1,477 research outputs found

    Significant cost and energy savings opportunities in industrial three phase reactor for phenol oxidation

    Get PDF
    YesEnergy saving is an important consideration in process design for low cost sustainable production with reduced environmental impacts (carbon footprint). In our earlier laboratory scale pilot plant study of catalytic wet air oxidation (CWAO) of phenol (a typical compound found in wastewater), the energy recovery was not an issue due to small amount of energy usage. However, this cannot be ignored for a large scale reactor operating around 140–160 °C due to high total energy requirement. In this work, energy savings in a large scale CWAO process is explored. The hot and cold streams of the process are paired up using 3 heat exchangers recovering significant amount of energy from the hot streams to be re-used in the process leading to over 40% less external energy consumption. In addition, overall cost (capital and operating) savings of the proposed process is more than 20% compared to that without energy recovery option

    Cogeneration Technology Alternatives Study (CTAS). Volume 3: Industrial processes

    Get PDF
    Cogenerating electric power and process heat in single energy conversion systems rather than separately in utility plants and in process boilers is examined in terms of cost savings. The use of various advanced energy conversion systems are examined and compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the target energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules specified by NASA for determining performance and cost. Data and narrative descriptions of the industrial processes are given

    Best Available Techniques (BAT) Reference Document for the Production of Large Volume Organic Chemicals. Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control)

    Get PDF
    The Best Available Techniques (BAT) Reference Document (BREF) for the Production of Large Volume Organic Chemicals is part of series of documents presenting the results of an exchange of information between EU Member States, the industries concerned, non-governmental organisations promoting environmental protection, and the Commission, to draw up, review and – where necessary – update BAT reference documents as required by Article 13(1) of Directive 2010/78/EU on Industrial Emissions (the Directive). This document is published by the European Commission pursuant to Article 13(6) of the Directive. The BREF for the production of Large Volume Organic Chemicals concerns the production of the following organic chemicals, as specified in Section 4.1 of Annex I to Directive 2010/75/EU: a. simple hydrocarbons (linear or cyclic, saturated or unsaturated, aliphatic or aromatic); b. oxygen-containing hydrocarbons such as alcohols, aldehydes, ketones, carboxylic acids, esters and mixtures of esters, acetates, ethers, peroxides and epoxy resins; c. sulphurous hydrocarbons; d. nitrogenous hydrocarbons such as amines, amides, nitrous compounds, nitro compounds or nitrate compounds, nitriles, cyanates, isocyanates; e. phosphorus-containing hydrocarbons; f. halogenic hydrocarbons; g. organometallic compounds; k. surface-active agents and surfactants. This document also covers the production of hydrogen peroxide as specified in Section 4.2 (e) of Annex I to Directive 2010/75/EU; and the combustion of fuels in process furnaces/heaters, where this is part of the abovementioned activities. The production of the aforementioned chemicals is covered by this document when it is done in continuous processes where the total production capacity of those chemicals exceeds 20 kt/yr. While the main aim of the LVOC BREF is to facilitate reduction of emissions from chemical processes, other environmental issues - like energy efficiency, resource efficiency, wastes and residues - are also covered. This BREF contains 14 Chapters. Chapters 1 and 2 provide general information on the Large Volume Organics industrial sector and on generic industrial production processes used in this sector. Chapters 3 to 12 provide general information , applied processes and techniques, current emission and consumption levels, techniques to consider in determination of BAT and emerging techniques for various illustrative processes: lower olefins, aromatics, ethylbenzene and styrene, formaldehyde, ethylene oxide and ethylene glycols, phenol, ethanolamines, toluene diisocyanate and methylene diphenyl diisocyanate, ethylene dichloride and vinyl chloride monomer and hydrogen peroxide. Chapter 13 presents BAT conclusions as defined in Article 3(12) of the Directive. Concluding remarks and recommendations for future work are presented in Chapter 14.JRC.B.5-Circular Economy and Industrial Leadershi

    Tratamento de águas residuais industriais com nanomateriais sintetizados para um ambiente sustentável

    Get PDF
    Quality of the final discharged effluents from industrial activities has been the subject of significant efforts over several decades to improve the performance of the methods applied for their treatment, either by physico-chemical, biological, or a combination of these processes. Among the emerging technologies, the application of various types of engineered nanomaterials (ENMs) has gained a particular attention in recent years. The present thesis aimed to carry out either experimental studies, surveys and critical reviews in order to synthesize the most sustainable nanomaterials for the treatment of recalcitrant pollutants from the content of industrial effluents. In parallel, the sustainability of other biological and physicochemical methods has been critically assessed and the most sustainable treatment methods have been suggested to be adopted by the industries. It was demonstrated in this thesis that the application of Tagguchi approach can considerably aid to control the properties of iron-based nanoscale particles synthesized by a liquidphase reduction process. Working with this system revealed that both the (reductant/Fe3+) ratio, (R), and the Fe3+concentration, [Fe3+], are the parameters that determine critical characteristics including particle crystalline phase composition, crystallinity and surface area although R has been revealed as the most important one. Nano zero valent iron particles with enhanced properties, synthesized by utilization of ultrasonic irradiation, was successfully tested to degrade organic dyes (methylene blue, as a case study) which are dominant in the wastewater from some industries such as textile factories. Recovery of the nanomaterials after being applied for the treatment purposes is also among the most important parameters for the selection and synthesis of the most sustainable nanomaterials for environmental applications. A novel ZnO/Fe3O4 on Bentonite nanocomposite prepared in this thesis showed acceptable photocatalytic decomposition of 2,4 dichlorophenol besides the ability to be recovered after being used. Magnetic nanocomposites were also tested for the degradation of AOXs from pulp and paper mill effluents and showed acceptable performance in such applications. A framework was also developed in this thesis for the sustainability assessment of the best available technologies to deal with industrial effluents, showing the efficiency of biological treatment methods to deal with industrial effluents although having some limitation to deal with phenolic industrial effluents. With a precise acclimatization process, very high efficiency for the biodegradation of phenol with a high degree of resistance to the shock of initial phenol concentration was achieved using activated sludge process. The results of a critical review, as the future outlook of this thesis, indicated the possibility of integration of engineered nanomaterials and also biological treatment with the membrane technologies in order to overcome the existing barriers for the rapid development of membrane technologies for the treatment of industrial effluents.A qualidade dos efluentes finais de atividades industriais tem sido, ao longo de várias décadas, objeto de esforços significativos para melhorar o desempenho dos seus métodos de tratamento, seja por via físico-química, biológica ou uma combinação destes. Entre as tecnologias emergentes, o recurso a nanomateriais sintetizados (ENMs) tem sido alvo de especial atenção nos últimos anos. A presente tese teve como objetivo realizar estudos experimentais, levantamentos de informação e revisões críticas, a fim de sintetizar nanomateriais sustentáveis para o tratamento de poluentes recalcitrantes existentes em efluentes industriais. Paralelamente, a sustentabilidade de outros métodos biológicos e físico-químicos foi avaliada criticamente, tendo-se sugerido os métodos de tratamento mais sustentáveis para serem adotados pelas indústrias. Foi demonstrado nesta tese que o recurso à abordagem de Tagguchi pode auxiliar consideravelmente no controlo das propriedades de partículas nanométricas à base de ferro, sintetizadas por um processo de redução em fase líquida. O estudo deste sistema revelou que tanto a razão (agente redutor/ Fe3+) como a concentração de Fe3+ são os parâmetros que determinam características críticas dos precipitados, incluindo a sua composição de fases cristalinas, grau de cristalinidade e área superficial específica. As nanopartículas de ferro de valência zero com propriedades melhoradas, sintetizadas pela utilização de irradiação por ultrasons, foram testadas com sucesso para degradar corantes orgânicos (azul de metileno como corante modelo) que são compostos dominantes nas águas residuais de algumas indústrias, designadamente de fábricas de têxteis. A recuperação dos nanomateriais após a sua aplicação em tratamentos de efluentes também é um dos aspectos mais importantes a ter em consideração na seleção e síntese de nanomateriais sustentáveis para aplicações ambientais. Um novo nanocompósito de ZnO/Fe3O4 sobre Bentonite, produzido neste trabalho, revelou uma capacidade aceitável para decomposição fotocatalítica do 2,4 diclorofenol, além da capacidade de ser recuperado após utilização. Testaram-se também nanocompósitos magnéticos na degradação de AOXs de efluentes da indústria do papel e celulose que evidenciaram um desempenho aceitável nessas aplicações. Definiu-se também nesta tese um contexto para a avaliação da sustentabilidade das melhores tecnologias disponíveis para lidar com efluentes industriais, tendo-se revelado a eficiência dos métodos de tratamento biológico para lidar com efluentes industriais, embora com alguma limitação para lidar com efluentes industriais fenólicos. Com um processo de aclimatação preciso, conseguiu-se uma eficiência muito elevada para a biodegradação do fenol, com alto grau de resistência ao choque da concentração inicial de fenol, utilizando-se o processo de lamas ativadas. Mediante uma revisão crítica da literatura, e como perspectivas de futuro a extrair do presente trabalho, aponta-se a possibilidade de integrar nanomateriais sintetizados e tratamento biológico nas tecnologias de membrana, para superar as barreiras actualmente existentes ao rápido desenvolvimento das tecnologias de membrana para o tratamento industrial efluentes.Programa Doutoral em Ciências e Engenharia do Ambient

    Plastics chemical recovery for production of chemical intermediates at a Swedish chemical complex

    Get PDF
    The present report discusses process concepts for chemical recycling of waste streams for production of chemical intermediates at a Swedish chemical complex site.The total Swedish waste stream of plastics, automotive shredder residues (ASR) and electronic waste (WEEE) currently sent to energy recovery were considered and metal recovery was also considered for the relevant streams. Forest residues were also used as an input following a vision of feedstock flexibility and carbon-neutral production of chemicals.The layout of the envisioned waste-to-chemical plant includes a process for production of ethylene via gasification of plastics and forest residues and a process for production of syngas for OXO-synthesis applications via pyrolysis of ASR and WEEE.Mass and energy balances were established by process flowsheet simulations and process integration opportunities were identified by applying an energy targeting methodology. Finally, the GHG emission reduction potentials of such processes were quantified by keeping the energy recovery alternative as reference of comparison.Based on rather optimistic assumptions it was found that about 120 kt of ethylene per year and about 44 kt of syngas can be produced which are respectively about 15% and 26% of the site demand of ethylene and syngas to OXO synthesis.Overall, the estimated contribution to global GHG emission reduction lies in a range between 800 and 1300 kt CO2-eq per year depending on the different scenarios of marginal technologies for production of ethylene, electricity and heat. This is about the same order of magnitude of the current on-site GHG emissions at the Stenungsund chemical complex site. This result is based on the assumption that chemical recycling is alternative to energy recovery which in Sweden is done in CHP units connected to district heating networks. By diverting waste to chemical production, we assumed that biomass CHP units compensate for electricity and heat production and that this can even create a surplus of electricity in short term which in turns reduces the production of electricity in coal power plants. This results highlights that the climate consequences of the proposed recycling strategy are largely dependent, at least in Sweden, on the future development of the biomass prices and utilization.The results also show that an important reduction of GHG emissions can be obtained by recovering the large amounts of excess heat available from the thermochemical processes for production of steam which can be exported to the various chemical plants by appropriately placing the proposed processes close to or in the middle of the chemical complex site. This steam is about 70% of the steam currently produced at the site in natural gas boilers. The reduction of natural gas consumptions in steam boiler contributes to about 20 to 30% of the total GHG emission reduction potential which highlights the suitability of the Stenungsund site for large-scale implementation of biorefineries and waste-to-chemical plants

    Energy efficiency and GHG emissions: Prospective scenarios for the Chemical and Petrochemical Industry

    Get PDF
    This study analyses the savings potential of energy consumption and GHG emissions from cost-effective technological improvements in the chemical and petrochemical industry up to 2050. The analysis follows a bottom-up approach; that is, it is based on information at facility level of existing plants with their production characteristics, best available and innovative technologies. The analysis includes 26 basic chemical compounds that cover 75 % of the total energy use (including energy used as feedstock) and more than 90 % of GHG emissions of the chemical sector in 2013. The bottom-up approach includes an annual cost-effectiveness analysis of the uptake of best available and innovative technologies in each facility up to 2050. The projections and assumptions used are in accordance with the reference scenario of the European Commission. In absolute terms, from 2013-2050 the total energy consumption increases by 39.2 % and the GHG emissions' decrease by 14.7 %; these values include the effect (and depend on) a demand increase by 45.6 %. In 2050, without any technological improvement, the GHG emissions and energy consumption would be 36 % and 4 % higher. The minor effect of technological improvements on energy savings can be partly explained by the fact that 73.5 % of the total energy consumed in the manufacturing of the products covered in this study is incorporated in the final products, and most of new technologies have an impact on the direct energy use, but not on the non-energy use.JRC.C.7-Knowledge for the Energy Unio

    Solving challenges in electrochemical water treatment for a circular economy

    Get PDF
    Erweiterte elektrochemische Oxidationsverfahren (engl.: Electrochemical Advanced Oxidation Processes, EAOP) sind vielversprechende Technologien für die dezentrale Wasseraufbereitung und haben das Potential wichtige Elemente bei der Realisierung einer Kreislaufwirtschaft zu werden. Bislang wurde die Technologie trotz ihrer nahezu konkurrenzlosen Reinigungsleistung, aufgrund der Bildung von Hydroxylradikalen, noch kaum im technischen Maßstab angewendet. Daher wurden innerhalb der vorliegenden Arbeit vier Anwendungsfälle in verschiedenen Bereichen betrachtet und fünf Herausforderungen für EAOPs auf Basis von bordotierten Diamantelektroden (BDD) identifiziert, die eine technische Realisierung bislang erschweren: 1. Nur die Anode wird zur Erzeugung eines direkten Oxidationsmittels verwendet 2. Die kathodische Wasserstoffentwicklung trägt zu einem höheren Energieverbrauch und zur Schaumbildung bei 3. Hohe Betriebskosten aufgrund preisintensiver BDDs mit begrenzter Lebensdauer 4. Die Kathodenoberfläche wird während der Elektrolyse alkalisch. Dies führt beim Vorliegen von Härtebildnern in der Wassermatrix zu einer Verkalkung der Kathode, bis hin zur Isolierung der aktiven Oberfläche 5. Chlorierung von organischen Verbindungen wenn Chloridionen im zu behandelnden Wasser vorliegen. Diese Herausforderungen wurden durch zwei neuartige Reaktorsysteme und Prozessführungen gelöst. Durch die Verwendung eines Reaktors auf Grundlage einer BDD der nächsten Generation (auf Basis von Tantal anstatt Niob) in Kombination mit einer Wasserstoffperoxid-bildenden Gasdiffusionselektrode (BDD-GDE-System) wurden die Herausforderungen eins bis drei gelöst. Es konnte gezeigt werden, dass dieser Reaktor bei der Behandlung von künstlichen pharmazeutischen Abwässern eine wesentlich höhere Abbaueffizienz (135 %) bei einem wesentlich geringeren Energieverbrauch (75 %) gewährleistet als dem Stand der Technik entsprechende Zellkonzepte und die konkurrierenden Technologien Ozonierung und Perozonierung. Daneben ermöglichen BDD-GDE-Systeme einen nahezu 100 %-igen Abbau. Die neue Ta-basierte BDD zeigt eine deutlich reduzierte Degradation während des Betriebes auf und es wird eine erhöhte Lebensdauer von 18 Jahren anstelle von 2 Jahren (Nb-basierte BDD-Anoden) erwartet. Dies führt zu einer Reduzierung der Betriebskosten um bis zu 80 %. Dieses System stößt an seine Grenzen, wenn Härtebildner in hohen Konzentrationen im Wasser vorhanden sind (Ca2+, Mg2+). Diese Herausforderung wurde durch die Entwicklung eines neuartigen Zellendesigns auf der Grundlage einer in-situ bewegten Graphit-Polymer-Compound Kathode (BDD-GPC-System) gelöst. Ein Test (120 Stunden) mit künstlichem Zugtoilettenabwasser zeigte die Langzeitstabilität des BDD-GPC-Systems auf und demonstrierte, dass die periodisch magnetisch induzierte Bewegung der GPC-Kathode in-situ Ablagerungen auf ihrer Oberfläche entfernt und den wartungsarmen Betrieb des Systems ermöglicht. Neben der Abwasserreinigung ermöglicht die BDD-GPC-Kombination die elektrochemische Fällung von anorganischen Stoffen und eröffnet neue Anwendungsbereiche wie die elektrochemische Wasserenthärtung (Enthärtungsgrade bis > 90 %) und Metallfällung (Fällungsgrade bis > 98 %). Die fünfte Herausforderung wurde durch die Identifizierung eines neuartigen Betriebspunktes gelöst, der den Abbau organischer Verbindungen ohne die Bildung von Chloremissionen an BDD-Anoden und damit ohne die Bildung chlorierter Kohlenwasserstoffe und Produkte ermöglicht. Um diese chlorfreie Abwasserbehandlung an der BDD zu nutzen, muss der pH-Wert des Anolyts während der Behandlung bei über 14,2 gehalten werden. Mit diesen Entwicklungen kann die Kreislaufwirtschaft in der pharmazeutischen Industrie und in der metallverarbeitenden Industrie, insbesondere zur Wiederverwendung von Wasser, erreicht werden. Die chlorfreie Reinigung von organisch belasteten NaCl-haltigen Prozesswässern aus der Kunststoffproduktion ermöglicht die Wiederverwendung beispielsweise in der Chlor-Alkali-Industrie. Durch den Einsatz in Zügen kann das durchschnittliche Frischwassertankintervall deutlich verlängert werden, da das Abwasser im Zug aufbereitet und als Spülwasser wiederverwendet werden kann. Darüber hinaus ermöglicht ein Wasserenthärtungsreaktor weitere erhebliche Einsparpotentiale - lokale Frischwasserversorgungen der Züge werden von der Wasserhärte entkoppelt.Electrochemical advanced oxidation processes (EAOP) are promising technologies for decentralized water treatment and have the potential to be important components in achieving a circular economy. To date, EAOPs are rarely applied at technical scale despite their nearly unrivaled treatment performance owing to hydroxyl radical formation. Therefore, four use cases in diverse fields were considered and five challenges of boron-doped diamond electrode (BDD) based EAOPs were identified, which impede the application in technical scale: 1. Solely the anode is used for oxidant generation and only one oxidant is directly formed 2. Cathodic hydrogen evolution contributes to a higher energy consumption and foam formation 3. High operation costs due to expensive BDDs with limited lifetimes 4. The local pH at the cathodes surface becomes highly alkaline, which results in a calcification of the cathode in the presence of hardness minerals 5. Chlorination of organic compounds, in case of chloride ions in the wastewater matrix, generating toxic byproducts. These challenges were successively solved by two novel reactor systems and unique process controls. By using a reactor based on a "next-generation" BDD (tantalum-based instead of niobium) combined with a hydrogen peroxide-forming gas diffusion electrode (BDD–GDE system), challenges one to three were solved. Compared to the state-of-the-art cell design and also to the competitive technologies ozonation and peroxone it was shown that this novel reactor ensures much higher degradation efficiency (135 %) with much lower energy consumption (75 %) when treating artificial pharmaceutical wastewater. Next to the low energy demand of BDD–GDE systems, the investigations revealed a treatment efficiency rate of nearly 100 % with the lowest specific energy consumption per mass organic compared to the mentioned technologies and electrochemical processes reported in the literature. The new Ta-based BDDs show drastically reduced degradation during operation and an increased lifetime of 18 years is predicted instead of 2 years for Nb-based BDD anodes. This results in a reduction of up to 80 % of the operational costs. The system reaches its limits in presence of a high concentration of hardness minerals in the water (Ca2+, Mg2+). This challenge was solved by developing a novel cell design based on an in situ moving graphite-polymer-composite (GPC) cathode (BDD–GPC system). A treatment test (120 h) of artificial vacuum toilet wastewater indicated the long-term stability of the BDD–GPC system and demonstrated that the in situ periodically magnetic-induced movement of the GPC cathode removed deposits from its surface and ultimately resulted in a low-maintenance operation of the system. Besides the wastewater treatment, the BDD–GPC combination can be used for electrochemical precipitation of inorganics and opens new application areas, such as electrochemical water softening (softening levels up to > 90 %) and metal precipitation (efficiencies up to > 98 %). Challenge five was solved by experimentally determining an operation point for the purification of organic substances while avoiding the formation of chlorine species at BDD anodes. Therefore, the treated water remained free of chlorinated hydrocarbons. To reach the chlorine-free purification at the BDD, the pH value of the anolyte must be maintained above 14.2 during treatment. With the presented developments, a circular economy for water can be achieved in the pharmaceutical industry and in the metal processing industry. The chlorine-free purification of organic-polluted sodium chloride-containing water from plastics production can led to the reuse of water and brine in the chlor-alkali industry. The application in trains extend the average fresh water tank interval significantly due to an on-train wastewater treatment and reuse of the water as flushing water. For areas with high water hardness levels significant savings for water utilization can be achieved by the use of the above-mentioned water softening reactor

    Lignin as a source of phenolic compounds: from lignin extraction to its transformtion by different routes.

    Get PDF
    201 p.En la presente Tesis Doctoral el trabajo desarrollado se ha centrado en la extracción y caracterización de lignina procedente de diversos tipos de material residual lignocelulósico, como el bagazo y hojas de agave azul, las cáscaras de almendra o restos de podas de olivo. Se propusieron distintos métodos libres de azufre para la extracción de lignina. Tras la caracterización físico-química de las distintas ligninas obtenidas se realizó una despolimerización termo-química de algunas de ellas para la obtención de compuestos fenólicos de tamaño monomérico como principal objetivo. Un novedoso planteamiento de despolimerización de lignina sin previo aislamiento fue experimentado con resultados similares al planteamiento convencional de despolimerización a partir de ligninas sólidas.Finalmente, el estudio tecno-económico de las diferentes rutas planteadas para la extracción y despolimerización de la lignina fue completado mediante la utilización de un software comercial de simulación de procesos químicos

    Textile effluent & waste water: a review

    Get PDF
    Textile processing is a growing industry that traditionally has used a lot of water, energy and harsh chemicals. Textile industries consume over 7 x 105tons of dyes annually and use up to 1 litre of water per kg of dye processed and arethird largest polluters in the world. As a characteristic of the textile processing industry, a wide range of structurally diverse dyes can be used in a single factory, and therefore effluents from the industry are extremely variable in composition. This needed for a largely unspecific process for treating textile waster water. Treatment methods that were perfectly acceptable in the past may not be suitable today or in thefuture.Some of the enzymes that are currently known in biotechnological processes such as amylases and proteases that are being used in the synthetic and biochemical reactions have evolved over millions of years to become efficient and selective for specificreactions taking place in living systems.Research on biological treatment has offered simple and cost effective ways of bioremediating textile effluents. Biotechnology can be used in new production processes that are themselves less polluting than the traditional processes. Waste treatment is probably the biggest industrial application of biotechnology.The aims of this study represents a review of enzyme applications in bioremediating textile dyeand their effluents.The aim is to provide the textile technologist with an understanding of enzymes and their use with textile materials

    Lignin as a source of phenolic compounds: from lignin extraction to its transformtion by different routes.

    Get PDF
    201 p.En la presente Tesis Doctoral el trabajo desarrollado se ha centrado en la extracción y caracterización de lignina procedente de diversos tipos de material residual lignocelulósico, como el bagazo y hojas de agave azul, las cáscaras de almendra o restos de podas de olivo. Se propusieron distintos métodos libres de azufre para la extracción de lignina. Tras la caracterización físico-química de las distintas ligninas obtenidas se realizó una despolimerización termo-química de algunas de ellas para la obtención de compuestos fenólicos de tamaño monomérico como principal objetivo. Un novedoso planteamiento de despolimerización de lignina sin previo aislamiento fue experimentado con resultados similares al planteamiento convencional de despolimerización a partir de ligninas sólidas.Finalmente, el estudio tecno-económico de las diferentes rutas planteadas para la extracción y despolimerización de la lignina fue completado mediante la utilización de un software comercial de simulación de procesos químicos
    corecore