315 research outputs found

    WAQS : a web-based approximate query system

    Get PDF
    The Web is often viewed as a gigantic database holding vast stores of information and provides ubiquitous accessibility to end-users. Since its inception, the Internet has experienced explosive growth both in the number of users and the amount of content available on it. However, searching for information on the Web has become increasingly difficult. Although query languages have long been part of database management systems, the standard query language being the Structural Query Language is not suitable for the Web content retrieval. In this dissertation, a new technique for document retrieval on the Web is presented. This technique is designed to allow a detailed retrieval and hence reduce the amount of matches returned by typical search engines. The main objective of this technique is to allow the query to be based on not just keywords but also the location of the keywords within the logical structure of a document. In addition, the technique also provides approximate search capabilities based on the notion of Distance and Variable Length Don\u27t Cares. The proposed techniques have been implemented in a system, called Web-Based Approximate Query System, which contains an SQL-like query language called Web-Based Approximate Query Language. Web-Based Approximate Query Language has also been integrated with EnviroDaemon, an environmental domain specific search engine. It provides EnviroDaemon with more detailed searching capabilities than just keyword-based search. Implementation details, technical results and future work are presented in this dissertation

    Probabilistic representation and manipulation of Boolean functions using free Boolean diagrams

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1994.Includes bibliographical references (p. 145-149).by Amelia Huimin Shen.Ph.D

    8th annual reality CLE

    Get PDF
    Meeting proceedings of a seminar by the same name, held October 29-30, 2020

    Spectral Methods for Boolean and Multiple-Valued Input Logic Functions

    Get PDF
    Spectral techniques in digital logic design have been known for more than thirty years. They have been used for Boolean function classification, disjoint decomposition, parallel and serial linear decomposition, spectral translation synthesis (extraction of linear pre- and post-filters), multiplexer synthesis, prime implicant extraction by spectral summation, threshold logic synthesis, estimation of logic complexity, testing, and state assignment. This dissertation resolves many important issues concerning the efficient application of spectral methods used in the computer-aided design of digital circuits. The main obstacles in these applications were, up to now, memory requirements for computer systems and lack of the possibility of calculating spectra directly from Boolean equations. By using the algorithms presented here these obstacles have been overcome. Moreover, the methods presented in this dissertation can be regarded as representatives of a whole family of methods and the approach presented can be easily adapted to other orthogonal transforms used in digital logic design. Algorithms are shown for Adding, Arithmetic, and Reed-Muller transforms. However, the main focus of this dissertation is on the efficient computer calculation of Rademacher-Walsh spectra of Boolean functions, since this particular ordering of Walsh transforms is most frequently used in digital logic design. A theory has been developed to calculate the Rademacher-Walsh transform from a cube array specification of incompletely specified Boolean functions. The importance of representing Boolean functions as arrays of disjoint ON- and DC- cubes has been pointed out, and an efficient new algorithm to generate disjoint cubes from non-disjoint ones has been designed. The transform algorithm makes use of the properties of an array of disjoint cubes and allows the determination of the spectral coefficients in an independent way. By such an approach each spectral coefficient can be calculated separately or all the coefficients can be calculated in parallel. These advantages are absent in the existing methods. The possibility of calculating only some coefficients is very important since there are many spectral methods in digital logic design for which the values of only a few selected coefficients are needed. Most of the current methods used in the spectral domain deal only with completely specified Boolean functions. On the other hand, all of the algorithms introduced here are valid, not only for completely specified Boolean functions, but for functions with don\u27t cares. Don\u27t care minterms are simply represented in the form of disjoint cubes. The links between spectral and classical methods used for designing digital circuits are described. The real meaning of spectral coefficients from Walsh and other orthogonal spectra in classical logic terms is shown. The relations presented here can be used for the calculation of different transforms. The methods are based on direct manipulations on Karnaugh maps. The conversion start with Karnaugh maps and generate the spectral coefficients. The spectral representation of multiple-valued input binary functions is proposed here for the first time. Such a representation is composed of a vector of Walsh transforms each vector is defined for one pair of the input variables of the function. The new representation has the advantage of being real-valued, thus having an easy interpretation. Since two types of codings of values of binary functions are used, two different spectra are introduced. The meaning of each spectral coefficient in classical logic terms is discussed. The mathematical relationships between the number of true, false, and don\u27t care minterms and spectral coefficients are stated. These relationships can be used to calculate the spectral coefficients directly from the graphical representations of binary functions. Similarly to the spectral methods in classical logic design, the new spectral representation of binary functions can find applications in many problems of analysis, synthesis, and testing of circuits described by such functions. A new algorithm is shown that converts the disjoint cube representation of Boolean functions into fixed-polarity Generalized Reed-Muller Expansions (GRME). Since the known fast algorithm that generates the GRME, based on the factorization of the Reed-Muller transform matrix, always starts from the truth table (minterms) of a Boolean function, then the described method has advantages due to a smaller required computer memory. Moreover, for Boolean functions, described by only a few disjoint cubes, the method is much more efficient than the fast algorithm. By investigating a family of elementary second order matrices, new transforms of real vectors are introduced. When used for Boolean function transformations, these transforms are one-to-one mappings in a binary or ternary vector space. The concept of different polarities of the Arithmetic and Adding transforms has been introduced. New operations on matrices: horizontal, vertical, and vertical-horizontal joints (concatenations) are introduced. All previously known transforms, and those introduced in this dissertation can be characterized by two features: ordering and polarity . When a transform exists for all possible polarities then it is said to be generalized . For all of the transforms discussed, procedures are given for generalizing and defining for different orderings. The meaning of each spectral coefficient for a given transform is also presented in terms of standard logic gates. There exist six commonly used orderings of Walsh transforms: Hadamard, Rademacher, Kaczmarz, Paley, Cal-Sal, and X. By investigating the ways in which these known orderings are generated the author noticed that the same operations can be used to create some new orderings. The generation of two new Walsh transforms in Gray code orderings, from the straight binary code is shown. A recursive algorithm for the Gray code ordered Walsh transform is based on the new operator introduced in this presentation under the name of the bi-symmetrical pseudo Kronecker product . The recursive algorithm is the basis for the flow diagram of a constant geometry fast Walsh transform in Gray code ordering. The algorithm is fast (N 10g2N additions/subtractions), computer efficient, and is implemente

    Investigation, Development, and Evaluation of Performance Proving for Fault-tolerant Computers

    Get PDF
    A number of methodologies for verifying systems and computer based tools that assist users in verifying their systems were developed. These tools were applied to verify in part the SIFT ultrareliable aircraft computer. Topics covered included: STP theorem prover; design verification of SIFT; high level language code verification; assembly language level verification; numerical algorithm verification; verification of flight control programs; and verification of hardware logic

    Simulation environment for introductory computer science education

    Get PDF
    Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.Includes bibliographical references (p. 329-338).by Craig Allen Henderson.M.Eng

    Logics for digital circuit verification : theory, algorithms, and applications

    Get PDF

    Proceedings, MSVSCC 2011

    Get PDF
    Proceedings of the 5th Annual Modeling, Simulation & Visualization Student Capstone Conference held on April 14, 2011 at VMASC in Suffolk, Virginia. 186 pp

    Adolescents’ engagement with social media

    Get PDF
    Social media plays an increasingly important role in the daily lives of adolescents. Yet evidence of its effects are mixed, and the field lacks underlying theory to guide more nuanced research. This study explored the psychosocial processes underpinning adolescent engagement with social media. Adolescents (n = 28) were interviewed regarding their experiences of social media, and interview transcripts were analysed using grounded theory methodology. The emergent theory describes a cyclical process of evaluating the risks vs rewards of social media use, experimenting, learning from experiences, and re-calibrating one’s stance towards social media. Two styles of use, active and passive, became apparent, each maintained and defended by numerous strategies employed consciously and unconsciously, with the overarching goal of maintaining a sense of safety regarding their sense of self and status within their social hierarchy. This study depicts a complex, nuanced picture of adolescent engagement with SM, one that encompasses both positive and negative experiences. The model points to the importance of identity and social identity theories, and raises important questions about identity development in this evolving context

    Tree Matching Problems with Applications to Structured Text Databases

    Get PDF
    Tree matching is concerned with finding the instances, or matches, of a given pattern tree in a given target tree. We introduce ten interrelated matching problems called tree inclusion problems. A specific tree inclusion problem is defined by specifying the trees that are instances of the patterns. The problems differ from each other in the amount of similarity required between the patterns and their instances. We present and analyze algorithms for solving these problems, and show that the computational complexities of the problems range from linear to NP-complete. The problems are motivated by the study of query languages for structured text databases. The structure of a text document can be described by a context-free grammar, and text collections can be represented as collections of parse trees. Matching-based operations are an intuitive basis for accessing the contents of structured text databases. In "G-grammatical" tree inclusion problems the target tree is a parse tree over a co..
    • …
    corecore