerns quality, spar-
sity, and interpretability, and we propose different measures how to quanti-
tatively evaluate the performance of the approaches.

6.1 Approximation of the prototypes

Kernel RSLVQ as well as other LVQ variants for proximities as introduced
in Chapter 3 yields prototypes which are implicitly represented as linear
combinations of data points

wj =
∑

m

γjmΦ (ξm) (6.1)

as discussed in Section 3.2, where Φ refers to the kernel embedding of the
data or, more generally, the underlying pseudo-Euclidean embedding. Since
γjm can be arbitrary, sparseness of the prototype is not given, but its location
usually depends on all data ξm.

Here we propose different ways to arrive at sparse prototype representa-
tions, meaning counterparts where γjm equals zero for most coefficients m.
If only few coefficients γjm are non-vanishing, a direct inspection of the cor-
responding exemplars ξm allows practitioners to judge the characteristics of
the correlated prototype and its receptive field by a direct inspection of the
exemplars. Formally, a sparse representation of a given prototype wj refers
to a set of one or more prototypes wi

j of the form

w̃i
j =

∑

m

γ̃i
jmΦ (ξm) (6.2)

such that

• the size of this set is small, ideally, only one approximating prototype
w̃1

j for wj is necessary,

• these vectors are sparse, meaning
∣

∣γ̃i
j

∣

∣

0
is as small as possible,

• the set approximates wj in the sense that the receptive field of wj as
compared to the union of the receptive fields of its approximations w̃i

j

contains approximately the same set of data points.

One possibility to ensure that the last condition holds is to enforce w̃i
j ≈ wj

as measured by the distance in the feature space.
This formulation includes as a subproblem the task to find a vector w̃j =

∑

γ̃jmΦ (ξm) = wj such that |γ̃j|0 is minimum, if possible. This problem is
NP-hard, such that we have to rely on approximations [69]. In the following,
we introduce a variety of possible schemes.
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6.2 Sparse training

A classical way to enforce sparsity constraints consists in the addition of
a regularization term while training. This technique has been proposed,
among others, in the pioneering work of Olshausen and Field based on a
probabilistic model, for example [72]. Thus, we substitute the cost function
L in Equation 3.5 by the sum

L− Const · S (γ) (6.3)

where S (γ) constitutes a constraint which emphasizes sparse solutions such
as

S (γ) =
∑

ji

∣

∣γi
j

∣

∣

1
(6.4)

as approximation of the 0-norm and Const > 0 is a priorly chosen constant
which weighs the two objectives of the combination. Optimization of these
costs can be done by a subgradient method [91], which reduces to a standard
gradient ascent for most of the regions. For γi

j = 0, the subgradient is set
to the constant 0 to emphasize sparse solutions. Note that, this way, sparse
prototypes are chosen already while training, which has usually the effect
that the final location of the resulting prototypes can be different from the
prototypes obtained by standard kernel RSLVQ without sparsity constraint.
This technique is the only one among the ones proposed here, which changes
the shape of the prototypes already while training. All other techniques start
from a trained set of prototypes and try to exchange the linear combinations
by a sparse variant. Therefore, we refer to this method as sparse training
in the following.

6.3 Simple heuristic approximations of the pro-

totypes

As a simple alternative, we propose two intuitive heuristic approximation
schemes which substitute trained prototypes by sparse approximations.

Geometric heuristic

The first approach, relies on the geometry of LVQ. For kernels, the distance of
prototypes to points in their receptive field is changed to a small amount only,
if we approximate the prototype by the closest exemplar. As a generalization
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thereof, in particular to meet settings where the feature space is not densely
populated, we can use the Kapprox closest exemplars for some fixed number
Kapprox. Note that this method, which we refer to as Kapprox-approximation
in the following, represents a prototype by a set of Kapprox new sparse ones
with l0-norm equal to one.

Numerical heuristic

As an alternative, we can consider the coefficient vector γj and take the
size of the coefficients as an indicator for the importance of the underlying
exemplar. For the Khull-convex hull, we select the Khull largest coefficients
γjm and we delete all but these coefficients in the vector γj . This is then
normalized to 1 by applying

∑

m γ̃jm = 1. Thereby, we neglect the upper
index since only one prototype is used for the approximation.

6.4 Approximate representations of the proto-

types

As an alternative to these simple heuristic approximation schemes, we can
use more fundamental optimization techniques which try to represent a given
prototype as accurately as possible regarding some explicit mathematical
objective, based on which an optimization can be performed.

Numeric approximation

We can formalize the task to approximate a given prototype as the mathemat-
ical objective to approximate a prototype by a sparse linear combination of
data such that the residual error of this approximation and the original proto-
type is as small as possible. This corresponds to the following mathematical
problem, where again, we use only one prototype for the approximation and,
in consequence, neglect the corresponding index

min |γ̃j|0
s.t. |∑m γ̃jmΦ (ξm)− wj| ≤ ǫ

(6.5)

for a given ǫ > 0. It is well-known that this problem is NP-hard [69]. Hence
a variety of approximate solution strategies exist in the literature. Here, we
rely on a popular and very efficient approximation offered by orthogonal
matching pursuit (OMP) [15]. Given an acceptable error ǫ > 0 of the
approximation, a greedy approach is taken. The algorithm iteratively deter-
mines the most relevant direction and the optimum coefficient for this axis
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Algorithm 6.1 kernelized orthogonal matching pursuit

1 I := ∅
2 γ̃j := 0
3 while (γj − γ̃j)

tK (γj − γ̃j) > ǫ2 do
4 r := γj − γ̃j
5 l0 := argmaxl |[Kr]l|
6 I := I ∪ {l0}
7 γ̃jm := (KII)

−1KIm with KII := restriction of K to index set I
8 end while
9 return γ̃j

to minimize the remaining residual error. The algorithm can be easily ker-
nelized, such that it can directly be used in our setting, where we assume a
normalized kernel kmm = 1 corresponding to a fixed length Φ (ξi) or alterna-
tively, the normalization could be added to the greedy selection step. The
pseudocode is given in Algorithm 6.1.

Geometric approximation

An alternative mathematical approximation can be derived based on a geo-
metric view. We assume that a prototype is located at a central position of
its receptive field, since it represents the center of the corresponding Gaussian
mode. We denote the latter receptive field of wj by Rj. Under the assump-
tion of spherical classes, we can characterize a prototype as the center of a
ball which encloses all data assigned to it. To achieve uniqueness, we choose
the smallest ball. The following geometric optimization problem referred to
as minimum enclosing ball (MEB) results

minR2,C R2

s.t. ‖C − Φ (ξi)‖2 ≤ R2, ∀ξi ∈ Rj
(6.6)

Here, C is the center and R the radius of the MEB. We expect that C ≈ wj.
The key observation of a sparse approximation technique starting from this
characterization consists in the fact that the MEB can be approximately
solved with a sparse vector C where the degree of sparsity is independent of
the size of Rj . Further, a linear time approximation algorithm is available,
see [4]. We shortly outline the idea of this sparse approximation, typically
referred to as core approximation.

First, the dual problem of MEB can be phrased as follows

minαi≥0

∑

ij αiαjkij −
∑

i αik
2
ii

s.t.
∑

i αi = 1
(6.7)
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Algorithm 6.2 minimum enclosing ball

1 S := {ξi, ξm} for a pair of largest distance ‖Φ (ξi)− Φ (ξm)‖2 in Rj

2 repeat
3 solve MEB(S) → C,R
4 if exists ξl ∈ Rj where ‖Φ (ξl)− C‖2 > R2 (1 + ǫ)2 then
5 S := S ∪ {ξl}
6 end if
7 until all ξl are covered by the R (1 + ǫ) ball in the feature space
8 return w̃j := C

Any solution of the dual problem gives rise to a primal solution in terms
of C =

∑

αiΦ (ξi). This dual is a convex problem with a unique solution,
but worst case effort O

(

|Rj |3
)

and no bound on the sparsity of the resulting
solution. Therefore, this problem is not solved for the entire receptive field
Rj, rather, starting from the empty set, a core set of points is built for which
this dual problem is solved. A surprising fact proved for example in [4] is
that a fixed finite number of such points is sufficient to form a core set which
represents the entirety of Rj . The size is thereby independent of the size of
Rj and the dimensionality of points.

This iterative algorithm to determine a core set uses the dual MEB as a
subroutine. It terminates with a core set of limited size as a subset of Rj,
for which the dual variables αi induce a center of the MEB for the entirety
of Rj . We refer to this sparse center as w̃j. The pseudocode is given in
Algorithm 6.2.

It has been proved in [4] that the number of loops of this algorithm is
limited by a constant of order O (1/ǫ2) independent of Rj . In each loop, the
dual MEB problem is solved for a small subset S of constant size, such that
each loop has linear complexity only. An approximation of wj as center of
an approximate MEB is given by the dual variables of the found core set
Cj =

∑

i∈S αiΦ (ξi) hence a sparse approximation of w results by setting γ̃ji
to αi if and only if the coefficient i corresponds to a core point. We arrive
at a sparse solution, whereby the quality of the approximation ǫ determines
the resulting sparsity. Since data are used in the form of dot products only,
all computations can be kernelized. Note that similar tricks have been used
to speed up for example support vector machine training, see [92].

6.5 Characteristics of the techniques

Note that the proposed techniques differ in several characteristics, regarding
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Method control coefficients location
of sparsity of exemplars

RSLVQ no sparsity convex central
sparse training soft Const convex often central
Kapprox-approx. fixed Kapprox set of exemplars central
Khull-convex hull fixed Khull convex not clear
OMP soft ǫ possibly negative subject to variance
MEB soft ǫ convex extremal

Table 6.1: Characteristics of different sparse approximations of prototype
based models.

• their motivation being heuristics for the Kapprox-approximation and the
Khull-convex hull are grounded in an explicit mathematical objective
to approximate the prototypes,

• their application during or after training. Only the sparse approxima-
tion changes the representation of prototypes already while training,

• the way in which the degree of sparsity can be controlled,

• the way in which prototypes are represented in a sparse approxima-
tion. These correspond to one exemplar for a heuristic approximation
using K = 1, a set of exemplars for the Kapprox-approximation, or a
sparsely populated element of the kernel space for all other techniques.
In consequence, classification takes place by computing the distance to
the new exemplar, or the minimum distance to all exemplars in the set
representing a prototype in case of the Kapprox-approximation,

• the sign and size of the coefficients. For RSLVQ, the coefficients are
convex to increase interpretability, and we would like to maintain this
fact also for the approximations. While OMP restricts to convex com-
binations, MEB does not allow this in an easy way,

• the location of the non-vanishing index set, which can be central as for
the Kapprox-approximation, induced by dimensionality characteristics
like OMP, at boundaries as for MEB, which focuses on extremal points.

We summarize the characteristics of the methods in Table 6.1 and examine
them on benchmark data sets in Section 6.6.
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A remark on direct exemplar based approaches

The question occurs whether it is possible to directly learn a sparse prototype
model instead of a posteriori approximation only, when considering sparse
prototype approximations. Techniques which represent solutions in terms of
prototypical exemplars only, meaning prototypes ~wj = ξi which equal exactly
a given data point, have been proposed in prototype-based research under the
umbrella of median techniques, see for example [20] and references therein.
Essentially, this corresponds to the case of a sparse model where the number
of exemplars used to represent prototypes is reduced to K = 1. Recently, a
median approach for supervised LVQ has also been proposed [71]. Essentially,
median techniques try to devise efficient methods which optimize the given
cost function but restricting prototypes to the discrete space formed by the
given data.

One problem of such median approaches consists in the fact that their
optimization is essentially discrete. Hence optimization is either costly, when
relying on meta-heuristics for cost function optimization such as simulated
annealing or similar, or optimization is prone to local optima due to the
very restricted representation abilities in the discrete data space. This effect
has been observed in unsupervised median prototype-based methods such as
median neural gas in comparison to its continuous relational counterparts,
such as relational neural gas, see [39]. Albeit median approaches of this form
have quadratic costs only comparable to kernel methods, their performance
is often inferior as compared to kernel or relational approaches.

One notable exception of this observation is offered by affinity propagation
[28] which rephrases an exemplar based prototype-based clustering scheme
in terms of a factor graph representing the data likelihood, for which efficient
continuous optimization is possible using message passing algorithms. Hence
this technique combines the efficiency of kernel approaches with a direct
interpretability of the result by restricting prototypes to exemplars. Still, it
is restricted to an unsupervised optimization of the quantization error, such
that the obtained classification accuracy is inferior to supervised kernel LVQ
approaches. The recent median LVQ variant proposed in [71] relies on an
expectation-maximization scheme, which is also often prone to local optima.

6.6 Experiments

We compare kernel RSLVQ as one of the best performing variants of
LVQ methods for proximity data and its sparse approximations maintain-
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Figure 6.1: AuralSonar with spectrum flip visualized by t-stochastic neighbor
embedding [93]. The left figure shows the results of sparse training and the
right of OMP. In both settings, the location of the prototypes, not the corre-
sponding exemplars, is shown. Obviously, very different prototype locations
are obtained.

ing the same experiment setup as described in Section 4.6 considering valid
kernels by applying clip or flip preprocessing as introduced in Section 4.5.
Additionally the two illustrative datasets Artificial data and VBB Midi are
investigated, which will be introduced later. Thereby, we particularly want to
check whether characteristics of the data allow to infer which approximation
is best suited for the given task.

We approximate the solutions of kernel RSLVQ by sparse approxima-
tions using the methods as specified above. Thereby, we set the sparsity
to Kapprox, Khull ∈ {1, 10}. If training with sparsity constraint is used, an
appropriate weighting parameter Const is determined by binary search such
that a desired sparsity is obtained. The parameter Const can be very sen-
sitive depending on the data, leading to non-trivial results in a small range
only. For the approximations using OMP and MEB, the quality ǫ of the
approximation is determined such that a sparsity in the range of 1 to 10 is
obtained.

We demonstrate the effect of the different characteristics of the sparse
approximations as introduced in Table 6.1 exemplarily in the two following
figures. In Figure 6.1, the result of sparse training is compared to the result
of OMP. Obviously, the location of the prototypes is very different which
can be attributed to the fact that sparse training influences the prototype
locations already while training.

In Figure 6.2, the location of the exemplars underlying the MEB approx-
imation versus the Kapprox-approximation is shown in a benchmark. The
Kapprox-approximation tends to locate the exemplars closer to the class cen-
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Figure 6.2: Voting with spectrum clip visualized by multidimensional scaling.
The left figure shows the results of MEB and the right the results of the 1-
approximation. In both cases, the exemplars corresponding to coefficients
larger than zero are shown. Obviously, the 1-approximation puts exemplars
close to the centers, while MEB also selects boundary positions due to its
grounding in an MEB problem.

ters, while MEB also puts some of the exemplars on extremal positions.

Results as regards sparsity and accuracy

The classification accuracy is shown in Table 6.2. Interestingly, the ob-
tained classification results when considering sparse approximations differ
depending on the data set and the used technique. For the intrinsically
low-dimensional data sets Protein, Voting and Face Rec, different sparse ap-
proximations give results comparable to full prototypes, while the situation
seems more difficult for the other data sets. For Amazon47, none of the
sparse approximations reaches the accuracy of the full model, which can be
attributed to a high dimensionality of the data with few data points and a
large number of classes. This is a situation where we would possibly expect
that the full information of the data set is necessary to obtain a good classi-
fication accuracy. For Aural Sonar and Patrol, some sparse techniques yield
results comparable to the full models.

It seems that there exists no universally suited method to enforce sparsity.
Sparse approximation already while training yields best results in three of
the cases. However, the choice of the parameter Const is crucial and a high
degree of sparsity is not easy to achieve for this setting, as can be seen from
the variance of the sparsity as reported in Table 6.3. In many cases a simple
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kernel RSLVQ Kapprox-approximation Khull-convex hull OMP MEB sparse training
Kapprox=1 Kapprox=10 Khull=1 Khull=10

Amazon47
clip 15.37 32.26 43.82 33.09 55.85 70.12 87.79 39.92
flip 16.34 32.32 46.06 34.18 54.51 68.66 88.54 43.18
Aural Sonar
clip 11.25 25.75 14.50 58.50 23.25 15.00 13.50 10.75
flip 11.75 22.75 15.12 61.50 19.75 26.00 14.75 15.50
Face Rec
clip 3.84 3.76 37.04 3.92 3.84 3.65 3.81 4.13
flip 3.60 3.31 37.00 4.21 3.60 3.60 3.62 4.07
Patrol
clip 17.40 39.84 19.90 39.17 24.58 29.79 25.42 40.00
flip 19.48 38.91 21.03 40.16 25.52 33.33 24.17 41.56
Protein
clip 4.88 18.49 26.94 36.28 27.44 52.09 14.59 13.84
flip 1.40 23.84 24.48 25.35 3.95 49.07 3.72 2.21
Voting
clip 5.34 8.82 11.39 86.44 82.76 5.34 17.70 5.34
flip 5.34 7.99 9.91 86.95 82.53 5.46 17.18 5.80

Table 6.2: Results of kernel RSLVQ and diverse sparse approximations on the investigated benchmark data. The
best results given as percentage misclassifications of the approximation methods are shown in boldface.
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Kapprox-approximation yields surprisingly good results, indicating that the
location of the prototypes can often be well preserved by a simple substitution
with its closest exemplar. Besides these observations, one can also detect
two cases where the mathematical approximations OMP and MEB yield
best results with respect to alternative posterior regularizations, whereby
the degree of sparsity is easier to handle as compared to sparse training.

We exemplarily report the dependency of the approximation quality from
the sparseness for the geometric methods and OMP in Figure 6.3. A more
systematic comparison of the accuracy for different degrees of sparsity is there
exemplarily shown. Since OMP does not allow to explicitly influence the
sparsity, but the approximation quality only, these curves cannot be obtained
for the full range displayed in the graphs. Clearly in all settings a simple
geometric approach approximates the accuracy obtained by OMP and it is
even better in a fraction of the graphs, and it shows that it varies depending
on the data for which sparsity and for which techniques best results can
be obtained. This can be attributed to the quite diverse geometric setting
and learning scenario. However, since posterior geometric approximation
techniques are rather fast, it is no problem to simply test different degrees
of sparsity for both methods and take the best one, afterwards.

A sparse representation of the classifier in terms of few exemplars of the
data set opens the way towards fast classification models and, in particu-
lar, interpretable models, provided a single data point can be inspected by
applicants in a natural way. Note that several data sets allow classifica-
tion schemes which rely on only one exemplar per class, meaning an efficient
inspection of these representing data is particularly efficient.

Results as regards representativity

The problem occurs how we can evaluate the representativity of the obtained
prototypes for the given data. Eventually, this question has to be answered
by practitioners in the field who inspect the found exemplars. Naturally,
the degree of sparsity as reported in Table 6.3 is a first indicator about the
complexity of the resulting model. However, a sparse model does not neces-
sarily correlate with a good classification accuracy, nor the representativity
of the found exemplars. Here, we investigate two principled ways to access
the representativity of the models as a first try to quantitatively measure in
how far models could be seen as interpretable.

As a first measure which takes supervised labeling into account, we eval-
uate Rissanen’s minimum description length as introduced in [37]. The min-
imum description length estimates the number of information it takes to
represent the prototypes on the one hand and the errors induced by the pro-

69



kernel RSLVQ Kapprox-approximation Khull-convex hull OMP MEB sparse training
Kapprox=1 Kapprox=10 Khull=1 Khull=10

Amazon47
clip 3.67 0.75 5.28 1.00 3.51 1.96 1.61 1.00
flip 3.67 0.75 5.31 1.00 3.51 1.95 1.60 1.00
Aural Sonar
clip 40.00 0.53 3.15 1.00 10.00 3.79 5.30 12.75
flip 40.00 0.47 3.07 1.00 10.00 1.28 5.72 12.73
Face Rec
clip 5.52 1.00 10.00 1.00 5.49 4.37 2.51 1.00
flip 5.52 1.00 10.00 1.00 5.49 4.22 2.58 1.00
Patrol
clip 24.12 0.68 4.85 1.00 9.95 6.66 6.93 6.71
flip 24.12 0.68 4.43 1.00 9.95 3.55 6.98 6.69
Protein
clip 42.50 0.47 3.25 1.00 10.00 1.84 4.89 13.37
flip 42.50 0.43 2.75 1.00 10.00 8.43 4.97 13.52
Voting
clip 174.00 0.29 2.42 1.00 10.00 11.71 2.16 68.68
flip 174.00 0.30 2.31 1.00 10.00 8.82 1.99 59.92

Table 6.3: Sparsity as the number of non-negative coefficients per prototype and label of kernel RSLVQ and diverse
sparse approximations on the investigated benchmark data. Due to exemplars becoming identical, a sparsity smaller
than 1 is possible.
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Figure 6.3: For exemplary data sets, the obtained accuracy versus the degree
of sparsity is depicted for the three techniques OMP, the convex hull, and
the approximation by the nearest neighbors. For OMP only a small range of
sparsity can be covered by reasonable choices of the control parameter.
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totypes on the data on the other hand. The resulting quantity is depicted in
Table 6.4 for the different sparse approximations. In all cases sparsity clearly
yields a more compact representation of the available information as shown
by the results reported in Table 6.4. Further, this measure highlights that
simple techniques such as the Kapprox-approximation seem a good compro-
mise of accuracy and sparsity of the models.

As an unsupervised evaluation measure, we evaluate the entropy of the
probability distribution which assigns data to prototypes. To account for
different numbers of prototypes, a normalization by its logarithm takes place.
Results are depicted in Table 6.5. The intuition is that a small entropy
allows for clearly separated clusters, meaning representative exemplars, while
a large entropy is an indicator for a more uniform distribution. Naturally, the
result depends on the cluster structure of the underlying data, indicating for
example that Voting does not seem to be easily separable into classes with
gaps in between the classes. But also within data sets, differences of the
different techniques can be found, indicating that the Kapprox-approximation
for Kapprox = 1, for example, surprisingly is not able to separate the clusters
as well as alternatives.

Figure 6.4 shows the approximations for extremal values of the entropy
in an example data set. The smallest entropy is found in the Kapprox-
approximation setting, whereas most information can be found with Khull-
convex hull. Since data points at the border of the data set carry the most
information about the location of the whole class it is not surprising, that
these points get a larger value in the linear combination and give indeed
most information about the data set, since they define the borders well. On
the other hand the approximated location of the prototypes give more inter-
pretable results, but can not specify the borders as well, ending in a lower
entropy overall.

Two illustrative examples

The examples as introduced above allow already some insight into the be-
havior of the techniques, indicating, that

• it is not always possible to find sparse solutions of the same quality in
particular when data dimensionality is large, but it is possible in many
cases,

• for sparse approximations a simple K-nearest neighbor heuristic seems
as appropriate as more fundamental approaches,
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kernel RSLVQ Kapprox-approximation Khull-convex hull OMP MEB sparse training
Kapprox=1 Kapprox=10 Khull=1 Khull=10

Amazon47
clip 151.82 42.17 43.39 43.59 44.44 246.80 367.90 252.33
flip 147.47 39.49 43.26 42.66 45.69 416.98 389.68 253.24
Aural Sonar
clip 23.30 4.74 5.35 15.20 13.84 24.63 24.42 18.98
flip 21.94 5.21 4.52 12.60 13.42 31.31 23.08 16.87
Face Rec
clip 2561.53 511.81 516.05 499.01 502.67 2531.63 2443.87 2484.54
flip 2561.53 511.81 516.05 499.00 502.68 2527.69 2443.86 2486.24
Patrol
clip 235.12 35.65 33.41 53.63 56.99 274.79 226.68 174.57
flip 232.20 45.57 36.71 56.67 53.40 268.95 229.75 172.31
Protein
clip 74.59 14.83 16.86 23.25 33.41 208.16 75.35 60.40
flip 51.42 20.34 20.41 22.91 18.12 339.72 49.56 38.34
Voting
clip 190.86 12.25 12.38 200.83 199.01 75.94 174.90 103.37
flip 190.89 15.84 18.32 181.60 136.44 72.86 183.62 103.16

Table 6.4: Rissanen’s minimum description length of kernel RSLVQ and diverse sparse approximations on the
investigated benchmark data.
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kernel RSLVQ Kapprox-approximation Khull-convex hull OMP MEB sparse training
Kapprox=1 Kapprox=10 Khull=1 Khull=10

Amazon47
clip 3.18 3.99 0.81 4.37 3.16 3.25 3.93 3.98
flip 2.90 3.66 0.74 4.23 2.90 3.09 3.71 3.86
Aural Sonar
clip 3.43 6.03 1.41 1.97 2.85 2.49 2.45 2.30
flip 1.10 2.23 0.43 1.88 0.82 0.73 0.76 0.73
Face Rec
clip 231.87 232.25 54.76 232.21 232.25 232.25 232.09 231.83
flip 231.87 232.24 54.76 232.20 232.24 232.24 232.18 231.82
Patrol
clip 3.31 4.81 0.90 3.16 2.93 2.68 2.36 2.28
flip 2.48 3.62 0.72 3.04 2.17 2.30 1.67 1.95
Protein
clip 8.05 13.53 3.20 3.22 6.28 1.94 5.78 7.08
flip 6.58 11.36 2.98 3.14 5.39 4.71 4.80 5.47
Voting
clip 89.86 76.23 56.71 50.06 77.84 80.68 72.14 75.16
flip 88.40 82.74 57.72 51.37 77.22 84.08 71.23 71.71

Table 6.5: Entropy of kernel RSLVQ and diverse sparse approximations on the investigated benchmark data.
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Figure 6.4: AuralSonar with spectrum clip visualized by multidimensional
scaling. The left figure shows the results of 1-approximation and the right of
1-convex hull.

• the approximation methods differ in the final location of the exemplars,
focusing partially on boundary points rather than central representa-
tives,

• these effects are partially mirrored in measures such as the minimum
description length or the entropy.

However, the experiments are in some way preliminary since the involved
data are only implicitly given by their pairwise dissimilarities only. A di-
rect inspection of the underlying data and its interpretability is problematic.
Because of this fact we investigate two further data sets which can directly
be inspected, in particular an artificial two dimensional Euclidean set, and a
data set stemming from a transportation system:

• Artificial data: Data are randomly generated in two dimensions with
ten data points for each of three classes, see Figure 6.6. Since data
are Euclidean, we can also directly inspect the prototypes, its approx-
imations, and the exemplars used for the approximation. Note that
the approximation is identical to the prototypes for OMP due to the
dimensionality of the data.

• VBB Midi : This dataset is based on openly accessible public trans-
portation time-tables provided by the Verkehrsverbund Berlin Bran-
denburg (VBB)1. As data points we used a subset of 352 train and
metro stops in Berlin and defined the distance of two stops as the
shortest possible trip between them using the Berlin public transporta-
tion system including bus, train, or metro. The supervised learning

1http://daten.berlin.de/datensaetze/vbb-fahrplan-2013
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Figure 6.5: VBB Midi data set with classes meaning districts marked with
different colors. The train, tram, and bus connections are shown and stations
correspond to diamonds.

task is generated by using the 12 administrative districts of Berlin as
class labels. Data are non-Euclidean and the distances are preprocessed
using clip. See Figure 6.5 for the train, metro, and bus lines for the
whole area.

Training takes place using one prototype per class and all data points in the
training set.

In Table 6.6 the classification results, sparsity, Rissanen’s minimum de-
scription length, and entropy are displayed. Interestingly, the classification
accuracy is excellent for both data sets provided original kernel RSLVQ is
used, while the accuracy deteriorates quite a lot for approximations for the
VBB Midi data set due to its high intrinsic dimensionality. In contrast, the
artificial data set allows a good approximation of the prototypes, with a
drop in accuracy only for the two heuristic approximations. This indicates
that more fundamental mathematical methods are better suited to find a
close approximation of the prototypes, as can be expected due to the explicit
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Figure 6.6: Two dimensional artificial data set with prototype locations
(crosses) and the respective approximation (big symbols). The exemplars
used to represent the approximated prototypes are shown via filled sym-
bols. In addition, some prototype approximations cause errors, highlighted
by black circles around the misclassified points.
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mathematical modeling of the objective. Still, the Kapprox-approximation
gives reasonable results in both cases.

Interestingly, the exemplars which are used to represent the prototypes
are qualitatively very dissimilar for the different approximation methods.
For the artificial data set, only the 1-approximation searches exemplars from
the class centers. All other approximations select exemplars which are lo-
cated more at the class boundaries. Further, the number of exemplars which
are necessary to obtain a good approximation is higher than for the 1-
approximation. A similar conclusion can be drawn in the VBB Midi data set,
see Figure 6.7, where the central part of the transportation map is displayed.
For the 1-approximation, the prototypes and exemplars are located in the
center, but distortions are observed for the other techniques. In particular
the two techniques based on mathematical optimization, OMP and MEB,
put exemplars at the boundaries of the receptive fields, as indicated by the
encircled points. Interestingly, the prototypes itself which are displayed as
closest exemplar due to the non-Euclideanity of the data set are often located
at central positions of the traffic map, hence we would expect those to be
representative as concerns centrality of the traffic stops. Note that bus lines
are not displayed since these are too many. Nevertheless, bus lines often
account for short distances of stations in particular at class boundaries, such
that misclassifications can easily occur.

6.7 Discussion

We have investigated kernel robust soft LVQ and the possibility to obtain
sparse solutions, by means of different approximation schemes applicable
while or after training. These methods aim at an improved sparsity of the
classifier, resulting in an enhanced interpretability of the results, thus ad-
dressing one of the most severe drawbacks of kernel RSLVQ.

Interestingly, it is indeed possible to obtain sparse representations of high
accuracy for all but one data set within a benchmark suite, however, the
optimum method varies. Very simple techniques such as an approximation
by the closest exemplars seem to work as well as more complex optimization
approaches such as provided by OMP or MEB. The accuracy of MEB and
OMP can be better due to their explicit mathematical minimization of the
representation error, but they use exemplars located at class boundaries due
to the used mathematical formalism. Hence it is not clear whether they are
more interpretable. A higher number of exemplars is necessary to describe the
class boundaries, while simple heuristics use exemplars at central positions
of the classes. We have proposed first quantitative measures to evaluate
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kernel RSLVQ Kapprox-approximation Khull-convex hull OMP MEB sparse training
Kapprox=1 Kapprox=10 Khull=1 Khull=10

Misclassifications
VBB Midi
clip 0.00 22.73 21.45 43.75 14.77 15.62 17.33 18.18
flip 0.00 29.55 20.45 38.35 18.47 21.31 17.05 12.50
Artificial data 0.00 6.67 0.00 33.33 0.00 0.00 0.00 3.33

Sparsity
VBB Midi
clip 29.33 1.00 10.00 1.00 9.92 4.08 7.00 14.42
flip 29.33 1.00 10.00 1.00 9.92 1.75 7.25 13.42
Artificial data 10.00 1.00 10.00 1.00 10.00 2.00 4.33 4.00

Rissanen’s minimum description length
VBB Midi
clip 18.22 25.01 21.68 45.43 18.35 18.35 23.24 20.63
flip 18.21 29.60 22.60 42.41 20.41 24.84 23.91 20.46
Artificial data 1.47 5.15 1.47 29.83 1.47 3.50 1.78 2.88

Entropy
VBB Midi
clip 9.63 5.64 7.51 5.10 8.90 8.07 6.96 9.02
flip 5.54 4.34 6.35 3.72 5.04 3.61 3.29 4.48
Artificial data 2.22 1.53 2.22 1.70 2.22 2.00 1.57 2.45

Table 6.6: Results of kernel RSLVQ and diverse sparse approximations on two illustrative examples.
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Figure 6.7: Central part of the VBB Midi data set with classes meaning
districts marked with different colors. Prototypes are represented by their
closest exemplar, the data being non-Euclidean, displayed as a star. Further,
the exemplars which are used to represent the prototypes, are marked with
big circles. Points correspond to diamonds. In addition, train and tram con-
nections are shown, but no bus connections. Misclassifications are indicated
by color codes of the stations.
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the usefulness of the results as regards interpretability, relying on Rissanen’s
minimum description length and the entropy.

Using these techniques, we have taken a further step to bring kernel
RSLVQ towards efficient methods, which preserve the interpretability of their
vectorial counterparts.
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Chapter 7

Conclusions

Learning vector quantization (LVQ) as proposed by Kohonen [61] more than
20 years ago still constitutes a popular and widely used classification scheme,
in particular due to its intuitive training algorithm and classification behav-
ior. The fact that the classifier represents its classification prescription in
a compact way in terms of a small number of prototypical representatives
enables its applicability in particular in the medical domain, where human
insight is often crucial, or in online learning scenarios such as online vision
systems where a compact representation of the already gathered information
is required for further adaptation [1, 8, 59, 23, 58]. While original LVQ has
been proposed on heuristic grounds, mimicking learning paradigms in biolog-
ical systems, quite a few variants have been proposed in the last years which
can be derived based on mathematical cost functions.

In this thesis, we have focussed on two variants. Generalized LVQ (GLVQ)
[81] relies on a cost function which can be linked to large margin classifiers
[85], enabling a particularly robust classification scheme. As an alternative,
robust soft LVQ (RSLVQ) models the data in terms of a mixture of Gaussians
in a probabilistic framework. Training can be derived thereof as likelihood
ratio optimization [88]. The formulation as cost function optimization al-
lows to easily integrate a larger flexibility into the prescriptions such as the
concept of metric learning [85, 88]. We have used this flexibility to extend
the techniques towards even more general forms, in particular LVQ variants
which can deal with arbitrary proximity data. This way, we followed the
lines of a few approaches which have been developed in the last years to
extend LVQ schemes or, more generally, prototype based approaches beyond
the vectorial setting, see for example [62, 20, 28, 39, 14, 76, 71].

Starting from these approaches, within this thesis, we particularly tackled
the following central questions in this realm:

• How to devise a LVQ technique which stems from a clear probabilistic
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model and which can be used for general proximity data? In Chapter 3
we proposed kernel RSLVQ as a solution to this problem.

• In how far do the diverse methods, which have been proposed in the lit-
erature, differ? Do they have a common ground? In Chapter 4, we for-
malized a general framework based on the underlying pseudo-Euclidean
embedding, which enables a clear description of the differences and the
similarities of kernel and relational methods which integrate a smooth
prototype adaptation into LVQ for proximities. In particular, we clari-
fied a crucial difference of kernel and relational approaches, which does
not only consist in the interface to the data like dissimilarities ver-
sus similarities, but, more severely, in different numeric optimization
methods, namely gradients with respect to the prototypes or their co-
efficients, respectively.

• How to avoid the squared complexity of training of these techniques? In
Chapter 5, we elucidated the Nyström technique, which has been used
already before in this context, and which can be directly transferred to
kernel RSLVQ. We substantiated this approximation technique with a
method which enables to test prior to training whether the Nyström
approximation is likely to work. Since the full data and learning ca-
pacity is often not available before training, or full training is costly
provided large data sets are dealt with, this question can be of crucial
relevance for the choice of the used method.

• How to maintain sparse, interpretable models? In Chapter 6 we dis-
cussed, that this question constitutes a core issue in LVQ schemes,
which are often picked due to their intuitive and compact model in the
vectorial setting. Albeit a few sparse approximation schemes have been
proposed before in particular in the context of learning for big data [39],
an extensive investigation how to provide and evaluate approximations
has been missing in the literature. We addressed the problem of sparse
approximations elucidating the properties and behavior of a variety of
different techniques.

Together, these findings form a large step towards efficient and robust LVQ
technology for general proximity data.

Note that LVQ schemes are in some sense complementary to popular clas-
sification schemes as provided for example using support vector machines
(SVM). While both techniques constitute large margin approaches thus pro-
viding excellent generalization ability, one of the strengths of SVM is its
very robust behavior due to a convex cost function with unique solutions.
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LVQ, on the contrary, typically possesses local optima, and optimization us-
ing gradient techniques is usually necessary. However, while SVM represents
models in terms of support vectors, which constitute points at the boundary,
the number of which typically scales with the size of the training set, LVQ
represents solutions in terms of few typically prototypes only, resulting in an
improved interpretability and classification time. On the down-side, SVM
can often represent the boundaries in more detail because of its focus on the
boundaries, while LVQ classifiers stay with more simple models. Because of
the need of interpretable models in domains such as biomedical applications
where the ultimate responsibility lies with the human applicant, however,
sparse interpretable models such as LVQ classifiers enjoy an increasing pop-
ularity among practitioners.

SVM has one severe benefit as compared to classical vectorial LVQ. Data
are addressed in terms of kernel values only, such that the kernel constitutes a
canonic interface based on which more general data structures can be treated.
Based on this observation, structure kernels have been designed with great
success for application areas involving complex structures such as biomedical
data analysis or text processing [29, 26]. By extending LVQ to proximities,
as investigated in this thesis, this gap is closed also for LVQ, since it becomes
suitable not only for kernels, but also for more general proximity data. How-
ever, the question of efficiency and interpretability are crucial in this con-
text, since they address two of the benefits because of which practitioners
choose prototype-based variants in the first place instead of alternatives such
as SVM. The theoretical as well as experimental findings demonstrate that
LVQ for proximities provides an efficient classification technology for general
data structures which is competitive to SVM and which can maintain the
benefits of original vectorial LVQ such as sparsity in many cases.

The work as conducted in this thesis also opens the way towards a number
of future perspectives. Large parts of this project have been conducted under
the umbrella of the DFG research grant DiDi – Discriminative Dimensionality
Reduction. Roughly speaking, this topic deals with the question how to
devise mechanisms which enable the visualization of data guided by certain
discriminative criteria for example visualization of medical cases as concerns
a certain disease which might be present or not. One open problem in this
context is how to visualize non-vectorial data in a discriminative way. LVQ
variants provide one possible remedy for this problem. These methods enable
a choice of representative prototypes which are particularly discriminative
for a given task. Hence one can represent data by means of their relation to
these prototypes, ending up in a discriminative vector of distances to these
prototypes, which can easily be displayed using standard techniques.

Another topic which has been addressed in this thesis and which is of
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great practical relevance concerns the evaluation of classifiers or, more gen-
erally, machine learning techniques. For decades, the classification accuracy
has been the almost only criterion based on which classifiers have been com-
pared – whereby the way in which the accuracy is evaluated can differ, re-
ferring to the simple classification error, a receiver operating characteristic
curve, the F-measure, and so forth. However, this accuracy is partially an
academic measure, since machine learning tools are always used within a
greater context. Here, not only the performance for a very specific task, but
also the classifier robustness, its provision of auxiliary information and in-
terpretability, its ability of lifelong adaptation, its easy maintainability, its
communicability, and so forth constitute important aspects based on which
the technology is judged in the long run [79]. These properties, are however,
often very hard to quantify, such that their integration into machine learning
tools is difficult. We have made an attempt to quantify in how far the ob-
served models provide representative prototypes and hence interpretability
of the results. This is along the lines of other recent attempts [3], opening
up new ideas for this important question.

Another point, which has only been touched in this thesis, lies at the
ground of an open issue for both, theory and practice. With RSLVQ, we
have considered a probabilistic model, and extended this model towards a
kernel space. A pseudo-Euclidean embedding even enables its relationaliza-
tion, meaning it can be technically applied to every symmetric proximity
matrix, even if this is not a valid kernel, meaning not Euclidean. This is of
great practical relevance since many concrete proximities or even distances
are non-Euclidean such as alignment distances in bioinformatics or dynamic
time warping for time series processing. This opens the question about what
a valid probability model for such data is, since the pseudo-Euclidean space
does not provide such an interpretation. We have avoided this problem by
referring to kernels only and suitable kernel corrections for this setting, how-
ever, a more fundamental solution which enables a generic probabilistic in-
terpretation would be desirable. Note that, in parts, a restriction to discrete
values only within median variants can solve this dilemma [70], but discrete
methods usually pay the price of a reduced representation capability and
complex numeric optimization.
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