
 

Logics for digital circuit verification : theory, algorithms, and
applications
Citation for published version (APA):
Janssen, G. L. J. M. (1999). Logics for digital circuit verification : theory, algorithms, and applications. [Phd
Thesis 1 (Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR520460

DOI:
10.6100/IR520460

Document status and date:
Published: 01/01/1999

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR520460
https://doi.org/10.6100/IR520460
https://research.tue.nl/en/publications/05a0272e-f225-4d40-b8f9-583c4fc5f842




Logies for Digital Circuit Verification 
Theory, Algorithms, and Applications 



Logies for Digital Circuit Verification 
Theory, Algorithms, and Applications 

PROEFSCHRIFT 

Ter verkrijging van de graad van doctor aan de 
Technische Universiteit Eindhoven, op gezag van 
de Rector Magnificus, prof.dr. M. Rem, voor een 
commissie aangewezen door het College voor 
Promoties in het openbaar te verdedigen op 
woensdag 24 februari 1999 om 16.00 uur 

door 

Gradus Leenardus Johannes Maria Janssen 

geboren te Oss 



Dit proefschrift is goedgekeurd door de promotoren 

prof.Dr.-lng. J.A.G. Jess, en 
prof.dr. J.C.M. Baeten 

Copromotor: 

dr.ir. C.A.J. van Eijk 

©Copyright 1999, G.L.J.M. Janssen 

All rights reserved. No part of this publication may be reproduced, stored in a 
retrieval system, transmitted, in any form or by any means, electronic, mechanica!, 
photocopying, recording, or otherwise, without the prior written parmission from 
the copyright holder. 

Druk: Universiteitsdrukkerij Technische Universiteit Eindhoven 

CJP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN 

Janssen, Gradus L.J.M. 

Logies for digital circuit verification : theory, algorithms, and applications I by 
Gradus L.J.M. Janssen.- Eindhoven: Technische Universiteit Eindhoven, 1999. 
Proefschrift. - ISBN 90-386-1560-4 
NUGI832 
Trefw.: digitale geïntegreerde schakelingen I digitale systemen ; CAD I 
correctheidsbewijzen I temporele logica I hardwarebeschrijving I sequentiele 
machines. 
Subject headings: digital integrated circuits I logic CAD I tormal verification I 
temporallogicI sequentia! circuits. 



voor mijn vader 

V 



Summary 

This thesis presents the results of investigating various logies with respect to 
their application to verification of digital hardware design. The approach high
lights both the end-user aspects and the implementor's aspects. 

The thesis is structured in 3 parts: part I discusses verifieation problems in the 
area of combinational circuits, part II focuses on sequentia! circuit verification, 
and part III presents the software tools that have been developed and discusses 
details of their implementations. Also, part III contains a number of test cases 
that exhibit the typieal modeHing of problems in terms of the investigated logies 
and shows how they are solved by the presented tools: 

• bdd - a boolean function manipulation package 

• ptl- a temporallogic satisfiability checker 

• mu - a propositional .u-calculus tool 

• bsn2veri - a combinational circuit equivalence checker 

• bsn2mc - a Fair-CTL model checker 

This thesis focuses on techniques for hardware verification. The approach is for
mal, i.e., mathematica! theories will be presented that form the basis for mod
eHing the hardware and reasoning about its behaviour. The work concentrates on 
decidabie theories, for which algorithms exist that can be used to prove certain 
properties of the circuit. Central to this thesis are the application of the theory 
and the development of efficient algorithms. 
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Samenvatting 

Dit proefschrift presenteert de resultaten van een onderzoek naar de toepassing 
van diverse logica's met betrekking tot de verificatie van digitale hardware. De 
aanpak belicht zowel de eindgebruikeraspecten als ook de aspecten t.a.v. de 
implementator. 

Deze thesis is onderverdeeld in 3 delen: deel I beschouwt verificatieproblemen 
op het gebied van combinatorische circuits, deel II focusseert op verificatie van 
sequentiële circuits en deel III presenteert de software pakketten die zijn 
ontwikkeld en gaat in op de details van hun implementatie. Daarnaast presen
teert deel III een aantal voorbeelden die de typische modellering van problemen 
in termen van de onderzochte logica's duidelijk maken en laat zien hoe deze 
opgelost worden met de ontwikkelde programma's: 

• bdd - een pakket voor manipulatie van boolse functies 

• ptl- een satisfiability checkervoor LTL temporele logica 

• mu een programma voor propositionele J.L-calculus 

• bsn2veri - een equivalentie checker voor combinatorische circuits 

• bsn2mc een model checkervoor Fair-CTL 

Deze thesis richt zich vooral op technieken voor hardware verificatie. De aanpak 
is formeel, d.w.z. mathematische theorieën worden behandeld die de basis vor
men voor het modelleren van hardware en het redeneren over het gedrag ervan. 
We concentreren ons op beslisbare theorieën, waarvoor geldt dat er algoritmen 
bestaan die gebruikt kunnen worden om zekere eigenschappen van het circuit te 
bewijzen. Centraal staan de applicatie van de theorie en de onhvikkeling van 
efficiënte algoritmen. 

i x 



Summary 

Samenvatting 

1. General Introduetion 
1.1 Introduetion and thesis overview 
1.2 Background and acknowledgements 

Verification of Combinational Circuits 

2. Combinational Circuits 
2.1 Introduetion 
2.2 Boolean functions and combinational circuits 
2.3 Boolean network 
2.4 Higher-Level descriptions 
2.5 Other verification problems 

3. Propositional Logic 
3.1 Introduetion 
3.2 The language of propositionallogic 
3.3 Truth table method 
3.4 Disjunctive normal form 
3.5 Containment (or subsumption) 
3.6 Implementation of DNF 

4. Binary Decision Diagrams 
4.1 Introduetion 
4.2 Notation and terminology 
4.3 BDD construction 

Contents 

vii 

ix 

1 
1 
3 

7 

9 
9 
9 

11 
14 
14 

19 
19 
19 
23 
23 
25 
26 

29 
29 
29 
33 

x i 



xii Contents 

Verification of Circuits with Memory 

5. Sequentia! Circuits 
5.1 Introduetion 
5.2 Finite automata and sequentia} circuits 
5.3 Verification problem 
5.4 State-space exploration 
5.5 Symbolic computation 
5.6 Product machine verification 

6. Temporal Logic 
6.1 Introduetion 
6.2 A few words about time 
6.3 Kripke structures 
6.4 Computation tree logic 

6.4.1 Semantics 
6.4.2 CTL operators 

6.5 CTL model checking 
6.5.1 Model checking algorithms 

6.6 Linear-time temporallogic 
6.7 An LTL satisfiability checker 

6.7.1 Parsing an LTL formula 
6.7.2 Normalization 
6.7.3 Optimization 
6.7.4 Model construction 

6.8 Specification of finite state machines in LTL 
6.8.1 Notational preliminaries 
6.8.2 FSM to LTL transformation 

7. .u-Calculus 
7.1 Introduetion 
7.2 Syntax 
7.3 Semantics 
7.4 Boolean ,u-calculus 
7.5 Interpreter for _u-calculus 

Programs and Examples 

8. The BOD Package 
8.1 Implementation issues 
8.2 Dynamic variabie ordering 

8.2.1 Principles 
8.2.2 Implementation issues 
8.2.3 Examples and results 

9. Application ofBDDs in a Hardware Description Language 

37 

39 
39 
39 
42 
43 
46 
51 

53 
53 
54 
54 
55 
56 
58 
59 
61 
63 
65 
65 
66 
67 
68 
77 
78 
78 

83 
83 
84 
86 
88 
97 

101 

103 
103 
105 
105 
106 
109 

111 



9.1 Introduetion 
9.2 AsarnpleHDL 

Contents 

9.3 Souree-level transformations 
9.4 BDD interpretation ofbehavioural modules 
9.5 The HDL verifier 
9.6 Dealing with large circuits 

9.6.1 Cutpoints and BDDs 
9.6.2 Hunting for correspondences 
9.6.3 Cutpoint guessing 
9 .6.4 Resolving false negatives 
9 .6.5 Experiments 

10. The PTL Program 
10.1 Introduetion 
10.2 A 2-story elevator 
10.3 Chinese ring puzzle 
10.4 Synchronous bus arbiter 

10.4.1 Reachability analysis 
10.5 Discussion 

11. Conclusions 
11.1 Contributions and achievernents 
11.2 Directions for future research 

References 

Biography 

xiii 

111 
112 
117 
122 
127 
129 
130 
131 
131 
132 
133 

137 
137 
137 
142 
144 
149 
150 

151 
151 
153 

157 

161 



Chapter 1 

General Introduetion 

1.1 Introduetion and thesis overview 

This thesis is about verification. The purpose of this general introduetion is to set 
the context for our meaning of the term 'verification' and to argue why verifica
tion is an important subject in the realm of digital circuit design. We also give an 
overview of the contents of the thesis. Lastly, my personal history of workin this 
field is narrated and acknowledgements to people that influenced me are made. 

In many industrial production areas, quality isofutmost importance. And qual
ity entails measurements and standards: the standards set the goals and by mea
surements it is verified whether these goals are met. In the design of complex 
electronk circuits it is no longer possible to ensure their correctness by mere 
visual inspeetion (the features on a chip are simply too small to see with the 
naked eye). But even the design data or blueprints, i.e., the schema tics, hardware 
description language texts, and layouts, contain so much detail that inspeetion by 
a human designer becomes a truly Herculean job. lt is not just the complexity, 
i.e., large se ale of integration, that causes problems; also the intrinsic 'go-or-no
go' characteristic of the subject matter makes it hard to devise good and simple 
tests. The effect of a single wrong conneetion during design, or a tiny oversight 
(read: bug) by the programmer of a logic synthesis tooi, may render a whole 
batch of wafers useless. The sooner the flaw is discovered the better, and the 
cheaper. Not tomention all the things that can go wrong during the actual chip 
fabrication process. However, that is not the subject of this thesis. 

A first step towards a successful production of a chip is that its design is func
tionally correct. Correctness is not an absolute notion. One can only meaningful-
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2 General Introduetion Chapter 1 

ly talk about the correctness of a design with respect to a some predefined speci
fication (the standard). By means of measurement or testing it is possible to 
assess the quality of a design. But, (non-exhaustive) testing can only indicate the 
presence of errors; it cannot guarantee their absence. This is a slightly rephrased 
quotation from Edsger Dijkstra [Dijks76] whowasthen talkingabout the correct 
construction of computer programs. In this dissertation we investigate the appli
cability of formal methods in verifying the functional correctness of designs for 
digital circuits. For that we need two things: a mathematica! model for the 
behaviour of the circuit and a theory that allows 'mechanica}' reasoning within 
that model. We use the word 'functional' to stress a certain narrowing of, or 
abstraction from, all possible issues involved; it is the behaviour that fits a certain 
model of the circuit that we are interested in, and it is with respect to the roodels 
that we tailor the correctness probieros and their solutions. 

A major part of this thesis is concemed with the practical issues that arise when 
implementing these formal methods as a computer program suitable for use by 
electronk circuit designers. Several computer-aided verification tools were devel
oped as part of this thesis work: 

- bdd - a package for logic function manipulation 

- ptl- a propositional temporallogic satisfiability checker 

- mu- implements an extended propositional p-calculus 

- bsn2veri - a combinational circuit equivalence checker 

- bsn2mc - a Fair-CTL model checker 

Undoubtedly, the design process of computer algorithms and their implementa
tion in a certain programming language parallels the design of integrated cir
cuits. Many mathematica} concepts and techniques are similar, if not the same, at 
least when regarcled at a certain level of abstraction. (There is no equivalent to a 
physical MOS transistor in a programming language; but when modelled as a 
switch, the ensuing logic circuit may well be simulated by if-then-else state
ments). In fact, computer sciencists recognized this and not surprisingly they 
were the ones that coined the phrase 'VLSI programming' [Niess88J. True, much 
of the earlier work on formal verification was initiated by mathematicians and 
computer scientists. Unfortunately, this has led to the situation where much of 
this work was not accepted by the electrical engineering community and the 
CAD tool makers. Also, the goals they set out do not always coincide with the 
needs of a hardware designer; there often exists a large gap between theoretica! 
results and useful applications. We should not forget that the main purpose of 
computer aided design is to actually help a designer in getting his job clone and 
not to put up yet another harrier for him to cross. 

This thesis focuses on techniques for hardware verification. The approaches are 
formal, i.e., mathematica! theories will be presented that form the basis for mod
elling the hardware and reasoning about its behaviour. Moreover, we concentrate 
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on decidabie theories, this means that algorithms exist that can be used to prove 
certain properties of the circuit. Central to this thesis are the applications of the 
theory and the development of efficient algorithms. 

This thesis consists of three parts: part I deals with combinational circuits, part II 
treats sequentia! circuits, and part III presents practical approaches to solving the 
problems raised in the preceding parts. It is valid to say that the first two parts 
mainly define a number of important verification problems and the necessary 
theory to describe them, and that in the last part of this thesis chokes are made as 
to how to practically solve those problems in the farm of computer programs. 
The last part also presents examples and quantitative data of experiments. The 
three parts are entitled: 

Part 1: Verifkation of Combinational Circuits. 
In this part the relations between combinational circuits, propositional 
logic, and canonkal representations of switching fundions (DNF, BOD) 
are made explicit. 

Part II: Verification of Circuits with Memory. 
Here we extend the combinational circuit model to include time
dependent behaviour. This leads to the introduetion of the propositional 
temporal logies LTL and CTL, and an even more powerful system: 
J.L-calculus. 

Part III: Programs and Examples. 
The theory presented in the first two parts culminated in the develop
ment of several verification tools: the ptl program for temporallogic, the 
mu program for J.L-Calculus, the bsn2veri program for combinational cir
cuit verification based on a hardware description language, and last but 
nat least a BOD package that farms the care of all the aforementioned 
programs. Part lil will discuss some of the more interesting implemen
tational aspects of these programs, in sofar as they were not already 
covered in the preceding parts, and, more importantly, we will discuss 
how to effectively use those programs by studying a number of example 
problems. 

1.2 Background and acknowledgements 

It has taken me quite some time to prepare this thesis. The best excuse I can offer 
is that the field of CAD for electronk circuits is sa exciting that it is hard for me 
to tear myself loose from the daily work and sit back and reflect on my own spe
cialized field of hardware verification, let alone to do nothing else but concen
trate on writing a whole thesis. The 'trouble' is that my interests are rather 
diverse, and my character farces me to not be satisfied until a new idea or theory 
or algorithm is fully understood, which aften results in writing my own program 
for the particular problem just to see what is involved and thereby creating a 
framework for exploring my own ideas and hopefully to be able to come up with 
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improvements. So, over the years I have developed quite a few programs on a 
variety of subjects. I once wrote some language development tools, like an LL(l) 
checker and a program that draws syntax diagrams. I was involved in the design 
of the Eindhoven Schematic Entry tooi "Escher" under the NELSIS project; a pro
gram that was later enhanced by some of my students to mature as "Escher+" 
Uanss89], and that now is in the able hands of Hans Fleurkens who tumed it into 
a very flexible and general graphic design entry and user-interface. Within the 
same project, I developed the hardwàre description language NDML to be used 
with the piece-wise linear simulator also developed in our group [Janss86]. My 
first contact with temporallogic was when I was working at Philips Telecommu
nications Industry in Hilversum where RonKoymans was doing his master the
sis workunder the guidance of (now Prof.) Jan Vytopil. Their goal was to formal
ize the message passing semantics of the CCITT programming language CHILL. 
I was intrigued by the many obscure symbols and seemingly heavy rnathematics 
they were using in their writings. When a few years later I was confronted with 
the workof Amir Pnueli and Zohar Manna [Manna81] on propositional temporal 
logic, I decided to write my own satisfiability checker for LTL and apply it to the 
verification of digital systems. Fortunately, this work became part of the ASCIS 
project, which gave me a willing audience to promote my ideas and results 
[Raner93, Janss92]. The initial driving force for my work on temporallogic was 
fueled by a challenge proposed by Prof. Lars Philipson of Lund University, Swe
den [Phili89]. His skepticism towards the applicability of temporallogic to prove 
correctness of state machines culminated in a hectic E-mail conversation, ending 
in an invitation to hop over to Lund and explain it all in person. (Those were the 
good old days.) 

I am obliged to thank many people that in one way or other have 'educated' me 
to become the person that I am now. First of all I want to thank Professor Joehen 
Jess who has been, and still is, a most fair boss, an inspiring tutor, and amiable 
colleague (and a good drummer). I praise myself lucky to have the opportunity 
to work with so many good-hearted, honest, hard working, and outstanding col
leagues in the Design Automation Group: Lia, Frans, Jos, Michel, en Oege, 
thanks. My office mates over the years deserve special mention: Hans Zuidam, 
André Slenter, Ed Huijbregts, and Pieter, a.k.a. Tiggr, Schoenmakers. They never 
tired of having to listen to my ranting about bugs, troubles, errors, frustrations, et 
cetera. I thank all my students who have helped me with the implementations of 
some of the algorithms, and doing much of the testing and debugging. The most 
appreciated, but for them less obvious, side-effect was that they forced me to 
keep ahead of them and to acquire an intimate understanding of the subject at 
hand. They also kept me young, in spirit that is. I salute all the doctoral students 
that I saw arrive in our group, dotheir excellent work, and leave again (veni, vidi, 
vici). I cannot resist to single out Jose Pineda who is a dear, and now unfortu
nately distant, friend, and Gjalt de Jongwhowas my sparring partner in the veri
fication arena from the start. He handed over the towel to a knowledgeable sub
stitute in the person of Koen van Eijk. Special thanks go to the memhers of the 
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BSN group at IBM T.J. Watson Research Center and their manager Marshall 
Schor (who generously hosted me during the past five summers), and to Ton 
Kostelijk and Willem Rovers of Philips Research. I hope we can continue our 
cooperation in the future. 



Part I 

Verification of 
Combinational Circuits 

The first part of this thesis consists of three chapters. Chapter 2 defines combina
tional circuits and states the combinational circuit equivalence problem. A more 
general problem that arises when correspondences benveen circuit inputs and 
outputs are not known is briefly discussed. lt presents an elegant formulation of 
a general-purpose permutator circuit. Chapter 3 introduces propositional logic 
and derives an important representation for its expressions: disjunctive normal 
form. This form will be used again in chapter 6 in the implementation of an LTL 
satisfiability checker. Chapter 4 concludes this part with an introduetion to 
binary decision diagrams (BDDs). All programs presented in this thesis are 
based on these BDDs. 

7 



Chapter 2 

Combinational Circuits 

2.1 Introduetion 

In this chapter wedefine the notion of a combinational circuit and introduce an 
important verification problem, namely combinational circuit equivalence. We 
show how boolean functions can be associated with the network graph represen
tation of a combinational circuit. It is assumed that the correspondences between 
inputs and outputs of the circuits to be compared are known beforehand. In the 
last section we drop this restrietion and consider a more general verification 
problem. 

2.2 Boolean functions and combinational circuits 

Let B = { 0, 1 } be thesetof boolean truth values: 0 stands for false, and 1 stands 
for true. We consider functions f : Bn ~ B, n ~ 0, and more generally, m element 
veetors of such functions F : Bn ~ Bm, m > 0. Geometrically speaking we may 
say that F maps a point in boolean n space to a point in boolean m space. A real
life realization or implementation of F is called a combinationallogic circuit. In a 
combinational circuit the 0 and 1 values are usually related to non-overlapping 
voltage intervals; the fundions are realized by a network of primitive logic oper
ator cells or gates. When the argument value ~ to the function F is supplied to 
the inputs of the network, the function value y_ = F ( ~) is observed at the outputs 
of the network. F is an abstract, mathematica! model (black-box) for the 
behaviour of the combinational circuit. It does not necessarily tell us anything 
about its structure. Figure 2.1 illustrates the correspondence between a combina
tional circuit (left) and its black-box functional model (right). In fact, the logic 

9 



10 Combinational Circuits Chapter 2 

circuit itself is a model for a transistor level circuit. 

x, :------------1 
I 
I Y1 

F 
Y, 

Figure 2.1. Schematic of combinational circuit and its black-box model. 

A particular (vector component) function f : B"------* 8 may be defined in various 
ways. Usually one introduces place-holder symbols, say x1, x2 , · • · , Xn, to repre
sent arbitrary argument values and then defines the result f ( x1, x2 , • • · , Xn ) of 
applying the function to those arguments by some logic expression involving the 
x(s. For our example circuit in figure 2.1 we could write: 

f1 (x1, x2,x3,x4 ,x5 , Xe, x7 , x8 ) =.., (x1 A x2 )v (x3 A -,x3 ), 

f2 (x1, x2,x3,x4,x5 , Xe,X7 , x8 ) =.., ( -.x3 A (x4 vx5 ) ), 

f3 (x1, x2, x3, x4 , x5 , Xe, x7 , x8 ) = ( ~ vx5 vx6 ) A (x7 A x8 ). 

Intuitively, the meaning of the logic expressions on the right-hand side should be 
clear. In a following chapter we will formally define a language of logic expres
sions. 

It should be obvious that the position of a place-holder variabie in the argument 
list is very crucial; above this has been indicated using subscripts. Generally/ 
f ( x1, x2 ) :#: f ( x2 , x1 )1 and in order to compare two functions1 no matter in what 
way they are represented/ the correspondence between their sets of place-holder 
variables has to be known in advance. With this in mind, the following definition 
makes sense: 

Definition 2.1 (Functional circuit equivalence). 
Two combinational circuits C1 and C2 are said to be functionally equivalent if 
their corresponding black-box models F1 and F2 are identical (vector) functions. 

In practice, this means that we assume the two circuits to have identical input 
and output labelling (symbols), and that the correspondence is simply defined as 
identity of these labels. We can now state the main problem that we will address 
in this chapter: 

COMBINATIONAL CIRCUIT EQUIVALENCE 
INSTANCE: Two combinational circuits C1 and C2 over the same sequence of 
inputs and outputs. 
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QUESTION: Are both circuits functionally equivalent? That is, do both circuits 
for all possible combinations of input values yield the same values at their cone
sponding outputs? 

Note that the formulation of the above question already hints at a possible solu
tion: exhaustive simulation. Once we have established a model for a combina
tional circuit suitable to automatic evaluation operational model), the equiva
lence problem can be solved by simulating both circuits for all possible combina
tions of input values, each time checking whether the conesponding output pairs 
evaluate to the same value. However, simulation is not the topic of this thesis; 
our goal is to develop verification algorithms that answer this question. Before 
we do so we first need to define a combinational circuit precisely, and show how 
we can attach a functional meaning to it. Then the equivalence problem can be 
rephrased in terms of the circuits' associated functions. 

2.3 Boolean network 

We define a boolean network as a graph: the vertices of the graph represent the 
gates of the circuit; the edges represent the connections from a gate output to 
other gates' inputs. More formally, 

Definition 2.2 A boolean network is a vertex-labelled directed graph G (V, E ). 
The set of vertices V consists of the three non-overlapping sets Gates, Inputs, and 
Outputs, with 

• Gates : a finitesetof gates. Each gate is labelled by a logical operator symbol 
chosen from the set {..,,A, v }. Note that since the A and v operators are com
mutative and associative it is not necessary to define an ordering on the 
incoming edges to such a vertex . .., gates have a single incoming edge; A and v 
gates have 2 or more incoming edges. 

• Inputs : a fini te set of circuit inputs, also called the primary inputs. A primary 
input cannot have incoming edges. 

• Outputs : a finite non-empty set of circuit outputs, also called the primary out
puts. A primary output has a single incoming edge and no outgoing edges. 

• The directed edges E ç;; (Gates u Inputs) x (Gates u Outputs) represent the 
connections between gates, primary inputs, and primary outputs. Note that 
edges between inputs and edges between outputs are not allowed. It is 
tempting to impose the requirement that the graph be acyclic. However, this 
is nota necessary condition fora circuit to be combinational [Malik93]. How
ever, for simplicity we do here assume acyclicness. 

Figure 2.2 shows a circuit schematic and its associated boolean network graph. 
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Figure 2.2. Circuit schematic and its boolean network graph. 

The following additional definitions for a boolean network will prove to be use
ful: 

Definition 2.3 The direct fanin of a vertex v is the set of its immediate predeces
sar vertices: 

fanin(v) = {u I (u, v) e E }. 

Note that for a primary input Xj, fan in ( Xj ) = 0. 

Definition 2.4 The direct fanout of a vertex v is the set of its immediate succes
sor vertices: 

fanout ( v) = { w I ( v, w) e E } . 

Note that for a primary output yk, fanout ( Yk) = 0. 

We are now ready to define the meaning (semantics) of a combinational circuit. 
We do this by giving an inductive definition for its (black-box) boolean function 
vector F. 

Definition 2.5 With each combinational circuit, represented by an acydic 
boolean network graph according definition 2.2, we associate a vector of boolean 
functions F = [f1, f2 , • • ·, fm ], with m = I Outputs!. We first impose a total ordering 
on the set of primary Inputs= { x1, x2 , • • ·, Xn} and primary 
Outputs= { y1, y2 , • • ·, Ym }, e.g. by the indices. All component functions fk of F 
will have the same domain B" and co-domain B; we abbreviate x1, x2, • • ·, Xn to X. 

• Each primary input xi is associated with a projection function 
fx; = lX. Xi. 

• Each gate g is associated with a function 
f9 = lX. <I> fu (X), where <I> is the reduction operator corresponding to 

u e famn(g) 
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the operator labelling the gate, e.g. if the label of g is A then <I> = A. 

• With each primary output Yi we assocîate a function 
fyi = ftanin(yj)' 

13 

• The boolean fundions fk associated with the circuit are the functions we asso
ciate with the primary outputs Yk, thus 
fk = fyk. 

Example 2.1 Definition 2.5 applied to the circuit of figure 2.2 results in 
F == [fb f2, f3], with 

f1 =fy1 == ÀX1,X2,X3,X4,X5,X6 ,X7 ,X8.(.., (X1 AX2 ))v (X3 A (..,X3 )), 

f2 = fy
2 

= ÀX1, X2 , X3 , X4 , x5, X6, X7, X8 . ..., ( (..., X3 ) A ( X4 V Xs) ), and 
f3 = fy

3 
= .llx1, x 2 , x3, x 4,x5,x6, x7, x 8. ( (x4 vx5 )vx6 ) A (x7 AX8 ). 

o example 2.1 

We conclude this subsectien with a restalement of the equivalence problem. 

COMBINATIONAL CIRCUIT EQUIVALENCE 
INSTANCE: Two combinational circuits C1 and C2 represented by their boolean 
network graphs G1 ( Gates1 u Inputs u Outputs, E1 ) and G2 ( Gates2 u Inputs 
u Outputs, E2 ) respectively. 
QUESTION: Are both circuits functionally equivalent? That is, does F1 = F2 

hold for the associated veetors of boolean functions F 1 and F 2? 

Figure 2.3 presents this problem in the form of a picture. 

x 

t 

Figure 2.3. Combinational circuit equivalence: C1 = C2? 

The single bit output represents the function t == }.~. ( F 1 ( ~) == F2 ( ~) ). The cir
cuits are equivalent if and only if this function is a tautology, i.e., V~ Es" t ( ~) = 1. 
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2.4 Higher·Level descriptions 

A representation of a combinational circuit by its boolean network graph is called 
a gate-level description. It is a convenient representation (encoding) for many 
problems relating to logic optimization and synthesis. The ratio of functionality 
to representation size at the gate level is quite small: to implement a simple arith
metic function over n-bit numbers requires a large number of gates. Thus we 
look for more efficient representations yielding a larger ratio. Basically, two 
approaches come to mind: 

1. Introduce hierarchy. This will allows us to exploit the fact that in many 
designs the same subcircuits are used over and over again. In a hierarchical 
description a subcircuit representing a certain funçtion is defined only once, 
and all its uses are references instead of copies. The effect is twofold: 
descriptions become more compact and algorithms processing them a.re 
faster (because of data sharing). 

2. Introduce richer domains. Inslead of having to express all functionality in 
termsof operations on boolean variables, we allow a designer to use enu
merated types, arrays of booleans, various number types, records, et cetera. 
Each type comes with a convenient set of operations. 

In many hardware description languages both approaches are combined. We 
will present such a language in chapter 10. 

2.5 Other verification problems 

! 

! 
I 

i 
I 

I I 
I I 
I I 
I I L_ _________________________ j 

Figure 2.4. Phase and permulation independent comparison. 

The problem of comparing two circuits for equivalence becomes much harder 
when the correspondences between their inputs and outputs are not known in 
advance. To make the equivalence question even more genera}, one could also 
drop the assumption that the phase (or polarity) of corresponding inputs and 
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outputs is the same. By the latter we mean whether or not a certain signal is 
complemented with respect to a reference signa!. In other words, we are consicl
ering equivalence modulo complementation: we might know that two inputs xi 
and xi correspond but they still might carry signal values that are each others 
complement, then xi = .., xi holds. We are facing the problem of phase and permu
tation independent boolean comparison, see e.g. [Mohnk93]. The general setting 
of this problem is depicted in figure 2.4. 

Often the output correspondence is known so the dashed part in figure 2.4 may 
be left out. Cl>0 stands for an n-bit phasor circuit; P n is an n-bit permutator circuit. 
Both introduce a number of control inputs ç that are to be smoothened out by the 
3ç block on the right. In fact what we are asking is whether an assignment to the 
control inputs ç exists that makes the corresponding outputs of C1 and C2 identi
cal for all assignments to the primary inputs ~· The phasor circuit is easily real
ized by XOR gates (see figure 2.5). The output of a 1-bit phasor equals its input 
when the control input c is low (0); the output is the complement of the input 
when cis high (1). A number of n control variables will be needed to generate 
the 2° possible phase assignments to an n-bit input vector~. 

Figure 2.5. A 1-bit phasor circuit. 

A permutator circuit causes its inputs to be connected to its outputs according to 
a certain permutation; in fact, it is a particular type of controlled switch. lts pre
cise implementation will be explained shortly. Clearly, the permutator needs a 
minimum of l 2log ( n! )l control variables. In [Corme90] it is suggested to impie
ment a permutator using the same structure as a sorting network by replacing 
the camparator nodes by 2-input, 2-output switches. It can then be shown that a 
number of Cn = n · 2log ( n)- n/2 control variables is required, with the restrietion 
that n is a power of 2. Table 2.1 lists Cn for some practical values of n tagether 
with related quantities. 

n l 2log(n!)l Cn 

1 0 0 0 
2 1 2 1 1 
3 2 6 3 3 
4 2 24 5 6 
5 3 120 7 8 
6 3 720 10 12 
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n r2log ( n )l n! r2Iog( n! )l Cn 

8 3 40320 16 20 

16 4 2.11013 45 56 

32 5 2.61035 118 144 

64 6 1.3 1089 296 352. 

128 7 3.9 10215 717 832 

256 8 8.6 10506 1684 1920 

Table 2.1. Number of control variables C0 in 'butterfly' permutator P n· 

The general n-bit permutator circuit P n can be inductively defined as follows. 

• For the 1 bit case (n = 1) the identity is the only possible permutation and the 
permutator circuit P1 is a simple conneetion from input to output: 

P1 = a1 b1 
0 0 

• Incasen = 2 two permutations exist: either the inputs are directly connected 
to the outputs, i.e., b1 = a1 and b2 = a2, or they are cross-connected, i.e., 
b1 = a2 and b2 = a1• 

p2 = 

c 

We see that P2 is realized by two multiplexors: if c = 0 then input a1 is passed 
on to output b1, and a2 is passed on to b2, else, i.e., c = 1, a1 appears at b2 and 
a2 atb1• 

• For n<::3, Pn is a network consisting of a Pl"; 1J circuit, a PliJ circuit, and 

2 ·l~J basic P2 circuits. The number of control variables C0 equals the num

ber of P2 nodesin P0 • This number can be found by solving the following 
recurrence equation: 

Cn = l ";1 j +~iJ +2 ·l~J with intial values c1 = 0 and c2 = 1. 
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It is natmal to treat odd and even n separately. For even n = 4, 6, · · ·, Pn has 
the following structure, where n = 2 · k: 

bn-1 

r-----~~~~~~~~313131~------L~ bn 

For odd n = 3, 5, · · ·, Pn has the following slightly different structure (now 
n = 2 · k+ 1): 

o---------~~~~~~~~c-c-~1---------obl 
b2 
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Figure 2.6 shows a 16-bit permutator as a networkof 56 P2 instances. 

Figure 2.6. P16 permutator network. 

It tums out that phasor and permutator circuits can be compactly represented by 
BOOs (to be discussed in chapter 4). The BOD size of <I>n is 2 · n. The size for a 
permutator P n is Cn + n in case of an optima! variabie ordering. Later it will be 
shown that existentlal quantification over all control variables can also be effi
ciently implemented as an operation on a BOD. However, in combinatio~ with a 
circuit C2 (figure 2.4) the BDD sizes tend to grow unacceptably. Table 2.2 con
vincingly indicates this when we choose C2 to be an adder. (The BOD sizes 
reported here do not count the constant nodes; both cornplemented edges and 
inverted-input edges are used.) 

BOD size 

n Cn+n addn/2 <I>n + Pn <I>n + p n + addn/2 i 

2 3 2 5 5 
4 10 5 14 79 
6 18 10 24 1538 
8 28 15 36 47876 

I 10 36 20 46 >2000000 

Table 2.2. Adder circuit with phasor and permutator at its inputs. 



Chapter 3 

Propositional Logic 

3.1 Introduetion 

In this chapter we will look at the theory of propositional logic. It is by far the 
most commonly used mathematica! frameworkin today's logic synthesis tools. It 
nicely fits the rnadelling of combinational circuits. Since our formalism consti
tutes a decidabie theory, it is readily implemented in a computer program. We 
start with a brief overview of the theory and main results of propositional logic. 
We will hint at some practical applications and show some implementation 
details of the computer programs that were developed. 

We will later see that many of the results need only slightly be adjusted and 
extended for the temporal case. Our aim is to provide enough of a mathematica! 
basis to appreciate the engineering applications we have in mind. Therefore, the
orems will aften be stated in an informal way and their proofs are mostly only 
hinted upon. A rigarous treatment of the matter may be found in the many books 
on logic [Galli87]. Our goal is to explain what it means when we say that a 
proposition is satisfiable and show several approaches to implement such a satis
fiability test. 

3.2 The language of propositional logic 

We introduce Propositional Logic as a language PL over an alphabet AP of 
atomie propositions and we will assign a meaning to each string (proposition} of 
the language by means of a truth assignment. 

19 
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Deflnition 3.1 AP = { p0 , p1, p2 , · · · } is a countably infinite set of atomie proposi
tions. 

To denote an arbitrary atomie proposition we will use the letters P, Q, R, · · ·. 

Definitlon 3.2 PL is the language defined by the following grammar: 

formula ::= P 
I '-.' formula 
I '(' formula ('A' I 'v') formula ')'. 

where P is an atomie proposition taken trom AP. 

The symbols -., A, and vare called the logkal operator symbols, somelimes called 
the logical connectives. In the sequel, the letters A, B, C, · · · will be used to denote 
arbitrary formulas of PL. 

Definition 3.3 A function f : B" ~ B is called an n-ary boolean function. The 
set B = { 0, 1 } is thesetof truth values; 0 stands for false and 1 stands for true. 

Definition 3.4 A function v: AP~ B that assigns toeach atomie proposition a 
truth value is called a valuation function or truth assignment. 

The semantics of formulas is defined by associating a function with each for
mula. This function is the extension v : PL~ Bof v under the usual interpreta
tion of the logical operator symbols. The interpretation of -. is the function 
H, : B~ B defined in table 3.1. 

p H,(P) 

0 1 
1 0 

Table 3.1. Semantics of-.. 

The interpretation of the A conneelive is the function H" : B x B~ B, and v is 
interpreled by the function Hv : B x B~ B. Both are defined in table 3-.2. (It is 
easy to extend these functions to apply to more than two arguments: H" will be 1 
only if all arguments are 1; Hv will be 1 if at least one argument is 1.) 
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p Q HA (P,Q) Hv ( P, Q) 

0 0 u 0 
0 1 0 1 

1 0 0 1 

1 1 1 1 

Table 3.2. Semantics of A and v. 

Definition 3.5 Let v be a valuation function, then vis inductively defined by: 

v(P)=v(P) 
v ( ..., A ) = H~ ( v ( A ) ) 

V ( (A A B)) = HA (V (A), V ( B)) 
v ( (A v B)) = Hv ( v (A), v ( B)) 

21 

Definition 3.6 Let PROP (A) stand for the set of distinct atomie propositions 
occurring in the formula A. PROP : PL~ 2AP is inductively defined by: 

PROP(P)={P} 
PROP( ...,A)= PROP(A) 

PROP((A AB))= PROP(A)vPROP(B) 
PROP ( (A v B)) = PROP (A) v PROP ( B) 

Since A is a fini te string, PROP (A) is fini te too. 

Definition 3.7 Given a formula A with PROP (A) = { p1 , p2 , • • ·, Pn }, its assod-
ated boolean function f: Bis f = 2p1 , p2 , • · ·, Pn· v (A). 

With the semantics defined, we can now define satisfiability of a formula: 

Definition 3.8 A valuation v satisfies a formula A, denoted v I= A, if and only if 
v(A)=1. 

Definition 3.9 I= A expresses that all valuations satisfy the formula A. Equiva
lently, A is called a tautological formula or tautology. 

The satisfiability problem in PL asks whether a valuation exists that makes a 
given formula true. The tautology problem asks whether I= A holds for a partic
ular formula A. This latter problem may be stated as a satisfiability problem: to 
check whether I= A holds it suffices to show that there is no valuation v such that 
v I= ..., A hol ds. If one exists it follows that A is not a tautology. Be a ware that both 
problems are not of the same complexity; satisfiability is NP-complete, whereas 
tautology is noteven known to be in NP (in fact it is co-NP-complete). 

Definition 3.10 Two formulas A and B are said to be logically equivalent, 
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denoted A= B, iff v (A) = v ( B) for all valuations v. 

Theorem 3.1 For all propositions A, B, C the following properties hold: 

((AvB)vC) = (Av (BvC)) 
((AAB)AC)= (AA (BAG)) 

(Av8) = (8vA) 
(AAB)=(BAA) 

(Av(BAC))= ((Av8)A (AvC)) 
(A A (BvC)) =((A A B)v (A AC)) 

.., (Av8) =(-.A A -.8) 
., (A AB)= (-.Av-.8) 

(AvA)=A 
(AAA)=A 

-.-.A=A 
(Av (A AB)) =A 
(AA (Av8))=A 

Proof Use the properties of the underlying interpretation functions H...,, H" , and 
Hv· 
o theorem 3.1 

We see that the syntax for formulas is rather restrictive. We often define some 
rules of preeendenee for the operators and use their associativity to drop a num
ber of parentheses. The grammar in EBNF of figure 3.1 incorporates these con
siderations. 

formula ::= term { 'v' term } . 

term::= factor {'A' factor}. 

factor::= P 
I '-.' factor 
I '(' formula ')' . 

where P is an atomie proposition taken trom AP. 

Figure 3.1. Relaxed grammar for PL. 

Of course, this does not violate any of our previous results; the semantics may 
still he defined in a simHar way but now it seems easier to do this with respect to 
the parse tree of a formula. 
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3.3 Truth table methad 

A straightforward algorithm to solve the satisfiability and tautology problems is 
provided by the truth table method. Given a formula A over a certain set of 
atomie propositions PROP (A), all we have to do is list all possible assignments v 
to these symbols and evaluate the formula for each of them, i.e., compute ÎJ (A). 
If in at least one case the evaluation leads to a true result the formula is 
satisfiable. If all cases evaluate to true the formula indeed expresses a tautology, 
and if none of the cases evaluate to true the formula is unsatisfiable or also called 
a contradiction. For satisfiability, the worst case complexity of this method is 
clearly of the order 2n where n is the number of distinct atomie propositions 
appearing in the formula. Since we know that the satisfiability problem is NP
complete there is not much hope of ever finding a method that beats the 
exponential time complexity. However, in many problem instances the truth table 
method must be considered too brute force. 

A more ingenious way of determining tautology is based on a search for a 
falsifying assignment to the formula under test. If the search fails we must 
conclude that the formula is indeed a tautology else we have found a counter 
example (refutation), namely an assignment v that yields ÎJ (A) = 0. More 
indirectly, one could investigate the satisfiability of the negated formula; if not 
satisfiable the original formula is a tautology. There are several methods based 
on the above principles. They have in common that they are purely based on 
syntactical transformabons of the formula under test. Typically a number of 
axioms (or usually axiom schemata) is defined that comprise the terminating 
cases of the search, which on intermediate stages is guided by a set of rewrite or 
inference rules. Care has to be taken that the system of axioms and inference 
rules is sound and complete, i.e., only tautological formulas will be classified as 
such and none is missed. Fortunately, for propositional logic such systems do 
exist, see e.g. section 3.4 "Proof Theory of Propositional Logic" in [Galli87]. 

3.4 Disjunctive normal form 

A simple way to test for satisfiability is the disjunctive normal form (DNF) 
method. Here we will define a DNF as a set of sets of literals: 

Definition 3.11 A DNF is a finite set { e 1, e 2 , ···,en} of clauses ei, each ei is a 
set of literals { Li1 , Li2 , · · · Lim } . A literal is either an atomie proposition ( also called 
positive literal) or its negation (negative literal). Negative literals will be denoted 
by a prime (') after the name of the atomie proposition. A clause ei expresses a 
conjunction over its literals; a DNF set expresses a disjunction over its clauses. 

Definition 3.12 The transformation of a formula to a DNF set is inductively 
defined as follows: 
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DNF ( P ) = { { P } } 
DNF (.., P) = { { P'} } 

DNF(..,..,A) = DNF(A) 
DNF (.., (A " B)) = DNF (..,A) u DNF (.., B) 
DNF (.., (A v B)) = DNF (...,A) o DNF (.., B) 
DNF((A" B)) = DNF(A)oOI\IF(B) 
DNF((AvB)) = DNF(A)uDNF(B) 

Chapter 3 

with P an arbitrary atomie proposition, A and B arbitrary formulas, and 
So T = { sut Is eS, te Tand s+ tît- = s- tît+ = 0} for DNFs S and Tand clauses 
s and t. We use s+ to denote the set of positive literals of a clause s; likewise, s
denotes its set of negative literals. Clearly, the o operator on DNF sets selectively 
unitespairs of dauses, omitting pairs containing literals with opposite sign. 

Deflnitlon 3.13 The meaning of a DNF set is defined by the function 
h : DNF ---7 ( B" ---7 B) as follows: (here we already make use of the syntax of 
figure 3.1 and assume 'ÎI to be adjusted accordingly) 

Bottom case: DNF set= 0, h ( 0) = 0. 

Inductive case: DNF set= { C1, C2 , • • ·, Cn }, then 

h ( { c1, C2, ... , Cn}) = 'ÎJ ( h ( { c1 } ) V h ( { c2}) V •.• V h ( { Cn}) ). 

Where for each dause Ci = { L1, L2 , • • • , Lm }, 

in whieh for each positive literal ~ = P, g ( P) = P, 

and for each negative literal ~ = P', g ( P') =.., P. 

Now the definition of the o operator should be dear: having a atomie proposi
tion and its negation appear in the same clause will be interpreted as false and 
since all dauses are "or"-ed together we might as well avoid false clauses in the 
first place. Notice that the definition of h has been chosen in a way such that: 

Theorem 3.2 v (A) = h ( DNF (A)) holds for every formula A. 

Proof Use the definitions of v and h and use the following identities of 
theorem 3.1: 
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0 theorem 3.2 

Disjunctive normal form 

(Av (8 AC))= ((Av8) A (AvC)) 
(Av8)= (8vA) 

•(Av8)= (...,AA-,8) 
.., (A A 8) = (...,Av-,8) 

...,..,A=A 
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Corollary 3.1 The satisfiability problem is there a v such that v I= A? - can 
now be rephrased as "is the DNF set nonempty, i.e., DNF(A) ::f:. 0?" Similarly, I= A 
holds if and only if DNF (...,A)= 0. 

Example 3.1 Does I= (( P A Q ) v ( .., P v R) ) hold? 

DNF(..., ((PA Q)v (...,PvR))) 
= DNF(..., (PA Q))oDNF(..., (-,PvR)) 
= ( DNF(.., P)vDNF ( -,Q) )o ( DNF ( ..,.., P)o DNF (..., R)) 
= ( { { P'} } v { { Q'}}) o ( { { P} } o { { R'} } ) 
= { { P'}, { Q'} } o { { P, R'} } 
= { { P, Q', R'}} 

So we get a nonempty result, meaning the original formula is not a tautology. 
D example 3.1 

3.5 Containment (or subsumption) 

As with formulas of PL, we can have many different DNF sets with the same 
meaning. For instanee the sets { { P} } and { { P L { P, Q', R} } have the same mean
ing ll.p, q, r. p. The clauses of a DNF set are partially ordered according the subset 
relation ç. The following lemma is useful in minimizing the number of clauses: 

Lemma 3.1 Let DNF(A)={C1,C2 }. IfC1 çC2 then h({C1,C2 })=h({Cd). 
We will say, although this may sound counter-intuitive, that C1 contains C2 • (The 
term 'contains' sterns from the fact that when a clauseis interpreted as a set of 
points in sn 1 we have that whenever C1 Ç C2 then the points of C2 are contained 
in thesetof points of C1 .) 

Proof Clauses express a conjunction (A) of their elements. Each element (literal) 
in a clause must evaluate to 1 in order for the clause to be 1. Por C2 to be 1 at 
least all elements in it that are also in c1 must thus be 1' so c1 will be 1 but then 
DNF (A) is already 1 independent of the remaining literals in C2 . Conversely, if 
C1 evaluates to 0 then also C2. 
olemma3.1 
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Given a DNF set we may reptace it with the set consisting of the minimal ele
ments of that DNF set under the ç relation. To find these minimal elements 
requires a quadratic number of ç comparisons, viz. every element has to be 
compared with the rest. 

3.6 lmplementation of DNF 

In a program that tests satisfiability based on the DNF set approach we need to 
represent sets of sets of literals. Regarding the operations that are to be per
formed on this abstract data structure we derive that clauses are conveniently 
implemented by means of bitveetors and that a set of them can be represented by 
a singly-linked list. This way uniting DNF's requires appending (or concatenat
ing) lists, and the o operation can be basedon bitwise 'and' and 'or' operations 
on the bitvectors. Each dause will be represented by 2 bitvectors, one to express 
the inclusion of a positive literal and one to do the same for negative literals. A 
DNF set is then represented by a list of pairs of bitvectors. 

list-of-pairs-of-bitveetors DNF(PL f) 
( 

} 

switch (f) ( 
case P: 

clause C:=pair (pos, neg) of all-O's bitvectors; 
set bit in pos(C) corresponding with P; 
return singleton list with C as element; 

case -.P: 
clause C:=pair {pos, neg) of all-O's bitvectors; 
set bit in neg(C) corresponding with P; 
return singleton list with C as element; 

case -.-.A: 
return DNF (A); 

case .., (A AB): 
return concat (DNF (-.A), DNF (-.8)); 

case .., (AvB): 
return o ( DNF (..,A) , DNF (.., 8) ) ; 

case (A AB): 
return o (DNF(A), DNF(8)); 

case (AvB): 
return concat(DNF(A), DNF{8)); 

} 

Algorithm 3.1. Implementation of DNF. 

Algorithm 3.1 shows a straightforward implementation of the conversion of a PL 
formula to its DNF form as defined in definition 3.12. Details of the o operator 
are presented in algorithm 3.2. 
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list-of-pairs-of-bitveetors o(list-of-pairs-of-bitvectors S, T) 
{ 

L:=ernpty list; 
for (SES) 

for (tET) 

if ( (pos(s) & neg(t))=all-O's 
&& (neg(s) & pos(t))=all-O's) 

clause C:=pair (pos, neg) of all-O's bitvectors; 
pos(C) :=pos(s) I pos(t); 
neg(C) :=neg(s) I neg(t); 
L:=concat(L, singleton list with C as element); 

return L; 

Algorithm 3.2. Implementation of the o operator. 

27 

The worst-case performance of the above algorithm is exponential in the size of 
the formula, and, consiclering that satisfiability is an NP-complete problem, there 
is little hope to ever find a polynomial-time algorithm. 

The resulting DNF list can aften be simplified using containment. A good 
heuristic that we use in our implementation is to define a lexicographical order
ing on the clauses (based on a linear ordering of the literals) and then while 
doing a mergesort on the clauses mark the ones that are subsumed (ar contained) 
by others. The marked dauses may be deleted from the DNF list. This way only a 
total of n2log ( n ) containment tests is performed. 

The DNF representation will be used in chapter 6 when we look at an algorithm 
for the satisfiability of propositionallinear-time temporallogic. 
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Chapter 4 

Binary Decision Diagrams 

4.1 Introduetion 

So far we have looked at two distinct representations of boolean functions: PL 
formulas and DNF sets. To solve the tautology problem we are basically asking 
whether the formula or DNF set denotes the 1 function, i.e., the function that is 
invariably true. The major drawback of the representations is that many formulas 
and many DNF sets denote the same function. So it is not always directly obvi
ous that two different descriptions indeed describe the same circuit (i.e., have the 
same logic behaviour). Here we will introduce a representation for a boolean 
function that does not have this disadvantage: the Binary Decision Diagram 
(BDD) also known as Boolean Fundion Graph. Seminal work by [Bryan86, 
Karpl89] has shown that given a fixed ordering of the function's place-holder 
variables, binary decision diagrams are canonical: each distinct function may be 
represented by a unique binary decision diagram. Moreover, we will shortly see 
that in an implementation each function can be represented by a unique reference 
(pointer value), thus tautology checking reduces to testing whether two refer
ences are the same. However, constructing a binary decision diagram might in 
the worst case require an exponential number of operations. The success of 
binary decision diagrams lies in the fact that for many practical functions it is 
known that the diagram has a size which is only polynomially related to the 
number of variables. 

4.2 Notation and terminology 

We consider boolean functions all with the same arity, i.e., they all have the same, 

29 
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fixed number of arguments n 2:: 0. These functions can be denoted by proposi
tional formulas I{> (X) over a set of atomie propositions X = l x1, x2, • • ·, X0 I as 
f = Jx1 , x2 , • • ·, X0 .1{> (X). Here the x(s will be called boolean variables. The func
tions will be total or complete in the sense that they are defined for every element 
of the domain B0

• Two functions are considered identical when application of 
each to all 2° distinct argument values always gives the same result value. 

Our presentation of BDD's follows the terminology used in [Brace90]. 

Definition 4.1 A BOD is a labelled, possibly multi-rooted, directed acyclic graph 
(DAG) G (V, E ). We distinguish two kinds of vertices: 1-nodes and T-nodes. The 
edge set E is defined by a relation E ç;; 1-nodes x ( 1-nodes u T-nodes ). The details 
are as fellows: 

• 1-nodes is a finite set of intemal vertices, each having precisely 2 outgoing 
edges to (other) intemal or terminal vertices. One is said to be the else-edge, 
the other is the then-edge. The successor vertex of an intemal vertex v via its 
else-ed ge is denoted by else ( v ); the successor accessible via its then-edge is 
denoted by then ( v ). Each internal vertex v is labelled with a variabie 
denoted by var(v). Thesetof variables is assumed to be totally ordered, i.e., 
we postulate the existence of a ranking function rank: x~ { 1, 2, · · ·, n }; 
rank (x) then denotes the rank number of variabie x in the ordering. When no 
confusion can occur, we write rank ( v) instead of rank (var ( v) ). 

• T-nodes = ( zero, one } is the set of terminal vertices. Terminal vertices have 
no outgoing edges. For uniformity we define the rank of a terminal vertex to 
ben+ 1. 

Definition 4.2 An Ordered BDO (OBDD) is a BOD where for each internal ver
tex v e 1-hodes we have: 

rank ( v) <min (rank ( else ( v) ), rank( then ( v)) ). 

Definition 4.3 A Reduced Ordered BDD {ROBOD) is an OBDD such that for 
each internal vertex its two successors are distinct and the graph does not contain 
isomorphic subgraphs. 

For any BDD (not necessarily reduced and ordered) we can define a meaning in 
the following way: 

Definltion 4.4 Assume a fixed set of variables { x1 , x2 , • • ·, X0 }. With each vertex 
v e V in the BOD we associate a boolean function I ( v ). The (higher-order) inter
prelation function I : V~ ( B0 ~ B) is inductively defined on the structure of 
the graph. We abbreviate x1, x2 , • • ·, X0 to X, and assume that the indexing is such 
that rank ( xi ) = i. 



§4.2 Notation and terminology 

• For terminal vertices zero and one: 

I (zero) = 0, i.e., the function II.X. 0 
I ( one) = 1, i.e., the function II.X. 1 

• For every intemal vertex v: 

l(v) = ITE ( II.X. var ( v ), I ( then ( v) ), I ( else ( v))) 
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with ITE ( F, G, H) = JX. H1TE ( F (X), G (X), H (X)). ITE is a higher-order 
function manipulating functions with signature B"----? B, based on the 3-argu
ment boolean function H1TE ( P. Q, R) = Hv (HA ( P, Q ), HA ( H., ( P ), R) ), see 
table 4.1. The name ITE is an acronym for If-Then-Else. 

p Q R H,TE(P,Q, R) 

0 0 0 0 
0 0 1 1 

0 1 0 0 
0 1 1 1 

1 0 0 0 
1 0 1 0 
1 1 0 1 

1 1 1 1 

Table 4.1. Semantics of the ITE operator. 

• The functions associated with the BDD are the functions associated withits 
root vertices. 

It is customary to let the projection function associated with a variabie be 
denoted by the name of that variable, thus if x1 is some variabie then x1 stands for 
the fundion A.X. x1• Also, often the same logical operator symbol is used to denote 
the corresponding higher-order operation, e.g. one often sees 
ITE ( F, G, H) = (FA G) v (..., F A H). Here, however, we will use the symbol · to 
denote the higher-order "And" operation and the symbol + to denote the higher
order "Or" operation; higher-order "Not" is indicated by placing a bar above 
the function name. 

From now on, we will simply write BDD when in fact we mean a Reduced 
Ordered BDD. We also assume some ranking function rank: X---? { 1, 2, · · ·, n l 
to be defined for the variables (e.g. we may take rank ( x1 ) = i, ho wever, this is 
only one of the n! possibilities). 

Note that for each internal vertex v in a BDD with var ( v) = x, T = I ( then ( v) ), 
and E = I ( else ( v) ), ITE (x, T, E) is by definition a unique function (within that 
BDD). We may therefore use the triple (x, T, E) as a unique identification for the 
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internat vertex v, but also as an identification for the sub-BDD rooted at that ver
tex. For convenience we will denote the BDD by the function it represents, which 
is already done here for the BDDs Tand E; in general, i.e., when they are nat bot
torn cases, Tand E themselves can be represented by such triples (they are the 
labels of the vertices then ( v) and else ( v) respectively). Bottom cases are the ter
minal vertices; they will be labeled by their respective functions 0 and 1. We 
refer to them as constant BDDs. 

Example 4.1 The BDD for the function ;.a, b, c. a A .., b v.., a A b A c and repre
senled by (a, ( b, 0, 1 ), ( b, ( c, 1, 0 ), 0)) is depicted in figure 4.1. 

Figure 4.1. Example BDD graph for f (a, b. c) = a 1\ .., b v.., a A b A c. 

In drawing a BDD the following conventions will be adhered to: 

1. A vertex is represented by a circle containing the name of its variabie label. 

2. By letting incoming edges enter at the top of the circle and outgoing edges 
leave at the bottorn of the circle there is na need to draw an arrow to indi
cate their direction. 

3. Instead of labelling the edges with then and else we will use 1 and 0 
respectively, ar preferably even do without these labels and then it is 
understood that the edge exiting on the bottorn left of a circle is the then
edge, and the edge exiting on the bottorn right is the else-edge. 

4. Terminal vertices are nat explicitly drawn. We simply let the edge end in a 
0 ar a 1 symbol. 

Figure 4.2 shows the example BDD drawn according the above rules. 
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0 0 

0 

Figure 4.2. Example BDD graph drawn in 'minimalistic' style. 

o example 4.1 

4.3 BOD construction 
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Now we investigate how BDDs can be putto practical use, i.e., manipulate them 
by means of logical operators. The following table 4.2 lists useful operations on 
functions F and G and shows how the same result may be achieved in terms of 
the higher-order ITE function. The objective of this section is to derive an algo
rithm for ITE operating on the BDD representation of the functions. We shall first 
formulate ITE in a recursive way. 

Name: Notation: ITE form: 

not F ITE ( F, 0, 1) 
and F·G ITE(F,G,O) 
xor FEEJG ITE(F,G,G) 
or F+G ITE ( F, 1, G) 
nor F+G ITE ( F, 0, G) 
equiv FHG ITE ( F, G, G) 
implies F~G ITE ( F, G, 1) 
nand F·G ITE ( F, G, 1) 

Table 4.2. Operations on functions and equivalent ITE formulation. 

Definition 4.5 The Shannon expansion of a boolean function F with respecttoa 
variabie x is the decomposition of F in its cofactors F x and Fx according to 
F = x· F x +x· Fx. The co factor F x is the restrietion of F under x = 1, similarly Fx is 
the restrietion of F under x = 0. (Note that for any variable, a cofactor of a con
stant function is the function itself). The support of a function is the set 
{ xi I Fx; :t:. Fx; }. Constant functions have empty support. 

Shannon expansion gives us a recursive procedure for BDD construction. 
Observe that the following derivation is valid: 
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ITE( F, G, H) = x·ITE ( F, G, H )x+X·ITE ( F, G, H)x 

=X· (F·G+F·H}x+X· (F·G+F·H)x 

= x · ( F x · Gx + F> Hx ) +x · ( Fx · Gx + Fx · Hx ) 

=X· (ITE(Fx,Gx,Hx))+x· (ITE(Fx,Gx,Hx)) 

= ITE (x, ITE( Fx, Gx, Hx ), ITE ( Fx, Gx, Hx)) 

and the latter stands for the BOD: 

(x, ITE ( Fx, Gx, Hx ), ITE ( Fx, Gx, Hx)) 

Chapter4 

All that remains to be shown is how to compute the cofactors of a function and 
provide the bottorn cases of the recursive expansion sketched above. Without 
violating the validity of the expansion, we may choose x to be the variabie with 
the smallest rank among the variables labelling the root vertices of the BDDs for 
the functions F, G and H. Remember that the rank of a constant BOD is n + 1 by 
definition. Assume the BOD for F non-constant, so let F = (y, T, E ). Surely 
rank (x) s; rank ( y ). If rank (x)< rank ( y) then x is not in the support of F, hence 
Fx = Fx = F; otherwise we must have x= y, and so Fx =Tand Fx = E (figure 4.3). 
For the functions G and H we can follow the same reasoning. Clearly, the bottorn 
cases are determined by F being constant: ITE ( 0, G, H) = H and 
ITE(1,G, H) = G. 

/ 
/ 

' 
' \ 

F 

I ' 
I ' I \ 

Figure 4.3. Function F and its cofactors w.r.t. the top variabie x. 

An implementation of the high-order ITE function operating on boolean func
tions represented by BOOs is outlined in algorithrn 4.1. In an actual irnplernenta
tion, for instanee in Pascal or C, it is convenient to define the type BDD to be a 
pointertoa vertex record (or struct). Then testing for equality of two BDDs can 
be done using the equality operation (=) on pointervalues provided that BOD 
DAGs are uniquely stored, i.e., no isomorpic subgraphs exist. This uniqueness of 
subgraphs is achieved by keeping track of all the (x, T, E) triples in a hash table. 
The BOOs for the projection functions Ä.X. xi for the variables that are denoted by 
the triples ( Xj, 1, 0) are also kept in this hash table. The information stored for 
each triple is the BDD pointer that points to the root vertex of the particular DAG 
for that BOD. In algorithrn4.1 the statement if (T = E) then return T; 
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ensures the first condition mentioned in definition 4.3 (successors are distinct) to 
be met and returning the unique BOD for the triple (x, T, E) ensures the second 
condition to be met, namely that no isomorphic subgraphs are constructed. 

BDD ite(BDD F,G,H) 
{ 

/* Bottom cases: *I 
if (F = 0) return H; 
if (F = 1) return G; 
/* Recursive case: *I 
x:=min(var(F) ,var(G),var(H)); 
T:=ite(Fx,Gx,Hx); 
E:=ite(F1 ,G1,H1); 
if (T = E) return T; 
return uniqueBDDfor (x,T,E); 

Algorithm 4.1. The basic BOD constructor function i te. 

Many optimizations of the i te function may be considered, e.g. including more 
tests for special cases and supplying i te with a memory function that avoids 
recomputation. For the latter we keep a table of argumentandresult values that 

. we consult upon entry (lookup) and update upon exit (remember). Some of 
these ideas are incorporated in algorithm 4.2. 

BDD ite(BDD F,G,H) 
{ 

if (F = 0) return H; 
if (F = 1) return G; 
!* Special case: *I 
if (G = 1 && H = 0) return F; 
/*Make use of memory function: *I 
R:=lookup(F,G,H); 
if ( R ie- l.) return R; !* value l. signals absence *I 
x:=min(var(F) ,var(G) ,var(H)); 
T:=ite(Fx,Gx,Hx); 
E:=ite(F1 ,G1,H1); 
if (T = E) R:=T; else R:=uniqueBDDfor (x,T,E); 
/* Supply memory function with new data: *I 
remember "ite(F,G,H)=R"; 
return R; 

Algorithm 4.2. A more practical i te function. 

More implementation issues are discussed in chapter 8. 
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Part II 

Verification of 
Circuits with Memory 

This part consists of three chapters. lts structure mimics the first part: first we 
introduce sequentia! circuits in chapter 5; then chapter 6 addresses two temporal 
logies, CTL and PTL, that are useful in reasoning about the behaviour of this type 
of circuit; lastly, chapter 7 presents a more general formalism that encompasses 
both temporal logies, namely ,u-calculus. For all three formalisms, basic imple
mentations are presented. 
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Chapter 5 

Sequential Circuits 

5.1 Introduetion 

A sequentia! circuit can be defined as a logical circuit for which the values of the 
outputs not only depend on the present values on the inputs, but also on the his
tory of the system. For that, the circuit needs some way of remembering what 
happened in the past: it needs memory. Time therefore becomes an explicit 
parameter in the logkal functions that describe the outputs of a sequentia} cir
cuit. We usually abstract from a real time value and use the notion of a doek 
instead. This means that we are only interested in observing the system at certain 
discrete points in time, e.g. the moment just after the doek signal has risen from 0 
to 1. The mathematica! model of such systems is the finite automaton. The sys
tem's memory is then replaced by the concept of state. The finiteness of the 
autornaton implies that its behaviour is of an intrinsic repetitive nature. This 
directly translates to the decidability of the equivalence problem for automata. 

5.2 Finite automala and sequentia! circuits 

A finite autornaton is usually defined by the quintuple ( 0, I:, o, q0 , F ), where 

Q is a finite, non-empty, set of states; 
I: is a finite, non-empty, set of input symbols, the alphabet; 
li ç:; Q x (I: u { & } ) x Q is the transition relation, with & the empty word; 
q0 E Q is the initial state of the machine; and 
F ç:; Q is a non-empty set of final states. 

Although the above definition of li is the most general, we often like torestriet it 

39 
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to a mapping (or even a total function: the next-state function): o : 0 x :E~ 0. 
That is, inslead of consiclering non-deterministic machines we focus on delermin
istic ones. Despite the fact that the transformation from non-deterministic to 
deterministic finite autornaton (e.g. through subset construction) may lead to a 
possible exponential increase in the number of states, non-deterministic and 
deterministic finite automata have the same expressive power: the sets of words 
recognized by fini te automata are precisely the regular languages. A word ( or 
string) over 1: is the concatenation of a finite number of symbols from :E, com
monly denoted by juxtaposition. The set of all words over :E is denoted by :E*. 
Algorithm 5.1 gives an operational definition of recognition or acceptance of a 
word by a deterministic finite automaton. 

Bool accept (:E* w) 
{ 

for (i:=O, q:=qo; i<lwl; i++) 
q:=o(q, w[il l; 

return qe F; 

Algorithm 5.1. Deterministic finite autornaton acceptance. 

For our purposes we like to alter this machine to have outputs instead of merely 
a set of final states. We define r as our output alphabet and introduce the output 
function r : Q x :E~ r, which leads to a so-called Mealy machine model. If the 
output does not depend on the current input value, i.e., r : a~ r, we have a 
Moore type of machine. 

Inputs Outputs 

Log ie Next 

Regs 

Figure 5.1. Basic sequentia! machine model: logic with feedback through regis
ters. 

Moreover, when all sets are appropriately cocled over boolean spaces, we obtain 
the basic hardware model of a sequentia! machine. The machine's current state 
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(in cocled form) is kept in a bank of 1-bit registers (flip-flops). The next-state and 
output-funetion are realized by combinationallogie, see figure 5.1. The update of 
the registers is assumed to be instantaneous and synchronized by the doek. It is 
eustomary to leave out the doek signal in a drawing. 

Again let B = { 0, 1 } be the set of boolean truth values. A coding of a fini te set A 
is a one-to-one function p : A--'t Bn with appropriately ehosen n, e.g. it is always 
possible to construct a p such that n = l 2log ( I A I ) l. Assume the sets 1:, Q, and r 
are cocled in the sets sm, Bn, and BP respectively. Then a model for a Mealy 
machine is the sixtuple ( S,l, 0, N, 8 0 , Y), with 

S = Bn thesetof states (contents of the register); 

I = sm thesetof input bit-patterns; 

0 = BP the set of output bit-patterns; 

N : Bn x sm --'t sn the (possibly partial) next-state function; 

8 0 ç S the non-empty set of initia! states, and 

y : sn x sm --'t BP the (possibly partial) output function. 

Input 
x 

Current 

Outputs 

Figure 5.2. Modulo-S incrementer: adds value of x to § (mod 8). 

To denote an element of a cartesian power of the set B we allow both a tuple 
notation and vector notation and use them interchangeably. Also, constant values 
may be denoted by a string of 0' s and 1' s. In the sequel we assume N and Y to be 
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total functions. In that case the machine is fully specified when N, Y, and 8 0 are 
known, and we might as well specify the machine (circuit) by the triple 
( N, 8 0 , Y ). In general, we will allow multiple initial states, and denote them by 
80; even in case of a single initia! state q0 we will use 80 and then 8 0 = { q0 } • 

Often, we assume q0 = 0". 

Figure 5.2 depiets a modulo-S incrementer moulded in our model. Clearly, 
N = [ N2 , N1, N0 ] may be defined by the following boolean functions: 

N0 = Js2,s1,s0,x.s0E&x, 
N1 = J~.s1 ,s0,X.XA (SoE&S1 )v..,XAS1, 
N2 = Js2,s1,s0,X.xA (s2 E9 (s1 AS0))v..,XAS2. 

The output function Y = [Y2, Y1, Y0] is simply the identity on the state variables: 

Yo = Js2,s1,so.So, 
y1 = À.S2,S1,So.S1, 
y2 = Js2,s1,so.s2. 

Note that we prefer to number the indices starting at 0 from right to left; this is 
most natural when one wants to interpret a vector of boolean values as a decimal 
number. Por instance, we will write state ~ = ( 1, 1, 0) = 6 decimal. 

5.3 Verification problem 

An important verification problem for sequentia! circuits can be formulated as 
follows: 

SEQUENTIAL CIRCUIT EQUIVALENCE 
INSTANCE: Two sequentia! circuits M1 and M2 according to the Mealy model 
over the same set of inputs and outputs. 
QUESTION: Are both circuits functionally equivalent? That is, do both circuits 
for all possible sequences of input bit-patterns yield the same sequences of bit
pattems at their corresponding outputs? 

One way to visualize this problem is depicted in figure 5.3. The two circuits are 
assumed to operate synchronously through the control of the impHeit doek sig
na!. Both circuits are fed the same input values. The single bit output signal is 
derived from logically AND-ing the results of the bitwise equivalence of the 
respective outputs. The composition of both circuits (Mealy machines) in this 
manner is said to form the product machine. The question is now whether the 
product machine yields the output value 1 for all possible input sequences. In 
terms of automata, a 'correct' product machine <:orresponds to recognizing the 
universallanguage over Bm i.e., ( Bm )*. (By definition, a Mealy machine outputs e 
on input e, but this technicality is only of minor theoretica! interest; in practice we 
do not consider e a feasible input). 
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Figure 5.3. The product of two Mealy machines. 
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The above problem statement does not say anything about the respective starting 
states of the two machines M1 and M2 • One practical way of interpreting the 
problem is to assume the equivalence to exist when the machines are started in 
any of the possible combinations of their initia! states. The next sections present 
a method to solve the equivalence problem. 

5.4 State-space exploration 

This section is not a chapter from the Captain's Log of the Starship Enterprise. 
(Come tothink of it, "Enterprise" would be a good namefora sequentia! circuit 
verification program.) Consicier a finite autornaton M = ( Q, L, o, S0 ). We allow 
multiple initial states and for the moment are not interested in the final states. 
For generality we assume o to be specified as a relation. Our goal will be the 
exploration of the states reachable from the initial states S0 at each 8-step consicl
ering all possible input symbols from the set L. Then only the structure of the 
state-space is of importance, and for that we define the immediate neighbour
hood functions: 

" : Q x a~ B, with " ( s, t) = true if ::lx E ~ ( s, x, t) E 0 and false otherwise, 
and 
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The latter function over sets of states is also known as a predicate transfarmer 
[Burch94] or a functional [McMil93]. These terms will become clear shortly. 
Algorithm 5.2 gives the traditional breadth-first computation of the set of reaeb
abie states. 

Re ach: =0; New: =So i 
do { 

Reach: =Reach u New; 
Next: = H (New) i 

New:=Next\Reach; 
while (New :;t: 0) ; 

return Reach; 

Algorithm 5.2. Breadth-first state-space exploration. 

Note that algorithm 5.2 is rather strict in the sense that it does not explicitly indi
cate the possible freedom of choice for the argument to H: there is no harm in 
including some states that have already been reached at that point. This may 
seem not very useful in the current context, but depending on the representation 
of the sets in an implementation some computational advantage may be gained. 
For later reference we also add the iteration counter k. Algorithm 5.3 incorpo
rates these observations. 

} 

k:=O; Reach:=0; New:=S0 ; 
do { 

k++; 
Reach: =Reach u New; 
Choose Front such that Newç:Front~::;Reach; 
Next: = H(Front); 
New:=Next\Reach; 
!* Generic situation at this point is depicted in ft gure 5.4. *I 

} while (New :;t: 0) ; 
/* k = number of iterations. *I 
return Reach; 

Algorithm 5.3. Modified breadth-first state-space exploration. 

Figure 5.4 shows a Venn diagram relating the various sets of states at the indi
cated point during the execution of algorithm 5.3. The shaded area denotes the 
set of newly discovered states after the kth application of H. The dasbed curve 
indicates the reaebabie states afterwards. 
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Figure 5.4. Partitioning of the state-space during exploration. 
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As an example, table 5.1 shows the results of applying explore to the modulo-S 
incrementer of figure 5.2. For brevity, the states have been cocled in decimal. We 
see the typical behaviour of counter-like structures: in each step only a single 
new state is discovered. Modulo-n counters are interesting test cases because 
their reachable state-space is the whole universe Bn and the space may be said to 
have minimal structure: there is precisely 1 successar state for each state. 

k Reachk Newk 

0 0 { 0} 
1 { 0} {1} 
2 { 0, 1 } {2} 
3 { 0, 1' 2} { 3} 
4 { 0, 1' 2, 3} { 4} 
5 { 0, 1, 2, 3, 4} { 5} 
6 { 0, 1 ' 2, 3, 4, 5} { 6} 
7 { 0, 1' 2, 3, 4, 5, 6} {7} 
8 {0, 1,2,3,4,5,6,7} 0 

Table 5.1. State-space exploration of the modulo-S incrementer. 

The explicit determination of the New set in algorithm 5.3 can be avoided and its 
test for emptiness replaced by a set-equality test by a simple rearrangement of 
the statements. Note that in case we happen to choose 
Front:::> New_Reach \ the union is no langer disjoint. This results in 
algorithm 5.4. 
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k:=l; Front:=Reach:=So: 
do { 

New_Reach: =Reach uH (Front) ; 
if (New_Reach = Reach) return Reach; 
k++; 

Chapter 5 

Choose Front such that New_Reach\Reachç:;Frontç:;New_Reach; 
Reach:=New_Reach; 

} forever; 
} 

Algorithm 5.4. More refined reachability analysis. 

5.5 Symbolic computation 

The algorithms for state-space exploration presented thus far are expressed in 
terms of operations on sets of states. In general, finite sets can conveniently be 
implemented using a bitvector data type. Por large state-spaces however, this 
approach quickly becomes ineffident, if not altogelher infeasible, both with 
respect to memory and runtime. Assuming that all bitvector operations needed 
for algorithm 5.2 take 0 ( IQ I ) time and in the worst case one state is discovered 

'reachable' per iteration, then the overall complexity is 0 ( IQ 12 
). This doesn't 

sound too bad, except when one realizes that the number of reachable states is in 
the worst case exponential in the number of register bits. Por the (worst case) 
modulo-S counter example we experimentically find a runtime of 0 ( 4" ). The 
key idea to improve on the above is to refrain from representing the sets of states 
explicitly; instead, sets will be represented by their charaderistic function. And, 
more precisely, these characteristic functions will themselves be represented by 
BDDs. This approach is coined symbolic or implicit reachability analysis. 

We first introduce the necessary theory and notational conventions. In the fol
lowing 8 denotes the set of boolean truth values. The charaderistic function of a 
set A ç; U is defined as 

%A: U-48, with %A= la. a eA. 

The isomorphism between boolean algebra and the algebra of subsets of a finite 
set suggests to adopt the convention to overload the name of the set to also 
denote its accompanying characteristic function which we shall occasionally use 
as a predicate. Similarly, for a binary relation R on a set A, we define its charac
teristic function: 

XR: AxA-48, with XR =la, b.(a,b) ER. 

In the context of a fixed universe U we will abbreviate quantifications 3u e u to 3u, 
and the same holds for universa! quantifications. We will use the following 
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notations for a pair beienging to a binary relation: 

(a, b) E R, or aR b, or R (a, b ). 
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The last forrn is an example of the use of the name of the relation as a predicate. 
Also, if we allow 'currying', i.e., supply less arguments toa function than its arity 
prescribes, R (a) should be understood to mean (the characteristic function of) 
the image of a under R. 

We define the composition of two relations R1 and R2 on the same universe U by 
R1 o R2 = ÀS, t. 3u [ R1 ( s, u) /\ R2 (u, t) ]. Note that composition is in general not 
commutative. 

Given a function f: 2A~2A, a least fixed-point of fis a minimal set ZçA such 
that f ( Z) = Z holds. If f is (non-decreasing) monotonie, i.e., 
'Vs.ve~ SçV=>f(S)çf(V), the existence and uniqueness of a least fixed-point 
is guaranteed [Tarsk55] and in this case we can use the notatien pZ. f ( Z) to 
denote this least fixed-point. Likewise, the greatest fixed-point of a function 
f: 2A~2A (if it exists) may be defined by vZ. f(Z) as the largest set ZçA for 
which f ( Z) = Z hol ds. No te that in terms of characteristic functions, f should 
have been defined as f : (A~ B (A~ B ), which dearly explains the 
narnes 'predicate transformer' and 'functional', i.e., function eperating on func
tions. 

Let I stand for the identity relation on A, i.e., I = { (a, a) I a E A}. Then the reflex
ive dosure Rr of R is defined as: Rr = Ru I. The following holds for the transi
tive R+ and reflexive-transitive R* closures: R* = ( Rr t = ( R+ )r = R+ u I. (Note: 
in general, R+ = R* \I does not hold.) The following are equivalent definitions for 
the transitive dosure in terms of a least fixed-point (note the use of the logica! 
operator v to stress that we are dealing with characteristic functions): 

1. R+ = pZ. R v (Zo R ), or equivalently 

2. R+ = pZ. R v ( R o Z ), or equivalently 

3. R+ = pZ. Rv (ZoZ). 

The computation proceeding along the third alternative is known as the iterative 
squaring method. The first two definitions might be dubbed linear methods. We 
will present some examples of these methods after we have explained how a 
fixed-point can be computed. 

The set of reachable states, given the set of initial states 8 0 and the immediate 
neighbourhood relation 17, can likewise be expressedas a fixed-point: 

Reach = pZ. 8 0 v lt. [ Z ( s) /\ 11 ( s, t) ]. 

This should be read as: the set Reach cernprises all the initia} states (80) united 
with all the states that are immediate successors (t 17 ( s )) of a reachable state 
(Z(s)). 
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Expressed in terms of H, using H ( S) = À.t. 3s [ S ( s) A TJ ( s, t) ], we can write: 

Reach = pZ.S0 vH(Z). 

Of course it is also possible to first compute the transitive dosure of TJ and use it 
to obtain the reachable states through: 

Reach = S0 v ,.U. 38 [ S0 ( s) A TJ+ ( s, t) ]. 

This says that the reachable states are the initial states united with all states that 
can be reached from them by 1 or more applications of q. Note that this form 
does not seem to involve a fixed-point computation; but, in fact, the least fixed
point is needed in order to calculate rt. 
From fixed-point theory it follows that the least fixed-point of a monotonic func
tion f on a fini te set A may be expressed as the limit of repeated applications: 

pZ.f(Z)=.lim f 1(0), 
1-too 

and that there is a least i such that 'Vk> 1 fk ( 0) = f1 ( 0 ). Likewise, for the greatest 
fixed-point we find: 

vZ. f ( Z) = lim f1 (A). 
1-too 

Example 5.1 Let's look at the calculation of the transitive dosure of the relation 
R = { ( 0, 1 ), ( 1, 2 ), ( 2, 3 ), ( 3, 4)} on the set A= { 0, 1, 2, 3, 4} according the defi
nition R+ = pZ. R v (Zo R ). Using sets instead of their characteristic functions, 
this reads as R+ = pZ. R v { ( s, t) 13u[ Z ( s, u) A R (u, t)]}. The fixed-point itera
tion proceeds as follows: 

Zo=0 
Z1 =R 
Z2 = R V { ( s, t) 13u[ Z1 ( S, U) A R (U, t)]} 

= Rv{ (s,1)13u[R(s,u) A R(u,t)]} 
= Rv{ (0,2), (1,3), (2,4)} 
= { ( 0, 1 ), ( 0, 2 ), ( 1' 2 ), ( 1 '3 ), ( 2, 3 ), ( 2, 4)} 

Z3 = Rv{ (s, t) l3u[Z2 (s, u)" R(u, t)]} 
=Rv{ (0,2), (0,3), (1,3), (1,4), (2,4)} 
= { ( 0, 1 ), ( 0, 2 ), ( 0, 3 ), ( 1 '2 ). ( 1' 3 ), ( 1' 4 ), ( 2, 3 ), ( 2, 4)} 

z4 = R V { ( S, t) 13u[ z3 ( s, u) 1\ R (u, t)]} 
= R V { ( 0, 2 ), ( 0, 3 ), ( 0, 4 ), ( 1, 3 ), ( 1, 4 ), ( 2, 4)} 
= { ( 0, 1 ), ( 0, 2 ), ( 0, 3 ), ( 0, 4 ), ( 1' 2 ), ( 1' 3 ), ( 1' 4 ), ( 2, 3 ), ( 2, 4) } 

Zs =Z4 

The calculation according R+ = pZ. R v ( R o Z) proceeds in a similar fashion. 
However, using the definition R+ = pZ. R v (Zo Z) we get: 

Zo=0 
Z1 = R 
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Zz = Ru { ( s, t) 13u[ Z1 ( s, u) A Z1 (u, t)]} 
= Ru { ( s, t) l3u[ R ( s, u) A R (u, t)]} 
= Ru { ( 0, 2 ), ( 1, 3 ), ( 2, 4)} 
= { ( 0, 1 ), ( 0, 2 ), ( 1 '2 ), ( 1 '3 ), ( 2, 3 ), ( 2, 4)} 

Z3 = Ru { ( s, t) 13u[ Z2 ( s, u) A Z2 (u, t)]} 
=Ru{ (0,2), (0,3), (0,4), (1,3), (1,4), (2,4)} 
= { ( 0, 1 ), ( 0, 2 ), ( 0, 3 ), ( 0, 4 ), ( 1' 2 ), ( 1' 3 ), ( 1' 4 ), ( 2, 3 ), ( 2, 4)} 

z4 =Zs 
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We need fewer steps to reach the fixed-point. This can be explained as follows. 
We can view the calculation of the transitive dosure R+ as a search for paths in 
the directed graph G (A, R) associated with the relation R. The linear methods 
consider an extension of the paths by a single edge per fixed-point iteration step; 
the iterative squaring methad considers a potential doubling of the path lengths 
per step, hence leading toa logarithmic number of steps as compared to the lin
ear methods. The name 'squaring' sterns from the form of the definition: 
R+ = .uz. R v <za z) = .uz. R v Z2

. 

o example 5.1 

Now we will look at how to calculate Reach = ,uZ. S0 v H ( Z) in terms of BDDs. 
The iterative formulation of a fixed-point computation straightforwardly leads to 
the very elegant algorithm 5.5 for the reachable state calculation. 

} 

S:'=0; 
do { 

S' :"'SovH(S); 
if (S' = S) return S; 

S: "'S'; 
} forever; 

Algorithm 5.5. Reach = pZ. S0 uH ( Z ). 

With the help of table 5.2 it is easy to express this algorithm in terms of BDD data 
types. Note that for the correct interpretation of a set as a BDD, we should a pri
ori fix a set of place-holder variables {di I Os i< n }, and assume all characteristic 
functions be expressed inthem according to xs = 1tdn_ 1 , ••• , d0 . · · ·• For instance, 
the set S = { 00,01, 11 } has the characteristic function xs = ltd1 , d0 . ..., d1 v d0 • The 
BDD only records the expression ..., d1 v d0, and if we interpret this wrongly as 
ltd0 , d1 . ..., d1 v d0 we obtain the set { 00, 10, 11 }. We make sure that the set of 
place-holder variables is disjoint from any other variables that appear as BDD 
variables. Mind that the ordering of the place-holder variables in principle has no 
relation with the BDD variabie ordering, although it might prove beneficia} in 
practice to conform the BDD variabie ordering with the place-holder variabie 
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ordering. When applying a functional, care has to be taken to correctly express 
the BDD of the image set in terms of the variables of the originaL For instanee 
when applying H to a set S represented by a BDD in terms of the place-holder 
variables ç!, the result will be a BDD expressed over ç! representing H ( S ). The 
parallel substitution of variables g by other variables ?5 (or other BDDs) in an 
expression E will be denoted byE[ g := ~ }. The veetors of variables can easily be 
implemented by some suitable array or list data type. 

Set BDD 

0 BDD_O 

s bd.d_not ( S) 
SuT bd.d_or(S,'l'} 
StîT bd.d_and(S,'l') 
S=T S•'l' 

Table 5.2. Set notation versus BDD notation. 

In case H is not explicitly available, we have to fall back on 11 and ultimately on 
the circuit' s next-state vector N. Reeall that H ( S) = .lt. 39 [ S ( s) A 17 ( s, t) ]. 
Given the vector N = { N1, N2 , • • • Nn } of next-state components Ni : Bn x Bm ~ B, 
11 can be expressed as 11 = .4s, t. 3x A. ( Ni ( s, x)= t ). 

1 :>i:>n 

BDD 1](void) 
{ 

conj:=BDD_l; 
for (i:=l; i<=n; i++) 

conj :=bdd_and(conj ,bdd_equiv(Ni [g:= §·~n, 4>); 
return bdd_exist(~.conj) [§·!:=g]; 

BDD H(BDD S) 
{ 

return bdd_exist(§,bdd_and(S[g:=§] ,1][9:=§·!1)) [!:=g]; 

BDD Reach (BDD 80 ) 
{ 

} 

S:=BDD_O; 
do { 

S':=bdd_or(So,H(S)); 
if (S'=S) return S; 
S:=S'; 

} forever; 

Algorithm 5.6. The BDD version of Reach. 

This indeed is done in algorithm 5.6 that shows the reachable state calculation in 
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terms of BDDs. Of course the veetors of variables are assumed to be of the 
appropriate size that is determined by the arity of the charaderistic fundions 
that are applied to them, e.g. in the case 1J[ g := ~ · !], ~ and! are of size n and are 
concatenated to match g which is of size 2n. 

It is obvious that instead of departing from the formulation Reach = 
JJZ. Sa v H ( Z ), any of the other algorithms presented in this section could have 
been implemented with BDDs in much the same way. Chapter 7 will show that 
the fixed-point expressions that we have encountered thus far are special cases of 
a more general framework, the so-called propositional JJ-calculus. 

5.6 Product machine verification 

Let's go back to the product machine and show how it can be constructed from 
two separate sequentia! circuits. Next we show how to modify the algorithms of 
the previous section to obtain a procedure to verify the equivalence of the two 
circuits. Each circuit will be assumed to have m inputs and p outputs and also 
the correspondence among inputs and outputs is known. The number of regis
ters, however, may be different and they may have different state encodings. Let 
circuit M1 = ( N1, lnit1, Y1) and circuit M2 = ( N2, lnit2, Y2 ). Circuit M1 has n1 reg
ister bits, and circuit M2 has n2 register bits. The product machine therefore will 
have n = n1 + n2 register bits. The concatenation of two bitveetors or function 
veetors into one larger vector will be denoted by the · operator. The product 
machine M = M1 x M2 is now defined by M = ( N, Sa. Y) with: 

• N: 8°x8m--78°,N=N1·N2,i.e., 

V5, EB"'.s2 EB"2 N(s1 ·S2,x) = N1 (s1,X)· N2(s2,x); 

• Y: 8°x8m--7B,Y=A(Y1=Y2),i.e., 
p 

V s, E B"'.s2 E 9"2 V x E sm y ( s1 . s2, x) = ~ ( y 1 ( s1' x)= y 2 ( S2, x)). 

In words, we obtain the single-bit output Y by taking the conjunction over the 
component-wise logical XNOR of Y1 and Y2 . 

• Sa ç; 8°, Sa= { s1 . s21 s1 E lnit1 1\ s2 E lnit2 }. 

For equivalence of M1 and M2 we require V 5 EReach V x E 9m Y ( s, x) = 1. This test is 
easily incorporated in algorithm 5.5, which results in algorithm 5.7. 

We can use the correctness test to define a predicate on states that when true 
means that the state is 'good', i.e., for that state no input pattem exists that vio
lates the test. Obviously, this predicate can be seen as the charaderistic function 
of thesetof good states: 

Good : 8°--7 B, where Good ( s) = V x E sm y ( S, x). 
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Bool Correct (So> 
{ 

S:=0; 
do { 

S' :=S0 vH(S); 
if (-1Vses·VxY(s,x)) return false; 
if (S' = S) return true; 
S:=S'; 
forever; 

Algorithm 5.7. Product machine verification. 

In algorithm 5.7 we may therefore replace 

if (-.VseS' VK Y(s,x)) return false; 

by 

if (S'~Good) return false; 

Chapter 5 

In fact what we have here is a predicate that is supposed to hold for all reachable 
states. In general, any invariant for the reachable statescan be checked likewise. 
We might conclude that sequentia! circuit equivalence checking by means of the 
concept of a product machine is just a special case of model checking. This 
should not be misunderstood to imply that it is always practical to use a model 
checker (or model checking algorithms) to do sequentia! circuit verification. The 
reason is that our starting point is not the product machine but the separate 
descriptions of the circuits to be verified. Often building the product machine 
leads to an unnecessary expansion of the state-space: in the extreme case where 
the circuits are indeed equivalent and each has its universe as reachable states, 
traversal of the product machine will be based on a universe B"1 +~ whereas 
examination of only the smaller of the 2"1 and 2"2 number of states would have 
sufficed. Also, since usually we start from a structural description of the circuits 
under comparison, a preprocessing step could be applied to exploit any simHari
ties in structure to result in a reduction of the eventual product machine 
[EijkC96]. 



Chapter 6 

Temporal Logic 

6.1 Introduetion 

The idea of temporallogic is to supply a vehicle that allows one to reason about 
system behaviour as it evolves in time. We are already familiar with traditional 
propositional logie as a means to reason about combinational circuits. We could 
roughly say that temporallogie is its counterpart for sequentia} circuits. 

In this chapter we first look at a general structure that defines a rnader for the 
subsequent temporal logies. This means that we use the structure to define the 
semanties of the various logic symbols. The temporallogies that we study in 
detail are Computation Tree Logic (CTL) and Linear-time Temporal Logic (LTL). 

CTL has been invented with the primary purpose to allow effident testing of cer
tain system properties. These properties are often classified as liveness properties 
and safety properties. Informally speaking, liveness properties express that some
thing good will eventually happen; safety properties express that nothing bad 
will ever happen. For instance, in a practical situation where we have several 
processors competing to gain access to a shared bus, we could assert the typkal 
safety property that at any time at most one processor gains access to the bus. A 
typkal liveness property in this case would be to require that every processor 
eventually gets its turn. Problems of this nature can be solved by a verification 
methad known as model checking: properties expressed in CTL are checked 
against a state model of the system. 

53 
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CTL belongs to the so-called branching-time temporal logies. If we throw away 
the possibility to quantify over paths, and in effect only consider a single path of 
states as our model, the class of so-called linear-time temporallogies ensues. A typi
cal representative of this dass is LTL. Linear-time temporallogic has a more nat
ural appeal to it: we intuitively consider time to progress along a non-branching 
. time line, i.e., w~ only consider a single future. LTL therefore is a serious com
petitor of CTL in descrihing system behaviour. LTL is less suitable for model 
checking (the computational complexity is much worse). LTL is commonly used 
with a satisfiability checker tool. Such a program determines whether an LTL for
mula can be made true. By complementing the LTL formula input we can use 
the same tool as a tautology checker. 

6.2 A few words about time 

As the name suggests, temporal logic has to do with time. The way we model 
time depends on our application. Throughout this chapter we consider time to be 
discrete; let time start at some initia! timepoint denoted as time instant 0; and 
assume an infinite future. This discrete time model is convenient because we set 
out to study state-based roodels of digital systems. Many of such systems are 
synchronous, it is therefore natural to let our time model coincide with the tick
ing of the master system doek. But the model holds also for asynchronous sys
tems and hybrid systems as long as the events of interest can be linearly ordered 
and mapped onto discrete time points. 

6.3 Kripke structures 

A Kripke (or tempora!) structure is a triple M = ( S, R, L) [Wolpe83] with 

S :a (possibly infinite) set of states, 

R ç S x S : a binary relation that is total, i.e., 'V se s 31 es ( s, t) e R, and 

L : a state labelling function S ~ 2AP, where AP is a set of atomie proposi
tions. 

The labelling function L is intended to associate with each state of S an interpre
lation of the atomie propositions AP, i.e., through L we know for each state 
which atomie propositions are assigned true and which are assigned false. The 
atomie propositions are meant to convey particular facts about the system under 
study and for now are left without any further interpretation. There are several 
alternative ways to express the above assignment: 

L : AP ~ 25
, which gives for each atomie proposition the states it is assigned 

true. 

L: SxAP ~ B, making La boolean function that evaluates to true when a 
certain atomie proposition is assigned true in a certain state, evaluating to 
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false otherwise. 

L : S ~ ( AP ~ B ), which makes L ( s) an interpretation function of an atomie 
proposition at state s. 

In the sequel, we will use whichever definition is the most convenient. 

A Kripke structure may be viewed as a labelled directed graph: the states are the 
graph's vertices and the relation A defines the edges. Note that because A is 
required to be total, each vertex in the graph must have at least one outgoing 
edge. To map this graph onto our model of time, we single out a certain vertex s0 
and armounce that to be our initial state, i.e., the state of the system at timepoint 
0. lts immediate successors will then be at timepoint 1, et cetera. This operation 
will effectively 'unwind' the relation A and cause the graph to be drawn as a tree 
(figure 6.1). 

0 1 2 3 

---............ -----
4 

t 

Figure 6.1. Kripke structure 'projected' on time line. 

A Kripke structure can be regarcled as a state model of a system: the atomie 
propositions labelling a vertex define the 'state' of the system at that vertex. The 
possible behaviours of the system are paths through the graph. Such a path will 
be called an execution trace. Note that a Kripke structure reflects a so-called 
branching-time model; each state corresponds to a point in time and branches 
(via its outgoing edges) toa number of possible futures. Note also that a Kripke 
structure is very similar toa State Transition Graph (or state diagram). 

6.4 Computation tree logic 

Computation tree logic is a logic that is specifically tailored to reason about 
atomie propositions and their change of 'value' in time as laid down by a given 
Kripke structure. One also says that the Kripke structure is a model for CTL or 
that CTL formulas are interpreted over Kripke structures. 
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The syntax of the most generallogic called CTL" consists of 2 groups of only 3 
rules each: 

S1 Atomie Propositions and the truth values false and true are state formulas; 
S2 If f, g are state formulas, so are ..., f, fA g, and f v g; 
S3 If f is a path formula then E f, Af are state formulas. 

P 1 Each state formula is a path formula; 
P 2 If t g are path formulas, so are ..., f, f A g, and f v g; 
P3 If f, gare path formulas, soareX f, f U g. 

The division in state and path formulas has to do with their meaning and will 
become clear in the sequel. Intuitively, the meaning of a state formula is the set of 
states in the Kripke structure for which the formula is true; the meaning of a path 
formula is the set of paths in the Kripke structure for which the formula is true. 

What is known as CTL is a restricted form of the above logic. It consists of the 
same state formulas generated by the rules S1, S2, and S3, but with the rules for 
the path formulas replaced by a single new rule: 

P0 1f f, g are state formulas then X f, f U g are path formulas. 

Observe that the difference in CTL" and CTL syntaxis that in the latter path for
mulas may no longer be nested; they require the use of an E or A operator to 
make a path formula into a state formula. When no distinction is made between 
CTL" and CTL we willdenote this by CTL1·>. Wedefine the language of CTL1·>, 
i.e., the set of all formulas, to be all the state formulas generated by the above syn
tax rules. Hence, from now on when formulas are not explicitly qualified, state 
formulas are to be understood. 

6.4.1 Semantics 

Here we will define thesemantics for both CTL• and CTL, although we will only 
be using the simpler logic CTL in the sequel. The meaning of a CTL<•> formula is 
defined with respect to a Kripke structure M = ( S, R, L) with designated initia! 
state s0 • An infinite path in the graph of the Kripke structure will be called a full
path, e.g., x= ( s0 , s 1 , • • ·) denotes a fullpath starting at state s0 foliowed by state 
s1 and so on. We use the notatien x i to denote the suffix fullpath (si, si+ 1 , • • • ) of 
x, i.e., the fullpath x after deletien of a prefix of length i. 

In figure 6.2 the semantics of a formula is inductively defined according to the 
syntax rules. These semantic definitions should be read as follows. For a state 
formula f, "M, s0 I= f iff condition" means that the formula f holds in (or is satisfied 
by) the model M with initia} state s0 when the "condition" is met true). Of 
course, the condition may refer to the model. So the semantic rule S1 (figure 6.2) 
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says that anatomie proposition (which is itself a state formula) is satisfied by the 
model ( M, s0 ) when that atomie proposition is assigned true by the labelling of 
s0• Por a path formula f, "M, x I= f iff condition" means that the formula f holds for 
the fullpath x in the model M when the condition is true. So thesemantic rule P3 

for the formula p U q says that p U q is satisfied by ( M, x) when there exists a suf
fix fullpath xi such that M, xi I= q holds and for all suffix fullpaths xi, such that 
0 :S j < i, M, xi I= p hol ds. This is clearly an inductive definition. 

M, s0 I= false -
M, s0 I= true -
M,s0 I= p iff 

M, s0 I= ..,f iff 

M, s0 I= fA g iff 

M,s0 1=fvg iff 

M, s0 I= Ef iff 

M, s0 I= Af iff 

M, x I= f iff 

M,xl=-,f iff 

M, x I= fA g iff 

M,xl=fvg iff 

M,xi=Xf iff 

M,x I= fUg iff 

M,xi=Xf iff 

M, x I= fU g iff 

false 
true 
pEL(s0) 

not M, s0 I= f 

M, s0 I= f and M, s0 I= g 

M, s0 I= f or M, s0 I= g 

::3 M, x I= f 
X= (S0,S1, .. •) 

'ïl M, x I= f 
X= 

M, s 0 I= f 

not M, x I= f 

M, x I= f and M, x I= g 

M, x I= f or M, x I= g 

M,x11=f 

::Ji>o M, xi I= g and 'ï/i<i M, xi I= f 

M, s1 I= f 

.3i~o M, si I= g and 'ï/i<i M, s; I= f 

Figure 6.2. Semantics of CTL < • >. 

withx= (so.s1,···) 

with x= ( s0 , s1, .. ·) 

A CTL (*) formula l/J is said to be satisfiable iff there exists a model for it, i.e., there 
exists a Kripke structure M and a state s such that M, sI= f/) holds. 

A CTL (*) formula t/J is said tobevalid (the word "tautology" would be appropri
ate as well) iff for every structure M and for every statesof M, M, sI= ifJ holds. 

When needed, these definitions can easily be rephrased for path formulas. 

It can be shown that CTL is strictly weaker in expressiveness than CTL*. So, there 
are properties that can be expressed as a CTL* formula but no equivalent CTL 
formula exists. An example will be presented at the end of the next section. 
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6.4.2 CTL operators 

In CTL, path formulas cannot be nested1 e.g. p U (q U r) is notallowed by the CTL 
syntax. CTL path formulas are constructed using the X and U operators and 
must immediately be preceded by a unary E or A operator to turn them into 
state formulas. We therefore combine these possibilities into 4 separate operators 
with a slightly different notation for ease of writing: 

E (Xf) 
E (fUg) 
A (Xf) 
A (fUg) 

becomes EXf 
becomes fEU g 
becomes AXf 
becomes f AUg 

The abstract syntax of CTL may now be expressed by the single BNF production 
rule: 

CTL ::= AP I ., CTL I CTL A CTL 
CTLvCTL I EXCTL I AXCTL I CTLEUCTL I CTLAUCTL. 

In practice, one often chooses a different set of basic CTL operators. Here we 
select the operators EX 1 EG 1 and EU. EG is a new operator we haven't seen 
before. lt is intended to express that there exists a fullpath such that the operand holds 
for all states on that path. A more formal definition is given in figure 6.3. 

M,s0 F= EXf iff 3 M, s1 F= f 
(SQ,s,, ... ) 

M,s0 I= EGf 

M, s0 F= f EU g iff 3 3 M, si I= g and V M, si I= f 
(SQ,S,..-·) j~O kj 

Figure 6.3. Selection of basic CTL operators. 

lt is easily derived that EG f =., ( true AU.., f ). We will further introduce the truth 
values false and true and include the following set of derived operators: 

EFf = true EUf 
AXf = ., EX .,f 
AGf = .., EF -tf 
fAUg = ., ( (-.gEU (-,fA-,g)) V EG-,g) 
AFt = trueAUf 

In total we now have 8 temporal operators in our version of CTL. 

Example 6.1 A property that can be expressed in CTL • but not in CTL is the 
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following: anatomie proposition, say p, is true infinitely often along a path. To be 
precise, we claim the (state) formula EG Fp to be true for the initial state of a cer
tain model. (In terms of the original operators the formula reads 
E.., ( true U.., ( true Up)).) A simple model that satisfies the property is drawn in 
figure 6.4. 

Figure 6.4. Model that satisfies EG Fp. 

The dosest CTL formulas that come to mind are EG EF p and EG AF p. However, 
it should be intuitively clear that both formulas do not require the path that satis
fies the EF (resp. AF) subformula to coincide with the path that satisfies EG. 
Because of the restrictive syntax of CTL to prefix path formulas with a quantor, it 
is not possible to impose that the selected paths being quantified will be one and 
the same path. Figure 6.5. shows a model for EG EF p that is not also a model 
for EG Fp. 

Figure 6.5. Model that satisfies EG EF p but not EG Fp. 
o example 6.1 

6.5 CTL model checking 

Our purpose of introducing CTL is to arrive at a method for automatically verify
ing properties of systems. If the systems we are consiclering have a finite set of 
states, the behaviour of such a system may be modelled by a finite Kripke struc
ture M. Often we know that the system starts insome initial state s0 . Then a cer
tain property of the system may be expressed as a CTL formula t/J and checked 
against the model, i.e., we try to prove that M, s0 I= t/J. 

On the other hand, observe that any CTL formula t/J could also be interpreted 
within a given Kripke structure M as denoting a set of states, namely those states 
s for which M, sI= t/J holds. We therefore define: 

Q ( t/J) ç; Sis thesetof states associated with CTL formula t/J, such that: 

Q ( t/J) = {sIM, sI= t/J }. 

One way to find out whether a certain property t/J holds for a given system, is to 
compute Q ( t/J) and check whether s 0 E Q ( t/J ). The Q sets for each possible form 
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of CTL formula are easily derived from the semantics. Figure 6.6 provides a 
complete list based on a given Kripke structure M = ( S, R, L ). We use the nota
tion R ( s ) to stand for the set { t e S I ( s, t ) e R }. 

Q(false) = 0 
Q(true) = s 
Q(p) = {seSipeL(s)} 
Q(-,f) = S\ Q(f) 
Q(fAQ) = Q(f)nQ(g) 
Q(fvg) = Q(f)uQ(g) 
Q(EXf) = {seSIR(s)nQ(f):,t:0} 
Q ( EGf) = Q ( f) n Q ( EX EG f) 
Q(f EU g) = Q (g)uQ(f)nQ( EX (fEUg)) 

Figure 6.6. State-sets for the basic CTL formulas. 

The last two equations are recurrent. Luckily their solutions are well-defined and 
can easily be computed as we shall see in the next section. For now we assume 
the existence of the functions OEx, QEG, and Q Eu defined in figure 6.7. 

OEx (Q(f)) = 
QEG (Q(f)) = 
OEu (Q(f),Q(g)) = 

Q(EXf) 
Q(EGf) 
Q(fEUg) 

Figure 6.7. Auxiliary state-set functions. 

The association of a state-set with a formula is implemented by algorithm 6.1. 

28 Q(CTL f) 
{ 

} 

switch (f) 
case false: 
case true: 
case P: 
case -.g: 
case gA h: 
case gvh: 
case EXg: 
case EGg: 
case gEU h: 
} 

return 0; 
return S; 
return { s E SI P e L ( s)); 
return S\ Q (g); 
return Q(g) nQ(h); 
return Q(g) UQ(h); 
return QEx (Q (9)) ; 

return QEG (Q (Q)); 

return QEu ( Q ( 9) , Q ( h) ) ; 

Algorithm 6.1. Derivation of state-set from a CTL formula. 
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6.5.1 Model checking algorithms 

The state-sets for EG and EU are expressed as recurrent equations. These 
equations are derived from the following logica! equivalences for these 
operators: 

EG f = f A EX EG f 

tEUg= g V fA EX (fEUg) 

One might look at these equations as theorems of CTL and prove them by 
resorting to their semantic definitions. No te that Q (EX f) is defined to be those 
states that have at least one successar that belongs to Q ( f ). In other words, 
Q ( EX f) is the image of Q ( f) under the converse rel a ti on R - 1

; this is usually 
called the pre-image under R. Apart from R - 1 we will use the following nota ti on 
for the various sets associated with R: 

RçAxA 
R: A~ 2A 
R:2A~2A 

R ( s ) = { t E s I ( s, t ) E R } 
R(S)= U R(s) 

SES 

R0 
( S) = S 

R1 (S) = R(S) 
Rk ( S) = Rk- 1 

( R ( S)) 

R - 1 
( t) = { s E s I ( s, t) E R } 

R- 1 (T) = U R- 1 (t) 
t ET 

Relation 
Function 

Extended function 
(definition) 
(extension) 

Identity 
Image 

Iterated application 
(converse) 
Pre-image 

Using Q (EX f) = R - 1 
( Q ( f)) and identifying R - 1 with OEx, we can rewrite the 

state-sets for EG and EU as follows: 

Q( EG f) = Q(f) nOEx ( Q (EGt)) 

Q ( f EU g) = Q ( g) u Q ( f) n OEx ( Q ( f EU g)) 

To solve these equations we can apply fixed-point theory. Assuming that Q ( f) 
and Q ( g ) are known, i.e., the terms may be considered constant, say 0 1 and 0 9, 

we are dealing with functions F of signature 28 ~ 28 for which we like to find a 
fixed-point value. Our task is to solve the following fixed-point equations: 

ZEG = FEG (ZEG)= OtnOEx (ZEG) 

ZEU = FEu (ZEu) = 0 9 uOtnOEx (ZEu) 

Without proof we here state the correct fixed-point characterizations of the state
sets for the EG and EU operators: 
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Q (EG f) = Vz. af na Ex ( z ), i.e 1 a greatest fixed-point computation, 

Q ( f EU g) = pZ. Og u af n aEX ( z ), i.e. I a least fixed-point computation. 

The computation of a ( EG f) proceeds as follows. We start with our initial 
approximation Z0 = S because we have a greatest fixed-point at hand. Then we 
calculate Z1 = 0 1 n R- 1 

( Z0 ) = a 1 n R - 1 
( S ). Using this result, we calculate Z2 , 

and so on, till we findat some step k;;::O that Zk+1 = Zk, in which case we are done 
and the salution is Zk. The function aEG = À.af. vZ. al nQEX (Z) is presented in 
pseudo-C code in Algorithm 6.2. 

for (k:=O, Zk:=S;; k++l { 

zk+1; = Ot nQEx (Zkl i 

if (Zk+1=~) return ~; 

Algorithm 6.2. Greatest fixed-point calculation of Q (EG f ). 

In an analogous way we can derive the procedure to compute Q ( f EU g) by 
defining the function OEu = À.a~o09.,uZ.a9 uQ1 nOEx (Z). This is shown in 
algorithm 6.3. 

2s QEu <28 Ot, 28 0 9) 
{ 

for (k:=O, ~:=0;; k++) { 

~+1 :=09 u <OtnQEx <Zkl); 

if (Zk+1=Zk) return Zk; 
} 

Algorithm 6.3. Least fixed-point calculation of Q ( f EU g ). 

The auxiliary routine QEX simply returns the pre-image of a set: 

Algorithm 6.4. Pre-image calculation. 

Note that for a Kripke structure R- 1 
( S) = S and R- 1 

( 0) = 0. Therefore we 
could have slightly simplified the above algorithms by using a different 
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initialization and then skipping the first iteration step. Apart from the need to 
calculate R - 1

, i.e., the pre-image, the algorithms solely use set operations which 
may be implemented in variety of ways. In symbolic model-checking the choke 
is to use BDDs. 

6.6 Linear-time temporal logic 

As stated in the introduction, LTL and CTL are closely related. Bothare restricted 
versions of the more generallogic CTL •. We will he re use the more classical nota
tion for the LTL operators [Manna81]: o, pronounee always, instead of the 
CTL*'s G; <>, pronounee sometime, instead of CTL*'s F; U, pronounee (strong) 
until; and o, pronounee next, instead of CTL*'s X. The U operator is the so
called strong until operator. We will also include the weak until operator Uw . 

The truth of a temporal formula is determined by the truth values of its atomie 
propositions which may vary from time instant to time instant. The temporal 
operators can informally defined by: 

For any temporal formula f and g, 

of, is the proposition that for every time instant, now and in the future, the 
formula f will be true, 

<>f, is the proposition that the formula f will ever, perhaps now but definitely 
(if not now) sametime in the future, become true, 

f U g, is the proposition that the formula f will be true at least for all time 
instants from the present until (but not necessarily including) the time when g 
becomes true, and the latter must inevitably happen, 

f Uw g, is the proposition that the formula f will be true at least for all time 
instants from the present until (but not necessarily including) the time when g 
becomes true, but the latter need not ever happen, 

of, is the proposition that f is true in the next time instant, i.e. the one imme
diately following the present, 

a propositional formula f is true in LTL if it is true in the present time instant, 
irrespective of whatever its variables' values will be in the future. 

Propositional temporal logic may be completely formalized in a manner very 
similar to propositionallogic, defining a number of axiom schemata and rules of 
inference. It can be proven that in this way a sound and complete theory is estab
lished. A decision procedure is available that determines for each temporal for
mula whether it is a theorem or not. This decision problem is shown to be 
PSPACE-complete (a class of problems that includes the NP problems [Garey79]) 



64 Temporal Logic Chapter6 

in [Sistl85]. We will present a program that decides the satisfiability of an LTL 
formula in section 6.7. 

Wedefine LTL as a language over an alphabet of atomie propositions AP. For the 
latter we use the same definition as with propositionallogic. The syntax of LTL 
formulas is shown in figure 6.8. 

formula 

term 

factor 

primary 

term [ v formula ] . 

factor [ A term ] . 

primary [ ( U I Uw ) factor ] . 

false 
true 
p 
.., primary 
o primary 
<> primary 
o primary 
( formula). 

where Pisanatomie proposition taken from AP. 

Figure 6.8. LTL Formula Syntax. 

The meaning of a temporal logic formula is defined with respect to a Kripke 
structure M = ( S, R, L ), where S is a fini te set of states, R : S--; S a total succes
sor function giving for each state a unique next state and L : S --; ~ a labelling 
of a state with a set of atomie propositions true in that state. 

The truthof an LTL formula is inductively defined relative to a structure M and a 
state s by figure 6.9. 

If thesetof states Sis finite and the successor relation is a total function, any infi
nite sequence of time instants, to be more precise: any infinite sequence of occur
rences of states, may be represented in a fini te way by a w-regular string over the 
alphabet S, i.e., it consists of a certain possible empty prefix sequence foliowed 
by an endless repetition of a cycle of 1 or more states. This can be depicted by a 
lasso-shaped graph. 

An LTL formula f is satisfiable, i.e. can be made true, if we can find a model 
( M, s0 ) such that M, s0 I= fis true. If a formula is true in a model we also say that 
the model, or sequence of states with associated truth-assignment (since that 
uniquely determines the model), verifies or satisfies the formula. 

A formula is said to be valid iff it is true in every model, notation: I= f. We will 
adopt the term tautology introduced in propositionallogic for valid formulas. A 
formula that cannot be satisfied by any model is a contradiction. Two formulas f 
and g are said to be equivalent, notation f = g, when I= (f H g) holds. Note that a 
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M, sI= false tal se 

M, sI= true - true 

M, sI= p iff p e l(s) (for peAP) 

M~sl=-,f iff not M, sI= f 

M,sl=fvg iff M~sl=for M,sl= g 

M,sl=fAg iff MI s I= f and MI s I= g 

MIs I= of iff M1 R ( s) I= f 

M, sI= <>f iff 3 M1 R
1 

( s) I= f 
i~O 

M~sl=of iff \t MI R1 
( s ) I= f 

i~O 

M, sI= f U g îff .3 (M,R1(s)l=gand \t .M.Ri(s)l=f) 
1~0 O~J<I 

M, sI= fUwg iff M~sl= (fUg)vof 

where R1 
( s) denotes the ith successar of s. 

Figure 6.9. LTL Formula Semantics. 

formula is unsatisfiable if and only if its negation is a tautology and conversely a 
formula is valid iff its negation is unsatisfiable. 

6.7 An L"rL satisfiability checker 

The satisfiability problem of an LTL formula asks whether there exists a truth 
assignment to the atomie propositions in the formula at each time instant that 
make the formula true. Here we will describe an algorithm for checking the sat
isfiability of an LTL formula. We can distinguish three main steps: 

1. Parsing. In this phase a formula is converted to a binary tree. 

2. Normalization and optimization. The formula is converted to negation nor
mal form and a number of optimizations are performed. 

3. Model construction. In this phase the actual model is constructed. 

These steps will now be explained in more detail. 

6.7.1 Parsing an LTL formula 

The lexkal analyser and parser routines are generated by the UNIX utilities lex 
and yacc from the LTL token and grammar definition files. The parser constructs 
a rooted ordered tree representation fortheinput formula. Note that in the algo
rithms and examples of this section we use the alternative 'printable' symbols to 
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denote the LTL operators as shown in table 6.1. 

Math. notation: 
.., 
A 

V 

0 

<> 
0 
u 

Uw 

ptl notati 

& 

V 
@ 

<> 
[ l 
u 

Uw 

Logkal negation 
Conjunction 
Disjunction 
Next 
Sometime 
Always 
Strong until 
Weakuntil 

Table 6.1. Notation of LTL operators as used by the program. 

6. 7.2 Normalization 

Propagate all NOT operators towards the leaf nodes of the formula tree. After
warcts a NOT operator may only appear directly in front of a variabie node. The 
formula is then said to be in negation normal form (nnf). The following identities 
are used in this process: 

-.false = true, -.true = false, 
..., ...,f = f, -.of = o-,f, 
...,<>f = o..,f, -.of = <>..,f, 
-.(fAQ) = ..,fv-,g, ..., (fvg) = -,fA -.g, 
-.(fUg) = -.gUw (..,fA -.g), ..., (fUwg) = .., Q U (.., f A ..., Q ). 

We use the two, mutually recursive1 routines of algorithm 6.5 and algorithm 6.6. 

Tree neg{Tree f) 
{ 

switch (f) { 

case <false>: return <true>; 
case <true>: return <false>; 
case <p>: return <! p>; 
case <! g>: return nnf(g); 
case <@ g>: return <@ neg(g)>; 
case <<> g>: return < [] neg(g)>; 
case <[] g>: return <<> neg(g)>; 
case <U g h>: return <Uw neg(h) <& neg(g) neg(h)>>; 
case <Uw g h>: return <U neg(h) <& neg(g) neg(h)>>; 
case <& g h>: return <+ neg(g) neg(h)>; 
case <+ g h>: return <& neg(g) neg(h)>; 
} 

Algorithm 6.5. Negate formula f. 
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Tree nnf(Tree f) 
{ 

switch ( f) { 

case <false>: 
case <true>: 
case <p>: return f; 
case <! g>: return neg (g); 
case <@ g>: return <@ nnf(g)>; 
case <<> g>: return <<> nnf(g)>; 
case < [ 1 g>: return < [] nnf(g)>; 
case <U g h>: return <U nnf(g) nnf(h)>; 
case <Uw g h>: return <Uw nnf (g) nnf(h)>; 
case <& g h>: return <& nnf (g) nnf(h)>; 
case <+ g h>: return <+ nnf(g) nnf(h)>; 

Algorithm 6.6. Convert formula f to negation normal farm. 

6.7.3 Optimization 

Exhaustively apply the rewrite rules listed in figure 6.10 to the formula in nnf. 
Optionally, delete all<> and o operators at the top of the formula tree. Use the 
meta-identities: 

<>f satisfiable iff f satisfiable 
of satisfiable iff f satisfiable 

The next step in the optimization process is the reduction of the formula tree to a 
directed acyclic graph (DAG). All isomorphic subtrees (subformulas) modulo 
commutativity of AND and OR operators are identified and collapsed. Also 
nocles with identical left and right children are deleted and replaced by their 
unique child. The latter is justified because of the identities: 

f td = f 
fvf = f 
f u f = f 
fUwf = f 

This effectively converts the formula tree into a DAG. The advantage clearly is a 
reduction of the number of subformulas to be considered in the model construc
tion phase. For brevity and clarity, all algorithms on DAGsin the sequel are pre
sented without the necessary marking of nocles to avoid visiting the same node 
more than once. 
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-.tal se ~ true ofalse ~ tal se 
-,true ~ tal se otrue ~ true. 

<>false ~ false ofalse ~ tal se 
<>true ~ true otrue ~ true 

<>Of ~ O<>f oot ~ oot 
<><>f ~ <>f oot ~ of 

<>O<>f ~ O<>f O<>Of ~ <>Of 
<>(fU9) ~ <>9 0 (fUw 9) ~ 0 (fv9) 

false U f ~ f falseUw f ~ f 
f U false ~ tal se fUw false ~ of 
true U f ~ <>f true Uw f ~ true 
f U true ~ true fUw true ~ true 

of U 09 ~ 0 ofUw09 ~ 0 (fUw 9) 
f u <>9 ~ <>9 (of) Uw9 ~ ofv9 
p u -,p ~ <>..,P PUw..,P ~ true 
-,pup ~ <>P ..,PUwP ~ true 

f u f ~ f* fUwf ~ f* 

false "f ~ tal se falsevf ~ f 
true " f ~ f truevf ~ true 
f" false ~ false fvfalse ~ f 
f " true ~ f fvtrue ~ true 
of" 09 ~ o(fA9) ofvo9 ~ o (fv9) 
of" 09 ~ o(fA9) <>fV<>9 ~ <>(fv9) 

PAP ~ p pvp ~ p 
-,p 1\ -,p ~ -,p -,pv-,p ~ -,p 

-,p 1\ p ~ tal se -,pvp ~ true 
p 1\ -,p ~ false pv-,p ~ true 

f 1\ f ~ f* fvf ~ f* 

Figure 6.10. Rewrite rules. (* indicates 'done during reduction'.) 

6.7.4 Model construction 

An LTL formula is satisfiable when we can construct an infinite path of states 
such that all eventualities on that path are fulfilled. Evenmalities are subformulas 
of the kind <> and U . Our approach will be to construct not just a single path 
but all possible paths as a graph in one go. Edges and vertices of that graph are 
associated with the disjunctive normal form representation of a temporal formula 
defined in this section. 

First we identify the propositional subformulas and the so-called elementary 
subformulas in the DAG for a formula. They are defined by means of 
algorithm 6.7 and algorithm 6.8 respectively. In the ptl program we represent a 
propositional subformula by a BOD over the set of atomie propositions. Our defi
nition of elementary subformulas is slightly different from the usual one 
[Burch91]. Por one, we don't regard atomie propositions as elementary, and also 
we don't consider all o operators elementary but use their operands instead. 
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Bool propositional(Dag f) 
{ 

switch (f) { 
case <false>: 
case <true>: 
case <p>: 
case <' p>: return true; 
case <@ g>: 
case <<> g>: 
case <(] g>: 
case <U g h>: 
case <Uw g h>: return false; 
case <& g h>: 
case <+ g h>: return propositional(g) && propositional(h); 

} 

Algorithm 6.7. Test whether formula fis propositional. 

69 

With these definitions of the propositional subformulas and elementary subfor
mulas of a formula f it is possible to express any LTL formula f in the following 
disjunctive normal form for certain propositional formulas Pi> Pk (which may be 
true and in that case are omitted) and elementary gi: 

f = V ( Pi A 0 ( Pk A /\gi ) ) 
I J 

Moreover, every formula that results from expanding a <>, o, U, or Uw subfor
mula according 

<>f 
of 
f u g 
fUwg 

= 
= 
= 
= 

fv o <>f 
fA oot 
gvfAO(fUg) 
g V f A 0 ( f Uw 9 ) 

can again be written in that very same form. For later reference, we mention that 
the term of which o is part in the above expansions will be referred to as the 
inductive term, the other term (g) is called the finite term. 

Example 6.2 Consicier the formula .,<>-,pvoq A o (pU-,oq)v-,o (-,pA q). 
We will subject this formula to the processing steps described thus far. The for
mula in negation normal form reads op v o q A o ( p U <>., q) v o ( p v., q ) . Th is 
may be optimized to op v D q A o <>.., q v o ( p v.., q ). The propositional subfor
mulas are easily determined to be { p, q,., q, p v., q }; the elementary subformulas 
are { opvoq A o <>...,q vo ( p v., q ), op, oq, <>., q }. Using the above 'expansion' 
rules the formula can be written as pA oop vq A ooq A o <>., q vo ( pv-,q) 
which indeed has the required (top-level) sum-of-products of propositional and 
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Set elem_l(Dag f) 
{ 

} 

if (propositional(f)) return 0; 

switch (f) { 
case <@ g>: 

if (propositional(g)) return 0; 
switch (g) { 
case <@ h>: return I g )uelem_l (h); 
case <<> h>: 
case < [] h>: 
case <U h i>: 
case <Uw h i>: return elem_l (g); 
case <& h i>: 
case <+ h i>: return { g }uelem_l (h) uelem_l (i); 

case <<> g>: 
case <[] g>: return {f}uelem_l(g); 
case <U g h>: 
case <Uw g h>: return {f)uelem_l(g) uelem_l(h); 
case <& g h>: 
case <+ g h>: return elem_l (g) uelem_l (hl; 

Set elem(Dag f) 
{ 

} 

if (propositional(f)) return 0; 

return { f) uelem_l ( f); 

Algorithm 6.8. Determine elementary formulas of f. 

elementary subformulas form: 

o example 6.2 

Prop.A 
p 
q 
true 

oProp.A 
true 
true 
pv-.q 

o /\Elementary 
{op l 
{oq,<>-.q} 
0 

Chapter6 

Every conjunct in the disjunctive normal form defines an (edge, vertex) pair; the 
edge represents the propositional formula Pi, a vertex represents the term 
Pk A (\g1. The initia! vertex of the graph represents the formula f under test. 

I 
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p1 

Figure 6.11. Graphical representation of a formula f in disjunctive normal form. 

(Technically of is represented, but we have already seen that f is satisfiable when
ever of is.) Figure 6.11 visualizes the aforementioned interpretation of the tem
poral disjunctive normal form. Note that all vertices, possibly with the exception 
of the initial vertex, will be labelled by a conjunct consisting of a propositional 
formula and zero or more elernentary formulas. Actually, to get a more uniform 
vertex labelling one could decide to introduce multiple initial vertices, one for 
each conjunct in the DNF of the forrnula f, and then check each for satisfiability 
separately. 

The graph construction proceeds by consiclering the conjunct labelling a vertex 
and converting it to disjunctive normal form. This then gives us a nurnber of 
(edge, vertex) pairs that are the outgoing edges and irnrnediate successors of the 
vertex under consideration. Note that pairs for which the edge label is identically 
false need not be included in the graph: they express an unsatisfiable continua
tien. This can easily be checked when the edge labels are represented by BDDs. A 
sirnilar remark holds for the propositional subformula that is part of a vertex 
label: when it is found to be unsatisfiable, again the (edge, vertex) pair is dis
carded since that vertex cannot have any successors. The maximurn number of 
distinct vertices equals the cardinality of the powerset of the atomie propositions 
together with the elernentary subformulas, and hence is fini te. By keeping all ver
tex labels unique (using a hash table) no duplicate vertices will be created. 

Example 6.3 Following up on the previous exarnple, we will now show how 
the model graph for the formula ., <>-. p v o q A o ( p U .., o q ) v.., o ( ..., p A q ) is 
constructed. The initial vertex ( 1 ) is labelled with the formula 
op v o q A o <>., q v o ( p v., q ). This results in 3 outgoing edges: 

p 
q 
true 

labelled: To vertex: 
(4): {op} 
(5): {oq,<>-,q} 
(2): {pv-.q} 
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Converting each new vertex to DNF gives: 

Vertex: 
(4) 
(5) 
(2) 

Label: 
{op} 
{oq, <>-.q} 
{pv-.q} 

DNF: 
pA oop 
q A o (oq 1\ <>-.q) 
( p v .., q ) 1\ o true 

This again results in the following outgoing edges per vertex: 

Vertex: Outgoing (edge, vertex) pairs: 
( 4 ) { ( p, ( 4 ) ) } 
( 5) { ( q, ( 5))} 
( 2 ) { ( p V.., q, ( 3) ) } 

Chapter6 

Vertex ( 3) is the true vertex. Expanding it will result in a single self-looping edge 
labelled with true. The complete model graph is drawn in figure 6.12. The anno
tations of the vertices will become clear in the sequel. 

Figure 6.12. Model graph for example formula. 

o example 6.3 

Once the model graph is created, an infinite path still has to be found starting at 
the initia! vertex and satisfying all eventualities encountered in the vertices com
prising the path. Instead of searching for a path and checking fulfillment of even
tualities a posteriori, these actions may be combined with the actual model graph 
construction. Constructing a path entails a depth-first graph construction pro
cess; by appropriately marking the vertices on the current path, cydes are easily 
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discovered. The depth-first approach will naturally construct a spanning tree in 
the graph. A strongly connected component in the graph can be shown to con
sist of vertices that forma subtree of this spanning tree [Tarja72]. Hence it makes 
sense to refer to a vertex as being the root of a strongly connected component. 
Note that the notion of a root only makessensein the context of a given span
ning tree. The following observations will prove helptul in determining a satisfy
ing path in the model graph. They first occurred in [Janss90]. 

Lemma 6.1 If a vertex in a model graph is satisfiable, then so are all its prede
cessar vertices. 

Proof: By definition of the disjunctive normal form for LTL formulas, a vertex 
with formula label f is a predecessor of a vertex labelled g, if the DNF of f con
tains the conjunct p J\ o g for some satisfiable propositional formula p ( the edge 
label). Since we assume g to be satisfiable, o g also is satisfiable, hence the con
junct p J\ o g is, and therefore f must be satisfiable. 
o lemma 6.1 

Corollary 6.1 If a vertex has a successar vertex that is satisfiable, then the vertex 
itself is also satisfiable. Equivalently, if no successar is satisfiable then the vertex 
is not satisfiable. 

Proof: Quite obvious restatement of lemma 6.1 in termsof successors. 
o corollary 6.1 

Lemma 6.2 Either all vertices on a cycle are satisfiable or none of them is. 

Proof: Immediate from lemma 6.1. 
o lemma 6.2 

Corollary 6.2 Either all vertices of a strongly connected component (SCC) are 
satisfiable (we then speak of a satisfiable SCC) or none is. 

Proof: Immediate from the definition of an SCC and lemma 6.2. 
o corollary 6.2 

Lemma 6.3 If an eventuality is present in some vertex of a cycle and it is not 
fulfilled by the cycle, it must necessarily reappear in every vertex of the cycle. It 
on the other hand, there is some vertex of the cycle where the parbeular eventu
ality is absent, we must conclude that the eventuality is fulfilled by the cycle. 

Proof: We first examine how eventualities propagate in the model graph. Assume 
a single eventuality <>g to be present insome vertex (the case of multiple eventu
alities and eventualities caused by strong until operators can be treated analo
gously). In generat the formula f labelling this vertex is a conjunct like h J\ <>g, 
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where h stands for a conjunction of propositional and elementary formulas. A 
first step in rewriting formula f into DNF causes the eventuality to be split into its 
finite and inductive parts that will end up in different conjuncts: 
( h A g) v ( h 1\ o <>g ). We notice that in the path continua ti on via the fini te term 
(g) the eventuality disappears, and that in the path continuation via the inductive 
term ( o <>g) the eventuality reappears as part of the label of a successar vertex. 
These continuations are of course only valid when the respective propositional 
parts (the edge labels) are satisfiable, which is assumed to be the case in our 
model graphs. When the vertex is part of a cyde, we therefore condude that its 
eventuality is fulfilled if and only if there exists some other vertex of the cyde in 
which the particular eventuality is absent, because absence of the eventuality 
implies that apparently the alternative finite term continuation was indeed taken. 
olemma6.3 

Theorem 6.1 An SCC in the model graph is satisfiable if and only if 

1. another satisfiable sec can be reached from it, or 

2. the root of the sec has no eventualities and the sec is not trivia} (an sec 
is called trivia! when it consists of a single vertex without a self-looping 
edge), or 

3. the SCC is non-trivia! and the root does contain eventualities but they are 
all fulfilled within that sec. 

Proof (1) If another satisfiable SCC can be reached we can apply lemma 6.1 
repeatedly to reason backwarcis along a path to the satisfiable sec. Note that in 
case of a trivia! sec either case (1) applies or it doesn't, and then it will be 
announced unsatisfiable by application of corollary 6.1. 

For cases (2) and (3) it suffices to only consider non-trivia! secs that have no out
going paths to satisfiable secs. These secs will all have at least one infinite path 
that is fully contained within the sec and therefore their satisfiability solely 
depends on the fulfillment of any eventualities on such a path. From lemma 6.3 
we leam that it suffices to consider root vertex eventualities onl)" since any even
tuality present in some other vertex of the sec which is not fulfilled within that 
sec will also be present in the root. If there are no eventualities present in the 
root, as stated in case (2), we can directly conclude that the SCC is satisfiable. 

Suppose that indeed all eventualities present in the root are fulfilled within the 
component. Then the root is satisfiable and from corollary 6.2 we leam that all 
other vertices of the SCC are satisfiable as well. Contrariwise, if the eventualities 
in the root are not fulfilled, a satisfying path emanating from the root does not 
exist and we must condude that the root is unsatisfiable, hence the whole SCC is 
unsatisfiable. This proves case (3). 
o theorem 6.1 
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The above theorem tells us that discovering SCCs in the graph is very fruitful. 
We use a slightly modified version of the well-known Tarjan algorithm [Tarja72]. 
The advantages are that with our algorithm we just keep one number, the so
called lowlink value, per vertex instead of two as in the Tarjan algorithm. Also 
we have simplified the lowlink update part (less cases need be considered). It 
tums out that these modifications have been known to others for some time, for 
instanee Mark P. Jones uses exactly the same approach in his implementation o( 
the functional programming language Gofer. I wasn't able to find the modified 
algorithm in any textbook or publication. Here is the (pseudo-)C rendition of our 
SCC algorithm that serves as a skeleton for the LTL satisfiability routine to be 
presented next. 

/* Preconditions to top-level call: global dfsnum = 0; lowlink(u) 0 for all u; vertex stack is empty. *I 
void SCCs(Vertex u) 
{ 

lowlink_orig:=lowlink(u) := ++dfsnum; 
push (u); 

foreach_outedge (e, u) { 
v: =ds t ( e) ; /* v is destination of edge e. *I 

if (!lowlink(v)) SCCs(v); 

if (stacked(v) && lowlink(v) < lowlink(u)) 
lowlink(u) :=lowlink(v); 

if (lowlink(u) = lowlink_orig) /*uisrootofnewcomponent*l 
/* New component consistsof the popped vertices. *I 
while (pop() != u); 

Algorithm 6.9. Strongly connected components. 

To turn algorithm 6.9 into an LTL satisfiability algorithm three modifications are 
necessary: 

1. We rename the routine from SCCs to sat and introduce a boolean return 
value that is true in case a model is found, and false otherwise. From part 1 
of theorem 6.1 we learn that when the recursive call returns true, the caller 
mayalso directly return true. 

2. The for-loop that iterates over every successar v of u must be changed to 
iterate over every (edge, vertex) pair derived from the disjunctive normal 
form of the label for u. The latter is calculated by a routine named dnf. 

3. Once a new sec is discovered we still need to check parts 2 and 3 of 
theorem 6.1. This is done by scc_sat which gets the root of the compo
nent as argument. 
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Applying these modifications yields the following algorithm 6.10. The first num
ber annotated with each vertex in figure 6.12 correspond to the depth-first search 
number. The presence of an eventuality is indicated by putting the dfs-number 
in angular brackets. We see that vertex ( 5) indeed contains an eventuality (in 
fact caused by the <>.., q elementary subformula). The second number is the sec 
number which clearly is assigned in reverse topological fashion. The model 
graph in figure 6.12 has 5 SCCs. 

Bool sat(Vertex u) 
{ 

lowlink_orig:=lowlink(u) := ++dfsnum; 
push(u); 

foreach (e,v) pair in dnf(u) { 
add edge e=(u,v) to model graph; 

if (! lowlink(v)) 
if (sat(v)) return true; 

if (stacked(v) && lowlink(v) < lowlink(u)) 
lowlink(u):=lowlink(v); 

if (lowlink(u) = lowlink_orig) { /*uisrootofnewcomponent*/ 
if (SCC_sat(u)) return true; 
while (pop() !=u); 

} 

return false; 

Algorlthm 6.10. SCC modified for LTL satisfiability. 

An algorithm for the conversion to disjunctive normal form has already been 
presented in section 3.4. So, it remains to explain how the function scc_sa t can 
be implemented. Checking for the second case of theorem 6.1 is obvious: see 
whether the root vertex has no eventualities and the component is not a single 
vertex without self-loop. The third case is trickier: there are eventualities among 
the elementary subformulas in the conjunct labelling the root vertex and we now 
must show that they are all fulfilled within the component. To ease this test we 
introduce markings on the edges. Whenever during DNF conversion a <> or U 
subformula is expanded the (edge, vertex) pair that is created for the finite term 
of the expansion will be flagged with the <> or U subformula. With this provi
sion, we can check for fulfillment by collecting the markings of all edges belong
ing to the sec and comparing this set with the eventualities present in the root 
vertex. 

The eventuality <>.., q in the model graph of figure 6.12 is not fulfilled. This is 
indicated by the negative dfs-number in angular brackets. In this case we have a 
singleton SCC with a self-loop. During expansion of the vertex's formula 
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Bool eventualities_fulfilled(Vertex u) 
{ 

if (!eventualities_present(u)) return true; 

/* eollect all markings on edges of this see: *I 
markings: =0; 
for (v e sec of which u is root) 

foreach_outedge (e, v) 
if (dst (e) E sec of which u is root) 

markings: =markings umarkings (e); 

/* Naw check for fulfillment of<> and U one by one: *I 
foreach (f I f is <> or U subformula of u) 

if (f li!Omarkings) 
return false; 

return true; 

Bool SCC_sat(Vertex u) 
{ 

if (SCC_size(u) 1) 
/*Singleton sec. *I 
foreach_outedge (e, u) 

if (dst (e} = u} 

} 

/* Self-looping edge present. *I 
return eventualities_fulfilled(u}; 

/*No outgoing edges or no self-loop. *I 
return false; 

/*Nat a trivial sec. *I 
return eventualities_fulfilled(u); 

Algorithm 6.11. Checking an SCC for eventualities. 

0 q A <:>-. q the fini te term disappears SO no edge in the SCC will be marked. 

6.8 Specificatien of finite state machines in LTL 

77 

The Finite State Machine (FSM) has since long been appreciated as a convenient 
model for the description of the behaviour of control hardware. It has become 
practice for many designers to specify control-dominated [WolfW90] logic 
designs using state diagrams or flow charts. Here we show how Finite State 
Machines can be described by LTL formulas. Many questions concerning the 
behaviour of the FSM may also be stated within the same formalism. We do not 
here consider the mathematica! aspects of the relation between languages, 
automata and logies [Emers90]. We set a more modest goal of indicating the 
required transformations from a design automation point of view. 
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6.8.1 Notational preliminaries 

A Finite Autornaton is a quintuple (Q, :E, ö, q0 , F) with Q a finitesetof states, :E 
the input alphabet, ö the transition mapping, q0 a start state and F the set of 
accepting states. The autornaton defines a language of strings of input symbols. 
In terros of a logic circuit, we usually let the input symbols correspond to data 
bits on a number of input lines and the states correspond to the values contained 
in the flip-flops. In hardware applications it is the custom to introduce two 
derived machine concepts, known as the Moore and Mealy type machines. For 
clarity, we will classify the various machines types as shown in figure 6.13 below. 

Without output: 
Fully specified 

deterministic 
non-deterministic 

Incompletely specified 
deterministic 
non-deterministic 

With output: 
Fully specified 

deterministic (Moore/Mealy) 
non-deterministic? 

Incompletely specified 
deterministic (Moore /Mealy) 
non-deterministic? 

Figure 6.13. Fini te State Machine Classification. 

We will eaU a machine incompletely specified if the ö function is not fully defined 
over its domain of states and symbols. Also wethen allow don't care outputs in 
Moore and Mealy machines. There seems to be no practical sense in defining 
non-deterministic machines with output, hence the question mark. The basic 
idea to define a FSM in temporal logic is to associate the states of the machine 
with the states in the model, and let a transition coincide with a step in time. 

We will use lineprinter font to denote temporal formulas in the syntax 
acceptable for our satisfiability checker program. Narnes for states and symbols 
of a FSM will be written in italic, using subscripts when appropriate. We prefer to 
leave the & (and) operator in LTL implicit. An operator applied to a set of 
operands is to be understood as the reduction of the operator over the operands, 
e.g. V{vi} = V1 vv2 v···VVn. 

6.8.2 FSM to LTL transformation 

Let us start with the simple case of a fully specified, deterministic finite state 
machine without output. To describe such a machine in LTL we introduce a 
propositional variabie for each input symbol and one for each state (Step 1). Of 
course, only exactly one input symbol may be offered at a time, but this has to be 
explicitly stated in our logic (Step 1'). Also, at any time, exactly one state can be 
the current state. Our interpretation for the variables is that when one is 
assigned true that symbol/state is the machine's current input symbol/state. For 
states this may be compared with a one-hot encoding scheme. In LTL, the 
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mutual exclusion of variables vO, vl, v2, ... , vn can be expressed by: 

[) ( vl v2' v3' vn' 
V vl ' v2 v3 ' vn' 

V vl' v2 ' v3 ' vn ) 

Our 8 mapping in this case is a total function 8 : Q x I ~ Q. We write a clause 
for each state/symbol pair: (Qi Ik -> @ <8 ( q, id>), where Qi is the LTL 
variabie corresponding to the state q and Ik is the variabie associated with the 
input symbol ik. <8 ( qi> ik )>stands for the LTL variabie associated with the 8 
function result when applied to the arguments q and ik. All these clauses are 
AND-ed tagether and put within an always operator (Step 2). This is illustrated 
in the examples in the next section. Note that the representation of the 8 function 
in this way is not complete; we are required to explicitly state that only exactly 
one state variabie is true at any time. So again, we include a clause for the mutual 
exclusion of a set of variables (Step 2'). The initia! state of the machine, i.e. the 
fact that the machine starts in state q0 can be expressed by: qO ql ' q2 ' 
qn' (Step 3). If necessary, we can· introduce an LTL variable, say Accept, to 
denote the fact that we are in a final state (Step 4): 
[] ( Accept <-> V<F> ) . 

To avoid having to explicitly specify the mutual exclusivity of the states we can 
use a predecessor approach in representing the 8 function, in the sense that we 
define clauses like {@ Qi <-> vik { V <8-1 

( q, ik)> Ik)) where 
<8-1 

( q, ik )> denotes the set of LTL variables corresponding to the states that 
have transitions labelled ik ending in the state q. 

Incompleteness of a machine is resolved in the usual way namely by introducing 
a special state. Whenever o is undefined in a state we add edges labelled with the 
missing symbols and directed towards that special state. The special state itself 
has an outgoing transition for each input symbolending on itself (Step 5). 

For a non-deterministic machine, possibly with e-moves, we can praeeed in 
much the same way as described above. Obviously, the only differences are 
expected to occur in the treatment of e-moves and non-determinism. It turns out 
that the latter does not require any special treatment: we can define the o func
tion by the same predecessor approach as sketched above. For e-moves we dis
tinguish two cases: 

1. A state qi has only incoming e transitions. Then we add a clause of the farm 
( <-> V <8-1 

( qi, e )>) . (Note the absence ofthe@ operator!) 

2. A state q has except for incoming e transitions also other incoming transi
tions. We now add two clauses, one to capture the labelled transitions in the 
usual way and asecondof the farm (Qi < V <o-1 

( q, e )>) . 

As a last case, let us now consider an incompletely specified Mealy type machine. 
This means that the output function depends bath on the current state and the 



80 Temporallogic Chapter6 

current input. Steps 1, 2, 3 A and 5 are the same as for the determînistic machine. 
We merely need to add an extra Step 6 that takes care of defining the outputs: 
add a clause for each binary output signal stating for what state/input
conditions it is true. 

Example 6.4 A simple 4-state example is the Lion Cage Machine [Breid89]. 
Note that the Il=l, I2=0 transition for statebadais not specified. Also 2 transi
tions have output don't cares (see figure 6.14). 

!*State transition table (not fully specified): *I 
[] ( 

(@start <-> start (il' i2' V il i2' V il i2) V ett il i2) 
(@ett <-> start il' i2 V ett (il' i2' V il' i2) 

V nasta il' i2') 
(@nasta <-> ett il i2' V nasta (il i2' V il i2) V bada il i2) 
(@bada <-> nasta il' i2 V bada (il' i2' Vil' i2))) 

I* Output function (not fully specified): *I 
[] (VARNING' <-start (il' i2' Vil i2' Vil i2)) 

[] (VARNING <- ett (il' i2' Vil' i2 Vil i2') 
V nasta 
V bada (il' i2' Vil' i2 Vil i2)) 

!* Initial state: *I 
start ett' nasta' bada' 

!*Input restriction: *I 
!* notever in bada and seeing 11=1, I2=0 at input: *I 
[] - (bada i1 i2' ) 

OOM 01N 

00/1 

Figure 6.14. Lion Cage State Diagram. 
0 example 6.4 
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The next example is a state machine that recognizes Algol-60 defined numbers 
and is taken from [Backh80]. We use LTL to prove that a non-deterministic ver
sion is equivalent to a minimalized deterministic one. Our experiment pointed 
out an error in the original diagram of the minimal state machine: one of the 
states was erroneously marked non-final. 

Example 6.5 - ALGOL-60 numbers 

/*State the exclusive occurrence of an input symbol: *I 
[] ( plus minus' period' digit' E' 

V plus' minus period' ' E' 
V plus' minus' period ' E' 
V plus' minus' period' digit E' 
V plus' minus' digit' E 

/* Non-deterministic machine with eps-moves: *I 
[ l ( 
(@ql <-> 

(@q2 <-> 
( q2 <-
( q3 <-> 

(@q4 <-> 

( q5 <-> 

(@q6 <-> 

(@q7 <-> 
( q8 <-> 

(@q9 <-> 

(@qlO <-> 

(@qll <-> 

( q12 <-> 

(@q13 <-> 

(@q14 <-> 

( q14 <-

(@q15 <-> 

( ql6 <-> 

false) 
ql (plus V minus)) 
ql) 
q2) 
(q3 V q4) digit) 
q2) 
q5 
(q6 V q7) digit) 
q2) 
(q8 V q9) digit) 
q9 period) 
(qlO V qll) digit) 
q2 V q4 V q7 V qll) 
q12 E) 
q13 (plus V minus)) 

/* no incoming transitions *I 

/* eps-move *I 
/* eps-move *I 

/* eps-move *I 

/* eps-move *I 

/* eps-move *I 

q13) /* eps-move *I 
(q14 V q15) digit) 
q4 v q7 v qll V ql5) /* eps-move *I 

/*Make completely specified by introducing err state: *I 
(@err <-> q2 (plus V minus) V q6 digit' 

V q9 {period V digit)' V qlO digit' 
V ql3 (period V E) V ql6 digit' 
V err) 

/*Initia[ state: *I 
ql q2 q3 q4' q5 q6' q7' q8 q9' qlO' 
qll' ql2 ql3' q14' ql5' ql6' err' 

/* Final states: *I 
[] (Acceptl <-> q16) 

Figure 6.15. Non-deterministic machine specified in LTL. 
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!* Deterministic minimal machine: *I 
[]( 

<-> (@q1_ 
(@q2_3_5_8_12 <-> 
(@q4_9_12_16 <-> 
(@q13_14 <-> 

false) 
q1_ (plus V minus)) 
(q1_ V q2_3_5_8_12 V q4_9_12_16) digit) 
( q1_ V q2_3_5_8_12 V q4_9_12_16 
V q7_11_12_16) E) 

Chapter 6 

(@q6_10 
( @q7 _11_12_16 
(@q14_ 
(@q15_16 

<-> 
<-> 
<-> 
<-> 

(q1_ V q2_3_5_8_12 V q4_9_12_16) period) 
(q6_10 V q7_11~12_16) digit) 
q13_14 (plus V minus)) 
(q13_14 V q14_ V q15_16) digit) 

!*Make completely specified: *I 
(@error <-> (q2_3_5_8_12 V q4_9_12_16) (plus V minus) 

V q13_14 (period V E) 
V (q6_10 V q14_ V q15_16) digit' 
V q7_11_12_16 (digit V E)' 
V error) 

!* Initial state: *I 
q1_ q2_3_5_8_12' q4_9_12_16' q13_14' q6_10' q7_11_12_16' 
ql4_' ql5_16' error' 

!* Final states: *I 
[] (Accept2 <-> q15_16 V q4_9_12_16 V q7_11_12_16) 

-> 

[] (Accept1 <-> Accept2). 

Figure 6.16. Deterministic minimal machine in LTL. 

o example 6.5 
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11-Calculus 

7.1 Introduetion 

This chapter will present a formal system called propositional J.L-calculus that is 
powerfut enough to encapsulate the two temporal logies that we have stuclied 
before: both LTL and CTL formulas can be reeast into formulas of the wcalculus. 
The purpose and main goal of this chapter is to show how a decision procedure 
for J.L-calculus formulas over the boolean domain can be derived from a formal 
specification of the calculus' syntax and semantics. We will strive for the imple
mentation of an efficient J.L~calculus program. The interesting part is that all we 
need is propositionallogic and a least fixed-point operator. Again BDDs will be 
used as the main data structure for representation of the boolean relations and 
functions involved. 

The wcalculus may be characterized as a formal system for manipulating predi
cates over a certain domain. lts first applications were oriented towards program 
proving. Our interest is inspired by its use as a specification language for sequen
tia! circuits and the analysis of properties thereof. Like the familiar predicate cal
culus (or first-order Iogic) [Galli87], wcalculus has constructs for expressing 
function application, quantification, and besides domain variables there will also 
be predicate symbols. New constructs in the J.L-Calculus are abstraction and 
fixed-point terms. Abstraction should be familiar from À-calculus [Baren84, 
Peyto87] and we have already used /t-abstraction as a means to define functions 
in previous chapters. 

In J.L-calculus we distinguish two main syntactic categories: formulas and terms. 
Intuitively, a formula asserts some relation to hold among the individual 

83 
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variables appearing in the formula such that given values for those variables the 
formula may be evaluated to a boolean value. A term may be interpreted as a set 
of tuples of values from the domain, in other words it represents a relation. 

Example 7.1 Before going into the precise definition of the syntax and seman
tics of the ,u-calculus, let us first look at a simple example. Let our universe of 
discourse, i.e. the domain, be the set of vertices V of a directed graph G (V, E ). 
The edges of the graph define a binary relation E ç V x V over the set of vertices: 
two vertices u and vare related iff there exists an edge from u to v. The existence 
of a path (of non-zero length) from a vertex u toa vertex v can also beseen as a 
relation (in fact it is the transitive dosure of the edge relation); in ,u-calculus this 
relation can be expressed by: 

,uZ. li.u, v. E (u, v) v 3w.Z( u, w) A Z(w, v) 

In this example, both a least fixed-point construct (,uZ) and abstraction {li.u, v) are 
present. The above term states that there is a path from u to v when either there is 
an edge from u to v or there exists a vertex w such that there is a path from u to w 
and a path from w to v. Note the recursive character of the definition of a path. 
The 'solution' of the term is the relation that, when applied to two vertices, eval
uates to true when indeed a path exists, or to false otherwise. Let us name the 
above term by the symbol P for path relation. Then the fixed-point construct 
explicitly denotes the solution of the equation: 

P = li.u,v.E (u,v) v 3w.P(u,w) A P(w,v) 

Application of both sides to the arguments (u, v) and using q-conversion yields: 

P(u,v) = E (u,v) v 3w.P(u,w) A P(w,v) 

When the binary relation E is represented as a boolean matrix, we easily derive 
Warshall's algorithm [Warsh62] for the computation of the transitive closure. 
The same notation ,uZ for the solution of a recursive equation is also used in CSP 
[Hoare85]. 
o example 7.1 

The rest of this chapter is organized as follows: first the syntax and semantics of 
the general ,u-calculus are defined; then we restriet the definitions to the boolean 
domain. Por this special case an extended language will be defined. We will give 
its concrete syntax in Backus-Naur Form; next a denotational semantics is 
defined, from which the satisfiability checking algorithm is derived through a 
reinterpretation in propositionallogic together with a least fixed-point operator. 

7.2 Syntax 

The alp ha bet of ,u-calculus consists of the following sets of symbols: 
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- logkal constants: 0 (falset 1 (true), 

- logical connectives: -.. (not)1 v (or), 3 (existential quantification), = (equal-
ity on values of the domain 0)1 

- variables: U = { z0 , z1 , z2 , • · ·}, denoting values of the domain D, 

- punctuation symbols: ( 1 ) 1 , 1 • 1 and the symbols J.1. and A., 

- predieale symbols: PS= { P0 , P1 , P2 , · · ·}, and a rank function r: PS------7 N 
assigning toeach predicate symbol a rank or arity. For instance1 a predicate 
symbol P of rank 2 has signature D x D------7 B. Predieale symbols will also 
be called relational variables. 

An inductive definition of formulas and termscan now be given [Burch91]. No 
other constrocts but the following 4 generate well-formed formulas: 

1. The logkal constants 0 and 1 are formulas, 

2. If z1 and z2 are variables then ( z1 = z2 ) is a formula, 

3. If f and g are formulas and z a variable1 then ...., f, f v g, and 3z. ( f) are for
mulas, 

4. If z1, z2 , · · ·, Zn are variables and R an n-ary term, then the application 
R ( z1 , z2 , • • ·, Zn) is a formula. 

The following 3 constructs generate all well-formed n-ary terms: 

1. Any n-ary predicate symbol X E PS is an n-ary term, 

2. If z1, z2 , • • ·, Zn are distinct variables and fis a formula, then the abstraction 
A.z1 , z2 , ···,Zn. ( f) is an n-ary term, 

3. If Ris a term with arity n and X is a predicate symbot then the least fixed
point f.J.X • ( R) is also a term with arity n provided that R is monotone non
decreasing in X. (This is a necessary condition to ensure the existence of a 
unique fixed-point; in practice, we will assume the stronger and therefore 
sufficient condition that the fixed-point term is positive, i.e., all free occur
rences of X in R fall under an even number of negations. This is easily 
checked at the syntactic level.) 

Perhaps a few words about free and bound variabie occurrences are appropriate 
here. These notions are directly borrowed from A--calculus, see e.g. [Peyto87], and 
are dosely related to the notion of variabie scope in many modem programming 
languages. Consicier the formula z1 v z2 . The occurrences of z1 and z2 in this for
mula are said to be free. Whereas in the term A.z1 • ( z1 v z2 ), the abstraction binds 
the free occurrence of z1 but z2 remains free. In the above syntax rules we see 
that variables may be bound by existential quantification and by 1!.-abstractions. 
Predieale symbols can only be bound by the least fixed-point construct. We will 
assume the conventional definitions for free and bound entities as listed in 
table 7.1. 
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Zo in formula occurs free? occurs bound? 

z 1 = z 2 No No 
Zo= Z2 Yes No 
-,f If Zo occurs free in f If z 0 occurs bound in f 
f V Q If z 0 occurs free in f or in g If z 0 occurs bound inforing 
3z0. (f) No If Zo occurs free in f 
3z1 • (f) If z0 occurs free in f If z 0 occurs bound in f 
z 0 in term occurs free? occurs bound? 
..tz0.(f) No If z0 occurs free in f 
À.Z1. ( f) If Zo occurs free in f If z 0. occurs bound in f 

P0 in formula occurs free? occurs bound? 

P1 (z1.Z2, ·· ·) No No 
P0 (z1,Z2,···) Yes No 
P0 in term occurs free? ? 
,uP0.(R) No If P 0 occurs free in R 
,uP1. ( R) If P0 occurs free in R If P 0 occurs bound in R 

Table 7.1. Free and bound occurrences of variables and predieale symbols. 

7.3 Semantics 

The meaning of formulas and terros is defined with respect to a structure 
M = { D,lp,l0 ) where Dis a non-empty set called the domain of the structure, lp is 
the predicate symbol interpretation tunction, and 10 is the variabie interpretation 
function. The predieale symbol inlerprelalion tunetion is a mapping from predi
eale symbols to n-ary predieales of signature 0° --l-B. The arity n is the rank 
defined for the predieate symbol. Each predicate may thus be regarcled as the 
charaderistic tunetion of an n-place relation over D. In the sequel we will make 
no distinction between the characterislie function of a relation (or set) and the 
relation (or set) itself seen as a set of tuples (or elements). The variabie interpre
lation function maps variables to domain values, i.e., elementsof D. 

The semantics of the formulas and terros of the ,u-calculus is captured by inter
prelation functions 'Ij and 'lJt that interpret a formula, respectively a term, with 
respect to a given structure M = ( D, lp, 10 ). Formally, the signatures of these 
interpretation functions are: 

'Ij: FORMULAxipxJ0~B 

'lJt: TERMx1px10~2 
D" 

where lp is thesetof all possible predieale interpretation tunctions lp, 10 is the set 
of all variabie interpretation tunctions 10 , and 2°" is the set of all possible n-place 
relations over D. The interpretations of formulas and terros will now be induc
tively defined along the rules of the syntax, assuming given interpretations for 
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the variables (10 ) and predicate symbols (lp). To stress that the first argument of 
'Ij and 'D1 are syntactic constrocts they are written enclosed in double quotes. 

'Ij( "0", lp, 10 ) = 0 
'Ij("1",lp,l0 } = 1 
'Ij("(z1 = z2 )", lp,l0 ) = (10 (zd = 10 (z2 )) 

'Ij(".., f', lp, 10 ) =.,'Ij( "f', lp, 10 ) 

'Ij( "f v g", lp, 10 ) = 'Dj(''f", lp, 10 ) v 'Dj(''g", lp, 10 ) 

'Ij( "3z. f", lp, 10 ) = e 0 . 'Dj( "f", lp,l0 [z == e]) 
'Ij( "R ( z1, · · ·, Z11)",lp,lo) = ( lo ( Z1 ), · · · .lo ( Z11 )) E '1J1 ( "R",Ip,l0 ) 

'Dt ("X" ,lp,lo) 
'Dt ( ";tz1, · · ·, Z 11 • f',lp,lo) 

'D1 ( "pX. R", lp, 10 ) 

=lp (X) 
= { ( e1, ···,en )I 'Ij("f", lp, lo[Z1 := e1, · · ·, Zn :=en])} 

= lfp J..Y E 2°". 'D1 ( "R", lp[X := Y], lo) 

Note 1: lfp means least fixed point. pX. R denotes the set Q E 2°" such that: 

1. a = 'D1 ( "R", lp[X : = a], 10 ), i.e., a is a fixed-point, and 

2. VPcO· P -:f: '1J1 ( "R", lp[X := P], 10 ), i.e., Q is a least fixed-point. 

The requirement that R is monotone non-decreasing in X ensures the 
existence and uniqueness of the fixed-point. 

Note 2: We use l[z1 := e 1, · · ·, Z 11 := e 11] to denote the alteration (or update) of 
interpretation I to a new function that evaluates z1 to e 1, z2 to e2, et 
cetera, leaving evaluations of any other variables intact. The alterations 
or 'assignments' are understood to be done simultaneously. The e's are 
understood to be domain values, e.g. ( e1 , e2 ) E 0 2

• 

Note 3: Por readers familiar with denotational semantics (e.g. of a program
ming language), we like to point out that our notation of the interpre
talion functions 'Dj and '1J1 corresponds to the notation using double 
square brackets, as in: 

Eval[[., f ]]lp, lo = ., Eval[[ f ]]lp, In 

Example 7.2 Again we investigate the transitive dosure of the edge relation in 
a graph expressed by the p-calculus term: 

pZ. ;tu, v. E (u, v) v 3w.Z(u, w) A Z(w, v) 

To actually calculate its outcome, we need to fix a graph; or better, the graph 
establishes the model in which this term is to he interpreted. We identify the ver
tices with non-negative integers. Let us assume to have a graph of 4 vertices, then 
D = { 0, 1 , 2, 3 } . The edge relation is denoted by the predicate symbol E and 
assume that its interpretation is: 
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lp ( E ) = { ( 0, 1 ), ( 0, 2 ), ( 1, 2 ), ( 2, 3 ), ( 3, 3)} 

We assume the variabie interpretation to be empty since there are no free vari
ables. Now we calculate the least fixed point term that denotes all paths in the 
graph: 

1>t(",uZ . ..tu, v. E (u, v) v 3w.Z(u, w) A Z(w, v)",lp,lo) 
= lfp ..tV E 2°".1>1 ("..tu, v. E (u, v) v 3w.Z(u, w) A Z(w, v)",lp[Z:= V],l0 ) 

This requires the calculation of: 

1>1 ("..tu, v. E (u, v) v 3w.Z( u, w) A Z(w, v)",lp[Z:= V],l0 ) 

= { (e11 e2 )I1.J("E (u,v) v 3w.Z(u,w) A Z(w,v)", 
lp(Z ==V], 10[z1 := e1, ~ := e2])} 

However, we cannot proceed because weneed to know V. As we will shortly see, 
the least fixed-point calculation can be done by means of an iteration that starts 
with V = 0. Substituting this value gives: 

{ (e11 e2 )I1.J("E (u,v) v 3w.Z(u,w) A Z(w,v)", 
lp[Z := 0], 10 [z1 := e1, z2 := ~])} 

Skipping a few tedious interpretation steps, we find that the set of pairs lp ( E ) 
results after the first iteration step in the least fixed-point calculation. In a later 
example we will carry out such a calculation in more detail. 
o example 7.2 

In the sequel we restriet the domain D to the set of truth values B. n-ary terms 
then stand for subsets of B0

, which can be represented by their characteristic 
function in BDD form using dummy variables d1, • • • , d0 as place-holders in order 
to be able to correctly instantlate (apply) a term. 

7.4 Boolean ,u-calculus 

We extend the syntax of the .u-calculus to allow the use of: 

1. Boolean variables as formulas, 

2. Literals: a boolean variabie is a positive literal; a negative literal is the nega
tion of a boolean variabie x denoted by x', 

3. Universa! quantification: 'v'z1 , z2 , • • ·, z.,;. f, 

4. Logical connectives A (and), ~ (implication), H (equivalence, replaces the 
symbol = ), and e (exclusive-or) in formulas, 

5. Application to arguments that are formulas, 

6. 0 and 1 as genericconstant terms (of zero arity) denoting the empty rela
tion and the completerelation respectively, 
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7. A greatest fixed-point construct v X. R, 

8. Logical operations on terms, using the connectives ...,, v I A I --'1, f-ct I and E!1 I 

9. Literal predicate symbols, using P' to denote the negation of P. 

We now introduce a convenient concrete syntax for our boolean ,u-calculus 
defined in Backus-Naur notation (figure 7.1). 

Formula ::= Formula_l I Quantified_Formula. 

Quantified_Formula ::= ( 'E' I 'A' ) { BV I ',' }+ '.' Formula 

Formula_l .. Formula_2 ( '->' I '<->' I 'xor' Formula_2 

Formula_2 .. Formula_3 '+' Formula_3 

Formula_3 .. Formula_4 '&' Formula_4 } 

Formula_4 { ,-, } Atomic_Formula 

Atomic_Formula ::= Primitive_Formula ' ( ' Formula ' ) ' . 

Primitive_Formula ::= '0' I '1' I B_Var [ '''' ] Application 

Application ::= Atomic_Term ( Primitive_Formula 
I ' { 1 

{ Formula I ' , ' } + ' ) ' ) . 

Term::= Term_l I Abstraction I Fixed_Point . 

Abstraction .. 'L' { BV I ',' }+ 1
•

1 Formula 

Fixed_Point :: = 1 mu' I 1 nu' ) RV ' . ' Term . 

Term_l : : = Term_2 ( '->' I 1 <->' I 1 XOr 1
) Term_2}. 

Term_2 Term_3 { 1 +' Term_3 } 

Term_3 .. Term_4 1 &' Term_4} 

Term_4 .. { ,-, } Atomic_Term 

Atomic_Term : := 1 0' I '1 1 I RV 1 , 1 1 ] 1 , [ 1 Term , J 1 

Figure 7.1. Boolean ,u-calculus concrete syntax in BNP. 

The new notation for the connectives and punctuation symbols is made clear in 
table 7.2. We assume that the set of boolean variables BV and predicate symbols 
or relational variables RV are disjoint. Apart from the overloading of the 0 and 1 

tokens and taking the above assumption into account the grammar is LL(l) and 
therefore unambiguous [Backh80]. lt is straightforward to convert this grammar 
into an equivalent one, i.e., a grammar that generates the same language, but 
uses less meta-symbols (see figure 7.2). 
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Math. notation: mu notation: Meaning: 

3z1, z2, · · ·, ZJ.:. E zl, z2, ... , zk Existential quant. 
Vz1 ,z2, · · · ,zk. A zl, z2, * * • I zk Universal quant. 

--+ -> Implication 
H <-> Equivalence 
(Ij xor Exclusive-or 
V + (Inclusive-)or 
A & And 
.... - Not 

Jz1 , z2, · · · , Zk· L zl, z2, .... , zk Abstraction 
f.l.X. mu X . Least fixed-point 
vX. nu X Greatest fixed-point 

Table 7.2. Notational correspondence. 

F .. Fl I QF 

QF : := 'E' BVL , I F I I A' BVL I . ' F . 
Fl : : = F2 Fl '->' F2 Fl '<->' F2 Fl 1XOr 1 F2 . 
F2 .. - F3 F2 1+1 F3 

F3 :: = F4 F3 I&' F4 

F4 :: = AF I -I F4 

AF : := PF I ( I F I } I 

PF : : = '01 I '1' I BV BV I I I I I Ap . 
Ap : : = AT PF I AT , ( , FL I ) I 

FL : := F I FL I I F. I 

T : : == Tl I Ab I FP 

Ab : := I L' BVL I I F . 
BVL : := BV I BVL I , BV I 

FP : : = 'mu' RV I I T I 'nu' RV I I T 

Tl : := T2 Tl '->' T2 Tl '<->' T2 Tl 'xor 1 T2 

T2 .. - T3 T2 I+ I T3 

T3 : := T4 T3 '&' T4 

T4 .. - AT I- I T4 

AT : := , 0, I , 1' I RV I RV I I I I I I [ I T I l I 

Figure 7.2. Boolean p-calculus concrete syntax in Restricted-BNF. 

The shorter narnes that we use for the non-terminal symbols should be obvious. 
We will denote the set of strings generaled by a non-terminal symbol by the 
name of that non-terminal symbol; thus F denotes the universe of all formulas. 
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Also, we use the lowercase name to denote an arbitrary element of such a set of 
strings: f is a formula in F. We developed a computer program called mu based 
on the latter syntax. (The new syntax of figure 7.2 is directly suitable as input to 
the parser generator tool yacc.) 

To ease the definition of the semantics of formulas and terms, some operators 
and constructs are seen as abbreviations of more elaborate constructs. Table 7.3 
informally indicates the intended abbreviations. For these abbreviations we can 
define a transformation tostringsof a simpler grammar (as in figure 7.3). 

Construct: Abbreviates: 

E z1~ z2, "'"' • I zk . f E z1 E z2 ... E zk f 
A z1, z2, ..... , zk . f -(E z1~ z2~ "•,. I zk - ( f)) 

G -> H - (G) + H 
G <-> H (G -> H) & (H -> G) 
G xor H -{G <-> H) 

G & H - (- (G) + - (H) ) 
s~ -(s) 

nu X t -(mu X - < t[-x/x] l l 

Table 7.3. Abbreviations. f stands for an arbitrary formula; the zi are arbitrary vari
ables; G and H are either both formulas or both terms; s stands for an arbi
trary variabie or predicate symbol; X is a predicate symbol and t a term, and 
t[-x/x] denotes the term that results after substituting -x for all free occur
rences of X int. Note that the correspondence is of a recursive nature. 

This simple grammar is then the basis for our semantics definition. 

F ' E , BV , . I , ( , F , ) , 

'(
1 F 1 +' F 1

)
1 

I ( I F I ) I 

I 0 I I 1' I BV 

I [ I T I J I ' ( , FL I ) I 

FL .. F I FL I I F 

T IL' BVL I I I (I F , ) , .. 
'mu' RV ' 

, ' [ ' T , l , 

I [ I T '+' T I J I 

, -, , [ , T I l I 

, 0' I , 1, I RV 

BVL .. - BV I BVL I , BV ' 

Figure 7.3. Boolean p-calculus core syntax. 
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Wedefine the alphabet r of the boolean JL-calculus language of figure 7.1 by: 

r =VU RVU { E,A,., ->,<->, xor, +, &, -, (,), 0, 1, ',,, L,mu,nu, [,] } 

The alphabet :E of the language generated by the grammar of figure 7.3 is a 
proper subset of r. We define a transformation 'T as a (partial) function from r* 
to 1:* such that every well-formed formula/term of the first language is trans
latedintoa well-formed formula/term of the second language. Here follows an 
inductive definition of'!': 

'I( E bv.f) 
'I( E bvl, bv.f 
'I( A bvLf ) 
'I ( f1 -> f2 ) 
'I( f1 <-> f2 ) 
'I( f1 xor f2 ) 
'I( f2 + f3 ) 
'I( f3 & f4 ) 
'I( -f4 ) 
'I ( 0 ) 
'I ( 1 ) 
'I( bv ) 
'I( bv' ) 
'I( (f) ) 

'I( at 0 ) 
'I( at 1 ) 
'I( at bv ) 
'I( at bv' ) 
'I( at ap ) 
'I ( at ( fl 
'I( fl, f ) 

L bvl.f 
mu rv.t 
nu rv.t 

'I( 
'I( 
'T( 
'T( 
'I( 
'T( 
'T( 
'I( 
'I( 
'T( 
'T( 
'T( 
'I( 
'I( 

t1 -> t2 ) 
t1 <-> t2 
tl xor t2 
t2 + t3 ) 
t3 & t4 ) 
-t4 ) 
0 ) 
1 ) 
rv ) 
rv' ) 
[ t 1 ) 

) 
) 

=E bv. ('I( f )> 
)=E bv. ('I( E bvl.f )l 
=-('I( E bvl.-(f) )) 
= (- ('I ( f1 ) ) + 'I ( f2 ) l 
='I( (fl -> f2) & (f2 -> fl) ) 

=-{'I( f1 <-> f2 )) 
={'I( f2 ) + 'I( f3 )) 
=-((-('I( f3 )) +-('I( f4 )))) 
=-('I( f4 )) 
=0 
=1 
=bv 
=- (bv) 
='I( f ) 
=['I( at )l (0) 

=['I( at )1 (1) 

= ['I( at )1 (bv) 
= ['I( at )1 (- (bv)) 
=['I( at )1 ('T( ap )> 
= ['T( at )1 ('T( fl )) 
= 'T( fl ), . 'I( f ) 

=L bvl. ('T( f )) 
=mu rv. ['T( t )J 
=-[mu rv.[-['T( tr-rv/rv] )111 
= [ - ['I ( t1 ) 1 + 'T ( t2 ) 1 
= 'T( [tl -> t2] & [t2 -> t1] ) 
=-['I{ tl <-> t2 )] 
= ['T( t2 ) + 'T( t3 )1 
= - [[- [ 'T ( t3 ) J + - [ 'T ( t4 ) ]] ] 
=-['I( t4 )1 
=0 
=1 
=rv 
= - [rv] 
='T( t ) 

The transformation 'T may beregardedas a parser specification: it transforms a 
string to a fully parenthesized form, cf. syntax tree. 

Example 7.3 Carefut inspeetion of the various cases in the definition of 'T will 
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indeed show that: 
'T( A u. [mu P.L U 1 V.N(U 1 V)+{E w.P(u~w}&P(W 1 V))) (U 1 U) )= 

- ( E u . ( - ( [ mu P . [ L u I v . ( ( [ N] (u I v) + 
E w. (- ( (- ( [P] (U 1 W) )+- ( [P) {W 1 V)))))))]] (u, u}))); 

Compare this .u-formula to the ,u-term exhibited in the previous examples then it 
should be clear that the above formula, when interpreted w.r.t. to a graph with N 

as its edge relation, states that each vertex is on a cycle of length at least 1. 
0 example 7.3 

Wedefine the meaning of a formula/term of the extended language to be the 
meaning of the transformed formula/term. For the latter, we again define two 
functions 'Dj and '])1 that capture the semantics of formulas and terms. 

This time we shall define the meaning of boolean .u-calculus formulas and terms 
to be formulas of a simple propositionallogic. Our goal is to represent the farmu
las of the propositional logic by BDDs. Figure 7.4 presents the syntax of the 
propositionallogics PL and PLD. They are identical except forthefact that the 
logic PLD has an extra set of propositional variables: the so-called dummy vari
ables, di E Dum. Dummy variables are solely used in the meaning of terms; a 
,u-calculus formula will never have a meaning in which dummy variables occur. 

0 I 1 I BV 

PLD PLD V PLD 

., ( PLD 

0 I 1 I BV 1 Dum . 

Figure 7.4. The PL and PLD Propositional Logies Syntax. 

The semantics functions are of the following type: 

'Dj: F~PL 

'])t: T~PLD 

where, as by convention mentioned earlier, F stands for the set of all well-formed 
formulas of the ,u-calculus core syntax and T stands for terms. The variables that 
play a role in the definition of the semantics functions are collected in the set 
V u RV. The interpretation forthese variables is defined by a function: 

I: VURV~PLD1 with 
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I ( bv) = bv, for all bv e V, 
I ( rv) = some element pld e PLD or undefined denoted by -, 

for all rv e RV. 

Thus the only factor that influences the meaning of a formula/term is the inter
pretalion of the predieale symbols. Figure 7.5 gives the complete inductive defi
nition of thesemantics functions 'Ij and '1J1• However, one important aspect has 
not been discussed so far: the rank or arity of the terms. We have implicitly 
assumed that in applications [ p] ( g 1) the rank of the term p and the number of 
argument formulas in the list gl match. Case (F.7) is therefore only valid when a 
certain condition for the rank of p holds. This condition then guarantees that for
mulas are properly interpreted, i.e., they do not depend on any dummy vari
ables. It can be shown that the weakest condition that suffices requires that the 
rank of p is less than or equal to the number of argument formulas in the applica
tion. The rank of a term can be inductively defined according the core syntax for 
terms. Bottom cases are formed by abstractions, relational variables and the con
stant terms 0 and 1. 

I [v:= pld] = ..tx. if x= v then pld else I (x) 

(F.l) 'Ij(E bv. (g),l) = ('Ij(g,I)[O/bv] v 'Ij(g,l)[1/bv]) 
(f.2) 'ft( (g + h) ,I) = ('Ij(g,l) V 'iJf(h,l)) 
(F.3) '1J1(- (g), I) =.., ('ft( g,l)) 
(F.4) 'ft(O,I) =0 
(F.S) 'ft( 1, I) = 1 
(F.6) 'Ij(bv,l) =l(bv) 
(F.7) 'Ij( [p] (gl, ... ,gn),l)='iJ1 (p,I)['Ij(gl,l)/d1,· .. ,'ft(gn,l)/dn] 

(T.l) 
(T.2) 
(T.3) 
(T.4) 
(T.5) 
(T.6) 
(T.7) 
(T.S) 

'1J1 (L bv. (g),l) 
'1J1 (L bvl, bv. (g),l) 
'1J1 (mu rv. [p],l) 
'])I ( [p + q], I) 
'iJt(-[p],l) 
'1J1 (0,1) 
'lJt(l,l) 
'1J1 ( rv, I) 

lfp ( rv, p, I) 

='Ij( g, I )[ddbv] 
= '])1 ( L bvl. { g) , I )[dlbvll + 1 /bv] 
= lfp ( rv, p, I [rv := 0]) 
= ( '])t ( p, I) V '])I ( q, I)) 
= ..., ( 'lJt ( p, I } ) 
=0 
=1 
=l(rv) 

= if ( '1J1 ( p, I ) = I ( rv)) then I ( rv) 
else lfp ( rv, p, I [rv := '1J1 ( p, I )J) 

Figure 7.5. Semantics of boolean ,u-calculus. g, gl, ... , gn, h e F, bv e v, 
di e Dum, p, q: E T, rv E RV, and I bvll denotes the number of variables 
in a comma separated list of boolean variables. 
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For each term we define a rank via the function: 

rank : T----7 N, 

such that 

rank ( L bvl. ( g) ) = I bvll (number of variables in the list) 
rank(mu rv. (p]) = rank(p[O/rv]) 
rank( [p + q]) =max(rank(p),rank(q)) 
rank(-[p]) =rank(p) 
rank(O) =0 
rank( 1) = 0 
rank ( rv) = r ( rv) 
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Note that in the last case r refers to the rank function for the predicate symbols 
which farms part of the definition of the calculus. Predicate symbols introduced 
by a fixed-point are never questioned for their rank since the second case substi
tu tes o for them. 

Example 7.4 Again consider the formula f: 
A u. [mu P.L u,v.N(u,v)+(E w.P(u,w}&P(w,v)}] (u,u} 
Expressed in our core syntax this formula reads: 
- (E U. (- ( [rou P. [L u, V. ( ( [N] (u, V)+ 

E w. (-((-([P] (u,w))+-([P] (w,v)))))))]] (u,u)))); 
We choose as an interpretation: 
I= { (u, u), ( v, v ), ( w, w ), (N, d2 ), ( P, -)}, where N has rank 2. In fact we are 
overspecifying the interpretation: since the variables u, v, and w are all bound, 
and so is the predicate symbol P, values forthem will always be supplied during 
the interpretation process of the formula and hence initial values are not needed. 

Even for this simple example the calculation by hand of v1( f) is quite elaborate. 
The calculation proceeds as follows (for brevity, subformulas and subterms will 
be denoted by numbers in angular brackets instead of repeating them in full): 

1J(f,l) = 'Dj(<O>,I) 
1}( <0>, I)= 'IJ(- (<1>) ,I) 
1}( <1>,1) = 'Dj(E u. (<2>).1) 
'Dj( <2>, I)= 'Dj(- ( <3> l, I) 
'Dj( <3>, I)= 1}( [ <4>] (u, u), I) 
'Dr(<4>,1) 'Ddmu P. [<5>],1) 

=.., (1}(<1>,1)) 
= {1}(<2>,1)[0/u] v 'Dj{<2>,1)[1/u]) 
=.., {'Dj(<3>,1)) 
= 'Dt( <4>,1 )['Dj( u, I )/d1 , 'Dj( u, I )/d2] 

lfp(P,<5>,1[P:=0]) 

In order to calculate the fixed-point term we might have to repeatedly calculate: 

'Dt{<S>,I) ='Dt(L u,v.(<6>},1) 
'Dt{L u. {<6>),1) 1J(<6>,1)[ddu] 
1}(<6>,1) 1}( {<7> + <8>),1) 
'Dj(<7>,1) ='Dj( [N] (u,v),l) 
'Dt(N,I) = I(N) 
'Dj(<B>,I) ='Dj(E w.(<9>),1) 
'Dj(<9>,1) ='Dj(-(<10>),1) 

= {1}(<7>,1) V 1}(<8>,1)} 
= 'D1 ( N,l )['Dj( u,l )/d,, 'Dj( v,l )/d2J 
= d2 
= ('Dj( <9>, I )[0/w] v 'Dj( <9>, I )[1 /w]) 

..... {'Dj( <10>,1 )) 
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1}( <10>, I) 
1}( <11>, I) 
1}( <13>, I) 
1\(P,I) 
1}( <12>,1) 
1}(<14>,1) 

.u-Calculus 

= 1}( (<11> + <12>),1) 
=2}(-(<13>),1) 
=!DJ( [P] (u,w),l) 
=I( P) 
=1}(-(<14>),1) 
=!DJ( [P] {w,vl,l) 

= (VJ(<11>,1)v1}(<12>,1)l 
=-. <1}( <13>,1)> 
= Vt ( P, I )[VJ( u, I )/dj, VJ( w, I )ld2] 

=-. !1}( <14>, l)l 
= 1\ ( P, I )[VJ( w, I )/dj, 1}( v,l )/d2l 

Using I ( P) = 0, we find in a bottorn-up way: 

v1( <14>, I) 
1}( <12>, I) 
1}( <13>, I) 
1}{<11>,1) 
1}( <10>,1) 
1}( <9>,1) 
Vt(<B>,I) 

1}( <7>, I) 
1}( <6>, I) 

= !Dt( [P] (w,v) ,I) O[wld1,vld2l 
=1}(-{<14>),1) -.(0) 
= 1}( [P] {u,w),l) = O[uld1,wld2J 
= v1(-<<13>J,I) = -. <01 
=Vt(C<ll> + <12>),1) = (-.(0) v-.(0)) 
=V1 (-{<10>l.l) = -.((-.(0) v-.(0))) 
= Vt(E w. (<9>},1) 

(-. { (-. (0) V-. {0))) V-. { {-. {0) V..., (0)))) 

= 0 

= 0 

=1}( [N] {u,vl,l) = d2[u/d1,vld2l = V 
=1}({<7> + <8>),1) 
= {V V {-. { {-. (0) V-. (0))) V-. ( {-. (0) V-. (0))))) 

1\(L u.(<6>),1)= (vv {-.((-.{0) v--,(0))) v-.({-.(0) v-.{O))))l[dtfu] 

!Dt( <5>,1) 
= {V V {-. ( (-. (0) V-. (0))) V-. { (-. (0) V-. {0))))) 

= Vt(L u,v. (<6>)) 
= (V V {-. { (-. {0) V-, (0))) V-. ( {-. (0) V-, {0)))) l[d21v] 
= (d2 V (-. ( (-. (0) V--, {0))) V-. ( (-. (0) V.., (0))))) 

= d2 

Chapter7 

But d2 '* I ( P) so we have to recurse in the fixed-point calculation and now use 
I ( P) = d2 : 

1}( <14>,1) 
1}( <12>,1) 
v1( <13>,1) 
1}( <11>, I) 
1}( <10>, I) 
1}( <9>, I) 
1}( <8>, I) 

1}( <7>, I) 
1}( <6>, I) 

= Vf( [P] {w,v),l) 
=Vt(-(<14>),1) 
= VJ( [P] {u,w),l) 
=V1(-<<13>l,l) 
= v1( {<11> + <l2>l.l) 
=1}(-(<10>),1) 
= 1}-(E w. {<9>) ,I) 

d2[w I d1, v I d2J 
= .., (V) 

d2[uld1, w/d2J 
= ..., (w) 

(..., (W) V.., (V)) 

= -. ( (-. (w) v-. (v))) 

= {-. { (-. (Ü) V-. {V))) V-. ( (-. {1) V-. (V)))) 

= Vf( [N] (u,v),l) = d2[uld1,vld2] 
= v1( {<7> + <B>l,l) 
= (V V {-. ( (-. (0) V-. (V))) V-. ( (-. (1) V.., (v)))) 

= V 

= w 

= V 

V1 (L u.(<6>),1)= (vv (-.{(-.(0) v-,(v))) v...,({-1{1) v-,(v)))l[dtfu] 
= (V V (-. ( (-. (0) V-. (V))) V..., { (.., (1) V-. (V)))) 

Vt(<5>,1) = Vt(L u,v. (<6>)) 
= (vv (-.((-.(0) v-.(v))) v-,((..,(1) v-.(v))))[ddv] 
= !d2v (-.((-.(0) v-.(d2lll v-.((-.(1) v-,(d2)))) 
=d2 

· Now we find d2 = I ( P ), so d2 is the result of the fixed-point term. Substitution 
leads to: 

Vt{ <4>, I)= V 1 ( mu P. [ <5> ]) 
1}(<3>,1) = VJ( [<4>) (u,u),l) 
1}( <2>,1) = v1(- < <3> >. 1) 
1}(<1>,l)=Vt(E u.(<2>),1) 
1j( <0>,1) = !Dt(- ( <1>), I) 
2J(f,l) =-.((-.(O)v-.(1))) 

=lfp(P,<S>,I[P:=O]) =d2 
= d2[uld1, uld2l =u 
=-. (u) 

= (-.{0) v-.(1)) 
=-.{(-.(0) v-.(1))) 
=0 
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And we find that the formula f is false. Of course, we can only arrive at this 
result when we are able to simplify PL and PLD formulas and are able to test 
them for logkal equivalence. Using BDDs to represent the formulas solves these 
problems, since BDD representations are canonkaL 
o example 7.4 

7.5 Interpreter for ,u-calculus 

We conclude this chapter with an exposition of the algorithms that form the heart 
of a simple computer program, called mu, for the boolean p-calculus. The pro
gram is based on our BDD package. We start with introducing a function '.B that 
maps formulas of the logk PLD (and also the logic PL) to BDDs ( figure 7.6). 

'.B: PLD~ 800, with for all pld, pldl, pld2 E PLD, 
and for all v e V u Dum: 

'.B( (pldl V 

'.B(-.(pld)) 
'.B( 0 ) 

pld2 ) ) = bdd_or ( 'B( pldl) I '.B( pld2)) 
= bdd_not ( '.B( pld)) 
= BDD_O 

'.B(l) =BDD_l 
'B(v) = bdd_var (v) 

Substitutions and test on equality are handled by: 

pldl[pld2/v] 
pldl = pld2 

bdd_subst('.B(pldl)~'B(pld2) 1 v) 
: bdd_equal { 'B( pldl) 1 '.B( pld2)} 

Figure 7.6. Representing PLD formulas as BDDs. 

Nextl the semantics functions 'lJf and '1J1 are implemented. We assume that 
appropriate data structures have been defined to represent formulas F and terms 
T and the interpretation I. Algorithm 7.1 implements the least fixed-point lfp, 
algorithm 7.2 implements 'f}, and algorithm 7.3 implements '1J1• 

BDD lfp ( RV rv, T t I I i ) 
{ 

if {bdd_equal ( '1J1 (tI i) I i (rv) ) ) 
return i (rv); 

el se 
return lfp(rv,t~i[rv := '1J1 (t,i)]); 

Algorithm 7.1. Implementation of the least fixed-point operator lfp. 
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BDD !Dt ( F f I I i ) 
{ 

} 

switch ( f) { 
case E bv. ( g) : 

return bdd_or(bdd_subst(!D/(g,i),O,bv), 
bdd_subst(1}(g,i),l,bv)); 

case (g + h): 
return bdd_or(1}(g,i) .2}(h,i)); 

case - (g): 
return bdd_not(2}(g,i)); 

case 0: 
return BPD_O; 

case 1: 
return BDD_l; 

case bv: 
return bdd_var(bv); 

case [p] (gl,g2, ... ,gn): 
assert{rank(p) <= n); 
R 1Jr(p,i); 
for (k:=l; k <= n; k++) 

R:=bdd_subst (R,2}(gk,i),dk); 
return R; 

Algorithm 7.2. Implementation of the semantics function 1>/" 

Chapter7 

The rnu program optionally allows boolean variables to be declared in a so-called 
domain statement at the beginning of the input; its syntaxis: 

dornain-staternent : 'dornain' = '{' bvl '}' ';' 

We allow the user to define the (global) interpretation of predieale symbols by a 
let construct: 

let-statement : 'let' RV = T ';' 

The meaning is that let rv = t modifles the interpretation I to become 
I [rv := tJJ1 ( t, I)]. 

Example 7.5 The p-calculus formula of the previous example 7.4 is fully 
described by the following rnu program input: 

dornain = { u,v,w }; 
let N = L u,v.v; 
A u. [rnu P.L u,v.N(u,v)+(E w.P(u,w)&P(w,v})) (u,u); 

As expected, the program correctly evaluates the above formula to the BOD 
value BDD_O which denotes false. 
0 example 7.5 
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BDD 'Dt ( T t I I i ) 
{ 

switch (t) { 
case L bv.(g}: 

Interpreter tor ,u-calculus 

return bdd_subst ('Dj(9~ i) 1d11bv}; 
case L bvl, bv. (g) : 

return bdd_subst ('])1 (L bvl. (g} 1 i), dlbvll +llbv); 
case mu rv. [p]: 

assert(p monotone non-decreasing in rv); 
return lfp(rv 1p 1i[rv: BDD_O]); 

case [p + q]: 
return bdd_or ( '1J1 (p, i) , '1J1 ( q, i) ) ; 

case - [p): 
return bdd_not ( '1J1 (p, i) ) ; 

case 0: 
return BDD_O; 

case 1: 
return BDD_l; 

case rv: 
assert(i(rv} ! undefined); 
return i (rv); 

Algorithm 7.3. Implementation of thesemantics function '1J1• 
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Part III 

Programs and Examples 

This is the last, but perhaps most interesting, part of the thesis. It again consists 
of three chapters. Chapter 8 explains many of the implementation details of our 
BDD package. Chapter 9 shows how BDDs can be set to work in a practical cir
cuit verification tool. Chapter 10 is devoted to some examples of the use of the 
PTL program. 
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Chapter 8 

The BOD Package 

BOOs are a hot topic of interest in the CAD community. The many papers with 
the word BOD in their title, especially the ones about new applications, suggest 
that BOOs play an important role in an extensive range of tools. 

The BOD package described in this chapter is based on the work of Karl Brace 
reported in [Brace90] and papers by Richard Rudell [Rudel93]. Apart from the 
usuallogical operations on BOOs, the Eindhoven BDD package (as it is often 
referred to) includes a rich set of meta routines (e.g. quantification with respect to 
a set of variables, composition, conversion to sum-of-cubes), routines for statis
tics (e.g. size, number of minterms), support for development of new operations, 
and routines to visualize BOOs (e.g. for X-Windows). The package is available 
via anonymous ftp at ftp. i es. ele. tue. nl where it resides in the directory 
pub/users 

Two methods for compacting a BOD graph are discussed in the next section. Sec
tion 2 discusses dynamic variabie ordering. 

8.1 lmplementation issues 

Complemented Edges 
Consicier complementing a BDD, i.e., given a BDD for a function f we would like 
to derive the BDD for the complemented function f = .., f. As we have seen in sec
tion 4.3 the "not" operation is accomplished by ITE ( f, 0, 1 ). The effect of the ITE 
operation will be a BDD that is identical in structure to the original one except for 
the fact that the terminal nocles are exchanged. Figure 8.1 shows a sample BOD 
with its complement. It is possible to represent both functions within a single 
BOD by introducing so-called complemented edges. Such an edge carries aflag 
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f f 

Figure 8.1. BDDs for complementary functions. 

that indicates that the function associated with the vertex it points to is to be 
complemented. Regular edges have no such flag. Use of complemented edges 
often causes a savings in the number of vertices necessary to represent a given 
function. Clearly, there is no longer a need for two separate terminal vertices, just 
one, say the 1 vertex, suffices: the 0 function can be represented as a comple
mented edge to 1. In general the complement of any function can easily be con
structed by a complemented edge to the top-variabie vertex for that function. 

then 

Figure 8.2. A function and its complement as a single BDD. 

Care has to be taken however that introduetion of complemented edges pre
serves the canonicity of the BDD. One way of achieving this is by restricting the 
places in the BDD where such edges may occur. It can be shown that only allow
ing complemented else-edges preserves canonicity. Figure 8.2 shows how the 
functions of figure 8.1 are represented as a single BDD using complemented 
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edges. The latter are indicated by marking them with a solid dot. 

The flag bit may be implemented in the pointer value itself. This trick is based 
on the fact that some bits of pointer values will always be fixed because of mem
ory alignment requirements, e.g. on many computers a BOD node has an address 
that is a multiple of 4, so typically the 2 least significant bits of a BOD pointer 
value will be 0. 

Inverted-input Edges 
Some additional compaction of a BOD may be achieved by encoding the polarity 
of a variabie as a flag on the edge Ieading to a BOD node. The presence of such 
an inverted-input flag indicates that the node's variabie is to be interpreted 
negated, i.e., the roles of the then and else edges of that node are to be 
exchanged. In practice it tums out that the savings achieved by inverted-input 
edges are oniy minor compared to the savings of incorporating complemented 
edges. Moreover, use of inverted-input edges severely complicates dynamic vari
abie ordering. 

8.2 Dynamic variabie ordering 

Here we like to briefly summarize the issues involved in appiying a dynamic 
variabie ordering technique, i.e., changing the order of the variables during BOD 
construction. We like to stress that dynamic variabie ordering is a very impor
tant addition to a BOD package, because it relieves the user of the burden of 
specifying a good ordering a priori, i.e., befare he starts constructing and rnanipu
lating BOOs. We might define a good ordering ·as one that permits the function 
to be represented by a polynomially sized BOD, i.e., #nodes = 0 ( p ( #vars) ), 
where #nodes is the number of BOD nocles to represent the function given a vari
abie ordering, #vars is the number of variabies, and p some polynomial. For 
logic descriptions at the gate-level several static ordering algorithms have been 
proposed and shown to be successful for many circuits. For instance, for an n
bits binary adder with inputs A [ n : 1 ] and B[ n : 1 ] we find that the size of the 
BOD to represent the carry output is linear in n if we order the variables such 
that A [ 0] < B[ 0] < A [ 1 ] < B[ 1 ] < · · · <A [ n] < B[ n ]. However, for higher level 
specifications it becomes much harder to apply those methods short of first 
deriving a gate-level representation. (What is a good variabie ordering for a cir
cuit described as a VHDL process?) Aiso, even when a static ordering heuristic is 
used, it turns out that dynamic variabie ordering often can substantially imprave 
on the interrnediate and final BDD sides. In particular when BDDs are used in 
the area of verification, it is our apinion that dynamic variabie ordering becomes 
a mandatory prerequisite for successfully handling large circuits. 

8.2.1 Principles 

lt is a known fact that the size of a (reduced ordered) BOD for a given boolean 
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function may drastically change when a different ordering of the variables that 
label the BDD nocles is adopted. The problem with changing the order dynami
cally, is that one has to maintain canonicity. In an implementation, canonicity is 
achieved through a so-called unique table of BDD nodes: a node is identified by 
its pointer, and a new node is created only when it is not yet present in the 
unique table, otherwise the pointer stored in the table is retumed. It would be 
very inefficient to construct an entire BDD for every different ordering that is 
tried. Therefore, dynamic variabie ordering will be based on a succession of local 
modifications to the BDD, each of which can easily be made to preserve canonic
ity. An obvious local modification is the swapping of two consecutive variables. 

F F 

Figure 8.3. Effect of variabie swap on BDD. 

By repeatedly swapping neighbouring variables it is possible to generate every 
possible permutation. However, for practical purposes a full exploration of the 
'variable orders space' cannot be tolerated; a simple local-search approach with 
limited hill-dimbing is chosen instead. In this approach, each variabie is tried at 
all possible positions in the order while the ranks of the other variables remain 
the same; we call this 'sifting the variable'. The search forthebest position of 
that one variabie may stilllead to the construction of unacceptably large interme
diale BDDs, hence the search is aborted as soon as some predefined BDD size 
limit is exceeded (we allow a size increase of at most 5%). It is easy to see that 
putting one variabie at its best position (algorithm 8.1) takes 0 ( #vars · #nodes) 
time. 

It makes sense to treat the variables in order of frequency: the variabie with the 
most occurrences in the BDDs is sifted first. The rationale is that by changing the 
position of this variabie the decrease in size of the BDDs will be the largest. 

8.2.2 lmplementation issues 

A problem with dynamic variabie ordering is to decide where and when to apply 
it. If done inside the recursive ITE construction routine, it might violate its invari
ants and cause the need for a restart of the top-level eaU. Rudell [Rudel93] is in 
favour of the latter suggestion, and argues that precisely because ITE is the major 
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best_rank:=rank:=orig_rank:=RANK(var); 

best_size:=nr_nodes_alive(); 

!'Move 'var' down the order: *I 
for (next_rank:=rank+l; next_rank < max_rank; next_rank++) { 

swap_levels(rank, next_rank); 

rank:=next_rank; 
if (nr_nodes_alive() < best_size) 

best_size:=nr_nodes_alive(); 

best_rank:=rank; 

else 
if (nr_nodes_alive(} > 1.05 * best_size) 

break; 

!'Back up to original rank: •t 
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for (prev_rank:=rank-1; prev_rank >= orig_rank; rank:=prev_rank, prev_rank--) 

swap_levels(prev_rank, rank); 

!' Up and back down to best rank require simi/ar processing; omitted here. •t 

Algorithm 8.1. Sifting a single variabie to its best position. 

souree for new nodes, dynamic ordering should be invoked right there. We, how
ever, decided to allow dynamic ordering to take place outside recursive ITE calls 
only, but potentially after every top-level eaU. It remains to decide which criteria 
to define that trigger a call. Rudell uses as a measure an absolute bound on the 
total number of BDD nodes, that after each dynamic reordering is reset to twice 
the then existing number of nodes. We adopt a mixed approach using both a rel
ative and absolute threshold. We were able to achieve results comparable with 
Rudell's [MetsA94]. The absolute threshold criterion weuseis more or less the 
same as described above. A relative threshold is introduced to be able to antici
pate sharp increases in BDD size as a function of the number of top-level ITE 
calls. Dynamic ordering will be triggered when the increase exceeds a factor of 2, 
i.e., a top-level ITE call results in twice the number of nocles as compared to the 
number of nocles prior to the call. The explanation is that the majority of BDD 
operations takes two operands, and that empirica! evidence shows that the size 
of the result is of the order of the sum of the sizes of the operands; in the worst 
case it would be the product. 

The whole point with dynamic variabie ordering is that on one hand it is a very 
useful, and for some applications even vital, feature of a BDD package/ but on 
the other hand it takes 0 ( #vars2 

· #nodes) time for just 1 invocation, and there
fore should not be called upon too liberally1 especially when many variables are 
involved. Clearly, there are a number of conflicting interests: 

• Dynamic variabie ordering should be done as soon as the current ordering is 
found to be rather poor. 



108 The BOD Package Chapter8 

• The 'quality' of an ordering can be assessed relative to the functions that are 
momentarily represented. There is usually no way to predict the sequence of 
future BDD operations on the currently represented functions. 

• H the initial (or some intermediate) ordering is good, then the next call to 
dynamic ordering should be postponed as much as possible. 

• When the functions to be represented are such that no good ordering exists, 
dynamic ordering should be refrained from completely. 

Our solution is to fix the total time spend in one call to some reasonable constant, 
say 10 (cpu) seconds, and use a more sophisticated trigger-criterion as explained 
above. As our experiments point out there is no such thing as one medidne that 
cures all. Some tuning of the dynamic variabie parameters may often give better 
results. The effect of dynamic variabie ordering is illustrated for a 16-bit data 
input/ output, 4-bit control rotator circuit in figure 8.4 and figure 8.5 (see also 
table 8.1). 

8.93 BDO Nocles Allve 

0 688 ITE-calls 

Figure 8.4. #nodes as function of top-level ITE calls; no dynamic ordering. Both 
axes are linearly scaled. 

BDO Nocles Allve 

Figure 8.5. #nodes as function of top-level ITE eaUs; with dynamic ordering. 
Both axes are linearly scaled. 
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Figure 8.4 shows that the circuit requires a million BDD nodes which is achieved 
after 688 top-level ITE calls. With dynamic variabie ordering (figure 8.5), the 
peak number of BDD nodes is slightly more than 4000. The sharp decrease in 
number of nodes occurring after 344 ITE-calls is the result of a single dynamic 
variabie reordering invocation. 

8.2.3 Examples and results 

Table 8.1 indicates the effect of dynamic variabie ordering onsome typical bench
marks, all except the rotator taken from [Kropf94]. #nodes is the size of the final 
shared BDDs for all output functions. The runtime is in seconds on a 
HP9000 I s755. The 'Good' and 'Bad' orderings are obtained manually based on 
intuition, we don't claim them to be the best, resp. worst; 'Dynamic' means 
dynamic variabie ordering is on during BDD construction, 'Bad' is taken as ini
tia! ordering, and at the end dynamic ordering is applied exhaustively until no 
moregainis obtained. Note that for the multiplier dynamic ordering gets stuck 
in a local minimum and finds an even worse order than our Bad one. The results 
for Min_Max include BDDs for both the regular outputs and the next-state func
tions. We see that what we think as good can sametimes be improved upon. 

Good Bad Bad+ Dynamic 
Circuit 

#nodes secs #nodes se es #nodes secs 
16-bit rotator 81 <1 1081328 56 81 1 

8-bit adder 36 <1 751 <1 36 <1 
16-bit adder 76 <1 196575 16 123 1 
32-bit adder 156 <1 >1000000 80 452 4 

32-bit alu 8869 <1 >1000000 83.4 4341 8.2 
64-bit alu 17829 <1 >1000000 81.4 9487 47.2 

128-bit alu 35749 1.9 >1000000 79.1 18086 149.6 
256-bit alu 71598 4.0 >1000000 82.2 44870 697.9 

8-bit Min_Max 890 <1 79007 6 883 3 
16-bit Min_Max 3310 <1 >1000000 50 3295 16 
32-bit Min_Max 12566 2 >1000000 39 39265 86 
12-bit multiplier 605883 255 1324674 340 1494828 2500 

Table 8.1. Effect of dynamic variabie ordering. 
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Chapter 9 

Application of BOOs in a 
Hardware Oescription 

Language 

9.1 Introduetion 

In this chapter we address the application of BDD-based combinational circuits 
equivalence checking in the context of a Hardware Description Language (HDL). 
The idea is to discuss several important aspects of the design of a combinational 
circuit verification tooi. Such a tooi has actually been developed by the author as 
part of IBM's BSN (Boolean Specification Networks) project. We will focus on 
how to deal with typkal HDL constructs; the language issues, in particular the 
syntax and semantics, are of secondary concern. The HDL we will use in our 
examples is modelled after the proprietary BSN language. Syntactically, the HDL 
is similar to the C programming language. 

For the moment we only consider the combinational subset of the HDL, i.e., we 
assume that the HDL descriptions do not contain memory elements and we also 
assume the absence of loops. We presuppose that each well-formed HDL descrip
tion may be interpreted as defining a set of boolean functions over the primary 
inputs, i.e., the description associates a boolean function with each of its primary 
outputs. This means that the semantics is such that any circuit described in the 
language can be automatically transformed toa combinational gate-level descrip
tion in the same language. Detailscan be found in the M.Sc. thesis of [Schuu94]. 
Although no formal semantics has been defined for our HDL, we are confident 
that the intended meaning of the syntactic constructs is sufficiently explained in 
the accompanying text and by the examples. 

Our HDL allows parameterized, hierarchical descriptions of combinational cir
cuits, see figure 9.1. The leaves of the hierarchy are formed by instances of 
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behavioural module definitions. These may be combined to form structural mod
ule definitions (the interlor nodes). The root is a bound instanee of a module for 
which all parameters are given definite values. Parameters are typically used to 
define modules in a genetic way, e.g. an n-bits adder will have n as its parameter. 

root structure 

~ 
I 

I I I 
structure behaviour structure 

~ 
add(A,B,S) 

~ 
{ 

S:;::;A+B; 
) 

I I 
I I 

Ie af behavlour behavlour behavlour 
add(A,B,S) add(A,B,S) add(A,B, S) 
{ ( ( 

S::A+B; S:=A+B; S:=A+B; 
) } ) 

Figure 9.1. Typkal hierarchy tree of a design. 

A structural module definition contains statements on how its instances are to be 
connected. Structural module definitions may be recursive, and instantlation 
statements may be conditional with respect to the module's parameters. 

We start this chapter with a presentation of the concrete syntax of the language. 
A formal definition of its semantics is beyond the scope of this thesis. Instead, we 
rely on the reader' s familiarity with similar hardware description languages; 
where necessary an informal explanation will be given. Examples are included 
to help understand and appreciate certain constructs. Section 9.3 discusses a 
number of useful syntactical transformations. These transformations result in a 
gate-level description of a circuit. An interpretation for the HOL in terms of 
BOOs is presented insection 9.4. Section 9.5 gives an overview of an approach to 
verify the equivalence of two designs written in the HOL. Section 9.6 discusses 
several techniques that are employed to cope with cases for which the BOOs turn 
out to become too big. 

9.2 A sample HOL 

Figures 9.2 through 9.4 present the concrete syntax of the HOL which we will use 
throughout this chapter. For lack of a better name we will simply name this 
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language HDL. 

circuit-description ::= { module-definitien }+ circuit-instance . 

module-definitien ::= b-module-definition I s-module-definition . 

b-module-definition ::= 'behaviour' module-interface b-block . 

s-module-definition ::= 'structure' module-interface s-block. 

module-interface ::= name [ formal-params] '(' pin-deis ')' . 

formal-params ::= '[[' {name I','}+']]' . 

pin-deis ::= { ( 'input' I 'output' ) pins I';' }+ . 

pins ::= {pin I','}+. 

circuit-instance ::= 'circuit' instanee ';' . 

Figure 9.2. HDL grammar rulespart I: circuit/module interface. 

s-block ::= '{' [ net-deis] { s-statement} '}' . 

net-deis::= {'net' nets';'}+. 

nets ::= { net I ',' }+ . 

s-statement ::= instance-eall 
I guard s-statement 
I iterator s-statement 
I s-block. 

instance-eall ::= instanee '(' port-exprs ')' ';' . 

instanee ::= [ name ':' ] module-name [ actual-params ] . 

actual-params ::= { const-expr I','}+. 

port-exprs ::= { simple-expr I','}+. 

simple-expr ::= { ( facility I const-expr) I'.'}+. 

facility ::= ( pin-name I net-name I local-name I '-' ) [subscript] . 

guard ::= '[[' cond-expr ']]' . 

iterator ::='('name':' const-expr ' . .' const-expr ')' . 

Figure 9.3. HDL grammar rulespart II: structure. 
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HDL, though concise in syntax, is sufficiently powerful to stand as a model for 
many of its real-life counter-parts like Verilog and VHDL. Note that the descrip
tion of structure and behaviour is clearly separated. The statements of a 
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structural module specify connections of instauces via nets. Their order has no 
meaning. Statements of a behavioural module are interpreted sequentially and 
obey the so-called single-assignment rule: a local or output pin must be assigned 
a value exactly once. Locals, nets, and pins represent physical entities; they are 
not variables in a programming language. Furthermore, locals and output pins 
must he assigned a value before they occur in a right-hand side expression of an 
assignment statement (define-before-use). These conditions ensure that a 
behavioural module is combinational. 

b-block ::= '{' [ local-deis] { b-statement} '}' . 

local-deis ::= { 'local' locals ';' }+. 

locals ::= { locall ',' }+ . 

b-statement ::= assignment-stat 
I iterator b-statement 
I b-block. 

assignment-stat ::= lhs '=' expression ';' . 

lhs ::= { facility I'.'}+ . 

Figure 9.4. HDL grammar rules part III: behaviour. 

A number of syntactic categories have been left unspecified. Their precise defini
tion is of no concern, and their intention should be clear from the examples and 
the next brief discussion: 

name 
Some identifier. 

pin, local, net 
Pins, nets, and locals are declared by stating their name optionally followed 
by a bit-range specification. If no range is present, the object is declared 
scalar and is 1-bit wide; otherwise the range specification looks like 
'[DH:DL]' with the requirement DH ;;::: DL and then the object is declared 
1-dimensional with bit-width DH-DL+l. DH and DL are the object's 
declared bounds. In the context of arithmetic operations, the bit with 
smallest index (DL) is considered the least significant bit. 

pin-name, local-name, net-name,-
The identifier of the declared object or the generic sink object'-'. The sink 
is used to explicitly indicate that one is not interested in a certain value, e.g. 
one might like to ignore the carry bit resulting from an addition: 

- . S[4:1] = A[4:1] + 8[4:1]; 

Objects dedared as 1-dimensional may be subscripted. A subscript looks 
like '[H:L]' with H ~ L; [N] is equivalent to [N:N]. Absence of a subscript 
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Repertoire of Operators & Predefined Fundions 

Symbol/Notatîon Meaning 

lg2 ceiling of base 2 logarithm ( const-expr operand) 
decode(E) full decode 
reverse(E) reverses bits of E 

extend(E,n) copies MSB of E till size is n 
trunc(E,n) removes MSB of E till size is n 
min(El,E2) minimum of El and E2 
max(El,E2) maximum of El and E2 

** 
* 
I 
% 

+ 

< 
<= 

!= 
>= 
> 

& 
I 

<-> 
-> 

<< 
>> 
rol 
ror 

C?T:E 

op (i:L..H) E 
opE 

exponentiation (const-expr operands) 
multiplication (const-expr operands) 
division (const-expr operands) 
modulo (const-expr operands) 
addition with carry 
subtradion with borrow 
less than 
less than or equal 
equality 
inequality 
greater than or equal 
greater than 

bitwise complement (prefix) 
bitwise complement (postfix) 
bitwiseAND 
bitwiseOR 
bitwiseXOR 
bitwise EQUIV (XNOR) 
bitwise IMPLY 

concatenation 
left shift (shift distance is const-expr) 
right shift (shift distance is const-expr) 
left rotate (rotate distance is const-expr) 
right rota te (rotate distance is const-expr) 

conditional expression, if C then T else E 

iteration expression; op may be &, I,<->, A'+ 
op reduction over all bits of E; op may be &, I, <->, A' + 

Table 9.1. Typical elementsof expressionsin HDL. 
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for an object means: use the complete object; fora 1-dimensional object this 
is equivalent to a subscript of [DH:DL]. The sink '-' may also be sub
scripted and then is of size H-L+ 1, otherwise it has size 1. 

module-name 
Identifier of a previously defined module. 
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const-expr 
Constant expression, i.e., an expression such that when all appropriate iter
ation variables and parameters are bound to a constant value, the expres
sion can be evaluated to a constant value. 

cond-expr 
Conditionat expression, a constant expression that evaluates to 0 or 1. 

expression 
Expressions are defined in the usual way, allowing infix notatien for opera
tors and a number of predefined functions. Parentheses may be used for 
clarity and to overrule operator precedence. Primitives are facilities and 
numbers. Numbers may be expressed in various radii and are in principle 
unbounded. Table 9.1lists the operators and some built-in functions. The 
requirement that operands have matching bit-widths for various binary 
operators is relaxed: the operands are right-aligned (i.e., aligned at their 
least-significant side) and the smaller operand is padded with zero bits on 
the left (i.e., at its most-significant side). In assignments we will also 
assume a similar treatment for the right-hand side expression: it will be 
truncated if it is too wide, or padded with zeroes in case it is too smal}, to 
match the width of the left-hand side. 

Figure 9.5 shows an example of an 8-bit parity checker. 

/* b = a[l] xor a[O] */ 
behaviour xor2(input a[l:O]; output b) 
{ 

b = ~a; 

} 

structure Parity_Tree[[N)) (input A[2**N:l]; output B) 

[[ N == 1 ]] 
xor2 (A, B) ; 

[[N>l]]{ 
net tmp [ 2 : 1] ; 

left[N) : Parity_Tree[[N-1]] (A[2** N :2**(N-1)+1], tmp[2]}; 
right[N] : Parity_Tree[ [N-1]] (A[2** (N-1): 1], tmp[1]); 
xor2 (tmp, B); 

} 

circuit parity_8 : Parity_Tree[[3]]; 

Figure 9.5. 8-bit parity circuit in HDL. 

The behavioural module xor2 consist of a single statement, assigning to b the 
result of xor-ing all bits of a, using the exclusive-or operator ~ as a reduction 
operator. The structural module is generic in the parameter N and uses recursion. 
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So, Parity_Tree[ [1]] results in an instance-eall to the behavioural modulè 
xor2. For N > 1, Parity_Tree [ [N]] is constructed from two instances of Par

[ [N-1]]. Each is supplied with half the bits of input A, and their 
results are combined using an xor2 instance. Figure 9.6 shows a schematic of 
this circuit. 

B 

A[8] A[7] A[6J A[5] A[4] A[3] A[2] A[1] 

Figure 9.6. 
instances. 

[ [ 3 J ] schema tic. The <'11 -nodes stand for xor2 

9.3 Souree-level transformations 

It should be obvious that many constructs of our sample HDL are predominantly 
intended to ease the effort of circuit specification: parameterized modules, itera
tion, and recursion do not add to the expressive power of the language. The same 
functionality can always be specified without them. This observation directly 
leads to a number of transformations on the HDL text that produce a more primi
tive description while preserving its meaning. 

Transformation Effect 

1. Binding Determining actual values for formal parameters 
and evaluating constant expressions 

2. Unfolding Unrolling iterations 
3. Unwinding Making recursive eaUs explicit 
4. Flattening Substituting structure contents for instanee calls 
S.Mapping Converting behaviour to structure 

Table 9.2. Summary of transformations and their effect. 
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Transformations 1, 2, and 3 of table 9.2 are best performed simultaneously. This 
willlead to a circuit description where all constant-expressions are reduced to 
numbers. Instantiation of generic modules and recursion unwinding generally 
create new module definitions and instanee-calis that need to be properly named. 
Our rule is: obj [ [n]] with n bound to the actual value k becomes the new 
object identified by obj #k. Figure 9.7 shows the example circuit after applying 
the first 3 transformations. 

behaviour xor2(input a[l:O]; output b) 

b = ~a; 

structure Parity_Tree#l(input A[2:l]; output B) 
{ 

I_l : xor2(A, B); 

structure Parity_Tree#2(input A[4:1]; output B) 
{ 

net tmp[1:2]; 

left[2] : Parity_Tree#l(A[4:3]. tmp[2]); 
right[2] : Parity_Tree#l(A[2:1], tmp[l]); 
I_2 : xor2(tmp, B); 

structure Parity_Tree#3(input A[8:1]; output B) 
{ 

net tmp [ 1: 2] ; 

left[3] : Parity_Tree#2(A[8:5], tmp[2]); 
right[3] : Parity_Tree#2(A[4:1], tmp[l]); 
I_2 : xor2(tmp, B); 

circuit parity_8 : Parity_Tree#3; 

Figure 9.7. After binding, unfolding iterations, and unwinding recursion. 

Another useful transformation is the substitution of structural module instances 
by their content. This is called flattening. To avoid name clashes, some objects 
(typically nets and instances) must be renamed. The circuit description for our 
example after flattening is shown in figure 9.8. 

A more challenging transformation is mapping behavioural modules onto a net
work of primitive modules. Our goal is to convert a b-module definition into a 
semantically equivalent s-module definition. This can be done by attaching a 
meaning to the operators present intheb-module body (b-block} in terms of a set 
of primitive module definitions. This conversion is best implemented using a 
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syntax directed approach. 

behaviour xor2(input a[l:O]; output b) 

b = ~a; 
} 

structure Parity_Tree#3(input A[8:1]; output B) 

net N_0[2:1), N_1[2:1], N_2[2:1]; 

I 0 xor2(A[8:7], N_1[2]); 
I_l xor2(A[6:5], N_l[l]); 
I_2 xor2(N_l, N_0(2]); 
I_3 xor2(A[4:3], N_2[2]); 
I_4 xor2(A[2:1], N_2[1]); 
I_5 xor2(N_2, N_O[l]); 
I_6 xor2(N_O, B); 

circuit parity_8 Parity_Tree#3; 

Figure 9.8. Flattened circuit. 
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We assume that transformations 1, 2, and 3 are already applied. So the only pos
sibie b-statement is the assignment-stat, and the only possible s-statement is the 
instance-ealL Also, iteration expressions will be absent. The statements of the b
module are processed sequentially. Declarations of locals become net declara
tions. An assignment statement results in a number of instanee-eaUs to certain 
primitive modules. There will be one such call for each operator and predefined 
function occurring in the right-hand side expression of the assignment statement. 
Table 9.3 below lists the primitive modules defined forsome operators and pre
defined functions. 

Operator Primitive module 

&E $ AndReduce 
AE $XorReduce 

decode(E) $ Decode 
* $Multiply 
+ $Add 
< $Less 
- $Not 
& $And 
I $0r 
... . .. 

Table 9.3. 'Technology' mapping. 
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The primitive modules reside in a separate file, the so-called technology file. Typ
ically, a primitive module is a structural module that is parameterized with 
respect to the bit-width of its input and output pins and consists of a network of 
basic gates. 

The left-hand side of an assignment statement is converted to a port expression 
for the output pin of a call to the special $Connect module (figure 9.9). The 
right-hand side is converted to a port expression for the input pin of that conneet 
module. 

behaviour $Connect[[N]](input A[N:l]; output Y[N:l]) 
{ 

y ::: A; 

Figure 9.9. Generic description of conneet module in HOL. 

Table 9.4 summarizes the conversion steps. 

Behaviour Structure · Remark 
b-module-definition s-module-definition 
b-block s-block 
local-deis net-deis 
assignment-stat { instance-eall }+ among them $ Conneet 
lhs port-expr outputof$Connect 
expression port-expr input of $Connect 

Table 9.4. Conversion of b-module tos-module. 

Here is an example to illustrate the mapping transformation: 

behaviour M(input A[3:0], B; output Y[2:1]) 
{ 

local t[3:0]; 

t = B.A[2:0]; 
Y.-[1:0] = -t & extend(A[3] I B, 4); 

I 

The behavioural module M accomplishes the following: first the scalar input B is 
concatenated with the 3 least significant bits of A. Then, all4 bits of t are comple
mented and bitwise AND-ed with the 4-bit wide extension of the OR of bit A [ 3 ] 
and B (extend duplicates the MSB of its first argument to produce a result as 
wide as the second argument indicates). The 2 most significant bits of the final 
expression are assigned to Y and the remaining 2 least significant bits are 
ignored, i.e., left unconnected (this is what - [ 1 : 0] means). 
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When converted to a network of basic gates we obtain the following structural 
module. Note that additional nets (N_O, and N_2) are introduced to inter
conneet the generated instance-calls. 

structure M(input A[3:0], B; output Y[2:1]) 
{ 

} 

net t[3:0], N_0(3:0], N_l, N_2[3:0]; 

I_O $Connect[[4]] (B.A(2:0], t); 
I_l $Not((4]](t, N_O); 
I_2 $0r [ ( 1] ] (A [ 3] , B, N_l) ; 
I_3 $And[[4]] (N_O, N_l.N_l.N_l.N_l, N_2); 
I_4 $Connect[[4]] (N_2, Y.-[1:0]); 

The s-module Mis also depicted in figure 9.10. Often it is possible to avoid the 
generation of spurious $Connect instances. 

M 
A[O] 

A[1) 

A[2] $Not 

$And 
Y[1] 

Y[2] 

A[3] 

B 

Figure 9.10. The mapped example module M. 

The module definitions in the technology file are themselves expressed in HOL. 
It is nat toa difficult to express all the necessary $-primitives in termsof a small 
set of basic gates. Then a second application of binding, unfolding, and unwind
ing converts the circuittoa true gate-level description. As an example, the gate
level implementation for the xor-reduction operator is given in figure 9.11. 
Figure 9.12 shows the gate-level description of the Pari ty _Tree example in 
termsof 2-input XOR gates. 
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/* y AA; N >= 1 */ 
structure $XorReduce[[N]] (input A[N:1]; output Y) 
{ 

[[N=1]] 
CONNECT (A, Y) ; 

[[N=2]] 
XOR(A[1], A[2], Y); 

[ [ N >= 3 ] ] { 

} 

net T[N-1:2]; 

XOR(A[1], A[2], T[2]); 
(i : 3 .. N-1) 

XOR(A[i], T[i-1], T[i)); 
XOR(A[N], T[N-1], Y); 

Figure 9.11. Generic description for mapping xor-reductor to XOR gates. 

structure Parity_Tree#3(input A[8:1]; output B) 
{ 

net N_0[2:1], N_1[2:1], N_2[2:1]; 

I_O XOR(A[8] I A[7]. N_1 [2]); 
!_1 XOR(A[6], A[S], N_1(1]); 
I_2 XOR(N_1[2], N_1[1], N_0[2]); 
I_3 XOR(A[4], A[3], N_2[2]}; 
1_4 XOR(A[2], A[l], N_2[1]); 
I_S XOR(N_2[2], N_2[1], N_O[l]); 
!_6 XOR(N_0[2], N_0[1], B); 

circuit parity_8 : Parity_Tree#3; 

Figure 9.12. Bound, unfolded, unwound, flattened, and mapped. 

9.4 BDD interpretation of behavioural modules 

The transformations discussed in the previous section make it possible to derive 
aboolean network from an HOL circuit description. Each basic gate-level HOL 
element has its corresponding BOD operation as shown in table 9.5. 

BOOs for the primary outputs of the circuit are calculated by applying the BOD 
operations for each element in a proper topological order to the BOOs for inter
mediate nets, starting with the BOOs for each primary input and any constant 
net values (Oor 1 for false resp. true). The terms "topological sorting" and "rank 
ordering" will be used interchangeably. 
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HOL basic element BOD operation 

CONNECT bdd_assign 
NOT bdd_not 
AND bdd_and 
NAND bdd_nand 

. OR bdd_or 
NOR bdd_nor 
XOR bdd_xor 

• XNOR bdd_xnor 
·input A bdd_crea te_ var ( 11 A 11 

) 

0 bdd_O 
1 bdd_l 

Table 9.5. HOL basic element and corresponding BOD operation. 

This processis explained by means of the 4-bit adder circuit of figure 9.13. 

behaviour add[[N]] (input a[N-1:0], b[N-1:0]; output cout, s[N-1:0]) 
{ 

cout.s a + b; 

circuit adder_4 : add((4]]; 

Figure 9.13. Specification of a 4-bit adder. 

After the transformations, the description of figure 9.14 results. The instances are 
shown in rank order: I_O is first, then et cetera. The BDDs for the outputs 
cout, s [3] till s [ 0] are (automatically) drawn in figure 9.16. Instead of explic
itly mapping the circuit onto a set of basic gates and then deriving the BOOs, it is 
also possible to directly interpret the HOL operations by BOD (vector) opera
tions. Also, the requirement that the circuit first be flattened may be dropped 
when the circuit is rank-orderable, i.e., there are no apparent loops in the struc
tural modules. The expressions occurring in a behavioural module are inter
preted by a (virtual, i.e., software simulated) BOD-vector stack machine. The 
stack organization is depicted in figure 9.15. 

Each item on the BOD-vector stack is a vector of BDDs. For uniformity, items of 
size 0 are allowed. Operations on the stacked items pop 0 or more top items off 
the stack and possibly push a result back on the stack. Of course many optimisa
tions are possible, e.g. for some operations the actual popping and pushing may 
be avoided by directly operating on the elements of the stacked vector. 
Algorithm 9.1 shows a glimpse of the main interpreter routine; many details 
have been left out. 
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structure add#4(input a[3:0] 1 b[3:0]; output coutl s[3:0]) 
{ 

net N_0[4:2] 1 N_1 1 N_2·1 N_3 1 N_4 1 N_5 1 N_6 1 
N_7 1 N_8 1 N_91 N_10 1 N_lll N_12; 

I - 0 XOR(b[O] I OI N_ll); 

I - 1 AND(b[O] I OI N_10); 
I - 2 XOR(N_11 1 a [0] I s [0 l ) ; 
I - 3 AND(a[O] I N_11 1 N_12); 

I - 4 OR(N_12 1 N_10 1 N_0[2]); 
I_5 XOR(b[1] I N_0[2] I N_8); 

I - 6 AND(b[1] I N_O [2] I N_7); 

I -7 XOR(N_8 1 a[1] I s [1]); 

I_8 AND(a[1] I N_8 1 N_9); 

I - 9 OR(N_91 N_7 1 N_O [3]); 

I - 10 XOR(b[2] I N_0[3] I N_5); 

I - 11 AND(b[2] I N_O [3] I N_4); 

I - 12 XOR(N_5 1 a [2] I s [2] ) ; 
I - 13 AND(a[2] 1 N_5 1 N_6); 
I - 14 OR(N_6 1 N_4 1 N_O [4]); 
I - 15 XOR(b[3] I N_O [4] I N_2); 
I - 16 AND(b[3] I N_O [4] I N_1); 
I - 17 XOR(N_2 1 a[3] I s [3]) ; 
I - 18 AND(a[3] 1 N_2 1 N_3); 
I - 19 OR(N_31 N_1 1 cout); 

Figure 9.14. Gate-level4-bit adder (instances are in rank-order). 

~---------~-TOP 

LSB 0 

1 

2 

3 E[6:0] 
4 

5 
MSB 6 

Figure 9.15. BOD-vector stack. 
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co ut s[3] s[2] s[1] s[O] 

Figure 9.16. BOOs for (a dot on an edge means complementation). 
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void bdds_apply(Opcode op) 
{ 

} 

switch (op) { 
case BDDS_NOT_OP: 

A: =bdds_pop () ; 
for (i:=O; i< size(A); i++) 

R[i]:=bdd_not(A[i]); 
bdds_push(R); 
break; 

case BDDS_SUB_OP: 
case BDDS_ADD_OP: 

B: =bdds_pop () ; 
A: =bdds_pop (); 

Ci:=bdd_O(); 
for (i:=O; i< size(A); i++) { 

tl :=bdd_xor(B[i], Ci); 
S[i]:=bdd_xor(tl, A[i]); 
if (op= BDDS_SUB_OP) A[i] :=bdd_not(A[i]); 
t2:=bdd_and(A[i], tl); 
t3:=bdd_and(B[i], Ci); 
Ci:=bdd_or(tl, t2); 

S [i]: =Ci; 
bdds_push(S); 
break; 

} /*switch*/ 

Algorithm 9.1. Sketch of HDL interpreter. 

There are a number of options in the organization of processing a circuit to 
derive its BDDs: 

1. The circuit is first fully flattened and the instauces are rank ordered. Then 
one proceeds as mentioned in the beginning of this section. 

Discussion: This approach shifts the burden of handling hierarchy and 
scope levels from the BDD interpreter to the transformations. lt presup
poses that the BDD interpreter has knowledge of the set of basic gates 
(technology file). 

2. The circuit is not, or only partially flattened, and each structural module is 
locally rank ordered. Then all behavioural modules are processed and 
BDDs for their outputs in terms of their inputs are determined. By means 
of BDD composition the BDDs for the whole circuit are found. 

Discussion: The BDD interpreter must be able to handle hierarchy. It is to 
be expected that this method will require a lot of memory to store the 
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intermediale BDDs for all behavioural modules simultaneously. Also the 
compositions are rather time consuming and have the drawback that no 
dynamic variabie ordering may be clone in the meantime. 

3. Same as above, but now each behavioural module is processed only at the 
moment its BDDs are required by an instanee (demand driven), and the 
BDD calculations start with the BDDs found for the inputs of the module. 
In this way no a posteriori composition is necessary. 

Discussion: This is probably the most cost-effective method. Demand
driven (or lazy evaluation) is usually a good scheme to adopt. At any time, 
only the BDDs for the partially processed circuit need to be stored, any 
intermedia te results may be freed. No compositions occur so dynamic vari
abie ordering can be fully exploited. The drawback is that a behavioural 
module will be processed as many times asthereare instances of it. How
ever, typically the inputs BDDs for it will be different in each invocation 
anyway, and if not, the memory function present in the BDD package will 
often avoid the unnecessary recalculation of known BDDs. 

Table 9.6 clearly demonstrales the superiority of the 3-rd methad when com
pared with the 1-st method. The 2-nd methad has not been implemented. The 
example circuit is add [ [N] ] and a good variabie order was manually supplied. 
For a fair comparison, the listed runtimes for deriving BDDs for the mapped cir
cuit (method 1 in column 3) do not indude the mapping itself (which is reported 
separately in column 4). 

N Methad 3 Method 1 Mapping #BDDnodes 

8 0.0 0.0 0.2 39 
16 0.0 0.1 0.2 79 
32 0.0 0.2 0.2 159 
64 0.0 0.5 0.3 319 

128 0.0 1.1 0.5 639 
256 0.1 2.9 1.0 1279 
512 0.1 8.0 2.1 2559 

1024 0.2 29.5 4.7 5119 

Table 9.6. Performance (runtime in secs) of methad 3 versus methad 1. 

9.5 "rhe HOL verifier 

An HDL parser, the transformations, and the BDD interpreter are implemented 
to form one program. Actually, the HDL presented hereis only a subset from the 
one that is implemented; many interesting features havenotbeen discussed. The 
program expects two HDL files as input, the first will be considered the imple
mentation (imp), the second the specification (spec). This distinction (and thus 
asymmetry) is necessary to correctly interpret don't care conditions, which will 
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not be disru.ssed here. Information about the correspondence relation between 
the implementation and specification designs' primary signals may be separately 
specified in a so-called signal correspondence file. 

The designs will be verified by constructing a BDD representation for all signals, 
starting at the primary inputs, and comparing the corresponding primary out
puts for equivalence, Ideally the two designs under test should be processed 
simultaneously. This is feasible for gate-level designs but not easy to imptement 
for hierarchical designs especially when the levels of abstraction of specification 
and implementation differ. Currently, we therefore choose to handle the spec 
and imp design sequentially. First the spec design is traversed in a depth-first 
marmer from primary inputs to primary outputs. Afterwards, the imp design is 
treated similarly; the same traversal routines are used. While traversing, BDDs 
are constructed for each bit of a primary input, an internat signal, and a primary 
output. Initialization takes care of uniquely assigning a fresh BDD variabie to 
each corresponding pair of primary inputs. 

After the BDDs are derived for both circuits, the outputs are checked bit for bit. If 
all of them match, the verification is successful and "Ok" is printed; otherwise the 
conflicting outputs are reported and for each a test vector is given that when 
applied to the respective inputs of the circuits exhibits the discrepancy. For 
example, taking the mapped 4-bit adder (figure 9.14) as implementation and 
erroneously using a NAND gate for 1_8, the program reports: 

Outputs . 'cout' mismatch. 
a [ 0 l 0; 
a[2] = 1; 
b[2] = 0; 
a[3] = 1; 
b[3] = 0; 
OUtputs 's [2] , mismatch. 
a[OJ = 0; 
Outputs 's[3]' mismatch. 
a[O] = 0; 
a[2] = 1; 
b[2] ::;: 0; 

Besides this, the program offers the following features: 

• Showing the true support of outputs (and locals). 

• Conversion of a complete circuit to a HDL behavioural module in sum-of
products or a factored form. 

• Conversion to espresso input, running espresso, and reinterpreling its output 
in terms of a HDL behavioural module. 
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9.6 Dealing with large circuits 

A standard technique applied by many CAD-tools when facing a large design is 
to partition the design into a number of smaller blocks that are dealt with 
separately. There are several ways to obtain a desired partition. Often the design 
is described in a hierarchical way and then the natmal approach would be to 
divide the design along the boundaries dictated by the hierarchy. In the absence 
of a clear coarse-grain structure in the description, one could resort to some 
suitable partitioning algorithm or simply leave the problem for the designer to 
solve. The latter, of course, is usually met with obvious reluctance. For a 
verification tool we have the additional requirement that the partitioning of the 
two designs under comparison should be consistent in the sense that similar 
blocks are verified against each other. Not surprisingly, when verifying 
descriptions of differing levels of abstraction, e.g. a flat gate-level circuit against a 
high-level arithmetic description, this requirement will be very hard to fulfill. 
Next we will explain a method to solve this problem in a practically acceptable 
way. 

Whatever method is used to cut the design, the effect will always be the breaking 
of certain connections and the conceptual introduetion of new primary input
output pairs. The spot where a net is broken will be called a cutpoint. More 
precisely, when we put a cutpoint on a net, the cut will be located right after the 
driver of that net (see figure 9.17). 

-:jD 
I 
I 
' 

Figure 9.17. Location of a cutpoint and its effect. 

In a gate-level design the driver for a net is usually an output port of a gate or a 
primary input pin. However, breaking nets driven by primary inputs doesn't 
make much sense. A consistent partition consists of a number of spec cutpoints 
logether with their imp correspondences. Effectuating the partition results in the 
designs being split up in a number of chunks of logic, such that for each spec 
blockthere exists precisely one corresponding imp block and vice versa. The ver
ification problem is thereby greatly simplified: only the corresponding (much 
smaller) blocks need to be compared. The problem is that we may be confronted 
with so-called false negatives, i.e., primary outputs are found to miscampare 
when in fact they are identical. We will return to false negatives insection 9.6.4. 

We could hope for a good designer to supply the necessary cutpoints. This seems 
to be a reasonable assumption when both the spec and imp design are hand-
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crafted; the· designer surely will have an intimate knowledge of his design (in 
partirolar regarding its structure and functionality) and probably will use the 
samenarnes for corresponding signals. (In [Burch91] a set of good cutpointsfora 
class of multiplier circuits is indicated, however no automatic method to derive 
them is suggested.) . 

A common complaint about automatic logic synthesis is that it obscures much of 
the original intemal structure, partly because synthesis tools have the habit of 
messing up the intemal net names. So, although a designer might very well be 
able to come up with a set of useful cutpoints in the spec, he will have problems 
to figure out their correspondences in the imp. Moreover, the person that verifies 
the design need not be the designer himself, and hence, has little knowledge 
about the precise functioning of the circuit and the meaning of the signals. 

9.6.1 Cutpoints and BDDs 

As mentioned before, we derive BDDs for both designs sequentially; first the 
spec design is traversed then the imp design. The difference in treatment lies in 
the nature of certain actions on cutpoint signals that are encountered. Initializa
tion takes care of uniquely assigning a fresh BOD variabie to each corresponding 
pair of primary inputs and to each corresponding pair of cutpoints. 

SpecDealgn 

Figure 9.18. Corresponding cutpoints. 

The BDDs for the spec will thus be expressed over the combined sets of primary 
input and cutpoint variables. During traversal of the imp, each cutpoint BOD 
will be compared against the corresponding spec cutpoint BOD. Figure 9.18 
sketches such a situation. 

If all corresponding cutpoints are indeed equivalent and also all primary outputs 
compare, the designs are declared functionally equivalent. With BDDs it 
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becomes trivially easy to take polarity faults into account. So, without further 
notice, comparisons will be understood to be performed modulo complementation. 
In fact, when a pair of supposedly equivalent cutpoints miscompares due to 
opposite polarities, we may decide to correct this by complementing the BDD 
variabie for the cutpoint in the imp design, assuming that the signals are not at 
fault but the specified cutpoint correspondence is erroneous. Actually, there is 
room for improvement; it is theoretically possible to also detect polarity faults in 
the primary input correspondences. Polarity faults are a major souree of design 
errors, and it is therefore important to detect and report them explicitly. Another 
advantage of using BDDs is the possibility to detect dependendes in miscom
pares and as a result avoid spurious error messages: a miscampare whose differ
ence (exdusive-or of the BDOs associated with the signals being compared) 
depends on cutpoint variables that themselves proved to be miscompares should 
be flagged as such. 

9.6.2 Hunting tor correspondences 

Attaching a BOD to every bit of every signal in the spec design enables an on
the-fly signal correspondence hunt during imp design processing. Since BDOs 
are a canonkal representation of Boolean functions and because our BDD pack
age uses sharing of nodes, two signals that carry the same logica! function will 
have identical BDDs. Therefore by simply marking the BDD associated with a 
spec cutpoint and testing every imp signal BDD for this mark, we may disclose 
some of the sought-after cutpoint correspondences. Por a proper resumption of 
the verification process, the thus discovered imp cutpoint should of course be 
effectuated, i.e., the imp signal is cut and the newly created input must be 
assigned the BOD variabie already associated with the spec cutpoint It is tempt
ing to throw away both the BDDs calculated for the corresponding cutpoints' 
output sides. Unfortunately, they need to be kept at hand because resolution of 
false negatives might refer to them. Assuming an intelligent and judicious choice 
of spec cutpoints and assuming that the spec design description is at a somewhat 
higher level of abstraction than the imp design description, it still might happen 
that notall spec cutpoints have a corresponding signal in the imp. It is conceiv
able that in such a case the imp design BDDs will become unacceptably big and 
to no avail: the domain of BDD variables for the spec and the imp is no langer 
the same and hence camparing BODs becomes senseless. One remedy would be 
to have the verification program report a list of the discovered correspondences 
and abort as soon as some imp BDD gets bigger than a certain limit. It is not easy 
to decide whether the BDD size explodes because of the circuit's inherent com
plex functionality or because some cutpöint correspondences were missed. 

9.6.3 Cutpoint guessing 

Now that we have a way of tracking down cutpoint correspondences, we might 
as well consider automatically generating them in the first place, perhaps in 
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addition to some provided by the designer. The success of cutpoint guessing 
highly depends on the amount of information we use in our decision to cutpoint 
a signal. Many heuristics come to mind: if the spec description is hierarchical and 
each instantiated sub-circuit is of moderate complexity with respect to BDD size, 
it would make sense to cutpoint all top-level interconneet between the instances; 
if few clues about the structure of the spec are present, then perhaps random cut
pointing rnight prove successful; one could define an 'importance' measure for 
signals that reflects the likelihood of a spec signal to be present in the imp design, 
for instanee based on the fan-out count of the signa!. 

The simple scheme we adopted in our program is based on BDDs. From our 
point of view the size of the BDDs is the ultimate measure for a successful verifi
cation run. We therefore strive to introduce as many cutpoints as necessary to 
control the BDD sizes. Note, however, that it is fallacious to argue that introduc
ing too many cutpoints doesn't hurt. It does! Take the extreme case where all 
spec signals are cutpointed. Granted, initially, i.e., close to the primary inputs, we 
will find many correspondences in the imp, but quickly we will miss a few and 
from then on no imp signal will ever correspond to a spec signal anymore. 
Truthfully, we have no definite answer to the cutpointing problem. 

In our experiments we use the number of variables in the support of the Boolean 
function associated with a signal as cutpointing criterion. Also, for practical con
siderations, we only allow named signals to be cutpointed. In other words, we 
will not attempt to cutpoint intermediate BDDs that result from evaluating sub
expressions in behavioural descriptions. Given the moderate expressive power of 
the behavioural block descriptions (e.g. there is no multiplication operator 
defined) and some observations of designers' practice (most expressions tend to 
fitwithinan 80 character line; local variables are used abundantly) this seemsnot 
to be a serious restriction. 

9.6.4 Resolving false negatives 

The sole purpose of cutpointing is to introduce new (virtual) primary inputs and 
thereby increasing the chances that the BDDs constructed during verification are 
kept reasonably small. Our method for automatic cutpoint generation described 
above, will guarantee small BDDS for all spec design signals. But clearly the cut
point inputs are not real primary inputs: they are narnes that stand for Boolean 
functions over the real primary inputs. In that sense,. a cutpoint BDD variabie 
may not be treated as an independent variable. A comparison between two sig
nals should therefore take this interdependency into account: if the exclusive-or 
of the BDDs is the 0 BDD, the signals are truly equivalent; otherwise the non-{) 
difference needs further investigation: it's a potential false negative. This is 
resolved by resubstituting the functions for the cutpoint variables into the non-0 
difference, the penalty being a possible increase in the size of the BDD for the dif
ference. It is obvious that we should treat the cutpoint variables in reverse topo
logical order. Often, not all cutpoint variables need be considered; if indeed the 
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signals are equivalent, usually only a small number of resubstitutions (say less 
than 10) are needed to establish the falsehood of the miscompare. On the other 
hand, when the signals do actually miscampare this can only be decided after 
resubstituting all the cutpoint variables present in the support of the difference. 
Because of this behaviour of false negatives it is a good idea to have a program 
option to turn off the resolution of false negatives. 

9.6.5 Experiments 

Several experiments have been performed to validate the ideas expressed above. 
They were all run on a 99MHz HP9000/735 machine. The circuits are character
ized in table table 9.7. "PI", "PO", and "REG" respectively, are the number of pri
mary input, primary output, and register bits; the "INT" columns list the number 
of internal signals. The first 9 circuits are the toughest (according to Rudell) in 
the ISCAS'85 benchmark set. The 5 others are industrial designs. The "IMPs" for 
the ISCAS circuits are the non-redundant ones known under suffix "nr". Note 
that the ISCAS circuits are at gate-level, and spec and impare very close in terms 
of internat signals, unlike the industry circuits that clearly have a high-level spec 
and a low-level imp. For all tables below with the exception of table 9.10, if a cir
cuit is not listed this means that it ran out of memory(> 120Mb). Table 9.8 and 
table 9.9 are included for reference: they indicate which circuitscan be handled 
without cutpoints, both with (+DVO) and without using dynamic variabie order
ing (-DVO). Although +DVO definitely strengthens BDD-based verification (at 
the expense of an increase in runtime for most of the circuits), the notorious 
16-bit multiplier c6288 and the larger industrial designs cannot be coped with. 

Spec cutpoints were available for the industrial designs (none were necessary for 
alu32) and their effectiveness is indicated in table 9.10. It is interesting to report 
that often only a few signals were specified; the number of cuts is a bit-count, 
whereas the spec designs use internals signals declared as bitvectors. Table 9.11 
lists the results when a number of "(Gen)" cutpoints are generated automatically 
(which takes time as listed inthelast column). All ISCAS benchmarks including 
c6288 are easily handled. No good cutpoints could be automatically found for 
the industrial designs alu16 and idct. 
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Circuit PI PO REG INTSPEC INTIMP 

c432 36 7 0 153 150 
c499 41 32 0 170 170 
cl355 41 32 0 514 514 
c1908 33 25 0 855 853 
c2670 233 139 0 1130 898 
c3540 50 22 0 1647 1598 
c5315 178 123 0 2184 2175 
c6288 32 32 0 2384 2367 
c7552 207 108 0 3405 3290 

mul9 18 18 0 375 648 

mul16 32 32 0 955 2056 
alu16 77 40 1 452 1178 
alu32 72 34 0 763 1179 
idct 38 40 2674 6089 26098 

Table 9.7. Some characteristics of the test circuits. 

Circuit PeakBDD Peak Mem (Kb) Time (s) 

c432 7865 407 0.6 
c499 74885 2303 5.7 
c1355 199158 5776 10.8 
cl908 157956 4866 19.8 
c3540 565476 15607 31.4 

mul9 234341 6622 24.0 
alu32 249635 7074 3:16.6 

Table 9.8. Classical method: no cutpoints; -DVO. 

Circuit PeakBDD Peak Mem (Kb) Time (s} 

c432 5934 414 1.4 
c499 48235 1452 29.2 
c1355 130037 4280 1:16.3 
cl908 32714 1066 22.4 
c2670 22278 839 23.7 
c3540 192268 7093 1:39.1 
c5315 11109 560 16.8 
c7552 190653 5626 2:15.2 

mul9 %046 2647 öVo 

alu32 20690 772 14.0 

Table 9.9. Classica! method: no cutpoints; +DVO. 
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Circuit Cuts PeakBDD Peak Mem (Kb) Time (s) 

mul9 50 32012 1138 20.8 

mul16 136 28927 982 3:09.2 

alu16 35 4865 345 9.5 

îdct 103 385258 41945 5:24.4 

Table 9.10. Designer supplied only Spec cutpoints; +DVO. 

. 
Circuit Cuts Peak Peak Time (s) 

(Gen) BOD Mem(Kb) (Gen) 

c432 11 (13) 4097 338 0.4 (0.2) 

c499 16 (24) 797 271 0.3 (0.3) 

c1355 32 (40) 2085 272 0.7 (0.7) 

c1908 57 (66) 4553 344 2.3 (2.1) 

c2670 86 (135) 286915 8861 53.8 (7.0) 

c3540 143 (185) 28326 968 27.0 (4.8) 

c5315 239 (301) %26 511 27.8 (14.1) 

c6288 479 (479) 8824 495 8.9 (7.1) 

c7552 407 (469) 13959 648 20.3 (9.6) 

mul9 0 (48) 96046 2647 48.9 (58.3) 

alu16 70 (116) 33662 1167 36.6 (15.7) 

alu32 66 (164) 10286 488 11.3 (29.2) 

Table 9.11. Automatic cutpoint generation; +DVO. 
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Chapter 10 

The PTL Program 

1 0.1 Introduetion 

In this chapter three problems are studied and solved with the use of the ptl pro
gram. The heart of this program is a satisfiability checker for propositionallinear
time temporal logic as presented in chapter 6. Some other features of the pro
gram will briefly be mentioned. The problems under study are a simp Ie elevator, 
a logic game, and a synchronous bus arbiter. 

1 0.2 A 2-story elevator 

An elevator moves up and down between two floors. There is a push button on 
each floor that initiates a request for the elevator to come to that floor, piek up the 
person, and move to the other floor (figure 10.1). 

Figure 10.1. A 2-story elevator. 

Stepping in and out, and also the opening and closing of doors is not taken into 
consideration. Actually, there will be no notion of a person riding the elevator. 

137 
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We like to spedfy this system in LTL and then use this specification to derive 
some interesting properties of the elevator system and eventually prove that a 
simple controller conforms with it. (Although this elevator system looks almast 
too simple to merit any real-life application, there does actually exist such an ele
vator in the lobby of the EE building of Eindhoven University.) 

The system is modelled using the following internal state variables: 

V 1 : elevator is on the first floor, 
V2 : elevator is on the second floor, 
0 1: a request to bring the elevator to the first floor and then carry a 

person up to the second floor is pending, 
0 2: a requesttobring the elevator to the second floor and then carry 

a person down to the first floor is pending. 

And the external control variables and their intended meaning are: 

K1: someone pushes the button on the first floor, 
K2: someone pushes the button on the second floor. 

Obviously, a good specification at least ensures that when a button is pressed a 
request is initiated and that a request will cause the elevator toperfarm a particu
lar movement To. keep the specification as general as possible we shall avoid fix
ing any time delays between the occurrence of certain events: wedetermine the 
order of events without telling exactly when they happen. But keep in mind that 
any specification is by definition of a subjeelive nature and one cannot argue 
whether a specification is correct in itself. The least we can do is to make sure a 
specification is not self-contradictory which would renderit useless. 

Beginning of specification. 

This first part of the specification states conditlans that must hold at any time, 
hence the "always" (also called henceforth) temporal operator: 
o( 

The elevator is either on the first floor or on the second floor: 
{V1 H V2') 
Remark: we could have used only 1 variabie to denote the position of the eleva
tor because in this case we only have 2 (binary) floors; in general this does not 
hold. 

When there are no requests, the elevator does not move: 
(01'02'V1 ----70V1) 
< 01'02'V2 ---+o V2) 
Remark no superfluous movement. 
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Next come two requirements that capture the operational behaviour of the eleva
tor. 

A request will stand till and including the moment of arrival of the elevator on 
that floor, which is bound to happen sometime: 
(01V2~o ( (01V2) U (01Vd)) 
( 02 V 1 ~ o ( ( Oz V 1 ) U ( Oz V 2 ) )) 

Remark: pushing the button calls the elevator to your floor. We must retain the 
request since the movement of the elevator is not completed yet. 

When there is a request on a floor and the elevator happens to be on that floor, it 
need only move to the other floor and when arriving there the requestmayor 
may not extinguish depending on whether the button is pushed again: 
(ON1 ~o ( (01V1) U V2 )) 

( Oz V 2 ~ o ( ( Oz V 2 ) U V 1 ) ) 
Remark: step in the elevator and it brings you to the other floor. 

The request is reset upon completion of the elevator's task: 
(01V1oVz~O (01' UwK1 )) 
( Oz V zO V 1 ~ o (Oz' Uw Kz ) ) 
Remark: the premiss states the completion of the elevator's task, so it makes 
sense to immediately clear the request at least (weak-)until a button is pressed 
again in order to service a next customer. 

Pressing a button immediately causes a request: 
( K1 -?01 ) 

(Kz -?Oz) 
Remark: this is a matter of taste: we like to have instant service. 

This concludes the first part of the specification: 
) 

Now we state what must hold initially: 

In the beginning there will be no requests (weak-)until a button is pressed: 
(01' UwK1) 
(02' Uw Kz) 
Remark: this ensures that requests cannot occur spontaneously. 

The initial state of the system: 

Remark: not specified, i.e., the elevator is either on the first or on the second floor. 

End of specification. 

Figure 10.2 summarizes the above specification in the LTL syntax as typedon a 
computer. 
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[] ( 

(01' 02' V1 -> @V1) 
(01 V2 -> @((01 V2) 
(01 V1 -> @((01 V1) 
(01 V1 @V2 -> @(01' 
(K1 -> 01) 
) 

(01' Uw K1) 

The PTL Program 

(V1 <-> V2') 

U (01 V1))) 
U V2}} 
Uw K1)) 

(01' 02' V2 -> @V2) 
(02 V1 -> @((02 V1) 
(02 V2 -> @((02 V2) 
(02 V2 @V1 -> @(02' 
(K2 -> 02) 

(02' Uw K2) 

Chapter 10 

U (02 V2))) 
U V1)) 
Uw K2)) 

Figure 10.2. Elevator spec in ptl syntax. Note the symmetry between the dauses 
for both floors. 

We will subject the elevator specification to a number of tests. Unless stated oth
erwise, in each case the description as in figure 10.2 is assumed to be logically 
AND-ed with a description of the extemal behaviour of the system; in other 
words the environment consisting of persons pushings the buttons on both 
floors. This complete description is then checked to logically imply one or more 
consequences. Each case starts with a informal statement of the test. 

Test 0: The specification is satisfiable, i.e., not self-contradictory. 

Test 1: From the fact that no button is ever pressed it follows that no requests 
will ever occur and consequently the elevator never moves: 
oK1'oK2'~o01'o02' (oV1voV2) 

Test 2: A button press on floor 1 happening once implies that the elevator must 
eventually end up on the second floor and stay there: 
(K,'U (K1 ooK/))oK2'~V2 U (V1o(V1 UoV2)) 

Test 3: When both buttons are once pressed simultaneously, the elevator makes 
a full move, i.e., either down and up again, or up and down again: 
(K1'K2') U (K1K2oo (K1'K2')) 

( V 1 o (V 1 U (V 2o (V 2 U o V 1 ) ) ) 

xor V 2o ( V 2 U (V 1 o (V 1 U o V 2 ) ) ) ) 

Test 4: When button 1 is pressed infinitely often, the elevator must move 
infinitely often too: 
O<>K1 oK2' ~O<>(V1o (V1 U (V2o (V2 U V,)))) 

Test 5: Every request is honoured: 
o ( 01 ~ <> (V 1 o V 2 ) ) o ( 0 2 ~ <> (V 2o V 1 ) ) 
In this case the specis supposed to imply (~) this formula. 

Test 6: It is possible that pressing a button more than once causes less move
ments of the elevator; in other words some calls get lost. In fact we 
press button 1 twice and then assert that the elevator makes only 1 
movement: 
K1'U (K1o(K1'U (K1ooK1')))oK2'~V2U (V1o(V1 UoV2)) 
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Clearly, this merely needs to be tested for satisfiability. 

The results of running the ptl program on the seven test cases are collected in 
table 10.1 below. 

Test Result Time (secs) 
0 True < 0.1 
1 True < 0.1 
2 True <0.1 
3 True <0.1 
4 True <0.1 
5 True 0.4 
6 True 0.2 

Spec f- FSM True < 0.1 

Table 10.1. ptl results and runtimes (HP9000/755, 76 MIPS). 

It seems that the given specification pretty much captures our informal concept 
of how the simple 2-story elevator is supposed to behave. It would be more 
interesting to see whether a proposed controller circuit complies with the formal 
specification. Here we shall describe the controller by a Moore-type state 
machine and prove that its behaviour is contained in (is a subset of) the specifica
tion. To make things easier, we first suggest a simplification to the spedfication: 
note that the request variables 0 1 and 0 2 are fully determined by the button vari
ables K1, K2 and the elevator position variables V1 and V2, thus they are superflu
ous. The specification without explicitly mentioning requests is stated in 
figure 10.3. Of course, we can automatically check that the old spec of figure 10.2 
indeed implies the new one (and not the other way around). This means that any 
behaviour that makes the old spec true also makes the new spec true. 

[] ( 

(Vl <-> V2') 
(Kl -> V2 U (Vl @(Vl U V2))) 
(K2 -> Vl U (V2 @(V2 U Vl))) 
) 

((Vl Uw (Vl (Kl V K2))) V (V2 Uw (V2 (Kl V K2)))) 

Figure 10.3. Revised elevator spec in plt syntax. 

A state diagram of the proposed controller is depicted in figure 10.4. 
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-1 

Figure 10.4. Elevator controller state diagram. The dashed line indicates the 
symn:tetry in the diagram wilh respect to initial states and output 
fimction. 

An ptl description of the diagram is given in figure 10.5. The results of testing 
whether this description implies the new spec is also mentioned in table 10.1. 
The impHeation does not hold the other way around, i.e., the descriptions are not 
equivalent. 

[ ] ( 

I* Read: next state wilL be Si iff. now or .now .. -. *I 
(@SO <-> (SO Kl' K2') V (Sl Kl' K2 ) V (S3 Kl')) 
(@Sl <-> (SO Kl K2') V (Sl Kl' K2') V (S2 K2')) 
(@S2 <-> (Sl Kl) V (S3 Kl)) 
(@S3 <-> (SO K2) V (S2 K2)) 
) 

I* Initial state: *I 
( SO Sl' S2' S3' VSO' Sl S2' S3' ) 

/* Output function: *I 
[](Vl <-> SO V S2) [] (V2 <-> Sl V S3) 

Figure 10.5. Moore machine for elevator controller in ptl. 

More eleborate LTL models of elevator designs can be found in [WoodW89] and 
[HaleR87]. 

1 0.3 Chinese ring puzzle 

Here we look at a variant of the well-known Chinese Ring puzzle [Keist]. We 
will show how the puzzle can be cast as a reachability problem on a state-space 
and use the ptl program to solve it. 

A jewelry box has a loek with 7 binary dials or knobs; each knob is in one of two 
possible positions: open (coded as 0 or false) or dosed (coded as 1 or true). The 
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knobs are numbered from left to right, see figure 10.6 that shows the front panel. 

Ctosed 
My First Jewelry Box 

1 2 3 4 5 6 7 

Figure 10.6. Jewelry box loek control panel. 

Due to the mechanics of the loek, the knobs cannot be turned independently: 

1. Knob number 1 (the most left knob) can always be turned. 

2. If one doesn't choose to turn the first knob then the only knob that can be 
turned is the one directly following the first closed knob as seen from the 
left. (This is knob 4 in figure 10.6). 

3. If the last knob is the only one in the closed position then 2) does not apply, 
and the only choice left is toturn the first knob. 

The objective is to open the box, i.e., setting all knobs to their open position. Ini
tially, all knobs are in their closed position. (The fastest solution for the instanee 
with 7 knobs takes 85 turns.) 

The puzzle may be described by a finite autornaton over a 2 symbol alphabet and 
states set 8 0 , · • ·, 8 127, or equivalently by a Moore type sequentia! machine with 
the state transition table of table 10.2. lts single output, Open, is true in state 
ObOOOOOOO and false in all other states. 

first @K[1:7] 

1 K xor OblOOOOOO 

0 K xor Ob0100000 
0 K xor Ob0010000 
0 K xor Ob0001000 
0 K xor Ob0000100 
0 K xor Ob0000010 
0 K xor ObOOOOOOl 
0 ObOOOOOO K 

Table 10.2. Knob settings as function of whether or not first knobis turned. 

The above state transition table can be automatically converted to an LTL for
mula. This, together with the initial state and the output function, gives the 
description of figure 10.7. 
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[] ( 

(@K[l] <-> first K[1] 1 V first 1 K[l]) 
(@K[2] <-> first K[2] V first 1 K[l] K[2] 1 V K[1] 1 K[2)) 
(@K[3] <-> first K[3] V K[3] K[l] V K[3] K[2] 1 

V first 1 K[3] 1 K[l] 1 K[2]) 
(@K[4] <-> first K[4) V K[4] K[l] V K[4] K[2] 

V K[4] K[3] 1 V first 1 K[4] 1 K[3] K[l]' K[2] 1
) 

(@K[S] <-> first K[S] V K[S] K[3] V K[S] K[1] 
V K[5] K[2] V K[S] K[4] 1 

V first' K[5]' K[4] K[3] 1 K[l]' K[2] ') 
(@K[6] <-> first K[6] V K[6] K[4) V K[6] K[3] 

V K[6] K[1] V K[6) K[2] V K[6] K[5]' 
V f irs t' K [ 6] ' K [ 5] K [ 4] ' K [ 3] ' K [ 1] ' K [ 2] ' ) 

(@K[7] <-> first K[7] V K[7] K[5] V K[7] K[4] 
V K[7) K[3] V K[7] K[l] V K[7] K[2] 
V K[7) K[6] I 

V firs t 1 K [ 7 ] ' K [ 6] K [ 5] 1 K [ 4] ' K [ 3] ' K [ 1] 1 K [ 2 ] ' ) 

K[l] K[2] K(3] K[4] K[S] K[6] K[7] 

[] (Open <-> K [ 1] 1 K [ 2] 1 K [ 3 J ' K [ 4] 1 K [ 5] ' K [ 6] 1 K [ 7] ' ) 

Figure 10.7. Puzzle described as ptl formula. 

To obtain a solution to the puzzle we use a special option of the ptl program that 
will cause a valid model to be generated in a format suitable for a wave-form 
viewer program [Buurm]. If we merely ask fora model that satisfies the above 
LTL description then obviously it is not guaranteed that it will contain the 'open' 
state. We force a model with a solution by AND-ing the formula with <>Open 
and then asking for a satisfying model. The results are shown in figure 10.8. We 
see that by alternatingly choosing to turn the first knob and to turn the only other 
possibility (case 2), a solution is obtained after 85 tums, which happens to be the 
fastest way to arrive at one. In general it is not guaranteed that the ptl program 
finds the 'smallest' model, but heuristics are included to aim at it. 

10.4 Synchronous bus arbiter 

The next example is taken from [McMil93]. We will first give an informal specifi
catien of the arbiter, then translate that into a behavioural module of the HOL 
introduced in chapter 9, and finally a structural implementation is suggested. 

The purpose ofthe arbiter is to exclusively acknowledge one of the requests for 
some shared resource. We will assume synchronous behaviour, i.e., requests and 
acknowledgements are to be observed at discrete points in time imposed by a 
global doek. We consicter an n-input, n-output arbiter (n 21): the request inputs 
are req[O], req[1J, · · ·, req[n-1], the ackowledge outputs are ack[O], ack[1}, · · ·, 
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Figure 10.8. Timing diagrams showing a solution of the puzzle. 

ack[n-1]. See also figure 10.9. The rules by which the arbiter operates are: 

Rule 1: In case of a single request, that request is acknowledged immediately. 

Rule 2: In case of multiple requests, the one with lowest index is acknowledged 
immediately. 

To avoid a low indexed request to continuously take priority over a higher 
indexed one (starvation), the next rule is added: 

Rule 3: Persistent requests will be served on a round-robin basis. 

In other words, a request is acknowledged if there are no requests of higher pri
ority (= with lower index) and there is no persistent request in need of service 
other than the request itself. So far we haven't exactly defined what persistenee 
entails. Of course, there is no unique definition. In [McMi193] the choke is made 
to call a request persistent if it is raised for a duration of at least n doek cycles. 
More precisely, McMillan's arbiter uses a shift-register (T in figure 10.10) in 
which a single token (a 1 bit) is circulated one position ahead per doek cycle; a 
request that cannot be directly acknowledged but 'holds' the token is guaranteed 
to be acknowledged n doek cycles from now, i.e., when the token reappears. In 
the worst case this means that a request has to persist for n 1 cycles to get the 
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req[O) ....... CellO 
... _ ... ack[OJ 

req[~) ack[1] 

req[n-1] ..._.. Cell n-1 ..._ ... ack[n-1] 

Figure 10.9. An n-input/n-output arbiter. 

token_in overrlde_out granUn 

ack_out 

token_out overrlde_ln granLoul 

Figure 10.10. A single cell of the arbiter circuit. 

token plus another n cycles to finally get acknowledged. In an implementation 
we therefore need to remember the fact that a request coincides with the presence 
of the token. For this purpose the register W[i] is introduced: it will be set in the 
cycle following the concurrence of a request and the token, and remains set as 
long as the request is raised. The predicate persists indicates the cycle in which 
the persistent request may be acknowledged. McMillan's arbiter may now be 
formally defined by (using the temporal next-time operator @ to refer to the next 
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doek cycle): 

'V @T[ (i+ 1 )%n] = T[i] (where% denotes modulo), and 
OSI<n 

'V 
Osi<n 

@W[i] = req[i] A ( W[i] v T[i] ), and 

'V 
Osi<n 

persists (i) = W[i] A T[i], and 

'V 
OSi<n 

ack[i] = req[i] A [ ( V . ., req[j]) A ( .v. 
OSJ<I OSJ;<I<n 

., persists ( j ) ) v persists ( i ) ] 

This 'high-level' definition can be shown to be equivalent to the circuit depicted 
in figure 10.9, which iscomposed of n cells of the kind drawn in figure 10.10. For 
a 4 cell version, it takes the ptl program just a few seconds to do so. More inter
estingis the observation that McMillan's circuit allows situations where requests 
are present although none is immediately acknowledged. We use the ptl pro
gram to find out whether the following property is implied by the (4-cell) circuit: 

[] ( (req[OJ V req[l] V req[2] V req[3]) 
-> (ack[O] V ack[l] V ack(2] V ack[3))) 

It is not! Using the counter-example option we obtain the timing diagrams of 
figure 10.11. The reason for this behaviour lies in the definition of persists: 
clearly it may happen that persists ( 1 ) holds, but at the same time the request 
req['l] is absent but an another one, viz. req[2], is present. It seems more natural 
to let persists. also depend on the request signal. Therefore we suggest the fol
lowing modification: 

'V 
OSi<n 

persists (i) = req[i] A W[i] A T[i], and therefore 

V 
Osi<n 

ack[i] = req[i] A ( 'V . ., req[j]) A ( ."~. .., persists (j)) v persists (i) 
OSJ<I OSJ;<!<n 

Using .., req[i] =>-. persists (i ) the latter simplifies to: 

'V ack[i] = req[i] A ( V . ., req[j] ) A (. V ., persists ( j)) v persists (i) 
OSI<n OS]<I I<J<n 

Figure 10.12 shows a straightforward implementation (without the registers) of 
the modified arbiter spedfication in our sample HDL. For clarity, the persists 
predicate is separately defined; presupposing the existence of a macro preproces
sor. 
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Figure 10.11. No ack signal in the 51t1 cyde but req[2] is high. 

#define persists(i) (req[i] & W[i] & T[i]) 

behaviour arbiter[[n]] (input req[n-1:0], T[n-1:0], W[n-1:0]; 
output @T[n-1:0], @W[n-1:0], ack[n-1:0]) 

{ 

(i:O .. n-1} { 
@T[ (i+1) % n] = T[i]; 

@W[i] = req[i] & (W[i] I T[i]); 

ack[i] req [i] & ( & ( j : 0 .. i -1) ~ req [ j ] ) 
& (& (j: i+l. .n-1) (j)) 

persists(i); 

} 

Figure 10.12. Implementation of the arbiter in our HDL. 

We can implement our proposed new specification at the logic level by modify
ing the AND gate that combines the T and W register outputs to include req_in as 
a third input. Of course, the ptl program was used to verify the correctness of this 
change. 
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McMillan suggests to verify whether the following properties hold for the (prop
erly initialized) arbiter: 

1. No two acknowledge outputs are asserted simultaneously, or equivalently, 
at any time at most 1 acknowledge is asserted. This is a typkal safety prop
erty. 

2. Every persistent request is eventually acknowledged, i.e., starvation is 
excluded. This is a liveness property. 

3. Acknowledge is not asserted without request. This again may be seen as a 
safety property. 

McMillan uses his CTL model checker SMV to automatically verify them. The 
desired properties may as well be formulated in LTL: 

1. [ ] ( 3! ack[i] V V ack[i)') 
OSi<n Osi<n 

2. V 
Osi<n 

[] <> (req[i] -> ack[i]) 

3. V [] 
OSi<n 

(ack[i] -> req[i]) 

The last requirement is trivially truei one glance at the logic of a cell suffices. The 
first requirement is of course supposed to be certified by the priority and round
robin token scheme, but still it is not quite obvious. The second requirement 
tums out to be the hardest to verify. The phrasing of this second property might 
be questioned: it doesn't seem to naturally follow from the informal description 
given above. This might be considered a genuine and justifiable reason for object
ing the use of temporal logies in hardware verification: often the clear informal 
intentions turn into incomprehensible formulas. In this case, given the notion of 
the persists predicate, it would be more obvious to restale property 2 as: 

V[] (persists(i) -> <>ack[i]). 
Osi<n 

Literally spelled out: always, if a request persists it will eventually be acknowl
edged. Unfortunatly, with the original definition of persists this cannot be ful
filled. With our new definition however the property holds for both the original 
circuit and the modified one. 

1 0.4.1 Reachability analysis 

Our current implementation of the ptl program constructs its model graph 
explicitly. For an n-state sequentia! machine this means that the model graph will 
have n vertices. To have a fair comparison with McMillan' s results as reported in 
[McMil93], we use the reachable state-space algorithm of chapter 5 which is 
available as a predefined term in the ,u-calculus program. The results reported in 
table 10.3 are achieved with the use of our BDD package with dynamic variabie 
ordering switched on. (The times are measured on a HP9000/s755 workstation). 
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The number of BDD nodes representing the set of initial stales 80 and also the 
number of nodes of the reachable states set (Reachability) are the theoretica! 
lower bounds (and upper bounds, because they are symmetrical functions). 
McMillan proves that the runtime progresses as the square of n (given a good 
variabie ordering). Our results confirm this. For largen (n > 28) the performance 
detoriates probably because dynamic variabie ordering destroys the initially 
good ordering and too much memory is needed to construct the next-state rela
tion. 

n #states Tot So Next-state Reachability 
(n · 2") sec msec #nodes msec #nodes msec #nodes 

8 2048 1.5 20 24 1480 60 50 15 
9 4608 2.0 40 27 1920 65 60 17 

10 10240 2.6 60 30 2480 75 100 19 
11 22528 3.2 60 33 3000. 70 160 21 
12 49152 4.9 70 36 4680 90 170 23 
13 106496 7.3 80 39 6970 95 250 25 
14 229376 10.6 110 42 10120 105 430 27 
15 491520 9.8 110 45 9370 110 340 29 
16 1048576 12.5 140 48 11940 80 450 31 
24 402·106 52.7 310 72 41640 120 10810 47 
28 7 ·109 66.2 390 84 59930 285 6100 55 
32 137 ·109 - 480 96 Killed > 120M ,.. -

Table 10.3. Results of arbitees reachable states calculation. 

10.5 Discussion 

This chapter intended to illustrate the practical use of temporal logic in descrih
ing digital hardware and proving its correctness. We also showed the possibilities 
of a prototype LTL satisfiability checker program to aid in the analysis of spedfi
cations and implementations, and to eventually derive 'better' circuits. We like to 
stress that verification should not only be considered as an 'after-the-fact' means 
for approval of a design. Indeed, such a viewpoint has its merits, but it also 
underestimates the capabilities verification tools can offer during the design pro
cess. With the growing complexity of the designs we believe that particularly this 
role of verification, i.e., as a campanion to synthesis, should get more attention 
and ultimately might find its niche in standard design methodologies. 

In retrospect, we feel that it is precisely the latter application that is most suitable 
for temporallogies based verification tools. More often than not, manual inter
vention is required to get a certain property tested, simply because many simpli
fications and optimizations cannot (yet) be automatically detected and derived 
by the tooi. 
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Conclusions 

11.1 Contributions and achievements 

The research goal set forward at the start of this thesis work was to investigate 
various logies with respect to their application to the functional verification of 
digital circuits. We have approached this goal by studying some typkal verifica
tion problems for combinational and sequentia} circuits. The main contribution 
of this thesis may be formulated as the development of practical software tools 
for several verification problems by using mathematica} models and the presen
tation of the theory for reasoning about those models. This approach is reflected 
in the structure of this thesis: part I discusses verification problems in the area of 
combinational circuits; part 11 focuses on sequentia! circuit verification, and part 
m presents practical examples of systems that have been developed and dis
cusses details of the implementations. Also, part III examines a number of test 
cases that exhibit the typical modelling of problems in terms of the investigated 
logies and shows how they are solved by the presented tools. 

Part I and II share a similar structure: firstly, the type of circuit we are dealing 
with is explained and several verification problems are formulated; secondly, the 
syntax and semantics of a logic that is particularly well-suited to express these 
verification problems are introduced; and, thirdly, algorithms to automate the 
reasoning process are derived. Our contribution has been to exemplify the steps 
necessary to formalize a logic in terms of its syntax and semantics, to express cer
tain verification related decision problems in that logic, and lastly, to show how 
such problems are solved by means of efficient algorithms. We hope that our 
engineering oriented approach, in contrast to a more mathematically inclined 
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approach, makes the subject matter more easily comprehensible. 

The following discussion makes the contributions of this dissertation more 
explicit. 

• The general problem of combinational circuit verification as addressed in 
chapter 2led to some interesting results for permutator circuits. We claim that 
the size of a BDD for such circuits is of the order n · 2log n, where n is the 
number of single bit input signals. We also show how such a circuit can be 
designed for any value of n;:::: 1, not just for n that are powers of 2. The design 
is based on the structure of a sorting (butterfly) network. 

• The algorithm that converts a propositional formula into its disjunctive nor
mal form, as presented in chapter 3, is well-known. Finding a minimum DNF 
representation is an NP-hard problem. In our implementation we optimize 
the result by a simple containment check, i.e., conjunctions (cubes) that are 
implied by others are removed. Although this would normally require an 
0 ( n2 ) algorithm, we use a modified merge-sort ( 0 ( n · 2log n ) ) algorithm that 
in practice tums out to give very good results. This DNF conversion algo
rithm is used in the LTL satisfiability checker described in chapter 6. 

• The BDD package that is discussed in chapter 4 and chapter 8 is generally rec
ognized as one of the better engmeered packages available today. In a recent 
comparative study conducted by Bwolen Yang [YangB98] the Eindhoven BDD 
package perforril.ed very satisfactorily. The package is part of Philips' YATC 
verification tooi and several IBM proprietary tools such as Verity [Küehl95] 
and the BSN suite of verification tools. As mentioned before, the BDD pack
age forms the heart of the verification programs discussed in this thesis. 

• The observation that strongly connected components play a crudal role in 
checking satisfiability of LTL formulas is already made in [Venka87]. We 
believe that theorem 6.1 (chapter 6) that explîcitly emphasizes this role is 
quite new. Also, our definition of elementary formulas and the treatment of 
eventualities deviates from other approaches and can be shown to lead to a 
more efficient implementation. Venkatesh proposed to replace eventualities 
by auxiliary propositional variables and then add additional terms to the for
mula. Clearly, this would increase the number of propositional variables and 
hence exponentially increases the number of states in the model graph. 

• In section 6.8 we show how various types of finite state machines can be 
expressed in LTL. This is valuable knowledge for any engineer using an LTL 
satisfiability checker. It also formed the basis for a algorithm that we devel
oped to automatically generate an LTL formula from a given hardware 
description in the BSN language. 

• The treatise ón ,u-calculus in chapter 7 serves to show how a rather powerfut 
forma! system can be reduced to a small set of primitive operations (namely, 
propositional logic with a least-fixed point operator). The ,u-interpreter that 
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we sketch, is directly derived from its forma! semantics, and therefore its cor
rectness may be said to be achieved by construction. 

• Chapter 9 discusses the development of a combinational circuit equivalence 
checker based on a modern high-level hardware description language. This 
workis derived from IBM's BSN project for which a similar tool was devel
oped around 1992. The application of BDDs in such a program was rather 
novel at that time. We believe the concept of single-sided cutpoints and the 
automation of cutpoint generation to be new as well. 

It should not be surprising that a major effort of the thesis work went into the 
development of the programs discussed in part III. Unfortunately there is little 
room in a thesis to stress the importance of the availability of reliable and effi
cient software tools for verification. Most of the tools have been made available 
in the public domain. Hence, numerous people both in industry and academia 
have obtained copies. This has provided us with much feedback which resulted 
in many bug fixes and improvements. 

11.2 Directions for future research 

In this thesis we have addressed three major verification problems: combina
tional circuit equivalence, also known as boolean equivalence, sequentia! circuit 
equivalence, and model/property checking. These problems are all well
understood and have obvious applications in digital circuit verification. Many 
researchers have stuclied these problems and quite a number of tools have been 
developed. Judged by the optimistic press releases of companies that offer for
ma! verification tools, one might get the impression that all is solved and further 
research be futile. The current state of the art can be roughly characterized by the 
following data: 

• Boolean equivalence checking is successfully applied by all major companies 
in the electronics and semiconductor industry as a standard step in their chip 
design flow. Designs up to 50,000 gates can typically be handled. Larger 
designs can be handled provided that the design is suffidently partitioned. 
Some verifiers are able to exploit the hierarchy present in a design. 

• In industry there seems to be much less need for equivalence checking of 
sequentia! circuits. In most design practices it is traditional to consider large 
caches and (off-chip) memories as separate entities, even from a simulation 
point of view. Moreover, the locations of registers, flip-flops, and latehes are 
often frozen at an early stage. Hence, the sequentia! verification problem 
reduces to a combinational one. The role of sequentia! verification is confined 
to relatively small control-dominated designs. Tools in this area can typically 
handle up to a couple of hundred single-bit memory elements. 

• Model checking has as yet not found a wide-spread use in industry. Several 
companies are active in this field, but this work is still much research related. 
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Of the tools proposed to solve any of the three problems we consider here, a 
model checking tooi will undoubtedly have the steepest leaming curve for a 
designer. This is largely due to the immaturity of current user-interfaces and 
the unfamiliarity with formal methods and temporal logies. Model checkers 
are typically deployed to analyze communication protoeals and safety critical 
systems. Usually the actual data that is transported in such a system is of little 
or no concern which allows for a large reduction in the state space. Also, 
other aspects of the system can often be (manually) replaced by simpter mod
els. Hence the popularity of the Spin tooi [Hoizm91] that uses an explicit rep
resentation of the state-space, and the symbolic model checker SMV 
[McMil93]. 

It should be obvious that the aforementioned verification probiems are doseiy 
related. Most tools nowadays heavily reiy on a BDD package. In a combinational 
equivalence checker the BDDs represent the boolean functions of the circuit; in 
sequentia} equivalence checking and model checking the BDDs are used to repre
sent state transitions and sets of states. With BDDs the bottleneck is often not 
computation time but memory size. Any breakthroughs in tooi performance are 
likely to result from improvements in the implementation of the BDDs or an alta
gether different representation of the fundamental objects (such as logic func
tions and sets), or a combination of both. Some research in this area has already 
been reported on. It is suggested to integrate various verification engines into a 
single tooi. Each engine is optimized to efficientiy solve a particular class of prob
lems. A global strategy is applied to analyze the problem and decide on what 
engine to invoke. Typkal engines are a BDD based verifier, a logic simulator, an 
ATPG (automatic test pattem generation) or recursive learning based module, 
and a satisfiability checker. Particularly algorithms for satisfiability enjoy a 
renewed interest. 

If we consider brute-force, push-button, verification tools, as opposed to tools 
that require quite a bit of user intelligence to get them on their way (e.g. theorem 
provers), it is clear that they are severely limited by the time and space complex
ity of the problems they try to solve. Even small problem instances might turn 
out infeasible to solve. Future work should therefore concentrate on methods of 
compositional verification, in which a design is partitioned in manageable pieces 
that may be processed independently. More attention also needs to be paid to 
automaling abstraction and reduction methods. The idea here is to tailor the 
input data to the verification task. Partial order reduction (as e.g. employed in 
Spin) is a good example of such a technique: execution behaviours that are indis
tinguishable with respect to the property to be verified are treated as a single 
case. Abstraction aims at selectively ignoring irrelevant details in a design, of 
course . without vialating the verification outcome. Although the possibility of 
false negatives might in some cases be acceptable, false positives cannot be toler
ated. 
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Although the CAD vendors and specialized formal verification companies that 
offer verification tools cannot (yet) fully live up to their promises, the fact that 
such tools are now commercially available acknowledges their importance and 
generates a strong impetus to the research community. 

Probably the greatest challenge for research in formal verification is to keep up 
with Moore's law: a verification tooi that today can handle a complete micropro
cessor, will in a year be required to handle a system on a chip. 
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Stellingen 

behorende bij het proefschrift 

Logies for Digital Circuit Verification: 
Theory, Algorithms, and Applications 

van Geert Janssen 

Technische Universiteit Eindhoven, februari 1999 

1. Formele verificatiemethoden voor digitale hardware worden vooralsnog door de 
industrie sceptisch bekeken. Echter, deze methoden dwingen een ontwerper 
precieze en ondubbelzinnige specificaties voor zijn ontwerp vast te leggen wat 
allerlei voordelen heeft naast het primair beoogde doel van formele verwerking. 
[ dit proefschrift ] . 

2. De synchrone arbiter schakeling die McMillan als voorbeeld gebruikt in zijn 
dissertatie [ Symbolic Model Checking, Kluwer, 1993] is niet optimaal ontworpen. 
[ dit proefschrift, hoofdstuk 10 ]. 

3. Stelling 4 bij het proefschrift van Gjalt de Jong [Proefschrift Technische 
Universiteit Eindhoven, 1993 ] luidend "De effectiviteit van Binary Decision 

Diagrams wordt overschat." moet gezien worden als een te voorbarige en te 
pessimistische uitspraak/ die nu slechts enkele jaren later door de praktijk is 
achterhaald. Zie de recente studie naar het gebruik van BDDs voor Model 
Checking [ Bwolen Yang, FMCAD'98 ]. 

4. Het werk verricht door medewerkers van SRI International (Menlo Park/ CA) 
waarbij de theorem prover PVS wordt uitgebreid met specifieke (en daardoor ook 
meer efficiënte) redeneermodules, o.a. door het toepassen van het in dit 
proefschrift beschreven BOD-pakket en Jl-calculus programma, geeft een 
oplossing aan hoe verificatie op consistente wijze over een groot deel van het 
ontwerptraject kan worden toegepast. [ Cyrluk e.a., TPCD'95 ]. 



5. Blijkbaar is niet iedereen overtuigd van de noodzaak van het deadlock-vrij zijn 
van een systeem. Zo laat bijvoorbeeld de wegenverkeerswet de situatie tOe dat bij 
een gelijkwaardige kruising 4 auto's de kruising tegelijkertijd naderen met als 
gevolg dat elke auto op een andere moet wachten. 

6. In wiskundige verhandelingen zou het gebruik van het uitroepteken als leesteken 
verboden moeten worden! De redenen hier voor zijn er minstens 2! Ten eerste is 
het beledigend de lezer middels het uitroepteken er op te wijzen dat iets 
belangrijk is en/ of vanzelf spreekt; ten tweede is verwarring met het symbool 
voor faculteit van een natuurlijk getal niet te voorkomen. 

7. Voor de opleiding tot Elektrotechnisch Ingenieur is kennis van en ervaring met 
rnathematisch modelleren van problemen en oplossingsmethoden, in het 
bijzonder middels graafmodellen en algoritmen, onontbeerlijk. Het dient dan te 
worden toegejuicht dat een nieuw curriculum (5jr, 1995) voor de faculteit 
Elektrotechniek van de TU Eindhoven hiervoor inderdaad een, zij het bescheiden, 
plaats heeft ingeruimd. 

8. De moeilijkheden die veel techniekstudenten ervaren bij het aanleren van een 
programmeertaal zijn grotendeels te wijten aan hun slechte taalvaardigheid. 

9. Als zelfs de goden hun eigen taal niet beheersen wat kunnen we dan verwachten 
van de gewone sterveling? 
[ N. Wirth, "Data Structures and Algorithrns", Scientific American, sep. 1984 ], 
[ N. Wirth, "Hardware Compilation: Translating Programs into Circuits", IEEE 
Computer, juni 1998 ]. 

10. Het toenemende aanbod van omvangrijke software pakketten voor PC's, en de 
daardoor noodzakelijke expansie van PC's naar steeds grotere en snellere 
systemen, doet vermoeden dat de aandacht voor compacte datastructuren en 
efficiënte algoritmen danig aan het afnemen is. Hiermee wordt ook de waardering 
voor het vakmanschap van een programmeur ondermijnd. 

11. De slechtste implementatie van een eindige automaat is waarschijnlijk de CWS 
handdoekautomaat die je in de meeste toiletten van de Technische Universiteit 
aantreft. Mijn ervaring is dat óf de automaat bevindt zich in een niet-'resettable' 
toestand (de handdoek zit vast), óf hij is aan het einde van zijn 'tape'. 
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piesents the results of inveSugatino varioLlS logics v~ith
respect to their application to verification of digital hard
ware. The approach highlights both the end-user aspects
and the implernentor’s aspects. The thesis is structured in
3 par Is. Part I discusses yen icatron oroblems in the area
of combinational circuits: part II tocLrses on sect Lrential cir
cuit verification, and part Ill presents the software tools
that have been developed and discusses details of their
implementations. Also, pat Ill contains a number of test
cases that exhibit the typical modelling of problems in Icr r’ns
of the investigated logics and shows ho’.! they are solved
by thO presented tools:
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- Cal’ CTL rnoc’el checker

This thesis focuses on techniques 0’ ~arcrv!are verification.
The approach is or rnal. i.e mat e ‘~alical theories will be
presented that tori’n the basis to mnocelling the hardware
and reasoning a out its behmrviot r. -- ~e work concentrates
on clecictaole theories, for which alt orithms exist that can
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