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Zusammenfassung

Die vorliegende Arbeit befasst sich mit visueller, explorativer Datenanalyse auf
Basis des Berechenbarkeitsparadigmas der sogenannten Schwarmintelligenz. Der
Begriff Schwarmintelligenz bezeichnet die Menge aller Informationsverarbeitungs-
techniken, die das Verhaltung von sozialen, schwarmbildenden Tieren imitieren.
In Analogie zur Natur konnen dadurch effektive, parallelisierbare und dezentrale
Problemloser realisiert werden, die beispielsweise das Handlungsreisendenproblem
mittels simulierter stochastischer Ameisen l6sen.

Topographierhaltende Abbildungen konstruieren eine Abbildung von hoch-
dimensionalen oder komplexen Daten auf einen niederdimensionalen Ausgaberaum
und versuchen, die Topographie der Daten hinreichend gut zu erhalten. In dieser
Arbeit wird ein neuartiger Algorithmus zur topographieerhaltenden Abbildung von
vektoriellen und metrischen Daten vorgestellt. Die Schwarm-Organisierte Projek-
tion (SOP) wurde durch verschiedene Techniken aus dem Gebiet der Schwarmintel-
ligenz inspiriert. Das bedeutet, dass das Lernverfahren der SOP Verhaltensmuster
von sozialen Tieren imitiert, z.B. Vogelschwarme oder stigmergische Kommunika-
tion von Ameisen.

Die vorliegende Arbeit fiihrt in die Thematik topographieerhaltender Abbild-
ungen ein und behandelt die hervorstechendsten FEigenschaften der wichtigsten Ver-
fahren. Die Qualitdt topographieerhaltender Abbildungen héngt entscheidend vom
gewahlten Konzept der Nachbarschaft ab. Fokussierende Verfahren basieren auf
einem absinkenden Nachbarschaftsparameter, um globale Eigenschaften der Daten
zuerst festzuhalten und lokale Eigenschaften spater. Sinkt der Nachbarschafts-
parameter zu schnell oder zu langsam ab, fiithrt das in der Regel zu Falschdar-
stellungen der inharenten Datenstrukturen.

Die bekanntesten fokussierenden Algorithmen sind die Selbstorganisierende
Merkmalskarte (Batch-SOM), sowie die Curvilinear Component Analysis (CCA).
Nicht-fokussierende Algorithmen verwenden ein festgefligtes Konzept von Nach-
barschaft, das sich wahrend des algorithmischen Lernvorgangs nicht &ndert.
Auch hier gilt, dass eine falsch gewéhlte Parametrisierung des Nachbarschafts-
konzepts zu Falschdarstellungen der hochdimensionalen Daten fiihrt. Besonders
erwahnenswerte nicht-fokussierende Verfahren sind Ant-Based Clustering (ABC)
und Stochastic Neighbour Embedding (SNE). Eine formale Analyse des Ant-
Based Clustering Verfahrens offenbart eine Verbindung zur Selbstorganisierenden
Merkmalskarte. Dies kann anhand von charakteristischen Zielfunktionen in beiden
Verfahren gezeigt werden. Die Unfahigkeit von ABC, brauchbare topographieer-
haltende Abbildungen zu erzeugen, kann dadurch erklart werden, dass die korrekte
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Version der Zielfunkionen fiir die Selbstorganisierende Merkmalskarte bekannt ist.
Es stellt sich heraus, dass die Zielfunktion im ABC Algorithmus Storterme enthélt.

Die Schwarm-Organisierte Projektion (SOP) wurde eingefiithrt, um das Para-
metrisierungsproblem fokussierender Algorithmen zu losen. Dabei soll fiir eine
gegebene Datenmenge ein Absinken des Nachbarschaftsradius automatisch abge-
leitet werden. SOP adaptiert das Absinken des Radius selbsttétig, wobei sich das
Absinken nach dem Verhalten des Schwarms richtet. Anhand einiger ausgewé&hlter
Datensétze kann gezeigt werden, wie sich SOP im Vergleich mit anderen Verfahren
verhalt, die auf einer fest vorgegebenen Parametrisierung basieren. SOP wird
mit Selbstorganisierenden Merkmalskarten (Batch-SOM), Curvilinear Component
Analysis, Ant-Based Clustering und Stochastic Neighbour Embedding in mehreren
Testreihen verglichen. SOP erzeugt hinreichend topographieerhaltende Abbild-
ungen, wahrend die Vergleichsalgorithmen bei einigen Datenséatzen ihre Pathologien
offenbaren. Die Ergebnisse von SOP weichen geringfiigig von den besten Ergebnis-
sen der Vergleichsverfahren ab, bzw. tlibertreffen deren Qualitét.

Die Verwendbarkeit von SOP wurde durch zwei praktische Anwendungen de-
monstriert. Die Schwarm-Organisierte Quantisierung (SOQ) ist eine Abwand-
lung der SOP, die auf vektoriellen Daten arbeitet und eine geringere Rechenkom-
plexitat aufweist. SOQ projiziert Fundamentaldaten borsen-notierter, amerikanis-
cher Unternehmen auf einen niederdimensionalen Ausgaberaum zwecks visueller
Analyse der gegebenenfalls vorhandenen Klassen von Unternehmen. Die ge-
fundenen Klassen lassen statistisch signifikante Riickschliisse auf den Borsenverlauf
der betreffenden Aktien zu.

Die zweite Anwendung beschéaftigt sich mit microRNAs, einem neuen Forsch-
ungsgebiet der molekularen Biologie. MicroRNAs sind kleine Fragmente von RNA,
die Gene regulieren. Die Menge der von microRNAs regulierten Gene wurde mit
SOP untersucht und in homogene Klassen gleichartiger Gene segmentiert. Damit
soll die Frage beantwortet werden, welche Arten von Genen iiberhaupt durch
microRNAs reguliert werden. Die so erzeugten Genklassen wurden auf ihre Sig-
nifikanz hin mittels einer externen Validierungsmethode hin untersucht, der so-
genannten Overrepresentation Analysis. Die mittels SOP erzeugten Klassen sind
signifikanter als die mit Ward’s Linkage und k-Means hergeleiteten Genklassen. Ein
externer Experte konnte zudem den Nutzen und die Neuartigkeit des so gewonnenen
Wissens bestatigen.
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Chapter 1

Introduction

1.1 Objective

In the last decades, the information technology has produced a rapidly increasing
amount of data, as well as more complex types of data. A particularly interest-
ing and valuable field for research is “Knowledge discovery in databases”, i.e. the
automated retrieval of interesting patterns in large or complex data sets. Compa-
nies want to learn more about their customers to better target advertisement or
to prevent fraud. The financial sector wants to gain insight into the developments
of the stock market. Scientists from many domains search for interesting patterns
in data observed in experiments, i.e. generating hypotheses about underlying pro-
cesses. In medicine, genetic and other data from patients is searched to find the
cause of diseases and develop treatments. Complex data structures arise in many
life sciences, e.g. protein data for pharmaceutical drug design or the understand-
ing of biochemical systems. Such data collections increase the understanding of
molecules’ behaviour and enable the generation of novel research hypotheses in
molecular biology for instance.

All these information technologies have led to vast amounts of non-trivial data
whose precise and reliable analysis requires a considerable amount of human inter-
vention and expertise and, therefore, leads to a cost factor of substantial economic
relevance. From a formal computer science perspective, the question arises how
knowledge might be extracted from data. A central aspect is to unveil hidden reg-
ularities in given complex or high-dimensional data. Thus, raw data is hopefully
transformed into representations conceivable to the human mind. Several terms
relating to this challenge have been coined in the last decades, such as pattern
recognition, data mining, knowledge discovery, or exploratory data analysis.

For effective knowledge discovery, it is important to include the human in the
data exploration process and combine the flexibility, creativity and general knowl-
edge of the human with the arithmetic power of today’s computers. Thus, visual
data exploration is a promising approach to the knowledge discovery challenge.
The basic principle of visual data exploration is to present the data in some visual
form, allowing the human expert to get insight into the data, draw conclusions and
come up with novel hypotheses about the available data. Visual data exploration
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16 CHAPTER 1. INTRODUCTION

is especially useful when little is known about the data in beforehand, and the
exploration goals are vague.

A particularly interesting approach to visual data exploration is called topo-
graphic mapping, i.e. the creation of low-dimensional images from high-dimensional
or complex data. Topographic mapping methods typically depict data as low-
dimensional point clouds. Dense piles of low-dimensional points supposedly refer
to hidden regularities in the original raw data. Topographic mapping algorithms
may be realized by using principles from statistics, artificial neural networks and
swarm intelligence. Such projections are, for example, Principal Component Anal-
ysis, Sammon’s Mapping, Self-Organizing Maps and Curvilinear Component Anal-
ysis. These methods aim to preserve the proximity structure of the data, such that
similar data objects are visualized as nearby low-dimensional points. Dissimilar
data objects are supposed to become faraway points in the low-dimensional output
space.

Most topographic mapping algorithms rely on a pre-defined concept that in-
dicates which proximity relations are to be preserved in the output space, and
which are not. Such a concept might be given by means of neighbourhood graphs,
neighbourhood radiuses or geometrical relations. For a given data set, a matching
concept for preservation of important structures is, however, an unknown quantity
in beforehand. Thus, mismatching parametrization of topographic mapping algo-
rithms leads to misrepresentations of the patterns hidden in the raw data. In this
paper we present a novel approach for topographic mapping, which adapts itself
to the topographical structures of a data set. It is based on swarm intelligence,
i.e. the algorithm is guided by the flocking behaviour of numerous independent but
cooperating agents in a swarm. No critical parametrization for the construction of
meaningful topographic mappings is necessary.

1.2 Contributions

The main objective of this work is to provide a convenient answer to the question
how the swarm intelligence paradigm may contribute to unsupervised visual data
exploration. The following aspects are considered in this thesis.

Unifying Framework

Swarm intelligence has been successfully applied for supervised search and opti-
mization tasks, e.g. Ant Colony Optimization meta heuristics [Dor92] for traveling
salesman problems. However, swarm intelligence methods have shown weak perfor-
mances when applied to unsupervised data analysis and clustering tasks. For ex-
ample, the widely adapted Ant-Based Clustering meta heuristics [DAGP89] [LF94]
was found to be not competitive in comparison with other techniques [HKDO5].
This thesis offers an explanation for the weak performance of Ant-Based Cluster-
ing algorithms. A unifying framework for several dimension reduction methods is
derived. This framework allows to explain the behaviour of Ant-Based Clustering
by means of other well-established algorithms. The connection between swarm in-
telligence and artificial neural networks is specified. Due to this, naive but effective
improvements of swarm intelligence methods were derived.
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Swarm-driven Guidance

A promising approach for unsupervised analysis of large and high-
dimensional data is visualization, i.e. the creation of a low-dimensional im-
age that reflects the data-inherent structures of interest. This is referred to
as topographic mapping. Most visual data inspection methods depend on a
crucial, pre-defined parametrization that determines which properties of the given
data are used for creation of low-dimensional images, and which are not. The
self-adjustment of such parameters is a main aspect of this work. We introduce
heuristics that adjusts its focus on proximities by means of swarm entities’
behaviour, instead of pre-defined and mismatching proximity concepts.
Furthermore, the behaviour of swarm entities indicates which regions in search
space are more promising and which are not. A novel method is proposed which
is based on swarm-driven search routines, in order to significantly decrease the
computational complexity when creating low-dimensional proximity images.

Evaluation

In the field of machine learning, the benefits of novel techniques are usually demon-
strated by means of test series and statistical evaluation of results. Appropriate
statistical tests are selected in order to assess the distributions of obtained per-
formance measures. This indicates whether the proposed topographic mapping
method leads to superior projection quality than conventional methods, or not. In
this work, the usefulness of arbitrary topographic mappings for visualization with
U-Matrix methods is investigated by means of geometry. A novel geometric ap-
proach for quality assessment of topographic mappings will be derived from these
insights.

Real-World Applications

The usefulness of the proposed methods is demonstrated on real-world data. An
application from molecular biology illustrates how the use of topographic map-
pings leads to the discovery of novel knowledge concerning the cellular regulation
mechanisms in genetics, i.e. which types of genes are actually regulated by micro
RNA. Another application illustrates the use of our proposed method on the field
of financial fundamental analysis.

1.3 Outline of the Thesis

This doctoral thesis is structured as follows. Chapter 2 gives a brief insight into the
broad field of knowledge discovery with machine learning algorithms. Furthermore,
the need for robust visual data inspection methods is outlined. Chapter 3 gives
an overview on the most important topographic mapping algorithms. Strengths
and weaknesses of these approaches are briefly illustrated. The main focus is on
nature-inspired methods like Self-Organizing Maps (SOM) and Ant-Based Cluster-
ing (ABC). Additionally, popular conventional statistical methods are described.
Chapter 4 introduces the Swarm-Organized Projection method, a novel topographic
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mapping algorithm based on the swarm intelligence paradigm. Furthermore, the
Swarm-Organized Quantization is proposed as a fast method for vectorial spaces.
Chapter 5 analyzes and assesses the relevant topographic mapping algorithms. The
behaviour of Ant-Based Clustering finally becomes explainable. Chapter 6 eval-
uates the abilities of Swarm-Organized Projection by means of cardinal cluster
problems. In Chapter 7 the proposed methods are applied on biological data that
is concerned with regulation of cellular activity of genes by micro RNA. Swarm-
Organized Projection retrieves several meaningful classes of functionally similar
genes regulated by micro RNA. Chapter 8 contains an application from a real-
valued domain for the proposed methods. Fundamental analysis of stock market
data is performed by means of Swarm-Organized Quantization. Finally, the results
are discussed and summarized in Chapters 9 and 10.



Chapter 2

Basic Principles

In this chapter, all topics that are essential for the understanding of this thesis are
presented in a brief yet formal manner.

2.1 Data

Vectorial Data

In the context of this thesis, it is assumed that an unknown stochastic process is
underlying a certain domain, e.g. stock market prices or genetic expressions. The
data X = {z1,...,2,} C D is a finite set of real-valued, D-dimensional observations
of this process, with D € IN. The set of all possible observations is called data space
D ¢ RP with the following operators:

e vector addition +: D x D — D
e scalar multiplication - : R x D — D
e norm |- | : D — RS

Each element z; € X is called a data vector and contains observations from D € IN
(random) variables. The data X is organized as matrix at which rows correspond
to data vectors, and columns contain variables. See Figure 2.1 for illustration.
Usually the Euclidean norm ||.|| is used, e.g. for induction of distances:

It is assumed that the data is not equally distributed in data space, but assembles
in or near lower-dimensional manifolds embedded in data space. A manifold is
a mathematical subspace that on a small scale (locally) resembles the Euclidean
space of a specific dimension, called the dimension of the manifold. However the
global structure of a manifold may be more complicated, e.g. the surface of a
sphere or a torus.

19



20 CHAPTER 2. BASIC PRINCIPLES

Figure 2.1: Real-valued data can be investigated both in terms of data vectors
(right) and in terms of variables (left). Typically, the number of vectors is much
higher than the number of variables.

Dissimilarity Data

Besides numerical vectors, more formalisms exist for representation of data. For
example:

e Strings represent sequences of symbols, i.e. identifiers of domain-specific en-
tities. For example, proteins may be characterized by strings of amino acid
identifiers [Alt97] [PKMOG6].

e Graphs and, as a special case, trees are popular representations of non-
vectorial data. Often molecules’ structure is represented as graphs in order
to model binding activities by graph alignment approaches. See [WHKKO07]
for example.

e Sets of symbols are suited for representation of unordered data, i.e. where
no hierarchical or successive relation is defined among elements. Sets (and
multisets) are widely used, for example, in text mining for representing terms’
occurances in a document [Ber03].

Such data structures usually does not meet the requirements of normed vector
spaces. Scaling and addition are not meaningfully defined on strings and graphs
for instance. However, meaningful measures of (dis)similarity can easily be defined
on such data. For example, the dissimilarity of string data is usually quantified
by means of an edit distance, e.g. the Levenshtein distance [Lev66]. Measures of
(dis)similarity have been defined on sets, e.g. Jaccard similarity [JacO1] and Dice
coefficient [Dic45].

A similarity measure is a symmetric function s : X x X — Rg that assumes
its maximum values on identical elements. A dissimilarity measure is a function
d: XxX— IR(J)r that fulfills the first two following conditions.



2.1. DATA 21

1. Identity: d(z;,z;) =0 for all x;
2. Symmetry: d(z;, z;) = d(zj,z;) for all z;, z;
3. Triangle inequality: d(x;,xy) < d(xj, xj) + d(xj, z) for all ;, x;, xp

A dissimilarity measure is called (metric) distance function if it fulfills the third
condition. Metrics are more demanding than (dis)similarity functions. Many sim-
ilarity functions are convertible into dissimilarity functions, and vice versa. For
example, certain similarity functions s : X x X — [0, 1] are easily transformed into
dissimilarities d =1 —s. In case of s : X X X — Rg the transformation d = l—is is
more appropriate. See [OLHO8] for details. However, (dis)similarities usually are
not convertible into metrics because of the missing triangle inequality.
Dissimilarity data refers to a set X = {x1,...,x,} of data objects where pair-
wise dissimilarities d : X x X — IR(J)r are available. Vectorial addition and scalar
multiplication may not be defined on dissimilarity data. Obviously, vectorial data

is also dissimilarity data. See Figure 2.2 for illustration of pairwise dissimilarities.
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Figure 2.2: Matrix of pairwise dissimilarities among 194 proteins depicted as shades
of gray values [PKMO06]. Three distinct classes are shown.

Classes

In the context of this thesis, it is assumed that the set of data objects X consists
of disjoint classes Cf, ..., C with X = Ule C;. Fach class contains similar data
objects according to a meaningful notion of similarity. Objects of different classes
are supposedly dissimilar (according to the same concept of similarity). However,
the classes are usually unknown in beforehand when trying to analyze a data set.
A function ¢ : X — {C1,...C} } that assigns class labels (or classes) to data objects
is called classification.
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2.2 Graphs

A particularly useful topic is concerned with graphs. Formally, a graph is a pair
of sets (V, E). The set V C X of nodes (vertices) represents the underlying data
objects. The set of edges £ C V x V represents a similarity or dissimilarity
relation among nodes. A graph is undirected iff the set of nodes is symmetric, i.e.
for all (x;,x;) € E exists (xzj,x;) € E. Otherwise a graph is directed. Graphs
are represented graphically by drawing a dot for every node, and drawing an arc
between two nodes if they are connected by an edge. If the graph is directed,
the direction is indicated by drawing an arrow. A graph in which any two nodes
are connected by exactly one path is referred to as tree, i.e. any connected graph
without cycles is a tree.

Figure 2.3: (a) Assigning elements of data space to nearest points z1, ..., z, defines
Voronoi cells. Borders shown as lines. (b) Delaunay graph represents adjacency of
Voronoi cells.
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Delaunay Graph

A particularly interesting topic is concerned with Voronoi tessellations [Vor(07]
and its dual, the Delaunay graph. Let X C D denote a finite set of points
from a normed vector space D. For each z; € X the corresponding Voronoi cell
V(x;) = {z € D with Vz; € X : ||z — 24]| < ||z — ||} comprises the elements that
are closer or equally close to z; than to any other z; € X. In the corresponding
Delaunay graph (X, E) any nodes z;, z; are connected with an edge iff the Voronoi
cells are adjacent, i.e. V(z;) N V(z;) # 0. The Delaunay graph is particularly
useful for representing the proximity structure of a data set. See Figure 2.3 for
illustration.

Spanning Trees

Given a connected undirected graph (V, E), a spanning tree of that graph is a
subgraph which is a tree and connects all the nodes. A weighting function w : E —
R¢ with V(2;,2;) € E : w(w;, ;) = w(x;,z;) might assign a weight to edges in
order to express the (un)favorability with respect to a given problem. The weight
of a spanning tree then follows as the sum of the weights of its edges. A minimum
spanning tree (MST) is a spanning tree whose weight is less than or equal to the
weight of every other spanning tree. The MST to a given graph is obtained, for
example, by Prim’s algorithm [Pri57].

2.3 Knowledge Discovery

KDD is a stepwise process with the aim of turning raw data into knowledge. Ultsch
[Ult00b] and Fayyad [FPSS96] agree with the concept of knowledge as formal ab-
straction of “data in a certain language that is understandable for humans as well
as usable by symbol-processing machines”. To facilitate the KDD process, it was
formalized by breaking it into a number of sequential steps:

Interpretanon /
Evaluatmn

Data Mining

.
N Transformed

|
HH.HH : Preprocessed Data Data
i

Preprocessing

Figure 2.4: Knowledge discovery is a stepwise process including the data mining
task [FPSS96]. The KDD process can involve significant iteration and can contain
loops between any steps.
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Appraisal and Preparation

Appraisal refers to the task of finding out what kind of data is available and how
it can be processed for further analysis. The aim is to provide a documentation
of both meta-knowledge - such as origin, physical source, and access methods and
protocols for the data - and rough properties of the data, e.g. descriptive statistics.

Data preparation refers to the task of correcting errors and generating new vari-
ables from available raw data in order to facilitate the discovery and extraction of
patterns. Preparation techniques are used for data standardization and treatment
of missing values for instance. General guidelines can be found in [Pyl99].

Visual Data Exploration

Visual data exploration is the process of presenting the data in a visual form in
order to apply humans’ perceptual abilities to the large data sets. For example,
projections are used to adjust high-dimensional numerical data for low-dimensional
scatter plots, e.g. by means of Multidimensional Scaling [Tor52] [Kru64]. Visual-
ization of data allows the human to get insight into the data and come up with a
hypothesis about the underlying structure. The hypotheses can be verified auto-
matic methods from the fields of statistics and machine learning. See [Kei02] for a
brief survey on visual exploration methods.

Cluster Analysis

Cluster analysis is the task of finding intrinsic groups, so-called clusters, in a
data set. Clusters are often interpreted as point clouds in a high-dimensional space
whereas each point represents a single data object. See [JMF99] for a compre-
hensive survey on clustering methods. Cluster analysis can be realized by means
of visual data exploration, if high-dimensional cluster structures are depicted and
(manually) classified in two- or three-dimensional spaces.

Knowledge Conversion & Validation

Knowledge conversion is the task of putting found patterns down on a symbolic for-
malism that is understandable to humans and machines as well [UGKL93]. Popular
formalisms are rules, frames and trees. Cluster analysis and knowledge conversion
techniques are to be combined in order to extract and express patterns for both
humans and machine-driven interpreters, e.g. knowledge-based systems using logic-
based programming. A knowledge conversion method derives, for instance, typical
patterns of the underlying clusters and formulates these point cloud patterns as
decision rules or trees.

Finally, validation refers to the task that evaluates the validity, quality and
accuracy of the obtained knowledge. A machine-driven interpreter evaluates the
knowledge according to the amount of patterns that can be retrieved from the
original input data.
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2.4 Statistics

Density Estimation

A probability density function f : D — [0,1] of a random variable is a function
which describes the aggregation of probability at each point. For the sake of simplic-
ity, the probability density function will be referred to as density. The probability
of a random variable falling within a given set is given by the integral of its density
over the set. Densities are usually associated with continuous univariate distri-
butions. However, the definition of density comprises discrete and multivariate
spaces as well. Densities describe how univariate or multivariate random variables
are distributed in data space.

Let X = {z1,...,2p,} C D denote a finite set of data vectors, i.e. observed
data. Density estimation means the construction of an estimate of an unobservable
underlying density function, based on observations xi,...,2,. An infinitely large
population is distributed according to the underlying density function, at which
data x1, ..., T, is thought of as a random sample from that population.

Kernel density estimation is a popular method for graphical investigation of
variables’ distributions. It associates to each data point x1, ..., z,, a so-called kernel
function K, where K : D — [0, 1] is usually chosen as a symmetric probability
density function satisfying the condition ffooo K(z)dr = 1 in case of univariate,
real-valued data space D = IR. In this context, kernels are assumed to be of

gaussian shape:
1

_1g
K(z) = Nor e 2

The density estimate is the properly normalized sum of these functions. For

the univariate case, the density estimate f; follows as Formula 2.1. From the

definition of K follows that f itself is a density function and, furthermore, inherits

all the continuity and differentiability properties of K. The amount of structure is

determined by the bandwidth 4 € R™, in this case the standard deviation of the

Gaussian. The bandwidth significantly affects the roughness or smoothness of the
density estimate. See Figure 2.5 for illustration.

2

Formula 2.1

fﬁm)-%ék’(ﬁ”)

Bayesian Probabilities

Bayes’ theorem [Bay63] shows the relation between a conditional probability p(C|x)
and its inverse p(z|C'). Let p(C|z) denote the probability for classification C' given
the observation x such that

p(Cla) = P

at which p(C') denotes the prior probability of classification C' to occur. The con-
ditional probability p(x|C') for observation x to occur in class C' is based on a model
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Figure 2.5: Density Estimation performed on random data. (a) Data in R2. (b)
Kernel density estimate with small bandwidth. (c) Kernel density estimate with
large bandwidth.
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that states how the observations are distributed in class C'. The prior probability
p(z) states how all observations are distributed, and acts as normalization term.
Bayes’ theorem is useful for classification according to observations.

c(x) = arg mgxp(0|x)

Statistical Hypothesis Testing

A hypothesis test is a method that attempts to refute a specific claim about a
domain parameter based on the experimental data, e.g. two available sets of sam-
ples (experimentally derived data objects) were drawn from a single underlying
domain. To reject a hypothesis is to conclude that it is false. However, to accept
a hypothesis does not mean that it is true, only that there is not enough evidence
to conclude otherwise.

A common form is the null-hypothesis, i.e. the test is usually stated in terms of
both a condition that is doubted (null hypothesis) and a condition that is believed
(alternative hypothesis). Statistical tests are based on test statistics, i.e. numerical
summaries of data that reduces the data to one or a small number of values. So-
called p-values are derived on the basis of test statistics. A p-value is the probability
of obtaining a test statistic by chance that is at least as extreme as the one that was
actually observed, assuming that the null hypothesis is true. The null hypothesis is
rejected if the p-value is less than the significance level a € [0, 1] which defines the
sensitivity of the test. The significance level indicates how often the null hypothesis
is approximately rejected when it is in fact true. See [JHK98] [Leh98] for an
overview on statistical tests.

The two-sample Student’s t-test [Stu08] is a parametric test that relies on nor-
mally distributed samples M, M’. The null hypothesis assumes that the underlying
means of samples M, M’ are actually equal. If the null hypothesis is true, the test
statistic ¢ follows Student’s t distribution [Stu08], at which s, s’ denote the samples’
standard deviations with cardinalities n,n’.

M — M’
t -

2 2
e s
n+n’

The two-sample Mann-Whitney U-test [MW47] is a non-parametric test that is
to be preferred over Student’s t-test in case of equally shaped, non-normal distri-
butions of approximately equal variance. The null hypothesis in the U-test is that
the two populations M = {mq,...,mp}, M = {m/,...,m] } are drawn from a single
underlying domain and, therefore, that their probability distributions are equal.
Test statistics U approximates a normal distribution.

n X 1 @ my<m
U:ZZ{O . else ’

i=1 j=1
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The Kolmogorov-Smirnov test (KS test, [Smi48]) is a nonparametric test of
equality of one-dimensional probability distributions used to compare a sample
with a reference probability distribution (one-sample KS test) or, in this context,
to compare two samples (two-sample KS test). The KS statistic quantifies a dis-
tance between the empirical distribution functions of two sample sets M, M’. The
null distribution of this statistic is calculated under the null hypothesis that the
samples are drawn from the same domain and, therefore, the same distribution.
The distributions considered under the null hypothesis are continuous distribu-
tions but are otherwise unrestricted. The KS statistic for two given cumulative
distribution functions F, F” is given as

Dn,n’ = Sup ’Fn((lI) - Fn’('r)|

and the null hypothesis is rejected at level « if holds:

nn'

—— Dy > K,
n+n n,n a

at which K, is found from Pr(K < K,) = 1 — a by means of Kolmogorov
distribution K [Smi48§].

Standardization

Real valued data often comes from domains where variables have greatly varying
variances because of different scales. Variables with large variances are likely to
dominate the obtained distance structure, e.g. when using Minkowski metrics.
To overcome this problem, each variable is linearly transformed (standardized)
such that the estimated variance is the same on all variables. The Z-score scheme
transforms a variable’s values 2 < *># with mean p and standard deviation o.
For non-normal distributed variables, a meaningful variance ¢ may be hard to
estimate. Instead, a (robust) min/max-standardization transforms a variable’s
values x < P —— with robust estimates vin, Vinge for minimum and maximum
values. There is empirical evidence by Milligan and Cooper [MC88] that min/max-
standardization is to be preferred over Z-score, especially if variances of underlying
distributions is hard to estimate.

T —Vmin

2.5 Machine Learning

(Un)supervised Learning

There are two major settings in which a classification function c is to be learned. In
case of continuous-valued ¢ : D — R, supervised learning is referred to as regression.
Prediction of class labels with ¢ : D — {C1,...,Ck} is called classification. In
supervised learning the values of ¢ are known for a finite set of samples {1, ..., z,},
called the training set. It is widely assumed that if a hypothesis ¢’ can be found that
closely agrees with ¢ on the training set, then ¢’ will be a good guess on the entire
domain DD, especially on large training sets. For details on supervised learning see
[Mit97].



2.5. MACHINE LEARNING 29

In contrast to that, unsupervised learning constructs a hypothesis ¢’ without any
given function values of ¢. Unsupervised learning seeks to determine the structural
patterns of the training set, and expresses found patterns as hypothesis. One par-
ticularly interesting form of unsupervised learning is cluster analysis (clustering),
i.e. finding subsets of similar data objects. For details on unsupervised learning
see [Mit97].

(Un)supervised Learning is often accomplished by means of an objective func-
tion. An objective function E evaluates the usability of a hypothesis and, further-
more, yields the construction of ¢ by means of optimization of E. See [JMF99]
[Mit97] for details. The Expectation-Maximization algorithm [DLR77] is a pop-
ular method for estimation of models’ parameters, e.g. when empirical data is
represented as mixture of normal distributions.

Hierarchical Clustering

Cluster analysis (clustering) is an unsupervised learning task that is concerned with
the construction of a classification function ¢ : X — {C4, ..., Cx} in order to divide
the data into homogeneous classes. In hierarchical clustering the data are not
partitioned into a particular cluster in a single step. Instead, the data is iteratively
partitioned which may run from a single cluster containing all objects to n clusters
each containing a single object. See [JMF99] for a review of methods. Hierarchical
Clustering may be classified into agglomerative and divisive methods, at which
agglomerative are more commonly used. Agglomeration refers to a series of fusions
of single objects {x1,...,z,} into larger clusters, until a single cluster is obtained.
At each stage, the two clusters C,C’ C {x1,...,z,} which are closest together are
merged, i.e. with minimum d(C, C"). Dendrograms represent the merging made at
each successive stage by a two dimensional diagram. For an example see Figure
2.6. There are several agglomerative methods that differ in the way how distance
between clusters is defined.

Ward’s clustering is one of most popular methods of hierarchical clustering,
which is known to produce reliable results in real-world applications. Ward [War63]
proposed a clustering procedure that seeks to form clusters which minimize the
“information loss” associated with each merging, in terms of an error sum of squares
criterion:

d(C,C") = ess(CUC") — ess(C) — ess(C”)
ess(X) = Z (zi — X)2

z,€X

Quantization

Quantization is the process of approximating a large range of values by a relatively
small, finite set of values called codebooks. Formally, a (vector) quantization q :
D — W assigns elements from the data space to a small set of codebook vectors
W ={wy,...,w;} C D by means of:

alw) = arg min |lo v
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Figure 2.6: Ward’s hierarchical clustering. (a) Dendrogram depicts two clusters.
(b) Ward’s objective function does not match the given cluster structure, which
leads to misclassifications of well separated clusters.
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Codebook vectors are supposed to follow the density underlying the data space,
i.e. more codebooks are located where density is high. Quantization is often used
for unsupervised classification (clustering) of vectorial data, by taking the content
of each codebook’s Voronoi cell as a single cluster. See Figure 2.7 for illustration.
The k-means method [Mac67] is the most popular algorithm for construction of
vector quantizations. Starting from an initial solution, the codebooks are itera-
tively updated in order to decrease a certain quantization error term, for example
E =3 ,cxllz—q(z)|?. See Algorithm 2.1 for details.

4

-2

-3
73 2 1 0 1 2 3 4

Figure 2.7: Many (blue) data vectors are represented by few (red) codebooks.
Quantization induces Voronoi cells.

Algorithm 2.1 k-means algorithm

1: function KMEANS(k, {x1,...,2,})

2 randomize W = {wy, ..., wi}

3 while - converged do

4 fori+ 1,...,n do

5: q(z;) <+ argming ew |lw; — x|p
6 end for

7 for j <+ 1, ...1,k: do

® wj el

9 end for

10: end while

11: end function
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Cluster Shapes

In literature it has been widely noticed that many cluster algorithms rely on ge-
ometric models with respect to the shape of obtainable clusters. See [DHSO01]
[ELLO1] for an overview. This means that the algorithm imposes a certain ge-
ometrical shape, spheres for instance, on the data in order to retrieve clusters.
Mismatch of geometrical shapes and clusters in data may lead to unpredicted re-
sults, despite a well-separated configuration of clusters in data. See Figure 2.6 for
illustration. The obtained results can, therefore, not be trusted until further eval-
uation is performed, for instance by means of visual depiction of high-dimensional
cluster structures in low-dimensional spaces.

’ Method H Criterion Preferred shape
Single Linkage nearest unbalanced clusters,
neighbour “chaining”
Complete Linkage || furthest compact clusters
neighbour of equal diameter
Ward minimum increase | spherical, ellipsoidal
in sum of squares | clusters of same size
k-means within-cluster spherical, convex
sum of squares decision boundaries

Table 2.1: Few algorithms and preferred cluster shapes according to [DHSO01]
[ELLO1].

2.6 Nature-inspired Computing

Many machine learning methods are inspired by principles found in nature. For
example, darwinian evolution theory [Dar59] yields an optimization paradigm pow-
erful enough to explain the creation and adaption of complex life forms. Another
example is the decentralized organization of tasks in large colonies of social insects
by means of stigmergic (indirect) communication. All these biological paradigms
have inspired many algorithmic solutions to mathematical problems.

Self-Organization

The term “self-organizing” was first introduced by the psychiatrist and engineer
W. Ross Ashby [Ash47]. Self-Organization means the ability of systems to adapt
their internal structures automatically to sensory stimuli without external guidance.
Here, some kind of mathematical model acts as system. Adaptation of structures
means adaption of the underlying mathematical model. The adaption is a function
of the system’s experience and its environment. In this context, the system is
some kind of mathematical model for the purpose of abstraction of spatial cluster
structures, i.e. clustering. Stimuli are presented as (numerical) data objects.
Self-organization has first been studied and described in physical and chemi-
cal research in order to explain the occurrence of macroscopic patterns based on
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processes on the microscopic level. This has been expanded by Bonabeau et al.
[BDT99] [CDF*01] in order to explain the behaviour of social insects. They ex-
plained that complex group behaviour can emerge from local interactions between
simple individuals. Self-organizing systems are neither in need for complex be-
haviour of individuals, nor do they rely on high order control mechanism.

Stigmergy

Biologist Grasse explained the complex behaviour of social insects by introducing
the concept of stigmergy [Grab59]. Several emergent group behaviours of social
insects could be explained my means of stigmergy, e.g. task coordination and regu-
lation in the context of nest reconstruction in termites. It could be shown that the
building activities of these insects do not depend on the workers but on the current
state of the nest itself. Any local state of nest construction triggers a response in
a worker which in turn modifies the local state to the next step. This continues
until a final or stable state of the nest is achieved. Termites use pheromones to
build their complex nests by following a simple decentralized rule set. Each termite
scoops up material from its environment, invests it with pheromones, and deposits
it on the ground. Termites are attracted to their nestmates’ pheromones and are
therefore more likely to drop their own material, e.g. mud balls. Over time this
leads to the construction of pillars, arches, tunnels and chambers. See Figure 2.8
for illustration.
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Figure 2.8: Stigmergic communication of termites [Dor01].
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Grasse derived the term stigmergy from the greek words stigma (mark, sign)
and ergon (work, action). It captures that an insect’s actions leave signs in the
environment. Other insects sense these signs and that determines their subsequent
actions. Formally, stigmergy is a mechanism of spontaneous, indirect coordination
between individuals or actions. A trace left in the environment by an action stimu-
lates the performance of a subsequent action, by the same or a different individual.
Two types of behaviour patterns can be distinguished. First, individuals can be
seen as some kind of state automaton with an internal state and transformations
executed mainly by environmental factors. The second type does not need an in-
ternal state in the individuals. Actions can be achieved using only external stimuli.
The environment acts as an external memory.

Self-organization often requires interactions among individuals. Interactions
and communication, respectively, can be direct or indirect. A direct interaction
would be contact between two individuals. Indirect interactions are more latent,
however, as they occur when one individual modifies the environment which an-
other individual responds to at another time. This is referred to as stigmergic
communication.

Swarm Intelligence

Swarm intelligence (SI) refers to natural or artificial systems that exhibit collec-
tive behavior by means of decentralized self-organized entities. SI can be found in
natural phenomena such as ant colonies, bird flocking, animal herding, bacterial
growth, and fish schooling. SI systems typically consist of a population of simple
individuals, interacting locally with one another and with their environment. In-
dividuals are supposed to follow very simple rules and, furthermore, there is no
centralized control that determines how individuals should behave. Social insects
work without supervision, i.e. their teamwork is mostly self-organized. Coordi-
nation of individuals has its source from interactions among individuals and with
their environment. For example, an ant merely follows the trail left by another.
Taken together these interactions allow to retrieve the shortest route to a food
source among myriad possible paths. Local interactions between individuals and
their environment lead to the emergence of complex global behavior. See Figure
2.9 for illustration. The term swarm intelligence was introduced by Beni and Wang
[BW89] in the context of cellular robotic systems. For an overview on SI methods
see [BDT99] [BM01] [RFRO6].

From the definition, a SI system provides an environment, with lots of unsophis-
ticated, primitive entities that interact locally with the environment and other en-
tities and, finally, causes the emergence of coherent functional global (behavioural)
patterns. SI provides a basis for algorithms that aim at solving distributed problems
without centralized control or the provision of a global model. Many SI methods
are concerned with optimization tasks and have been successfully applied for solv-
ing traveling salesman type of problems, e.g. Ant Colony Optimization [Dor92]
and Particle Swarm Optimization [KE95]. For unsupervised machine learning and
data visualization the algorithms Ant-Based Clustering [LF94], Databots [Ult00a]
and Schelling’s Segregation Model [Sch69] are of interest.
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Figure 2.9: Swarm intelligence: ants clustering corpses onto piles during several
hours [BDT99].

Agents

According to literature [Goe06] [CW09] an agent is a software entity that fulfills
tasks delegated by the user, can communicate with the user or other agents, has
actors to modify its environment, has sensors to gain information about its environ-
ment, tries to satisfy internal goals, acts on its own, based on the sensor input and
its internal goals. There is no control mechanism of higher order to coordinate the
agents’ activities. Agents are often applied for distributed problem solving. The
initial problem is split into several subproblems which are solved by agents. This
is often accomplished using multi agent systems (MAS). MAS consist of numerous
agents, and an environment providing communication exchange among agents.

Agents are classified according to their abilities. Reflex agents can only react on
sensorial input. Goal-based agents act according to a goal known due to some sort
of formalism (e.g. energy function). These agents pick the action with the outcome
that most likely brings the agent closest to the goal. This is comparable with greedy
hill-climbing algorithms. Utility-based agents are more sophisticated. They can
create a plan of action and create sub-goals to achieve their personal goal. One of
the first Multi Agent Systems beyond cellular automata was Schelling’s Segregation
model [Sch69], at which simple ethnic agents could move on a low-dimensional
grid in order to locate themselves in an ethnically pure neighbourhood. Chli and
DeWilde [WNL99] [CDWG™03] have investigated conditions for stable organization
of simulated agents that are producing, consuming and trading resources.

Artificial Neural Networks

The term artificial neural networks (ANN) refers to algorithms that mimic the
structure and functional aspects of biological neural networks in order to solve a
machine learning problem. ANN are a connectionist approach to computation,
i.e. they consist of interconnected artificial neurons that process information in
a distributed, parallel way. Each neuron is an elementary signal processing unit.
ANN have a learning phase at which the internal structure is adapted based on
external stimuli, i.e. numerical input data objects. ANN are used to model complex
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relationships between inputs and outputs or to find patterns in data. Popular
unsupervised learning ANN are Self-Organizing Maps [Koh89].



Chapter 3

Topographic Mapping

3.1 Concepts

In geographical sciences for instance, topographic maps represent any real-world ob-
ject on a plain (paper or computer monitor) by means of two-dimensional location
and contour lines to depict elevation change on the surface of the earth. For details
see [Hat08]. In the broader context of data mining, topographic mapping refers to
creation of a low-dimensional image of the topography of a high-dimensional data
set. Cluster analysis aims at identifying groups of similar data objects in a given
data set (cf. Section 2.3). By this, a notion of cohesiveness is established between
the data objects of a cluster. Topographic mapping methods add another analyt-
ical aspect. Topographic mapping aims at establishing a relation between clusters
and between data objects as well, i.e. capturing the overall similarity structure of
the data and putting it into a more abstract yet understandable formalism.

Definition 3.1 The topography of a given finite set X C D is the set of all
pairwise dissimilarities among elements of X.

A topographic mapping m : X — O aims to preserve the topography of X in the
low-dimensional output space O such that m(x;), m(x;) are (dis)similar iff z;, z;
are (dis)similar for all pairs of elements. For the sake of simplicity, the following
notation is used:

e X ={zy,...,z,} denotes the set of data objects.

e The data objects X are mapped onto {m(z1),...m(zn)} = {y1,...,yn}
c 0.

e dp:DxD— Rar denotes the dissimilarity function of the data space.

e dp:0Ox 0 — IR(T denotes the distance function of the output space.

37
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According to [BHV99], topography may be captured by means of several principles:
e pairwise dissimilarities,
e ranks of dissimilarities or

e (geometrical) neighbourhood relations, which is refered to as topology.

Definition 3.2 A topology of a set X = {x1,...,z,} of data objects the set of all
pairwise neighbourhood relations on X.

Especially interesting are geometrical neighbourhood relations that are invariant to
basic operations such as rotation, stretching, scaling or translation for instance. For
the sake of simplicity, we will restrict our considerations to adjacency of Voronoi
cells. Thus topological mappings refer to a special case of topographic mappings
that aim at preservation of topology. In case of topological mappings, neighbour-
hood relations among {x1,...,2,} are to be deduced from its image {y1,...,yn}
but scale is largely disregarded. In general it is not possible to preserve topogra-
phies correctly when mapping to lower-dimensional spaces [Kir78] [Dry78] [Sch80].
Topologies can only be preserved if the effective dimension of data space and output
space match [BHV99]. Effective dimension is the dimension of a submanifold of
D which contains all the data. Thus, misrepresentations of topological structures
are to be expected when trying to preserve data in effectively lower-dimensional
output spaces.

Learning Methods

In literature the topographic mapping subject has been addressed by several pro-
jection techniques, i.e. methods that are used for reducing the dimensionality of the
data items. For an overview see [Kas97]. In this thesis, the term mapping refers to
all dimensionality reducing projections based on linear and non-linear, orthogonal
and non-orthogonal projections. Many topographic mappings are iteratively con-
structed, i.e. the mapping’s image {y1, ..., yn } is updated by a hopefully improved
image {y},...,y,,}. This is usually referred to as learning. Learning methods are
based on few noteworthy principles.

Linear methods, such as Principal Component Analysis (PCA, [Pea0l]), try to
find a basis for construction of a linear transformation that maps high-dimensional
vectors onto an output space of lower dimensionality. However, these (orthogo-
nal) projections cannot deal with data that is arranged on non-linear manifolds
in data space. See [UMO6] for illustration. Non-linear embeddings assume that
the data objects X are arranged on a low-dimensional (embedded) manifold in the
data space. See Figure 3.1 for illustration. If the manifold has a low-dimensional
effective dimension, then a set of points is to be found in the visualizable low-
dimensional output space that reproduces the topography of X. Multidimensional
Scaling [Tor52] [Kru64] aims at preservation of all pairwise dissimilarities. In con-
trast to that, LLE [RS00] tries to preserve a selected subset of pairwise dissimilar-
ities. Non-linear embeddings are, in principle, more powerful than linear methods.
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However, these methods frequently misrepresent intricate but well-separated clus-
ter structures. Nature-inspired methods, such as Self-Organizing Maps [Koh89]
and Ant-Based Clustering [LF94], are based on a large number of interacting mod-
els that behave according to simple rules in order to mimic biological entities. It is
however unknown which principle yields the construction of the most meaningful
mappings.

Figure 3.1: Topographic mapping: (right) data points are located nearby a low-
dimensional submanifold embedded in data space, (left) the unfolded manifold is
visualized in R2.

Definition 3.3 In the context of this thesis, learning is referred to as focusing if
the learning algorithm excludes more and more pairwise dissimilarities during each
update.

Usually, focusing algorithms first capture global (inter-cluster) structures, then
more local (intra-cluster) data structures are captured. A focus may be realized by
means of shrinking neighbourhoods (i.e. shrinking radius o € IE{SL ) in data space or
output space. Typically, a monotonically decreasing focus function F, : ]Ra' — 10, 1]
is composed with a dissimilarity function in order to exclude pairwise dissimilarity
relations from the learning process. Popular functions are Fpppe and Fpe (see
[DH97] [Koh97]):

1 : z<o
Fo pubbie(x) = { 0 olse

The canonical benchmark example of contradicting global and local structures
was proposed as the so called “Chainlink” dataset [UV94]. See Figure 3.2 for
illustration. For each ring there are some points closer to the center of the other
ring than its own. Non-focusing learning might lead to misrepresentations, whereas
some focusing methods perform correctly. See [UMO6] for details. It is, however,
unknown whether focusing algorithms are in principle more powerful than non-
focusing algorithms.
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Figure 3.2: Chainlink benchmark data [UV94]: some points are closer to the center
of the other chain than its own.

Output Spaces

The appearance of topographic mappings m : X — O depends on the structure
of the low-dimensional output space O. Two kinds of output spaces can be found
in literature. Mathematical spaces in the sense of R? or R? are unbounded and
continuous vector spaces with norm ||.||p. In contrast to that, regular grids are
often used to realized topographic mappings with nature-inspired algorithms (cf.
[DAGP89] [Koh89]). Grids are finite, regular, low-dimensional graphs with a dis-
tance dp : O x O — ]Rar . To avoid borders, periodic boundaries may be introduced
such that the output space mimics the surface of a torus. Such output spaces may
be depicted as adjacent tiles. The elements of the output space are denoted as
0; € 0.

Figure 3.3: Toroidal output space.
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3.2 Self-Organizing Batch Maps

The Self-Organizing Batch Map (Batch-SOM) by Kohonen [Koh89]
[Koh97] is a popular, widely adapted artificial neural network used for to-
pographic mapping. The SOM was loosely inspired by the observation of
topologically arranged sensory maps in the human cortex. Neighbouring neurons
tend to respond to neighbouring regions of, for instance, the retina and body sur-
face. For details see [RMS92] [Koh89]. The Batch-SOM constructs a topographic
mapping from a finite set X = {x1, ..., z, } originating from a normed vector space
D. The mapping’s image {yi,...,y,} is arranged on a finite, fixed, regular grid
O C IN?2. Each grid node o; € O has got a codebook vector w; € D for quantization
purposes. In literature, a node and its codebook vector are likewise referred to as
neuron. The learning algorithm of the SOM modifies codebook vectors in order
to approximate density and proximity structure of X. The codebook vectors
represent the underlying data manifold on O for analytical purposes. See Figure
3.4 for illustration..

Figure 3.4: Batch-SOM: vector x; from the blue data manifold triggers best match-
ing node y; and neighbours to shift their codebooks towards x;. The magnitude
of the shift is indicated by shades of gray. The shift of codebook vectors is only
depicted, though, for node 3.

The learning algorithm of the Batch-SOM is iterative. For each learning step
t = 1,...,tmaer the mapping’s images {yi,...,yn} are simultaneously updated (cf.
Formula 3.4). This is referred to as bestmatch search. Then, all codebook vectors
w; are updated according to Formula 3.6. After each step, the neighbourhood
radius ¢ € R* is decreased according to a pre-defined annealing scheme. See
Algorithm A.1 for details. The Batch-SOM is an approximation of the Online-
SOM [Koh89] which shifts codebook vectors towards input data x; such that w; <
wj + - Fp(do(yi,05)) - (s — wj) with learning rate « € [0,1].
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Formula 3.4
yj < arg min ¥(z;, 0;)
0,€0

Formula 3.5
U(zj,0;) = dp(xj,w;)

Formula 3.6
Zx eX (d(D(y]»Oz)) * Ly

>a,ex Foldo(yj, 0))

W; <

In literature, Self-Organizing Maps (SOM) with few grid nodes can be found
merely, cf. [Koh89] [Ves02]. In these SOM, the number of neurons corresponds to
the number of clusters assumed in the input data. Usually, this number is very
small (=~ 20). In contrast to that, SOM may be used as tools for visualization of
structural features of the data space. A characteristic of this paradigm is the large
number of neurons, usually several thousands (=~ 4000) of neurons. These SOM
allow the emergence of intrinsic structural features of the data space on the map.
They are called Emergent Self-Organizing Maps (ESOM, [Ult99]).

Several derivatives of the Batch-SOM have been proposed, e.g. in order to
cope with dissimilarity data. The Dissimilarity-SOM, was proposed by Kohonen
and Somervuo [KS02] as a counterpart for dissimilarity data. For a given data set
X = {z1,...,z,} with pairwise dissimilarities dp : X x X — R{ the generalized
median follows as:

X = arg min E dp(x;, x;
gmleX ) ]

Each codebook vector is updated according to w; <+ X; with
Xi = {z; € X : do(yj,0;)) < o} being the set of objects mapped within
the actual neighbourhood radius . There is no proof of convergence for the
Dissimilarity-SOM, yet. The Dissimilarity-SOM is prone to produce model
collisions, i.e. identical codebooks on different nodes due to the discrete nature of
the generalized median. A complex branch and bound approach was proposed in
order to solve this so-called model collision problem [Ros07].

In literature it has been extensively notices that the Batch-SOM greatly depends
on an appropriate annealing of radius o that matches the proximity structure of
the input data X. For details see [Koh97] [NVKO07] [GBO9S]. For given input data,
however, an appropriate annealing scheme this is an unknown quality in advance.
For illustration of effects see Figure 3.5.
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Figure 3.5: Batch-SOM maps Chainlink data onto 50 x 82 sized planar grid. (a)
Matching annealing scheme. (b) Too fast annealing leads to misrepresentations,

three clusters instead of two.
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3.3 Curvilinear Component Analysis

Algorithm

Curvilinear Component Analysis [DH97] is a non-linear embedding method inspired
by Self-Organizing Maps [Koh89] and Multidimensional Scaling [Kru64]. Curvilin-
ear Component Analysis (CCA) was proposed by Demartines and Hérault [DH97]
in order to overcome the problems that occur when trying to reproduce distances
d: X xX— Rar in effectively lower-dimensional spaces. When mapping data set
X C D from a nonlinear data manifold to low-dimensional output space O not
all pairwise distances can be preserved [Dry78] [Kir78]. In fact, reproduction of
distances usually cannot be achieved, so that large distances in data space may be
preserved to the disadvantage of local proximities. CCA excludes less important
relations from the learning process by means of a focus function F,. Formally, this
reasoning leads to the following error function:

Formula 3.7

E= Y Ey with Eyj=(dp(zi,z;)—do(yiy;))” - Fo (do(yi y5))

zi,x;€X

Thus, Kruskal’s raw stress [Kru64] is enhanced by means of focus Fj in order to
mimic the learning of Batch-SOM. The error function rapidly vanishes to zero when
output distances are large. Radius o € ]Rg is decreased over time according to a
predefined annealing scheme. See Algorithm A.2 for details. In CCA a randomly
chosen projection point y; = m(x;) is temporarily fixed, and all other y; move
around in order to adjust the pairwise distances. The update rule [DH97] for CCA
follows as gradient descend Ay; = —a - %. See Formula 3.8 with o € (0,1) being
the learning rate that is also decreased down to 0.

Formula 3.8

Yi —Yi
Ay; = a- Fy(do(yi, y5)) - (dp (@i, 25) — do(yi, y5)) - m
5y Yi

Properties

CCA aims at topographical mappings of input data such that pairwise distances
in output space reflect distances’ scale in data space. Mismatching annealing of
radius ¢ usually leads to severe misrepresentation of available proximities in data.
See Figure 3.6 for illustration. In addition to SOM-like annealing, Demartines and
Hérault [DH97] propose a user-controlled scheme for CCA, allowing an interactive
selection of o at which the unfolding of the data onto the low-dimensional output
space takes place. This approach produces mappings of unknown quality and is of
limited reproducibility .
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Figure 3.6: Chainlink data mapped with CCA. (a) Matching annealing scheme pre-
serves clusters’ cohesion. (b) Mismatching annealing falsely depicts three clusters.
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3.4 Ant-Based Clustering

Algorithm

Ant-based clustering (ABC) is a nature-inspired heuristic first introduced as a
model for explaining emergent behavior observed in real ant colonies [DGF190].
More recently, it has been applied in a data-mining context to perform both clus-
tering and topographic mapping [LF94] [HKDO05].

A data set X = {1, ..., z,} with pairwise dissimilarities dp : X x X — [0, 1] is
mapped onto a regular low-dimensional grid O ¢ IN?. Simulated stochastic agents,
called ants, are supposed to modify the topographic mapping by changing the set
{y1,.--,yn} C O of mapped objects. No more than a single data object is mapped
on each grid node, i.e. the mapping is injective. Let {ai,...,ay} C O denote
the current locations of the ants. Ants perform random walks. When facing an
occupied grid node, ant ant might pick up the data object. When facing an empty
grid node, an ant might drop its carried data object. The probabilities for picking
or dropping z € X on node a € O is denoted with p,;cr and pgrqp, respectively.
Threshold constants k,, kg € RT calibrate these dynamics [DGF90].

é(z,a) >2
)

pdrop(xva) - <kd—|—¢(x,a

An ant located at a € O perceives the surrounding o? € {9,25} quadrati-
cally arranged nodes. See Figure 3.4 for illustration. The set of objects mapped
onto this perceptive neighbourhood is denoted with N(x;,a) = {z; € X : j #
i, y; neighbouring a}. Thus, ¢ : X x O — IR[)F determines the “attractiveness” to
map objects on certain nodes. See Algorithm for A.3 details.

Formula 3.9

(i, a) = % 3 (1_d11)(3;$])>

;€N (z4,a)

Properties

ABC methods lead to a local sorting of objects in terms of similarities. Ants gather
scattered input samples into dense piles. In literature, it has been noticed that
ABC derivatives are prone to produce too many and too small clusters [RA04]
[HKDO5] [AIO6]. For illustration see Figure 3.4. The raw ABC algorithm does
never converge into a meaningful fixed point, because the probability for an ant to
remove an object from its associated cluster never approximates zero.
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Figure 3.7: Ant-Based Clustering. Perceptive area of an ant.
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Figure 3.8: Ant-Based Clustering maps Chainlink data onto a 64 x 64 toroidal grid.

Too many and too small clusters emerge.
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3.5 Stochastic Neighbour Embedding

Algorithm

Stochastic Neighbour Embedding (SNE) relies on a probabilistic formulation of
topography [HR02]. The probability for x;,x; being neighbours in data space is
denoted as p;; € [0,1]. The probability for the mapping’s images v;,y; being
neighbours in output space is denoted as g;; € [0, 1].

Formula 3.10

_dﬂ%(zi@j)
2
e 20'2.
pij = EES
20'.2
Ek;ﬁie ’
Formula 3.11
e —d3 (yivyj)
qij =
Z,# e~ Wi vk)

A mapping is obtained by minimizing the the difference between the original dis-
tribution (p;;) and the distribution (g;;) of the mapped objects. This is realized
by minimization of the Kullback-Leibler [KL51] divergence E =), i log Piy by

means of gradient descent methods, i.e. the gradient 8—5 is scaled with a learnlng
rate « in order to modify the images y;. See Algorithm A.4 for details.

Properties

The neigbourhood radius o; € R* determines how the proximity structure is per-
ceived by the SNE algorithm. Radius o; is found by a binary search for the value
that makes the entropy of the distribution over neighbors equal to logk. Here, k € IN
is the effective number of local neighbors (“perplexity”) and is chosen by hand. A
small perplexity disregards global structure, whereas large perplexity ignores lo-
cal structures. See Figure 3.9 for illustration. The t-SNE method [vdMHO8] is a
derivative of the original SNE. It uses Student-t distributions instead of gaussians
in order to avoid the crowding of points in the center of the output space.

3.6 Other Methods

Linear Transformations

Linear methods, such as Principal Component Analysis (PCA) and Independent
Component Analysis (ICA), try to find a basis B € R¥** for construction of
a linear function y; = Bx; that maps k-dimensional data points onto an output
space of dimension k' < k which is spanned by the first &’ principal components.
For example, the PCA [Pea0l] finds a new orthonormal basis in order to re-express
the data set as linear combinations of its basis vectors. Hopefully this new basis
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Figure 3.9: t-SNE [HR02] maps Chainlink data onto R2. (a) Disrupted clusters
with default perplexity k& = 30. (b) Correct mapping obtained by large perplexity
k = 200.
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will filter out the noise and reveal hidden structure. Based on the assumption
that large variances have important structure, variance b' Cb is to be maximized
whereas basis vector b is a unit vector with b'b = 1.From the Lagrange multiplier
follows Cb = Ab. So the PCA finds eigenvectors of the covariance matrix C of
centralized vectorial data. The largest eigenvalues indicate the basis vectors of
biggest variance.

However, the use of linear methods for construction of topographic mappings
has several flaws. Linear mappings are restricted to real-valued data only. Linear
mappings only capture the structure of linear manifolds within the data. Lin-
ear mappings might fail to reveal actual cluster structures, because they are not
concerned with local structures of the data. See Figure 3.10 for illustration.

2*

0.5r

ok

_25 1 1 1 1 1 1 1 J
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

Figure 3.10: First two principal components of Chainlink data. Linear transforma-
tions, such as PCA and ICA, cannot unfold non-linear structures.

Kernel Methods

Methods based on the kernel trick have become increasingly popular during the
last decade due to their unfolding abilities. Kernel trick [ABR64] means that any
continuous, symmetric, positive semi-definite kernel function k can be expressed
as inner product in a higher-dimensional space, such that k(x;, x;) = p(x;) - ¢(z;)
at which ¢ denotes the mapping into the higher-dimensional space. Using kernels,
the function ¢ is never explicitly computed. A set of points cannot in general be
linearly separated in few dimensions. In higher-dimensional spaces, especially with
more dimensions than points, points can almost always be linearly separated. The
kernel trick enables the compution of inner products in such spaces.
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The Kernel PCA [SSM98] for instance is an extension to the original Principal
Component Analysis. The covariance matrix in the high-dimensional space follows
as C = %22:1 o(zj)p(x;)". Eigenvectors and Eigenvalues of C' are to be found
by means of kernel function k& because ¢ is only needed2 in inner products. Pop-
ular functions are gaussian kernels k(x;,x;) = e_” 57 : and polynomial kernels
k(z;,z;) = (z] ; + 1)%. A major drawback of kernel methods is, however, the de-
pendency from the chosen kernel, such that carefully parametrized gaussian kernels
were observed to outperform linear kernels (cf. [FSSZ06] [GKCS08]).

Laplacian eigenmaps [BNO3] are a dimensionality reduction technique based on
nearest neighbour relations of a data set {x1, ..., 2, }. Edge weights are derived from
the distances between the corresponding data objects. The so-called Laplacian L is
a symmetric, positive semidefinite matrix which can be thought of as an operator
on functions defined on nodes of the proximity graph or on the matrix of pairwise
distances, respectively The eigenfunctions of the Laplacian provide a natural basis
for functions on the manifold. The eigenvectors of L are used for mapping the
data in low-dimensional euclidean space. However, the resulting mapping highly
depends on the chosen kernel function and neighbourhood relation and size.

Generative Topographic Mapping

The Generative Topographic Mapping (GTM) was proposed by Svensen [Sve98|
as a probabilistic counterpart of Self-Organizing Maps. The GTM approach relies
on a generative model that defines a relationship between data space and output
space, such that

x=~(0,W)+e

where e denotes some noisy error term, and v : O — I is a product of basis
function and weight vector for each data vector {x1,...,z,}. The data vector z; is
assigned according to its posterior probability:

p(xiloj, W, ) - p(o;)
p(x:i|W)

p(ojlzi, W) =

The conditional probability p(z;lo;, W) usually is chosen as a Gaussian centered

on 7(oj, W,0) with variance 0. The prior probability p(o) describes the (grid)
structure of the output space, e.g. as sum of delta functions (cf. [Sve98]). To
obtain W and o the log likelihood

Z p(xjloj, W, o)

1
| OjG(D

LW,0)=> In )

;X

is maximized, e.g. using the EM-Algorithm [DLR77]. There is no critical annealing
of a neighbourhood radius in the output space. However, parameter estimation
of gaussian mixtures by means of EM algorithm [DLR77] is prone to produce
suboptimal results. See Figure 3.11 for illustration.
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Figure 3.11: Chainlink data mapped onto R? with GTM. The yellow class is dis-
rupted.

Locally Linear Embedding

Locally Linear Embedding (LLE, [RS00]) assumes that each data vector z; € X and
its neighbours lie on or close to a locally linear patch of a single manifold, such that
x; follows as linear combination Zj 2 Wij * T from its neighbours. Minimization

2
Ti— Y. i Wij - xjH yields computation of coefficients

of reconstruction error ), ’
w;j. The mapping of X = {x1,...,2,} into the low-dimensional output space is

2
accomplished by choosing {y1, ..., yn} C O that minimizes ), ||y; — > i Wij Y H

using fixed weights w;; as determined in data space.

LLE greatly emphasizes local (intra-cluster) structures and disregards global
(intra-cluster) proximities. See Figure 3.12(a) for illustration. Furthermore it has
been widely noticed that the obtained mapping heavily relies on the chosen neigh-
bourhood size.

Isomap

Isomap [TdSLO0] first estimates the pairwise geodesic distances between data ob-
jects {x1,...,x,}, i.e. the shortest distances along the supposed data manifold.
Then classical Multidimensional Scaling [Tor52] is applied to constructing an em-
bedding {y1,...,yn} of the data objects in low-dimensional euclidean space that
best preserves the estimated geodesic distances. Despite its unfolding capabilities,
Isomap relies on a nearest-neighbour graph used for estimation of geodesic dis-
tances inside the assumed manifold. If such an graph is not chosen properly (or



3.6. OTHER METHODS 93

cannot be found because of several submanifolds) the obtained mapping usually
misrepresents the proximity of the data. See Figure 3.12(b) for illustration.

_2r

_25 1 1 1 1 1 1 1 1 1 J
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 25

Figure 3.12: Chainlink data mapped onto R2 (a) Locally Linear Embedding
[RS00] with 120 nearest neighbours. Clusters are falsely depicted as overlapping.
(b) Isomap [TdSLO0] with 120 nearest neighbours. Clusters are falsely depicted as
overlapping.
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Exploratory Morphogenesis

The Exploratory Morphogenesis (XOM,[Wis08]) is a particularly interesting learn-
ing method that inverts the data processing as known from Self-Organizing Maps,
i.e. Online-SOM algorithm [Koh89]. Instead of vectors from data space, the XOM
method relies on uniformly drawn samples 0 € O C R? from the output space.
The mapped data objects are moved in output space by means of an inversed
Online-SOM update rule

Yi < yi + o Fo(dp(zi, ©(0)) - (0 — m(x))

at which z(0) = arg ming; ex do(o,y;) denote the nearest neighbour in output
space. The XOM method produces topographic mappings, i.e. the distance struc-
ture of data set X is to be retrieved directly from the mapping. However, mappings
obtained from XOM suffer from the impossibility of distance preservation. Global
structures are preferred over local ones. See Figure 3.13 for illustration.

Figure 3.13: XOM misleadingly shows overlapping rings. Picture from [Wis08].

Schelling’s Segregation Model

Schelling’s segregation model [Sch69] is one of the first swarm intelligence algo-
rithms that aims at the preservation of a simple topology. Two types of agents
reside on a two dimensional grid. The agents have a limited tolerance for living next
to agents of the other type. An agent with too much stress, i.e. too many opposite-
type neighbours, is allowed to jump randomly into a free grid space. Schelling’s
model led to a segregation process of agents, even when individual agents had only
a moderate bias against living near agents of the opposite type. Originally the
model was intended to explain of how racialized city ghettos might emerge from
individual choices, given even slight racial biases. Some important constraints on
effective segregation have been described by Vinkovic and Kirman [VKO06]. Segre-
gation is greatly increased if agents are allowed to jump to any node that yields less
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stress, instead of neighbouring nodes only. This model suggests that fixed point
iteration leads to separation of two (or more) clusters.

Vinkovic and Kirman [VKO06] have explained the behaviour of Schelling’s model
on basis of physical surface tension forces. According to this, agents of the same
class correspond to coalescing liquid particles. Increased mobility of agents facili-
tates class-wise segregation. For illustration see Figure 3.14.

‘mil. stps |

etr

1 mil. steps

e

10 mil. stps 50 mil. step

Figure 3.14: Schelling’s model with blue and red agents on a planar grid [VKO06].
Empty nodes are depicted as white. (a) Only jumps to the nearest acceptable loca-
tion are allowed. Agents diffuse very slowly. (b) Agents can jump to any location.
Diffusion is increased because empty locations are not required for movement.

DataBots

Databots have been proposed in 1999 [Ult00a]. In contrast to the pick and drop of
ABC where agents and data are considered different, Databots are identified with
single data objects. The Databots are able to move on a two-dimensional discrete
grid which is finite but unbound, i.e. toroid [Ult03]. The movement program of the
Databots is controlled by a hierarchy of programs for walking. These include, for
example, random walk, directional inertia and attractive and repulsive forces. The
forces are proportional to the (dis-)similarities of neighbouring Databots and, re-
spectively, data objects. To our experience, cluster formation in this model depends
critically on the formulation of these forces. The formation of a topographic map-
ping depends on the annealing scheme for his threshold. Map formation turned out
to be more stable and correct if a substantial amount of random walk is included
in the movement programs [Ult00a].
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Projection Pursuit

The Projection Pursuit [FT74] is a statistical method that aims at reduction of
high-dimensional data in order to uncover “interesting” structures hidden in the
data. To achieve this, a hyperplane for instance is sought by which to project
the data onto, i.e. by linear transformations. A so-called index function measures
the degree to which a desired property is revealed. For example, the mean dis-
tance between nearest meighbours is a common test statistic for clustering in two
dimensions. Then the choice for the linear transformation becomes an optimization
problem for an optimal index value. The obtained projection is determined by the
chosen index function.

3.7 Cohesive Mappings for Visualization

Scatter Plots

Scatter plots are diagrams that depict the mapping’s image {y1,...,yn} as point
clouds in the output space. There is no further information visualized, such as
neighbourhood relations or distances. Cluster structures and neighbourhood rela-
tions are to be retrieved from the drawn points only. Therefore, naive plots may
be topographic or topological according to the nature of the underlying mapping
m : X — O. See Figure 3.15 for illustration.
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Figure 3.15: Scatterplot of Fisher’s Iris data [Fis36] in output space R3.
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Distance Maps

Self-Organizing Maps (SOM) are commonly visualized using distance maps. Dis-
tance maps u : O — Rar depict distances of the data space on top of the
output space O. The most popular method is the U-Matrix (unified dis-
tance matrix) proposed by Ultsch [US90]. The U-Matrix method visualizes the
average distances between codebook vector w; and its immediate neighbours
N (i) = {w; | o; neighbouring 0;} C O.

1
u(o;) = m ‘gv:(') dp (wi, wj)

These so-called U-Heights are typically interpreted as height values of a discrete
landscape. In analogy to geographic maps, U-heights are depicted by coloring grid
nodes according to v : O — ]Rg . See Figure 3.16 for illustration. The density of
the SOM’s codebook vectors roughly follows the probability density function of the
data. This means that codebook vectors’ neighbour-distances are approximately
inversely proportional to the density of the data. Thus, cluster borders can be iden-
tified as mountains of high distances separating valleys of low distances. Proposed
by Vesanto and Sulkava [VS02], the so-called Distance-Matriz alters the U-Matrix
method by applying the median instead of arithmetic mean.

The U-Map method [UMO6] is a generalization of the U-Matrix for topographic
mappings that are not based on the SOM architecture. Codebook vectors are
derived by the help of the SOM algorithm on top of a given, fixed topographic
mapping. The U-Matrix then depicts the distances among these codebooks.

Figure 3.16: U-Matrix depicts distance structure of Fisher’s Iris data [Fis36] as
gray scales.
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Density Maps

Density maps p : O — ]Rar depict the data space density on top of grid O. This
means at the position of each node o; € O the supposed density at its preimage in
data space is displayed. The P-Matrix by Ultsch [Ult03] uses SOM as a basis for
density estimation. On top of grid node o; € O the density estimates in data space
measured at w; are depicted as heights and colors, respectively. The P-height is
formally defined as

p(o;) = izf(dm(wivfﬂj) —0)
j=1

with bandwidth o € R* and Heaviside function I : R — {0, 1}.

Smoothed Data Histograms [PRMO02] use the nodes of SOM grids as bins of
a rank-based histogram. The bin centers in the data space are defined by the
codebook vectors w; and the varying bin widths are defined through the distances
between the codebooks. The membership degree of a data object x to a specific
bin is calculated based on the rank of the distances between x and all bin centers
w;. The SDH method has no need for a radius that is to be determined in the data
space. Instead, a discrete smoothing parameter is easily determined according to
the size of grid O.

Topographic Mappings for U-Matrix

So far it was unknown which sort of topographic mappings actually are adequate
for visualization with the U-Matrix method. Again, let X = {z1, ..., z,,} denote the
set of high-dimensional data objects with images {y1, ..., yn} on a low-dimensional
grid. For the sake of simplicity, the learning algorithm of Batch-SOM is used with
finite neighbourhood function F, such that F,(6) = 0 for all 6 > 0. The mapped
objects {y1,...,yn} induce a Voronoi tesselation of grid O. See Figure 3.17 for
illustration. This is evident due to the following considerations.

Definition 3.12 Let n(o;) = {z; € X |V, € X : do(0i,y5) < do(0i,yx)} denote
the set of mapped nearest neighbours for each node o; in output space.

Definition 3.13 Let V(zj) = {0; € O | z; € n(o0;)} denote the discrete Voronoi
cell for each data object x; € X.

Definition 3.14 FEach node o; € O s called bordering iff there exists an immedi-
ately neighbouring node o; belonging to another Voronoi cell, that is n(o;) # n(o;).

Definition 3.15 An annealing scheme sequence A = (o1,...,01) € Rt is called
sufficiently slow iff each distance on grid do(os,05) for {o;,05} C O occurs in A.

Thus Voronoi cells are analogously defined in discrete and continuous spaces. Pairs
of such cells V(x;), V(x;) may be identical, disjoint or adjacent (i.e. sharing com-
mon nodes at their border) . Finally, we will show that the U-Matrix method
tends to reproduce the Voronoi tesselation in output space when applied on Self-
Organizing Maps.
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Theorem 3.16 For Batch-SOM with finite neigbourhood functions and sufficiently
slow annealing scheme holds: u(o;) = 0 for each non-bordering node o; € O.

Proof
1. Node o; € O is non-bordering.
2. Let o; be an immediately neighbouring node of o;.
3. From definition 3.14 then follows: n(0;) = n(o;).
4. The Batch-SOM algorithm uses a sufficiently slow annealing scheme.

5. Due to definition 3.15 then follows: for nodes 0;,0; exists a small-
est 0 € A with Fy(do(oi,yx)) > 0 and F,(do(oj,yx)) > 0 and
Fy(do(oi,y1)) = Fys(do(oj,y1)) = 0 for all z, € n(o;), z; € X\ n(0;).

6. The codebook vectors are w; = w; = % due to Formula 3.6.

7. The codebook vectors’ distance is dp(w;, w;) = 0 for all immediately neigh-
bouring nodes o;.

8. The U-height follows from Formula 3.7.

O

From Theorem 3.16 follows that the U-heights’ distribution approximates the
borders of Voronoi cells (i.e. a tesselation) in case of sufficiently slow annealing
schemes. Nodes on the Borders between two Voronoi cells V(z;), V (x;) usually have
U-Matrix heights in [0, M], depending on the exact geometrical configuration
of cells. For illustration see Figure 3.17. Faster annealing schemes blur the borders
of Voronoi cells, which leads to the familiar appearance of U-Matrices (cf. Figure
3.16). Obviously, a cluster in data space can be retrieved in output space by means
of the U-Matrix and related methods, iff its Voronoi cells in output space are
neighbouring. For non-finite neighbourhood functions F, the statement of Theorem
3.16 is likewise obtained. by means of the limit of dp(w;, w;) as o approaches 0.

22
1. Let Fy(xz) =€ 202 be the Gaussian focus funcion.

2. Node o; € O is non-bordering with immediately neighbouring o; € O
3. From definition 3.14 follows n(0;) = n(o;).

4. For xj, € n(o;) let §;, = do(0s, yx) and 6 = do(0;,yx) denote the distances
towards the nearest images y.

Fo’((sjk)

5. For farther images with distances d > d;; holds lim,_o ) =

ZzEn(oj) z

6. From weighted sum in Formula 3.6 follows lim,_,o w; = (o7)]
J
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Fs(6ir)

7. For farther images with distances § > d;; holds lim,_.g ﬁ = o0
8. From weighted sum in Formula 3.6 follows lim,_,q w; = W

9. According to definition 3.14 the limit of dp(w;, w;) becomes 0 as o approaches
0.

Figure 3.17: U-Matrix heights’ distribution reproduces a low-dimensional Voronoi
tesselation. Dots depict mapped data points. Shades of gray indicate distances
between data objects. Zero U-heights are white.

As shown in Theorem 3.16 the U-Matrix method approximately depicts the
Voronoi tesselation of the output space. It is evident that for each meaningful class
C C X the U-Matrix method can only depict the concerning inner-class distances
iff the image of C' is not disrupted in output space, i.e. all Voronoi cells of C' are
connected. From the latter insights follows a crucial definition. The dual of the
Voronoi tesselation is the Delaunay graph (cf. Section 2.2).

Definition 3.17 Let MD C X x X denote the Delaunay graph determined by
{y1,-..syn} such that (x;,z;) € MD iff Voronoi cells V(xz;),V(z;) are adjacent in
output space.

Definition 3.18 A topographic mapping cohesively maps class C' on the output
space iff the relevant subgraph of MD is connected, i.e. MD N CxC' is connected.
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A topographic mapping m : X — O is refered to as cohesive if it cohesively
preserves each class of X = {x1, ..., 2, } in output space. From Theorem 3.16 follows
that cohesiveness is a minimum requirement for visual cluster analysis. Cluster
boundaries are depicted by means of large U-heights. Images of data vectors with
small U-heights inbetween are supposed to indicate inner cluster structures, even
though the images may be located faraway. This means that the scale of mappings’
images can be disregarded when using U-Matrix methods for visual cluster analysis.

3.8 Conclusions

Topographic mapping methods are classified as focusing or non-focusing with re-
spect to the parametrized concept of neighbourhood that is applied for construction
of correct topographic mappings. Focusing methods are based on an annealing
scheme, whereas non-focusing methods usually rely on a predefined concept of
neighbourhood. In both cases, mismatching parametrization causes misrepresen-
tations of cluster structures. It turns out that trustworthy visualization of cluster
structures by means of U-Matrix like techniques relies on cohesive topographic
mappings. For a brief summary see Table 3.1.

’ Method H Mapping Learning
Batch-SOM || topological | focusing
CCA topographic | focusing
XOM topographic | focusing
Databots topological | focusing
GTM topological | focusing
ABC topological | non-focusing
SNE topological | non-focusing
PCA, topographic | non-focusing
ICA
Kernel topographic | non-focusing
PCA
LLE topographic | non-focusing
Isomap topographic | non-focusing

Table 3.1: Summary of topographic learning methods. Topographical mappings
are supposed to display the pairwise dissimilarities of input data. Topological
mappings depict neighbourhood relations of input data, whereas scale is largely
disregarded.
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Chapter 4

Swarm-Organized Mappings

In this chapter, two novel method for visual cluster analysis purposes are intro-
duced. The Swarm-Organized Projection (SOP) method combines elements from
the fields of swarm intelligence and artificial neural networks into a self-adaptive
topographic mapping method. The Swarm-Organized Quantization (SOQ) is a
derivative of SOP for vectorial spaces in order to decrease the computational com-
plexity.

4.1 Inspiration

Ant-Based Clustering & Databots

As outlined in Section 3.4, the Ant-Based Clustering Method (ABC) proposed by
Lumer/Faieta [LF94] usually produces too many and too small piles of data objects.
A structural inability to form large piles of coherent objects decreases the method’s
suitability for cluster analysis of data. Despite its weaknesses, ABC is a promising
technique that enables unsupervised machine learning on continuously changing
data, e.g. data streams and incremental financial data. Therefore, a revision of
ABC method aims at overcoming the limitations concerning topographic mapping
quality. As in Databots (cf. Section 3.6) agents are to be identified with data
objects in order to avoid an additional search for scattered data objects.

Self-Organizing Maps

The Self-Organizing Batch Map (Batch-SOM) faces a parametrization problem
with respect to the annealing scheme applied to its neighbourhood radius. Nybo
et al. [NVKO7] have indicated the vital influence of annealing schemes on the
obtainable topographic quality. However, an adequate annealing scheme for a given
data set is an unknown quantity in beforehand. Despite its weaknesses, Batch-
SOM promise sufficiently cohesive mappings of high-dimensional data due to a
self-organizing process based on interacting neurons. The SOM clearly outperforms
the ABC method by Lumer/Faieta in terms of topology preservation. Therefore, a
revised Batch-SOM aims to overcome the annealing problem.

63
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Schelling’s Model and its Physical Analogue

Schelling’s segregation model [Sch69] is one of the first Swarm-Intelligence algo-
rithms that aims at the preservation of discrete metrics (cf. Section 3.6). Vinkovic
and Kirman [VKO06] have shown how an increas of agents’ mobility facilitates class-
wise segregation. Despite their discrete nature, Schelling’s agents offer a simple yet
effective way to cause segregation of objects according to pairwise dissimilarities.
This mechanism is to be combined with the topology-preserving utility functions
found in ABC and Batch-SOM in order to derive a novel swarm-intelligence method
for topographic mapping purposes.

4.2 Swarm-Organized Projection

The Swarm-Organized Projection (SOP) method provides an algorithm that re-
alizes topographic mapping for dissimilarity data, i.e. pairwise dissimilarities
are available but vector-space axioms are not required. Again, let O C IN? de-
note the regular finite grid that acts as output space. A probability distribution
p: O — [0,1] is centered around o; € O iff dp(0;,05) < do(0i,01) < p(j) > p(l)
holds for all 0j,0; € O, i.e. the probability increases with shrinking distance toward
the center. See Figure 4.1 for illustration.

Figure 4.1: Probability distribution of gaussian shape centered around node
(32,32) € O.

Definition 4.1 The set of sensorial samples N (p, k, 0) = {01, ..., 01} C O contains
k € IN locations in output space that are randomly selected according to the discrete
probability distribution p : O — [0,1] centered around o € O.

Sensorial samples Ny (p, k, 0) with an umbilicus additionally contain o € O such that
No(p, k,0) = {0,01,...,00.} C O. The definiton of N is not compatible with tradi-
tional set theory, but can be thought of as a three-ary function with an additional,
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hidden argument that modifies contents of A/ on each evaluation. Random-walking
ants, as used for Ant-Based Clustering (ABC), illustrate the intended purpose of
sensorial samples. The presence of a random-walking ant placed at the center of an
infinite grid follows a binomial distribution. For large numbers of steps, the bino-
mial distribution approximates the normal distribution. Here, sensorial sampling
is based on discretized normal probabilities centered around the umbilicus. The
main purpose of k € IN sensorial samples is to decrease the computational effort
of search-based techniques. In contrast to that, Self-Organizing Maps rely on an
exhaustive search over the whole output space.

Algorithm

The Swarm-Organized Projection (SOP) algorithm operates on a finite data set
X = {z1,...,x,} with pairwise dissimilarities dp : X x X — RJ. Each object
z; € X is identified with an agent, i.e. the number of agents corresponds to the
cardinality of X. Mapping m : X — O reflects the agents’ current locations, which
are denoted with {m(x1),.....,m(x,)} = {y1,...,yn}. An agent moves to a another
grid node in its sensorial samples iff its topographic stress ® : X x O — IR(J{ becomes
smaller. The topographic stress ® is the weighted sum of dissimilarities toward
neighbouring objects (see Formula 4.2), at which F, o dp realizes a neighbourhood
function by means of focus F,. On each iteration all agents are allowed to move
simultaneously. An epoch ends if no agent has caused an update, i.e. {y1,...,yn}
did not change. The global learning radius o is decreased after each epoch. o4z is
the maximum distance of map space. The algorithm ends iff the smallest possible
radius 1 is reached. See Algorithm 4.1 for details.

Formula 4.2 .
— Ei:l Fa(do(yia 0)) : d]D(xia l')

®(z,0) > iy Fo(do(yi, 0))

Algorithm 4.1 Swarm-Organized Projection
1: function SWARMPROJECTION ({21, ..., Zn})
2 randomize {y1,...,Yn}

3 for o < omaz, Omaz — 1, ...,1 do

4: p < gaussian(o)

5: repeat
6

7

8

9

fori«+ 1,...,ndo
Yi < arg minoENo(p,l,yi) ®(z,0)
end for
until {y1,...,yn} fix
10: end for
11: end function

First, the agents are randomly located on the grid (cf. Line 2). Then, for each
radius o a fixed point iteration with respect to mapping {yi,...yn} is performed
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(cf. Lines 5 to 9). Agents move simultaneously iff they can decrease their personal
amount of topographic stress (cf. Line 7). The set of sensorial samples Ny(p, 1, ;)
consist of two elements, i.e. umbilicus and another random node. Obviously,
the umbilicus is used to realize a memory for agent’s present topographic stress.
The random node is used to sense the agent’s environment. See Figure 4.2 for
illustration of SOP learning the Chainlink data.

Formally, a fixed point refers to a configuration where no agent is able to move
to another location with less topographic stress in terms of ®. Due to sparse
probabilistic movements of agents, a swarm-intelligence setup offers no meaningful
reference framework for fixed points in a strict mathematical sense. To meet these
concerns, the definition of fixed points is altered.

Definition 4.3 Mapping m : X — O is called fixed iff the number of immobile
agents does not exceed a given threshold for a given number of iterations, i.e. the
agents’ locations {y1, ..., yn} were not modified by chance.

Adaptive Annealing

As known from Batch-SOM (cf. Section 3.2) and CCA (cf. Section 3.3) the an-
nealing of learning radius o is crucial for the quality of the obtainable topographic
mapping. The choice of the annealing scheme is usually left to some default strat-
egy of a particular implementation, e.g. linear decrease from initial to final value.
An optimal annealing scheme depends on the structure of the output space (e.g.
grid size, periodic boundary conditions, shape of neighbourhoods) and the struc-
ture of the data set. The latter is, however, an unknown quantity. A wrong choice
of the annealing strategy leads to severe misrepresentation of the data space’s to-
pography resulting in a faulty representation of clusters. See Figures 3.5 and 3.6
for illustration.

The annealing in SOP adapts itself to the topographical structures of a data set.
A central feature of SOP is the fixed point iteration. For each neighbourhood radius
o, the agents’ locations are adapted until a fixed point is reached. Different values
of o lead to different amounts of agents’ movements on different data sets. This
adaptive mechanism discards the need for a rigid annealing scheme. The fixed point
iteration of the SOP algorithm leads to a self adaptation of the number of iterations
for each value of ¢. In Figure 4.3 the number of iterations that SOP used for each
o on Chainlink data is measured. Starting with random mappings, dense clusters
of agents emerge during the training process. It can be seen that initially (a), when
the mapping is random, many iterations are necessary to reach convergence. As
soon as a raw topographic mapping is achieved, i.e. o € {91,...,19}, the radius
decreases rapidly. For Chainlink data, the decrease is almost linear (b). In general,
this depends on the scaling of the structural features of the data. When the global
(cluster-specific) features were recognized (¢ < 19) a fine grained optimization
within the clusters takes place (c-d). In this phase all the map space is covered
by the SOP agents. As can be seen that the distance structure of the data set
determines which radius o leads to disintegration of spurious clusters. For SOP
no prior knowledge of the structural features is necessary to determine a suiting
annealing scheme.
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Figure 4.2: SOP maps Chainlink data onto planar 64 x 64 grid. Radius ¢ decreases
adaptively from 91 to 1. (a) Random initialization, o = 91. (b) Overlapping piles

have emerged at borders, o = 19.
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Figure 4.2: SOP maps Chainlink data onto planar 64 x 64 grid. Radius ¢ decreases
adaptively from 91 to 1. (c) Resolved overlap at o = 7. Two well separated clusters
have emerged. (d) Uniformly distributed classes have emerged at o = 1.
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Figure 4.3: Adaptive annealing: (a) neighbourhood radius o as a function of it-
erations. (b) >, ®(z4,y;) as a function of iterations. SOP maps Chainlink onto
planar 50 x 82 grid. Parts of Figure 4.2 are marked: a-b: long-lasting ordering of
agents, b-c: overlapping rings unfold, ¢-d: agents uniformly spread.

Cardinality of Nj

The motion of agents is governed by the topographic stress function ® and the
cardinality of sensorial samples Ny, i.e. the number of evaluations of ®. Small
cardinalities relate to random-walking ants during a small time interval. Large car-
dinalities relate to random-walking ants during a large time. In order to determine
an appropriate cardinality for Ay the algorithm’s decisions are considered. Obvi-
ously, each set of sensorial samples Ny(p, k, 0) constitutes of k € IN two-elemented
sensorial samples

NO(pa ]{,‘,0) = NO(p7 170) U... UNO(pv ]-7 O)

k times
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This is evident due to the definition of sensorial samples and the fact that random
nodes are generated from a given sequence of pseudo-random numbers. This means
that the desired probabilistic mechanism can be broken down to neighbourhoods
Ny consisting merely of an umbilicus and an additional random node. Here it has
to be mentioned that in case of Schelling’s segregation model [Sch69] two-elemented
sets of sensorial samples are sufficient for emergence of segregated configurations.

4.3 Swarm-Organized Quantization

Obviously, for data objects X = {x1,...,7,} the SOP method has O(n?) time
complexity. A reduction of computational effort is desirable for large scale input
data. From literature [Koh97] it is known that computational complexity of algo-
rithms may be greatly decreased by using codebook vectors. Instead of operating
on a large set of data vectors, a modified algorithm is supposed to rely on a small
set of representatives in order to capture the structure of the input data. The
Swarm-Organized Quantiatzion (SOQ) approach is based on using vector quanti-
zation error ¥ instead of topographic stress ® for formation of correct topographic

mappings.
The Swarm-Organized Quantization (SOQ) algorithm operates on a finite set
of data vectors X = {z1,...,x,} from a vector space D with norm || - ||p. Data

vectors are to be mapped onto a finite, low-dimensional grid space O C IN? with
distance function dgp. Each vector is identified with an agent. The agents’ cur-
rent locations {y1,...,yn} = {m(x1),...,m(x,)} C O reflect the topographic map-
ping m : X — O. An agent moves to a another node iff its stress ¥ becomes
smaller. Stress function ¥ : X x O — ]Rg relies on a set of codebook vectors
W = {w; : 0; € O} C D used for vector quantization purposes. The neighbour-
hood function is realized by means of a focus function, i.e. as composition F; o dp.

Formula 4.4
> i1 Fo(do(yj,0i)) - x;
> i1 Fo(do(y;, 01))

U(z,0;) = ||lx — w;||p with W,

Algorithm

On each iteration all agents are allowed to move simultaneously. An epoch ends
if no agent has caused an update, i.e. {y1,...,yn} was not modified. See Section
4.2 for a matching approach. The global learning radius ¢ is decreased after each
epoch. opap is the maximum distance of map space. The algorithm ends iff
the smallest possible radius is reached. See Algorithm 4.2 for details. First, the
agents are distributed on the grid O at random (cf. Line 2). For each radius
o € {0mazsTmaz — 1,...,1} a fixed point iteration is performed. Each iteration
(cf. Lines 6 to 19) leads to an update of {yi,...,y,}. Each agent carrying z; is
allowed to move (cf. Lines 8, 14 to 17) onto random node o; € Ny(p,1,y;) iff
it decreases its personal amount of stress ¥(z;,0;). An index set I C O indicates
which codebook vectors have to be updated (cf. Lines 6, 10 to 13) in order to reduce
the computational complexity. This is different from Self-Organizing (Batch) Maps,
where update of all codebook vectors is mandatory. See Figure 4.4 for illustration.
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Algorithm 4.2 Swarm-Organized Quantization

1: function SWARMQUANTIZATION ({21, ..., Tp })
2 randomize {y1, ..., Yn}

3 for o < omaz, Omaz — 1, ...,1 do

4: p < gaussian(o)

5: repeat

6 I+ 0

7 fori+ 1,...,ndo

8 P 4 00

9: for o; € Ny(p,1,y;) do

10: if o; € I then

— 22:1 Fa(do(ykvoj))'xk

1: Wi S Fo(do(ykn0;))
12: I+ 1TU {Oj}

13: end if

14: if \I/(l'i, Oj) < 1 then
15: (IR \IJ(:Ei,Oj)

16: Yi £ 0j

17: end if

18: end for

19: end for

20: until {yi,...,yn} fix

21: end for

22: end function
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Figure 4.4: Swarm-Organized Quantization: Red and yellow agents represent
Chainlink data. Black squares indicate grid nodes with updated codebook vec-
tors according to agents’ movements.
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4.4 Dissimilarity Visualization

A given mapping m : X — O assigns data objects X = {x1,...,z,} with pair-
wise dissimilarities dp : X x X — ]R(T onto {y1,...,yn} C O. The visualization of
{y1,...,yn} is easily achieved using low-dimensional scatter plots. Topology pre-
serving mappings (such as Batch-SOM, SOP and SOQ) do not preserve distances
or densities of input data on the output space. Instead, approximately uniform dis-
tributions are obtained. However, well-established methods such as the U-Matrix
and P-Matrix, rely on normed vector spaces. Here, methods are proposed for met-
ric spaces in order to enable the visualization of distance and density structure
without the limits of vectorial spaces.

A novel method is introduced for depicting the dissimilarity structure of
{1, ...,z } when images {yi,...,yn} are available only. The Generalized U-Matrix
depicts on each node of the discrete output space the expected data space distance
between objects drawn from the node’s preimage. See Figure 4.5 for illustration.
The U-Matrix follows as v : O — ]R(T with:

Formula 4.5

>i; F(do(o,4:)) - F(do(o,y;)) - dp (i, z;)

u(o) =

2.5 Fldo(o,4i)) - F(do(0,y;))
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Figure 4.5: Generalized U-Matrix for Chainlink data. Darker shades of gray indi-
cate larger distances in data space.
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Again F : RJ — [0,1] denotes a given focus function in order to realize the
local influence of mapped data objects with respect to locations in the output
space by means of Fodgp : O x X — [0, 1]. Obviously, F' must be is monotonically
decreasing in order to increase the weight of nearby mapped data objects and
their dissimilarities with respect to the appearance of the U-Matrix. As a naive
approach, F' is chosen to be a gaussian kernel function with fixed kernel width on
all locations in output space.

The traditional U-Matrix of Ultsch [US90] may be obtained as a special case of
the Generalized U-Matrix. Consider codebook vectors W instead of data objects
{z1, ...,z } by mapping each codebook vector on its own node in output space such
that m(z;) = m(w;) = y; = o; for all nodes’ indices i. Furthermore, let the focus
function F : Ry — {0,1} account for immediately grid-neighbouring nodes only.
It is evident that the traditional U-Matrix method becomes a special case of the
generalized U-Matrix method due to the symmetry of F.

(or) = 245 Fdo(ok,yi)) - F(do(ok,y;))-dp(z4,75)
UOk) = 5=, Fldo(0r:) F(do(0k.y;))
> Fdo(ok,y:)) [lwi —wg |

> Fdo(ok,u:))

- INi%k)l 2 ien(k) lwi — wi

The traditional U-Matrix method usually underestimates the dissimilarities of
input data X due to the underlying SOM architecture. Misrepresentations of clus-
ter structures usually are not reflected by height values of U-Matrix. Well-separated
clusters being mapped onto the same region, i.e. coherent subset of nodes, do
not imply large U-heights despite of occurring large input space distances. The
learning method of the Self-Organizing Map (SOM) relies on averaging of data
objects in normed vector spaces. Averaging of distant data vectors, however, does
not lead to distant codebook vectors and large U-heights due to the triangle in-
equality in normed vector spaces. For a basic example imagine a 1-dimensional
output space with at least O = {1,2,3} nodes arranged in series. Data vectors
X = {z1,...,z4} with % =121 = x4 and x2 # 1 and m(z1) = 1, m(xy) = 4
and m(z2) = m(z3) = 2. According to Formula 3.6 all codebook vectors are the
same with w; = x1 for all ¢ = 1, ..., 3. The traditional U-Matrix is 0 on all nodes,
although x1, x4 are clearly separated by dissimilar xzo. In contrast to that, the gen-
eralized U-Matrix cannot not vanish on 2 € O due to Formula 4.5. For illustration
with the Chainlink data see Figure 4.6.

In case of Self-Organizing Maps, the generalized U-Matrix method does not
depict the distance structure of underlying codebook vectors, but data objects.
Contrary to the traditional U-Matrix method, the generalized U-Matrix method
depicts dissimilar data objects sharing the same space on grid space as large height
values.
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4.5 Density Visualization

Embedded Distances for Dissimilarity Data

Usually density estimation is not possible in non-vectorial, discrete data spaces be-
cause sampling points for kernel density estimation cannot be provided due to the
absence of vector space axioms. On grid-based methods, such as Self-Organizing
Maps, codebook vectors act as sampling points for density estimation. Usually,
there are no codebooks available on nodes O \ {y1,...., yn}. Instead, density esti-
mates are available for input data {z1,....,z,} and, respectively, {y1, ....,yn} only.
It is evident that sparse regions dividing clusters are impossible to detect in such
domains when using traditional density estimation methods. Nevertheless, pair-
wise dissimilarity data very often is embeddable in normed vector spaces such as
the euclidean RF.

Definition 4.6 A data set X = {21, ...,x,} with dissimilarities d : X x X — R{’
is called embeddable in euclidean space if it satisfies the following conditions:

o ||| is the euclidean norm.

o [t erists k € IN and

o aset X' = {2}, ...y} C R¥ with

o Vay,xp € X :d(xy,ap) = ||) — x|

However, this approach is not based on finding an appropriate set X’ C RF. In-
stead, the embedding condition (see above) is used to derive distances for points
graspable only in RF. As shown by Hasenfuss and Hammer [HHO07] distances
|2 — w;|| between data points and codebook vectors can be expressed without
finding an embedding in R*. Assume any codebook vector w; € R¥ can be ex-
pressed as linear combination of data points, such that w; = Y ;" ay - 2} with
Y= @ir = 1. Resolving w; then leads to the following equation:

1
2 — wil® = aallay — xf)* - 3 > aalla) — P
] NG

This means that distances ||z, —w;|| between data points and codebook vectors can

be expressed my means of pairwise dissimilarities d : X x X — ]RS_ . The coefficients
«; for codebook vector w; of node o; € O are available in SOM-like architectures
(cf. Batch-SOM update rule in Equation 3.6). For z; the coefficient «;; is obtained
by means of a given neighbourhood function F, o dg in Formula 4.7. For ¢ choose
the final radius applied by the learning algorithm.

Formula 4.7
Fy(do(0i,y;))

Y= S Fy(do(osm))
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Clusters refer to dense regions in data space surrounded by sparse (i.e. less
dense) regions. Density information has been shown to be valuable for cluster
methods like DBscan [EKSX96] and, especially, for visualization. For each node
0; € 0, the P-Matrix method [Ult03] depicts the estimated density at codebook
vector w;. See Section 3.7 for details. Formally, the kernel density estimate (cf. Sec-
tion 2.4) is a function of distances toward a sample point chosen from independent
and identically-distributed samples of a random variable. In case of dissimilarity
data, the kernel density estimate relies on distances that are evaluated by means
of coefficients (o) X" The «;; are obtained from a given grid-based topographic
mapping. This means that for SOM-like architectures, density estimates are ob-
tained by means of pairwise dissimilarities only. Let § : X — O — Rg denote the
distances in embedding space, i.e. d(zj,0;) = [|2; — wj||. The density estimate fy
then follows as Formula 4.8. For illustration see Figure 4.7.

d(xj,0;) —\/§ ayd?(zj, x;) ——E gy d?(xg, xp ) oGy

L

Formula 4.8 "

- a g (1%)

10 20 30 40 50 60

Figure 4.7: Iris data on 64 x 64 sized toroidal grid. Density estimates for h = 0.4
as shades of gray. Low density estimates surrounding Setosa (red).
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4.6 Clustering with Swarms

Output-Space Density Estimation for Dissimilarity Data

As indicated in Section 4.2, a large neighbourhood radius o € IRSr forces agents
of SOP and SOQ to assemble in dense, sufficiently ordered piles. The density on
the grid-shaped output space therefore indicates the structure of input data. The
proposed method for depiction of density of data set X = {x1, ..., x,} is as follows:

1. Choose a sufficiently large radius ¢ € R™ according to the size of the grid O.

2. Use the SOP method (cf. Algorithm 4.1) for creation of a topographic map-
ping with images {y1,...,yn}. The radius o is kept constant. The obtained
fixed point contains dense piles of data objects representing clusters in data
space.

3. For each node o; € O depict the kernel density estimate

fnloi) = nlhjéK <d®(323"0@')>

with h < o.

The image {y1,...,yn} obtained by SOP emphasizes the cluster structure of the
data set, due to the agents’ tendency to flee agents of other clusters. See Figure
4.8 for illustration.

For cluster analysis with Swarm-Organized Projection (SOP) there are two
ways to perform an unsupervised classification of dissimilarity data. A large
neighbourhood radius ¢ forces SOP agents to assemble in dense piles consisting of
similar data objects. An additional visual representation, using using scatter plots
and distance maps for instance, enables a classification of data objects by hand.
Hereby a manually drawn polygon selects a subset of mapped data objects. See
[UMO6] for a similar approach.

In contrast to that, an automatic method is proposed here. As shown above,
kernel density estimation methods are used to quantify the output space density
of mapped data objects. Let f denote the estimated density function in output
space. A dense pile of mapped data objects is indicated by a maximum of fj.
Minimum values of fj indicate cluster borders. The so-called watershed transfor-
mation [RMO1] is a geographical segmentation algorithm that derives the divide
lines of attraction of rain falling over a landscape. Thus the output space is seg-
mented (classified) in catchment basins of local maxima of the density landscape.
See Figure 4.8 for illustration.
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Figure 4.8: Iris data on 64 x 64 toroidal grid. (a) For ¢ = 46 the Setosa class
(red) is well-separated. (b) For o = 10 the Setosa class is well-separated from
Versicolor (green) and Virginica (blue). (c) Classification by means of watershed
transformation.
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4.7 Conclusions

The Swarm-Organized Projection (SOP) is an algorithm at which stochastic agents
move on a grid for topographic mapping purposes. SOP addresses the annealing
problem of Batch-SOM and CCA by means of probabilistic fixed points, i.e. the
agents’ behaviour determines the shrinking of neighbourhoods. Swarm-Organized
Quantization (SOQ) uses the swarm of agents to guide the update and usage of
codebook vectors. This is done in order to decrease the computational effort. The
generalized Unified Distance Matrix depicts the distance structure of dissimilarity
data on top of topographic mappings even in non-vectorial spaces.



80

CHAPTER 4. SWARM-ORGANIZED MAPPINGS



Chapter 5

Assessment

In this chapter, the topographic mapping methods from Chapter 3 and 4 are for-
mally assessed with respect to properness for visual cluster analysis.

5.1 Ant-Based Clustering

Sampling with Ants

In literature little can be found about the influence of ants on the abilities of Ant-
Based Clustering (ABC) by Lumer and Faieta [LF94]. Here, it will be argued that
ants of ABC are a sampling method, i.e. randomized selecting of data objects.
A large number of ants will cause many pick and drop actions in a certain time
interval, in comparison with few ants. Thus the adjusted probability p,(o; — o;)
is considered, i.e. the probability for x to be moved from node o; to o; in relation
to all movements.

Theorem 5.1 The adjusted probability p,(0; — 0;) is the same forn,n' € IN many
ants.

Proof Let p,(0; — o) denote the probability for object  being moved from
node o; to o;. Obviously, p;(0; — 0j) can be split up into several independent
terms, namely comprising the probability for an antj to hit node o; for ant; to pick
up z, for ant;, to hit node o; and, finally, drop = onto node o;.

pz(0; = 0j) = p(anty, hits 0;) - ppick(x, 0;) - p(anty, hits 0;) - parep(x, 05)

The adjusted probability p,(o; — o;) is then obtained by normalization with the
probability for moving « € X onto any node.

pz(0; = 0)

Ole(Dpw(Oi — Ol)

ﬁz(oi — Oj) = Z

Picking and dropping probabilities ppick, Parop are not affected by the number of
ants. Also p(anty hits 0;) remains constant because anty, is not affected by other
ants. If the number of ants increases from n to n’ the probability p(ant hits o;)
for node o; € O to get hit by an ant also increases, such that p(anty hits o;) cancels

81
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out in the fraction above. This means that p,(0; — 0;) is the same for n, n eN. O

It is evident that ants in ABC act as an arbitrary sampling mechanism for data
objects, due to the following reasoning. According to Theorem 5.1 the number of
ants can be reduced to one, without any loss of computational abilities. The central
limit theorem in statistics states that the sum of independent observations approx-
imates the normal distribution. During ¢t € IN steps, the probability distribution of
a random-walking ant approximates a normal distribution with zero mean and vari-
ance of t. On a finite grid the random walking ant, therefore, approaches each node
with equal probability for large numbers of steps. Ants do not affect the obtainable
piles of objects, but the attractiveness function ¢ does (cf. Section 3.4). This has
been empirically verified by Tan et al. [TTT06]. It could be shown that few ants
lead to the same cluster structures as many ants. Furthermore, same results could
be obtained when using ¢ directly for probabilistic cluster assignments.

Unifying Framework with SOM

Self-Organizing Batch Maps (Batch-SOM) and Ant-Based Clustering (ABC) are
based on different architectures (see Section 3.2 and 3.4). Batch-SOM modify
codebook vectors, whereas ABC relies on stochastic sampling and permutation of
mapped data objects. A unifying framework for both algorithms exists by means
of objective functions that are to be denoted by means of three functions: norm
[|.|lp, focus F : R — [0,1] and mapping m : X — O.

The Batch-SOM offers a meaningful objective by means of quantization error
W, because its minimization determines the update of mapping. Resolving code-
book vectors (cf. Formula 3.6) leads to Formula 5.2. W(x;) represents the norm of
averaged differences x; — x; over grid-neighbouring data points z; € X.

Formula 5.2
|2, Fldoty; = o) - (@i — )
>, Fldo(y; — o))

The Dissimilarity-SOM chooses codebooks among the given data set X =
{z1,...,zn} (cf. Section 3.2). For the sake of simplicity, the norm ||.||p is used. The
quantization error ¥(z,0;) = ||z — w;||p determines the update of the SOM with
(cf. Formula 3.2):

D

U(x;,01) =

w; < arg min ®(w,0;) with ®(w,0;) = ij Fldo(0nu)) - oo = 24
weX > e, Fdo(0i,y5))
Thus, the Dissimilarity-SOM incorporates a combination of ¥ and @, i.e. quanti-
zation error and topographic stress.

Ants in Ant-Based Clustering act as an arbitrary sampling method, such
that the pick/drop mechanism is to be omitted in favor of an analysis of underlying
formulae. First, a meaningful focus function F : R§ — [0,1] for ABC is derived by
means of ants’ perceptive neighbourhood radius o:

1 : /<o
F<6)_{0 . else
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Thus, the objective function ¢ of ABC is restated as Formula 5.3 by use of
IN(x,0;)| = Z:pj F(do(y;,0i)). The objective ¢ incorporates ® of Dissimilarity-
SOM that quantifies the local stress of topographic mapping, similar to ¥ of Batch-
SOM. ® even acts as an upper limit to ¥ due to the triangle inequality in normed
vector spaces.

Formula 5.3

N s Ug o y Ug
o(x,0;) = | (Zzo” : <1— (9;0)>
Formula 5.4
>, Fdo(y), 0i)) - [l — 4
O(x,0;) =

S, Fldo(y;,01)

Insights

ABC relies on the topographic stress term ® that is found in Dissimilarity-SOM and
SOP, and serves as an upper limit to ¥ of Batch-SOM. However, ABC uses a fixed
neighbourhood function with small radius, whereas Batch-SOM and Dissimilarity-
SOM both use neighbourhood functions with large but shrinking radiuses. ABC has
a probabilistic update of images {y1, ..., yn } whereas Batch-SOM and Dissimilarity-
SOM are deterministic. The ABC objective ¢ decomposes into two factors: the
output density term ‘Ng(if)l and 1 — % which is obviously related to topographic
quality. & is easily identified as a topographic distortion measure because of its

relation to ¥ of Batch-SOM. For a brief overview of differences see Table 5.1.

y [ Batch-SOM [ Dissimilarity-SOM [ ABC |
neighbourhood large, large, small,
h:0x0—[0,1] shrinking shrinking fixed
update of m : X — O || deterministic deterministic probabilistic
searching for global global local
update of {y1,...,yn} O 0] cO
signature term U v P T—J(l -2
termination user-defined user-defined never

annealing annealing

Table 5.1: Characterization of Batch-SOM, Dissimilarity-SOM and Ant-Based
Clustering.

In ABC ants perform pick/drop actions in order to maximize ¢ which consists
of two factors: First, ‘N;#)l denotes the density in output space around node 3.
This density is not related to any structural feature of the data set {z1,...,x,}.
Furthermore, output space density is easily maximized by ants and, therefore, will
dominate the product ¢. Ants quickly form clusters without any topological order-
ing. The term & is a weighted and normalized sum of data space distances, known
from Dissimilarity-SOM and SOP to produce sufficient topographic mappings. The
focus function F' introduced for ABC realizes a neighbourhood that is too small for
obtaining good topographic mappings, when compared with Self-Organizing Batch
Maps. Instead, large and shrinking neighbourhoods should be used in order to
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enable the formation of global topographic structures. Thus (1 — %) determines to-

pographic quality. The scalar o € R™ is a crucial parameter used for normalization
of ®.
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Figure 5.1: Ant-Based Clustering mapping Iris data [Fis36] onto planar grid. (a)
Original method [LF94] produces too many piles. (b) Improved method [HUOS]
does not account for output space densities and rather uses large neighbourhoods.
No dense piles emerge. The Setosa class (red) is well separated. Versicolor (green)
and virginica (blue) appear sufficiently sorted.
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Experimental Validation

Ant-Based Clustering (ABC) was modified in [HUO0S8] in order to achieve improve-
ments in terms of topographic mapping:

e apply larger neighbourhoods,

e discard the output space density term W

According to theory, this scheme is supposed to produce better topographic map-
pings than the original ABC method on an average. See Figure 5.1 for illustration.
On vectorial data, such as the Fundamental Clustering Problem Suite [Ult], the
U-Map method [UMO06] derives a set of codebook vectors for arbitrary mappings.
The so-called Minimal Path Length (MPL, [DM90] [GFS95]) is a coarse indicator
for distortions of topographic mappings. See Formula 5.5 for details. MPL can be
applied for topographic mappings that rely on contrastable output spaces. Neigh-
bouring codebooks are highly dissimilar where mappings are non-cohesive. The
improved ABC in fact produces significantly less distorted mappings (see Table
5.2), i.e. the MPL values are smaller on an average. A two-sample Kolmogorov-
Smirnov test [Smi48] was applied because the distribution of MPL values usually
is not normally distributed but skewed. These findings were significant below the
a = 107* level. This means that the theoretical analysis of ABC algorithms is
consistent with the empirical results obtained in [HUOS].

Formula 5.5

mpl =Y > |lwi —wjlp

0,€0 0;€N(0;)

’ Data set H Original ABC \ \ Improved ABC \ p-value
Atom 161 £+ 15.6 > 142 +£6.2 1.24FE—-12
Chainlink 6.33 £0.33 > 6.19 +0.12 1.38E—05
Hepta 11.16 £ 0.66 | > 9.86 4+ 0.54 2.65FE—13
Iris 11.8 +0.65 > 10.02 £ 0.57 1.03E—-17
Target 6.69 = 0.41 > 5.35+0.33 8.79E-23
2Diamonds 3.86 = 0.09 > 3.28 £0.10 1.08E—23
Wingnut 5.64 +0.32 > 5.07 +0.23 9.91FE-11

Table 5.2: Topographic distortion measured by MPL method: mean values + stan-
dard deviation, p-values of statistical testing indicate that Ant-Based Clustering
(ABC) produces less distorted mappings when using larger neighbourhood and
discarding output space densities [HU0S].

5.2 Sound and Complete Learning

Neighbour retrieval is the task of finding data space neighbours of few interesting
data objects solely based on a low-dimensional display, i.e. topographic mapping
[Ven07] [NVKO07]. Topographic mapping methods are formally assessed whether
neighbour retrieval is in principle achievable or not. Here, the quality of the update
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rule is to be assessed using the concepts of soundness and completeness in terms
of neighbour retrieval.

Definition 5.6 A learning algorithm is sound iff the update rule, i.e. for each x;
the transition from {yi,...;yn} to {y1, ..s Yi—1, Y}, Yit+1, .-, Yn}, leads to an improved
neighbour retrieval regarding x; and y;, respectively.

Definition 5.7 A learning algorithm is complete iff an improvement of
neighbour retrieval regarding x; and, respectively, vy; may be achieved
by means of the wupdate rule, 1i.e. the transition from {yi,...,yn} to

{y17 "'7yi—17yz/')y’i+17 ceey yn}

Completeness is the inverse concept of soundness. Both concepts are important
for the understanding of learning algorithms’ aims. However, topography (pairwise
distances, ranks of distances, neighbourhood relations) usually cannot be preserved
in general (cf. Section 3.1). Thus, sound and complete learning of topographic
mappings is not achievable in practice, i.e. the algorithms’ update rules contradict
for each z; € X. In addition to formal analysis of learning algorithms, an empirical
evaluation of topographic mapping quality is therefore necessary.

Self-Organizing Batch Maps
Quantization error ¥ for Batch-SOM is:

|5, Fldo(o4)) - (= 2)|
>, Fdo(0i,y5))

For large values of radius o, i.e. early in the learning process, the term ¥ results

in the average of a large number of randomly chosen vectors. This means that
U arbitrarily approximates 0. The deterministic and exhaustive bestmatch search
will therefore map data vectors on random locations in output space. Later in the
learning, when o is small, the topography of the input space is more and more
important for ¥. However, these updates may not be able to correct an erroneous
mapping during the early learning phase. See Figure 5.2(b) for an example where
the Chainlink data is misrepresented in the map space. As the example shows,
learning in SOM is neither sound nor complete. Therefore, it is prone to misrep-
resent cluster structures. This holds for the Swarm-Organized Quantization, too,
since it is based on V.

D

¥(z,0;) = [lv — wil|p =

Curvilinear Component Analysis

In CCA an arbitrary projection point y; = m(z;) is temporarily fixed, and all
other y; move around in order to adjust the pairwise distances. The update rule
[DH97] for CCA is Ay; = a-Fy(do(Yi,y;)) - (dp (24, ;) — do(yi, yj))- dé/g?;/;i) where
a € (0,1) denotes the learning rate that is to be decreased down to 0. This is a

difference to Self-Organizing Maps where bestmatching neurons are sought.

The different parts of Ay; contribute to complete and sound leaning rule. This

can be seen as follows: the term y;——yj is a directional unit vector, due to do(y;, y;) =
sJ

i
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Figure 5.2: Chainlink data: criterion ¥ of Batch-SOM is neither complete nor
sound. Darker shades of gray indicate smaller mapping errors. (a) Few red points
are located in the yellow cluster. Falsely mapped element of red cluster depicted
as cross. (b) ¥(z) falsely assumes minimum inside the yellow cluster. (c¢) ®(z) of
SOP correctly assumes minimum inside the red cluster.
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llyi — yjllo, that is valid unless y; = y;. The term (dp(x;,x;) — do(yi,y;)) adjusts
the images y; due to data space distances. Repeated application of Ay; forces
all data space neighbours of x; to have exactly the same distances in map space
as in data space. Non-neighbouring data objects are forced to have a greater
distance in output space. However, the repeated application of CCA’s A rule is
only complete and sound in terms of neighbour retrieval if the condition holds that
the neighbourhood function h, captures all neighbours and non-neighbours that
happen to be misplaced as map space neighbours. Thus, the ability to produce
cohesive mappings essentially depends on the applied annealing of neighbourhood
radius [DH97]. An optimal annealing scheme depends on the data manifold’s shape.
This is, however, an unknown quantity.

Stochastic Neighbour Embedding

The probability for z;,z; being neighbours is denoted as p;;,¢;; € [0,1] in data
space and output space. For t-SNE [vdMHO08] the update of an image y; in output
space follows as:
Ayi =Y (pij — @i5) - (Wi — u))
z;

This term is similar to the one used in CCA (see above). The main difference
consists of replacing (dp(z;,z;) — do(yi,y;)) with the difference of probabilties
(pij — @ij), which makes the update rule less susceptible to outliers in data space.

Swarm-Organized Projection

Soundness directly follows from the definition of the update rule, which minimizes
the sum of data space distances toward neighbouring objects. Agents move simul-
taneously iff they can decrease their personal amount of topographic stress ®(z).
Criterion ®(z) assumes its minimum value iff neighbourhoods coincide in both
data space and map space. See Figure 5.2(c) for illustration. The SOP algorithm
therefore has a sound update rule.

On the other hand, each decrease of the average distance toward neighbouring
objects is enabled by the probabilistic SOP update rule. Formally, SOP is com-
plete. However, it remains unclear whether all improvements of neighbourhood
preservation are achievable by search-based techniques or not, if agents act inde-
pendently. Take for instance a setup where the k-nearest-neighbour relation is not
symmetrical. An agent can in general not affect the location of his i = 2,...,k
nearest neighbours

’ Method H Soundness ‘ Completeness
Batch-SOM no no
SOQ no no
CCA yes yes
t-SNE yes yes
SOP yes conditional

Table 5.3: Formal assessment of learning algorithms.
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5.3 Swarm-Organized Mappings

Complexity

Let n € IN denote the number of input samples. The number of grid nodes is given
by m € IN. On each epoch the Batch-SOM creates m new codebook vectors. Each
codebook vector is a weighted sum of n input samples. Additionally, each data
vector is compared against the m codebook vectors for bestmatch retrieval. For a
given cooling scheme with ~ y/m epochs in case of a two-dimensional output space,
this results in ~ 2n\/mm operations. Therefore, the Batch-SOM has O(n./mm)
time complexity.

The algorithms of both CCA and SNE are expressed as two nested loop, each
of which has linear complexity in the order of n. There both algorithms have O(n?)
time complexity.

On each epoch the SOP method evaluates ® exactly n times. Each evaluation
sums up a small fraction of available n distances. The initial learning radius is
chosen in order to cover the whole map, i.e. a function of /m. So the number
of learning epochs is proportional to y/m because each epoch the learning radius
is decreased constantly. Therefore, the SOP method has order of /m - n? time
complexity.

On each epoch the SOQ method evaluates the ¥ criterion n times. In analogy
to the Batch-SOM, there are no more than m codebook vectors to compute. In
analogy to the SOP method, there are no more than m evaluations of ¥ to be
carried out. Each codebook vector is a weighted sum of n input samples. The
initial learning radius is chosen in order to cover the whole map, i.e. a function
of /m. The number of learning epochs is proportional to y/m because each epoch
the learning radius is decreased constantly. Therefore, the SOQ method has order
of /m - n - (min(m,n) + 1) time complexity. The Swarm-Organized Quantization
clearly benefits from the swarm-driven update of codebook vectors.

’ Method H Time Complexity ‘
Batch-SOM O(m+y/m - n)
CCA O(n?)
SNE O(n?)
SOP O(y/m - n?)
SOQ O(v/m -n - (min(m,n) + 1))

Table 5.4: Complexity of topographic mapping methods.

Fixed Points & Halting

Execution of SOP depends on fixed point iteration. With regard to probabilistic
agents, fixed point refers to the state where no agent has moved. Here, the term
probabilistic fixed point is used in order to prevent confusion with (deterministic)
fixed points in mathematics.

Let 0 < p < 1 be the upper bound of probability for an agent to move. The
probability P(t) that during ¢t € IN iterations at least one of n € IN" moved follows
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as P(t) = (1— (1 —p)™)". Since tlgrolo P(t) = 0 the fixed point iteration is likely
to stop after a sufficient number of iterations. Therefore, SOP and SOQ learning
algorithms will halt. This is an advantage over Batch-SOM, that cannot guarantee
to halt. However, this argument is not a proof for convergence in the sense of
continuously diminishing movements of agents.

In contrast to that, the Batch-SOM [Koh97] relies on simultaneous update
of all codebook vectors. A formal proof for existence of fixed points in SOM,
i.e. convergence of codebook vectors, does not exist for a given neighbourhood
radius. For example, let X = {x1,...,2z4} denote an arbitrary set of data ob-
jects with d(xo,x3) = d(x3,22) > d(z,x;) for all (4,5) & {(2,3),(3,2)}. The
output space O = {1,...,6} is planar with focus function F(z) = 1 for z < 1
and 0 elsewhere. Thus the Batch-SOM update rule diverges between two states
(y1,..yy4) = (1,2,5,6) and (1,3,4,6). For practical use, convergence is forced by
means of a given annealing scheme for neighbourhood radius o.

Both methods CCA [DH97] and t-SNE [vdMHO8] were derived by means of an
objective function which is to optimize. This is realized by means of (stochastic)
gradient descent methods, whose termination is specified by a given number of
iterations. So convergence is forced by means of parametrization.

’ Method H Termination Fixed Point ‘
Batch-SOM || annealing no
CCA annealing, yes
stochastic gradient descent
t-SNE gradient descent yes
SOP probabilistic yes*
SOQ probabilistic yes*

Table 5.5: Termination of topographic mapping methods. Fixed points of SOP
and SOQ methods are probabilistic.

5.4 Conclusions

A unifying framework for ABC, Batch-SOM and Dissimilarity-SOM was derived.
Compared with SOM, the ABC method misleadingly accounts for output space
density and, furthermore, uses too small but fixed neighbourhood functions. Naive
improvements empirically verify the analytical results.

In contrast to Batch-SOM, the update rule of most topographic mapping algo-
rithms (including SOP) is complete and sound. The computational complexity of
Swarm-Organized Quantization is in the worst case contrastable with the Batch-
SOM. It can be shown that both Swarm-Organized Mapping methods will halt.



Chapter 6

Experimental Validation

In this chapter the abilities of the Swarm-Organizing Projection (SOP) are empiri-
cally demonstrated by few selected problems. The quality of topographic mappings
is investigated in comparison with Self-Organizing Maps (SOM) and Curvilinear
Component Analysis (CCA). These methods are challenged to produce faithful
representations of several data sets containing cardinal cluster problems.

6.1 Quality Assessment

External Measures

A quality measure is called external if the obtained configuration is compared
against some ground truth in the sense of a given solution that is assumed to
be true. Popular examples of external measures are F-Measure and Rand-Index
[Ran71]. The Rand-Index quantifies the agreement of two classifications ¢, ¢’ on all
pairs of data objects, i.e. same or different classifications in both classifications.
The F-Measure [vR79] is the harmonic mean of precision and recall. Both methods
rely on classifications, whereas one is assumed to be ground truth. Topographic
mapping methods, such as SOM and SOP, usually do not yield classifications, even
though clustering methods may operate on top of mappings. Therefore, external
measures are hardly applicable when evaluating the quality of topographic mapping
methods.

Internal Measures

Another topic is concerned with the internal structure of the obtained solutions.
A quality measure is called internal if the obtained solution is assessed without
involving a comparison with an external, known-to-be-true solution. Popular inter-
nal measures are Intra-Cluster Variance [L1o03] and the Dunn-Index [Dun74]. The
intra-cluster variance (or sum-of-squared-errors minimum variance criterion) is the
sum of squared distances between the centroid of each cluster and the correspond-
ing data points. The Dunn-Index measures the ratio between cluster distances and
diameters, which should be large in a good clustering.

The Silhouette plot [KR90] is a popular internal method for visual evaluation
of clusterings. A score function s : X — [—1, 1] evaluates the positioning of data

91
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objects inside their assigned cluster. Let a(x) denote the average distance between
x and all other objects of the same cluster, and b(x) denotes the smallest average
distance between x and all objects of another cluster. The silhouette score follows as
s(z) = %. Silhouette scores similar to 1 indicate objects that have been
assigned to an appropriate cluster, whereas —1 indicates objects that have been
badly classified. Silhouette scores similar to 0 indicate objects that lie in between
clusters. Each cluster is represented by one silhouette, showing which objects lie
within the cluster and which objects merely hold an intermediate position. The
entire clustering is displayed by plotting all silhouettes into a single diagram, from
which the quality of the clusters can be compared. However, it is evident that
silhouette scores assume clusters of spherical or gaussian shape.

Topographical Measures

Topographical measures quantify the amount of topography that is preserved when
mapping data objects {z1,...,x,} onto {y1,...,y,}. Topographical measures are
internal measures in the sense that comparisons with external solutions are not
involved. Forward projection errors [UHO05] occur if similar data objects z;,z;
are mapped onto faraway points y;,y; € O. Backward projection errors occur if
the reverse mapping assigns nearby locations y;,1y; € O to dissimilar data objects
x;,x; € D. An appropriate topographic measure might quantify the amount of
one of these errors. Topographical preservation is denoted by means of several
formalisms. See [BHV99] [GFS95] for details.

Distance preservation is not possible in general when trying to map
high-dimensional ~data onto lower-dimensional spaces [Dry78] [Kir7§]
[Sch80]. However, the objective function of MDS and Sammon’s Mapping
are widely used for assessment of arbitrary topographic mappings [HKDO05]
[Wis08]. Quantification of distance preservation is applicable on different archi-
tectures, such as CCA and ABC. This approach penalizes topology preserving
mappings, such as SOM and SOP.

Ranks of distances usually cannot be preserved entirely when mapping high-
dimensional data onto low-dimensional spaces [Sch80]. The euclidean distance dgo
used in output space implies radial neighbourhoods. For example, Bezdek and Pal
[BP93] propose to evaluate the correspondence of rankings of all distance pairs
occurring in data space and output space. Spearman’s p is a statistical measure
that quantifies the degree of correlation between ranking orders.

Geometrical neighbourhood relations, such as Delaunay graphs, can be pre-
served iff the intrinsic dimension of the data matches the dimension of the output
space [BHV99]. Neighbourhood relations can be assessed in principle for any type
of topographic mapping. However, toroidal and planar output spaces (and there-
fore mappings) are hardly comparable with these approaches because violations of
neighbourhoods are expected due to mismatching topologies. For example, map-
ping an intrinsically planar manifold onto a toroidal output space leads to addi-
tional backward projection errors that are avoided on planar output spaces, despite
of occurring cluster disruptions.

Zrehen’s measure [Zre93] quantifies the local organization of codebook vec-
tors.  Immediately grid-neighbouring codebooks w;,w; are not allowed to
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have intruders, i.e. codebooks wy that violate the condition [w; — wy||> +

|lwe — w;||> < Jlwi — w;||>. The Z-measure is the sum of intruders.
It relies on vector spaces with euclidean norm ||.|| and regularly arranged
codebook vectors, i.e. requirements that do not met with arbitrary to-

pographic mappings. The Minimal Pathlength method [DM90] [GFS95] is
the sum of data-space distances of grid-neighbouring codebook vectors, i.e.
E =33 jeno (i) dp(wi, wj). It relies on SOM-like structures and, furthermore,
will first penalize the mismatching topology of the output space instead of clus-
ter disruptions. The Topographic Function [BHV99] quantifies the identity of the
Delaunay graphs in input space and output space, whereas (mapped) data points
represent the vertices. In high-dimensional spaces, Delaunay graphs are too costly
to retrieve.

’ Measure H Preservation \ Architecture \ Remarks ‘
MDS distance arbitrary penalizes topology
preserving mappings
Spearman’s p ranks of SOM-like penalizes topology
distances preserving mappings
Kaski’s limited ranks SOM-like penalizes topology
Trustworthiness of distances preserving mappings
Zrehen topology SOM-like relies on neighbourhood
relation in output space
Minimal topology SOM-like relies on neighbourhood
Pathlength relation in output space
Topographic topology SOM-like too costly
Function

Table 6.1: Topographical measures.

Kaski’s Dilemma

Kaski [KNO™03] proposed topographic measures called trustworthiness and con-
tinuity, in order to quantify the overlap of small rank-based neighbourhoods in
data space and output space. This approach penalizes SOM-like methods due to
radial neighbourhoods. A major drawback is its inability to correctly distinguish
whether a class of data objects is disrupted in output space or not. In Figure 3.6
the two-class Chainlink data is mapped onto two and, additionally, three well sep-
arated clusters in output space. Trustworthiness and continuity hardly differ, as
seen in Figure 6.1. Kaski’s approach usually cannot distinguish which topographic
mapping provides the best depiction of cluster structures.

Nybo’s Dilemma

In case of comparing topographic and topological mappings we have to consider the
following arguments. Mappings that rely on SOM-like structures are often topo-
logical in the sense that pairwise dissimilarities among data objects in data space
cannot be deduced from the configuration in output space, in case of uniformly
distributed images in output space for instance. Thus well-separated clusters are
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Figure 6.1: Trustworthiness and continuity as a function of neighbourhood size.
Two or three clusters of Chainlink data of Figure 3.6 cannot be distinguished Plots
by Jan Kohlhof.
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projected closely together. If we want to compare topographic and topological
mappings the euclidean distance in output space penalizes SOM-like topological
mappings when comparing ranks in data space and output space'l'(;% by means of
euclidean radial neighbourhoods.

Nybo et al. [NVKO07] use geodesic distances along neighbouring neurons for
more realistic neighbourhoods in case of SOM-like topological mappings. By doing
so, the SOM clearly outperforms other methods (such as MDS, CCA and LLE) that
have to settle for euclidean distances in data space and output space. Otherwise
the SOM is not as good. Nybo et al. demonstrated the impact of applied distance
functions on the outcome of empirical comparisions. This is evident because Kaski’s
rank-based measurements are merely definitions of quality that neither derive from
the learning algorithm of the SOM nor from its competitors’ learning algorithms.

Third-party Approval

Conventional (external and internal) evaluation measures usually do not assess the
meaningfulness, interestingness and value of the knowledge obtained by the KDD
process, i.e. the semantics of discovered patterns. In contrast to that, “third-party
approval” methods rely on a model or a (human) expert that did not contribute to
the creation of the data and was not involved in the process of knowledge discovery.
More formally, these methods apply cost functions that

e are linked to the underlying domain (finance or medicine for instance),
e cannot be derived trivially from the features of the data set,

e act as subjective interestingness measures that are based on experts’ belief
in the data.

Segmenting financial data into homogeneous classes of similar acting entities, cus-
tomers for instance, may be realized by k-means like methods that minimize the
sum-of-squared-errors minimum variance criterion. The quality of the solution
is appropriately assessed by means of raised profits, instead of cluster centroids
and distances. The KDD process might uncover thousands of patterns, many of
which may be uninteresting to the (human) expert because they represent common
knowledge or lack novelty. The development of methods for assessment of discov-
ered patterns’ interestingness is a challenging task, e.g. the use of interestingness
measures to guide the KDD process in order to reduce the search space. Patterns
are expected to be interesting, for instance, if they confirm a hypothesis that the
(human) expert wishes to validate.

6.2 Dispersion

As outlined in Section 6.1 ordinary topographical quality measures usually do not
derive from the learning algorithms of interest. Topographical and topological
mappings can hardly be compared. Therefore the dispersion measure is introduced
as a novel method to assess the quality of any given topographic mapping. The-
orem 3.16 states that the U-Matrix heights approximate the Voronoi tesselation
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of the output space. Correct U-Matrices can be derived from cohesive mappings
only, i.e. Voronoi cells of data objects from the same class are adjacent in output
space. Dispersion quantifies cohesiveness by means of connected Delaunay graphs
in output space.

Again, let MD C X x X denote the Delaunay graph of input samples X =
{z1,...,xz,} in output space, i.e. (y;,y;) € MD iff y;,y; have adjacent Voronoi
cells. A topographic mapping cohesively maps class C' on the output space iff
the relevant subgraph of MD is connected, i.e. MD N C x C is connected. A
topographic mapping is called cohesive iff each class C1, .., C} is cohesively mapped
onto O (cf. Section 3.7). Dispersion quantifies the class-wise (dis)connectedness of
subgraphs of the Delaunay graph in output space. A class-sensitive weight function
we : X X X — ]RaL is defined as follows:

we(a,z') = { 0 . {z, 2’} CC

dp(z,z') : else
Dispersion disp(C') of class C' C X is quantified by the help of a minimum spanning
tree (MST) on MD with edge weights we. Let bo € X x X denote the parental
relation on MST with z>¢ 2’ iff o is parental node to ’. An ancestor relation b, is
then obtained by z>ga’ iff 3 € N3z, ..., 2} € X with zpoa) Az bozh A Azjbo’.
Dispersion of class C C X follows as:

Formula 6.1

disp(C) = Z

{ we(z,2') : ' /e A (xeC v T e C av}a”)
rzeX

0 : else

The overall dispersion disp(C1, .., Cy) of a topographic mapping is the sum of class-
wise dispersions divided by mid with

k
. 1 .
disp(C1,...,Cy) = — E disp(C;)
i=1

where mid € RT is the median of inter-class distances. Dispersion disp(C) adds

path lengths, measured by input space distances, when reaching input samples of
class C on output space. Inner-class distances are not accounted for. Therefore,
cohesive topographic mappings result in disp(Ch,..,Cx) = 0. Normalization by
mad accounts for data-dependent levels of scaling, different cardinalities and data
manifold structures.

6.3 Experimental Setup

The concepts of completeness and soundness are not sufficient in order to as-
sess the quality of the learning algorithms with respect to topological mapping.
The main aim of the experiments is to show that the conceptual advantage of
the Swarm-Organized Projection method (SOP) translates into an actual perfor-
mance advantage compared to well established topographic mapping techniques.
The following methods are considered for empirical comparison: Self-Organizing
Batch Map, Curvilinear Component Analysis, Stochastic Neighbour Embedding
and Swarm-Organized Projection.
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Figure 6.2: Dispersion of red class. (a) Red and green data objects mapped onto
R2. Borders of Voronoi cells shown. (b) Resulting Delaunay graph with minimum
spanning tree (MST) with regard to the red subgraph. Dotted arrows indicate
zero edge weights between red vertices. The red subgraph is not connected. The
MST bridges the green class. Solid arrows indicate non-zero edge weights between
non-red vertices.
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Parametrization

For each data set the algorithms were run 100 times using each time a different
random initialization. By default, the euclidean distance was used as dissimilarity
function. The parametrization of each algorithm was carefully chosen:

e The CCA software was realized by Vesanto et al [VHAPO00]. 100 epochs were
used in order to effectively decrease the amount of topographic distortion.
Other parameters were used according to software defaults, i.e. linear an-
nealing scheme and gaussian neighbourhood. The output space is planar by
default.

e The Batch-SOM is applied on a 64 x 64 sized grid with gaussian neigh-
bourhoods during 100 iterations. The neighbourhood radius was linearly
decreased from o = 48 down to ofin = 1. Initial neighbourhoods
completely cover the output space. The output space is toroid by default.

e The t-SNE method was realized by van der Maaten [vdMHO8] and is freely
available. It is applied with software defaults, i.e. &k = 30 perplexity. The
output space is planar by default.

e The Swarm-Organized Projection (SOP) is used on a 64 x 64 sized toroidal
grid with gaussian neighbourhoods. Further parametrization is not necessary.

Evaluation

Statistical tests are considered for each data set in order to assess the relation
among different distributions of performance measurements originating from dif-
ferent topographic mapping algorithms (cf. Section 2.4). Let M, M’ C R denote
two finite multisets of performance measurements describing the outcome of a test
series, i.e. several runs of two algorithms on the same data set. The statistical
tests are usually designed as null hypothesis tests, at which the null hypothesis
states that M, M’ were drawn from the same distribution. The p-value of the test
then indicates if the null hypothesis is to be rejected on a chosen significance level.
This means that a certain topographic mapping algorithm is likely to produce bet-
ter mappings because the corresponding performance measurements are likely to
differ. The following performance measures are used for evaluation of topographic
mappings’ qualities:

e Dispersion quantifies the disconnectedness of projected clusters in output
space.

e The classification accuracy of a 1-nearest neighbour classifier in output space
serves as a coarse indicator of class separation. For each point of the image
{y1,...,yn} a classification is derived from its nearest neighbours and com-
pared against the true classification.
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6.4 Data

In this section, a number of data sets for which the construction of a correct topo-
graphic mapping is hard to reach, are used to compare the quality of SOM, CCA,
t-SNE and SOP. Except for the data sets Iris, Wine, GPD194 and SwissBanknotes,
all data sets are taken from the public repository FCPS. The Fundamental Clus-
tering Problem Suite [Ult] contains a number of data sets for benchmarking of
clustering algorithms. Each data sets represents a certain problem that arbitrary
clustering algorithms shall be able to handle when facing real world data sets. See
Section B.1 for illustration.

Atom

The Atom data set consists of two clusters in R3. The first cluster is completely
enclosed by the second one and, therefore, cannot be separated by linear decision
boundaries. Additionally, both clusters have different densities and variances. The
Atom data set consists of a dense core of 400 points in R? surrounded by a well
separated, but sparse hull of 400 points (see Figure B.1). Both classes are not
linearly separable and many algorithms cannot construct a cohesive mapping in
R2. The core is located in the center of the hull, which makes it hard to solve for
some methods based on averaging. The density of the core is much higher than
the density in the hull. For data in the hull, some of the inner-cluster distances are
bigger than the distance to the other class.

Chainlink

The Chainlink data set consists of two clusters in R3. Together, both clusters
form intricate links of a chain and therefore cannot be separated by linear decision
boundaries. The rings are cohesive in R3, however, many topographic mappings
are non-cohesive in R?. The data is crucial for the demonstration of several topo-
graphic mapping challenges: data on two well-separated manifolds at which global
proximities contradict local ones in the sense that the center of each ring is closer
to some elements of the other class than toward elements of its own class. Both
rings are intertwined in R?, and have the same average distances and densities.

EngyTime

The EngyTime data [Bag02] contains more than 4000 points of two classes in
R2. The classes overlap and cluster borders may only be defined using density
information. There is no empty space between the clusters.

Iris

The Iris data set consists of three clusters in R*. It was introduced by Fisher
[Fis36] that describes the geographic variation of Iris flowers. The dataset consists
of 50 samples from each of three species of Iris flowers, namely Setosa, Virginica
and Versicolor. Four features were measured from each sample: length and width of
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sepal and petal. The setosa class is well-separated, whereas virginica and versicolor
are slightly overlapping. The data was not transformed.

Swiss Banknotes

The Swiss Banknotes data set was introduced by Flury and Riedwyl [FR88]. It
consists of six features measured on 100 genuine and 100 counterfeit old Swiss 1000-
franc bank notes. The features are: length of the bank note, height of the bank note
(measured on the left), height of the bank note (measured on the right), distance
of inner frame to the lower border, distance of inner frame to the upper border and
length of the diagonal. Robust normalization (cf. Section 2.4) is applied in order
to prevent few features from dominating the obtained distances. See Figure B.6
for illustration on transformed features.

Wine

The Wine data [ACdV92] is a 13-dimensional, real-valued data set. It consists of
chemical measures of wines grown in the same region in Italy but derived from
three different cultivars. Robust normalization (cf. Section 2.4) is applied in order
to prevent few features from dominating the obtained distances.

GPD194

The GPD194 data was published by Popescu et al. [PKMO06] and contains 194
proteins, which belong to three distinct classes of proteins. No vector space ax-
ioms but pairwise dissimilarities are available. The dissimilarities are derived from
the output of the BLAST algorithm [Alt97] for amino acid sequence alignment of
proteins. See Chapter B.5 for details.

6.5 Results

Dispersion

The obtained dispersions of topographic mappings are summarized in
Table 6.2 as mean values and standard deviations. The standard deviations may
exceed the mean values because to the positive skew of the dispersions’ distribu-
tions. The distributions were additionally analyzed with a two-sided Kolmogoroff-
Smirnov statistical test [Smi48] because they cannot be assumed as being normally
distributed. For resulting p-values see Section B.3. The distributions of obtained
dispersion values are depicted in Section B.4.

e The CCA method fails to reproduce the most high-dimensional data sets:
Wine, SwissBanknotes and GPD194 proteins. Furthermore, CCA often mis-
represents the two rings of Chainlink data as three. CCA sufficiently repro-
duces the low-dimensional data sets EngyTime and Iris.
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e The Batch-SOM outperforms the other methods on most data sets due to a
carefully chosen parametrization. It fails, however, to reproduce the proxim-
ity structure of the Atom data. The Batch-SOM cannot not be applied on
the GPD194 data.

e In contrast to that the t-SNE clearly fails to produce cohesive mappings on
Chainlink, EngyTime, Iris and Swissbanknotes data. The software did not
produce any results on dissimilarity data with a random initialization.

e The SOP produced the smallest dispersions on Chainlink (together with
Batch-SOM), Atom and SwissBanknotes data. The obtained dispersion val-
ues never show a large deviation from the best method. SOP performs second
best on the Wine data, and almost identically with Batch-SOM and CCA on
the Iris data.

] H CCA \ Batch-SOM \ t-SNE \ SOP ‘
Chainlink 0.99 £0.41 0.0028 2 0.0282 | 1.54 +£1.69 | 0.014 +0.14
Atom 0+0 2.14+0.79 0+0 0+0
EngyTime 2.62 +£0.31 2.71 +0.46 6.6 £2.17 2.97+£0.45
Iris 0.013 +£0.065 | 0.019 £ 0.056 0.5+0.7 0.066 = 0.1
SwissBanknotes 3.97 £ 2.55 1.03+1.71 5.89+302 | 049+1.31
Wine 15.1 +8.11 0.24 +1.12 228 +1.98 | 1.57+£2.95
GPD194 15.7+6.71 - - 0.94 +1.09

Table 6.2: Mean values + standard deviation of mappings’ dispersions obtained
with: CCA, Batch-SOM, t-SNE and SOP. Worst results are bold.

Accuracy

The percental classification accuracy of a 1-nearest neighbour classifier is summa-
rized in Table 6.3. Due to software problems, the t-SNE software did not produce
any results on dissimilarity data with a random initialization. The obtained ac-
curacies are normally distributed. All methods perform alike on the EngyTime
data. On the Chainlink data the Batch-SOM obtains the smallest accuracies. On
the other data sets, both CCA and t-SNE method outperform the Batch-SOM and
SOP method. The SOP method performs slightly better than the Batch-SOM.

] [ CCA [Batch-SOM | tSNE | SOP |
Chainlink 100£0 | 978404 | 100£0 [ 99.6£0.16
Atom 100£0 | 972404 | 100£0 | 99.4£0.16
Engy Time 95.9+0.1 | 95.3£02 | 95+£0.2 | 95.2£0.2
Tris 96£0.6 | 83+£1.83 | 95.1+£0.7 | 853+ 1.9
SwissBanknotes | 97.5+£0.7 | 921+12 | 94+£08 | 923£1.3
Wine 92£1.7 | 85.9£1.7 | 946+09 | 87.1%17
GPD194 948 £ 1.6 - - 94.7 £ 1.3

Table 6.3: Mean values + standard deviation of 1-nearest neighbour classifier ac-
curacy obtained with: CCA, Batch-SOM, t-SNE and SOP.
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6.6 Conclusions

Standard approaches for assessment of topographic mapping techniques do not pro-
duce reliable results on different architectures. Due to this, SOM-like algorithms
on toroidal grids are hardly comparable with distance-preserving projections on
euclidean spaces. The dispersion measure quantifies the cohesiveness of arbitrary
mappings by means of connected subsets of the Delaunay graph in output space.
In terms of cohesiveness, the Swarm-Organized Projection (SOP) is almost as as
good, or even better, than the best of its carefully parametrized competitor meth-
ods, namely CCA, t-SNE and Batch-SOM. These methods show severe misrepre-
sentations of the class structure on several data sets. SOP does not.



Chapter 7

Knowledge Discovery on
MicroRNA Data

This chapter demonstrates how the Swarm-Organized Projection is applied for
analysis of data from molecular biology. The targeting structure of small RNA
fragments, so-called microRNA, is examined in order to discover which kinds of
genes are actually regulated by microRNA.

7.1 Molecular Biology

Genes and Gene Products

In cells of living organisms, a gene is a portion of DNA that contains both coding
sequences that determine what the gene does, and non-coding sequences that de-
termine when the gene is expressed (active). When a gene is expressed, the coding
and non-coding sequences are copied in a process called transcription, producing
a messenger RNA (mRNA) copy of the gene’s information. This piece of RNA
can then direct the synthesis of proteins via the genetic code. This procedure is
usually referred to as central dogma of molecular biology [Cri70]. For illustration
see Figure 7.1.

The molecules resulting from gene expression, whether RNA or protein, are
known as gene products, and are responsible for the development and functioning
of all living things. Sets of proteins interact and are involved in cellular processes,
such as metabolism, signal transduction or RNA processing. Proteins can act in
different cellular localizations, such as nucleus or membrane. Each protein has
elementary molecular functions that normally are independent of the environment,
such as catalytic or binding activities. Scientists study the kinds and amounts
of mRNA produced by a cell to learn which genes are expressed, which in turn
provides insights into how the cell responds to its changing needs. In order to
infer how active a gene is, the amount of mRNA is measured, with microarray
technologies for instance. A microarray [SSDB95] exploits the ability of a given
kind of mRNA molecule to bind specifically to the DNA template from which
it originated. By using an array containing many DNA samples, the expression
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levels of thousands of genes within a cell are determined by measuring the amount
of mRNA bound to each site on the array in a single experiment. The outcome
of n € IN experiments is summarized in a n-dimensional real-valued expression
vector for each gene. These vectors enable the retrieval of groups of genes with
similar expression vectors, i.e. similarly behaving genes. See [Qua0Ol] for details.
Abnormal amounts of mRNA, and therefore gene product, can be correlated with
disease-causing alleles, such as the over activity of oncogenes which causes cancer.

'I
RNA

V)

Figure 7.1: Central Dogma of Molecular Biochemistry [Cri70]: information is trans-
ferred from nucleic acids DNA, RNA to proteins.

MicroRNA

In genetics, microRNAs (miRNA) are single-stranded RNA molecules of 21 - 23
nucleotides (nt) in length, that regulate the stability or translational efficiency of
target messenger RNAs [LFA93] [Ruv01]. See Figure 7.2 for illustration. Like nor-
mal RNA, miRNAs are encoded by genes from whose DNA they are transcribed.
MicroRNAs are not translated into protein (non-coding RNA). Instead each pri-
mary transcript is processed into a short stem-loop structure called a pre-miRNA
and finally into a functional miRNA. Mature miRNA molecules are partially com-
plementary to one or more messenger RNA (mRNA) molecules. The function of
miRNAs appears to be in gene regulation. For that purpose, a miRNA is comple-
mentary to a part of one or more messenger RNAs (mRNA). MicroRNAs pair to
3’'UTRs (untransformed regions) of mRNAs to direct their posttranscriptional re-
pression. The pairing of the miRNA to the mRNA then blocks protein translation.

Several miRNAs have been found to be linked with some types of cancer
[HTH05] [OWZ'05] [LGM™05]. Evidence has been assembled that indicates that
miRNAs are associated with cancer because of deregulation. Genome wide studies
demonstrate that miRNA genes are frequently located at cancer-associated genomic
regions. This suggests that miRNA might be attributed to a new class of genes in-
volved in human tumorigenesis. Down regulation of miRNA is observed frequently
in cancer samples. For example, miR-15 and miR-16 were down regulated in about
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68% of B-cell chronic lymphocytic leukemia (CLL) cases [CLST04]. See Figure 7.3
for illustration.
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Figure 7.2: The biogenesis and function of miRNAs [SMCO08]. (a) Primary miRNAs
are transcribed from miRNA genes. (b) The pre-miRNA is cleaved by the ribonu-
clease dicer to generate a short RNA duplex in the cytoplasm. (¢) The miRNA can

bind to the target mRNA by base pairing, causing inhibition of protein translation
and/or degradation of the target mRNA.
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Figure 7.3: MicroRNA as an oncogene for mice [HTH05]: murine stem cell virus
(MSCV) causes liver cells to express mir-17-19b which leads to cancer.
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Gene Target Prediction

MicroRNAs pair to the messages of protein-coding genes to direct the posttran-
scriptional repression of these mRNAs. Grimson et al. [GFJT07] proposed the
Targetscan method for prediction of pairing of microRNA with arbitrary mRNA
and, therefore, regulation of genes. For each miRNA-mRNA pair there are five fea-
tures that contribute to a meaningful estimation of posttranscriptional repression:

e It has been experimentally suggested that nucleotides immediately flanking
the binding sites were highly enriched for adenine and uracil content relative
to the non binding sites.

e Selective depletion of seed-matching sites in messages highly expressed in the
same tissues as the miRNAs implies frequent targeting.

e Watson-Crick pairing to miRNA nucleotides 12-17, especially nucleotides 13-
16, was most associated with down regulation of mRNA activity.

e Binding sites preferentially reside in the 3° UTR (untransformed region) but
not too close (about 15 nt) to the stop codon.

e Site depletion in messages preferentially coexpressed with miRNAs is more
severe near the ends of long UTRs than near the center.

For each feature a numerical score was heuristically derived. These scores were
combined into a single context score using linear regression in order to predict the
fold change of experimentally derived down regulations of mRNA. For details see
[GFJT07].

7.2 Gene Ontology

The Gene Ontology (GO) is a major bioinformatics project hosted on an internet
platform [ABBT00]. It was created to describe and unify the attributes of genes
and gene products across all species using a controlled vocabulary. The aims of
the GO project are threefold: (1) to maintain and further develop its controlled
vocabulary of gene and gene product attributes, (2) to annotate genes and gene
products, and assimilate and disseminate annotation data, and (3) to provide tools
to facilitate access to all aspects of the data provided by the GO project.

Architecture

The GO covers three domains, which means it is made up of three separate ontolo-
gies.

e Cellular component: the parts of a cell or its extracellular environment.

e Molecular function: the elemental activities of a gene product at the molec-
ular level, such as binding or catalysis.

e Biological process: operations or molecular events with a defined beginning
and end, such as mitosis or apoptosis.
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Each node of the ontology represents an ontology term, at which terms are used
to represent biological concepts. If two terms have some relationship, an edge is
drawn from one to the other. Each of these ontologies is a connected directed
acyclic graph (DAG), which means that a child (more specialized) term can have
multiple parents (less specialized terms). There is only one root node in each
ontology. The GO only uses is_a and part_of relationships. The is_a relationship
indicates that the term in the in-node of the edge is a subset of the term in the
out-node. The part_of relationship denotes that the in-node term has the out-node
term as one of its parts. If an instance of a child concept is a complete instance
of the parent concept, the is_a relation is used. Otherwise, if a term describes a
concept being only a portion of the parent concept, the part_of relation is used.
More specialized but less frequently occurring concepts exist. See Figure 7.4 for
illustration. For example, the term “ATP-dependent DNA helicase” is a child
of several less specific concepts: “DNA helicase”, “ATP-dependent helicase” and
“DNA-dependent adenosine triphosphate”. Several gene products of the MCM and
CDC family are annotated with this term.
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Figure 7.4: Small excerpt of the Gene Ontology [ABBT00]: the “molecular func-
tion” ontology with annotations from species saccharomyces (yeast), drosophila
(fly) and mouse.
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Annotations

The operating principles of proteins in a living cell have been studied for many
different organisms in the last decades. These informations are shared as scientific
publications. However, this textual procedure does not allow a fast, computer-
driven analysis of these protein-related descriptions. The Gene Ontology (GO)
itself does not contain gene products, but terms corresponding to biological con-
cepts from the broad field of cellular components, molecular functions and biological
processes. The Gene Ontology Annotation project [CMB104] aims at capturing
data about gene products (proteins). Therefore, the GO annotates genes and gene
products, respectively, using GO terms. GO terms are assigned to gene products
using a combination of high-quality electronic mappings and manual curation, the
latter of which employs a team of biologists.

Let GP denote the set of genes (and gene products), and 7T is the set of GO
terms. Formally, an annotation a : GP — 27 assigns sets of GO terms to given gene
identifiers. The so-called true path rule states that the path from a child term all
the way up to its top level parent(s) must always be biologically valid. Furthermore,
genes annotated with a child term are also annotated with its parental terms. This
means that each gene product is annotated with the root node of each ontology.

7.3 Gene Ontology for Analytical Methods

The discovery of functional classes within collections of genes often relies on simi-
larity functions in order to determine which genes most likely belong to the same
class. Genes are regarded as similar if their sequences of nucleotides are similar,
or experimental data shows similar behavioural patterns [Qua0l]. When experi-
mental data is not available, genes’ similarity is quantified by means of the Gene
Ontology and its annotations. The Gene Ontology (GO) has been used to facilitate
the discovery of functional groups within collections of genes

Semantic similarity functions of gene products quantify the functional overlap
with respect to molecular biology. Small semantic similarities show few functional
overlaps, whereas large semantic similarities denote many functional overlaps. Cel-
lular functions can only be understood by considering complex protein interactions,
which has been hardly realized. Therefore, semantic similarity usually is an un-
known quantity for a given pair of genes. Gene Ontology (GO) together with gene
annotations offer a huge amount of information concerning genes and their biolog-
ical context. The GO acts as a database that offers functional categories for gene
products, and multiple hierarchical relations among these categories. Thus, the
GO may be used to estimate the semantic similarity of pairs of gene products by
means of annotations and the GO graph. Two genes are considered as similar if
their annotated GO terms are similar.

Term Similarities

Information-theoretic methods were originally described for the analysis of any
corpus of text [Res95] [JCI7] [Lin98] and were adapted for use with GO by Lord
et al. [LSBGO3b]. Let T be the set of GO terms, and S(t;,t;) C T denotes the
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set of parental terms shared by terms ¢;,t; € T since GO allows multiple parents
for each term. The most informative common ancestor mia : 7 X 7 — T of two
terms is then defined as

mia(t;,t;) = arg min t
(ti tj) gtes(ti’tj)p( )

where p : T — [0,1] denotes the probability of gene products to be annotated

with a certain GO term and its children. These methods are based on the assump-
tion that the more information two terms share, the more similar they are. The
information content of a GO term ¢ € T is defined as:

1C(t) = —log (p(t))

Resnik’s measure [Res95] calculates the similarity sp of two terms t;,t; by
using only the information content of the most informative common ancestor.
Resnik’s measure assumes maximum values for each term #; in the sense that
s(ti,ti) > s(t;,t;) for all terms ¢;. Resnik’s measure roughly indicates the depth
of the most informative ancestor, such that large similarities can only occur be-
tween more specialized terms at the lower levels of the GO. Empirical evaluation
of Resnik’s measure can be found in literature: Pesquita et al. [PFBT08] found
that sp outperforms the other semantic measures according to its correlation with
gene products’ sequence similarity. Sevilla et al. [SSPT05] assessed the correlation
between genes’ expression data and semantic similarities, whereas sy shows the
best results.

SR(ti,tj) = IO (mia(ti,tj))

Lin [Lin98] proposed a measure of similarity s;, that takes into consideration
the IC values of terms ¢;,?; in addition to their most informative common ancestor.
Lin’s measure has a limited range of [0,1] with sp(¢,¢) = 1 for all terms t € T.
Lin’s measure does not indicate whether two terms are located near the root node
or at the lower levels of the ontology.

2 IC(mia(ti, t;))
IC(t;) + IC(t))

sp(ti tj) =

Jiang and Conrath [JC97] proposed a semantic distance djo based on informa-
tion content. The distance djo does not indicate whether two terms are located
near the root node or at the lower levels of the ontology. Empirical evaluation of
djo can be found in literature: Couto et al. [CSCO7] investigate the correlation
between semantic measures and shared protein families, at which djo obtained the
strongest correlations.

dyc(ti,ty) = I1C(t:) + IC(t;) — 2 - IC(mia(ti, t;))
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Gene Similarities

For research purposes, it is of interest to determine semantic similarity between
genes (and gene products) rather than GO terms per se. Combination of these
measures is needed when a gene product was annotated with several terms. Ac-
cording to Lord et al. [LSBGO03a] the average similarity between all terms should
be used, because a gene product will generally have all of the roles attributed to
it by the annotators at the same time. However, the average is prone to under-
estimate the true similarity of gene products, e.g. the self-similarity usually does
not assume a maximum value. If the maximum is used instead, the similarity is
overestimated since it is enough that the two gene products share one term for the
similarity to assume its maximum value.

Frohlich et al. [FSSZ06] have realized a method to compare gene products
9,9 € GP with annotated lists of GO terms a(g) = {t1,....,tn} and a(g’) =
{t},...,t,}. Let s7 be a similarity function for comparison of GO terms. Then
a way of comparing g and ¢’ is to assign each term of the smaller of both lists to
exactly one term in the longer one, such that the sum of term similarities is maxi-
mized. Formally, by using permutation 7 the gene product similarity sgp is given
below. The computation of this optimal assignment (OA) problem corresponds
to the solution of the classical maximum weighted bipartite matching problem in
graph theory. This is realized by means of the GOSim software [FSPBO07].

(0.4 { maXs » i q sT(ti ;) + ifm>n
sgpr\9,9 ) =
g maxy y " ST (tesy, 1) 0 else

Vector space methods operate on a binary valued annotation matrix where each
column represents the annotations of a gene (product). 1 means the presence of the
GO term in the gene’s annotation and 0 represents its absence. For example, the
cosine similarity between columns is calculated to obtain pairwise gene similarities.
See [CMBO07] [PKMO6] for details. The term overlap approach represents genes as
sets of annotated GO terms. The term overlap similarity is the (normalized) size
of the sets’ intersection. See [MPOS§] for details.

Over-Representation Analysis

Results derived from experimental gene analysis are often interpreted by manually
reviewing the function of each gene based on literature or database searches, or by
prior familiarity with the gene and a plausible link to the biological context. This
ad hoc process is both time-consuming and prone to user bias. Instead, automated
approaches have been developed to facilitate the knowledge conversion process on
the genetic domain. Knowledge conversion is the process of putting found patterns
down on a symbolic formalism (cf. Section 2.3). Here, found patterns refers to sets
of genes (and gene products) that have been found to be meaningful, for example
by microarray experiments or cluster analysis. A symbolic formalism abstracts
such sets by means of GO terms that are significantly overrepresented (or under-
represented) in the genes’ annotations. Such statistical methods are collectively
known as over-representation analysis (ORA). ORA deals with the question what
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GO terms are represented in the gene list more often than expected by chance. The
most common approach to evaluate this statistically is the hypergeometric test (or
variants such as Fisher’s exact test) that calculates the probability of seeing at
least a particular number of genes containing the biological term of interest in the
gene list.

Let n € IN be the number of genes in the basic population, at which n; < n
are associated with a certain GO term ¢ € T of interest. If m < n genes were
randomly selected from the basic population without replacement, the probability
of seeing exactly m; < m genes associated with term ¢ can be modeled by means of
the hypergeometric distribution [BKK*07]. The probability of seeing m; or more
genes containing term ¢ in a random gene list of m genes can be calculated as the
cumulative probability:

o (1) ()
p= 1 — Z 7 nm 7
= ()

This is a one-sided test for over-representation. Usually, a term is considered
significantly enriched if its p-value is less than a certain threshold py after adjust-
ing for multiple hypothesis testing. For implementation details see the GeneTrail
[BKK*07] and GOstat [BS04] software.

In order to cope with the dependencies resulting from the hierarchical structure
of GO, the standard hypergeometric approach was enhanced by Grossmann et al.
[GBRVOT7]. Let pa(t) C T denote the parents of term ¢. For the sake of simplicity
suppose that ¢ has only a single parent. The overall cardinalities of the gene list
and basic population are denoted as mq(4), Npa(r)- The probability of m; or more
genes being annotated with term ¢ follows as:

e (1) ()
_ a(t) "t
p - ]- - Z (npap(t)t)

Mpa(t)

An empirical estimate of p-values is obtained as follows [Fis35]: For an ex-
perimentally derived gene list {¢1,...,t,} C T the permutation approach creates
random lists of size n from the underlying set of genes GP. This permutation pro-
cedure is repeated, e.g. 100000 times. An empirical p-value of over-representation
can then be calculated for each term ¢; with ¢ = 1,...,n as fraction of times its
frequency in the random gene lists is equal to or greater than that seen in the
experimentally defined gene list.

Related Works

Cluster analysis methods may be applied on gene products X = {z1,...,xx} C GP
by means of semantic (dis)similarities d : X x X — Rg. Speer et al. [SFSZ05]
proposed a straightforward approach for clustering genes (and gene products)
based on spectral clustering [CSTKO02] and the semantic distance d of Jiang and
Conrath [JC97]. For each gene product z; € X the empirical feature vector
o(x;) = (d(xg, 1), ..., d(x, x1)) is used to derive a kernel function used for spectral
clustering. This method is claimed to produce better results than k-means and
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single linkage clustering. The impact of the empirical feature encoding remains
unclear since it is used for all clustering methods.

Cheng et al. [CCM™04] proposed a method for integration of GO-based seman-
tic dissimilarities and expression based distances of genes in microarray experiments
for the purpose of cluster analysis. This is supposed to accentuate genes with both
similar expression profiles and similar biological characteristics. To quantify the
similarity of two GO nodes, the number of shared edges in their respective paths
to the root node is used. Only the edges that are common to both paths are rele-
vant. Each edge is weighted according to its depth in the graph, using weighting
parameter A € (0,1). The weight for the partial path consisting of p edges, is the
sum of weights w, = Y7, A, The pairwise gene similarity follows as as maximum
similarity among all possible pairs of annotated GO terms. The euclidean distances
between genes’ expression profiles are normalized in order to match the range of
GO-induced similarities. The dissimilarity of genes finally follows as arithmetic
mean of GO-dissimilarities and genes’ distances. Hierarchical clustering identifies
groups of genes that are similar in both functional annotations and expression pro-
files. A total of 29 genes expressed on 5 time points were analyzed. Obviously, this
approach does not consider the information content of nodes.

Ghous et al. [GKCS08] proposed the use of Kernel Principal Component Anal-
ysis [SSM98] for topographic mapping of genes. This is based on the kernel trick
which transforms the set of genes X into a feature space, at which the kernel
function k(z,y) = ¢(z) - ¢(y) computes the inner product of transformed genes
o(x),¢(y). In Kernel Principal Component Analysis (KPCA) the principal com-
ponents are the eigenvectors of the kernel matrix. Gaussian and linear kernels were
used. Each gene is represented as an annotation vector, i.e. 1 representing the pres-
ence of a GO term and 0 otherwise. A total number of 69 genes from 5 classes
were analyzed. The linear kernel produces no trustworthy results. The results of
the gaussian kernel are highly sensitive to parametrization, i.e. kernel width.

7.4 Knowledge Discovery on microRNA

This section presents a novel analytical approach concerning the question whether
there are differentiated, functional types of genes targeted by microRNA (miRNA)
or not. The approach is based on finding clusters (i.e. homogeneous classes) among
those genes that are regulated by miRNA. The obtained clusters hopefully contain
genes that are overly annotated with meaningful biological categories, i.e. terms
of the Gene Ontology (GO). These functional categories enable novel insights into
the regulation abilities of miRNA. See Figure 7.5 for illustration of the stepwise
approach.

1. TargetScan [GFJ107] predicts for each miRNA a set of potentially regulated
genes and corresponding score values. The distribution of all obtained score
values indicates which genes are supposedly regulated by miRNAs, and which
are not. The regulated genes are considered for further examination.

2. Information concerning biological function is provided for each gene by means
of annotated GO terms. According to this, pairwise semantic dissimilarities



7.4. KNOWLEDGE DISCOVERY ON MICRORNA 113

are derived. These dissimilarities quantify the genes’ functional difference
and, furthermore, enable the retrieval of homogeneous subsets of genes with
similar biological features.

3. The Swarm-Organized Projection (SOP) maps the miRNA-regulated genes
onto a two-dimensional output space. The proximity structure of these genes
is visualized by the Generalized U-Matrix method.

508 TargetScan

miRNA Prediction of microRNA largets

s i

‘ cluster analysis ‘ distances Gene Ontology

Figure 7.5: Knowledge discovery reveals which functional classes of genes are reg-

ulated by miRNA.

Regulated Genes for microRNA

The “mirbase” database [GJGvD™06] provides information about sequence data
and structural features of miRNA that have been discovered so far. The miRNA
set contains 508 identifiers that are recognized by both mirbase [GJGvD106] and
Targetscan [GFJT07].

For each miRNA the Targetscan algorithm predicts a set of possibly regulated
genes with corresponding score values (cf. Section 7.1). Low scores predict high
probabilities for being regulated by miRNA. High scores predict genes that are
hardly regulated by miRNA. See Figure 7.6(a)) for the distribution of scores. As
suggested by Alfred Ultsch, the distribution of scores can be thought of as a mixture
of two components. The bigger part of scores follows a normal distribution U
that represents unregulated random bindings of genes’s mRNA and miRNA. A
smaller part of scores follows a distribution R that derives from binding forces
that do not originate from random noise, i.e. regulations of genes. Due to this
considerations, TargetScan scores are modeled by means of a mixture model with
normal distribution U and log-normal distribution R. The model is obtained by
means of the EM algorithm [DLR77]. For a gene with score s € R the Bayes
probability [Bay63] for being regulated is

p(R|s) = with  p(s) = p(s|R) - p(R) + p(s|U) - p(U)
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Figure 7.6: (a) Density estimate of TargetScan scores. (b) Log-normal/normal
mixture model (blue) for TargetScan scores. Bayes probability for regulated genes
(green) and unregulated ones (red).
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at which p(R),p(U) denotes the a priori probabilities for (un)regulated genes, and

conditional probabilities p(s|R), p(s|U). See Figure 7.6(b) for illustration. For fur-
ther processing, genes g; are selected whose regulation probability p(R|s;) exceeds
a certain threshold pg and, furthermore, that are reported by Targetscan at least
ng € IN times. In this case, gene products whose score is below —0.58 have at least
a probability of pg = 90% for being regulated. For ng = 2 the remaining set of
gene products X then consists of 1555 identifiers.

Gene Similarity

For genes X C GP meaningful pairwise similarities were derived by means of Gene
Ontology (GO) and GO annotations. Here the “biological process” ontology is
applied. The approach of Resnik [Res95] was used to determine semantic similar-
ities among GO terms. Terms located in the upper part of the GO cause small
similarities. Terms in the lower part of the GO represent less general biological con-
cepts and can therefore cause large similarities. The “optimal assignment” method
[FSSZ06] combines the annotated GO terms’ similarities into a meaningful similar-
ity measure s : X x X — R(J)r for genes. The distribution is right-skewed, i.e. most
similarities are small. See Figure 7.7 for illustration.

Using Resnik’s measure is beneficial for further analysis. The GO terms located
near the GO root node do not contain much information. Genes mainly annotated
with these terms might distort further analysis because they add another source of
noise to the data. For each gene z € X the self-similarity s(z,x) is the assumed
maximum similarity that serves as an indicator for its information content. This is
not achieved when using Lin’s measure or the distance of Jiang and Conrath, be-
cause the main diagonal of the (dis)similarity matrix is a fixed value in these cases.
The self-similarities {s(z, x) : = € X} among genes are approximately normally dis-
tributed. See Figure 7.8 for illustration. Small self-similarities refer to genes whose
annotated GO terms are located near the root node, which is referred to as upper
part of the GO. Large self-similarities refer to genes where annotations are located
in the lower part of the GO and, therefore, refer to more special biological concepts.
Therefore, genes with small self-similarities s(z,x) < s¢ are dismissed for further
analysis. Here so = 0.47 is chosen as the mean value of the normal distribution
which means that 749 genes are kept that are predominantly annotated at the lower
part of the GO. Over-representation analysis with the GeneTrail method [BKK*07]
reveals the most significant concepts among annotated GO terms to be related with
cellular metabolic processes as expected. See Figure C.2 for illustration.

Gene Distance

A meaningful semantic dissimilarity function d : X x X — R among genes is
obtained by generalizing the semantic term distance of Jiang and Conrath [JC97]
to operate on genes. The distance of two genes z,y € X is the difference between
their inter-gene similarity and their self-similarities:

d(wvy) = S($7x) + S(y7y) -2 s(x,y)
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Figure 7.7: Resnik’s semantic similarities among regulated genes.
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Figure 7.8: (a) Density estimate of of genes’ self-similarities suggests: self-
similarities are normally distributed. (b) Quantiles of normal distribution against
quantiles of genes’ self-similarities.



118 CHAPTER 7. KNOWLEDGE DISCOVERY ON MICRORNA DATA

It is based on the gene similarity s : X x X — IR(J{ that was obtained from
the optimal assignment method [FSSZ06] operating on Resnik’s term similarity
[Res95]. The gene distance d : X x X — IR(T is inversely proportional to the gene
similarity s. The gene distance approximately follows a normal distribution. See
Figure 7.9 for illustration. Contrary to the gene similarity, the gene distance does
not indicate if two genes are predominantly annotated to the lower or to the upper
part of the GO. To face this, genes from the upper part of the GO have been
removed according to their self-similarities.

gene distance

0 1 1 I 1 —t . . | J
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
gene similarity

Figure 7.9: Gene distance against gene similarity.

Clustering Genes with Swarm-Organized Projection

The Swarm-Organized Projection (SOP) is applied directly on genes’ distance mea-
sure d. The genes are mapped onto a 64 x 64 sized grid. The neighbourhood radius
o is not decreased to a final value of 1. Instead a final radius of ¢ = 8 forces SOP
agents to assemble in dense piles and reveal the cluster structure more clearly.
No additional parametrization is necessary. On top of the obtained mapping, the
distance structure of the genes is then visualized by means of the Generalized U-
Matrix that was introduced in Section 4.4. The U-Matrix method clearly depicts
8 classes of genes that are regulated by miRNA molecules, see Figure 7.10.

Over-representation analysis was applied on each class in order to assign mean-
ingful biological concepts to these sets of genes. Personal communication with
Christian Pallasch confirms the novelty and interestingness of the discovered struc-
tures in miRNA-regulated genes. The exact composition of the clusters is to be
published, yet.
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Figure 7.10: Tiled display: SOP maps genes onto two-dimensional toroid output
space. Generalized U-Matrix depicts larger distance between genes as darker shades
of gray. Eight classes can be distinguished, black dots depict unclassified genes.

7.5 Evaluation

Over representation Analysis (ORA) is used for evaluation of obtained clusters.
A class C' C X is considered as meaningful if its annotated biological categories
are highly overrepresented (or underrepresented) in comparison with the reference
set of genes X. In this context, GO terms represent biological categories. ORA
methods assign probability values p: 7 — [0, 1] to GO Terms in order to quantify
the probability for terms being annotated to genes of class C' by chance (cf. Section
7.3). GO terms that are highly overrepresented (or underrepresented) in class C' are
assigned small p-values. Small p-values therefore suggest that terms are meaningful
for the biological context of genes in class C. Thus the p-value serves as an indicator
for biological relevance. A more convenient indicator for biological relevance of
classes is the distribution of negative logarithmized p-values, i.e. negated exponents
of probability values are used instead of raw probabilities. Here, the probabilities
are restricted to non-trivial values, i.e. with p < 0.05 in order to discard noise.
The GeneTrail algorithm [BKK'07] determines the probabilities p : T — [0, 1] of
GO terms for occuring in C' by chance compared with the reference set of genes X
(cf. Section 7.3).
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SOP is compared against Ward’s clustering [War63] which can used with pair-
wise gene distances. Using MDS [Tor52] the dissimilarity data is embedded into a
358-dimensional euclidean space. Thus, the k-means vector quantization method
[Mac67] is applied for unsupervised classification. Both methods are forced for
produce k = 8 classes. Results are summarized in Table 7.1. On an average
the classification obtained with SOP leads to significantly smaller p-values below
a = 0.001 level. This means that GO terms are more overrepresented in clusters
obtained with SOP.

’ ‘ k-means \ Ward \ SOP ‘
average 4.46 5.06 5.31
maximum 78.00 71.17 79.39
p-value
KS test 2.23-10716 | 2.62-107% | 1
against SOP

Table 7.1: Comparison of negated log-probabilities’ distributions: SOP leads to
more relevant classes than k-means and Ward’s clustering.

See Figure 7.11 for illustration of (empirical) cumulative density functions
of (negative) log-probabilities. On an average SOP leads to larger negated log-
probabilities because its cumulative distribution density is predominantly smaller
than those of Ward’s clustering and k-means.
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Figure 7.11: Empirical cumulative density function of negative log-probabilities:
Ward’s clustering (green), k-means (blue) and SOP (red).
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7.6 Conclusions

For all miRNA molecules known so far, the most likely regulated genes are retrieved
by the help of the TargetScan technique, which provides a numerical indicator
score for each gene. The obtained score values are represented as a mixture model,
i.e. consisting of a normal and log-normal distribution. The genes originating
from the log-normal distribution are supposedly regulated by miRNA. From the
Gene Ontology (GO) a meaningful dissimilarity function among these genes was
derived, based on the approach of Jiang and Conrath. Swarm-Organized Projection
(SOP) clearly depicts eight well-separated classes of genes. For each class the
prevailing biological annotations enable novel insights about which types of genes
are regulated by miRNA.
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Chapter 8

Swarm-0Organized Fundamental
Analysis

In this chapter, Swarm Organizing Quantization (SOQ) is applied for analysis of
high-dimensional stock market data. SOQ projects the fundamental data of ameri-
can companies onto a low-dimensional output space, where unsupervised classifica-
tion might be performed. This procedure aims to demonstrate the ability of SOQ
to retrieve meaningful classes in non-trivial data on a phenomenological level.

8.1 Fundamental Analysis

Fundamental analysis refers to analytical methods that determine the value of a
stock by analyzing the financial data that is fundamental to the company. This
means that fundamental analysis deals with variables that are directly related to
the company itself such as earnings, risk, growth, and competitive position. It
focuses on the company’s business in order to determine whether the stock should
be bought or sold. In contrast to technical analysis [Fam70], fundamental analysis
does not consider the overall state of the market nor behavioral features of stocks.
For an overview on methods of fundamental analysis see [LT93].

Traditional Approaches

Thomsett [Tho98] gives a phenomenological overview on fundamentals’ supposed
influence on buy, sell and hold decisions. For example earning ratios, capitaliza-
tion ratios, profitability ratios and growth ratios are meaningful indicators for the
future development of corporations stocks’ prices. A formal model for decision or
evaluation is not provided.

Lev and Thiagarajan [LT93] have proposed a linear regression method to ag-
gregate stock returns

R; = fo- APTE; + Y _ B;Si;
j=1

for each company i where APTE; is the annual change in pretax earnings, .S;; are
n = 12 selected fundamentals and (; denote the regression coefficients. Accounts

123
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receivable, capital expenditure, gross margin and sales were used for instance. As
a benchmark, another regression approach predicts stocks’ returns on the basis
of past earnings. It could be shown that the fundamental approach outperforms
the conventional returns-earnings regression. This suggests that the fundamental
signals S;; capture more fully investors’ assessment of the persistence of earnings
than does the conventional returns-earnings regression.

O’Neil [O’N95] proposed the CANSLIM approach as a strategy for stock selec-
tion. CANSLIM is a set of rules for selection of supposedly winning stocks. There
are seven characteristics for the selection of stocks:

e Current (quarterly) earnings increase.
The quarterly earnings (per share) should increase each period, i.e. when
compared to the same quarter of the prior year. Stocks are to be picked
that show a major increase. Earnings per share are calculated by dividing
companies’ total after tax profits by the number of outstanding common
shares.

e Annual earnings increase.
Annual earnings capture a more complete financial situation. Stock strate-
gists access whether the annual earnings of 4-5 past years have been increasing
at a healthy rate, i.e. annual earnings increases in the 25-50% range. Compa-
nies with better-than-average returns tend to rise their stock prices rapidly.
If the earnings’ increases are better than the rest of the competitors, then
the company is likely to have a strong period of growth.

e New products, new management.
Without innovation, a company will eventually vanish and, consequently,
its stock prices will decline. In fact, the term “new” may refer to a new
product, entrance into a new and untapped market or a recent management
replacement.

e Supply and demand.
Companies should have a relatively small number of shares outstanding. The
number of shares outstanding should be large enough to trade on a large
exchange, but small enough so as not to reduce the stock price and earnings
among billions of shares. Although large-cap companies will most likely have
a larger increase in sales volume, the percentage of this increase tends to be
lesser than smaller companies.

e Leader or laggard in the market.
Companies that manage to continually lead their industry typically have great
returns, and are fundamentally sound. Investors can identify leaders by look-
ing at the Relative Price Strength, i.e. the percentage of stocks that have
been outperformed by this stock in the market group.

e Institutional sponsorship.
Every growing business needs the sponsorship of institutional investors in
order to be taken seriously as a sound investment opportunity. For a company
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without such investors, the implication is that it is not good enough to be
included in a portfolio.

e Market Direction.
The general market direction determines whether picking stocks according to
the above criteria will produce profits or losses.

Neural Approaches

Deboek [Deb98] proposed the use of Self-Organizing Maps (SOM) for unsupervised
learning of high-dimensional data concerning mutual funds. This aims at capturing
the underlying class structure without a priori knowledge. The data is real valued,
i.e. each fund is characterized by a vector of features describing management tenure,
fund’s annualized returns in 12 months, 3 and 5 years, morningstar agency rating,
decile rank in bear markets, mean and standard deviation of returns, size of the
fund and supplementary cost measures were selected as features for the creation of
the maps. Each feature is standardized so that the variance equals one. The used
dataset consists of 122 funds that mainly invest in large and mid-cap stocks. The
Self-Organizing Map method [Koh89] maps the data onto a 9 x 13 sized planar
output space. The obtained SOM is visualized by means of the U-Matrix [US90],
at which three classes of funds could be manually distinguished. Each class is
characterized by its mean values. For a single class, the “annualized return over 5
years” is significantly higher on an average in comparison with other classes.

Deboek and Ultsch [DUO00] proposed the usage of Emergent Self-Organized
Maps (ESOM) to analyze fundamental data of 2757 stocks. The following fea-
tures were used for analysis: earnings per share for the first to fourth year, relative
strength, percentage of stocks held by funds, outstanding shares, market capitaliza-
tion, debt to equity. The data is mapped onto a toroidal output space of size 64 x 64
and visualized by means of the U-Matrix method [US90]. Eight classes could be
distinguished manually. Each class is characterized by its features’ median values.
A single class could be identified that matches the stock-picking criterions proposed
by O’Neil [O’N95]. These selected stocks outperform the S&P500 index.

8.2 Data

The Morningstar database is a commercial collection of fundamental descriptions
of stocks traded on american stock markets. Here, the data published in October
of 2004 were used. The data is extracted from the database that contains funda-
mentals as real valued vectors. Discrete features, such as Morningstar ratings for
instance, are discarded. See Table 8.1 for an overview on features. The features are
transformed separately in order to give equal weights to each feature. For details
on features’ distributions see Section D.
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’ Feature ‘ Description ‘ Type ‘ Transform ‘
FndOwn | fund ownership, percental Size Box-Cox
ShrOut shares outstanding in millions Size Log
MrktCap | Market capital Size Log
DTotYe | Debt to total capital in year 1 Size Box-Cox
ADV average daily trading volume Size Log
PriCurr | current price Size Log
Y1Y2 Revenue percental change Y1-Y2 Return | RelDiff
Y2Y3 Revenue percental change Y2-Y3 Return | RelDiff
Y3Y4 Revenue percental change Y3-Y4 Return | RelDiff
Q1Q5 Revenue percental change Q1-Q5 Return | RelDiff
TRRK1 | return versus returns in its industry | Return | -

RS1Y relative strength Return | RelDiff
PECurr | current price to earnings per share Risk Log
PtBC current price to book value per share | Risk Log
PtSC current price to sales per share Risk Log
PtCFC current price to cash-flow per share Risk Log

Table 8.1: Features used for fundamental analysis. Features describe risk, size and
return of stocks. Features are non-linearly transformed by means of Box-Cox power
transformation, relative difference and logarithm.

Logarithmic Transformation

The log-normal distribution is a continuous probability density distribution defined
on positive real values. It describes the distribution of samples X C R at which
log(X) is normally distributed. Log-normal distributions are often skewed, i.e. the
distribution’s tail on one side of the mean is longer than on the other side at which
the bulk of the values is located. A feature might be modeled as log-normal if it can
be thought of as the multiplicative product of many independent random variables
each of which is positive. In finance for instance, a long-term discount factor can
be derived as the product of short-term discount factors. Typically, incomes and
stocks’ prices are log-normally distributed because they arise from multiplication
of normally distributed factors. For details see [AB57] [LSA01].

Thus the following features are log-transformed x < log(z) in order to ad-
just the distributions such that meaningful expected values and deviations can be
obtained: outstanding shares, market capitalization, current price to earnings per
share, current price to book value per share, current price to sales per share, current
price to cash-flow per share, average daily volume.

Relative Difference

A straight forward way of measuring a stock’s return is the arithmetic return
r= p“;;% with actual and past prices ppew, Poid € Ry on two succeeding points

in time. According to Ultsch [Ult08] the arithmetic return follows a leptokurtic
distribution, i.e. the normality assumption is appropriate for small absolute returns
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only. For larger gains the distribution is not bound. The relative difference [Ult08]
alleviates this problems by the use of the following equation:

Pnew — Pold

Tdiff =2 -
oal Prew + Pold

The relative difference compares gains and 10sses prew — Polad to the average price of
both points in time. Relative differences are almost identical to arithmetic returns
on the interval [—0.25,0.25]. Furthermore, relative differences are limited to [—2, 2]
which facilitates mixture modeling for instance. Each value x € R describing
arithmetic returns, such as quarterly revenues, is transformed by means of <+

14:6%30 ’

Thus the following features are transformed into relative differences: percental
change of revenue in the first year, percental change of revenue in the second year,
percental change of revenue in the third year, percental change of revenue in the

fourth year.

Box-Cox Transformation

The Box-Cox transformation [BC64] is a general power transformation

=1 .
x%{ =L A#£0
logx : else

that depends on the parameter A\. The aim of the Box-Cox transformations is to
ensure the normality assumptions holds for the given data. Clearly not all data can
be power-transformed to normal. The main objective on Box-Cox transformation
is to infer the transformation parameter A\ € R\ {0}. This is often realized by
maximization of log-likelihood functions.

Thus the following features are modified using Box-Cox transformation: per-
cental fund ownership, debt to total capital in the last year.

Robust Standardization

Each feature is linearly scaled such that the deviation is approximately the same
on each feature:
T T — Tmin
Tmazxr — Tmin

at which z,,4z, Tmin denote a robust estimate of the feature’s maximum and mini-
mum value. According to Milligan and Cooper [MC88] the transformation methods
using this standardization scheme offer the best recovery of cluster structures in
comparison with other methods like for instance the z-score normalization for equal
standard deviations. In this context T,,qz, Tmin are estimated as distributions’ 95
and 5 percentiles.
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Figure 8.1: (a) Migrants by price. (b) Migrations by price.
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Mid-price Stocks

The migration of prices is a particularly interesting subject of investigation for
restriction to interesting stocks, i.e. affordable ones. Penny stocks are too risky for
reliable portfolio selection. Expensive stocks are not interesting enough. Affordable
stocks might be located in the interval [1,40]. A migration; is a short fluctuation of
a price, i.e. the stock’s price crosses a given limit [ € R in the upward /downward
direction on two succeeding trading days. For each possible financial barrier in
[1,40] the number of migrants is identified. The number of migrations is to be
maximized by appropriate limits for stocks’ prices. From Figure 8.1 it can be seen
that migrations often do occur in the [9,25] dollar segment. Stocks with prices
outside that segment are less likely to migrate into another price segment. This
means that these mid price stocks (mid caps) are selected for further portfolio
analysis, because small caps and big caps are more likely to show no interesting
development. Reportedly, mid cap stocks are more risky than big cap stocks and
less risky than small cap stocks. Generally, risk of company failure decreases as
the company increases in size. However, a mid cap stock also has better potential
for growth than a big cap company. A very large company may have completely
saturated its market, while a mid cap company may have room to grow into a big
cap company.

8.3 Stock Classification

In order to derive a “ground truth” by which to assess the ordering abilities of
SOQ), the performance of companies’ stocks is used to obtain a classification. This
classification is to be compared against the results of SOQ

Filtering of Financial Time Series

Let (p1,...,pt) with p; € R for ¢ = 1,..,t denote the time series of a stock’s
price during a certain period. Such time series are filtered in order to discard
singularities, e.g. peeks of few points in time. Usually, this leads to a smoothing of
the time series.

Formula 8.1

; iy eees Di di iy ey Die
filter,,(pi) = pi+ mean(pi, ..., pi w)?)+ median(pi, ..., pi—w)

In this context, the filter given in formula 8.1 is used. The window size w € IN
determines the smoothing of time series. The median filter is a non-linear filtering
technique, often used to remove noise from images or other signals. This is per-
formed using a window consisting of time series’ samples. The values in the window
are sorted into numerical order. The median value is selected as the output. In
statistics, a moving average is used to analyze time series data. It is applied in
finance and especially in technical analysis. See [EM69] for details. It can also be
used as a generic smoothing operation, in which case the raw data need not be a
time series. It is a linear filter. The identity leaves the time series untouched. The
resulting operation filter is a combination of a non-linear low-pass filter, a linear
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low-pass filter and the original time series. This operation leads to a smoothing of
the time series that is sensitive to sudden peaks, yet.

The filter operation filter,, greatly depends on the applied window size. In
order to select an appropriate window size w € IN for filtering, the following ap-
proach was used. The S&P 500 index serves as a representative for typical market
situations. Let (p1,...,pt) denote the time series of prices. Let (rq,...,7—1) with
r; = W for i = 1,...,t — 1 denote the time series of daily returns of S&P 500
index. As suggested by Alfred Ultsch, the distribution of returns is modeled as a
mixture of log-normal, normal and log-normal distribution. See Figure 8.2(a) for
illustration. The Bayes calculus leads to a decision boundary for underperforming
below —1.023 percent and for overperforming above —1.023 percent.

A smoothing of time series reduces the amount of under- and overperforming
returns. This is a loss of information. Therefore, the kept information is to be
measured as the percentage of returns that are still determined as under- and
overexprimated by the original Bayes decision boundaries. In order to find an
appropriate window size w € IN for smooth but informative time series, a scree plot
is used. See Figure 8.2(b) for illustration. It can be seen that a window size of
w ~ 7 leads to a saturation of information loss.

Classifying Stocks

Stocks are to be classified according to their returns during the following quarterly
period into several classes, e.g. winning stocks, losing stocks and equal stocks. A
classification into several classes may be obtained by defining strict thresholds for
returns. This means: a single return r; above 10 % classifies a stock as winning,
whereas a single return below —7 % classifies the stock as loosing.

This static approach, usually, does not account for trends of the market. For
example, a so-called bear market leads to a massive downturn of stocks’ prices
and returns, respectively. Nearly all stocks will be classified as losers of necessity.
Instead, a more dynamic approach is applied for classification. Thus, the definition
of winning and loosing becomes more flexible in terms of bear versus bull markets.
A realistic measurement for the market development is the S&P 500 index. For
further use, stocks’ returns are related to the mean returns achieved by the market
itself by means of:

T < T — T'S&Pji

8.4 Results and Evaluation

Findings

In this showcase example, the Swarm-Organized Projection (SOQ) projects the
fundamental data x1, ..., z, onto a two-dimensional planar grid of size 50 x 82. No
additional parametrization is needed. The SOQ algorithm decreases the radius

stepwise from o = (%)2 + (%)2 ~ 48 down to o, = 1. For each node in

the output space, a codebook vector is provided. In contrast to Self-Organizing
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Figure 8.2: (a) Daily returns of S&P 500 index modeled as Log/Normal/Log-

Distribution. (b) Scree-plot: amount of information kept against window size
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Batch Maps, the update of codebook vectors happens iff the codebook vector in
question contributes to the learning of the topographic mapping. The Generalized
U-Matrix method (cf. Section 4.4) depicts the expected distance in data space on
each node of the output space. The resulting U-Matrix shows at least two main
classes at the center of the output space (see Figure 8.3(a) for illustration).

24

Figure 8.3: (a) U-Matrix of fundamental data depicts two large valleys in the
middle. (b) Manually classified U-Matrix. Block dots denote unclassified data

vectors.
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Evaluation

In order to assess the semantics of the obtained U-Matrix, a “third-party” ground
truth about companies is derived by means of the stock market. In Section 8.3
each company is classified as winner, looser or equal on the basis of its stock
price development. From the visual impression it is concluded that the “equal”
class is overrepresented in the found clusters, in comparison with the (unclassified)
outliers. See Figure 8.4 for illustration. This is quantified by means of the Bayesian
calculus [Bay63]. Instead of discrete locations, i.e. multiset {y1, ..., yn}, a gaussian
probability function Fj, : O — [0, 1] is centered on each y; in output space. The
conditional probability p(C|j) for class C' C X on a given location o; € O follows
as:

Formula 8.2

p(j|C) :p(C) D apec Foi(yk)

p(]) ZleX Fa,j(yl)

The conditional probability for the “equal” class C' C X is significantly higher in the
valleys (i.e. clusters) of the U-Matrix. See Figure 8.5 for illustration. This hypothe-
sis is quantified by the help of statistical testing and a simple classification rule that
mimics the unsupervised classification with elaborated clustering algorithms that
operate on top of the U-Matrix. Nodes o; with small U-heights are considered as
“valleys” which indicate clusters in the fundamental data. Let ug € R* be a thresh-
old for segmentation of the U-Matrix. Thus, two sets {0; : u(0;) < up} C O and
its complement are obtained. For each set of nodes the corresponding conditional
probabilities follow as P = {p(C|i) : u(0;) < up} and P' = {p(C|i) : u(0;) > ug}.

p(Clj) =

Figure 8.4: Market classification: winners (green), equals (yellow) and losers (red).
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10 20 30 40 50 60 70 80

Figure 8.5: Conditional probility for “equals” on the output space.

A statistical test is used to quantify the error probability p € [0,1] for reject-
ing the null hypothesis that P, P’ come from the same distribution. In this case,
rejecting the null hypothesis would mean that the Swarm-Organized Quantiza-
tion selected significantly differing sets of stocks (according to the corresponding
fundamentals) with differing conditional probabilities P, P’ for being an equal-
performer to the market index S&P 500. For v = 5,...,60, each v-percentile of
the heights of the U-Matrix serves as as segmentation threshold ug. This leads
to a sequence of error probabilities p,. The conditional probabilities P, P/ are
not normally distributed, i.e. coming from multi modal distributions. Thus, the
two sample Kolmogorov-Smirnov test [Smi48] is applied instead of Student’s t-test
[Stu08]. The negative log-probability — log;, p, indicates the exponent of the error
probabilities, which is more convenient to read. See Figure 8.6(a) for illustration
of p-values’s exponent against percentiles v. This indicates that for a wide range
of v € {15,...,45} the SOQ method leads to a meaningful segmentation of stocks,
at which lower U-heights indicate a higher probability for equal-performing stocks.
The probability of error for this finding is below the ov = 107100 Jevel.

8.5 Conclusions

Fundamental analysis was performed by the help of Swarm-Organized Quantization
(SOQ), which produces a low-dimensional projection from companies’ fundamental
features. The inherent distances were visualized by means of the U-Matrix method.
Visual inspection reveals two large clusters. The resulting U-Matrix serves as an
indicator for development of stocks’ prices. The conditional probability for market-
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conforming development of stocks’ prices is significantly higher in output space

regions with low U-Matrix heights.
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Figure 8.6: Percentiles for U-Matrix segmentation: (a) Negative log-probability
from two-sample KS test. (b) Median conditional probability for selected (green),
unselected (red) regions.
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Chapter 9

Discussion

The main concern of this work was to investigate how the Swarm-Intelligence
paradigm can contribute to topographic mapping, i.e. the creation of low-
dimensional images that depict regularities of high-dimensional or complex data. In
literature, little can be found on successful applications of swarm-driven algorithms
on the field of visual data exploration. The popular Ant-Based Clustering [LF94]
method was often adapted but found to be not competitive with state-of-the-art
methods [HKDO5].

In this thesis, the Swarm-Organized Projection (SOP) was introduced. It is
based on stochastic agents and fixed point iteration in order to overcome the
parametrization problems of traditional topographic mapping methods. The power
of SOP was demonstrated my means of empirical and theoretical evaluation and
application on real-world data.

9.1 Novelty

On the Relation of ABC and SOM

In Section 5.1 the Ant-Based Clustering algorithm [DGF190] [LF94] was charac-
terized as a derivative of Self-Organizing Maps, whose inability to create correct
topographic mappings derives from fixed and too small neighbourhoods, and the
accounting for meaningless quantities such as the density in output space. How-
ever, these formal insights are new but not surprising since empirical evidence can
be found in literature. Handl et al. [HKDO05] have provided empirical evidence
that topographic mapping is greatly improved by altering the normalization term
of ABC, as proposed in Section 5.1. Tan et al. [TTTO06] claim that the number of
simulated ants does not affect the obtained mapping of data objects. However, a
formal argument was not provided, but is found in Theorem 5.1 of this thesis.

Swarm-Organized Methods

The SOP method was inspired by Databots [Ult00a], at which data objects are
identified with agents that move on a finite but unbound grid universe. Each SOP
agent tends to minimize its personal topographic stress ®. However, stress func-
tions similar to ® can be found in well-established methods. As shown in [HUOS8],
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® is an upper limit of the quantization error used in Batch-SOM W and, more-
over, forms the topographic term of the attractiveness function used in traditional
Ant-Based Clustering [LF94]. Furthermore, ® resembles the generalized median of
Dissimilarity-SOM [KS02] which is a derivative of conventional Batch-SOM that
operates on pairwise dissimilarities instead of vectorial data. The Dissimilarity-
SOM suffers from the model collision problem [Ros07], i.e. several neurons share
a common codebook, which leads to misrepresentations of cluster structures. The
SOP architecture avoids codebooks. Model collisions therefore do not occur when
using SOP.

Although the traditional neighbourhood function F, of Batch-SOM,
CCA and SOP is a Gaussian, it is not related with t-SNE neighbour-
hoods p;;,q;j. The F, represents a weight term for the interaction be-
tween mapped objects y;,y;. This interaction might be reconciliatory
(dp(zi, ;) — do(yi, yj))2 as in CCA, or strictly repellent dp(x;, z;) as in SOP and
Batch-SOM. This is the main reason why the map space of SOP may be unbounded
(i.e. toroid) but has to be limited. In contrast to that, t-SNE uses the terms p;;, ¢;;
for reconciliatory purposes.

Annealing

If the structural features of a data set and the scaling of the structural features
is not known, otherwise successful algorithms like CCA and SOM may eventually
construct a faulty topographic mapping. The main reason for this effect stems
from the difficulty to select an appropriate annealing scheme for the parameter
which determines “neighbourhood” in the data. If the annealing scheme fits the
structural scaling of the data, a sufficient topographic map is constructed when
using sound and complete learning algorithms. Batch-SOM and its derivatives rely
on exhaustive search on all grid nodes for bestmatching units. In contrast to that,
SOP relies on few random samples from output space (see Algorithm 4.1). The
computational effort of exhaustive bestmatch search is therefore avoided. Non-
exhaustive search techniques enable the integration of batch learning criterions
with stochastic search. The computational effort of the annealing scheme adapts
itself to the intricacies of the data.

However, the use of fixed point iterations has been proposed in literature afore.
The soft topographic vector quantization algorithm (STVQ) as proposed by Grae-
pel and Obermayer [GBO98] offers the creation of SOM-like mappings. The STVQ
relies on minimization of an objective function E by the help of the EM algorithm
[DLR77]. This is achieved in two nested loops, similar to those used within SOP.
The inner loop is a fixed point iteration in terms of the objective function, de-
pending on the “free energy” parameter 8 € RT. This parameter determines the
smoothing that is done to the original objective function. Starting with low values,
the second loop increases the value of 8 until the desired solution is obtained. Ob-
viously, the 8 similarly acts as neighbourhood parameter, as known from radius o
in SOM-like systems. It is, however, not known how a reasonable choice for 5 and
its increase factor is determined. In contrast to that, the neighbourhood radius o of
SOP is determined according to the architecture of the grid-shaped output space.
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The SOP offers a much simpler architecture without the need for global objective
functions, gradient descents, soft (fuzzy) assignments and EM like optimizations.

Acceleration

The computational complexity of SOM learning is dominated by the bestmatch
search (cf. Formula 3.4). This is evident because all codebook vectors have to
be checked, but the update affects few codebook vectors only, especially when
using finite focus functions F,. In order to accelerate the learning of traditional
Online-SOM and Batch-SOM (cf. Section 3.2) few techniques have been proposed
in literature to constrain the set of searchable codebook vectors.

Most techniques exclude codebook vectors according to proximities in data
space. Ra and Kim [RK91] proposed a weight-distance ordered partial codebook
search (WPS) algorithm, which uses the mean value of data vectors to reject code-
book vectors that cannot be bestmatches. Cuadros-Vargas et al. [CVROO03] and
Kaski [Kas99] propose the use of tree-structures to split up the set of codebook vec-
tors, e.g. by hyperplanes. These approaches are rather complex and, furthermore,
can hardly be applied when working on dissimilarity data. The shortcut search
from Kohonen [Koh99] [LKKO04] restricts the bestmatch search for a given z; € X
to the vicinity around the old bestmatch location y; ,1q € O. However, there is no
formal limit for the deviation of old and new bestmatch locations.

The Swarm-Organized Quantization (SOQ) may be regarded as a derivative of
the Batch-SOM, that does not require an exhaustive search for the bestmatching
neurons. The Swarm-Organized Projection (SOP) may be regarded as a derivative
of the Dissimilarity-SOM, that does not rely on codebook vectors and does not
require an exhaustive search for the bestmatching neurons. Both methods rely on
a mechanism for approximate refinements of bestmatch locations, that is guided
by stochastic agents instead of rigid criterions. To the best of our knowledge, this
is a novel trait that distinguishes SOP and SOQ from other approaches. Due to
its simplicity, the swarm-driven search and update of codebook vector might be
combined with other acceleration techniques.

Applications

In Chapter 7 the SOP method depicts eight classes of miRNA-regulated genes. An
expert confirmed the composition of classes to be so far unknown in literature,
surprising and, therefore, valuable as a hypothesis for further research. Retrieving
functional groups of genes is not a new analytical approach. However, functional
grouping usually lacks some profound validation, cf. [SSZ05], e.g. by means of
expert knowledge. Instead, we propose evaluation by means of an external cost
function, i.e. the p-values obtained by over representation analysis methods such
as GeneTrail [BKK'07].

The influence of fundamental data on the development of stocks’ prices is known
from literature [LT93] [Deb98]. Thus, the connection between both classifications,
development on stock market and classes derived from the U-Matrix, is not sur-
prising. However, well-separated classes as retrieved by Deboek [Deb98] could not
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be reproduced. This might be explained by differing feature selection and feature
transformation.

9.2 Improvement

Objective Functions

Many methods, such as CCA or SNE, are characterized by an objective function
that is optimized by the corresponding learning algorithm. Constant decrease of
an objective function ensures convergence of the algorithm. This is not the case
in SOP, at which the existence of an objective function could no be proven, yet.
Even though the sum of ® has been monitored to be monotonically decreasing.
It remains unclear whether the existence of objective functions leads to superior
mappings or proofs concerning these mappings. It was shown that the inner loop of
the SOP algorithm will halt, since the probability for all agents to keep on moving
is a monotonically decreasing function of time.

Since a SOP agent does not account for the stress ® of other agents, it is likely
that a decrease of its own stress will increase the stress of others, which is suppos-
edly an unwanted effect but prevents the algorithm from premature convergence
into local optima of an unknown objective function.

Benchmarks

The results obtained from the dispersion measure are non-ambiguous. The CCA
method leads to less cohesive mappings than other methods, especially on the high-
dimensional real world data sets SwissBanknotes, Wine and GPD194. This can be
attributed to the mismatching default parametrization. The t-SNE is a promising
technique that often leads to non-cohesive mappings due to the intentionally de-
ficient (default) parametrization. This can be seen on many real world problems
and the artificial Chainlink data for instance.

The SOP method produces mappings of little dispersion compared with the
best obtained mappings. It even outperforms all other methods on Atom and
SwissBanknotes data. However the sparse stochastic search of SOP agents prevents
better results, because few agents are likely not to move on locations with less
topographic stress ®.

The accuracies of the nearest neighbour classifier lead to different conclusions.
The non-linear embedding algorithms CCA and t-SNE clearly outperform the
topology-preserving Batch-SOM and SOP on the real world data sets Iris, Swiss-
Banknotes and Wine. On the other data sets, the differences are not that obvious.
The separation of border classes greatly decreases in case of uniform distributions
in output space, as obtained by SOP and Batch-SOM. See Figure 4.2 for illustra-
tion. Thus, CCA and t-SNE lead to more separation and less cohesion of classes
in output space. However, Batch-SOM and SOP methods are intended as base for
subsequent visualization techniques (cf. Section 3.7).
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Applications

Chapter 8 shows that the probability for market-conforming stocks is roughly pre-
dictable by means of the resulting U-Matrix. Unfortunately, it is not a separate
class on the U-Matrix that predicts the stocks’ behaviour of interest. Instead,
the unclassified outliers are less likely to show market-conforming behaviour. It
is therefore hard to compare our results with traditional cluster algorithms, which
leave no data vector unclassified.

Chapter 7 presents a novel approach for analysis of microRNA (miRNA) reg-
ulation patterns, i.e. which types of genes are actually regulated by miRNA. An
expert confirmed the composition of gene classes to be so far unknown in literature,
surprising and, therefore, valuable as a hypothesis for further research. The SOP
method did outperform k-means and Ward clustering in terms of p-values obtained
by Over representation Analysis (ORA). Even though the findings are statistically
significant below the o = 0.001 level, the expected improvements are hardly under-
stood in terms of gained knowledge. However, preliminary analysis of additional
re-runs showed even more promising results when evaluating with ORA.

9.3 Validity

The Batch-SOM method has been shown in Section 6.5 to produce topographic
mappings of varying quality, depending on the pre-defined parametrization. These
results cannot be generalized to other types of Self-Organizing Maps, e.g. Online-
SOM or Heskes-SOM, because the update rules concerning the mapping greatly
differ in these algorithms. Furthermore, our empirical evidence is limited to 2-
dimensional borderless map space topologies.

Datasets

The data sets were carefully chosen in order to demonstrate several effects that
frequently occur at the construction of topographic mappings. The “Chainlink”
dataset is an artificial benchmark example consisting of more than a single man-
ifold, at which global and local proximities contradict each other with respect to
cluster memberships. For each ring there are points closer to the center of the other
chain than its own. The Batch-SOM performs best on Chainlink data. However,
Batch-SOM learning is prone to premature convergence. See [NMUO6] for details.

The Atom data set consists of two classes having the same center point. This
is a hard problem for methods that rely on computation of average vectors in data
space. Thus the poor results of Batch-SOM become explainable.

The EngyTime data set consists of overlapping classes. Benchmarking with
EngyTime evaluates the usability of projections in density-defined domains. For
the Iris data, SOP performs slightly worse than CCA and Batch-SOM. This can be
attributed to the stochastic nature of agents which does not guarantee convergence
to a local optimum. In contrast to that, SOP does not show severe inabilities when
trying to capture non-linear manifolds of Atom and Chainlink data.
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Evaluation

The evaluation is based on the dispersion measure, which quantifies topographic
mappings in a supervised fashion by means of Delaunay graphs in output space.
This is based on formal analysis of the U-Matrix visualization technique. In com-
parison with other topographic quality measures, dispersion is a coarse indicator
that is, however, invariant with respect to the topology of the output space. This
is mandatory for comparing topographic mappings with greatly differing output
space, e.g. periodic grids and non-periodic euclidean spaces.

The assumption for the dispersion measure to prefer the SOP method and
penalize other methods does not hold in practice. The dispersion measure is the
(normalized) sum of path lengths between non-connected subgraphs of a class (cf.
Section 6.2). It does not account for the cardinality of these subgraphs. Thus, a
single disconnected data object and a disrupted cluster are considered the same. In
fact, SOP typically projects few (or single) data objects far away from its designated
cluster, due to the stochastic nature of the algorithm. This means that the obtained
topographic mappings are far more convenient than indicated in Section 6.5.

The periodic boundary condition supported in Batch-SOM and SOP do not
imply an advantage over the non-periodic output spaces of CCA and t-SNE. CCA
correctly unfolds, for instance, the periodic Atom data onto non-periodic output
space R? In contrast to that the Batch-SOM fails to reproduce the core cluster
cohesively, despite its periodic output space.

9.4 Future Works

Experimental Evaluation

The benchmarking of SOP and SOQ, too, has to be continued in order to demon-
strate strengths and weaknesses of the proposed self-organization paradigm. An
investigation in sparse domains is particularly interesting, i.e. when mapping few
data objects onto many grid nodes such that nearest neighbours are less likely to
be found by stochastic agents.

Mining microRNA Data

The influence of (dis)similarity functions on the interestingness, novelty and validity
of the obtained gene classes has not been investigated, yet. For example, Resnik’s
similarity based on Gene Ontology Terms may be applied directly to the self-
organization process of the SOP algorithm and for visualization purposes by means
of the Generalized U-Matrix.

Parameter Studies

The amount of samples each agent uses for sampling may have vital influence on its
ability to localize a region in output space with less topographic stress ®. Currently,
the set of sensory samples has two elements. A larger set evidently leads to a higher
probability of finding a node with less topographic stress, in comparison with the
current location. However, large amounts of sensory samples may lead to premature
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convergence into, i.e. the algorithm is prone to get stuck in a local minimum of the
objective function. The main aim is therefore to derive an appropriate number of
sensory samples as a function of output space size and number of data objects.



144 CHAPTER 9. DISCUSSION



Chapter 10

Summary

Topographic mappings try to project high-dimensional or complex data onto a
low-dimensional output space while sufficiently preserving the topography of the
data. In this thesis we presented a novel algorithm for creation of topographic map-
pings from vectorial and relation data. The Swarm-Organized Projection (SOP)
was inspired by Swarm-Intelligence methods. This means that the learning algo-
rithm mimics the behaviour of social animals, e.g. flocking of birds or stigmergic
cooperation of ants.

An introduction to topographic mapping techniques outlines the main char-
acteristics of relevant learning algorithms. The quality of obtained mappings for
such algorithms depends critically on a suitable concept of neighbourhood. Fo-
cusing methods rely on a (decreasing) neighbourhood parameter to capture global
proximities first and more local proximities later on. When the annealing of these
parameters is too fast or too slow, this frequently leads to misrepresentations of
the inherent structures of the data. Popular focusing methods are Self-Organizing
Batch Maps and Curvilinear Component Analysis. Non-focusing methods often
rely on a fixed, but pre-defined concept of neighbourhood that is not changed during
the learning of the topographic structure. Mismatching parametrization leads to se-
vere misrepresentations of cluster structures. Particularly interesting non-focusing
methods are Stochastic Neighbour Embedding and Ant-Based Clustering. Formal
analysis of Ant-Based Clustering (ABC) reveals a connection with Self-Organizing
Maps on the basis of shared signature terms. The structural inability to generate
convenient projections becomes explainable, since ABC accounts for meaningless
quantities that are prone to distort the formation of correct topographic mappings.

Swarm-Organized Projection (SOP) was proposed as a solution to the
parametrization problem known from focusing algorithms, i.e. deriving an ap-
propriate annealing scheme for the neighbourhood radius. SOP self-adapts its
annealing scheme according to the behaviour of its swarm entities. On few se-
lected benchmark data sets, the SOP method was compared against carefully
parametrized competitor methods, namely Self-Organizing Batch Map, Curvilin-
ear Component Analysis and t-distributed Stochastic Neighbour Embedding. SOP
consistently projects the data topographically correct. In contrast to that, the
competitor methods show crucial inabilities on few data sets. SOP shows only
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marginal deviation from the best obtained results obtained, or even outperforms
other methods.

The practical usefulness of our proposed method was demonstrated by means
of two real-world applications. The Swarm-Organized Quantization (SOQ) is a fast
derivative of SOP for vectorial data. SOQ projects fundamental data of american
companies onto a low-dimensional output space for visual data analysis. The re-
trieved cluster structures are greatly related with the behaviour of stocks’ prices,
a quality that cannot be derived from fundamental data in a trivial way. Another
real-world application applies SOP on data from molecular biology. The set of
genes that are supposedly regulated by microRNA is classified into homogeneous
subsets, in order to give a convenient answer to the question which types of genes
are actually regulated by microRNA. The obtained classes were validated by means
of Over representation Analysis, and show significantly better results than Ward’s
clustering and k-means. An expert confirmed the novelty and usefulness of the
obtained knowledge.



Appendix A

Algorithms

Algorithm A.1 Self-Organizing Batch Map

1: function BATCHSOM(X, 0min, Omazs tmaz)

2 randomize {w; : 0; € O}

3 for t + 1,...,tnee do

4: o < radiusannealing(omin, Omaz, ﬁ)
5: for j < 1,...n do

6 yj < argmin, co ¥(z;, 0;)

7 end for

8

9

for 0, € O do
_ 2, ex Foldo(ys,0i))
Wi < Z;cjex Fo(do(y4,04))
10: end for
11: end for

12: end function

Algorithm A.2 Curvilinear Component Analysis

1: function CCA(Xv Ominy Omazy ®min, ®maz, tmaa})
2 randomize {y1, ..., Yn}

3 for ¢t + 1,..., 14 do

4 o « radiusannealing(omin, Omaz, ﬁ)
5: a < rateannealing(min, Omaz, ﬁ)

6 for i « 7(1),...,m(n) do

. for j«1,.,i—1,i+1,...ndo

8 yj <y + o Fo(do(yi, ;) - (dp (i 25) — do(Wi,45)) - gt
0: end for

10: end for

11: end for

12: end function
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Algorithm A.3 Ant-Based Clustering
1: function ANTCLUSTER(X, &, kq)
2 randomize {y1, ..., Yn}

3 randomize {ay, ..., a,’}
4 cp— Lfork=1,..,n

5: while true do

6

7

8

9

k < choose ant
ay, < randomwalk(ay)
Tp < Ppick ($cka ak)
: T < pdrop(xcka ak’)
10: mo  randomnumber € [0, 1]

11: if ¢ # L ANy < g then

12: Yep, < A

13: cr +— L

14: end if

15: if ¢, = L Amo < mp A Jy; = aj, then
16: Yy —— L

17: CL 1

18: end if

19: end while
20: end function

Algorithm A.4 Stochastic Neighbour Embedding

1: function T-SNE(X, a)

2 randomize {y1, ..., yn}

3 while — converged do

4: fori«+ 1,...,n do

5 for j + 1,...,n2d0

—dg (y4,95)

6 qij < ;':id%éi’yk)
7 end for Z

8: end for

9: fori+ 1,...,ndo

10: Yi & Yi +ac 2?21(1%' — 4ij) (Vi — vj)
11: end for

12: end while

13: end function
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Benchmarks
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Figure B.1: Atom data in R?.
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Figure B.2: Chainlink data in R3.
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Figure B.3: Iris data restricted to R3.
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Figure B.5: First three (out of six) features of Swiss Bank Notes data depicted in
R3.
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Figure B.6: Features’ distributions of normalized Swiss Banknotes data.
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Figure B.7: Atom data. t-SNE clearly separates the two classes, but disregards
the proximity of the hull (yellow). Batch-SOM falsely depicts two cores on a toroid
grid. SOP correctly assembles a single core on a toroid output space
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Figure B.7: Atom data. t-SNE clearly separates the two classes, but disregards
the proximity of the hull (yellow). Batch-SOM falsely depicts two cores on a toroid

grid. SOP correctly assembles a single core on a toroid output space
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Figure B.8: Wine data. t-SNE clearly separates
inclusions. CCA disrupts classes.
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Figure B.8: Wine data. SOP correctly assembles the classes on a toroid output

space.
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B.3 Statistical Testing

APPENDIX B. BENCHMARKS

CCA Batch-SOM | t-SNE SOP
CCA 1 1 1 1
Batch-SOM | 7.7528e — 046 | 1 7.7528e — 046 | 7.7528e — 046
t-SNE 1 1 1 1
SOP 1 1 1 1

Table B.1: Atom data: asymptotic probabilities p;; of two-sample KS test. Alter-
native hypothesis is: method; leads to larger dispersion values on an average than

method;.
CCA Batch-SOM t-SNE SOP
CCA 1 1.3814e — 040 | 2.9782¢ — 006 | 1.3814e — 040
Batch-SOM || 1 1 1 1
t-SNE 6.0578¢ — 008 | 5.7571e — 017 | 1 1.9816e — 016
SOP 0.9897 0.9897 1 1

Table B.2: Chainlink data: asymptotic probabilities p;; of two-sample KS test.
Alternative hypothesis is: method; leads to larger dispersion values on an average
than method;.

CCA Batch-SOM t-SNE | SOP
CCA 1 0.9108 1 1
Batch-SOM || 0.5144 1 1 1
t-SNE 1.4245e — 006 | 2.9782e — 006 | 1 2.9782e — 006
SOP 5.2767e — 012 | 1.1028e — 008 | 0.0966 | 1

Table B.3: Iris data: Asymptotic probabilities p;; of two-sample KS test. Alter-
native hypothesis is: method; leads to larger dispersion values on an average than

method;.
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CCA Batch-SOM t-SNE | SOP
CCA 1 0.6011 1 0.9897
Batch-SOM || 0.0157 1 1 1
t-SNE 7.7528e — 046 | 4.7406e — 044 | 1 4.4051e — 038
SOP 1.2231e — 005 | 0.00029 1 1
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Table B.4: EngyTime data: Asymptotic probabilities p;; of two-sample KS test.
Alternative hypothesis is: method; leads to larger dispersion values on an average

than method;.

CCA Batch-SOM t-SNE | SOP
CCA 1 7.5783e — 018 | 1 4.1181e — 024
Batch-SOM | 1 1 1 0.009
t-SNE 4.6498e — 010 | 1.5196e — 049 | 1 1.8606e — 040
SOP 1 0.9695 1 1

Table B.5: Swissbanknotes data: Asymptotic probabilities p;; of two-sample KS
test. Alternative hypothesis is: method; leads to larger dispersion values on an
average than method;.

CCA | Batch-SOM t-SNE SOP
CCA 1 1.1652e — 035 | 1.4791e — 032 | 7.0228¢ — 029
Batch-SOM | 1 1 0.9897 1
t-SNE 1 1.6382¢ — 017 | 1 1.3762e — 007
SOP 1 0.0041 0.4311 1

Table B.6: Wine data: Asymptotic probabilities p;; of two-sample KS test. Alter-
native hypothesis is: method; leads to larger dispersion values on an average than

method;.
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B.4 Dispersion
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Figure B.9: Atom data, distribution of dispersions: SNE (dash-dot, magenta),
CCA (dotted, green), Batch-SOM (dashed, blue) and SOP (solid, red).
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Figure B.10: Chainlink data, distribution of dispersions: SNE (dash-dot, magenta),
CCA (dotted, green), Batch-SOM (dashed, blue) and SOP (solid, red).



B.4. DISPERSION 161

0.9

0.6

o
o

o
IN

density estimate

0.3

dispersion

Figure B.11: EngyTime data, distribution of dispersions: SNE (dash-dot, ma-
genta), CCA (dotted, green), Batch-SOM (dashed, blue) and SOP (solid, red).
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Figure B.12: Iris data, distribution of dispersions: SNE (dash-dot, magenta), CCA
(dotted, green), Batch-SOM (dashed, blue) and SOP (solid, red).
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Figure B.13: SwissBanknotes data, distribution of dispersions: SNE (dash-dot,
magenta), CCA (dotted, green), Batch-SOM (dashed, blue) and SOP (solid, red).
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Figure B.14: Wine data, distribution of dispersions: SNE (dash-dot, magenta),
CCA (dotted, green), Batch-SOM (dashed, blue) and SOP (solid, red).
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Figure B.15: GPD194 data, distribution of dispersions: CCA (dotted, green) and
SOP (solid, red).
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B.5 GPD194 Data

Protein family ‘ # Genes ‘ Gene symbols ‘ # Protein sequences

myotubularin 7 MTMRI1-4 21
MTRMG6-8
receptor precursor | 7 FGFR1-4 87
RET
TEK
TIE1
collagen alpha 13 COL1A2 86
chain COL21A1
COL24A1
COL27A1
COL2A1
COL3A1
COL4A1
COL4A2
COL4A3
COL4A6
COL5A3
COL9A1
COL9A2

Table B.7: Characteristics of the GPD194 dataset by Popescu et al. [PKMO06]
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Figure B.16: GPD194 dataset [PKMOG6], proteins are sorted by family (myotubu-
larins, receptor precursors, collagen alpha chains) and by gene. (a) Dissimilarity

matrix. (b) Silhouette plot.
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Figure B.17: GPD194 data mapped by minimization of squared Kruskal stress (cf.
[Kru64]). No well-separated clusters are depicted. Despite its distance-preserving
intention, CCA depicts no well-separated clusters.
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Appendix C

Genes for microRNA

Figure C.1: The double helix structure of DNA in relation to a chromosome on the
right. Image by National Human Genome Research Institute.
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Figure C.2: Most significant terms from “biological process” ontology annotated

to miRNA-regulated 749 genes. Image obtained by GeneTrail [BKK107].



Appendix D

Fundamental Analysis

FndOwn

The percentage of common shares owned by mutual funds. It is derived by dividing
the aggregate number of company shares owned by mutual funds by the total shares
outstanding, and multiplying by 100. The Box-Cox tranformation suggests that
the square root of FndOwn values is roughly normally distributed.

ShrOut

This is the most recent figure for the total number of common shares outstanding,
denoted in millions. The logarithm of ShrOut is sufficiently normally distributed.

MktCap

The current stock-market value of a company’s equity, in millions. It is calculated
by multiplying the current share price by the number of shares outstanding as of
the most recently completed fiscal quarter. The logarithm of MktCap is sufficiently
normally distributed.

DTotYe

Listed for Year One and Two, this ratio is calculated by dividing long-term debt
(excluding other liabilities) by total capitalization (the sum of common equity plus
preferred equity plus long-term debt). This value is not provided for financial
companies. The Box-Cox tranformation suggests that the square root of DTotYe
values is roughly normally distributed.

ADV

The average daily trading volume of common shares during the trailing 12 months.
This is expressed in unit shares. The logarithm of ADV is sufficiently normally
distributed.
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PriCurr

The closing price at the end of the trading day on the relevant exchange as of the
release date of Principia Stocks. The logarithm of PriCurr is sufficiently normally
distributed.

Y1Y2

The annual percentage change in a company’s revenues. The calculation is a given
year’s revenues minus the prior year’s revenues, divided by the prior year’s revenues.
The resulting value is then multiplied by 100. Y1Y2 can be thought of as log-
normally distributed because the percental change of revenues is the product of
many small independent factors, calculated over periods of a year or more. The
relative difference of revenue changes is used for further analysis.

Y2Y3

The annual percentage change in a company’s revenues. The calculation is a given
year’s revenues minus the prior year’s revenues, divided by the prior year’s revenues.
The resulting value is then multiplied by 100. Y2Y3 can be thought of as log-
normally distributed because the percental change of revenues is the product of
many small independent factors, calculated over periods of a year or more. The
relative difference of revenue changes is used for further analysis.

Y3Y4

The annual percentage change in a company’s revenues. The calculation is a given
year’s revenues minus the prior year’s revenues, divided by the prior year’s revenues.
The resulting value is then multiplied by 100. Y3Y4 can be thought of as log-
normally distributed because the percental change of revenues is the product of
many small independent factors, calculated over periods of a year or more. The
relative difference of revenue changes is used for further analysis.
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Q1Q5

The percentage year-on-year change in quarterly revenues. The calculation of quar-
terly year-on-year change is the most recent quarter’s revenues minus the year-ago
quarter’s revenues, divided by the year-ago quarter’s revenues; the resulting value
is then multiplied by 100. Q1Q5 can be thought of as log-normally distributed be-
cause the percental change of revenues is the product of many small independent
factors, calculated over periods of a year or more. The relative difference of revenue
changes is used for further analysis.

TRRK1

This feature shows how a stock’s total returns compare with those of its industry
over the given time periods. The stocks in each industry are ranked on a scale from
1 to 100, where 1 represents the highest-returning 1% of stocks in that industry for
the given time period. TRRK1 is a rank-based feature that sufficiently follows a
uniform distribution. The feature’s distribution is therefore not transformed. The
range is standardized by linear scaling.

PECur

A stock’s current price divided by the company’s trailing 12-month earnings per
share. Just like returns, these values are produced by multiplication of small,
normally distributed changes. The logarithm of PECur is sufficiently normally
distributed.

PtBC

The most recent stock price divided by the most recent book value per share. The
logarithm of PtBC is sufficiently normally distributed.

PtSC

A stock’s current price divided by the company’s sales per share over the trailing
12 months. The logarithm of PtSC is sufficiently normally distributed.

PtCFC

A stock’s most recent price divided by the cash-flow per share of the latest fiscal
year.
The logarithm of PtSC is sufficiently normally distributed.

RS1Y

The stock’s relative strength versus the S&P 500 index in the last year as a return
€ [—100, 00). For further analysis the relative difference of RS1Y values is used in
order to limit the values’ range.
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Glossary

Agent

Agents are software entities located in a low-dimensional output space. Each
agent is identified with an object from a data space of interest. Agents move
on their own based on other agents’ location in order to position themselfs
nearby similar agents and, respectively, data objects. 35, 46, 54, 65

Class

For a given set of data objects X = {x1,...,z,} any subset C' C X is simply
refered to as class. It is assumed that X decomposes into several disjoint,
exhaustive and non-empty classes. A class is a subset of objects sharing a
certain property, e.g. sets of genes responsible for certain tasks in molecular
biology. 21, 130

Cluster

Clusters are a refinement of the concept of classes. Classes whose elements
share a certain geometric property are refered to as clusters. Typically, cluster
can be thought of as dense point clouds in high-dimensional vectorial spaces.
24

Cluster Analysis

Cluster analysis refers to the process of finding intrinsic subsets of similar
objects in a given set x1, ..., z, of data objects. By doing so the data set is
segmented into several clusters. 24, 77, 118, 132

Cohesiveness

A mapping m : {z1,...zp} — {y1, ..., yn} is refered to as cohesive with respect
to class C' C {z1, ...z, } if the intersection of C' x C and the Delaunay graph of
images {y1,...,yn} is connected. Thus Voronoi cells of class C' are adjacent,
which is a major requirement for the U-Matrix visualization to correctly de-
pict the inner class dissimilarities of class C' in low-dimensional output spaces.
For non-cohesive mappings inter class dissimilarities are falsely depicted be-
tween images of the same class C. 60, 96

Data

Data refers to a set of objects {z1,...,z,}. Each object represents a unique
entity from the given domain of interest, e.g. in molecular biology data deals
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with genes that are to be analyzed in terms of interactions and behaviour.
19, 21

Data Object

A data object is the most basic element of any data space. The comparision
of two objects is evaluated by means of a (dis)similarity function d. 21

Delaunay graph

The Delaunay graph (V, E) of a given set V' = {yi,...,yn} contains edges
(yi,yj) € E iff the Voronoi cells V (i), V(j) are adjacent. Delaunay graphs
are useful formalisms for exploration of neighbourhood relations. 23, 60, 96

Density

The probability of a random sample falling within a given set is given by the
integral of its probability density function over the set. Densities are usually
associated with continuous univariate distributions. 25, 58, 75, 77

Dissimilarity
A dissimilarity function d is a two-ary, symmetric, non-negative real-valued
operation that compares data objects. Values of zero indicate identical ob-
jects, whereas large values indicate greatly differing objects. As a special

case, metric distance functions furthermore fulfil the triangle inequality. 20,
115

Graph

A pair of sets (V, E) representing nodes (vertices) and edges. The set V of
nodes represents the underlying data objects. The set of edges E C V x V
represents a connection or similarity relation among nodes. 22

Topographic Mapping

A mapping m : {z1,..x,} — {y1,...,yn} that projects a given set of data
objects from a high-dimensional vectorial or even non-vectorial data space
onto a low-dimensional output space is refered to as topographic if it preserves
the data objects’ topography by its images, i.e. nearby objects are assigned
onto nearby locations in output space. 37

Topography

For a given set z1, ..., x, of data objects its topography is the set of all pair-
wise dissimilarity relations. Dissimilarities may be expressed by means of
several formalisms: (metric) distance functions, ranks of distances, (geomet-
ric) neighbourhood relations. 37

Topology

The concept of topology is a restriction of topography such that pairwise
dissimilarities are expressed by means of geometric neighbourhood relations
that are invariant to scaling and transition. Identical topographies are caused



Glossary 207

by clusters of identical geometrical shape. For example, adjacency of data
vectors’ Voronoi cells is a topology based on a simple geometrical relation.
38, 92

Voronoi cell

For a given set {y1,...,yn} C D the data space D decomposes into n subsets
by assigning each element y € D to its nearest neighbour among the y1, ..., yn.
These subsets V(i) ={y € D : d(y,y;) < d(y,yr)Vk = 1,...,n} are refered to
as Voronoi cells. 23, 58, 96



