

Logics for digital circuit verification : theory, algorithms, and
applications
Citation for published version (APA):
Janssen, G. L. J. M. (1999). Logics for digital circuit verification : theory, algorithms, and applications. [Phd
Thesis 1 (Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR520460

DOI:
10.6100/IR520460

Document status and date:
Published: 01/01/1999

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR520460
https://doi.org/10.6100/IR520460
https://research.tue.nl/en/publications/05a0272e-f225-4d40-b8f9-583c4fc5f842

Logies for Digital Circuit Verification
Theory, Algorithms, and Applications

Logies for Digital Circuit Verification
Theory, Algorithms, and Applications

PROEFSCHRIFT

Ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van
de Rector Magnificus, prof.dr. M. Rem, voor een
commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen op
woensdag 24 februari 1999 om 16.00 uur

door

Gradus Leenardus Johannes Maria Janssen

geboren te Oss

Dit proefschrift is goedgekeurd door de promotoren

prof.Dr.-lng. J.A.G. Jess, en
prof.dr. J.C.M. Baeten

Copromotor:

dr.ir. C.A.J. van Eijk

©Copyright 1999, G.L.J.M. Janssen

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, transmitted, in any form or by any means, electronic, mechanica!,
photocopying, recording, or otherwise, without the prior written parmission from
the copyright holder.

Druk: Universiteitsdrukkerij Technische Universiteit Eindhoven

CJP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Janssen, Gradus L.J.M.

Logies for digital circuit verification : theory, algorithms, and applications I by
Gradus L.J.M. Janssen.- Eindhoven: Technische Universiteit Eindhoven, 1999.
Proefschrift. - ISBN 90-386-1560-4
NUGI832
Trefw.: digitale geïntegreerde schakelingen I digitale systemen ; CAD I
correctheidsbewijzen I temporele logica I hardwarebeschrijving I sequentiele
machines.
Subject headings: digital integrated circuits I logic CAD I tormal verification I
temporallogicI sequentia! circuits.

voor mijn vader

V

Summary

This thesis presents the results of investigating various logies with respect to
their application to verification of digital hardware design. The approach high
lights both the end-user aspects and the implementor's aspects.

The thesis is structured in 3 parts: part I discusses verifieation problems in the
area of combinational circuits, part II focuses on sequentia! circuit verification,
and part III presents the software tools that have been developed and discusses
details of their implementations. Also, part III contains a number of test cases
that exhibit the typieal modeHing of problems in terms of the investigated logies
and shows how they are solved by the presented tools:

• bdd - a boolean function manipulation package

• ptl- a temporallogic satisfiability checker

• mu - a propositional .u-calculus tool

• bsn2veri - a combinational circuit equivalence checker

• bsn2mc - a Fair-CTL model checker

This thesis focuses on techniques for hardware verification. The approach is for
mal, i.e., mathematica! theories will be presented that form the basis for mod
eHing the hardware and reasoning about its behaviour. The work concentrates on
decidabie theories, for which algorithms exist that can be used to prove certain
properties of the circuit. Central to this thesis are the application of the theory
and the development of efficient algorithms.

vii

Viii

Samenvatting

Dit proefschrift presenteert de resultaten van een onderzoek naar de toepassing
van diverse logica's met betrekking tot de verificatie van digitale hardware. De
aanpak belicht zowel de eindgebruikeraspecten als ook de aspecten t.a.v. de
implementator.

Deze thesis is onderverdeeld in 3 delen: deel I beschouwt verificatieproblemen
op het gebied van combinatorische circuits, deel II focusseert op verificatie van
sequentiële circuits en deel III presenteert de software pakketten die zijn
ontwikkeld en gaat in op de details van hun implementatie. Daarnaast presen
teert deel III een aantal voorbeelden die de typische modellering van problemen
in termen van de onderzochte logica's duidelijk maken en laat zien hoe deze
opgelost worden met de ontwikkelde programma's:

• bdd - een pakket voor manipulatie van boolse functies

• ptl- een satisfiability checkervoor LTL temporele logica

• mu een programma voor propositionele J.L-calculus

• bsn2veri - een equivalentie checker voor combinatorische circuits

• bsn2mc een model checkervoor Fair-CTL

Deze thesis richt zich vooral op technieken voor hardware verificatie. De aanpak
is formeel, d.w.z. mathematische theorieën worden behandeld die de basis vor
men voor het modelleren van hardware en het redeneren over het gedrag ervan.
We concentreren ons op beslisbare theorieën, waarvoor geldt dat er algoritmen
bestaan die gebruikt kunnen worden om zekere eigenschappen van het circuit te
bewijzen. Centraal staan de applicatie van de theorie en de onhvikkeling van
efficiënte algoritmen.

i x

Summary

Samenvatting

1. General Introduetion
1.1 Introduetion and thesis overview
1.2 Background and acknowledgements

Verification of Combinational Circuits

2. Combinational Circuits
2.1 Introduetion
2.2 Boolean functions and combinational circuits
2.3 Boolean network
2.4 Higher-Level descriptions
2.5 Other verification problems

3. Propositional Logic
3.1 Introduetion
3.2 The language of propositionallogic
3.3 Truth table method
3.4 Disjunctive normal form
3.5 Containment (or subsumption)
3.6 Implementation of DNF

4. Binary Decision Diagrams
4.1 Introduetion
4.2 Notation and terminology
4.3 BDD construction

Contents

vii

ix

1
1
3

7

9
9
9

11
14
14

19
19
19
23
23
25
26

29
29
29
33

x i

xii Contents

Verification of Circuits with Memory

5. Sequentia! Circuits
5.1 Introduetion
5.2 Finite automata and sequentia} circuits
5.3 Verification problem
5.4 State-space exploration
5.5 Symbolic computation
5.6 Product machine verification

6. Temporal Logic
6.1 Introduetion
6.2 A few words about time
6.3 Kripke structures
6.4 Computation tree logic

6.4.1 Semantics
6.4.2 CTL operators

6.5 CTL model checking
6.5.1 Model checking algorithms

6.6 Linear-time temporallogic
6.7 An LTL satisfiability checker

6.7.1 Parsing an LTL formula
6.7.2 Normalization
6.7.3 Optimization
6.7.4 Model construction

6.8 Specification of finite state machines in LTL
6.8.1 Notational preliminaries
6.8.2 FSM to LTL transformation

7. .u-Calculus
7.1 Introduetion
7.2 Syntax
7.3 Semantics
7.4 Boolean ,u-calculus
7.5 Interpreter for _u-calculus

Programs and Examples

8. The BOD Package
8.1 Implementation issues
8.2 Dynamic variabie ordering

8.2.1 Principles
8.2.2 Implementation issues
8.2.3 Examples and results

9. Application ofBDDs in a Hardware Description Language

37

39
39
39
42
43
46
51

53
53
54
54
55
56
58
59
61
63
65
65
66
67
68
77
78
78

83
83
84
86
88
97

101

103
103
105
105
106
109

111

9.1 Introduetion
9.2 AsarnpleHDL

Contents

9.3 Souree-level transformations
9.4 BDD interpretation ofbehavioural modules
9.5 The HDL verifier
9.6 Dealing with large circuits

9.6.1 Cutpoints and BDDs
9.6.2 Hunting for correspondences
9.6.3 Cutpoint guessing
9 .6.4 Resolving false negatives
9 .6.5 Experiments

10. The PTL Program
10.1 Introduetion
10.2 A 2-story elevator
10.3 Chinese ring puzzle
10.4 Synchronous bus arbiter

10.4.1 Reachability analysis
10.5 Discussion

11. Conclusions
11.1 Contributions and achievernents
11.2 Directions for future research

References

Biography

xiii

111
112
117
122
127
129
130
131
131
132
133

137
137
137
142
144
149
150

151
151
153

157

161

Chapter 1

General Introduetion

1.1 Introduetion and thesis overview

This thesis is about verification. The purpose of this general introduetion is to set
the context for our meaning of the term 'verification' and to argue why verifica
tion is an important subject in the realm of digital circuit design. We also give an
overview of the contents of the thesis. Lastly, my personal history of workin this
field is narrated and acknowledgements to people that influenced me are made.

In many industrial production areas, quality isofutmost importance. And qual
ity entails measurements and standards: the standards set the goals and by mea
surements it is verified whether these goals are met. In the design of complex
electronk circuits it is no longer possible to ensure their correctness by mere
visual inspeetion (the features on a chip are simply too small to see with the
naked eye). But even the design data or blueprints, i.e., the schema tics, hardware
description language texts, and layouts, contain so much detail that inspeetion by
a human designer becomes a truly Herculean job. lt is not just the complexity,
i.e., large se ale of integration, that causes problems; also the intrinsic 'go-or-no
go' characteristic of the subject matter makes it hard to devise good and simple
tests. The effect of a single wrong conneetion during design, or a tiny oversight
(read: bug) by the programmer of a logic synthesis tooi, may render a whole
batch of wafers useless. The sooner the flaw is discovered the better, and the
cheaper. Not tomention all the things that can go wrong during the actual chip
fabrication process. However, that is not the subject of this thesis.

A first step towards a successful production of a chip is that its design is func
tionally correct. Correctness is not an absolute notion. One can only meaningful-

1

2 General Introduetion Chapter 1

ly talk about the correctness of a design with respect to a some predefined speci
fication (the standard). By means of measurement or testing it is possible to
assess the quality of a design. But, (non-exhaustive) testing can only indicate the
presence of errors; it cannot guarantee their absence. This is a slightly rephrased
quotation from Edsger Dijkstra [Dijks76] whowasthen talkingabout the correct
construction of computer programs. In this dissertation we investigate the appli
cability of formal methods in verifying the functional correctness of designs for
digital circuits. For that we need two things: a mathematica! model for the
behaviour of the circuit and a theory that allows 'mechanica}' reasoning within
that model. We use the word 'functional' to stress a certain narrowing of, or
abstraction from, all possible issues involved; it is the behaviour that fits a certain
model of the circuit that we are interested in, and it is with respect to the roodels
that we tailor the correctness probieros and their solutions.

A major part of this thesis is concemed with the practical issues that arise when
implementing these formal methods as a computer program suitable for use by
electronk circuit designers. Several computer-aided verification tools were devel
oped as part of this thesis work:

- bdd - a package for logic function manipulation

- ptl- a propositional temporallogic satisfiability checker

- mu- implements an extended propositional p-calculus

- bsn2veri - a combinational circuit equivalence checker

- bsn2mc - a Fair-CTL model checker

Undoubtedly, the design process of computer algorithms and their implementa
tion in a certain programming language parallels the design of integrated cir
cuits. Many mathematica} concepts and techniques are similar, if not the same, at
least when regarcled at a certain level of abstraction. (There is no equivalent to a
physical MOS transistor in a programming language; but when modelled as a
switch, the ensuing logic circuit may well be simulated by if-then-else state
ments). In fact, computer sciencists recognized this and not surprisingly they
were the ones that coined the phrase 'VLSI programming' [Niess88J. True, much
of the earlier work on formal verification was initiated by mathematicians and
computer scientists. Unfortunately, this has led to the situation where much of
this work was not accepted by the electrical engineering community and the
CAD tool makers. Also, the goals they set out do not always coincide with the
needs of a hardware designer; there often exists a large gap between theoretica!
results and useful applications. We should not forget that the main purpose of
computer aided design is to actually help a designer in getting his job clone and
not to put up yet another harrier for him to cross.

This thesis focuses on techniques for hardware verification. The approaches are
formal, i.e., mathematica! theories will be presented that form the basis for mod
elling the hardware and reasoning about its behaviour. Moreover, we concentrate

§1.1 Introduetion and thesis overview 3

on decidabie theories, this means that algorithms exist that can be used to prove
certain properties of the circuit. Central to this thesis are the applications of the
theory and the development of efficient algorithms.

This thesis consists of three parts: part I deals with combinational circuits, part II
treats sequentia! circuits, and part III presents practical approaches to solving the
problems raised in the preceding parts. It is valid to say that the first two parts
mainly define a number of important verification problems and the necessary
theory to describe them, and that in the last part of this thesis chokes are made as
to how to practically solve those problems in the farm of computer programs.
The last part also presents examples and quantitative data of experiments. The
three parts are entitled:

Part 1: Verifkation of Combinational Circuits.
In this part the relations between combinational circuits, propositional
logic, and canonkal representations of switching fundions (DNF, BOD)
are made explicit.

Part II: Verification of Circuits with Memory.
Here we extend the combinational circuit model to include time
dependent behaviour. This leads to the introduetion of the propositional
temporal logies LTL and CTL, and an even more powerful system:
J.L-calculus.

Part III: Programs and Examples.
The theory presented in the first two parts culminated in the develop
ment of several verification tools: the ptl program for temporallogic, the
mu program for J.L-Calculus, the bsn2veri program for combinational cir
cuit verification based on a hardware description language, and last but
nat least a BOD package that farms the care of all the aforementioned
programs. Part lil will discuss some of the more interesting implemen
tational aspects of these programs, in sofar as they were not already
covered in the preceding parts, and, more importantly, we will discuss
how to effectively use those programs by studying a number of example
problems.

1.2 Background and acknowledgements

It has taken me quite some time to prepare this thesis. The best excuse I can offer
is that the field of CAD for electronk circuits is sa exciting that it is hard for me
to tear myself loose from the daily work and sit back and reflect on my own spe
cialized field of hardware verification, let alone to do nothing else but concen
trate on writing a whole thesis. The 'trouble' is that my interests are rather
diverse, and my character farces me to not be satisfied until a new idea or theory
or algorithm is fully understood, which aften results in writing my own program
for the particular problem just to see what is involved and thereby creating a
framework for exploring my own ideas and hopefully to be able to come up with

4 General Introduetion Chapter 1

improvements. So, over the years I have developed quite a few programs on a
variety of subjects. I once wrote some language development tools, like an LL(l)
checker and a program that draws syntax diagrams. I was involved in the design
of the Eindhoven Schematic Entry tooi "Escher" under the NELSIS project; a pro
gram that was later enhanced by some of my students to mature as "Escher+"
Uanss89], and that now is in the able hands of Hans Fleurkens who tumed it into
a very flexible and general graphic design entry and user-interface. Within the
same project, I developed the hardwàre description language NDML to be used
with the piece-wise linear simulator also developed in our group [Janss86]. My
first contact with temporallogic was when I was working at Philips Telecommu
nications Industry in Hilversum where RonKoymans was doing his master the
sis workunder the guidance of (now Prof.) Jan Vytopil. Their goal was to formal
ize the message passing semantics of the CCITT programming language CHILL.
I was intrigued by the many obscure symbols and seemingly heavy rnathematics
they were using in their writings. When a few years later I was confronted with
the workof Amir Pnueli and Zohar Manna [Manna81] on propositional temporal
logic, I decided to write my own satisfiability checker for LTL and apply it to the
verification of digital systems. Fortunately, this work became part of the ASCIS
project, which gave me a willing audience to promote my ideas and results
[Raner93, Janss92]. The initial driving force for my work on temporallogic was
fueled by a challenge proposed by Prof. Lars Philipson of Lund University, Swe
den [Phili89]. His skepticism towards the applicability of temporallogic to prove
correctness of state machines culminated in a hectic E-mail conversation, ending
in an invitation to hop over to Lund and explain it all in person. (Those were the
good old days.)

I am obliged to thank many people that in one way or other have 'educated' me
to become the person that I am now. First of all I want to thank Professor Joehen
Jess who has been, and still is, a most fair boss, an inspiring tutor, and amiable
colleague (and a good drummer). I praise myself lucky to have the opportunity
to work with so many good-hearted, honest, hard working, and outstanding col
leagues in the Design Automation Group: Lia, Frans, Jos, Michel, en Oege,
thanks. My office mates over the years deserve special mention: Hans Zuidam,
André Slenter, Ed Huijbregts, and Pieter, a.k.a. Tiggr, Schoenmakers. They never
tired of having to listen to my ranting about bugs, troubles, errors, frustrations, et
cetera. I thank all my students who have helped me with the implementations of
some of the algorithms, and doing much of the testing and debugging. The most
appreciated, but for them less obvious, side-effect was that they forced me to
keep ahead of them and to acquire an intimate understanding of the subject at
hand. They also kept me young, in spirit that is. I salute all the doctoral students
that I saw arrive in our group, dotheir excellent work, and leave again (veni, vidi,
vici). I cannot resist to single out Jose Pineda who is a dear, and now unfortu
nately distant, friend, and Gjalt de Jongwhowas my sparring partner in the veri
fication arena from the start. He handed over the towel to a knowledgeable sub
stitute in the person of Koen van Eijk. Special thanks go to the memhers of the

§1.2 Background and acknowledgements 5

BSN group at IBM T.J. Watson Research Center and their manager Marshall
Schor (who generously hosted me during the past five summers), and to Ton
Kostelijk and Willem Rovers of Philips Research. I hope we can continue our
cooperation in the future.

Part I

Verification of
Combinational Circuits

The first part of this thesis consists of three chapters. Chapter 2 defines combina
tional circuits and states the combinational circuit equivalence problem. A more
general problem that arises when correspondences benveen circuit inputs and
outputs are not known is briefly discussed. lt presents an elegant formulation of
a general-purpose permutator circuit. Chapter 3 introduces propositional logic
and derives an important representation for its expressions: disjunctive normal
form. This form will be used again in chapter 6 in the implementation of an LTL
satisfiability checker. Chapter 4 concludes this part with an introduetion to
binary decision diagrams (BDDs). All programs presented in this thesis are
based on these BDDs.

7

Chapter 2

Combinational Circuits

2.1 Introduetion

In this chapter wedefine the notion of a combinational circuit and introduce an
important verification problem, namely combinational circuit equivalence. We
show how boolean functions can be associated with the network graph represen
tation of a combinational circuit. It is assumed that the correspondences between
inputs and outputs of the circuits to be compared are known beforehand. In the
last section we drop this restrietion and consider a more general verification
problem.

2.2 Boolean functions and combinational circuits

Let B = { 0, 1 } be thesetof boolean truth values: 0 stands for false, and 1 stands
for true. We consider functions f : Bn ~ B, n ~ 0, and more generally, m element
veetors of such functions F : Bn ~ Bm, m > 0. Geometrically speaking we may
say that F maps a point in boolean n space to a point in boolean m space. A real
life realization or implementation of F is called a combinationallogic circuit. In a
combinational circuit the 0 and 1 values are usually related to non-overlapping
voltage intervals; the fundions are realized by a network of primitive logic oper
ator cells or gates. When the argument value ~ to the function F is supplied to
the inputs of the network, the function value y_ = F (~) is observed at the outputs
of the network. F is an abstract, mathematica! model (black-box) for the
behaviour of the combinational circuit. It does not necessarily tell us anything
about its structure. Figure 2.1 illustrates the correspondence between a combina
tional circuit (left) and its black-box functional model (right). In fact, the logic

9

10 Combinational Circuits Chapter 2

circuit itself is a model for a transistor level circuit.

x, :------------1
I
I Y1

F
Y,

Figure 2.1. Schematic of combinational circuit and its black-box model.

A particular (vector component) function f : B"------* 8 may be defined in various
ways. Usually one introduces place-holder symbols, say x1, x2 , · • · , Xn, to repre
sent arbitrary argument values and then defines the result f (x1, x2 , • • · , Xn) of
applying the function to those arguments by some logic expression involving the
x(s. For our example circuit in figure 2.1 we could write:

f1 (x1, x2,x3,x4 ,x5 , Xe, x7 , x8) =.., (x1 A x2)v (x3 A -,x3),

f2 (x1, x2,x3,x4,x5 , Xe,X7 , x8) =.., (-.x3 A (x4 vx5)),

f3 (x1, x2, x3, x4 , x5 , Xe, x7 , x8) = (~ vx5 vx6) A (x7 A x8).

Intuitively, the meaning of the logic expressions on the right-hand side should be
clear. In a following chapter we will formally define a language of logic expres
sions.

It should be obvious that the position of a place-holder variabie in the argument
list is very crucial; above this has been indicated using subscripts. Generally/
f (x1, x2) :#: f (x2 , x1)1 and in order to compare two functions1 no matter in what
way they are represented/ the correspondence between their sets of place-holder
variables has to be known in advance. With this in mind, the following definition
makes sense:

Definition 2.1 (Functional circuit equivalence).
Two combinational circuits C1 and C2 are said to be functionally equivalent if
their corresponding black-box models F1 and F2 are identical (vector) functions.

In practice, this means that we assume the two circuits to have identical input
and output labelling (symbols), and that the correspondence is simply defined as
identity of these labels. We can now state the main problem that we will address
in this chapter:

COMBINATIONAL CIRCUIT EQUIVALENCE
INSTANCE: Two combinational circuits C1 and C2 over the same sequence of
inputs and outputs.

§2.2 Boolean functions and combinational circuits 11

QUESTION: Are both circuits functionally equivalent? That is, do both circuits
for all possible combinations of input values yield the same values at their cone
sponding outputs?

Note that the formulation of the above question already hints at a possible solu
tion: exhaustive simulation. Once we have established a model for a combina
tional circuit suitable to automatic evaluation operational model), the equiva
lence problem can be solved by simulating both circuits for all possible combina
tions of input values, each time checking whether the conesponding output pairs
evaluate to the same value. However, simulation is not the topic of this thesis;
our goal is to develop verification algorithms that answer this question. Before
we do so we first need to define a combinational circuit precisely, and show how
we can attach a functional meaning to it. Then the equivalence problem can be
rephrased in terms of the circuits' associated functions.

2.3 Boolean network

We define a boolean network as a graph: the vertices of the graph represent the
gates of the circuit; the edges represent the connections from a gate output to
other gates' inputs. More formally,

Definition 2.2 A boolean network is a vertex-labelled directed graph G (V, E).
The set of vertices V consists of the three non-overlapping sets Gates, Inputs, and
Outputs, with

• Gates : a finitesetof gates. Each gate is labelled by a logical operator symbol
chosen from the set {..,,A, v }. Note that since the A and v operators are com
mutative and associative it is not necessary to define an ordering on the
incoming edges to such a vertex . .., gates have a single incoming edge; A and v
gates have 2 or more incoming edges.

• Inputs : a fini te set of circuit inputs, also called the primary inputs. A primary
input cannot have incoming edges.

• Outputs : a finite non-empty set of circuit outputs, also called the primary out
puts. A primary output has a single incoming edge and no outgoing edges.

• The directed edges E ç;; (Gates u Inputs) x (Gates u Outputs) represent the
connections between gates, primary inputs, and primary outputs. Note that
edges between inputs and edges between outputs are not allowed. It is
tempting to impose the requirement that the graph be acyclic. However, this
is nota necessary condition fora circuit to be combinational [Malik93]. How
ever, for simplicity we do here assume acyclicness.

Figure 2.2 shows a circuit schematic and its associated boolean network graph.

12 Combinational Circuits Chapter2

Figure 2.2. Circuit schematic and its boolean network graph.

The following additional definitions for a boolean network will prove to be use
ful:

Definition 2.3 The direct fanin of a vertex v is the set of its immediate predeces
sar vertices:

fanin(v) = {u I (u, v) e E }.

Note that for a primary input Xj, fan in (Xj) = 0.

Definition 2.4 The direct fanout of a vertex v is the set of its immediate succes
sor vertices:

fanout (v) = { w I (v, w) e E } .

Note that for a primary output yk, fanout (Yk) = 0.

We are now ready to define the meaning (semantics) of a combinational circuit.
We do this by giving an inductive definition for its (black-box) boolean function
vector F.

Definition 2.5 With each combinational circuit, represented by an acydic
boolean network graph according definition 2.2, we associate a vector of boolean
functions F = [f1, f2 , • • ·, fm], with m = I Outputs!. We first impose a total ordering
on the set of primary Inputs= { x1, x2 , • • ·, Xn} and primary
Outputs= { y1, y2 , • • ·, Ym }, e.g. by the indices. All component functions fk of F
will have the same domain B" and co-domain B; we abbreviate x1, x2, • • ·, Xn to X.

• Each primary input xi is associated with a projection function
fx; = lX. Xi.

• Each gate g is associated with a function
f9 = lX. <I> fu (X), where <I> is the reduction operator corresponding to

u e famn(g)

§2.3 Boolean network

the operator labelling the gate, e.g. if the label of g is A then <I> = A.

• With each primary output Yi we assocîate a function
fyi = ftanin(yj)'

13

• The boolean fundions fk associated with the circuit are the functions we asso
ciate with the primary outputs Yk, thus
fk = fyk.

Example 2.1 Definition 2.5 applied to the circuit of figure 2.2 results in
F == [fb f2, f3], with

f1 =fy1 == ÀX1,X2,X3,X4,X5,X6 ,X7 ,X8.(.., (X1 AX2))v (X3 A (..,X3)),

f2 = fy
2

= ÀX1, X2 , X3 , X4 , x5, X6, X7, X8, ((..., X3) A (X4 V Xs)), and
f3 = fy

3
= .llx1, x 2 , x3, x 4,x5,x6, x7, x 8. ((x4 vx5)vx6) A (x7 AX8).

o example 2.1

We conclude this subsectien with a restalement of the equivalence problem.

COMBINATIONAL CIRCUIT EQUIVALENCE
INSTANCE: Two combinational circuits C1 and C2 represented by their boolean
network graphs G1 (Gates1 u Inputs u Outputs, E1) and G2 (Gates2 u Inputs
u Outputs, E2) respectively.
QUESTION: Are both circuits functionally equivalent? That is, does F1 = F2

hold for the associated veetors of boolean functions F 1 and F 2?

Figure 2.3 presents this problem in the form of a picture.

x

t

Figure 2.3. Combinational circuit equivalence: C1 = C2?

The single bit output represents the function t == }.~. (F 1 (~) == F2 (~)). The cir
cuits are equivalent if and only if this function is a tautology, i.e., V~ Es" t (~) = 1.

14 Combinational Circuits Chapter 2

2.4 Higher·Level descriptions

A representation of a combinational circuit by its boolean network graph is called
a gate-level description. It is a convenient representation (encoding) for many
problems relating to logic optimization and synthesis. The ratio of functionality
to representation size at the gate level is quite small: to implement a simple arith
metic function over n-bit numbers requires a large number of gates. Thus we
look for more efficient representations yielding a larger ratio. Basically, two
approaches come to mind:

1. Introduce hierarchy. This will allows us to exploit the fact that in many
designs the same subcircuits are used over and over again. In a hierarchical
description a subcircuit representing a certain funçtion is defined only once,
and all its uses are references instead of copies. The effect is twofold:
descriptions become more compact and algorithms processing them a.re
faster (because of data sharing).

2. Introduce richer domains. Inslead of having to express all functionality in
termsof operations on boolean variables, we allow a designer to use enu
merated types, arrays of booleans, various number types, records, et cetera.
Each type comes with a convenient set of operations.

In many hardware description languages both approaches are combined. We
will present such a language in chapter 10.

2.5 Other verification problems

!

!
I

i
I

I I
I I
I I
I I L_ _________________________ j

Figure 2.4. Phase and permulation independent comparison.

The problem of comparing two circuits for equivalence becomes much harder
when the correspondences between their inputs and outputs are not known in
advance. To make the equivalence question even more genera}, one could also
drop the assumption that the phase (or polarity) of corresponding inputs and

§2.5 Other verification problems 15

outputs is the same. By the latter we mean whether or not a certain signal is
complemented with respect to a reference signa!. In other words, we are consicl
ering equivalence modulo complementation: we might know that two inputs xi
and xi correspond but they still might carry signal values that are each others
complement, then xi = .., xi holds. We are facing the problem of phase and permu
tation independent boolean comparison, see e.g. [Mohnk93]. The general setting
of this problem is depicted in figure 2.4.

Often the output correspondence is known so the dashed part in figure 2.4 may
be left out. Cl>0 stands for an n-bit phasor circuit; P n is an n-bit permutator circuit.
Both introduce a number of control inputs ç that are to be smoothened out by the
3ç block on the right. In fact what we are asking is whether an assignment to the
control inputs ç exists that makes the corresponding outputs of C1 and C2 identi
cal for all assignments to the primary inputs ~· The phasor circuit is easily real
ized by XOR gates (see figure 2.5). The output of a 1-bit phasor equals its input
when the control input c is low (0); the output is the complement of the input
when cis high (1). A number of n control variables will be needed to generate
the 2° possible phase assignments to an n-bit input vector~.

Figure 2.5. A 1-bit phasor circuit.

A permutator circuit causes its inputs to be connected to its outputs according to
a certain permutation; in fact, it is a particular type of controlled switch. lts pre
cise implementation will be explained shortly. Clearly, the permutator needs a
minimum of l 2log (n!)l control variables. In [Corme90] it is suggested to impie
ment a permutator using the same structure as a sorting network by replacing
the camparator nodes by 2-input, 2-output switches. It can then be shown that a
number of Cn = n · 2log (n)- n/2 control variables is required, with the restrietion
that n is a power of 2. Table 2.1 lists Cn for some practical values of n tagether
with related quantities.

n l 2log(n!)l Cn

1 0 0 0
2 1 2 1 1
3 2 6 3 3
4 2 24 5 6
5 3 120 7 8
6 3 720 10 12

16 Combinational Circuits Chapter 2

n r2log (n)l n! r2Iog(n!)l Cn

8 3 40320 16 20

16 4 2.11013 45 56

32 5 2.61035 118 144

64 6 1.3 1089 296 352.

128 7 3.9 10215 717 832

256 8 8.6 10506 1684 1920

Table 2.1. Number of control variables C0 in 'butterfly' permutator P n·

The general n-bit permutator circuit P n can be inductively defined as follows.

• For the 1 bit case (n = 1) the identity is the only possible permutation and the
permutator circuit P1 is a simple conneetion from input to output:

P1 = a1 b1
0 0

• Incasen = 2 two permutations exist: either the inputs are directly connected
to the outputs, i.e., b1 = a1 and b2 = a2, or they are cross-connected, i.e.,
b1 = a2 and b2 = a1•

p2 =

c

We see that P2 is realized by two multiplexors: if c = 0 then input a1 is passed
on to output b1, and a2 is passed on to b2, else, i.e., c = 1, a1 appears at b2 and
a2 atb1•

• For n<::3, Pn is a network consisting of a Pl"; 1J circuit, a PliJ circuit, and

2 ·l~J basic P2 circuits. The number of control variables C0 equals the num

ber of P2 nodesin P0 • This number can be found by solving the following
recurrence equation:

Cn = l ";1 j +~iJ +2 ·l~J with intial values c1 = 0 and c2 = 1.

§2.5 Other verification problems 17

It is natmal to treat odd and even n separately. For even n = 4, 6, · · ·, Pn has
the following structure, where n = 2 · k:

bn-1

r-----~~~~~~~~313131~------L~ bn

For odd n = 3, 5, · · ·, Pn has the following slightly different structure (now
n = 2 · k+ 1):

o---------~~~~~~~~c-c-~1---------obl
b2

18 Combinational Circuits Chapter 2

Figure 2.6 shows a 16-bit permutator as a networkof 56 P2 instances.

Figure 2.6. P16 permutator network.

It tums out that phasor and permutator circuits can be compactly represented by
BOOs (to be discussed in chapter 4). The BOD size of <I>n is 2 · n. The size for a
permutator P n is Cn + n in case of an optima! variabie ordering. Later it will be
shown that existentlal quantification over all control variables can also be effi
ciently implemented as an operation on a BOD. However, in combinatio~ with a
circuit C2 (figure 2.4) the BDD sizes tend to grow unacceptably. Table 2.2 con
vincingly indicates this when we choose C2 to be an adder. (The BOD sizes
reported here do not count the constant nodes; both cornplemented edges and
inverted-input edges are used.)

BOD size

n Cn+n addn/2 <I>n + Pn <I>n + p n + addn/2 i

2 3 2 5 5
4 10 5 14 79
6 18 10 24 1538
8 28 15 36 47876

I 10 36 20 46 >2000000

Table 2.2. Adder circuit with phasor and permutator at its inputs.

Chapter 3

Propositional Logic

3.1 Introduetion

In this chapter we will look at the theory of propositional logic. It is by far the
most commonly used mathematica! frameworkin today's logic synthesis tools. It
nicely fits the rnadelling of combinational circuits. Since our formalism consti
tutes a decidabie theory, it is readily implemented in a computer program. We
start with a brief overview of the theory and main results of propositional logic.
We will hint at some practical applications and show some implementation
details of the computer programs that were developed.

We will later see that many of the results need only slightly be adjusted and
extended for the temporal case. Our aim is to provide enough of a mathematica!
basis to appreciate the engineering applications we have in mind. Therefore, the
orems will aften be stated in an informal way and their proofs are mostly only
hinted upon. A rigarous treatment of the matter may be found in the many books
on logic [Galli87]. Our goal is to explain what it means when we say that a
proposition is satisfiable and show several approaches to implement such a satis
fiability test.

3.2 The language of propositional logic

We introduce Propositional Logic as a language PL over an alphabet AP of
atomie propositions and we will assign a meaning to each string (proposition} of
the language by means of a truth assignment.

19

20 Propositional Logic Chapter 3

Deflnition 3.1 AP = { p0 , p1, p2 , · · · } is a countably infinite set of atomie proposi
tions.

To denote an arbitrary atomie proposition we will use the letters P, Q, R, · · ·.

Definitlon 3.2 PL is the language defined by the following grammar:

formula ::= P
I '-.' formula
I '(' formula ('A' I 'v') formula ')'.

where P is an atomie proposition taken trom AP.

The symbols -., A, and vare called the logkal operator symbols, somelimes called
the logical connectives. In the sequel, the letters A, B, C, · · · will be used to denote
arbitrary formulas of PL.

Definition 3.3 A function f : B" ~ B is called an n-ary boolean function. The
set B = { 0, 1 } is thesetof truth values; 0 stands for false and 1 stands for true.

Definition 3.4 A function v: AP~ B that assigns toeach atomie proposition a
truth value is called a valuation function or truth assignment.

The semantics of formulas is defined by associating a function with each for
mula. This function is the extension v : PL~ Bof v under the usual interpreta
tion of the logical operator symbols. The interpretation of -. is the function
H, : B~ B defined in table 3.1.

p H,(P)

0 1
1 0

Table 3.1. Semantics of-..

The interpretation of the A conneelive is the function H" : B x B~ B, and v is
interpreled by the function Hv : B x B~ B. Both are defined in table 3-.2. (It is
easy to extend these functions to apply to more than two arguments: H" will be 1
only if all arguments are 1; Hv will be 1 if at least one argument is 1.)

§3.2 The language of propositionallogic

p Q HA (P,Q) Hv (P, Q)

0 0 u 0
0 1 0 1

1 0 0 1

1 1 1 1

Table 3.2. Semantics of A and v.

Definition 3.5 Let v be a valuation function, then vis inductively defined by:

v(P)=v(P)
v (..., A) = H~ (v (A))

V ((A A B)) = HA (V (A), V (B))
v ((A v B)) = Hv (v (A), v (B))

21

Definition 3.6 Let PROP (A) stand for the set of distinct atomie propositions
occurring in the formula A. PROP : PL~ 2AP is inductively defined by:

PROP(P)={P}
PROP(...,A)= PROP(A)

PROP((A AB))= PROP(A)vPROP(B)
PROP ((A v B)) = PROP (A) v PROP (B)

Since A is a fini te string, PROP (A) is fini te too.

Definition 3.7 Given a formula A with PROP (A) = { p1 , p2 , • • ·, Pn }, its assod-
ated boolean function f: Bis f = 2p1 , p2 , • · ·, Pn· v (A).

With the semantics defined, we can now define satisfiability of a formula:

Definition 3.8 A valuation v satisfies a formula A, denoted v I= A, if and only if
v(A)=1.

Definition 3.9 I= A expresses that all valuations satisfy the formula A. Equiva
lently, A is called a tautological formula or tautology.

The satisfiability problem in PL asks whether a valuation exists that makes a
given formula true. The tautology problem asks whether I= A holds for a partic
ular formula A. This latter problem may be stated as a satisfiability problem: to
check whether I= A holds it suffices to show that there is no valuation v such that
v I= ..., A hol ds. If one exists it follows that A is not a tautology. Be a ware that both
problems are not of the same complexity; satisfiability is NP-complete, whereas
tautology is noteven known to be in NP (in fact it is co-NP-complete).

Definition 3.10 Two formulas A and B are said to be logically equivalent,

22 Propositional Logic Chapter 3

denoted A= B, iff v (A) = v (B) for all valuations v.

Theorem 3.1 For all propositions A, B, C the following properties hold:

((AvB)vC) = (Av (BvC))
((AAB)AC)= (AA (BAG))

(Av8) = (8vA)
(AAB)=(BAA)

(Av(BAC))= ((Av8)A (AvC))
(A A (BvC)) =((A A B)v (A AC))

.., (Av8) =(-.A A -.8)
., (A AB)= (-.Av-.8)

(AvA)=A
(AAA)=A

-.-.A=A
(Av (A AB)) =A
(AA (Av8))=A

Proof Use the properties of the underlying interpretation functions H...,, H" , and
Hv·
o theorem 3.1

We see that the syntax for formulas is rather restrictive. We often define some
rules of preeendenee for the operators and use their associativity to drop a num
ber of parentheses. The grammar in EBNF of figure 3.1 incorporates these con
siderations.

formula ::= term { 'v' term } .

term::= factor {'A' factor}.

factor::= P
I '-.' factor
I '(' formula ')' .

where P is an atomie proposition taken trom AP.

Figure 3.1. Relaxed grammar for PL.

Of course, this does not violate any of our previous results; the semantics may
still he defined in a simHar way but now it seems easier to do this with respect to
the parse tree of a formula.

§3.3 Truth table methad 23

3.3 Truth table methad

A straightforward algorithm to solve the satisfiability and tautology problems is
provided by the truth table method. Given a formula A over a certain set of
atomie propositions PROP (A), all we have to do is list all possible assignments v
to these symbols and evaluate the formula for each of them, i.e., compute ÎJ (A).
If in at least one case the evaluation leads to a true result the formula is
satisfiable. If all cases evaluate to true the formula indeed expresses a tautology,
and if none of the cases evaluate to true the formula is unsatisfiable or also called
a contradiction. For satisfiability, the worst case complexity of this method is
clearly of the order 2n where n is the number of distinct atomie propositions
appearing in the formula. Since we know that the satisfiability problem is NP
complete there is not much hope of ever finding a method that beats the
exponential time complexity. However, in many problem instances the truth table
method must be considered too brute force.

A more ingenious way of determining tautology is based on a search for a
falsifying assignment to the formula under test. If the search fails we must
conclude that the formula is indeed a tautology else we have found a counter
example (refutation), namely an assignment v that yields ÎJ (A) = 0. More
indirectly, one could investigate the satisfiability of the negated formula; if not
satisfiable the original formula is a tautology. There are several methods based
on the above principles. They have in common that they are purely based on
syntactical transformabons of the formula under test. Typically a number of
axioms (or usually axiom schemata) is defined that comprise the terminating
cases of the search, which on intermediate stages is guided by a set of rewrite or
inference rules. Care has to be taken that the system of axioms and inference
rules is sound and complete, i.e., only tautological formulas will be classified as
such and none is missed. Fortunately, for propositional logic such systems do
exist, see e.g. section 3.4 "Proof Theory of Propositional Logic" in [Galli87].

3.4 Disjunctive normal form

A simple way to test for satisfiability is the disjunctive normal form (DNF)
method. Here we will define a DNF as a set of sets of literals:

Definition 3.11 A DNF is a finite set { e 1, e 2 , ···,en} of clauses ei, each ei is a
set of literals { Li1 , Li2 , · · · Lim } . A literal is either an atomie proposition (also called
positive literal) or its negation (negative literal). Negative literals will be denoted
by a prime (') after the name of the atomie proposition. A clause ei expresses a
conjunction over its literals; a DNF set expresses a disjunction over its clauses.

Definition 3.12 The transformation of a formula to a DNF set is inductively
defined as follows:

24 Propositional Logic

DNF (P) = { { P } }
DNF (.., P) = { { P'} }

DNF(..,..,A) = DNF(A)
DNF (.., (A " B)) = DNF (..,A) u DNF (.., B)
DNF (.., (A v B)) = DNF (...,A) o DNF (.., B)
DNF((A" B)) = DNF(A)oOI\IF(B)
DNF((AvB)) = DNF(A)uDNF(B)

Chapter 3

with P an arbitrary atomie proposition, A and B arbitrary formulas, and
So T = { sut Is eS, te Tand s+ tît- = s- tît+ = 0} for DNFs S and Tand clauses
s and t. We use s+ to denote the set of positive literals of a clause s; likewise, s
denotes its set of negative literals. Clearly, the o operator on DNF sets selectively
unitespairs of dauses, omitting pairs containing literals with opposite sign.

Deflnitlon 3.13 The meaning of a DNF set is defined by the function
h : DNF ---7 (B" ---7 B) as follows: (here we already make use of the syntax of
figure 3.1 and assume 'ÎI to be adjusted accordingly)

Bottom case: DNF set= 0, h (0) = 0.

Inductive case: DNF set= { C1, C2 , • • ·, Cn }, then

h ({ c1, C2, ... , Cn}) = 'ÎJ (h ({ c1 }) V h ({ c2}) V •.• V h ({ Cn})).

Where for each dause Ci = { L1, L2 , • • • , Lm },

in whieh for each positive literal ~ = P, g (P) = P,

and for each negative literal ~ = P', g (P') =.., P.

Now the definition of the o operator should be dear: having a atomie proposi
tion and its negation appear in the same clause will be interpreted as false and
since all dauses are "or"-ed together we might as well avoid false clauses in the
first place. Notice that the definition of h has been chosen in a way such that:

Theorem 3.2 v (A) = h (DNF (A)) holds for every formula A.

Proof Use the definitions of v and h and use the following identities of
theorem 3.1:

§3.4

0 theorem 3.2

Disjunctive normal form

(Av (8 AC))= ((Av8) A (AvC))
(Av8)= (8vA)

•(Av8)= (...,AA-,8)
.., (A A 8) = (...,Av-,8)

...,..,A=A

25

Corollary 3.1 The satisfiability problem is there a v such that v I= A? - can
now be rephrased as "is the DNF set nonempty, i.e., DNF(A) ::f:. 0?" Similarly, I= A
holds if and only if DNF (...,A)= 0.

Example 3.1 Does I= ((P A Q) v (.., P v R)) hold?

DNF(..., ((PA Q)v (...,PvR)))
= DNF(..., (PA Q))oDNF(..., (-,PvR))
= (DNF(.., P)vDNF (-,Q))o (DNF (..,.., P)o DNF (..., R))
= ({ { P'} } v { { Q'}}) o ({ { P} } o { { R'} })
= { { P'}, { Q'} } o { { P, R'} }
= { { P, Q', R'}}

So we get a nonempty result, meaning the original formula is not a tautology.
D example 3.1

3.5 Containment (or subsumption)

As with formulas of PL, we can have many different DNF sets with the same
meaning. For instanee the sets { { P} } and { { P L { P, Q', R} } have the same mean
ing ll.p, q, r. p. The clauses of a DNF set are partially ordered according the subset
relation ç. The following lemma is useful in minimizing the number of clauses:

Lemma 3.1 Let DNF(A)={C1,C2 }. IfC1 çC2 then h({C1,C2 })=h({Cd).
We will say, although this may sound counter-intuitive, that C1 contains C2 • (The
term 'contains' sterns from the fact that when a clauseis interpreted as a set of
points in sn 1 we have that whenever C1 Ç C2 then the points of C2 are contained
in thesetof points of C1 .)

Proof Clauses express a conjunction (A) of their elements. Each element (literal)
in a clause must evaluate to 1 in order for the clause to be 1. Por C2 to be 1 at
least all elements in it that are also in c1 must thus be 1' so c1 will be 1 but then
DNF (A) is already 1 independent of the remaining literals in C2 . Conversely, if
C1 evaluates to 0 then also C2.
olemma3.1

26 Propositional Logic Chapter 3

Given a DNF set we may reptace it with the set consisting of the minimal ele
ments of that DNF set under the ç relation. To find these minimal elements
requires a quadratic number of ç comparisons, viz. every element has to be
compared with the rest.

3.6 lmplementation of DNF

In a program that tests satisfiability based on the DNF set approach we need to
represent sets of sets of literals. Regarding the operations that are to be per
formed on this abstract data structure we derive that clauses are conveniently
implemented by means of bitveetors and that a set of them can be represented by
a singly-linked list. This way uniting DNF's requires appending (or concatenat
ing) lists, and the o operation can be basedon bitwise 'and' and 'or' operations
on the bitvectors. Each dause will be represented by 2 bitvectors, one to express
the inclusion of a positive literal and one to do the same for negative literals. A
DNF set is then represented by a list of pairs of bitvectors.

list-of-pairs-of-bitveetors DNF(PL f)
(

}

switch (f) (
case P:

clause C:=pair (pos, neg) of all-O's bitvectors;
set bit in pos(C) corresponding with P;
return singleton list with C as element;

case -.P:
clause C:=pair {pos, neg) of all-O's bitvectors;
set bit in neg(C) corresponding with P;
return singleton list with C as element;

case -.-.A:
return DNF (A);

case .., (A AB):
return concat (DNF (-.A), DNF (-.8));

case .., (AvB):
return o (DNF (..,A) , DNF (.., 8)) ;

case (A AB):
return o (DNF(A), DNF(8));

case (AvB):
return concat(DNF(A), DNF{8));

}

Algorithm 3.1. Implementation of DNF.

Algorithm 3.1 shows a straightforward implementation of the conversion of a PL
formula to its DNF form as defined in definition 3.12. Details of the o operator
are presented in algorithm 3.2.

§3.6 lmplementation of DNF

list-of-pairs-of-bitveetors o(list-of-pairs-of-bitvectors S, T)
{

L:=ernpty list;
for (SES)

for (tET)

if ((pos(s) & neg(t))=all-O's
&& (neg(s) & pos(t))=all-O's)

clause C:=pair (pos, neg) of all-O's bitvectors;
pos(C) :=pos(s) I pos(t);
neg(C) :=neg(s) I neg(t);
L:=concat(L, singleton list with C as element);

return L;

Algorithm 3.2. Implementation of the o operator.

27

The worst-case performance of the above algorithm is exponential in the size of
the formula, and, consiclering that satisfiability is an NP-complete problem, there
is little hope to ever find a polynomial-time algorithm.

The resulting DNF list can aften be simplified using containment. A good
heuristic that we use in our implementation is to define a lexicographical order
ing on the clauses (based on a linear ordering of the literals) and then while
doing a mergesort on the clauses mark the ones that are subsumed (ar contained)
by others. The marked dauses may be deleted from the DNF list. This way only a
total of n2log (n) containment tests is performed.

The DNF representation will be used in chapter 6 when we look at an algorithm
for the satisfiability of propositionallinear-time temporallogic.

28

Chapter 4

Binary Decision Diagrams

4.1 Introduetion

So far we have looked at two distinct representations of boolean functions: PL
formulas and DNF sets. To solve the tautology problem we are basically asking
whether the formula or DNF set denotes the 1 function, i.e., the function that is
invariably true. The major drawback of the representations is that many formulas
and many DNF sets denote the same function. So it is not always directly obvi
ous that two different descriptions indeed describe the same circuit (i.e., have the
same logic behaviour). Here we will introduce a representation for a boolean
function that does not have this disadvantage: the Binary Decision Diagram
(BDD) also known as Boolean Fundion Graph. Seminal work by [Bryan86,
Karpl89] has shown that given a fixed ordering of the function's place-holder
variables, binary decision diagrams are canonical: each distinct function may be
represented by a unique binary decision diagram. Moreover, we will shortly see
that in an implementation each function can be represented by a unique reference
(pointer value), thus tautology checking reduces to testing whether two refer
ences are the same. However, constructing a binary decision diagram might in
the worst case require an exponential number of operations. The success of
binary decision diagrams lies in the fact that for many practical functions it is
known that the diagram has a size which is only polynomially related to the
number of variables.

4.2 Notation and terminology

We consider boolean functions all with the same arity, i.e., they all have the same,

29

30 Binary Decision Diagrams Chapter4

fixed number of arguments n 2:: 0. These functions can be denoted by proposi
tional formulas I{> (X) over a set of atomie propositions X = l x1, x2, • • ·, X0 I as
f = Jx1 , x2 , • • ·, X0 .1{> (X). Here the x(s will be called boolean variables. The func
tions will be total or complete in the sense that they are defined for every element
of the domain B0

• Two functions are considered identical when application of
each to all 2° distinct argument values always gives the same result value.

Our presentation of BDD's follows the terminology used in [Brace90].

Definition 4.1 A BOD is a labelled, possibly multi-rooted, directed acyclic graph
(DAG) G (V, E). We distinguish two kinds of vertices: 1-nodes and T-nodes. The
edge set E is defined by a relation E ç;; 1-nodes x (1-nodes u T-nodes). The details
are as fellows:

• 1-nodes is a finite set of intemal vertices, each having precisely 2 outgoing
edges to (other) intemal or terminal vertices. One is said to be the else-edge,
the other is the then-edge. The successor vertex of an intemal vertex v via its
else-ed ge is denoted by else (v); the successor accessible via its then-edge is
denoted by then (v). Each internal vertex v is labelled with a variabie
denoted by var(v). Thesetof variables is assumed to be totally ordered, i.e.,
we postulate the existence of a ranking function rank: x~ { 1, 2, · · ·, n };
rank (x) then denotes the rank number of variabie x in the ordering. When no
confusion can occur, we write rank (v) instead of rank (var (v)).

• T-nodes = (zero, one } is the set of terminal vertices. Terminal vertices have
no outgoing edges. For uniformity we define the rank of a terminal vertex to
ben+ 1.

Definition 4.2 An Ordered BDO (OBDD) is a BOD where for each internal ver
tex v e 1-hodes we have:

rank (v) <min (rank (else (v)), rank(then (v))).

Definition 4.3 A Reduced Ordered BDD {ROBOD) is an OBDD such that for
each internal vertex its two successors are distinct and the graph does not contain
isomorphic subgraphs.

For any BDD (not necessarily reduced and ordered) we can define a meaning in
the following way:

Definltion 4.4 Assume a fixed set of variables { x1 , x2 , • • ·, X0 }. With each vertex
v e V in the BOD we associate a boolean function I (v). The (higher-order) inter
prelation function I : V~ (B0 ~ B) is inductively defined on the structure of
the graph. We abbreviate x1, x2 , • • ·, X0 to X, and assume that the indexing is such
that rank (xi) = i.

§4.2 Notation and terminology

• For terminal vertices zero and one:

I (zero) = 0, i.e., the function II.X. 0
I (one) = 1, i.e., the function II.X. 1

• For every intemal vertex v:

l(v) = ITE (II.X. var (v), I (then (v)), I (else (v)))

31

with ITE (F, G, H) = JX. H1TE (F (X), G (X), H (X)). ITE is a higher-order
function manipulating functions with signature B"----? B, based on the 3-argu
ment boolean function H1TE (P. Q, R) = Hv (HA (P, Q), HA (H., (P), R)), see
table 4.1. The name ITE is an acronym for If-Then-Else.

p Q R H,TE(P,Q, R)

0 0 0 0
0 0 1 1

0 1 0 0
0 1 1 1

1 0 0 0
1 0 1 0
1 1 0 1

1 1 1 1

Table 4.1. Semantics of the ITE operator.

• The functions associated with the BDD are the functions associated withits
root vertices.

It is customary to let the projection function associated with a variabie be
denoted by the name of that variable, thus if x1 is some variabie then x1 stands for
the fundion A.X. x1• Also, often the same logical operator symbol is used to denote
the corresponding higher-order operation, e.g. one often sees
ITE (F, G, H) = (FA G) v (..., F A H). Here, however, we will use the symbol · to
denote the higher-order "And" operation and the symbol + to denote the higher
order "Or" operation; higher-order "Not" is indicated by placing a bar above
the function name.

From now on, we will simply write BDD when in fact we mean a Reduced
Ordered BDD. We also assume some ranking function rank: X---? { 1, 2, · · ·, n l
to be defined for the variables (e.g. we may take rank (x1) = i, ho wever, this is
only one of the n! possibilities).

Note that for each internal vertex v in a BDD with var (v) = x, T = I (then (v)),
and E = I (else (v)), ITE (x, T, E) is by definition a unique function (within that
BDD). We may therefore use the triple (x, T, E) as a unique identification for the

32 Binary Decision Diagrams Chapter4

internat vertex v, but also as an identification for the sub-BDD rooted at that ver
tex. For convenience we will denote the BDD by the function it represents, which
is already done here for the BDDs Tand E; in general, i.e., when they are nat bot
torn cases, Tand E themselves can be represented by such triples (they are the
labels of the vertices then (v) and else (v) respectively). Bottom cases are the ter
minal vertices; they will be labeled by their respective functions 0 and 1. We
refer to them as constant BDDs.

Example 4.1 The BDD for the function ;.a, b, c. a A .., b v.., a A b A c and repre
senled by (a, (b, 0, 1), (b, (c, 1, 0), 0)) is depicted in figure 4.1.

Figure 4.1. Example BDD graph for f (a, b. c) = a 1\ .., b v.., a A b A c.

In drawing a BDD the following conventions will be adhered to:

1. A vertex is represented by a circle containing the name of its variabie label.

2. By letting incoming edges enter at the top of the circle and outgoing edges
leave at the bottorn of the circle there is na need to draw an arrow to indi
cate their direction.

3. Instead of labelling the edges with then and else we will use 1 and 0
respectively, ar preferably even do without these labels and then it is
understood that the edge exiting on the bottorn left of a circle is the then
edge, and the edge exiting on the bottorn right is the else-edge.

4. Terminal vertices are nat explicitly drawn. We simply let the edge end in a
0 ar a 1 symbol.

Figure 4.2 shows the example BDD drawn according the above rules.

§4.2 Notatien and terminology

0 0

0

Figure 4.2. Example BDD graph drawn in 'minimalistic' style.

o example 4.1

4.3 BOD construction

33

Now we investigate how BDDs can be putto practical use, i.e., manipulate them
by means of logical operators. The following table 4.2 lists useful operations on
functions F and G and shows how the same result may be achieved in terms of
the higher-order ITE function. The objective of this section is to derive an algo
rithm for ITE operating on the BDD representation of the functions. We shall first
formulate ITE in a recursive way.

Name: Notation: ITE form:

not F ITE (F, 0, 1)
and F·G ITE(F,G,O)
xor FEEJG ITE(F,G,G)
or F+G ITE (F, 1, G)
nor F+G ITE (F, 0, G)
equiv FHG ITE (F, G, G)
implies F~G ITE (F, G, 1)
nand F·G ITE (F, G, 1)

Table 4.2. Operations on functions and equivalent ITE formulation.

Definition 4.5 The Shannon expansion of a boolean function F with respecttoa
variabie x is the decomposition of F in its cofactors F x and Fx according to
F = x· F x +x· Fx. The co factor F x is the restrietion of F under x = 1, similarly Fx is
the restrietion of F under x = 0. (Note that for any variable, a cofactor of a con
stant function is the function itself). The support of a function is the set
{ xi I Fx; :t:. Fx; }. Constant functions have empty support.

Shannon expansion gives us a recursive procedure for BDD construction.
Observe that the following derivation is valid:

34 Binary Decision Diagrams

ITE(F, G, H) = x·ITE (F, G, H)x+X·ITE (F, G, H)x

=X· (F·G+F·H}x+X· (F·G+F·H)x

= x · (F x · Gx + F> Hx) +x · (Fx · Gx + Fx · Hx)

=X· (ITE(Fx,Gx,Hx))+x· (ITE(Fx,Gx,Hx))

= ITE (x, ITE(Fx, Gx, Hx), ITE (Fx, Gx, Hx))

and the latter stands for the BOD:

(x, ITE (Fx, Gx, Hx), ITE (Fx, Gx, Hx))

Chapter4

All that remains to be shown is how to compute the cofactors of a function and
provide the bottorn cases of the recursive expansion sketched above. Without
violating the validity of the expansion, we may choose x to be the variabie with
the smallest rank among the variables labelling the root vertices of the BDDs for
the functions F, G and H. Remember that the rank of a constant BOD is n + 1 by
definition. Assume the BOD for F non-constant, so let F = (y, T, E). Surely
rank (x) s; rank (y). If rank (x)< rank (y) then x is not in the support of F, hence
Fx = Fx = F; otherwise we must have x= y, and so Fx =Tand Fx = E (figure 4.3).
For the functions G and H we can follow the same reasoning. Clearly, the bottorn
cases are determined by F being constant: ITE (0, G, H) = H and
ITE(1,G, H) = G.

/
/

'
' \

F

I '
I ' I \

Figure 4.3. Function F and its cofactors w.r.t. the top variabie x.

An implementation of the high-order ITE function operating on boolean func
tions represented by BOOs is outlined in algorithrn 4.1. In an actual irnplernenta
tion, for instanee in Pascal or C, it is convenient to define the type BDD to be a
pointertoa vertex record (or struct). Then testing for equality of two BDDs can
be done using the equality operation (=) on pointervalues provided that BOD
DAGs are uniquely stored, i.e., no isomorpic subgraphs exist. This uniqueness of
subgraphs is achieved by keeping track of all the (x, T, E) triples in a hash table.
The BOOs for the projection functions Ä.X. xi for the variables that are denoted by
the triples (Xj, 1, 0) are also kept in this hash table. The information stored for
each triple is the BDD pointer that points to the root vertex of the particular DAG
for that BOD. In algorithrn4.1 the statement if (T = E) then return T;

§4.3 BOD construction 35

ensures the first condition mentioned in definition 4.3 (successors are distinct) to
be met and returning the unique BOD for the triple (x, T, E) ensures the second
condition to be met, namely that no isomorphic subgraphs are constructed.

BDD ite(BDD F,G,H)
{

/* Bottom cases: *I
if (F = 0) return H;
if (F = 1) return G;
/* Recursive case: *I
x:=min(var(F) ,var(G),var(H));
T:=ite(Fx,Gx,Hx);
E:=ite(F1 ,G1,H1);
if (T = E) return T;
return uniqueBDDfor (x,T,E);

Algorithm 4.1. The basic BOD constructor function i te.

Many optimizations of the i te function may be considered, e.g. including more
tests for special cases and supplying i te with a memory function that avoids
recomputation. For the latter we keep a table of argumentandresult values that

. we consult upon entry (lookup) and update upon exit (remember). Some of
these ideas are incorporated in algorithm 4.2.

BDD ite(BDD F,G,H)
{

if (F = 0) return H;
if (F = 1) return G;
!* Special case: *I
if (G = 1 && H = 0) return F;
/*Make use of memory function: *I
R:=lookup(F,G,H);
if (R ie- l.) return R; !* value l. signals absence *I
x:=min(var(F) ,var(G) ,var(H));
T:=ite(Fx,Gx,Hx);
E:=ite(F1 ,G1,H1);
if (T = E) R:=T; else R:=uniqueBDDfor (x,T,E);
/* Supply memory function with new data: *I
remember "ite(F,G,H)=R";
return R;

Algorithm 4.2. A more practical i te function.

More implementation issues are discussed in chapter 8.

36

Part II

Verification of
Circuits with Memory

This part consists of three chapters. lts structure mimics the first part: first we
introduce sequentia! circuits in chapter 5; then chapter 6 addresses two temporal
logies, CTL and PTL, that are useful in reasoning about the behaviour of this type
of circuit; lastly, chapter 7 presents a more general formalism that encompasses
both temporal logies, namely ,u-calculus. For all three formalisms, basic imple
mentations are presented.

37

38

Chapter 5

Sequential Circuits

5.1 Introduetion

A sequentia! circuit can be defined as a logical circuit for which the values of the
outputs not only depend on the present values on the inputs, but also on the his
tory of the system. For that, the circuit needs some way of remembering what
happened in the past: it needs memory. Time therefore becomes an explicit
parameter in the logkal functions that describe the outputs of a sequentia} cir
cuit. We usually abstract from a real time value and use the notion of a doek
instead. This means that we are only interested in observing the system at certain
discrete points in time, e.g. the moment just after the doek signal has risen from 0
to 1. The mathematica! model of such systems is the finite automaton. The sys
tem's memory is then replaced by the concept of state. The finiteness of the
autornaton implies that its behaviour is of an intrinsic repetitive nature. This
directly translates to the decidability of the equivalence problem for automata.

5.2 Finite automala and sequentia! circuits

A finite autornaton is usually defined by the quintuple (0, I:, o, q0 , F), where

Q is a finite, non-empty, set of states;
I: is a finite, non-empty, set of input symbols, the alphabet;
li ç:; Q x (I: u { & }) x Q is the transition relation, with & the empty word;
q0 E Q is the initial state of the machine; and
F ç:; Q is a non-empty set of final states.

Although the above definition of li is the most general, we often like torestriet it

39

40 Sequentia! Circuits Chapter 5

to a mapping (or even a total function: the next-state function): o : 0 x :E~ 0.
That is, inslead of consiclering non-deterministic machines we focus on delermin
istic ones. Despite the fact that the transformation from non-deterministic to
deterministic finite autornaton (e.g. through subset construction) may lead to a
possible exponential increase in the number of states, non-deterministic and
deterministic finite automata have the same expressive power: the sets of words
recognized by fini te automata are precisely the regular languages. A word (or
string) over 1: is the concatenation of a finite number of symbols from :E, com
monly denoted by juxtaposition. The set of all words over :E is denoted by :E*.
Algorithm 5.1 gives an operational definition of recognition or acceptance of a
word by a deterministic finite automaton.

Bool accept (:E* w)
{

for (i:=O, q:=qo; i<lwl; i++)
q:=o(q, w[il l;

return qe F;

Algorithm 5.1. Deterministic finite autornaton acceptance.

For our purposes we like to alter this machine to have outputs instead of merely
a set of final states. We define r as our output alphabet and introduce the output
function r : Q x :E~ r, which leads to a so-called Mealy machine model. If the
output does not depend on the current input value, i.e., r : a~ r, we have a
Moore type of machine.

Inputs Outputs

Log ie Next

Regs

Figure 5.1. Basic sequentia! machine model: logic with feedback through regis
ters.

Moreover, when all sets are appropriately cocled over boolean spaces, we obtain
the basic hardware model of a sequentia! machine. The machine's current state

§5.2 Finite automala and sequentia! circuits 41

(in cocled form) is kept in a bank of 1-bit registers (flip-flops). The next-state and
output-funetion are realized by combinationallogie, see figure 5.1. The update of
the registers is assumed to be instantaneous and synchronized by the doek. It is
eustomary to leave out the doek signal in a drawing.

Again let B = { 0, 1 } be the set of boolean truth values. A coding of a fini te set A
is a one-to-one function p : A--'t Bn with appropriately ehosen n, e.g. it is always
possible to construct a p such that n = l 2log (I A I) l. Assume the sets 1:, Q, and r
are cocled in the sets sm, Bn, and BP respectively. Then a model for a Mealy
machine is the sixtuple (S,l, 0, N, 8 0 , Y), with

S = Bn thesetof states (contents of the register);

I = sm thesetof input bit-patterns;

0 = BP the set of output bit-patterns;

N : Bn x sm --'t sn the (possibly partial) next-state function;

8 0 ç S the non-empty set of initia! states, and

y : sn x sm --'t BP the (possibly partial) output function.

Input
x

Current

Outputs

Figure 5.2. Modulo-S incrementer: adds value of x to § (mod 8).

To denote an element of a cartesian power of the set B we allow both a tuple
notation and vector notation and use them interchangeably. Also, constant values
may be denoted by a string of 0' s and 1' s. In the sequel we assume N and Y to be

42 Sequentia! Circuits Chapter 5

total functions. In that case the machine is fully specified when N, Y, and 8 0 are
known, and we might as well specify the machine (circuit) by the triple
(N, 8 0 , Y). In general, we will allow multiple initial states, and denote them by
80; even in case of a single initia! state q0 we will use 80 and then 8 0 = { q0 } •

Often, we assume q0 = 0".

Figure 5.2 depiets a modulo-S incrementer moulded in our model. Clearly,
N = [N2 , N1, N0] may be defined by the following boolean functions:

N0 = Js2,s1,s0,x.s0E&x,
N1 = J~.s1 ,s0,X.XA (SoE&S1)v..,XAS1,
N2 = Js2,s1,s0,X.xA (s2 E9 (s1 AS0))v..,XAS2.

The output function Y = [Y2, Y1, Y0] is simply the identity on the state variables:

Yo = Js2,s1,so.So,
y1 = À.S2,S1,So.S1,
y2 = Js2,s1,so.s2.

Note that we prefer to number the indices starting at 0 from right to left; this is
most natural when one wants to interpret a vector of boolean values as a decimal
number. Por instance, we will write state ~ = (1, 1, 0) = 6 decimal.

5.3 Verification problem

An important verification problem for sequentia! circuits can be formulated as
follows:

SEQUENTIAL CIRCUIT EQUIVALENCE
INSTANCE: Two sequentia! circuits M1 and M2 according to the Mealy model
over the same set of inputs and outputs.
QUESTION: Are both circuits functionally equivalent? That is, do both circuits
for all possible sequences of input bit-patterns yield the same sequences of bit
pattems at their corresponding outputs?

One way to visualize this problem is depicted in figure 5.3. The two circuits are
assumed to operate synchronously through the control of the impHeit doek sig
na!. Both circuits are fed the same input values. The single bit output signal is
derived from logically AND-ing the results of the bitwise equivalence of the
respective outputs. The composition of both circuits (Mealy machines) in this
manner is said to form the product machine. The question is now whether the
product machine yields the output value 1 for all possible input sequences. In
terms of automata, a 'correct' product machine <:orresponds to recognizing the
universallanguage over Bm i.e., (Bm)*. (By definition, a Mealy machine outputs e
on input e, but this technicality is only of minor theoretica! interest; in practice we
do not consider e a feasible input).

§5.3

Inputs

Verification problem

Log ie

Log ie I
I
I
I
I
I
I
I
I
I
I
I
I _____ _j

....__ _ __.- I

M 2 i
I
I
I

!
Clock

Figure 5.3. The product of two Mealy machines.

43

The above problem statement does not say anything about the respective starting
states of the two machines M1 and M2 • One practical way of interpreting the
problem is to assume the equivalence to exist when the machines are started in
any of the possible combinations of their initia! states. The next sections present
a method to solve the equivalence problem.

5.4 State-space exploration

This section is not a chapter from the Captain's Log of the Starship Enterprise.
(Come tothink of it, "Enterprise" would be a good namefora sequentia! circuit
verification program.) Consicier a finite autornaton M = (Q, L, o, S0). We allow
multiple initial states and for the moment are not interested in the final states.
For generality we assume o to be specified as a relation. Our goal will be the
exploration of the states reachable from the initial states S0 at each 8-step consicl
ering all possible input symbols from the set L. Then only the structure of the
state-space is of importance, and for that we define the immediate neighbour
hood functions:

" : Q x a~ B, with " (s, t) = true if ::lx E ~ (s, x, t) E 0 and false otherwise,
and

44 Sequentia! Circuits Chapter 5

The latter function over sets of states is also known as a predicate transfarmer
[Burch94] or a functional [McMil93]. These terms will become clear shortly.
Algorithm 5.2 gives the traditional breadth-first computation of the set of reaeb
abie states.

Re ach: =0; New: =So i
do {

Reach: =Reach u New;
Next: = H (New) i

New:=Next\Reach;
while (New :;t: 0) ;

return Reach;

Algorithm 5.2. Breadth-first state-space exploration.

Note that algorithm 5.2 is rather strict in the sense that it does not explicitly indi
cate the possible freedom of choice for the argument to H: there is no harm in
including some states that have already been reached at that point. This may
seem not very useful in the current context, but depending on the representation
of the sets in an implementation some computational advantage may be gained.
For later reference we also add the iteration counter k. Algorithm 5.3 incorpo
rates these observations.

}

k:=O; Reach:=0; New:=S0 ;
do {

k++;
Reach: =Reach u New;
Choose Front such that Newç:Front~::;Reach;
Next: = H(Front);
New:=Next\Reach;
!* Generic situation at this point is depicted in ft gure 5.4. *I

} while (New :;t: 0) ;
/* k = number of iterations. *I
return Reach;

Algorithm 5.3. Modified breadth-first state-space exploration.

Figure 5.4 shows a Venn diagram relating the various sets of states at the indi
cated point during the execution of algorithm 5.3. The shaded area denotes the
set of newly discovered states after the kth application of H. The dasbed curve
indicates the reaebabie states afterwards.

§5.4

I

/
/

I

State·space exploration

,"".-------/
/

,/

/,,..--

/
______ ..,.., ,/

/

Newk

I
I
I
I
I
I

I
I

Universe e"

Figure 5.4. Partitioning of the state-space during exploration.

45

As an example, table 5.1 shows the results of applying explore to the modulo-S
incrementer of figure 5.2. For brevity, the states have been cocled in decimal. We
see the typical behaviour of counter-like structures: in each step only a single
new state is discovered. Modulo-n counters are interesting test cases because
their reachable state-space is the whole universe Bn and the space may be said to
have minimal structure: there is precisely 1 successar state for each state.

k Reachk Newk

0 0 { 0}
1 { 0} {1}
2 { 0, 1 } {2}
3 { 0, 1' 2} { 3}
4 { 0, 1' 2, 3} { 4}
5 { 0, 1, 2, 3, 4} { 5}
6 { 0, 1 ' 2, 3, 4, 5} { 6}
7 { 0, 1' 2, 3, 4, 5, 6} {7}
8 {0, 1,2,3,4,5,6,7} 0

Table 5.1. State-space exploration of the modulo-S incrementer.

The explicit determination of the New set in algorithm 5.3 can be avoided and its
test for emptiness replaced by a set-equality test by a simple rearrangement of
the statements. Note that in case we happen to choose
Front:::> New_Reach \ the union is no langer disjoint. This results in
algorithm 5.4.

46 Sequentia! Circuits

k:=l; Front:=Reach:=So:
do {

New_Reach: =Reach uH (Front) ;
if (New_Reach = Reach) return Reach;
k++;

Chapter 5

Choose Front such that New_Reach\Reachç:;Frontç:;New_Reach;
Reach:=New_Reach;

} forever;
}

Algorithm 5.4. More refined reachability analysis.

5.5 Symbolic computation

The algorithms for state-space exploration presented thus far are expressed in
terms of operations on sets of states. In general, finite sets can conveniently be
implemented using a bitvector data type. Por large state-spaces however, this
approach quickly becomes ineffident, if not altogelher infeasible, both with
respect to memory and runtime. Assuming that all bitvector operations needed
for algorithm 5.2 take 0 (IQ I) time and in the worst case one state is discovered

'reachable' per iteration, then the overall complexity is 0 (IQ 12
). This doesn't

sound too bad, except when one realizes that the number of reachable states is in
the worst case exponential in the number of register bits. Por the (worst case)
modulo-S counter example we experimentically find a runtime of 0 (4"). The
key idea to improve on the above is to refrain from representing the sets of states
explicitly; instead, sets will be represented by their charaderistic function. And,
more precisely, these characteristic functions will themselves be represented by
BDDs. This approach is coined symbolic or implicit reachability analysis.

We first introduce the necessary theory and notational conventions. In the fol
lowing 8 denotes the set of boolean truth values. The charaderistic function of a
set A ç; U is defined as

%A: U-48, with %A= la. a eA.

The isomorphism between boolean algebra and the algebra of subsets of a finite
set suggests to adopt the convention to overload the name of the set to also
denote its accompanying characteristic function which we shall occasionally use
as a predicate. Similarly, for a binary relation R on a set A, we define its charac
teristic function:

XR: AxA-48, with XR =la, b.(a,b) ER.

In the context of a fixed universe U we will abbreviate quantifications 3u e u to 3u,
and the same holds for universa! quantifications. We will use the following

§5.5 Symbolic computation

notations for a pair beienging to a binary relation:

(a, b) E R, or aR b, or R (a, b).

47

The last forrn is an example of the use of the name of the relation as a predicate.
Also, if we allow 'currying', i.e., supply less arguments toa function than its arity
prescribes, R (a) should be understood to mean (the characteristic function of)
the image of a under R.

We define the composition of two relations R1 and R2 on the same universe U by
R1 o R2 = ÀS, t. 3u [R1 (s, u) /\ R2 (u, t)]. Note that composition is in general not
commutative.

Given a function f: 2A~2A, a least fixed-point of fis a minimal set ZçA such
that f (Z) = Z holds. If f is (non-decreasing) monotonie, i.e.,
'Vs.ve~ SçV=>f(S)çf(V), the existence and uniqueness of a least fixed-point
is guaranteed [Tarsk55] and in this case we can use the notatien pZ. f (Z) to
denote this least fixed-point. Likewise, the greatest fixed-point of a function
f: 2A~2A (if it exists) may be defined by vZ. f(Z) as the largest set ZçA for
which f (Z) = Z hol ds. No te that in terms of characteristic functions, f should
have been defined as f : (A~ B (A~ B), which dearly explains the
narnes 'predicate transformer' and 'functional', i.e., function eperating on func
tions.

Let I stand for the identity relation on A, i.e., I = { (a, a) I a E A}. Then the reflex
ive dosure Rr of R is defined as: Rr = Ru I. The following holds for the transi
tive R+ and reflexive-transitive R* closures: R* = (Rr t = (R+)r = R+ u I. (Note:
in general, R+ = R* \I does not hold.) The following are equivalent definitions for
the transitive dosure in terms of a least fixed-point (note the use of the logica!
operator v to stress that we are dealing with characteristic functions):

1. R+ = pZ. R v (Zo R), or equivalently

2. R+ = pZ. R v (R o Z), or equivalently

3. R+ = pZ. Rv (ZoZ).

The computation proceeding along the third alternative is known as the iterative
squaring method. The first two definitions might be dubbed linear methods. We
will present some examples of these methods after we have explained how a
fixed-point can be computed.

The set of reachable states, given the set of initial states 8 0 and the immediate
neighbourhood relation 17, can likewise be expressedas a fixed-point:

Reach = pZ. 8 0 v lt. [Z (s) /\ 11 (s, t)].

This should be read as: the set Reach cernprises all the initia} states (80) united
with all the states that are immediate successors (t 17 (s)) of a reachable state
(Z(s)).

48 Sequentia! Circuits Chapter 5

Expressed in terms of H, using H (S) = À.t. 3s [S (s) A TJ (s, t)], we can write:

Reach = pZ.S0 vH(Z).

Of course it is also possible to first compute the transitive dosure of TJ and use it
to obtain the reachable states through:

Reach = S0 v ,.U. 38 [S0 (s) A TJ+ (s, t)].

This says that the reachable states are the initial states united with all states that
can be reached from them by 1 or more applications of q. Note that this form
does not seem to involve a fixed-point computation; but, in fact, the least fixed
point is needed in order to calculate rt.
From fixed-point theory it follows that the least fixed-point of a monotonic func
tion f on a fini te set A may be expressed as the limit of repeated applications:

pZ.f(Z)=.lim f 1(0),
1-too

and that there is a least i such that 'Vk> 1 fk (0) = f1 (0). Likewise, for the greatest
fixed-point we find:

vZ. f (Z) = lim f1 (A).
1-too

Example 5.1 Let's look at the calculation of the transitive dosure of the relation
R = { (0, 1), (1, 2), (2, 3), (3, 4)} on the set A= { 0, 1, 2, 3, 4} according the defi
nition R+ = pZ. R v (Zo R). Using sets instead of their characteristic functions,
this reads as R+ = pZ. R v { (s, t) 13u[Z (s, u) A R (u, t)]}. The fixed-point itera
tion proceeds as follows:

Zo=0
Z1 =R
Z2 = R V { (s, t) 13u[Z1 (S, U) A R (U, t)]}

= Rv{ (s,1)13u[R(s,u) A R(u,t)]}
= Rv{ (0,2), (1,3), (2,4)}
= { (0, 1), (0, 2), (1' 2), (1 '3), (2, 3), (2, 4)}

Z3 = Rv{ (s, t) l3u[Z2 (s, u)" R(u, t)]}
=Rv{ (0,2), (0,3), (1,3), (1,4), (2,4)}
= { (0, 1), (0, 2), (0, 3), (1 '2). (1' 3), (1' 4), (2, 3), (2, 4)}

z4 = R V { (S, t) 13u[z3 (s, u) 1\ R (u, t)]}
= R V { (0, 2), (0, 3), (0, 4), (1, 3), (1, 4), (2, 4)}
= { (0, 1), (0, 2), (0, 3), (0, 4), (1' 2), (1' 3), (1' 4), (2, 3), (2, 4) }

Zs =Z4

The calculation according R+ = pZ. R v (R o Z) proceeds in a similar fashion.
However, using the definition R+ = pZ. R v (Zo Z) we get:

Zo=0
Z1 = R

§5.5 Symbolic computation

Zz = Ru { (s, t) 13u[Z1 (s, u) A Z1 (u, t)]}
= Ru { (s, t) l3u[R (s, u) A R (u, t)]}
= Ru { (0, 2), (1, 3), (2, 4)}
= { (0, 1), (0, 2), (1 '2), (1 '3), (2, 3), (2, 4)}

Z3 = Ru { (s, t) 13u[Z2 (s, u) A Z2 (u, t)]}
=Ru{ (0,2), (0,3), (0,4), (1,3), (1,4), (2,4)}
= { (0, 1), (0, 2), (0, 3), (0, 4), (1' 2), (1' 3), (1' 4), (2, 3), (2, 4)}

z4 =Zs

49

We need fewer steps to reach the fixed-point. This can be explained as follows.
We can view the calculation of the transitive dosure R+ as a search for paths in
the directed graph G (A, R) associated with the relation R. The linear methods
consider an extension of the paths by a single edge per fixed-point iteration step;
the iterative squaring methad considers a potential doubling of the path lengths
per step, hence leading toa logarithmic number of steps as compared to the lin
ear methods. The name 'squaring' sterns from the form of the definition:
R+ = .uz. R v <za z) = .uz. R v Z2

.

o example 5.1

Now we will look at how to calculate Reach = ,uZ. S0 v H (Z) in terms of BDDs.
The iterative formulation of a fixed-point computation straightforwardly leads to
the very elegant algorithm 5.5 for the reachable state calculation.

}

S:'=0;
do {

S' :"'SovH(S);
if (S' = S) return S;

S: "'S';
} forever;

Algorithm 5.5. Reach = pZ. S0 uH (Z).

With the help of table 5.2 it is easy to express this algorithm in terms of BDD data
types. Note that for the correct interpretation of a set as a BDD, we should a pri
ori fix a set of place-holder variables {di I Os i< n }, and assume all characteristic
functions be expressed inthem according to xs = 1tdn_ 1 , ••• , d0 . · · ·• For instance,
the set S = { 00,01, 11 } has the characteristic function xs = ltd1 , d0, d1 v d0 • The
BDD only records the expression ..., d1 v d0, and if we interpret this wrongly as
ltd0 , d1, d1 v d0 we obtain the set { 00, 10, 11 }. We make sure that the set of
place-holder variables is disjoint from any other variables that appear as BDD
variables. Mind that the ordering of the place-holder variables in principle has no
relation with the BDD variabie ordering, although it might prove beneficia} in
practice to conform the BDD variabie ordering with the place-holder variabie

50 Sequentia! Circuits Chapter 5

ordering. When applying a functional, care has to be taken to correctly express
the BDD of the image set in terms of the variables of the originaL For instanee
when applying H to a set S represented by a BDD in terms of the place-holder
variables ç!, the result will be a BDD expressed over ç! representing H (S). The
parallel substitution of variables g by other variables ?5 (or other BDDs) in an
expression E will be denoted byE[g := ~ }. The veetors of variables can easily be
implemented by some suitable array or list data type.

Set BDD

0 BDD_O

s bd.d_not (S)
SuT bd.d_or(S,'l'}
StîT bd.d_and(S,'l')
S=T S•'l'

Table 5.2. Set notation versus BDD notation.

In case H is not explicitly available, we have to fall back on 11 and ultimately on
the circuit' s next-state vector N. Reeall that H (S) = .lt. 39 [S (s) A 17 (s, t)].
Given the vector N = { N1, N2 , • • • Nn } of next-state components Ni : Bn x Bm ~ B,
11 can be expressed as 11 = .4s, t. 3x A. (Ni (s, x)= t).

1 :>i:>n

BDD 1](void)
{

conj:=BDD_l;
for (i:=l; i<=n; i++)

conj :=bdd_and(conj ,bdd_equiv(Ni [g:= §·~n, 4>);
return bdd_exist(~.conj) [§·!:=g];

BDD H(BDD S)
{

return bdd_exist(§,bdd_and(S[g:=§] ,1][9:=§·!1)) [!:=g];

BDD Reach (BDD 80)
{

}

S:=BDD_O;
do {

S':=bdd_or(So,H(S));
if (S'=S) return S;
S:=S';

} forever;

Algorithm 5.6. The BDD version of Reach.

This indeed is done in algorithm 5.6 that shows the reachable state calculation in

§5.5 Symbolic computation 51

terms of BDDs. Of course the veetors of variables are assumed to be of the
appropriate size that is determined by the arity of the charaderistic fundions
that are applied to them, e.g. in the case 1J[g := ~ · !], ~ and! are of size n and are
concatenated to match g which is of size 2n.

It is obvious that instead of departing from the formulation Reach =
JJZ. Sa v H (Z), any of the other algorithms presented in this section could have
been implemented with BDDs in much the same way. Chapter 7 will show that
the fixed-point expressions that we have encountered thus far are special cases of
a more general framework, the so-called propositional JJ-calculus.

5.6 Product machine verification

Let's go back to the product machine and show how it can be constructed from
two separate sequentia! circuits. Next we show how to modify the algorithms of
the previous section to obtain a procedure to verify the equivalence of the two
circuits. Each circuit will be assumed to have m inputs and p outputs and also
the correspondence among inputs and outputs is known. The number of regis
ters, however, may be different and they may have different state encodings. Let
circuit M1 = (N1, lnit1, Y1) and circuit M2 = (N2, lnit2, Y2). Circuit M1 has n1 reg
ister bits, and circuit M2 has n2 register bits. The product machine therefore will
have n = n1 + n2 register bits. The concatenation of two bitveetors or function
veetors into one larger vector will be denoted by the · operator. The product
machine M = M1 x M2 is now defined by M = (N, Sa. Y) with:

• N: 8°x8m--78°,N=N1·N2,i.e.,

V5, EB"'.s2 EB"2 N(s1 ·S2,x) = N1 (s1,X)· N2(s2,x);

• Y: 8°x8m--7B,Y=A(Y1=Y2),i.e.,
p

V s, E B"'.s2 E 9"2 V x E sm y (s1 . s2, x) = ~ (y 1 (s1' x)= y 2 (S2, x)).

In words, we obtain the single-bit output Y by taking the conjunction over the
component-wise logical XNOR of Y1 and Y2 .

• Sa ç; 8°, Sa= { s1 . s21 s1 E lnit1 1\ s2 E lnit2 }.

For equivalence of M1 and M2 we require V 5 EReach V x E 9m Y (s, x) = 1. This test is
easily incorporated in algorithm 5.5, which results in algorithm 5.7.

We can use the correctness test to define a predicate on states that when true
means that the state is 'good', i.e., for that state no input pattem exists that vio
lates the test. Obviously, this predicate can be seen as the charaderistic function
of thesetof good states:

Good : 8°--7 B, where Good (s) = V x E sm y (S, x).

52 Sequentia! Circuits

Bool Correct (So>
{

S:=0;
do {

S' :=S0 vH(S);
if (-1Vses·VxY(s,x)) return false;
if (S' = S) return true;
S:=S';
forever;

Algorithm 5.7. Product machine verification.

In algorithm 5.7 we may therefore replace

if (-.VseS' VK Y(s,x)) return false;

by

if (S'~Good) return false;

Chapter 5

In fact what we have here is a predicate that is supposed to hold for all reachable
states. In general, any invariant for the reachable statescan be checked likewise.
We might conclude that sequentia! circuit equivalence checking by means of the
concept of a product machine is just a special case of model checking. This
should not be misunderstood to imply that it is always practical to use a model
checker (or model checking algorithms) to do sequentia! circuit verification. The
reason is that our starting point is not the product machine but the separate
descriptions of the circuits to be verified. Often building the product machine
leads to an unnecessary expansion of the state-space: in the extreme case where
the circuits are indeed equivalent and each has its universe as reachable states,
traversal of the product machine will be based on a universe B"1 +~ whereas
examination of only the smaller of the 2"1 and 2"2 number of states would have
sufficed. Also, since usually we start from a structural description of the circuits
under comparison, a preprocessing step could be applied to exploit any simHari
ties in structure to result in a reduction of the eventual product machine
[EijkC96].

Chapter 6

Temporal Logic

6.1 Introduetion

The idea of temporallogic is to supply a vehicle that allows one to reason about
system behaviour as it evolves in time. We are already familiar with traditional
propositional logie as a means to reason about combinational circuits. We could
roughly say that temporallogie is its counterpart for sequentia} circuits.

In this chapter we first look at a general structure that defines a rnader for the
subsequent temporal logies. This means that we use the structure to define the
semanties of the various logic symbols. The temporallogies that we study in
detail are Computation Tree Logic (CTL) and Linear-time Temporal Logic (LTL).

CTL has been invented with the primary purpose to allow effident testing of cer
tain system properties. These properties are often classified as liveness properties
and safety properties. Informally speaking, liveness properties express that some
thing good will eventually happen; safety properties express that nothing bad
will ever happen. For instance, in a practical situation where we have several
processors competing to gain access to a shared bus, we could assert the typkal
safety property that at any time at most one processor gains access to the bus. A
typkal liveness property in this case would be to require that every processor
eventually gets its turn. Problems of this nature can be solved by a verification
methad known as model checking: properties expressed in CTL are checked
against a state model of the system.

53

54 Temporal Logic Chapter 6

CTL belongs to the so-called branching-time temporal logies. If we throw away
the possibility to quantify over paths, and in effect only consider a single path of
states as our model, the class of so-called linear-time temporallogies ensues. A typi
cal representative of this dass is LTL. Linear-time temporallogic has a more nat
ural appeal to it: we intuitively consider time to progress along a non-branching
. time line, i.e., w~ only consider a single future. LTL therefore is a serious com
petitor of CTL in descrihing system behaviour. LTL is less suitable for model
checking (the computational complexity is much worse). LTL is commonly used
with a satisfiability checker tool. Such a program determines whether an LTL for
mula can be made true. By complementing the LTL formula input we can use
the same tool as a tautology checker.

6.2 A few words about time

As the name suggests, temporal logic has to do with time. The way we model
time depends on our application. Throughout this chapter we consider time to be
discrete; let time start at some initia! timepoint denoted as time instant 0; and
assume an infinite future. This discrete time model is convenient because we set
out to study state-based roodels of digital systems. Many of such systems are
synchronous, it is therefore natural to let our time model coincide with the tick
ing of the master system doek. But the model holds also for asynchronous sys
tems and hybrid systems as long as the events of interest can be linearly ordered
and mapped onto discrete time points.

6.3 Kripke structures

A Kripke (or tempora!) structure is a triple M = (S, R, L) [Wolpe83] with

S :a (possibly infinite) set of states,

R ç S x S : a binary relation that is total, i.e., 'V se s 31 es (s, t) e R, and

L : a state labelling function S ~ 2AP, where AP is a set of atomie proposi
tions.

The labelling function L is intended to associate with each state of S an interpre
lation of the atomie propositions AP, i.e., through L we know for each state
which atomie propositions are assigned true and which are assigned false. The
atomie propositions are meant to convey particular facts about the system under
study and for now are left without any further interpretation. There are several
alternative ways to express the above assignment:

L : AP ~ 25
, which gives for each atomie proposition the states it is assigned

true.

L: SxAP ~ B, making La boolean function that evaluates to true when a
certain atomie proposition is assigned true in a certain state, evaluating to

§6.3 Kripke structures 55

false otherwise.

L : S ~ (AP ~ B), which makes L (s) an interpretation function of an atomie
proposition at state s.

In the sequel, we will use whichever definition is the most convenient.

A Kripke structure may be viewed as a labelled directed graph: the states are the
graph's vertices and the relation A defines the edges. Note that because A is
required to be total, each vertex in the graph must have at least one outgoing
edge. To map this graph onto our model of time, we single out a certain vertex s0
and armounce that to be our initial state, i.e., the state of the system at timepoint
0. lts immediate successors will then be at timepoint 1, et cetera. This operation
will effectively 'unwind' the relation A and cause the graph to be drawn as a tree
(figure 6.1).

0 1 2 3

---............ -----
4

t

Figure 6.1. Kripke structure 'projected' on time line.

A Kripke structure can be regarcled as a state model of a system: the atomie
propositions labelling a vertex define the 'state' of the system at that vertex. The
possible behaviours of the system are paths through the graph. Such a path will
be called an execution trace. Note that a Kripke structure reflects a so-called
branching-time model; each state corresponds to a point in time and branches
(via its outgoing edges) toa number of possible futures. Note also that a Kripke
structure is very similar toa State Transition Graph (or state diagram).

6.4 Computation tree logic

Computation tree logic is a logic that is specifically tailored to reason about
atomie propositions and their change of 'value' in time as laid down by a given
Kripke structure. One also says that the Kripke structure is a model for CTL or
that CTL formulas are interpreted over Kripke structures.

56 Temporal Logic Chapter6

The syntax of the most generallogic called CTL" consists of 2 groups of only 3
rules each:

S1 Atomie Propositions and the truth values false and true are state formulas;
S2 If f, g are state formulas, so are ..., f, fA g, and f v g;
S3 If f is a path formula then E f, Af are state formulas.

P 1 Each state formula is a path formula;
P 2 If t g are path formulas, so are ..., f, f A g, and f v g;
P3 If f, gare path formulas, soareX f, f U g.

The division in state and path formulas has to do with their meaning and will
become clear in the sequel. Intuitively, the meaning of a state formula is the set of
states in the Kripke structure for which the formula is true; the meaning of a path
formula is the set of paths in the Kripke structure for which the formula is true.

What is known as CTL is a restricted form of the above logic. It consists of the
same state formulas generated by the rules S1, S2, and S3, but with the rules for
the path formulas replaced by a single new rule:

P0 1f f, g are state formulas then X f, f U g are path formulas.

Observe that the difference in CTL" and CTL syntaxis that in the latter path for
mulas may no longer be nested; they require the use of an E or A operator to
make a path formula into a state formula. When no distinction is made between
CTL" and CTL we willdenote this by CTL1·>. Wedefine the language of CTL1·>,
i.e., the set of all formulas, to be all the state formulas generated by the above syn
tax rules. Hence, from now on when formulas are not explicitly qualified, state
formulas are to be understood.

6.4.1 Semantics

Here we will define thesemantics for both CTL• and CTL, although we will only
be using the simpler logic CTL in the sequel. The meaning of a CTL<•> formula is
defined with respect to a Kripke structure M = (S, R, L) with designated initia!
state s0 • An infinite path in the graph of the Kripke structure will be called a full
path, e.g., x= (s0 , s 1 , • • ·) denotes a fullpath starting at state s0 foliowed by state
s1 and so on. We use the notatien x i to denote the suffix fullpath (si, si+ 1 , • • •) of
x, i.e., the fullpath x after deletien of a prefix of length i.

In figure 6.2 the semantics of a formula is inductively defined according to the
syntax rules. These semantic definitions should be read as follows. For a state
formula f, "M, s0 I= f iff condition" means that the formula f holds in (or is satisfied
by) the model M with initia} state s0 when the "condition" is met true). Of
course, the condition may refer to the model. So the semantic rule S1 (figure 6.2)

§6.4.1 Semantics 57

says that anatomie proposition (which is itself a state formula) is satisfied by the
model (M, s0) when that atomie proposition is assigned true by the labelling of
s0• Por a path formula f, "M, x I= f iff condition" means that the formula f holds for
the fullpath x in the model M when the condition is true. So thesemantic rule P3

for the formula p U q says that p U q is satisfied by (M, x) when there exists a suf
fix fullpath xi such that M, xi I= q holds and for all suffix fullpaths xi, such that
0 :S j < i, M, xi I= p hol ds. This is clearly an inductive definition.

M, s0 I= false -
M, s0 I= true -
M,s0 I= p iff

M, s0 I= ..,f iff

M, s0 I= fA g iff

M,s0 1=fvg iff

M, s0 I= Ef iff

M, s0 I= Af iff

M, x I= f iff

M,xl=-,f iff

M, x I= fA g iff

M,xl=fvg iff

M,xi=Xf iff

M,x I= fUg iff

M,xi=Xf iff

M, x I= fU g iff

false
true
pEL(s0)

not M, s0 I= f

M, s0 I= f and M, s0 I= g

M, s0 I= f or M, s0 I= g

::3 M, x I= f
X= (S0,S1, .. •)

'ïl M, x I= f
X=

M, s 0 I= f

not M, x I= f

M, x I= f and M, x I= g

M, x I= f or M, x I= g

M,x11=f

::Ji>o M, xi I= g and 'ï/i<i M, xi I= f

M, s1 I= f

.3i~o M, si I= g and 'ï/i<i M, s; I= f

Figure 6.2. Semantics of CTL < • >.

withx= (so.s1,···)

with x= (s0 , s1, .. ·)

A CTL (*) formula l/J is said to be satisfiable iff there exists a model for it, i.e., there
exists a Kripke structure M and a state s such that M, sI= f/) holds.

A CTL (*) formula t/J is said tobevalid (the word "tautology" would be appropri
ate as well) iff for every structure M and for every statesof M, M, sI= ifJ holds.

When needed, these definitions can easily be rephrased for path formulas.

It can be shown that CTL is strictly weaker in expressiveness than CTL*. So, there
are properties that can be expressed as a CTL* formula but no equivalent CTL
formula exists. An example will be presented at the end of the next section.

58 Temporal Logic Chapter6

6.4.2 CTL operators

In CTL, path formulas cannot be nested1 e.g. p U (q U r) is notallowed by the CTL
syntax. CTL path formulas are constructed using the X and U operators and
must immediately be preceded by a unary E or A operator to turn them into
state formulas. We therefore combine these possibilities into 4 separate operators
with a slightly different notation for ease of writing:

E (Xf)
E (fUg)
A (Xf)
A (fUg)

becomes EXf
becomes fEU g
becomes AXf
becomes f AUg

The abstract syntax of CTL may now be expressed by the single BNF production
rule:

CTL ::= AP I ., CTL I CTL A CTL
CTLvCTL I EXCTL I AXCTL I CTLEUCTL I CTLAUCTL.

In practice, one often chooses a different set of basic CTL operators. Here we
select the operators EX 1 EG 1 and EU. EG is a new operator we haven't seen
before. lt is intended to express that there exists a fullpath such that the operand holds
for all states on that path. A more formal definition is given in figure 6.3.

M,s0 F= EXf iff 3 M, s1 F= f
(SQ,s,, ...)

M,s0 I= EGf

M, s0 F= f EU g iff 3 3 M, si I= g and V M, si I= f
(SQ,S,..-·) j~O kj

Figure 6.3. Selection of basic CTL operators.

lt is easily derived that EG f =., (true AU.., f). We will further introduce the truth
values false and true and include the following set of derived operators:

EFf = true EUf
AXf = ., EX .,f
AGf = .., EF -tf
fAUg = ., ((-.gEU (-,fA-,g)) V EG-,g)
AFt = trueAUf

In total we now have 8 temporal operators in our version of CTL.

Example 6.1 A property that can be expressed in CTL • but not in CTL is the

§6.4.2 CTL operators 59

following: anatomie proposition, say p, is true infinitely often along a path. To be
precise, we claim the (state) formula EG Fp to be true for the initial state of a cer
tain model. (In terms of the original operators the formula reads
E.., (true U.., (true Up)).) A simple model that satisfies the property is drawn in
figure 6.4.

Figure 6.4. Model that satisfies EG Fp.

The dosest CTL formulas that come to mind are EG EF p and EG AF p. However,
it should be intuitively clear that both formulas do not require the path that satis
fies the EF (resp. AF) subformula to coincide with the path that satisfies EG.
Because of the restrictive syntax of CTL to prefix path formulas with a quantor, it
is not possible to impose that the selected paths being quantified will be one and
the same path. Figure 6.5. shows a model for EG EF p that is not also a model
for EG Fp.

Figure 6.5. Model that satisfies EG EF p but not EG Fp.
o example 6.1

6.5 CTL model checking

Our purpose of introducing CTL is to arrive at a method for automatically verify
ing properties of systems. If the systems we are consiclering have a finite set of
states, the behaviour of such a system may be modelled by a finite Kripke struc
ture M. Often we know that the system starts insome initial state s0 . Then a cer
tain property of the system may be expressed as a CTL formula t/J and checked
against the model, i.e., we try to prove that M, s0 I= t/J.

On the other hand, observe that any CTL formula t/J could also be interpreted
within a given Kripke structure M as denoting a set of states, namely those states
s for which M, sI= t/J holds. We therefore define:

Q (t/J) ç; Sis thesetof states associated with CTL formula t/J, such that:

Q (t/J) = {sIM, sI= t/J }.

One way to find out whether a certain property t/J holds for a given system, is to
compute Q (t/J) and check whether s 0 E Q (t/J). The Q sets for each possible form

60 Temporal Logic Chapter 6

of CTL formula are easily derived from the semantics. Figure 6.6 provides a
complete list based on a given Kripke structure M = (S, R, L). We use the nota
tion R (s) to stand for the set { t e S I (s, t) e R }.

Q(false) = 0
Q(true) = s
Q(p) = {seSipeL(s)}
Q(-,f) = S\ Q(f)
Q(fAQ) = Q(f)nQ(g)
Q(fvg) = Q(f)uQ(g)
Q(EXf) = {seSIR(s)nQ(f):,t:0}
Q (EGf) = Q (f) n Q (EX EG f)
Q(f EU g) = Q (g)uQ(f)nQ(EX (fEUg))

Figure 6.6. State-sets for the basic CTL formulas.

The last two equations are recurrent. Luckily their solutions are well-defined and
can easily be computed as we shall see in the next section. For now we assume
the existence of the functions OEx, QEG, and Q Eu defined in figure 6.7.

OEx (Q(f)) =
QEG (Q(f)) =
OEu (Q(f),Q(g)) =

Q(EXf)
Q(EGf)
Q(fEUg)

Figure 6.7. Auxiliary state-set functions.

The association of a state-set with a formula is implemented by algorithm 6.1.

28 Q(CTL f)
{

}

switch (f)
case false:
case true:
case P:
case -.g:
case gA h:
case gvh:
case EXg:
case EGg:
case gEU h:
}

return 0;
return S;
return { s E SI P e L (s));
return S\ Q (g);
return Q(g) nQ(h);
return Q(g) UQ(h);
return QEx (Q (9)) ;

return QEG (Q (Q));

return QEu (Q (9) , Q (h)) ;

Algorithm 6.1. Derivation of state-set from a CTL formula.

§6.5.1 Model checking algorithms 61

6.5.1 Model checking algorithms

The state-sets for EG and EU are expressed as recurrent equations. These
equations are derived from the following logica! equivalences for these
operators:

EG f = f A EX EG f

tEUg= g V fA EX (fEUg)

One might look at these equations as theorems of CTL and prove them by
resorting to their semantic definitions. No te that Q (EX f) is defined to be those
states that have at least one successar that belongs to Q (f). In other words,
Q (EX f) is the image of Q (f) under the converse rel a ti on R - 1

; this is usually
called the pre-image under R. Apart from R - 1 we will use the following nota ti on
for the various sets associated with R:

RçAxA
R: A~ 2A
R:2A~2A

R (s) = { t E s I (s, t) E R }
R(S)= U R(s)

SES

R0
(S) = S

R1 (S) = R(S)
Rk (S) = Rk- 1

(R (S))

R - 1
(t) = { s E s I (s, t) E R }

R- 1 (T) = U R- 1 (t)
t ET

Relation
Function

Extended function
(definition)
(extension)

Identity
Image

Iterated application
(converse)
Pre-image

Using Q (EX f) = R - 1
(Q (f)) and identifying R - 1 with OEx, we can rewrite the

state-sets for EG and EU as follows:

Q(EG f) = Q(f) nOEx (Q (EGt))

Q (f EU g) = Q (g) u Q (f) n OEx (Q (f EU g))

To solve these equations we can apply fixed-point theory. Assuming that Q (f)
and Q (g) are known, i.e., the terms may be considered constant, say 0 1 and 0 9,

we are dealing with functions F of signature 28 ~ 28 for which we like to find a
fixed-point value. Our task is to solve the following fixed-point equations:

ZEG = FEG (ZEG)= OtnOEx (ZEG)

ZEU = FEu (ZEu) = 0 9 uOtnOEx (ZEu)

Without proof we here state the correct fixed-point characterizations of the state
sets for the EG and EU operators:

62 Temporal Logic Chapter 6

Q (EG f) = Vz. af na Ex (z), i.e 1 a greatest fixed-point computation,

Q (f EU g) = pZ. Og u af n aEX (z), i.e. I a least fixed-point computation.

The computation of a (EG f) proceeds as follows. We start with our initial
approximation Z0 = S because we have a greatest fixed-point at hand. Then we
calculate Z1 = 0 1 n R- 1

(Z0) = a 1 n R - 1
(S). Using this result, we calculate Z2 ,

and so on, till we findat some step k;;::O that Zk+1 = Zk, in which case we are done
and the salution is Zk. The function aEG = À.af. vZ. al nQEX (Z) is presented in
pseudo-C code in Algorithm 6.2.

for (k:=O, Zk:=S;; k++l {

zk+1; = Ot nQEx (Zkl i

if (Zk+1=~) return ~;

Algorithm 6.2. Greatest fixed-point calculation of Q (EG f).

In an analogous way we can derive the procedure to compute Q (f EU g) by
defining the function OEu = À.a~o09.,uZ.a9 uQ1 nOEx (Z). This is shown in
algorithm 6.3.

2s QEu <28 Ot, 28 0 9)
{

for (k:=O, ~:=0;; k++) {

~+1 :=09 u <OtnQEx <Zkl);

if (Zk+1=Zk) return Zk;
}

Algorithm 6.3. Least fixed-point calculation of Q (f EU g).

The auxiliary routine QEX simply returns the pre-image of a set:

Algorithm 6.4. Pre-image calculation.

Note that for a Kripke structure R- 1
(S) = S and R- 1

(0) = 0. Therefore we
could have slightly simplified the above algorithms by using a different

§6.5.1 Model checking algorithms 63

initialization and then skipping the first iteration step. Apart from the need to
calculate R - 1

, i.e., the pre-image, the algorithms solely use set operations which
may be implemented in variety of ways. In symbolic model-checking the choke
is to use BDDs.

6.6 Linear-time temporal logic

As stated in the introduction, LTL and CTL are closely related. Bothare restricted
versions of the more generallogic CTL •. We will he re use the more classical nota
tion for the LTL operators [Manna81]: o, pronounee always, instead of the
CTL*'s G; <>, pronounee sometime, instead of CTL*'s F; U, pronounee (strong)
until; and o, pronounee next, instead of CTL*'s X. The U operator is the so
called strong until operator. We will also include the weak until operator Uw .

The truth of a temporal formula is determined by the truth values of its atomie
propositions which may vary from time instant to time instant. The temporal
operators can informally defined by:

For any temporal formula f and g,

of, is the proposition that for every time instant, now and in the future, the
formula f will be true,

<>f, is the proposition that the formula f will ever, perhaps now but definitely
(if not now) sametime in the future, become true,

f U g, is the proposition that the formula f will be true at least for all time
instants from the present until (but not necessarily including) the time when g
becomes true, and the latter must inevitably happen,

f Uw g, is the proposition that the formula f will be true at least for all time
instants from the present until (but not necessarily including) the time when g
becomes true, but the latter need not ever happen,

of, is the proposition that f is true in the next time instant, i.e. the one imme
diately following the present,

a propositional formula f is true in LTL if it is true in the present time instant,
irrespective of whatever its variables' values will be in the future.

Propositional temporal logic may be completely formalized in a manner very
similar to propositionallogic, defining a number of axiom schemata and rules of
inference. It can be proven that in this way a sound and complete theory is estab
lished. A decision procedure is available that determines for each temporal for
mula whether it is a theorem or not. This decision problem is shown to be
PSPACE-complete (a class of problems that includes the NP problems [Garey79])

64 Temporal Logic Chapter6

in [Sistl85]. We will present a program that decides the satisfiability of an LTL
formula in section 6.7.

Wedefine LTL as a language over an alphabet of atomie propositions AP. For the
latter we use the same definition as with propositionallogic. The syntax of LTL
formulas is shown in figure 6.8.

formula

term

factor

primary

term [v formula] .

factor [A term] .

primary [(U I Uw) factor] .

false
true
p
.., primary
o primary
<> primary
o primary
(formula).

where Pisanatomie proposition taken from AP.

Figure 6.8. LTL Formula Syntax.

The meaning of a temporal logic formula is defined with respect to a Kripke
structure M = (S, R, L), where S is a fini te set of states, R : S--; S a total succes
sor function giving for each state a unique next state and L : S --; ~ a labelling
of a state with a set of atomie propositions true in that state.

The truthof an LTL formula is inductively defined relative to a structure M and a
state s by figure 6.9.

If thesetof states Sis finite and the successor relation is a total function, any infi
nite sequence of time instants, to be more precise: any infinite sequence of occur
rences of states, may be represented in a fini te way by a w-regular string over the
alphabet S, i.e., it consists of a certain possible empty prefix sequence foliowed
by an endless repetition of a cycle of 1 or more states. This can be depicted by a
lasso-shaped graph.

An LTL formula f is satisfiable, i.e. can be made true, if we can find a model
(M, s0) such that M, s0 I= fis true. If a formula is true in a model we also say that
the model, or sequence of states with associated truth-assignment (since that
uniquely determines the model), verifies or satisfies the formula.

A formula is said to be valid iff it is true in every model, notation: I= f. We will
adopt the term tautology introduced in propositionallogic for valid formulas. A
formula that cannot be satisfied by any model is a contradiction. Two formulas f
and g are said to be equivalent, notation f = g, when I= (f H g) holds. Note that a

§6.6 Linear-time temporal logic 65

M, sI= false tal se

M, sI= true - true

M, sI= p iff p e l(s) (for peAP)

M~sl=-,f iff not M, sI= f

M,sl=fvg iff M~sl=for M,sl= g

M,sl=fAg iff MI s I= f and MI s I= g

MIs I= of iff M1 R (s) I= f

M, sI= <>f iff 3 M1 R
1

(s) I= f
i~O

M~sl=of iff \t MI R1
(s) I= f

i~O

M, sI= f U g îff .3 (M,R1(s)l=gand \t .M.Ri(s)l=f)
1~0 O~J<I

M, sI= fUwg iff M~sl= (fUg)vof

where R1
(s) denotes the ith successar of s.

Figure 6.9. LTL Formula Semantics.

formula is unsatisfiable if and only if its negation is a tautology and conversely a
formula is valid iff its negation is unsatisfiable.

6.7 An L"rL satisfiability checker

The satisfiability problem of an LTL formula asks whether there exists a truth
assignment to the atomie propositions in the formula at each time instant that
make the formula true. Here we will describe an algorithm for checking the sat
isfiability of an LTL formula. We can distinguish three main steps:

1. Parsing. In this phase a formula is converted to a binary tree.

2. Normalization and optimization. The formula is converted to negation nor
mal form and a number of optimizations are performed.

3. Model construction. In this phase the actual model is constructed.

These steps will now be explained in more detail.

6.7.1 Parsing an LTL formula

The lexkal analyser and parser routines are generated by the UNIX utilities lex
and yacc from the LTL token and grammar definition files. The parser constructs
a rooted ordered tree representation fortheinput formula. Note that in the algo
rithms and examples of this section we use the alternative 'printable' symbols to

66 Temporal Logic Chapter6

denote the LTL operators as shown in table 6.1.

Math. notation:
..,
A

V

0

<>
0
u

Uw

ptl notati

&

V
@

<>
[l
u

Uw

Logkal negation
Conjunction
Disjunction
Next
Sometime
Always
Strong until
Weakuntil

Table 6.1. Notation of LTL operators as used by the program.

6. 7.2 Normalization

Propagate all NOT operators towards the leaf nodes of the formula tree. After
warcts a NOT operator may only appear directly in front of a variabie node. The
formula is then said to be in negation normal form (nnf). The following identities
are used in this process:

-.false = true, -.true = false,
..., ...,f = f, -.of = o-,f,
...,<>f = o..,f, -.of = <>..,f,
-.(fAQ) = ..,fv-,g, ..., (fvg) = -,fA -.g,
-.(fUg) = -.gUw (..,fA -.g), ..., (fUwg) = .., Q U (.., f A ..., Q).

We use the two, mutually recursive1 routines of algorithm 6.5 and algorithm 6.6.

Tree neg{Tree f)
{

switch (f) {

case <false>: return <true>;
case <true>: return <false>;
case <p>: return <! p>;
case <! g>: return nnf(g);
case <@ g>: return <@ neg(g)>;
case <<> g>: return < [] neg(g)>;
case <[] g>: return <<> neg(g)>;
case <U g h>: return <Uw neg(h) <& neg(g) neg(h)>>;
case <Uw g h>: return <U neg(h) <& neg(g) neg(h)>>;
case <& g h>: return <+ neg(g) neg(h)>;
case <+ g h>: return <& neg(g) neg(h)>;
}

Algorithm 6.5. Negate formula f.

§6.7.2 Normalization 67

Tree nnf(Tree f)
{

switch (f) {

case <false>:
case <true>:
case <p>: return f;
case <! g>: return neg (g);
case <@ g>: return <@ nnf(g)>;
case <<> g>: return <<> nnf(g)>;
case < [1 g>: return < [] nnf(g)>;
case <U g h>: return <U nnf(g) nnf(h)>;
case <Uw g h>: return <Uw nnf (g) nnf(h)>;
case <& g h>: return <& nnf (g) nnf(h)>;
case <+ g h>: return <+ nnf(g) nnf(h)>;

Algorithm 6.6. Convert formula f to negation normal farm.

6.7.3 Optimization

Exhaustively apply the rewrite rules listed in figure 6.10 to the formula in nnf.
Optionally, delete all<> and o operators at the top of the formula tree. Use the
meta-identities:

<>f satisfiable iff f satisfiable
of satisfiable iff f satisfiable

The next step in the optimization process is the reduction of the formula tree to a
directed acyclic graph (DAG). All isomorphic subtrees (subformulas) modulo
commutativity of AND and OR operators are identified and collapsed. Also
nocles with identical left and right children are deleted and replaced by their
unique child. The latter is justified because of the identities:

f td = f
fvf = f
f u f = f
fUwf = f

This effectively converts the formula tree into a DAG. The advantage clearly is a
reduction of the number of subformulas to be considered in the model construc
tion phase. For brevity and clarity, all algorithms on DAGsin the sequel are pre
sented without the necessary marking of nocles to avoid visiting the same node
more than once.

68 Temporal Logic Chapter6

-.tal se ~ true ofalse ~ tal se
-,true ~ tal se otrue ~ true.

<>false ~ false ofalse ~ tal se
<>true ~ true otrue ~ true

<>Of ~ O<>f oot ~ oot
<><>f ~ <>f oot ~ of

<>O<>f ~ O<>f O<>Of ~ <>Of
<>(fU9) ~ <>9 0 (fUw 9) ~ 0 (fv9)

false U f ~ f falseUw f ~ f
f U false ~ tal se fUw false ~ of
true U f ~ <>f true Uw f ~ true
f U true ~ true fUw true ~ true

of U 09 ~ 0 ofUw09 ~ 0 (fUw 9)
f u <>9 ~ <>9 (of) Uw9 ~ ofv9
p u -,p ~ <>..,P PUw..,P ~ true
-,pup ~ <>P ..,PUwP ~ true

f u f ~ f* fUwf ~ f*

false "f ~ tal se falsevf ~ f
true " f ~ f truevf ~ true
f" false ~ false fvfalse ~ f
f " true ~ f fvtrue ~ true
of" 09 ~ o(fA9) ofvo9 ~ o (fv9)
of" 09 ~ o(fA9) <>fV<>9 ~ <>(fv9)

PAP ~ p pvp ~ p
-,p 1\ -,p ~ -,p -,pv-,p ~ -,p

-,p 1\ p ~ tal se -,pvp ~ true
p 1\ -,p ~ false pv-,p ~ true

f 1\ f ~ f* fvf ~ f*

Figure 6.10. Rewrite rules. (* indicates 'done during reduction'.)

6.7.4 Model construction

An LTL formula is satisfiable when we can construct an infinite path of states
such that all eventualities on that path are fulfilled. Evenmalities are subformulas
of the kind <> and U . Our approach will be to construct not just a single path
but all possible paths as a graph in one go. Edges and vertices of that graph are
associated with the disjunctive normal form representation of a temporal formula
defined in this section.

First we identify the propositional subformulas and the so-called elementary
subformulas in the DAG for a formula. They are defined by means of
algorithm 6.7 and algorithm 6.8 respectively. In the ptl program we represent a
propositional subformula by a BOD over the set of atomie propositions. Our defi
nition of elementary subformulas is slightly different from the usual one
[Burch91]. Por one, we don't regard atomie propositions as elementary, and also
we don't consider all o operators elementary but use their operands instead.

§6.7.4 Model construction

Bool propositional(Dag f)
{

switch (f) {
case <false>:
case <true>:
case <p>:
case <' p>: return true;
case <@ g>:
case <<> g>:
case <(] g>:
case <U g h>:
case <Uw g h>: return false;
case <& g h>:
case <+ g h>: return propositional(g) && propositional(h);

}

Algorithm 6.7. Test whether formula fis propositional.

69

With these definitions of the propositional subformulas and elementary subfor
mulas of a formula f it is possible to express any LTL formula f in the following
disjunctive normal form for certain propositional formulas Pi> Pk (which may be
true and in that case are omitted) and elementary gi:

f = V (Pi A 0 (Pk A /\gi))
I J

Moreover, every formula that results from expanding a <>, o, U, or Uw subfor
mula according

<>f
of
f u g
fUwg

=
=
=
=

fv o <>f
fA oot
gvfAO(fUg)
g V f A 0 (f Uw 9)

can again be written in that very same form. For later reference, we mention that
the term of which o is part in the above expansions will be referred to as the
inductive term, the other term (g) is called the finite term.

Example 6.2 Consicier the formula .,<>-,pvoq A o (pU-,oq)v-,o (-,pA q).
We will subject this formula to the processing steps described thus far. The for
mula in negation normal form reads op v o q A o (p U <>., q) v o (p v., q) . Th is
may be optimized to op v D q A o <>.., q v o (p v.., q). The propositional subfor
mulas are easily determined to be { p, q,., q, p v., q }; the elementary subformulas
are { opvoq A o <>...,q vo (p v., q), op, oq, <>., q }. Using the above 'expansion'
rules the formula can be written as pA oop vq A ooq A o <>., q vo (pv-,q)
which indeed has the required (top-level) sum-of-products of propositional and

70 Temporal Logic

Set elem_l(Dag f)
{

}

if (propositional(f)) return 0;

switch (f) {
case <@ g>:

if (propositional(g)) return 0;
switch (g) {
case <@ h>: return I g)uelem_l (h);
case <<> h>:
case < [] h>:
case <U h i>:
case <Uw h i>: return elem_l (g);
case <& h i>:
case <+ h i>: return { g }uelem_l (h) uelem_l (i);

case <<> g>:
case <[] g>: return {f}uelem_l(g);
case <U g h>:
case <Uw g h>: return {f)uelem_l(g) uelem_l(h);
case <& g h>:
case <+ g h>: return elem_l (g) uelem_l (hl;

Set elem(Dag f)
{

}

if (propositional(f)) return 0;

return { f) uelem_l (f);

Algorithm 6.8. Determine elementary formulas of f.

elementary subformulas form:

o example 6.2

Prop.A
p
q
true

oProp.A
true
true
pv-.q

o /\Elementary
{op l
{oq,<>-.q}
0

Chapter6

Every conjunct in the disjunctive normal form defines an (edge, vertex) pair; the
edge represents the propositional formula Pi, a vertex represents the term
Pk A (\g1. The initia! vertex of the graph represents the formula f under test.

I

§6.7.4 Model construction 71

p1

Figure 6.11. Graphical representation of a formula f in disjunctive normal form.

(Technically of is represented, but we have already seen that f is satisfiable when
ever of is.) Figure 6.11 visualizes the aforementioned interpretation of the tem
poral disjunctive normal form. Note that all vertices, possibly with the exception
of the initial vertex, will be labelled by a conjunct consisting of a propositional
formula and zero or more elernentary formulas. Actually, to get a more uniform
vertex labelling one could decide to introduce multiple initial vertices, one for
each conjunct in the DNF of the forrnula f, and then check each for satisfiability
separately.

The graph construction proceeds by consiclering the conjunct labelling a vertex
and converting it to disjunctive normal form. This then gives us a nurnber of
(edge, vertex) pairs that are the outgoing edges and irnrnediate successors of the
vertex under consideration. Note that pairs for which the edge label is identically
false need not be included in the graph: they express an unsatisfiable continua
tien. This can easily be checked when the edge labels are represented by BDDs. A
sirnilar remark holds for the propositional subformula that is part of a vertex
label: when it is found to be unsatisfiable, again the (edge, vertex) pair is dis
carded since that vertex cannot have any successors. The maximurn number of
distinct vertices equals the cardinality of the powerset of the atomie propositions
together with the elernentary subformulas, and hence is fini te. By keeping all ver
tex labels unique (using a hash table) no duplicate vertices will be created.

Example 6.3 Following up on the previous exarnple, we will now show how
the model graph for the formula ., <>-. p v o q A o (p U .., o q) v.., o (..., p A q) is
constructed. The initial vertex (1) is labelled with the formula
op v o q A o <>., q v o (p v., q). This results in 3 outgoing edges:

p
q
true

labelled: To vertex:
(4): {op}
(5): {oq,<>-,q}
(2): {pv-.q}

72 Temporal Logic

Converting each new vertex to DNF gives:

Vertex:
(4)
(5)
(2)

Label:
{op}
{oq, <>-.q}
{pv-.q}

DNF:
pA oop
q A o (oq 1\ <>-.q)
(p v .., q) 1\ o true

This again results in the following outgoing edges per vertex:

Vertex: Outgoing (edge, vertex) pairs:
(4) { (p, (4)) }
(5) { (q, (5))}
(2) { (p V.., q, (3)) }

Chapter6

Vertex (3) is the true vertex. Expanding it will result in a single self-looping edge
labelled with true. The complete model graph is drawn in figure 6.12. The anno
tations of the vertices will become clear in the sequel.

Figure 6.12. Model graph for example formula.

o example 6.3

Once the model graph is created, an infinite path still has to be found starting at
the initia! vertex and satisfying all eventualities encountered in the vertices com
prising the path. Instead of searching for a path and checking fulfillment of even
tualities a posteriori, these actions may be combined with the actual model graph
construction. Constructing a path entails a depth-first graph construction pro
cess; by appropriately marking the vertices on the current path, cydes are easily

§6.7.4 Model construction 73

discovered. The depth-first approach will naturally construct a spanning tree in
the graph. A strongly connected component in the graph can be shown to con
sist of vertices that forma subtree of this spanning tree [Tarja72]. Hence it makes
sense to refer to a vertex as being the root of a strongly connected component.
Note that the notion of a root only makessensein the context of a given span
ning tree. The following observations will prove helptul in determining a satisfy
ing path in the model graph. They first occurred in [Janss90].

Lemma 6.1 If a vertex in a model graph is satisfiable, then so are all its prede
cessar vertices.

Proof: By definition of the disjunctive normal form for LTL formulas, a vertex
with formula label f is a predecessor of a vertex labelled g, if the DNF of f con
tains the conjunct p J\ o g for some satisfiable propositional formula p (the edge
label). Since we assume g to be satisfiable, o g also is satisfiable, hence the con
junct p J\ o g is, and therefore f must be satisfiable.
o lemma 6.1

Corollary 6.1 If a vertex has a successar vertex that is satisfiable, then the vertex
itself is also satisfiable. Equivalently, if no successar is satisfiable then the vertex
is not satisfiable.

Proof: Quite obvious restatement of lemma 6.1 in termsof successors.
o corollary 6.1

Lemma 6.2 Either all vertices on a cycle are satisfiable or none of them is.

Proof: Immediate from lemma 6.1.
o lemma 6.2

Corollary 6.2 Either all vertices of a strongly connected component (SCC) are
satisfiable (we then speak of a satisfiable SCC) or none is.

Proof: Immediate from the definition of an SCC and lemma 6.2.
o corollary 6.2

Lemma 6.3 If an eventuality is present in some vertex of a cycle and it is not
fulfilled by the cycle, it must necessarily reappear in every vertex of the cycle. It
on the other hand, there is some vertex of the cycle where the parbeular eventu
ality is absent, we must conclude that the eventuality is fulfilled by the cycle.

Proof: We first examine how eventualities propagate in the model graph. Assume
a single eventuality <>g to be present insome vertex (the case of multiple eventu
alities and eventualities caused by strong until operators can be treated analo
gously). In generat the formula f labelling this vertex is a conjunct like h J\ <>g,

74 Temporal Logic Chapter6

where h stands for a conjunction of propositional and elementary formulas. A
first step in rewriting formula f into DNF causes the eventuality to be split into its
finite and inductive parts that will end up in different conjuncts:
(h A g) v (h 1\ o <>g). We notice that in the path continua ti on via the fini te term
(g) the eventuality disappears, and that in the path continuation via the inductive
term (o <>g) the eventuality reappears as part of the label of a successar vertex.
These continuations are of course only valid when the respective propositional
parts (the edge labels) are satisfiable, which is assumed to be the case in our
model graphs. When the vertex is part of a cyde, we therefore condude that its
eventuality is fulfilled if and only if there exists some other vertex of the cyde in
which the particular eventuality is absent, because absence of the eventuality
implies that apparently the alternative finite term continuation was indeed taken.
olemma6.3

Theorem 6.1 An SCC in the model graph is satisfiable if and only if

1. another satisfiable sec can be reached from it, or

2. the root of the sec has no eventualities and the sec is not trivia} (an sec
is called trivia! when it consists of a single vertex without a self-looping
edge), or

3. the SCC is non-trivia! and the root does contain eventualities but they are
all fulfilled within that sec.

Proof (1) If another satisfiable SCC can be reached we can apply lemma 6.1
repeatedly to reason backwarcis along a path to the satisfiable sec. Note that in
case of a trivia! sec either case (1) applies or it doesn't, and then it will be
announced unsatisfiable by application of corollary 6.1.

For cases (2) and (3) it suffices to only consider non-trivia! secs that have no out
going paths to satisfiable secs. These secs will all have at least one infinite path
that is fully contained within the sec and therefore their satisfiability solely
depends on the fulfillment of any eventualities on such a path. From lemma 6.3
we leam that it suffices to consider root vertex eventualities onl)" since any even
tuality present in some other vertex of the sec which is not fulfilled within that
sec will also be present in the root. If there are no eventualities present in the
root, as stated in case (2), we can directly conclude that the SCC is satisfiable.

Suppose that indeed all eventualities present in the root are fulfilled within the
component. Then the root is satisfiable and from corollary 6.2 we leam that all
other vertices of the SCC are satisfiable as well. Contrariwise, if the eventualities
in the root are not fulfilled, a satisfying path emanating from the root does not
exist and we must condude that the root is unsatisfiable, hence the whole SCC is
unsatisfiable. This proves case (3).
o theorem 6.1

§6.7.4 Model construction 75

The above theorem tells us that discovering SCCs in the graph is very fruitful.
We use a slightly modified version of the well-known Tarjan algorithm [Tarja72].
The advantages are that with our algorithm we just keep one number, the so
called lowlink value, per vertex instead of two as in the Tarjan algorithm. Also
we have simplified the lowlink update part (less cases need be considered). It
tums out that these modifications have been known to others for some time, for
instanee Mark P. Jones uses exactly the same approach in his implementation o(
the functional programming language Gofer. I wasn't able to find the modified
algorithm in any textbook or publication. Here is the (pseudo-)C rendition of our
SCC algorithm that serves as a skeleton for the LTL satisfiability routine to be
presented next.

/* Preconditions to top-level call: global dfsnum = 0; lowlink(u) 0 for all u; vertex stack is empty. *I
void SCCs(Vertex u)
{

lowlink_orig:=lowlink(u) := ++dfsnum;
push (u);

foreach_outedge (e, u) {
v: =ds t (e) ; /* v is destination of edge e. *I

if (!lowlink(v)) SCCs(v);

if (stacked(v) && lowlink(v) < lowlink(u))
lowlink(u) :=lowlink(v);

if (lowlink(u) = lowlink_orig) /*uisrootofnewcomponent*l
/* New component consistsof the popped vertices. *I
while (pop() != u);

Algorithm 6.9. Strongly connected components.

To turn algorithm 6.9 into an LTL satisfiability algorithm three modifications are
necessary:

1. We rename the routine from SCCs to sat and introduce a boolean return
value that is true in case a model is found, and false otherwise. From part 1
of theorem 6.1 we learn that when the recursive call returns true, the caller
mayalso directly return true.

2. The for-loop that iterates over every successar v of u must be changed to
iterate over every (edge, vertex) pair derived from the disjunctive normal
form of the label for u. The latter is calculated by a routine named dnf.

3. Once a new sec is discovered we still need to check parts 2 and 3 of
theorem 6.1. This is done by scc_sat which gets the root of the compo
nent as argument.

76 Temporal Logic Chapter 6

Applying these modifications yields the following algorithm 6.10. The first num
ber annotated with each vertex in figure 6.12 correspond to the depth-first search
number. The presence of an eventuality is indicated by putting the dfs-number
in angular brackets. We see that vertex (5) indeed contains an eventuality (in
fact caused by the <>.., q elementary subformula). The second number is the sec
number which clearly is assigned in reverse topological fashion. The model
graph in figure 6.12 has 5 SCCs.

Bool sat(Vertex u)
{

lowlink_orig:=lowlink(u) := ++dfsnum;
push(u);

foreach (e,v) pair in dnf(u) {
add edge e=(u,v) to model graph;

if (! lowlink(v))
if (sat(v)) return true;

if (stacked(v) && lowlink(v) < lowlink(u))
lowlink(u):=lowlink(v);

if (lowlink(u) = lowlink_orig) { /*uisrootofnewcomponent*/
if (SCC_sat(u)) return true;
while (pop() !=u);

}

return false;

Algorlthm 6.10. SCC modified for LTL satisfiability.

An algorithm for the conversion to disjunctive normal form has already been
presented in section 3.4. So, it remains to explain how the function scc_sa t can
be implemented. Checking for the second case of theorem 6.1 is obvious: see
whether the root vertex has no eventualities and the component is not a single
vertex without self-loop. The third case is trickier: there are eventualities among
the elementary subformulas in the conjunct labelling the root vertex and we now
must show that they are all fulfilled within the component. To ease this test we
introduce markings on the edges. Whenever during DNF conversion a <> or U
subformula is expanded the (edge, vertex) pair that is created for the finite term
of the expansion will be flagged with the <> or U subformula. With this provi
sion, we can check for fulfillment by collecting the markings of all edges belong
ing to the sec and comparing this set with the eventualities present in the root
vertex.

The eventuality <>.., q in the model graph of figure 6.12 is not fulfilled. This is
indicated by the negative dfs-number in angular brackets. In this case we have a
singleton SCC with a self-loop. During expansion of the vertex's formula

§6.7.4 Model construction

Bool eventualities_fulfilled(Vertex u)
{

if (!eventualities_present(u)) return true;

/* eollect all markings on edges of this see: *I
markings: =0;
for (v e sec of which u is root)

foreach_outedge (e, v)
if (dst (e) E sec of which u is root)

markings: =markings umarkings (e);

/* Naw check for fulfillment of<> and U one by one: *I
foreach (f I f is <> or U subformula of u)

if (f li!Omarkings)
return false;

return true;

Bool SCC_sat(Vertex u)
{

if (SCC_size(u) 1)
/*Singleton sec. *I
foreach_outedge (e, u)

if (dst (e} = u}

}

/* Self-looping edge present. *I
return eventualities_fulfilled(u};

/*No outgoing edges or no self-loop. *I
return false;

/*Nat a trivial sec. *I
return eventualities_fulfilled(u);

Algorithm 6.11. Checking an SCC for eventualities.

0 q A <:>-. q the fini te term disappears SO no edge in the SCC will be marked.

6.8 Specificatien of finite state machines in LTL

77

The Finite State Machine (FSM) has since long been appreciated as a convenient
model for the description of the behaviour of control hardware. It has become
practice for many designers to specify control-dominated [WolfW90] logic
designs using state diagrams or flow charts. Here we show how Finite State
Machines can be described by LTL formulas. Many questions concerning the
behaviour of the FSM may also be stated within the same formalism. We do not
here consider the mathematica! aspects of the relation between languages,
automata and logies [Emers90]. We set a more modest goal of indicating the
required transformations from a design automation point of view.

78 Temporal Logic Chapter6

6.8.1 Notational preliminaries

A Finite Autornaton is a quintuple (Q, :E, ö, q0 , F) with Q a finitesetof states, :E
the input alphabet, ö the transition mapping, q0 a start state and F the set of
accepting states. The autornaton defines a language of strings of input symbols.
In terros of a logic circuit, we usually let the input symbols correspond to data
bits on a number of input lines and the states correspond to the values contained
in the flip-flops. In hardware applications it is the custom to introduce two
derived machine concepts, known as the Moore and Mealy type machines. For
clarity, we will classify the various machines types as shown in figure 6.13 below.

Without output:
Fully specified

deterministic
non-deterministic

Incompletely specified
deterministic
non-deterministic

With output:
Fully specified

deterministic (Moore/Mealy)
non-deterministic?

Incompletely specified
deterministic (Moore /Mealy)
non-deterministic?

Figure 6.13. Fini te State Machine Classification.

We will eaU a machine incompletely specified if the ö function is not fully defined
over its domain of states and symbols. Also wethen allow don't care outputs in
Moore and Mealy machines. There seems to be no practical sense in defining
non-deterministic machines with output, hence the question mark. The basic
idea to define a FSM in temporal logic is to associate the states of the machine
with the states in the model, and let a transition coincide with a step in time.

We will use lineprinter font to denote temporal formulas in the syntax
acceptable for our satisfiability checker program. Narnes for states and symbols
of a FSM will be written in italic, using subscripts when appropriate. We prefer to
leave the & (and) operator in LTL implicit. An operator applied to a set of
operands is to be understood as the reduction of the operator over the operands,
e.g. V{vi} = V1 vv2 v···VVn.

6.8.2 FSM to LTL transformation

Let us start with the simple case of a fully specified, deterministic finite state
machine without output. To describe such a machine in LTL we introduce a
propositional variabie for each input symbol and one for each state (Step 1). Of
course, only exactly one input symbol may be offered at a time, but this has to be
explicitly stated in our logic (Step 1'). Also, at any time, exactly one state can be
the current state. Our interpretation for the variables is that when one is
assigned true that symbol/state is the machine's current input symbol/state. For
states this may be compared with a one-hot encoding scheme. In LTL, the

§6.8.2 FSM to LTL transformation 79

mutual exclusion of variables vO, vl, v2, ... , vn can be expressed by:

[) (vl v2' v3' vn'
V vl ' v2 v3 ' vn'

V vl' v2 ' v3 ' vn)

Our 8 mapping in this case is a total function 8 : Q x I ~ Q. We write a clause
for each state/symbol pair: (Qi Ik -> @ <8 (q, id>), where Qi is the LTL
variabie corresponding to the state q and Ik is the variabie associated with the
input symbol ik. <8 (qi> ik)>stands for the LTL variabie associated with the 8
function result when applied to the arguments q and ik. All these clauses are
AND-ed tagether and put within an always operator (Step 2). This is illustrated
in the examples in the next section. Note that the representation of the 8 function
in this way is not complete; we are required to explicitly state that only exactly
one state variabie is true at any time. So again, we include a clause for the mutual
exclusion of a set of variables (Step 2'). The initia! state of the machine, i.e. the
fact that the machine starts in state q0 can be expressed by: qO ql ' q2 '
qn' (Step 3). If necessary, we can· introduce an LTL variable, say Accept, to
denote the fact that we are in a final state (Step 4):
[] (Accept <-> V<F>) .

To avoid having to explicitly specify the mutual exclusivity of the states we can
use a predecessor approach in representing the 8 function, in the sense that we
define clauses like {@ Qi <-> vik { V <8-1

(q, ik)> Ik)) where
<8-1

(q, ik)> denotes the set of LTL variables corresponding to the states that
have transitions labelled ik ending in the state q.

Incompleteness of a machine is resolved in the usual way namely by introducing
a special state. Whenever o is undefined in a state we add edges labelled with the
missing symbols and directed towards that special state. The special state itself
has an outgoing transition for each input symbolending on itself (Step 5).

For a non-deterministic machine, possibly with e-moves, we can praeeed in
much the same way as described above. Obviously, the only differences are
expected to occur in the treatment of e-moves and non-determinism. It turns out
that the latter does not require any special treatment: we can define the o func
tion by the same predecessor approach as sketched above. For e-moves we dis
tinguish two cases:

1. A state qi has only incoming e transitions. Then we add a clause of the farm
(<-> V <8-1

(qi, e)>) . (Note the absence ofthe@ operator!)

2. A state q has except for incoming e transitions also other incoming transi
tions. We now add two clauses, one to capture the labelled transitions in the
usual way and asecondof the farm (Qi < V <o-1

(q, e)>) .

As a last case, let us now consider an incompletely specified Mealy type machine.
This means that the output function depends bath on the current state and the

80 Temporallogic Chapter6

current input. Steps 1, 2, 3 A and 5 are the same as for the determînistic machine.
We merely need to add an extra Step 6 that takes care of defining the outputs:
add a clause for each binary output signal stating for what state/input
conditions it is true.

Example 6.4 A simple 4-state example is the Lion Cage Machine [Breid89].
Note that the Il=l, I2=0 transition for statebadais not specified. Also 2 transi
tions have output don't cares (see figure 6.14).

!*State transition table (not fully specified): *I
[] (

(@start <-> start (il' i2' V il i2' V il i2) V ett il i2)
(@ett <-> start il' i2 V ett (il' i2' V il' i2)

V nasta il' i2')
(@nasta <-> ett il i2' V nasta (il i2' V il i2) V bada il i2)
(@bada <-> nasta il' i2 V bada (il' i2' Vil' i2)))

I* Output function (not fully specified): *I
[] (VARNING' <-start (il' i2' Vil i2' Vil i2))

[] (VARNING <- ett (il' i2' Vil' i2 Vil i2')
V nasta
V bada (il' i2' Vil' i2 Vil i2))

!* Initial state: *I
start ett' nasta' bada'

!*Input restriction: *I
!* notever in bada and seeing 11=1, I2=0 at input: *I
[] - (bada i1 i2')

OOM 01N

00/1

Figure 6.14. Lion Cage State Diagram.
0 example 6.4

§6.8.2 FSM to LTL transformation 81

The next example is a state machine that recognizes Algol-60 defined numbers
and is taken from [Backh80]. We use LTL to prove that a non-deterministic ver
sion is equivalent to a minimalized deterministic one. Our experiment pointed
out an error in the original diagram of the minimal state machine: one of the
states was erroneously marked non-final.

Example 6.5 - ALGOL-60 numbers

/*State the exclusive occurrence of an input symbol: *I
[] (plus minus' period' digit' E'

V plus' minus period' ' E'
V plus' minus' period ' E'
V plus' minus' period' digit E'
V plus' minus' digit' E

/* Non-deterministic machine with eps-moves: *I
[l (
(@ql <->

(@q2 <->
(q2 <-
(q3 <->

(@q4 <->

(q5 <->

(@q6 <->

(@q7 <->
(q8 <->

(@q9 <->

(@qlO <->

(@qll <->

(q12 <->

(@q13 <->

(@q14 <->

(q14 <-

(@q15 <->

(ql6 <->

false)
ql (plus V minus))
ql)
q2)
(q3 V q4) digit)
q2)
q5
(q6 V q7) digit)
q2)
(q8 V q9) digit)
q9 period)
(qlO V qll) digit)
q2 V q4 V q7 V qll)
q12 E)
q13 (plus V minus))

/* no incoming transitions *I

/* eps-move *I
/* eps-move *I

/* eps-move *I

/* eps-move *I

/* eps-move *I

q13) /* eps-move *I
(q14 V q15) digit)
q4 v q7 v qll V ql5) /* eps-move *I

/*Make completely specified by introducing err state: *I
(@err <-> q2 (plus V minus) V q6 digit'

V q9 {period V digit)' V qlO digit'
V ql3 (period V E) V ql6 digit'
V err)

/*Initia[state: *I
ql q2 q3 q4' q5 q6' q7' q8 q9' qlO'
qll' ql2 ql3' q14' ql5' ql6' err'

/* Final states: *I
[] (Acceptl <-> q16)

Figure 6.15. Non-deterministic machine specified in LTL.

82 Temporal Logic

!* Deterministic minimal machine: *I
[](

<-> (@q1_
(@q2_3_5_8_12 <->
(@q4_9_12_16 <->
(@q13_14 <->

false)
q1_ (plus V minus))
(q1_ V q2_3_5_8_12 V q4_9_12_16) digit)
(q1_ V q2_3_5_8_12 V q4_9_12_16
V q7_11_12_16) E)

Chapter 6

(@q6_10
(@q7 _11_12_16
(@q14_
(@q15_16

<->
<->
<->
<->

(q1_ V q2_3_5_8_12 V q4_9_12_16) period)
(q6_10 V q7_11~12_16) digit)
q13_14 (plus V minus))
(q13_14 V q14_ V q15_16) digit)

!*Make completely specified: *I
(@error <-> (q2_3_5_8_12 V q4_9_12_16) (plus V minus)

V q13_14 (period V E)
V (q6_10 V q14_ V q15_16) digit'
V q7_11_12_16 (digit V E)'
V error)

!* Initial state: *I
q1_ q2_3_5_8_12' q4_9_12_16' q13_14' q6_10' q7_11_12_16'
ql4_' ql5_16' error'

!* Final states: *I
[] (Accept2 <-> q15_16 V q4_9_12_16 V q7_11_12_16)

->

[] (Accept1 <-> Accept2).

Figure 6.16. Deterministic minimal machine in LTL.

o example 6.5

Chapter 7

11-Calculus

7.1 Introduetion

This chapter will present a formal system called propositional J.L-calculus that is
powerfut enough to encapsulate the two temporal logies that we have stuclied
before: both LTL and CTL formulas can be reeast into formulas of the wcalculus.
The purpose and main goal of this chapter is to show how a decision procedure
for J.L-calculus formulas over the boolean domain can be derived from a formal
specification of the calculus' syntax and semantics. We will strive for the imple
mentation of an efficient J.L~calculus program. The interesting part is that all we
need is propositionallogic and a least fixed-point operator. Again BDDs will be
used as the main data structure for representation of the boolean relations and
functions involved.

The wcalculus may be characterized as a formal system for manipulating predi
cates over a certain domain. lts first applications were oriented towards program
proving. Our interest is inspired by its use as a specification language for sequen
tia! circuits and the analysis of properties thereof. Like the familiar predicate cal
culus (or first-order Iogic) [Galli87], wcalculus has constructs for expressing
function application, quantification, and besides domain variables there will also
be predicate symbols. New constructs in the J.L-Calculus are abstraction and
fixed-point terms. Abstraction should be familiar from À-calculus [Baren84,
Peyto87] and we have already used /t-abstraction as a means to define functions
in previous chapters.

In J.L-calculus we distinguish two main syntactic categories: formulas and terms.
Intuitively, a formula asserts some relation to hold among the individual

83

84 ,u-Calculus Chapter 7

variables appearing in the formula such that given values for those variables the
formula may be evaluated to a boolean value. A term may be interpreted as a set
of tuples of values from the domain, in other words it represents a relation.

Example 7.1 Before going into the precise definition of the syntax and seman
tics of the ,u-calculus, let us first look at a simple example. Let our universe of
discourse, i.e. the domain, be the set of vertices V of a directed graph G (V, E).
The edges of the graph define a binary relation E ç V x V over the set of vertices:
two vertices u and vare related iff there exists an edge from u to v. The existence
of a path (of non-zero length) from a vertex u toa vertex v can also beseen as a
relation (in fact it is the transitive dosure of the edge relation); in ,u-calculus this
relation can be expressed by:

,uZ. li.u, v. E (u, v) v 3w.Z(u, w) A Z(w, v)

In this example, both a least fixed-point construct (,uZ) and abstraction {li.u, v) are
present. The above term states that there is a path from u to v when either there is
an edge from u to v or there exists a vertex w such that there is a path from u to w
and a path from w to v. Note the recursive character of the definition of a path.
The 'solution' of the term is the relation that, when applied to two vertices, eval
uates to true when indeed a path exists, or to false otherwise. Let us name the
above term by the symbol P for path relation. Then the fixed-point construct
explicitly denotes the solution of the equation:

P = li.u,v.E (u,v) v 3w.P(u,w) A P(w,v)

Application of both sides to the arguments (u, v) and using q-conversion yields:

P(u,v) = E (u,v) v 3w.P(u,w) A P(w,v)

When the binary relation E is represented as a boolean matrix, we easily derive
Warshall's algorithm [Warsh62] for the computation of the transitive closure.
The same notation ,uZ for the solution of a recursive equation is also used in CSP
[Hoare85].
o example 7.1

The rest of this chapter is organized as follows: first the syntax and semantics of
the general ,u-calculus are defined; then we restriet the definitions to the boolean
domain. Por this special case an extended language will be defined. We will give
its concrete syntax in Backus-Naur Form; next a denotational semantics is
defined, from which the satisfiability checking algorithm is derived through a
reinterpretation in propositionallogic together with a least fixed-point operator.

7.2 Syntax

The alp ha bet of ,u-calculus consists of the following sets of symbols:

§7.2 Syntax 85

- logkal constants: 0 (falset 1 (true),

- logical connectives: -.. (not)1 v (or), 3 (existential quantification), = (equal-
ity on values of the domain 0)1

- variables: U = { z0 , z1 , z2 , • · ·}, denoting values of the domain D,

- punctuation symbols: (1) 1 , 1 • 1 and the symbols J.1. and A.,

- predieale symbols: PS= { P0 , P1 , P2 , · · ·}, and a rank function r: PS------7 N
assigning toeach predicate symbol a rank or arity. For instance1 a predicate
symbol P of rank 2 has signature D x D------7 B. Predieale symbols will also
be called relational variables.

An inductive definition of formulas and termscan now be given [Burch91]. No
other constrocts but the following 4 generate well-formed formulas:

1. The logkal constants 0 and 1 are formulas,

2. If z1 and z2 are variables then (z1 = z2) is a formula,

3. If f and g are formulas and z a variable1 then, f, f v g, and 3z. (f) are for
mulas,

4. If z1, z2 , · · ·, Zn are variables and R an n-ary term, then the application
R (z1 , z2 , • • ·, Zn) is a formula.

The following 3 constructs generate all well-formed n-ary terms:

1. Any n-ary predicate symbol X E PS is an n-ary term,

2. If z1, z2 , • • ·, Zn are distinct variables and fis a formula, then the abstraction
A.z1 , z2 , ···,Zn. (f) is an n-ary term,

3. If Ris a term with arity n and X is a predicate symbot then the least fixed
point f.J.X • (R) is also a term with arity n provided that R is monotone non
decreasing in X. (This is a necessary condition to ensure the existence of a
unique fixed-point; in practice, we will assume the stronger and therefore
sufficient condition that the fixed-point term is positive, i.e., all free occur
rences of X in R fall under an even number of negations. This is easily
checked at the syntactic level.)

Perhaps a few words about free and bound variabie occurrences are appropriate
here. These notions are directly borrowed from A--calculus, see e.g. [Peyto87], and
are dosely related to the notion of variabie scope in many modem programming
languages. Consicier the formula z1 v z2 . The occurrences of z1 and z2 in this for
mula are said to be free. Whereas in the term A.z1 • (z1 v z2), the abstraction binds
the free occurrence of z1 but z2 remains free. In the above syntax rules we see
that variables may be bound by existential quantification and by 1!.-abstractions.
Predieale symbols can only be bound by the least fixed-point construct. We will
assume the conventional definitions for free and bound entities as listed in
table 7.1.

86 ,u-Calculus Chapter 7

Zo in formula occurs free? occurs bound?

z 1 = z 2 No No
Zo= Z2 Yes No
-,f If Zo occurs free in f If z 0 occurs bound in f
f V Q If z 0 occurs free in f or in g If z 0 occurs bound inforing
3z0. (f) No If Zo occurs free in f
3z1 • (f) If z0 occurs free in f If z 0 occurs bound in f
z 0 in term occurs free? occurs bound?
..tz0.(f) No If z0 occurs free in f
À.Z1. (f) If Zo occurs free in f If z 0. occurs bound in f

P0 in formula occurs free? occurs bound?

P1 (z1.Z2, ·· ·) No No
P0 (z1,Z2,···) Yes No
P0 in term occurs free? ?
,uP0.(R) No If P 0 occurs free in R
,uP1. (R) If P0 occurs free in R If P 0 occurs bound in R

Table 7.1. Free and bound occurrences of variables and predieale symbols.

7.3 Semantics

The meaning of formulas and terros is defined with respect to a structure
M = { D,lp,l0) where Dis a non-empty set called the domain of the structure, lp is
the predicate symbol interpretation tunction, and 10 is the variabie interpretation
function. The predieale symbol inlerprelalion tunetion is a mapping from predi
eale symbols to n-ary predieales of signature 0° --l-B. The arity n is the rank
defined for the predieate symbol. Each predicate may thus be regarcled as the
charaderistic tunetion of an n-place relation over D. In the sequel we will make
no distinction between the characterislie function of a relation (or set) and the
relation (or set) itself seen as a set of tuples (or elements). The variabie interpre
lation function maps variables to domain values, i.e., elementsof D.

The semantics of the formulas and terros of the ,u-calculus is captured by inter
prelation functions 'Ij and 'lJt that interpret a formula, respectively a term, with
respect to a given structure M = (D, lp, 10). Formally, the signatures of these
interpretation functions are:

'Ij: FORMULAxipxJ0~B

'lJt: TERMx1px10~2
D"

where lp is thesetof all possible predieale interpretation tunctions lp, 10 is the set
of all variabie interpretation tunctions 10 , and 2°" is the set of all possible n-place
relations over D. The interpretations of formulas and terros will now be induc
tively defined along the rules of the syntax, assuming given interpretations for

§7.3 Se mantics 87

the variables (10) and predicate symbols (lp). To stress that the first argument of
'Ij and 'D1 are syntactic constrocts they are written enclosed in double quotes.

'Ij("0", lp, 10) = 0
'Ij("1",lp,l0 } = 1
'Ij("(z1 = z2)", lp,l0) = (10 (zd = 10 (z2))

'Ij(".., f', lp, 10) =.,'Ij("f', lp, 10)

'Ij("f v g", lp, 10) = 'Dj(''f", lp, 10) v 'Dj(''g", lp, 10)

'Ij("3z. f", lp, 10) = e 0 . 'Dj("f", lp,l0 [z == e])
'Ij("R (z1, · · ·, Z11)",lp,lo) = (lo (Z1), · · · .lo (Z11)) E '1J1 ("R",Ip,l0)

'Dt ("X" ,lp,lo)
'Dt (";tz1, · · ·, Z 11 • f',lp,lo)

'D1 ("pX. R", lp, 10)

=lp (X)
= { (e1, ···,en)I 'Ij("f", lp, lo[Z1 := e1, · · ·, Zn :=en])}

= lfp J..Y E 2°". 'D1 ("R", lp[X := Y], lo)

Note 1: lfp means least fixed point. pX. R denotes the set Q E 2°" such that:

1. a = 'D1 ("R", lp[X : = a], 10), i.e., a is a fixed-point, and

2. VPcO· P -:f: '1J1 ("R", lp[X := P], 10), i.e., Q is a least fixed-point.

The requirement that R is monotone non-decreasing in X ensures the
existence and uniqueness of the fixed-point.

Note 2: We use l[z1 := e 1, · · ·, Z 11 := e 11] to denote the alteration (or update) of
interpretation I to a new function that evaluates z1 to e 1, z2 to e2, et
cetera, leaving evaluations of any other variables intact. The alterations
or 'assignments' are understood to be done simultaneously. The e's are
understood to be domain values, e.g. (e1 , e2) E 0 2

•

Note 3: Por readers familiar with denotational semantics (e.g. of a program
ming language), we like to point out that our notation of the interpre
talion functions 'Dj and '1J1 corresponds to the notation using double
square brackets, as in:

Eval[[., f]]lp, lo = ., Eval[[f]]lp, In

Example 7.2 Again we investigate the transitive dosure of the edge relation in
a graph expressed by the p-calculus term:

pZ. ;tu, v. E (u, v) v 3w.Z(u, w) A Z(w, v)

To actually calculate its outcome, we need to fix a graph; or better, the graph
establishes the model in which this term is to he interpreted. We identify the ver
tices with non-negative integers. Let us assume to have a graph of 4 vertices, then
D = { 0, 1 , 2, 3 } . The edge relation is denoted by the predicate symbol E and
assume that its interpretation is:

88 ,u-Calculus Chapter7

lp (E) = { (0, 1), (0, 2), (1, 2), (2, 3), (3, 3)}

We assume the variabie interpretation to be empty since there are no free vari
ables. Now we calculate the least fixed point term that denotes all paths in the
graph:

1>t(",uZ . ..tu, v. E (u, v) v 3w.Z(u, w) A Z(w, v)",lp,lo)
= lfp ..tV E 2°".1>1 ("..tu, v. E (u, v) v 3w.Z(u, w) A Z(w, v)",lp[Z:= V],l0)

This requires the calculation of:

1>1 ("..tu, v. E (u, v) v 3w.Z(u, w) A Z(w, v)",lp[Z:= V],l0)

= { (e11 e2)I1.J("E (u,v) v 3w.Z(u,w) A Z(w,v)",
lp(Z ==V], 10[z1 := e1, ~ := e2])}

However, we cannot proceed because weneed to know V. As we will shortly see,
the least fixed-point calculation can be done by means of an iteration that starts
with V = 0. Substituting this value gives:

{ (e11 e2)I1.J("E (u,v) v 3w.Z(u,w) A Z(w,v)",
lp[Z := 0], 10 [z1 := e1, z2 := ~])}

Skipping a few tedious interpretation steps, we find that the set of pairs lp (E)
results after the first iteration step in the least fixed-point calculation. In a later
example we will carry out such a calculation in more detail.
o example 7.2

In the sequel we restriet the domain D to the set of truth values B. n-ary terms
then stand for subsets of B0

, which can be represented by their characteristic
function in BDD form using dummy variables d1, • • • , d0 as place-holders in order
to be able to correctly instantlate (apply) a term.

7.4 Boolean ,u-calculus

We extend the syntax of the .u-calculus to allow the use of:

1. Boolean variables as formulas,

2. Literals: a boolean variabie is a positive literal; a negative literal is the nega
tion of a boolean variabie x denoted by x',

3. Universa! quantification: 'v'z1 , z2 , • • ·, z.,;. f,

4. Logical connectives A (and), ~ (implication), H (equivalence, replaces the
symbol =), and e (exclusive-or) in formulas,

5. Application to arguments that are formulas,

6. 0 and 1 as genericconstant terms (of zero arity) denoting the empty rela
tion and the completerelation respectively,

§7.4 Boolean ,u-calculus 89

7. A greatest fixed-point construct v X. R,

8. Logical operations on terms, using the connectives ...,, v I A I --'1, f-ct I and E!1 I

9. Literal predicate symbols, using P' to denote the negation of P.

We now introduce a convenient concrete syntax for our boolean ,u-calculus
defined in Backus-Naur notation (figure 7.1).

Formula ::= Formula_l I Quantified_Formula.

Quantified_Formula ::= ('E' I 'A') { BV I ',' }+ '.' Formula

Formula_l .. Formula_2 ('->' I '<->' I 'xor' Formula_2

Formula_2 .. Formula_3 '+' Formula_3

Formula_3 .. Formula_4 '&' Formula_4 }

Formula_4 { ,-, } Atomic_Formula

Atomic_Formula ::= Primitive_Formula ' (' Formula ') ' .

Primitive_Formula ::= '0' I '1' I B_Var [''''] Application

Application ::= Atomic_Term (Primitive_Formula
I ' { 1

{ Formula I ' , ' } + ') ') .

Term::= Term_l I Abstraction I Fixed_Point .

Abstraction .. 'L' { BV I ',' }+ 1
•

1 Formula

Fixed_Point :: = 1 mu' I 1 nu') RV ' . ' Term .

Term_l : : = Term_2 ('->' I 1 <->' I 1 XOr 1
) Term_2}.

Term_2 Term_3 { 1 +' Term_3 }

Term_3 .. Term_4 1 &' Term_4}

Term_4 .. { ,-, } Atomic_Term

Atomic_Term : := 1 0' I '1 1 I RV 1 , 1 1] 1 , [1 Term , J 1

Figure 7.1. Boolean ,u-calculus concrete syntax in BNP.

The new notation for the connectives and punctuation symbols is made clear in
table 7.2. We assume that the set of boolean variables BV and predicate symbols
or relational variables RV are disjoint. Apart from the overloading of the 0 and 1

tokens and taking the above assumption into account the grammar is LL(l) and
therefore unambiguous [Backh80]. lt is straightforward to convert this grammar
into an equivalent one, i.e., a grammar that generates the same language, but
uses less meta-symbols (see figure 7.2).

90 p-Calculus Chapter 7

Math. notation: mu notation: Meaning:

3z1, z2, · · ·, ZJ.:. E zl, z2, ... , zk Existential quant.
Vz1 ,z2, · · · ,zk. A zl, z2, * * • I zk Universal quant.

--+ -> Implication
H <-> Equivalence
(Ij xor Exclusive-or
V + (Inclusive-)or
A & And
.... - Not

Jz1 , z2, · · · , Zk· L zl, z2, , zk Abstraction
f.l.X. mu X . Least fixed-point
vX. nu X Greatest fixed-point

Table 7.2. Notational correspondence.

F .. Fl I QF

QF : := 'E' BVL , I F I I A' BVL I . ' F .
Fl : : = F2 Fl '->' F2 Fl '<->' F2 Fl 1XOr 1 F2 .
F2 .. - F3 F2 1+1 F3

F3 :: = F4 F3 I&' F4

F4 :: = AF I -I F4

AF : := PF I (I F I } I

PF : : = '01 I '1' I BV BV I I I I I Ap .
Ap : : = AT PF I AT , (, FL I) I

FL : := F I FL I I F. I

T : : == Tl I Ab I FP

Ab : := I L' BVL I I F .
BVL : := BV I BVL I , BV I

FP : : = 'mu' RV I I T I 'nu' RV I I T

Tl : := T2 Tl '->' T2 Tl '<->' T2 Tl 'xor 1 T2

T2 .. - T3 T2 I+ I T3

T3 : := T4 T3 '&' T4

T4 .. - AT I- I T4

AT : := , 0, I , 1' I RV I RV I I I I I I [I T I l I

Figure 7.2. Boolean p-calculus concrete syntax in Restricted-BNF.

The shorter narnes that we use for the non-terminal symbols should be obvious.
We will denote the set of strings generaled by a non-terminal symbol by the
name of that non-terminal symbol; thus F denotes the universe of all formulas.

§7.4 Boolean .u-calculus 91

Also, we use the lowercase name to denote an arbitrary element of such a set of
strings: f is a formula in F. We developed a computer program called mu based
on the latter syntax. (The new syntax of figure 7.2 is directly suitable as input to
the parser generator tool yacc.)

To ease the definition of the semantics of formulas and terms, some operators
and constructs are seen as abbreviations of more elaborate constructs. Table 7.3
informally indicates the intended abbreviations. For these abbreviations we can
define a transformation tostringsof a simpler grammar (as in figure 7.3).

Construct: Abbreviates:

E z1~ z2, "'"' • I zk . f E z1 E z2 ... E zk f
A z1, z2, , zk . f -(E z1~ z2~ "•,. I zk - (f))

G -> H - (G) + H
G <-> H (G -> H) & (H -> G)
G xor H -{G <-> H)

G & H - (- (G) + - (H))
s~ -(s)

nu X t -(mu X - < t[-x/x] l l

Table 7.3. Abbreviations. f stands for an arbitrary formula; the zi are arbitrary vari
ables; G and H are either both formulas or both terms; s stands for an arbi
trary variabie or predicate symbol; X is a predicate symbol and t a term, and
t[-x/x] denotes the term that results after substituting -x for all free occur
rences of X int. Note that the correspondence is of a recursive nature.

This simple grammar is then the basis for our semantics definition.

F ' E , BV , . I , (, F ,) ,

'(
1 F 1 +' F 1

)
1

I (I F I) I

I 0 I I 1' I BV

I [I T I J I ' (, FL I) I

FL .. F I FL I I F

T IL' BVL I I I (I F ,) , ..
'mu' RV '

, ' [' T , l ,

I [I T '+' T I J I

, -, , [, T I l I

, 0' I , 1, I RV

BVL .. - BV I BVL I , BV '

Figure 7.3. Boolean p-calculus core syntax.

92 JL-Calcutus Chapter7

Wedefine the alphabet r of the boolean JL-calculus language of figure 7.1 by:

r =VU RVU { E,A,., ->,<->, xor, +, &, -, (,), 0, 1, ',,, L,mu,nu, [,] }

The alphabet :E of the language generated by the grammar of figure 7.3 is a
proper subset of r. We define a transformation 'T as a (partial) function from r*
to 1:* such that every well-formed formula/term of the first language is trans
latedintoa well-formed formula/term of the second language. Here follows an
inductive definition of'!':

'I(E bv.f)
'I(E bvl, bv.f
'I(A bvLf)
'I (f1 -> f2)
'I(f1 <-> f2)
'I(f1 xor f2)
'I(f2 + f3)
'I(f3 & f4)
'I(-f4)
'I (0)
'I (1)
'I(bv)
'I(bv')
'I((f))

'I(at 0)
'I(at 1)
'I(at bv)
'I(at bv')
'I(at ap)
'I (at (fl
'I(fl, f)

L bvl.f
mu rv.t
nu rv.t

'I(
'I(
'T(
'T(
'I(
'T(
'T(
'I(
'I(
'T(
'T(
'T(
'I(
'I(

t1 -> t2)
t1 <-> t2
tl xor t2
t2 + t3)
t3 & t4)
-t4)
0)
1)
rv)
rv')
[t 1)

)
)

=E bv. ('I(f)>
)=E bv. ('I(E bvl.f)l
=-('I(E bvl.-(f)))
= (- ('I (f1)) + 'I (f2) l
='I((fl -> f2) & (f2 -> fl))

=-{'I(f1 <-> f2))
={'I(f2) + 'I(f3))
=-((-('I(f3)) +-('I(f4))))
=-('I(f4))
=0
=1
=bv
=- (bv)
='I(f)
=['I(at)l (0)

=['I(at)1 (1)

= ['I(at)1 (bv)
= ['I(at)1 (- (bv))
=['I(at)1 ('T(ap)>
= ['T(at)1 ('T(fl))
= 'T(fl), . 'I(f)

=L bvl. ('T(f))
=mu rv. ['T(t)J
=-[mu rv.[-['T(tr-rv/rv])111
= [- ['I (t1) 1 + 'T (t2) 1
= 'T([tl -> t2] & [t2 -> t1])
=-['I{ tl <-> t2)]
= ['T(t2) + 'T(t3)1
= - [[- ['T (t3) J + - ['T (t4)]]]
=-['I(t4)1
=0
=1
=rv
= - [rv]
='T(t)

The transformation 'T may beregardedas a parser specification: it transforms a
string to a fully parenthesized form, cf. syntax tree.

Example 7.3 Carefut inspeetion of the various cases in the definition of 'T will

§7.4 Boolean .u-calculus 93

indeed show that:
'T(A u. [mu P.L U 1 V.N(U 1 V)+{E w.P(u~w}&P(W 1 V))) (U 1 U))=

- (E u . (- ([mu P . [L u I v . (([N] (u I v) +
E w. (- ((- ([P] (U 1 W))+- ([P) {W 1 V)))))))]] (u, u})));

Compare this .u-formula to the ,u-term exhibited in the previous examples then it
should be clear that the above formula, when interpreted w.r.t. to a graph with N

as its edge relation, states that each vertex is on a cycle of length at least 1.
0 example 7.3

Wedefine the meaning of a formula/term of the extended language to be the
meaning of the transformed formula/term. For the latter, we again define two
functions 'Dj and '])1 that capture the semantics of formulas and terms.

This time we shall define the meaning of boolean .u-calculus formulas and terms
to be formulas of a simple propositionallogic. Our goal is to represent the farmu
las of the propositional logic by BDDs. Figure 7.4 presents the syntax of the
propositionallogics PL and PLD. They are identical except forthefact that the
logic PLD has an extra set of propositional variables: the so-called dummy vari
ables, di E Dum. Dummy variables are solely used in the meaning of terms; a
,u-calculus formula will never have a meaning in which dummy variables occur.

0 I 1 I BV

PLD PLD V PLD

., (PLD

0 I 1 I BV 1 Dum .

Figure 7.4. The PL and PLD Propositional Logies Syntax.

The semantics functions are of the following type:

'Dj: F~PL

'])t: T~PLD

where, as by convention mentioned earlier, F stands for the set of all well-formed
formulas of the ,u-calculus core syntax and T stands for terms. The variables that
play a role in the definition of the semantics functions are collected in the set
V u RV. The interpretation forthese variables is defined by a function:

I: VURV~PLD1 with

94 ,u-Calculus Chapter7

I (bv) = bv, for all bv e V,
I (rv) = some element pld e PLD or undefined denoted by -,

for all rv e RV.

Thus the only factor that influences the meaning of a formula/term is the inter
pretalion of the predieale symbols. Figure 7.5 gives the complete inductive defi
nition of thesemantics functions 'Ij and '1J1• However, one important aspect has
not been discussed so far: the rank or arity of the terms. We have implicitly
assumed that in applications [p] (g 1) the rank of the term p and the number of
argument formulas in the list gl match. Case (F.7) is therefore only valid when a
certain condition for the rank of p holds. This condition then guarantees that for
mulas are properly interpreted, i.e., they do not depend on any dummy vari
ables. It can be shown that the weakest condition that suffices requires that the
rank of p is less than or equal to the number of argument formulas in the applica
tion. The rank of a term can be inductively defined according the core syntax for
terms. Bottom cases are formed by abstractions, relational variables and the con
stant terms 0 and 1.

I [v:= pld] = ..tx. if x= v then pld else I (x)

(F.l) 'Ij(E bv. (g),l) = ('Ij(g,I)[O/bv] v 'Ij(g,l)[1/bv])
(f.2) 'ft((g + h) ,I) = ('Ij(g,l) V 'iJf(h,l))
(F.3) '1J1(- (g), I) =.., ('ft(g,l))
(F.4) 'ft(O,I) =0
(F.S) 'ft(1, I) = 1
(F.6) 'Ij(bv,l) =l(bv)
(F.7) 'Ij([p] (gl, ... ,gn),l)='iJ1 (p,I)['Ij(gl,l)/d1,· .. ,'ft(gn,l)/dn]

(T.l)
(T.2)
(T.3)
(T.4)
(T.5)
(T.6)
(T.7)
(T.S)

'1J1 (L bv. (g),l)
'1J1 (L bvl, bv. (g),l)
'1J1 (mu rv. [p],l)
'])I ([p + q], I)
'iJt(-[p],l)
'1J1 (0,1)
'lJt(l,l)
'1J1 (rv, I)

lfp (rv, p, I)

='Ij(g, I)[ddbv]
= '])1 (L bvl. { g) , I)[dlbvll + 1 /bv]
= lfp (rv, p, I [rv := 0])
= ('])t (p, I) V '])I (q, I))
= ..., ('lJt (p, I })
=0
=1
=l(rv)

= if ('1J1 (p, I) = I (rv)) then I (rv)
else lfp (rv, p, I [rv := '1J1 (p, I)J)

Figure 7.5. Semantics of boolean ,u-calculus. g, gl, ... , gn, h e F, bv e v,
di e Dum, p, q: E T, rv E RV, and I bvll denotes the number of variables
in a comma separated list of boolean variables.

§7.4 Boolean .u-calculus

For each term we define a rank via the function:

rank : T----7 N,

such that

rank (L bvl. (g)) = I bvll (number of variables in the list)
rank(mu rv. (p]) = rank(p[O/rv])
rank([p + q]) =max(rank(p),rank(q))
rank(-[p]) =rank(p)
rank(O) =0
rank(1) = 0
rank (rv) = r (rv)

95

Note that in the last case r refers to the rank function for the predicate symbols
which farms part of the definition of the calculus. Predicate symbols introduced
by a fixed-point are never questioned for their rank since the second case substi
tu tes o for them.

Example 7.4 Again consider the formula f:
A u. [mu P.L u,v.N(u,v)+(E w.P(u,w}&P(w,v)}] (u,u}
Expressed in our core syntax this formula reads:
- (E U. (- ([rou P. [L u, V. (([N] (u, V)+

E w. (-((-([P] (u,w))+-([P] (w,v)))))))]] (u,u))));
We choose as an interpretation:
I= { (u, u), (v, v), (w, w), (N, d2), (P, -)}, where N has rank 2. In fact we are
overspecifying the interpretation: since the variables u, v, and w are all bound,
and so is the predicate symbol P, values forthem will always be supplied during
the interpretation process of the formula and hence initial values are not needed.

Even for this simple example the calculation by hand of v1(f) is quite elaborate.
The calculation proceeds as follows (for brevity, subformulas and subterms will
be denoted by numbers in angular brackets instead of repeating them in full):

1J(f,l) = 'Dj(<O>,I)
1}(<0>, I)= 'IJ(- (<1>) ,I)
1}(<1>,1) = 'Dj(E u. (<2>).1)
'Dj(<2>, I)= 'Dj(- (<3> l, I)
'Dj(<3>, I)= 1}([<4>] (u, u), I)
'Dr(<4>,1) 'Ddmu P. [<5>],1)

=.., (1}(<1>,1))
= {1}(<2>,1)[0/u] v 'Dj{<2>,1)[1/u])
=.., {'Dj(<3>,1))
= 'Dt(<4>,1)['Dj(u, I)/d1 , 'Dj(u, I)/d2]

lfp(P,<5>,1[P:=0])

In order to calculate the fixed-point term we might have to repeatedly calculate:

'Dt{<S>,I) ='Dt(L u,v.(<6>},1)
'Dt{L u. {<6>),1) 1J(<6>,1)[ddu]
1}(<6>,1) 1}({<7> + <8>),1)
'Dj(<7>,1) ='Dj([N] (u,v),l)
'Dt(N,I) = I(N)
'Dj(,I) ='Dj(E w.(<9>),1)
'Dj(<9>,1) ='Dj(-(<10>),1)

= {1}(<7>,1) V 1}(<8>,1)}
= 'D1 (N,l)['Dj(u,l)/d,, 'Dj(v,l)/d2J
= d2
= ('Dj(<9>, I)[0/w] v 'Dj(<9>, I)[1 /w])

..... {'Dj(<10>,1))

96

1}(<10>, I)
1}(<11>, I)
1}(<13>, I)
1\(P,I)
1}(<12>,1)
1}(<14>,1)

.u-Calculus

= 1}((<11> + <12>),1)
=2}(-(<13>),1)
=!DJ([P] (u,w),l)
=I(P)
=1}(-(<14>),1)
=!DJ([P] {w,vl,l)

= (VJ(<11>,1)v1}(<12>,1)l
=-. <1}(<13>,1)>
= Vt (P, I)[VJ(u, I)/dj, VJ(w, I)ld2]

=-. !1}(<14>, l)l
= 1\ (P, I)[VJ(w, I)/dj, 1}(v,l)/d2l

Using I (P) = 0, we find in a bottorn-up way:

v1(<14>, I)
1}(<12>, I)
1}(<13>, I)
1}{<11>,1)
1}(<10>,1)
1}(<9>,1)
Vt(,I)

1}(<7>, I)
1}(<6>, I)

= !Dt([P] (w,v) ,I) O[wld1,vld2l
=1}(-{<14>),1) -.(0)
= 1}([P] {u,w),l) = O[uld1,wld2J
= v1(-<<13>J,I) = -. <01
=Vt(C<ll> + <12>),1) = (-.(0) v-.(0))
=V1 (-{<10>l.l) = -.((-.(0) v-.(0)))
= Vt(E w. (<9>},1)

(-. { (-. (0) V-. {0))) V-. { {-. {0) V..., (0))))

= 0

= 0

=1}([N] {u,vl,l) = d2[u/d1,vld2l = V
=1}({<7> + <8>),1)
= {V V {-. { {-. (0) V-. (0))) V-. ({-. (0) V-. (0)))))

1\(L u.(<6>),1)= (vv {-.((-.{0) v--,(0))) v-.({-.(0) v-.{O))))l[dtfu]

!Dt(<5>,1)
= {V V {-. ((-. (0) V-. (0))) V-. { (-. (0) V-. {0)))))

= Vt(L u,v. (<6>))
= (V V {-. { (-. {0) V-, (0))) V-. ({-. (0) V-, {0)))) l[d21v]
= (d2 V (-. ((-. (0) V--, {0))) V-. ((-. (0) V.., (0)))))

= d2

Chapter7

But d2 '* I (P) so we have to recurse in the fixed-point calculation and now use
I (P) = d2 :

1}(<14>,1)
1}(<12>,1)
v1(<13>,1)
1}(<11>, I)
1}(<10>, I)
1}(<9>, I)
1}(<8>, I)

1}(<7>, I)
1}(<6>, I)

= Vf([P] {w,v),l)
=Vt(-(<14>),1)
= VJ([P] {u,w),l)
=V1(-<<13>l,l)
= v1({<11> + <l2>l.l)
=1}(-(<10>),1)
= 1}-(E w. {<9>) ,I)

d2[w I d1, v I d2J
= .., (V)

d2[uld1, w/d2J
= ..., (w)

(..., (W) V.., (V))

= -. ((-. (w) v-. (v)))

= {-. { (-. (Ü) V-. {V))) V-. ((-. {1) V-. (V))))

= Vf([N] (u,v),l) = d2[uld1,vld2]
= v1({<7> + l,l)
= (V V {-. ((-. (0) V-. (V))) V-. ((-. (1) V.., (v))))

= V

= w

= V

V1 (L u.(<6>),1)= (vv (-.{(-.(0) v-,(v))) v...,({-1{1) v-,(v)))l[dtfu]
= (V V (-. ((-. (0) V-. (V))) V..., { (.., (1) V-. (V))))

Vt(<5>,1) = Vt(L u,v. (<6>))
= (vv (-.((-.(0) v-.(v))) v-,((..,(1) v-.(v))))[ddv]
= !d2v (-.((-.(0) v-.(d2lll v-.((-.(1) v-,(d2))))
=d2

· Now we find d2 = I (P), so d2 is the result of the fixed-point term. Substitution
leads to:

Vt{ <4>, I)= V 1 (mu P. [<5>])
1}(<3>,1) = VJ([<4>) (u,u),l)
1}(<2>,1) = v1(- < <3> >. 1)
1}(<1>,l)=Vt(E u.(<2>),1)
1j(<0>,1) = !Dt(- (<1>), I)
2J(f,l) =-.((-.(O)v-.(1)))

=lfp(P,<S>,I[P:=O]) =d2
= d2[uld1, uld2l =u
=-. (u)

= (-.{0) v-.(1))
=-.{(-.(0) v-.(1)))
=0

§7.4 mu Interpreter Algorithm 97

And we find that the formula f is false. Of course, we can only arrive at this
result when we are able to simplify PL and PLD formulas and are able to test
them for logkal equivalence. Using BDDs to represent the formulas solves these
problems, since BDD representations are canonkaL
o example 7.4

7.5 Interpreter for ,u-calculus

We conclude this chapter with an exposition of the algorithms that form the heart
of a simple computer program, called mu, for the boolean p-calculus. The pro
gram is based on our BDD package. We start with introducing a function '.B that
maps formulas of the logk PLD (and also the logic PL) to BDDs (figure 7.6).

'.B: PLD~ 800, with for all pld, pldl, pld2 E PLD,
and for all v e V u Dum:

'.B((pldl V

'.B(-.(pld))
'.B(0)

pld2)) = bdd_or ('B(pldl) I '.B(pld2))
= bdd_not ('.B(pld))
= BDD_O

'.B(l) =BDD_l
'B(v) = bdd_var (v)

Substitutions and test on equality are handled by:

pldl[pld2/v]
pldl = pld2

bdd_subst('.B(pldl)~'B(pld2) 1 v)
: bdd_equal { 'B(pldl) 1 '.B(pld2)}

Figure 7.6. Representing PLD formulas as BDDs.

Nextl the semantics functions 'lJf and '1J1 are implemented. We assume that
appropriate data structures have been defined to represent formulas F and terms
T and the interpretation I. Algorithm 7.1 implements the least fixed-point lfp,
algorithm 7.2 implements 'f}, and algorithm 7.3 implements '1J1•

BDD lfp (RV rv, T t I I i)
{

if {bdd_equal ('1J1 (tI i) I i (rv)))
return i (rv);

el se
return lfp(rv,t~i[rv := '1J1 (t,i)]);

Algorithm 7.1. Implementation of the least fixed-point operator lfp.

98 p-Calculus

BDD !Dt (F f I I i)
{

}

switch (f) {
case E bv. (g) :

return bdd_or(bdd_subst(!D/(g,i),O,bv),
bdd_subst(1}(g,i),l,bv));

case (g + h):
return bdd_or(1}(g,i) .2}(h,i));

case - (g):
return bdd_not(2}(g,i));

case 0:
return BPD_O;

case 1:
return BDD_l;

case bv:
return bdd_var(bv);

case [p] (gl,g2, ... ,gn):
assert{rank(p) <= n);
R 1Jr(p,i);
for (k:=l; k <= n; k++)

R:=bdd_subst (R,2}(gk,i),dk);
return R;

Algorithm 7.2. Implementation of the semantics function 1>/"

Chapter7

The rnu program optionally allows boolean variables to be declared in a so-called
domain statement at the beginning of the input; its syntaxis:

dornain-staternent : 'dornain' = '{' bvl '}' ';'

We allow the user to define the (global) interpretation of predieale symbols by a
let construct:

let-statement : 'let' RV = T ';'

The meaning is that let rv = t modifles the interpretation I to become
I [rv := tJJ1 (t, I)].

Example 7.5 The p-calculus formula of the previous example 7.4 is fully
described by the following rnu program input:

dornain = { u,v,w };
let N = L u,v.v;
A u. [rnu P.L u,v.N(u,v)+(E w.P(u,w)&P(w,v})) (u,u);

As expected, the program correctly evaluates the above formula to the BOD
value BDD_O which denotes false.
0 example 7.5

§7.5

BDD 'Dt (T t I I i)
{

switch (t) {
case L bv.(g}:

Interpreter tor ,u-calculus

return bdd_subst ('Dj(9~ i) 1d11bv};
case L bvl, bv. (g) :

return bdd_subst ('])1 (L bvl. (g} 1 i), dlbvll +llbv);
case mu rv. [p]:

assert(p monotone non-decreasing in rv);
return lfp(rv 1p 1i[rv: BDD_O]);

case [p + q]:
return bdd_or ('1J1 (p, i) , '1J1 (q, i)) ;

case - [p):
return bdd_not ('1J1 (p, i)) ;

case 0:
return BDD_O;

case 1:
return BDD_l;

case rv:
assert(i(rv} ! undefined);
return i (rv);

Algorithm 7.3. Implementation of thesemantics function '1J1•

99

100

Part III

Programs and Examples

This is the last, but perhaps most interesting, part of the thesis. It again consists
of three chapters. Chapter 8 explains many of the implementation details of our
BDD package. Chapter 9 shows how BDDs can be set to work in a practical cir
cuit verification tool. Chapter 10 is devoted to some examples of the use of the
PTL program.

101

102

Chapter 8

The BOD Package

BOOs are a hot topic of interest in the CAD community. The many papers with
the word BOD in their title, especially the ones about new applications, suggest
that BOOs play an important role in an extensive range of tools.

The BOD package described in this chapter is based on the work of Karl Brace
reported in [Brace90] and papers by Richard Rudell [Rudel93]. Apart from the
usuallogical operations on BOOs, the Eindhoven BDD package (as it is often
referred to) includes a rich set of meta routines (e.g. quantification with respect to
a set of variables, composition, conversion to sum-of-cubes), routines for statis
tics (e.g. size, number of minterms), support for development of new operations,
and routines to visualize BOOs (e.g. for X-Windows). The package is available
via anonymous ftp at ftp. i es. ele. tue. nl where it resides in the directory
pub/users

Two methods for compacting a BOD graph are discussed in the next section. Sec
tion 2 discusses dynamic variabie ordering.

8.1 lmplementation issues

Complemented Edges
Consicier complementing a BDD, i.e., given a BDD for a function f we would like
to derive the BDD for the complemented function f = .., f. As we have seen in sec
tion 4.3 the "not" operation is accomplished by ITE (f, 0, 1). The effect of the ITE
operation will be a BDD that is identical in structure to the original one except for
the fact that the terminal nocles are exchanged. Figure 8.1 shows a sample BOD
with its complement. It is possible to represent both functions within a single
BOD by introducing so-called complemented edges. Such an edge carries aflag

103

104 The BOD Package Chapter 8

f f

Figure 8.1. BDDs for complementary functions.

that indicates that the function associated with the vertex it points to is to be
complemented. Regular edges have no such flag. Use of complemented edges
often causes a savings in the number of vertices necessary to represent a given
function. Clearly, there is no longer a need for two separate terminal vertices, just
one, say the 1 vertex, suffices: the 0 function can be represented as a comple
mented edge to 1. In general the complement of any function can easily be con
structed by a complemented edge to the top-variabie vertex for that function.

then

Figure 8.2. A function and its complement as a single BDD.

Care has to be taken however that introduetion of complemented edges pre
serves the canonicity of the BDD. One way of achieving this is by restricting the
places in the BDD where such edges may occur. It can be shown that only allow
ing complemented else-edges preserves canonicity. Figure 8.2 shows how the
functions of figure 8.1 are represented as a single BDD using complemented

§8.1 lmplementation issues 105

edges. The latter are indicated by marking them with a solid dot.

The flag bit may be implemented in the pointer value itself. This trick is based
on the fact that some bits of pointer values will always be fixed because of mem
ory alignment requirements, e.g. on many computers a BOD node has an address
that is a multiple of 4, so typically the 2 least significant bits of a BOD pointer
value will be 0.

Inverted-input Edges
Some additional compaction of a BOD may be achieved by encoding the polarity
of a variabie as a flag on the edge Ieading to a BOD node. The presence of such
an inverted-input flag indicates that the node's variabie is to be interpreted
negated, i.e., the roles of the then and else edges of that node are to be
exchanged. In practice it tums out that the savings achieved by inverted-input
edges are oniy minor compared to the savings of incorporating complemented
edges. Moreover, use of inverted-input edges severely complicates dynamic vari
abie ordering.

8.2 Dynamic variabie ordering

Here we like to briefly summarize the issues involved in appiying a dynamic
variabie ordering technique, i.e., changing the order of the variables during BOD
construction. We like to stress that dynamic variabie ordering is a very impor
tant addition to a BOD package, because it relieves the user of the burden of
specifying a good ordering a priori, i.e., befare he starts constructing and rnanipu
lating BOOs. We might define a good ordering ·as one that permits the function
to be represented by a polynomially sized BOD, i.e., #nodes = 0 (p (#vars)),
where #nodes is the number of BOD nocles to represent the function given a vari
abie ordering, #vars is the number of variabies, and p some polynomial. For
logic descriptions at the gate-level several static ordering algorithms have been
proposed and shown to be successful for many circuits. For instance, for an n
bits binary adder with inputs A [n : 1] and B[n : 1] we find that the size of the
BOD to represent the carry output is linear in n if we order the variables such
that A [0] < B[0] < A [1] < B[1] < · · · <A [n] < B[n]. However, for higher level
specifications it becomes much harder to apply those methods short of first
deriving a gate-level representation. (What is a good variabie ordering for a cir
cuit described as a VHDL process?) Aiso, even when a static ordering heuristic is
used, it turns out that dynamic variabie ordering often can substantially imprave
on the interrnediate and final BDD sides. In particular when BDDs are used in
the area of verification, it is our apinion that dynamic variabie ordering becomes
a mandatory prerequisite for successfully handling large circuits.

8.2.1 Principles

lt is a known fact that the size of a (reduced ordered) BOD for a given boolean

106 The BDD Package Chapter8

function may drastically change when a different ordering of the variables that
label the BDD nocles is adopted. The problem with changing the order dynami
cally, is that one has to maintain canonicity. In an implementation, canonicity is
achieved through a so-called unique table of BDD nodes: a node is identified by
its pointer, and a new node is created only when it is not yet present in the
unique table, otherwise the pointer stored in the table is retumed. It would be
very inefficient to construct an entire BDD for every different ordering that is
tried. Therefore, dynamic variabie ordering will be based on a succession of local
modifications to the BDD, each of which can easily be made to preserve canonic
ity. An obvious local modification is the swapping of two consecutive variables.

F F

Figure 8.3. Effect of variabie swap on BDD.

By repeatedly swapping neighbouring variables it is possible to generate every
possible permutation. However, for practical purposes a full exploration of the
'variable orders space' cannot be tolerated; a simple local-search approach with
limited hill-dimbing is chosen instead. In this approach, each variabie is tried at
all possible positions in the order while the ranks of the other variables remain
the same; we call this 'sifting the variable'. The search forthebest position of
that one variabie may stilllead to the construction of unacceptably large interme
diale BDDs, hence the search is aborted as soon as some predefined BDD size
limit is exceeded (we allow a size increase of at most 5%). It is easy to see that
putting one variabie at its best position (algorithm 8.1) takes 0 (#vars · #nodes)
time.

It makes sense to treat the variables in order of frequency: the variabie with the
most occurrences in the BDDs is sifted first. The rationale is that by changing the
position of this variabie the decrease in size of the BDDs will be the largest.

8.2.2 lmplementation issues

A problem with dynamic variabie ordering is to decide where and when to apply
it. If done inside the recursive ITE construction routine, it might violate its invari
ants and cause the need for a restart of the top-level eaU. Rudell [Rudel93] is in
favour of the latter suggestion, and argues that precisely because ITE is the major

§8.2.2 lmplementation issues

best_rank:=rank:=orig_rank:=RANK(var);

best_size:=nr_nodes_alive();

!'Move 'var' down the order: *I
for (next_rank:=rank+l; next_rank < max_rank; next_rank++) {

swap_levels(rank, next_rank);

rank:=next_rank;
if (nr_nodes_alive() < best_size)

best_size:=nr_nodes_alive();

best_rank:=rank;

else
if (nr_nodes_alive(} > 1.05 * best_size)

break;

!'Back up to original rank: •t

107

for (prev_rank:=rank-1; prev_rank >= orig_rank; rank:=prev_rank, prev_rank--)

swap_levels(prev_rank, rank);

!' Up and back down to best rank require simi/ar processing; omitted here. •t

Algorithm 8.1. Sifting a single variabie to its best position.

souree for new nodes, dynamic ordering should be invoked right there. We, how
ever, decided to allow dynamic ordering to take place outside recursive ITE calls
only, but potentially after every top-level eaU. It remains to decide which criteria
to define that trigger a call. Rudell uses as a measure an absolute bound on the
total number of BDD nodes, that after each dynamic reordering is reset to twice
the then existing number of nodes. We adopt a mixed approach using both a rel
ative and absolute threshold. We were able to achieve results comparable with
Rudell's [MetsA94]. The absolute threshold criterion weuseis more or less the
same as described above. A relative threshold is introduced to be able to antici
pate sharp increases in BDD size as a function of the number of top-level ITE
calls. Dynamic ordering will be triggered when the increase exceeds a factor of 2,
i.e., a top-level ITE call results in twice the number of nocles as compared to the
number of nocles prior to the call. The explanation is that the majority of BDD
operations takes two operands, and that empirica! evidence shows that the size
of the result is of the order of the sum of the sizes of the operands; in the worst
case it would be the product.

The whole point with dynamic variabie ordering is that on one hand it is a very
useful, and for some applications even vital, feature of a BDD package/ but on
the other hand it takes 0 (#vars2

· #nodes) time for just 1 invocation, and there
fore should not be called upon too liberally1 especially when many variables are
involved. Clearly, there are a number of conflicting interests:

• Dynamic variabie ordering should be done as soon as the current ordering is
found to be rather poor.

108 The BOD Package Chapter8

• The 'quality' of an ordering can be assessed relative to the functions that are
momentarily represented. There is usually no way to predict the sequence of
future BDD operations on the currently represented functions.

• H the initial (or some intermediate) ordering is good, then the next call to
dynamic ordering should be postponed as much as possible.

• When the functions to be represented are such that no good ordering exists,
dynamic ordering should be refrained from completely.

Our solution is to fix the total time spend in one call to some reasonable constant,
say 10 (cpu) seconds, and use a more sophisticated trigger-criterion as explained
above. As our experiments point out there is no such thing as one medidne that
cures all. Some tuning of the dynamic variabie parameters may often give better
results. The effect of dynamic variabie ordering is illustrated for a 16-bit data
input/ output, 4-bit control rotator circuit in figure 8.4 and figure 8.5 (see also
table 8.1).

8.93 BDO Nocles Allve

0 688 ITE-calls

Figure 8.4. #nodes as function of top-level ITE calls; no dynamic ordering. Both
axes are linearly scaled.

BDO Nocles Allve

Figure 8.5. #nodes as function of top-level ITE eaUs; with dynamic ordering.
Both axes are linearly scaled.

§8.2.2 lmplementation issues 109

Figure 8.4 shows that the circuit requires a million BDD nodes which is achieved
after 688 top-level ITE calls. With dynamic variabie ordering (figure 8.5), the
peak number of BDD nodes is slightly more than 4000. The sharp decrease in
number of nodes occurring after 344 ITE-calls is the result of a single dynamic
variabie reordering invocation.

8.2.3 Examples and results

Table 8.1 indicates the effect of dynamic variabie ordering onsome typical bench
marks, all except the rotator taken from [Kropf94]. #nodes is the size of the final
shared BDDs for all output functions. The runtime is in seconds on a
HP9000 I s755. The 'Good' and 'Bad' orderings are obtained manually based on
intuition, we don't claim them to be the best, resp. worst; 'Dynamic' means
dynamic variabie ordering is on during BDD construction, 'Bad' is taken as ini
tia! ordering, and at the end dynamic ordering is applied exhaustively until no
moregainis obtained. Note that for the multiplier dynamic ordering gets stuck
in a local minimum and finds an even worse order than our Bad one. The results
for Min_Max include BDDs for both the regular outputs and the next-state func
tions. We see that what we think as good can sametimes be improved upon.

Good Bad Bad+ Dynamic
Circuit

#nodes secs #nodes se es #nodes secs
16-bit rotator 81 <1 1081328 56 81 1

8-bit adder 36 <1 751 <1 36 <1
16-bit adder 76 <1 196575 16 123 1
32-bit adder 156 <1 >1000000 80 452 4

32-bit alu 8869 <1 >1000000 83.4 4341 8.2
64-bit alu 17829 <1 >1000000 81.4 9487 47.2

128-bit alu 35749 1.9 >1000000 79.1 18086 149.6
256-bit alu 71598 4.0 >1000000 82.2 44870 697.9

8-bit Min_Max 890 <1 79007 6 883 3
16-bit Min_Max 3310 <1 >1000000 50 3295 16
32-bit Min_Max 12566 2 >1000000 39 39265 86
12-bit multiplier 605883 255 1324674 340 1494828 2500

Table 8.1. Effect of dynamic variabie ordering.

110

Chapter 9

Application of BOOs in a
Hardware Oescription

Language

9.1 Introduetion

In this chapter we address the application of BDD-based combinational circuits
equivalence checking in the context of a Hardware Description Language (HDL).
The idea is to discuss several important aspects of the design of a combinational
circuit verification tooi. Such a tooi has actually been developed by the author as
part of IBM's BSN (Boolean Specification Networks) project. We will focus on
how to deal with typkal HDL constructs; the language issues, in particular the
syntax and semantics, are of secondary concern. The HDL we will use in our
examples is modelled after the proprietary BSN language. Syntactically, the HDL
is similar to the C programming language.

For the moment we only consider the combinational subset of the HDL, i.e., we
assume that the HDL descriptions do not contain memory elements and we also
assume the absence of loops. We presuppose that each well-formed HDL descrip
tion may be interpreted as defining a set of boolean functions over the primary
inputs, i.e., the description associates a boolean function with each of its primary
outputs. This means that the semantics is such that any circuit described in the
language can be automatically transformed toa combinational gate-level descrip
tion in the same language. Detailscan be found in the M.Sc. thesis of [Schuu94].
Although no formal semantics has been defined for our HDL, we are confident
that the intended meaning of the syntactic constructs is sufficiently explained in
the accompanying text and by the examples.

Our HDL allows parameterized, hierarchical descriptions of combinational cir
cuits, see figure 9.1. The leaves of the hierarchy are formed by instances of

111

112 Application of BDDs in a Hardware Description Language Chapter 9

behavioural module definitions. These may be combined to form structural mod
ule definitions (the interlor nodes). The root is a bound instanee of a module for
which all parameters are given definite values. Parameters are typically used to
define modules in a genetic way, e.g. an n-bits adder will have n as its parameter.

root structure

~
I

I I I
structure behaviour structure

~
add(A,B,S)

~
{

S:;::;A+B;
)

I I
I I

Ie af behavlour behavlour behavlour
add(A,B,S) add(A,B,S) add(A,B, S)
{ ((

S::A+B; S:=A+B; S:=A+B;
) })

Figure 9.1. Typkal hierarchy tree of a design.

A structural module definition contains statements on how its instances are to be
connected. Structural module definitions may be recursive, and instantlation
statements may be conditional with respect to the module's parameters.

We start this chapter with a presentation of the concrete syntax of the language.
A formal definition of its semantics is beyond the scope of this thesis. Instead, we
rely on the reader' s familiarity with similar hardware description languages;
where necessary an informal explanation will be given. Examples are included
to help understand and appreciate certain constructs. Section 9.3 discusses a
number of useful syntactical transformations. These transformations result in a
gate-level description of a circuit. An interpretation for the HOL in terms of
BOOs is presented insection 9.4. Section 9.5 gives an overview of an approach to
verify the equivalence of two designs written in the HOL. Section 9.6 discusses
several techniques that are employed to cope with cases for which the BOOs turn
out to become too big.

9.2 A sample HOL

Figures 9.2 through 9.4 present the concrete syntax of the HOL which we will use
throughout this chapter. For lack of a better name we will simply name this

§9.2 A sample HOL

language HDL.

circuit-description ::= { module-definitien }+ circuit-instance .

module-definitien ::= b-module-definition I s-module-definition .

b-module-definition ::= 'behaviour' module-interface b-block .

s-module-definition ::= 'structure' module-interface s-block.

module-interface ::= name [formal-params] '(' pin-deis ')' .

formal-params ::= '[[' {name I','}+']]' .

pin-deis ::= { ('input' I 'output') pins I';' }+ .

pins ::= {pin I','}+.

circuit-instance ::= 'circuit' instanee ';' .

Figure 9.2. HDL grammar rulespart I: circuit/module interface.

s-block ::= '{' [net-deis] { s-statement} '}' .

net-deis::= {'net' nets';'}+.

nets ::= { net I ',' }+ .

s-statement ::= instance-eall
I guard s-statement
I iterator s-statement
I s-block.

instance-eall ::= instanee '(' port-exprs ')' ';' .

instanee ::= [name ':'] module-name [actual-params] .

actual-params ::= { const-expr I','}+.

port-exprs ::= { simple-expr I','}+.

simple-expr ::= { (facility I const-expr) I'.'}+.

facility ::= (pin-name I net-name I local-name I '-') [subscript] .

guard ::= '[[' cond-expr ']]' .

iterator ::='('name':' const-expr ' . .' const-expr ')' .

Figure 9.3. HDL grammar rulespart II: structure.

113

HDL, though concise in syntax, is sufficiently powerful to stand as a model for
many of its real-life counter-parts like Verilog and VHDL. Note that the descrip
tion of structure and behaviour is clearly separated. The statements of a

114 Application of BOOs in a Hardware Oescription Language Chapter 9

structural module specify connections of instauces via nets. Their order has no
meaning. Statements of a behavioural module are interpreted sequentially and
obey the so-called single-assignment rule: a local or output pin must be assigned
a value exactly once. Locals, nets, and pins represent physical entities; they are
not variables in a programming language. Furthermore, locals and output pins
must he assigned a value before they occur in a right-hand side expression of an
assignment statement (define-before-use). These conditions ensure that a
behavioural module is combinational.

b-block ::= '{' [local-deis] { b-statement} '}' .

local-deis ::= { 'local' locals ';' }+.

locals ::= { locall ',' }+ .

b-statement ::= assignment-stat
I iterator b-statement
I b-block.

assignment-stat ::= lhs '=' expression ';' .

lhs ::= { facility I'.'}+ .

Figure 9.4. HDL grammar rules part III: behaviour.

A number of syntactic categories have been left unspecified. Their precise defini
tion is of no concern, and their intention should be clear from the examples and
the next brief discussion:

name
Some identifier.

pin, local, net
Pins, nets, and locals are declared by stating their name optionally followed
by a bit-range specification. If no range is present, the object is declared
scalar and is 1-bit wide; otherwise the range specification looks like
'[DH:DL]' with the requirement DH ;;::: DL and then the object is declared
1-dimensional with bit-width DH-DL+l. DH and DL are the object's
declared bounds. In the context of arithmetic operations, the bit with
smallest index (DL) is considered the least significant bit.

pin-name, local-name, net-name,-
The identifier of the declared object or the generic sink object'-'. The sink
is used to explicitly indicate that one is not interested in a certain value, e.g.
one might like to ignore the carry bit resulting from an addition:

- . S[4:1] = A[4:1] + 8[4:1];

Objects dedared as 1-dimensional may be subscripted. A subscript looks
like '[H:L]' with H ~ L; [N] is equivalent to [N:N]. Absence of a subscript

§9.2 A sample HDL

Repertoire of Operators & Predefined Fundions

Symbol/Notatîon Meaning

lg2 ceiling of base 2 logarithm (const-expr operand)
decode(E) full decode
reverse(E) reverses bits of E

extend(E,n) copies MSB of E till size is n
trunc(E,n) removes MSB of E till size is n
min(El,E2) minimum of El and E2
max(El,E2) maximum of El and E2

**
*
I
%

+

<
<=

!=
>=
>

&
I

<->
->

<<
>>
rol
ror

C?T:E

op (i:L..H) E
opE

exponentiation (const-expr operands)
multiplication (const-expr operands)
division (const-expr operands)
modulo (const-expr operands)
addition with carry
subtradion with borrow
less than
less than or equal
equality
inequality
greater than or equal
greater than

bitwise complement (prefix)
bitwise complement (postfix)
bitwiseAND
bitwiseOR
bitwiseXOR
bitwise EQUIV (XNOR)
bitwise IMPLY

concatenation
left shift (shift distance is const-expr)
right shift (shift distance is const-expr)
left rotate (rotate distance is const-expr)
right rota te (rotate distance is const-expr)

conditional expression, if C then T else E

iteration expression; op may be &, I,<->, A'+
op reduction over all bits of E; op may be &, I, <->, A' +

Table 9.1. Typical elementsof expressionsin HDL.

115

for an object means: use the complete object; fora 1-dimensional object this
is equivalent to a subscript of [DH:DL]. The sink '-' may also be sub
scripted and then is of size H-L+ 1, otherwise it has size 1.

module-name
Identifier of a previously defined module.

116 Application of BDDs in a Hardware Description Language Chapter 9

const-expr
Constant expression, i.e., an expression such that when all appropriate iter
ation variables and parameters are bound to a constant value, the expres
sion can be evaluated to a constant value.

cond-expr
Conditionat expression, a constant expression that evaluates to 0 or 1.

expression
Expressions are defined in the usual way, allowing infix notatien for opera
tors and a number of predefined functions. Parentheses may be used for
clarity and to overrule operator precedence. Primitives are facilities and
numbers. Numbers may be expressed in various radii and are in principle
unbounded. Table 9.1lists the operators and some built-in functions. The
requirement that operands have matching bit-widths for various binary
operators is relaxed: the operands are right-aligned (i.e., aligned at their
least-significant side) and the smaller operand is padded with zero bits on
the left (i.e., at its most-significant side). In assignments we will also
assume a similar treatment for the right-hand side expression: it will be
truncated if it is too wide, or padded with zeroes in case it is too smal}, to
match the width of the left-hand side.

Figure 9.5 shows an example of an 8-bit parity checker.

/* b = a[l] xor a[O] */
behaviour xor2(input a[l:O]; output b)
{

b = ~a;

}

structure Parity_Tree[[N)) (input A[2**N:l]; output B)

[[N == 1]]
xor2 (A, B) ;

[[N>l]]{
net tmp [2 : 1] ;

left[N) : Parity_Tree[[N-1]] (A[2** N :2**(N-1)+1], tmp[2]};
right[N] : Parity_Tree[[N-1]] (A[2** (N-1): 1], tmp[1]);
xor2 (tmp, B);

}

circuit parity_8 : Parity_Tree[[3]];

Figure 9.5. 8-bit parity circuit in HDL.

The behavioural module xor2 consist of a single statement, assigning to b the
result of xor-ing all bits of a, using the exclusive-or operator ~ as a reduction
operator. The structural module is generic in the parameter N and uses recursion.

§9.2 A sample HDL 117

So, Parity_Tree[[1]] results in an instance-eall to the behavioural modulè
xor2. For N > 1, Parity_Tree [[N]] is constructed from two instances of Par

[[N-1]]. Each is supplied with half the bits of input A, and their
results are combined using an xor2 instance. Figure 9.6 shows a schematic of
this circuit.

B

A[8] A[7] A[6J A[5] A[4] A[3] A[2] A[1]

Figure 9.6.
instances.

[[3 J] schema tic. The <'11 -nodes stand for xor2

9.3 Souree-level transformations

It should be obvious that many constructs of our sample HDL are predominantly
intended to ease the effort of circuit specification: parameterized modules, itera
tion, and recursion do not add to the expressive power of the language. The same
functionality can always be specified without them. This observation directly
leads to a number of transformations on the HDL text that produce a more primi
tive description while preserving its meaning.

Transformation Effect

1. Binding Determining actual values for formal parameters
and evaluating constant expressions

2. Unfolding Unrolling iterations
3. Unwinding Making recursive eaUs explicit
4. Flattening Substituting structure contents for instanee calls
S.Mapping Converting behaviour to structure

Table 9.2. Summary of transformations and their effect.

118 Application of BDDs in a Hardware Description Language Chapter 9

Transformations 1, 2, and 3 of table 9.2 are best performed simultaneously. This
willlead to a circuit description where all constant-expressions are reduced to
numbers. Instantiation of generic modules and recursion unwinding generally
create new module definitions and instanee-calis that need to be properly named.
Our rule is: obj [[n]] with n bound to the actual value k becomes the new
object identified by obj #k. Figure 9.7 shows the example circuit after applying
the first 3 transformations.

behaviour xor2(input a[l:O]; output b)

b = ~a;

structure Parity_Tree#l(input A[2:l]; output B)
{

I_l : xor2(A, B);

structure Parity_Tree#2(input A[4:1]; output B)
{

net tmp[1:2];

left[2] : Parity_Tree#l(A[4:3]. tmp[2]);
right[2] : Parity_Tree#l(A[2:1], tmp[l]);
I_2 : xor2(tmp, B);

structure Parity_Tree#3(input A[8:1]; output B)
{

net tmp [1: 2] ;

left[3] : Parity_Tree#2(A[8:5], tmp[2]);
right[3] : Parity_Tree#2(A[4:1], tmp[l]);
I_2 : xor2(tmp, B);

circuit parity_8 : Parity_Tree#3;

Figure 9.7. After binding, unfolding iterations, and unwinding recursion.

Another useful transformation is the substitution of structural module instances
by their content. This is called flattening. To avoid name clashes, some objects
(typically nets and instances) must be renamed. The circuit description for our
example after flattening is shown in figure 9.8.

A more challenging transformation is mapping behavioural modules onto a net
work of primitive modules. Our goal is to convert a b-module definition into a
semantically equivalent s-module definition. This can be done by attaching a
meaning to the operators present intheb-module body (b-block} in terms of a set
of primitive module definitions. This conversion is best implemented using a

§9.3 Souree-level transformations

syntax directed approach.

behaviour xor2(input a[l:O]; output b)

b = ~a;
}

structure Parity_Tree#3(input A[8:1]; output B)

net N_0[2:1), N_1[2:1], N_2[2:1];

I 0 xor2(A[8:7], N_1[2]);
I_l xor2(A[6:5], N_l[l]);
I_2 xor2(N_l, N_0(2]);
I_3 xor2(A[4:3], N_2[2]);
I_4 xor2(A[2:1], N_2[1]);
I_5 xor2(N_2, N_O[l]);
I_6 xor2(N_O, B);

circuit parity_8 Parity_Tree#3;

Figure 9.8. Flattened circuit.

119

We assume that transformations 1, 2, and 3 are already applied. So the only pos
sibie b-statement is the assignment-stat, and the only possible s-statement is the
instance-ealL Also, iteration expressions will be absent. The statements of the b
module are processed sequentially. Declarations of locals become net declara
tions. An assignment statement results in a number of instanee-eaUs to certain
primitive modules. There will be one such call for each operator and predefined
function occurring in the right-hand side expression of the assignment statement.
Table 9.3 below lists the primitive modules defined forsome operators and pre
defined functions.

Operator Primitive module

&E $ AndReduce
AE $XorReduce

decode(E) $ Decode
* $Multiply
+ $Add
< $Less
- $Not
& $And
I $0r
... . ..

Table 9.3. 'Technology' mapping.

120 Application of BOOs in a Hardware Oescription Language Chapter 9

The primitive modules reside in a separate file, the so-called technology file. Typ
ically, a primitive module is a structural module that is parameterized with
respect to the bit-width of its input and output pins and consists of a network of
basic gates.

The left-hand side of an assignment statement is converted to a port expression
for the output pin of a call to the special $Connect module (figure 9.9). The
right-hand side is converted to a port expression for the input pin of that conneet
module.

behaviour $Connect[[N]](input A[N:l]; output Y[N:l])
{

y ::: A;

Figure 9.9. Generic description of conneet module in HOL.

Table 9.4 summarizes the conversion steps.

Behaviour Structure · Remark
b-module-definition s-module-definition
b-block s-block
local-deis net-deis
assignment-stat { instance-eall }+ among them $ Conneet
lhs port-expr outputof$Connect
expression port-expr input of $Connect

Table 9.4. Conversion of b-module tos-module.

Here is an example to illustrate the mapping transformation:

behaviour M(input A[3:0], B; output Y[2:1])
{

local t[3:0];

t = B.A[2:0];
Y.-[1:0] = -t & extend(A[3] I B, 4);

I

The behavioural module M accomplishes the following: first the scalar input B is
concatenated with the 3 least significant bits of A. Then, all4 bits of t are comple
mented and bitwise AND-ed with the 4-bit wide extension of the OR of bit A [3]
and B (extend duplicates the MSB of its first argument to produce a result as
wide as the second argument indicates). The 2 most significant bits of the final
expression are assigned to Y and the remaining 2 least significant bits are
ignored, i.e., left unconnected (this is what - [1 : 0] means).

§9.3 Souree-level transformations 121

When converted to a network of basic gates we obtain the following structural
module. Note that additional nets (N_O, and N_2) are introduced to inter
conneet the generated instance-calls.

structure M(input A[3:0], B; output Y[2:1])
{

}

net t[3:0], N_0(3:0], N_l, N_2[3:0];

I_O $Connect[[4]] (B.A(2:0], t);
I_l $Not((4]](t, N_O);
I_2 $0r [(1]] (A [3] , B, N_l) ;
I_3 $And[[4]] (N_O, N_l.N_l.N_l.N_l, N_2);
I_4 $Connect[[4]] (N_2, Y.-[1:0]);

The s-module Mis also depicted in figure 9.10. Often it is possible to avoid the
generation of spurious $Connect instances.

M
A[O]

A[1)

A[2] $Not

$And
Y[1]

Y[2]

A[3]

B

Figure 9.10. The mapped example module M.

The module definitions in the technology file are themselves expressed in HOL.
It is nat toa difficult to express all the necessary $-primitives in termsof a small
set of basic gates. Then a second application of binding, unfolding, and unwind
ing converts the circuittoa true gate-level description. As an example, the gate
level implementation for the xor-reduction operator is given in figure 9.11.
Figure 9.12 shows the gate-level description of the Pari ty _Tree example in
termsof 2-input XOR gates.

122 Application of BOOs in a Hardware Oescription Language Chapter 9

/* y AA; N >= 1 */
structure $XorReduce[[N]] (input A[N:1]; output Y)
{

[[N=1]]
CONNECT (A, Y) ;

[[N=2]]
XOR(A[1], A[2], Y);

[[N >= 3]] {

}

net T[N-1:2];

XOR(A[1], A[2], T[2]);
(i : 3 .. N-1)

XOR(A[i], T[i-1], T[i));
XOR(A[N], T[N-1], Y);

Figure 9.11. Generic description for mapping xor-reductor to XOR gates.

structure Parity_Tree#3(input A[8:1]; output B)
{

net N_0[2:1], N_1[2:1], N_2[2:1];

I_O XOR(A[8] I A[7]. N_1 [2]);
!_1 XOR(A[6], A[S], N_1(1]);
I_2 XOR(N_1[2], N_1[1], N_0[2]);
I_3 XOR(A[4], A[3], N_2[2]};
1_4 XOR(A[2], A[l], N_2[1]);
I_S XOR(N_2[2], N_2[1], N_O[l]);
!_6 XOR(N_0[2], N_0[1], B);

circuit parity_8 : Parity_Tree#3;

Figure 9.12. Bound, unfolded, unwound, flattened, and mapped.

9.4 BDD interpretation of behavioural modules

The transformations discussed in the previous section make it possible to derive
aboolean network from an HOL circuit description. Each basic gate-level HOL
element has its corresponding BOD operation as shown in table 9.5.

BOOs for the primary outputs of the circuit are calculated by applying the BOD
operations for each element in a proper topological order to the BOOs for inter
mediate nets, starting with the BOOs for each primary input and any constant
net values (Oor 1 for false resp. true). The terms "topological sorting" and "rank
ordering" will be used interchangeably.

§9.4 BDD interpretation of behavioural modules 123

HOL basic element BOD operation

CONNECT bdd_assign
NOT bdd_not
AND bdd_and
NAND bdd_nand

. OR bdd_or
NOR bdd_nor
XOR bdd_xor

• XNOR bdd_xnor
·input A bdd_crea te_ var (11 A 11

)

0 bdd_O
1 bdd_l

Table 9.5. HOL basic element and corresponding BOD operation.

This processis explained by means of the 4-bit adder circuit of figure 9.13.

behaviour add[[N]] (input a[N-1:0], b[N-1:0]; output cout, s[N-1:0])
{

cout.s a + b;

circuit adder_4 : add((4]];

Figure 9.13. Specification of a 4-bit adder.

After the transformations, the description of figure 9.14 results. The instances are
shown in rank order: I_O is first, then et cetera. The BDDs for the outputs
cout, s [3] till s [0] are (automatically) drawn in figure 9.16. Instead of explic
itly mapping the circuit onto a set of basic gates and then deriving the BOOs, it is
also possible to directly interpret the HOL operations by BOD (vector) opera
tions. Also, the requirement that the circuit first be flattened may be dropped
when the circuit is rank-orderable, i.e., there are no apparent loops in the struc
tural modules. The expressions occurring in a behavioural module are inter
preted by a (virtual, i.e., software simulated) BOD-vector stack machine. The
stack organization is depicted in figure 9.15.

Each item on the BOD-vector stack is a vector of BDDs. For uniformity, items of
size 0 are allowed. Operations on the stacked items pop 0 or more top items off
the stack and possibly push a result back on the stack. Of course many optimisa
tions are possible, e.g. for some operations the actual popping and pushing may
be avoided by directly operating on the elements of the stacked vector.
Algorithm 9.1 shows a glimpse of the main interpreter routine; many details
have been left out.

124 Application of BDDs in a Hardware Description Language Chapter 9

structure add#4(input a[3:0] 1 b[3:0]; output coutl s[3:0])
{

net N_0[4:2] 1 N_1 1 N_2·1 N_3 1 N_4 1 N_5 1 N_6 1
N_7 1 N_8 1 N_91 N_10 1 N_lll N_12;

I - 0 XOR(b[O] I OI N_ll);

I - 1 AND(b[O] I OI N_10);
I - 2 XOR(N_11 1 a [0] I s [0 l) ;
I - 3 AND(a[O] I N_11 1 N_12);

I - 4 OR(N_12 1 N_10 1 N_0[2]);
I_5 XOR(b[1] I N_0[2] I N_8);

I - 6 AND(b[1] I N_O [2] I N_7);

I -7 XOR(N_8 1 a[1] I s [1]);

I_8 AND(a[1] I N_8 1 N_9);

I - 9 OR(N_91 N_7 1 N_O [3]);

I - 10 XOR(b[2] I N_0[3] I N_5);

I - 11 AND(b[2] I N_O [3] I N_4);

I - 12 XOR(N_5 1 a [2] I s [2]) ;
I - 13 AND(a[2] 1 N_5 1 N_6);
I - 14 OR(N_6 1 N_4 1 N_O [4]);
I - 15 XOR(b[3] I N_O [4] I N_2);
I - 16 AND(b[3] I N_O [4] I N_1);
I - 17 XOR(N_2 1 a[3] I s [3]) ;
I - 18 AND(a[3] 1 N_2 1 N_3);
I - 19 OR(N_31 N_1 1 cout);

Figure 9.14. Gate-level4-bit adder (instances are in rank-order).

~---------~-TOP

LSB 0

1

2

3 E[6:0]
4

5
MSB 6

Figure 9.15. BOD-vector stack.

§9.4 BDD interpretation of behavioural modules 125

co ut s[3] s[2] s[1] s[O]

Figure 9.16. BOOs for (a dot on an edge means complementation).

126 Application of BDDs in a Hardware Description Language Chapter 9

void bdds_apply(Opcode op)
{

}

switch (op) {
case BDDS_NOT_OP:

A: =bdds_pop () ;
for (i:=O; i< size(A); i++)

R[i]:=bdd_not(A[i]);
bdds_push(R);
break;

case BDDS_SUB_OP:
case BDDS_ADD_OP:

B: =bdds_pop () ;
A: =bdds_pop ();

Ci:=bdd_O();
for (i:=O; i< size(A); i++) {

tl :=bdd_xor(B[i], Ci);
S[i]:=bdd_xor(tl, A[i]);
if (op= BDDS_SUB_OP) A[i] :=bdd_not(A[i]);
t2:=bdd_and(A[i], tl);
t3:=bdd_and(B[i], Ci);
Ci:=bdd_or(tl, t2);

S [i]: =Ci;
bdds_push(S);
break;

} /*switch*/

Algorithm 9.1. Sketch of HDL interpreter.

There are a number of options in the organization of processing a circuit to
derive its BDDs:

1. The circuit is first fully flattened and the instauces are rank ordered. Then
one proceeds as mentioned in the beginning of this section.

Discussion: This approach shifts the burden of handling hierarchy and
scope levels from the BDD interpreter to the transformations. lt presup
poses that the BDD interpreter has knowledge of the set of basic gates
(technology file).

2. The circuit is not, or only partially flattened, and each structural module is
locally rank ordered. Then all behavioural modules are processed and
BDDs for their outputs in terms of their inputs are determined. By means
of BDD composition the BDDs for the whole circuit are found.

Discussion: The BDD interpreter must be able to handle hierarchy. It is to
be expected that this method will require a lot of memory to store the

§9.4 BOD interpretation of behavioural modules 127

intermediale BDDs for all behavioural modules simultaneously. Also the
compositions are rather time consuming and have the drawback that no
dynamic variabie ordering may be clone in the meantime.

3. Same as above, but now each behavioural module is processed only at the
moment its BDDs are required by an instanee (demand driven), and the
BDD calculations start with the BDDs found for the inputs of the module.
In this way no a posteriori composition is necessary.

Discussion: This is probably the most cost-effective method. Demand
driven (or lazy evaluation) is usually a good scheme to adopt. At any time,
only the BDDs for the partially processed circuit need to be stored, any
intermedia te results may be freed. No compositions occur so dynamic vari
abie ordering can be fully exploited. The drawback is that a behavioural
module will be processed as many times asthereare instances of it. How
ever, typically the inputs BDDs for it will be different in each invocation
anyway, and if not, the memory function present in the BDD package will
often avoid the unnecessary recalculation of known BDDs.

Table 9.6 clearly demonstrales the superiority of the 3-rd methad when com
pared with the 1-st method. The 2-nd methad has not been implemented. The
example circuit is add [[N]] and a good variabie order was manually supplied.
For a fair comparison, the listed runtimes for deriving BDDs for the mapped cir
cuit (method 1 in column 3) do not indude the mapping itself (which is reported
separately in column 4).

N Methad 3 Method 1 Mapping #BDDnodes

8 0.0 0.0 0.2 39
16 0.0 0.1 0.2 79
32 0.0 0.2 0.2 159
64 0.0 0.5 0.3 319

128 0.0 1.1 0.5 639
256 0.1 2.9 1.0 1279
512 0.1 8.0 2.1 2559

1024 0.2 29.5 4.7 5119

Table 9.6. Performance (runtime in secs) of methad 3 versus methad 1.

9.5 "rhe HOL verifier

An HDL parser, the transformations, and the BDD interpreter are implemented
to form one program. Actually, the HDL presented hereis only a subset from the
one that is implemented; many interesting features havenotbeen discussed. The
program expects two HDL files as input, the first will be considered the imple
mentation (imp), the second the specification (spec). This distinction (and thus
asymmetry) is necessary to correctly interpret don't care conditions, which will

128 Application of BDDs in a Hardware Description Language Chapter 9

not be disru.ssed here. Information about the correspondence relation between
the implementation and specification designs' primary signals may be separately
specified in a so-called signal correspondence file.

The designs will be verified by constructing a BDD representation for all signals,
starting at the primary inputs, and comparing the corresponding primary out
puts for equivalence, Ideally the two designs under test should be processed
simultaneously. This is feasible for gate-level designs but not easy to imptement
for hierarchical designs especially when the levels of abstraction of specification
and implementation differ. Currently, we therefore choose to handle the spec
and imp design sequentially. First the spec design is traversed in a depth-first
marmer from primary inputs to primary outputs. Afterwards, the imp design is
treated similarly; the same traversal routines are used. While traversing, BDDs
are constructed for each bit of a primary input, an internat signal, and a primary
output. Initialization takes care of uniquely assigning a fresh BDD variabie to
each corresponding pair of primary inputs.

After the BDDs are derived for both circuits, the outputs are checked bit for bit. If
all of them match, the verification is successful and "Ok" is printed; otherwise the
conflicting outputs are reported and for each a test vector is given that when
applied to the respective inputs of the circuits exhibits the discrepancy. For
example, taking the mapped 4-bit adder (figure 9.14) as implementation and
erroneously using a NAND gate for 1_8, the program reports:

Outputs . 'cout' mismatch.
a [0 l 0;
a[2] = 1;
b[2] = 0;
a[3] = 1;
b[3] = 0;
OUtputs 's [2] , mismatch.
a[OJ = 0;
Outputs 's[3]' mismatch.
a[O] = 0;
a[2] = 1;
b[2] ::;: 0;

Besides this, the program offers the following features:

• Showing the true support of outputs (and locals).

• Conversion of a complete circuit to a HDL behavioural module in sum-of
products or a factored form.

• Conversion to espresso input, running espresso, and reinterpreling its output
in terms of a HDL behavioural module.

§9.6 Dealing with large circuits 129

9.6 Dealing with large circuits

A standard technique applied by many CAD-tools when facing a large design is
to partition the design into a number of smaller blocks that are dealt with
separately. There are several ways to obtain a desired partition. Often the design
is described in a hierarchical way and then the natmal approach would be to
divide the design along the boundaries dictated by the hierarchy. In the absence
of a clear coarse-grain structure in the description, one could resort to some
suitable partitioning algorithm or simply leave the problem for the designer to
solve. The latter, of course, is usually met with obvious reluctance. For a
verification tool we have the additional requirement that the partitioning of the
two designs under comparison should be consistent in the sense that similar
blocks are verified against each other. Not surprisingly, when verifying
descriptions of differing levels of abstraction, e.g. a flat gate-level circuit against a
high-level arithmetic description, this requirement will be very hard to fulfill.
Next we will explain a method to solve this problem in a practically acceptable
way.

Whatever method is used to cut the design, the effect will always be the breaking
of certain connections and the conceptual introduetion of new primary input
output pairs. The spot where a net is broken will be called a cutpoint. More
precisely, when we put a cutpoint on a net, the cut will be located right after the
driver of that net (see figure 9.17).

-:jD
I
I
'

Figure 9.17. Location of a cutpoint and its effect.

In a gate-level design the driver for a net is usually an output port of a gate or a
primary input pin. However, breaking nets driven by primary inputs doesn't
make much sense. A consistent partition consists of a number of spec cutpoints
logether with their imp correspondences. Effectuating the partition results in the
designs being split up in a number of chunks of logic, such that for each spec
blockthere exists precisely one corresponding imp block and vice versa. The ver
ification problem is thereby greatly simplified: only the corresponding (much
smaller) blocks need to be compared. The problem is that we may be confronted
with so-called false negatives, i.e., primary outputs are found to miscampare
when in fact they are identical. We will return to false negatives insection 9.6.4.

We could hope for a good designer to supply the necessary cutpoints. This seems
to be a reasonable assumption when both the spec and imp design are hand-

130 Application of BDDs in a Hardware Description Language Chapter 9

crafted; the· designer surely will have an intimate knowledge of his design (in
partirolar regarding its structure and functionality) and probably will use the
samenarnes for corresponding signals. (In [Burch91] a set of good cutpointsfora
class of multiplier circuits is indicated, however no automatic method to derive
them is suggested.) .

A common complaint about automatic logic synthesis is that it obscures much of
the original intemal structure, partly because synthesis tools have the habit of
messing up the intemal net names. So, although a designer might very well be
able to come up with a set of useful cutpoints in the spec, he will have problems
to figure out their correspondences in the imp. Moreover, the person that verifies
the design need not be the designer himself, and hence, has little knowledge
about the precise functioning of the circuit and the meaning of the signals.

9.6.1 Cutpoints and BDDs

As mentioned before, we derive BDDs for both designs sequentially; first the
spec design is traversed then the imp design. The difference in treatment lies in
the nature of certain actions on cutpoint signals that are encountered. Initializa
tion takes care of uniquely assigning a fresh BOD variabie to each corresponding
pair of primary inputs and to each corresponding pair of cutpoints.

SpecDealgn

Figure 9.18. Corresponding cutpoints.

The BDDs for the spec will thus be expressed over the combined sets of primary
input and cutpoint variables. During traversal of the imp, each cutpoint BOD
will be compared against the corresponding spec cutpoint BOD. Figure 9.18
sketches such a situation.

If all corresponding cutpoints are indeed equivalent and also all primary outputs
compare, the designs are declared functionally equivalent. With BDDs it

§9.6.1 Cutpoints and BDDs 131

becomes trivially easy to take polarity faults into account. So, without further
notice, comparisons will be understood to be performed modulo complementation.
In fact, when a pair of supposedly equivalent cutpoints miscompares due to
opposite polarities, we may decide to correct this by complementing the BDD
variabie for the cutpoint in the imp design, assuming that the signals are not at
fault but the specified cutpoint correspondence is erroneous. Actually, there is
room for improvement; it is theoretically possible to also detect polarity faults in
the primary input correspondences. Polarity faults are a major souree of design
errors, and it is therefore important to detect and report them explicitly. Another
advantage of using BDDs is the possibility to detect dependendes in miscom
pares and as a result avoid spurious error messages: a miscampare whose differ
ence (exdusive-or of the BDOs associated with the signals being compared)
depends on cutpoint variables that themselves proved to be miscompares should
be flagged as such.

9.6.2 Hunting tor correspondences

Attaching a BOD to every bit of every signal in the spec design enables an on
the-fly signal correspondence hunt during imp design processing. Since BDOs
are a canonkal representation of Boolean functions and because our BDD pack
age uses sharing of nodes, two signals that carry the same logica! function will
have identical BDDs. Therefore by simply marking the BDD associated with a
spec cutpoint and testing every imp signal BDD for this mark, we may disclose
some of the sought-after cutpoint correspondences. Por a proper resumption of
the verification process, the thus discovered imp cutpoint should of course be
effectuated, i.e., the imp signal is cut and the newly created input must be
assigned the BOD variabie already associated with the spec cutpoint It is tempt
ing to throw away both the BDDs calculated for the corresponding cutpoints'
output sides. Unfortunately, they need to be kept at hand because resolution of
false negatives might refer to them. Assuming an intelligent and judicious choice
of spec cutpoints and assuming that the spec design description is at a somewhat
higher level of abstraction than the imp design description, it still might happen
that notall spec cutpoints have a corresponding signal in the imp. It is conceiv
able that in such a case the imp design BDDs will become unacceptably big and
to no avail: the domain of BDD variables for the spec and the imp is no langer
the same and hence camparing BODs becomes senseless. One remedy would be
to have the verification program report a list of the discovered correspondences
and abort as soon as some imp BDD gets bigger than a certain limit. It is not easy
to decide whether the BDD size explodes because of the circuit's inherent com
plex functionality or because some cutpöint correspondences were missed.

9.6.3 Cutpoint guessing

Now that we have a way of tracking down cutpoint correspondences, we might
as well consider automatically generating them in the first place, perhaps in

132 Application of BDDs in a Hardware Description Language Chapter 9

addition to some provided by the designer. The success of cutpoint guessing
highly depends on the amount of information we use in our decision to cutpoint
a signal. Many heuristics come to mind: if the spec description is hierarchical and
each instantiated sub-circuit is of moderate complexity with respect to BDD size,
it would make sense to cutpoint all top-level interconneet between the instances;
if few clues about the structure of the spec are present, then perhaps random cut
pointing rnight prove successful; one could define an 'importance' measure for
signals that reflects the likelihood of a spec signal to be present in the imp design,
for instanee based on the fan-out count of the signa!.

The simple scheme we adopted in our program is based on BDDs. From our
point of view the size of the BDDs is the ultimate measure for a successful verifi
cation run. We therefore strive to introduce as many cutpoints as necessary to
control the BDD sizes. Note, however, that it is fallacious to argue that introduc
ing too many cutpoints doesn't hurt. It does! Take the extreme case where all
spec signals are cutpointed. Granted, initially, i.e., close to the primary inputs, we
will find many correspondences in the imp, but quickly we will miss a few and
from then on no imp signal will ever correspond to a spec signal anymore.
Truthfully, we have no definite answer to the cutpointing problem.

In our experiments we use the number of variables in the support of the Boolean
function associated with a signal as cutpointing criterion. Also, for practical con
siderations, we only allow named signals to be cutpointed. In other words, we
will not attempt to cutpoint intermediate BDDs that result from evaluating sub
expressions in behavioural descriptions. Given the moderate expressive power of
the behavioural block descriptions (e.g. there is no multiplication operator
defined) and some observations of designers' practice (most expressions tend to
fitwithinan 80 character line; local variables are used abundantly) this seemsnot
to be a serious restriction.

9.6.4 Resolving false negatives

The sole purpose of cutpointing is to introduce new (virtual) primary inputs and
thereby increasing the chances that the BDDs constructed during verification are
kept reasonably small. Our method for automatic cutpoint generation described
above, will guarantee small BDDS for all spec design signals. But clearly the cut
point inputs are not real primary inputs: they are narnes that stand for Boolean
functions over the real primary inputs. In that sense,. a cutpoint BDD variabie
may not be treated as an independent variable. A comparison between two sig
nals should therefore take this interdependency into account: if the exclusive-or
of the BDDs is the 0 BDD, the signals are truly equivalent; otherwise the non-{)
difference needs further investigation: it's a potential false negative. This is
resolved by resubstituting the functions for the cutpoint variables into the non-0
difference, the penalty being a possible increase in the size of the BDD for the dif
ference. It is obvious that we should treat the cutpoint variables in reverse topo
logical order. Often, not all cutpoint variables need be considered; if indeed the

§9.6.4 Resolving false negatives 133

signals are equivalent, usually only a small number of resubstitutions (say less
than 10) are needed to establish the falsehood of the miscompare. On the other
hand, when the signals do actually miscampare this can only be decided after
resubstituting all the cutpoint variables present in the support of the difference.
Because of this behaviour of false negatives it is a good idea to have a program
option to turn off the resolution of false negatives.

9.6.5 Experiments

Several experiments have been performed to validate the ideas expressed above.
They were all run on a 99MHz HP9000/735 machine. The circuits are character
ized in table table 9.7. "PI", "PO", and "REG" respectively, are the number of pri
mary input, primary output, and register bits; the "INT" columns list the number
of internal signals. The first 9 circuits are the toughest (according to Rudell) in
the ISCAS'85 benchmark set. The 5 others are industrial designs. The "IMPs" for
the ISCAS circuits are the non-redundant ones known under suffix "nr". Note
that the ISCAS circuits are at gate-level, and spec and impare very close in terms
of internat signals, unlike the industry circuits that clearly have a high-level spec
and a low-level imp. For all tables below with the exception of table 9.10, if a cir
cuit is not listed this means that it ran out of memory(> 120Mb). Table 9.8 and
table 9.9 are included for reference: they indicate which circuitscan be handled
without cutpoints, both with (+DVO) and without using dynamic variabie order
ing (-DVO). Although +DVO definitely strengthens BDD-based verification (at
the expense of an increase in runtime for most of the circuits), the notorious
16-bit multiplier c6288 and the larger industrial designs cannot be coped with.

Spec cutpoints were available for the industrial designs (none were necessary for
alu32) and their effectiveness is indicated in table 9.10. It is interesting to report
that often only a few signals were specified; the number of cuts is a bit-count,
whereas the spec designs use internals signals declared as bitvectors. Table 9.11
lists the results when a number of "(Gen)" cutpoints are generated automatically
(which takes time as listed inthelast column). All ISCAS benchmarks including
c6288 are easily handled. No good cutpoints could be automatically found for
the industrial designs alu16 and idct.

134 Application of BOOs in a Hardware Oescription Language Chapter 9

Circuit PI PO REG INTSPEC INTIMP

c432 36 7 0 153 150
c499 41 32 0 170 170
cl355 41 32 0 514 514
c1908 33 25 0 855 853
c2670 233 139 0 1130 898
c3540 50 22 0 1647 1598
c5315 178 123 0 2184 2175
c6288 32 32 0 2384 2367
c7552 207 108 0 3405 3290

mul9 18 18 0 375 648

mul16 32 32 0 955 2056
alu16 77 40 1 452 1178
alu32 72 34 0 763 1179
idct 38 40 2674 6089 26098

Table 9.7. Some characteristics of the test circuits.

Circuit PeakBDD Peak Mem (Kb) Time (s)

c432 7865 407 0.6
c499 74885 2303 5.7
c1355 199158 5776 10.8
cl908 157956 4866 19.8
c3540 565476 15607 31.4

mul9 234341 6622 24.0
alu32 249635 7074 3:16.6

Table 9.8. Classical method: no cutpoints; -DVO.

Circuit PeakBDD Peak Mem (Kb) Time (s}

c432 5934 414 1.4
c499 48235 1452 29.2
c1355 130037 4280 1:16.3
cl908 32714 1066 22.4
c2670 22278 839 23.7
c3540 192268 7093 1:39.1
c5315 11109 560 16.8
c7552 190653 5626 2:15.2

mul9 %046 2647 öVo

alu32 20690 772 14.0

Table 9.9. Classica! method: no cutpoints; +DVO.

§9.6.5 Experiments 135

Circuit Cuts PeakBDD Peak Mem (Kb) Time (s)

mul9 50 32012 1138 20.8

mul16 136 28927 982 3:09.2

alu16 35 4865 345 9.5

îdct 103 385258 41945 5:24.4

Table 9.10. Designer supplied only Spec cutpoints; +DVO.

.
Circuit Cuts Peak Peak Time (s)

(Gen) BOD Mem(Kb) (Gen)

c432 11 (13) 4097 338 0.4 (0.2)

c499 16 (24) 797 271 0.3 (0.3)

c1355 32 (40) 2085 272 0.7 (0.7)

c1908 57 (66) 4553 344 2.3 (2.1)

c2670 86 (135) 286915 8861 53.8 (7.0)

c3540 143 (185) 28326 968 27.0 (4.8)

c5315 239 (301) %26 511 27.8 (14.1)

c6288 479 (479) 8824 495 8.9 (7.1)

c7552 407 (469) 13959 648 20.3 (9.6)

mul9 0 (48) 96046 2647 48.9 (58.3)

alu16 70 (116) 33662 1167 36.6 (15.7)

alu32 66 (164) 10286 488 11.3 (29.2)

Table 9.11. Automatic cutpoint generation; +DVO.

136

Chapter 10

The PTL Program

1 0.1 Introduetion

In this chapter three problems are studied and solved with the use of the ptl pro
gram. The heart of this program is a satisfiability checker for propositionallinear
time temporal logic as presented in chapter 6. Some other features of the pro
gram will briefly be mentioned. The problems under study are a simp Ie elevator,
a logic game, and a synchronous bus arbiter.

1 0.2 A 2-story elevator

An elevator moves up and down between two floors. There is a push button on
each floor that initiates a request for the elevator to come to that floor, piek up the
person, and move to the other floor (figure 10.1).

Figure 10.1. A 2-story elevator.

Stepping in and out, and also the opening and closing of doors is not taken into
consideration. Actually, there will be no notion of a person riding the elevator.

137

138 The PTL Program Chapter 10

We like to spedfy this system in LTL and then use this specification to derive
some interesting properties of the elevator system and eventually prove that a
simple controller conforms with it. (Although this elevator system looks almast
too simple to merit any real-life application, there does actually exist such an ele
vator in the lobby of the EE building of Eindhoven University.)

The system is modelled using the following internal state variables:

V 1 : elevator is on the first floor,
V2 : elevator is on the second floor,
0 1: a request to bring the elevator to the first floor and then carry a

person up to the second floor is pending,
0 2: a requesttobring the elevator to the second floor and then carry

a person down to the first floor is pending.

And the external control variables and their intended meaning are:

K1: someone pushes the button on the first floor,
K2: someone pushes the button on the second floor.

Obviously, a good specification at least ensures that when a button is pressed a
request is initiated and that a request will cause the elevator toperfarm a particu
lar movement To. keep the specification as general as possible we shall avoid fix
ing any time delays between the occurrence of certain events: wedetermine the
order of events without telling exactly when they happen. But keep in mind that
any specification is by definition of a subjeelive nature and one cannot argue
whether a specification is correct in itself. The least we can do is to make sure a
specification is not self-contradictory which would renderit useless.

Beginning of specification.

This first part of the specification states conditlans that must hold at any time,
hence the "always" (also called henceforth) temporal operator:
o(

The elevator is either on the first floor or on the second floor:
{V1 H V2')
Remark: we could have used only 1 variabie to denote the position of the eleva
tor because in this case we only have 2 (binary) floors; in general this does not
hold.

When there are no requests, the elevator does not move:
(01'02'V1 ----70V1)
< 01'02'V2 ---+o V2)
Remark no superfluous movement.

§10.2 A 2-story elevator 139

Next come two requirements that capture the operational behaviour of the eleva
tor.

A request will stand till and including the moment of arrival of the elevator on
that floor, which is bound to happen sometime:
(01V2~o ((01V2) U (01Vd))
(02 V 1 ~ o ((Oz V 1) U (Oz V 2)))

Remark: pushing the button calls the elevator to your floor. We must retain the
request since the movement of the elevator is not completed yet.

When there is a request on a floor and the elevator happens to be on that floor, it
need only move to the other floor and when arriving there the requestmayor
may not extinguish depending on whether the button is pushed again:
(ON1 ~o ((01V1) U V2))

(Oz V 2 ~ o ((Oz V 2) U V 1))
Remark: step in the elevator and it brings you to the other floor.

The request is reset upon completion of the elevator's task:
(01V1oVz~O (01' UwK1))
(Oz V zO V 1 ~ o (Oz' Uw Kz))
Remark: the premiss states the completion of the elevator's task, so it makes
sense to immediately clear the request at least (weak-)until a button is pressed
again in order to service a next customer.

Pressing a button immediately causes a request:
(K1 -?01)

(Kz -?Oz)
Remark: this is a matter of taste: we like to have instant service.

This concludes the first part of the specification:
)

Now we state what must hold initially:

In the beginning there will be no requests (weak-)until a button is pressed:
(01' UwK1)
(02' Uw Kz)
Remark: this ensures that requests cannot occur spontaneously.

The initial state of the system:

Remark: not specified, i.e., the elevator is either on the first or on the second floor.

End of specification.

Figure 10.2 summarizes the above specification in the LTL syntax as typedon a
computer.

140

[] (

(01' 02' V1 -> @V1)
(01 V2 -> @((01 V2)
(01 V1 -> @((01 V1)
(01 V1 @V2 -> @(01'
(K1 -> 01)
)

(01' Uw K1)

The PTL Program

(V1 <-> V2')

U (01 V1)))
U V2}}
Uw K1))

(01' 02' V2 -> @V2)
(02 V1 -> @((02 V1)
(02 V2 -> @((02 V2)
(02 V2 @V1 -> @(02'
(K2 -> 02)

(02' Uw K2)

Chapter 10

U (02 V2)))
U V1))
Uw K2))

Figure 10.2. Elevator spec in ptl syntax. Note the symmetry between the dauses
for both floors.

We will subject the elevator specification to a number of tests. Unless stated oth
erwise, in each case the description as in figure 10.2 is assumed to be logically
AND-ed with a description of the extemal behaviour of the system; in other
words the environment consisting of persons pushings the buttons on both
floors. This complete description is then checked to logically imply one or more
consequences. Each case starts with a informal statement of the test.

Test 0: The specification is satisfiable, i.e., not self-contradictory.

Test 1: From the fact that no button is ever pressed it follows that no requests
will ever occur and consequently the elevator never moves:
oK1'oK2'~o01'o02' (oV1voV2)

Test 2: A button press on floor 1 happening once implies that the elevator must
eventually end up on the second floor and stay there:
(K,'U (K1 ooK/))oK2'~V2 U (V1o(V1 UoV2))

Test 3: When both buttons are once pressed simultaneously, the elevator makes
a full move, i.e., either down and up again, or up and down again:
(K1'K2') U (K1K2oo (K1'K2'))

(V 1 o (V 1 U (V 2o (V 2 U o V 1)))

xor V 2o (V 2 U (V 1 o (V 1 U o V 2))))

Test 4: When button 1 is pressed infinitely often, the elevator must move
infinitely often too:
O<>K1 oK2' ~O<>(V1o (V1 U (V2o (V2 U V,))))

Test 5: Every request is honoured:
o (01 ~ <> (V 1 o V 2)) o (0 2 ~ <> (V 2o V 1))
In this case the specis supposed to imply (~) this formula.

Test 6: It is possible that pressing a button more than once causes less move
ments of the elevator; in other words some calls get lost. In fact we
press button 1 twice and then assert that the elevator makes only 1
movement:
K1'U (K1o(K1'U (K1ooK1')))oK2'~V2U (V1o(V1 UoV2))

§10.2 A 2-story elevator 141

Clearly, this merely needs to be tested for satisfiability.

The results of running the ptl program on the seven test cases are collected in
table 10.1 below.

Test Result Time (secs)
0 True < 0.1
1 True < 0.1
2 True <0.1
3 True <0.1
4 True <0.1
5 True 0.4
6 True 0.2

Spec f- FSM True < 0.1

Table 10.1. ptl results and runtimes (HP9000/755, 76 MIPS).

It seems that the given specification pretty much captures our informal concept
of how the simple 2-story elevator is supposed to behave. It would be more
interesting to see whether a proposed controller circuit complies with the formal
specification. Here we shall describe the controller by a Moore-type state
machine and prove that its behaviour is contained in (is a subset of) the specifica
tion. To make things easier, we first suggest a simplification to the spedfication:
note that the request variables 0 1 and 0 2 are fully determined by the button vari
ables K1, K2 and the elevator position variables V1 and V2, thus they are superflu
ous. The specification without explicitly mentioning requests is stated in
figure 10.3. Of course, we can automatically check that the old spec of figure 10.2
indeed implies the new one (and not the other way around). This means that any
behaviour that makes the old spec true also makes the new spec true.

[] (

(Vl <-> V2')
(Kl -> V2 U (Vl @(Vl U V2)))
(K2 -> Vl U (V2 @(V2 U Vl)))
)

((Vl Uw (Vl (Kl V K2))) V (V2 Uw (V2 (Kl V K2))))

Figure 10.3. Revised elevator spec in plt syntax.

A state diagram of the proposed controller is depicted in figure 10.4.

142 The PTL Program Chapter 10

-1

Figure 10.4. Elevator controller state diagram. The dashed line indicates the
symn:tetry in the diagram wilh respect to initial states and output
fimction.

An ptl description of the diagram is given in figure 10.5. The results of testing
whether this description implies the new spec is also mentioned in table 10.1.
The impHeation does not hold the other way around, i.e., the descriptions are not
equivalent.

[] (

I* Read: next state wilL be Si iff. now or .now .. -. *I
(@SO <-> (SO Kl' K2') V (Sl Kl' K2) V (S3 Kl'))
(@Sl <-> (SO Kl K2') V (Sl Kl' K2') V (S2 K2'))
(@S2 <-> (Sl Kl) V (S3 Kl))
(@S3 <-> (SO K2) V (S2 K2))
)

I* Initial state: *I
(SO Sl' S2' S3' VSO' Sl S2' S3')

/* Output function: *I
[](Vl <-> SO V S2) [] (V2 <-> Sl V S3)

Figure 10.5. Moore machine for elevator controller in ptl.

More eleborate LTL models of elevator designs can be found in [WoodW89] and
[HaleR87].

1 0.3 Chinese ring puzzle

Here we look at a variant of the well-known Chinese Ring puzzle [Keist]. We
will show how the puzzle can be cast as a reachability problem on a state-space
and use the ptl program to solve it.

A jewelry box has a loek with 7 binary dials or knobs; each knob is in one of two
possible positions: open (coded as 0 or false) or dosed (coded as 1 or true). The

§10.3 Chinese ring puzzle 143

knobs are numbered from left to right, see figure 10.6 that shows the front panel.

Ctosed
My First Jewelry Box

1 2 3 4 5 6 7

Figure 10.6. Jewelry box loek control panel.

Due to the mechanics of the loek, the knobs cannot be turned independently:

1. Knob number 1 (the most left knob) can always be turned.

2. If one doesn't choose to turn the first knob then the only knob that can be
turned is the one directly following the first closed knob as seen from the
left. (This is knob 4 in figure 10.6).

3. If the last knob is the only one in the closed position then 2) does not apply,
and the only choice left is toturn the first knob.

The objective is to open the box, i.e., setting all knobs to their open position. Ini
tially, all knobs are in their closed position. (The fastest solution for the instanee
with 7 knobs takes 85 turns.)

The puzzle may be described by a finite autornaton over a 2 symbol alphabet and
states set 8 0 , · • ·, 8 127, or equivalently by a Moore type sequentia! machine with
the state transition table of table 10.2. lts single output, Open, is true in state
ObOOOOOOO and false in all other states.

first @K[1:7]

1 K xor OblOOOOOO

0 K xor Ob0100000
0 K xor Ob0010000
0 K xor Ob0001000
0 K xor Ob0000100
0 K xor Ob0000010
0 K xor ObOOOOOOl
0 ObOOOOOO K

Table 10.2. Knob settings as function of whether or not first knobis turned.

The above state transition table can be automatically converted to an LTL for
mula. This, together with the initial state and the output function, gives the
description of figure 10.7.

144 The PTL Program Chapter 10

[] (

(@K[l] <-> first K[1] 1 V first 1 K[l])
(@K[2] <-> first K[2] V first 1 K[l] K[2] 1 V K[1] 1 K[2))
(@K[3] <-> first K[3] V K[3] K[l] V K[3] K[2] 1

V first 1 K[3] 1 K[l] 1 K[2])
(@K[4] <-> first K[4) V K[4] K[l] V K[4] K[2]

V K[4] K[3] 1 V first 1 K[4] 1 K[3] K[l]' K[2] 1
)

(@K[S] <-> first K[S] V K[S] K[3] V K[S] K[1]
V K[5] K[2] V K[S] K[4] 1

V first' K[5]' K[4] K[3] 1 K[l]' K[2] ')
(@K[6] <-> first K[6] V K[6] K[4) V K[6] K[3]

V K[6] K[1] V K[6) K[2] V K[6] K[5]'
V f irs t' K [6] ' K [5] K [4] ' K [3] ' K [1] ' K [2] ')

(@K[7] <-> first K[7] V K[7] K[5] V K[7] K[4]
V K[7) K[3] V K[7] K[l] V K[7] K[2]
V K[7) K[6] I

V firs t 1 K [7] ' K [6] K [5] 1 K [4] ' K [3] ' K [1] 1 K [2] ')

K[l] K[2] K(3] K[4] K[S] K[6] K[7]

[] (Open <-> K [1] 1 K [2] 1 K [3 J ' K [4] 1 K [5] ' K [6] 1 K [7] ')

Figure 10.7. Puzzle described as ptl formula.

To obtain a solution to the puzzle we use a special option of the ptl program that
will cause a valid model to be generated in a format suitable for a wave-form
viewer program [Buurm]. If we merely ask fora model that satisfies the above
LTL description then obviously it is not guaranteed that it will contain the 'open'
state. We force a model with a solution by AND-ing the formula with <>Open
and then asking for a satisfying model. The results are shown in figure 10.8. We
see that by alternatingly choosing to turn the first knob and to turn the only other
possibility (case 2), a solution is obtained after 85 tums, which happens to be the
fastest way to arrive at one. In general it is not guaranteed that the ptl program
finds the 'smallest' model, but heuristics are included to aim at it.

10.4 Synchronous bus arbiter

The next example is taken from [McMil93]. We will first give an informal specifi
catien of the arbiter, then translate that into a behavioural module of the HOL
introduced in chapter 9, and finally a structural implementation is suggested.

The purpose ofthe arbiter is to exclusively acknowledge one of the requests for
some shared resource. We will assume synchronous behaviour, i.e., requests and
acknowledgements are to be observed at discrete points in time imposed by a
global doek. We consicter an n-input, n-output arbiter (n 21): the request inputs
are req[O], req[1J, · · ·, req[n-1], the ackowledge outputs are ack[O], ack[1}, · · ·,

§10.4 Synch ronous bus arbiter

first
5~DDDDODOODDDDDDDDDDDDOOOOOODDDDDOOOODDDDDDD

145

0 90

K[1]
6~ o n o o o o o o o o o o o o o n Cl o n n n

1
9C

90

90

90

90

6+===K[=6]============================~--------------------~
0 90

90

1
Open

0+--L~
0 85 90

Figure 10.8. Timing diagrams showing a solution of the puzzle.

ack[n-1]. See also figure 10.9. The rules by which the arbiter operates are:

Rule 1: In case of a single request, that request is acknowledged immediately.

Rule 2: In case of multiple requests, the one with lowest index is acknowledged
immediately.

To avoid a low indexed request to continuously take priority over a higher
indexed one (starvation), the next rule is added:

Rule 3: Persistent requests will be served on a round-robin basis.

In other words, a request is acknowledged if there are no requests of higher pri
ority (= with lower index) and there is no persistent request in need of service
other than the request itself. So far we haven't exactly defined what persistenee
entails. Of course, there is no unique definition. In [McMi193] the choke is made
to call a request persistent if it is raised for a duration of at least n doek cycles.
More precisely, McMillan's arbiter uses a shift-register (T in figure 10.10) in
which a single token (a 1 bit) is circulated one position ahead per doek cycle; a
request that cannot be directly acknowledged but 'holds' the token is guaranteed
to be acknowledged n doek cycles from now, i.e., when the token reappears. In
the worst case this means that a request has to persist for n 1 cycles to get the

146 The PTL Program Chapter 10

req[O) CellO
... _ ... ack[OJ

req[~) ack[1]

req[n-1] ..._.. Cell n-1 ..._ ... ack[n-1]

Figure 10.9. An n-input/n-output arbiter.

token_in overrlde_out granUn

ack_out

token_out overrlde_ln granLoul

Figure 10.10. A single cell of the arbiter circuit.

token plus another n cycles to finally get acknowledged. In an implementation
we therefore need to remember the fact that a request coincides with the presence
of the token. For this purpose the register W[i] is introduced: it will be set in the
cycle following the concurrence of a request and the token, and remains set as
long as the request is raised. The predicate persists indicates the cycle in which
the persistent request may be acknowledged. McMillan's arbiter may now be
formally defined by (using the temporal next-time operator @ to refer to the next

§10.4 Synchronous bus arbiter 147

doek cycle):

'V @T[(i+ 1)%n] = T[i] (where% denotes modulo), and
OSI<n

'V
Osi<n

@W[i] = req[i] A (W[i] v T[i]), and

'V
Osi<n

persists (i) = W[i] A T[i], and

'V
OSi<n

ack[i] = req[i] A [(V . ., req[j]) A (.v.
OSJ<I OSJ;<I<n

., persists (j)) v persists (i)]

This 'high-level' definition can be shown to be equivalent to the circuit depicted
in figure 10.9, which iscomposed of n cells of the kind drawn in figure 10.10. For
a 4 cell version, it takes the ptl program just a few seconds to do so. More inter
estingis the observation that McMillan's circuit allows situations where requests
are present although none is immediately acknowledged. We use the ptl pro
gram to find out whether the following property is implied by the (4-cell) circuit:

[] ((req[OJ V req[l] V req[2] V req[3])
-> (ack[O] V ack[l] V ack(2] V ack[3)))

It is not! Using the counter-example option we obtain the timing diagrams of
figure 10.11. The reason for this behaviour lies in the definition of persists:
clearly it may happen that persists (1) holds, but at the same time the request
req['l] is absent but an another one, viz. req[2], is present. It seems more natural
to let persists. also depend on the request signal. Therefore we suggest the fol
lowing modification:

'V
OSi<n

persists (i) = req[i] A W[i] A T[i], and therefore

V
Osi<n

ack[i] = req[i] A ('V . ., req[j]) A (."~. .., persists (j)) v persists (i)
OSJ<I OSJ;<!<n

Using .., req[i] =>-. persists (i) the latter simplifies to:

'V ack[i] = req[i] A (V . ., req[j]) A (. V ., persists (j)) v persists (i)
OSI<n OS]<I I<J<n

Figure 10.12 shows a straightforward implementation (without the registers) of
the modified arbiter spedfication in our sample HDL. For clarity, the persists
predicate is separately defined; presupposing the existence of a macro preproces
sor.

148 The PTL Program Chapter 10

0 10

10

10

~I
ack!OJ

10

10

ack{2]

10

10

10

Figure 10.11. No ack signal in the 51t1 cyde but req[2] is high.

#define persists(i) (req[i] & W[i] & T[i])

behaviour arbiter[[n]] (input req[n-1:0], T[n-1:0], W[n-1:0];
output @T[n-1:0], @W[n-1:0], ack[n-1:0])

{

(i:O .. n-1} {
@T[(i+1) % n] = T[i];

@W[i] = req[i] & (W[i] I T[i]);

ack[i] req [i] & (& (j : 0 .. i -1) ~ req [j])
& (& (j: i+l. .n-1) (j))

persists(i);

}

Figure 10.12. Implementation of the arbiter in our HDL.

We can implement our proposed new specification at the logic level by modify
ing the AND gate that combines the T and W register outputs to include req_in as
a third input. Of course, the ptl program was used to verify the correctness of this
change.

§10.4 Synchronous bus arbiter 149

McMillan suggests to verify whether the following properties hold for the (prop
erly initialized) arbiter:

1. No two acknowledge outputs are asserted simultaneously, or equivalently,
at any time at most 1 acknowledge is asserted. This is a typkal safety prop
erty.

2. Every persistent request is eventually acknowledged, i.e., starvation is
excluded. This is a liveness property.

3. Acknowledge is not asserted without request. This again may be seen as a
safety property.

McMillan uses his CTL model checker SMV to automatically verify them. The
desired properties may as well be formulated in LTL:

1. [] (3! ack[i] V V ack[i)')
OSi<n Osi<n

2. V
Osi<n

[] <> (req[i] -> ack[i])

3. V []
OSi<n

(ack[i] -> req[i])

The last requirement is trivially truei one glance at the logic of a cell suffices. The
first requirement is of course supposed to be certified by the priority and round
robin token scheme, but still it is not quite obvious. The second requirement
tums out to be the hardest to verify. The phrasing of this second property might
be questioned: it doesn't seem to naturally follow from the informal description
given above. This might be considered a genuine and justifiable reason for object
ing the use of temporal logies in hardware verification: often the clear informal
intentions turn into incomprehensible formulas. In this case, given the notion of
the persists predicate, it would be more obvious to restale property 2 as:

V[] (persists(i) -> <>ack[i]).
Osi<n

Literally spelled out: always, if a request persists it will eventually be acknowl
edged. Unfortunatly, with the original definition of persists this cannot be ful
filled. With our new definition however the property holds for both the original
circuit and the modified one.

1 0.4.1 Reachability analysis

Our current implementation of the ptl program constructs its model graph
explicitly. For an n-state sequentia! machine this means that the model graph will
have n vertices. To have a fair comparison with McMillan' s results as reported in
[McMil93], we use the reachable state-space algorithm of chapter 5 which is
available as a predefined term in the ,u-calculus program. The results reported in
table 10.3 are achieved with the use of our BDD package with dynamic variabie
ordering switched on. (The times are measured on a HP9000/s755 workstation).

150 The PTL Program Chapter 10

The number of BDD nodes representing the set of initial stales 80 and also the
number of nodes of the reachable states set (Reachability) are the theoretica!
lower bounds (and upper bounds, because they are symmetrical functions).
McMillan proves that the runtime progresses as the square of n (given a good
variabie ordering). Our results confirm this. For largen (n > 28) the performance
detoriates probably because dynamic variabie ordering destroys the initially
good ordering and too much memory is needed to construct the next-state rela
tion.

n #states Tot So Next-state Reachability
(n · 2") sec msec #nodes msec #nodes msec #nodes

8 2048 1.5 20 24 1480 60 50 15
9 4608 2.0 40 27 1920 65 60 17

10 10240 2.6 60 30 2480 75 100 19
11 22528 3.2 60 33 3000. 70 160 21
12 49152 4.9 70 36 4680 90 170 23
13 106496 7.3 80 39 6970 95 250 25
14 229376 10.6 110 42 10120 105 430 27
15 491520 9.8 110 45 9370 110 340 29
16 1048576 12.5 140 48 11940 80 450 31
24 402·106 52.7 310 72 41640 120 10810 47
28 7 ·109 66.2 390 84 59930 285 6100 55
32 137 ·109 - 480 96 Killed > 120M ,.. -

Table 10.3. Results of arbitees reachable states calculation.

10.5 Discussion

This chapter intended to illustrate the practical use of temporal logic in descrih
ing digital hardware and proving its correctness. We also showed the possibilities
of a prototype LTL satisfiability checker program to aid in the analysis of spedfi
cations and implementations, and to eventually derive 'better' circuits. We like to
stress that verification should not only be considered as an 'after-the-fact' means
for approval of a design. Indeed, such a viewpoint has its merits, but it also
underestimates the capabilities verification tools can offer during the design pro
cess. With the growing complexity of the designs we believe that particularly this
role of verification, i.e., as a campanion to synthesis, should get more attention
and ultimately might find its niche in standard design methodologies.

In retrospect, we feel that it is precisely the latter application that is most suitable
for temporallogies based verification tools. More often than not, manual inter
vention is required to get a certain property tested, simply because many simpli
fications and optimizations cannot (yet) be automatically detected and derived
by the tooi.

Chapter 11

Conclusions

11.1 Contributions and achievements

The research goal set forward at the start of this thesis work was to investigate
various logies with respect to their application to the functional verification of
digital circuits. We have approached this goal by studying some typkal verifica
tion problems for combinational and sequentia} circuits. The main contribution
of this thesis may be formulated as the development of practical software tools
for several verification problems by using mathematica} models and the presen
tation of the theory for reasoning about those models. This approach is reflected
in the structure of this thesis: part I discusses verification problems in the area of
combinational circuits; part 11 focuses on sequentia! circuit verification, and part
m presents practical examples of systems that have been developed and dis
cusses details of the implementations. Also, part III examines a number of test
cases that exhibit the typical modelling of problems in terms of the investigated
logies and shows how they are solved by the presented tools.

Part I and II share a similar structure: firstly, the type of circuit we are dealing
with is explained and several verification problems are formulated; secondly, the
syntax and semantics of a logic that is particularly well-suited to express these
verification problems are introduced; and, thirdly, algorithms to automate the
reasoning process are derived. Our contribution has been to exemplify the steps
necessary to formalize a logic in terms of its syntax and semantics, to express cer
tain verification related decision problems in that logic, and lastly, to show how
such problems are solved by means of efficient algorithms. We hope that our
engineering oriented approach, in contrast to a more mathematically inclined

151

152 Conclusions Chapter 11

approach, makes the subject matter more easily comprehensible.

The following discussion makes the contributions of this dissertation more
explicit.

• The general problem of combinational circuit verification as addressed in
chapter 2led to some interesting results for permutator circuits. We claim that
the size of a BDD for such circuits is of the order n · 2log n, where n is the
number of single bit input signals. We also show how such a circuit can be
designed for any value of n;:::: 1, not just for n that are powers of 2. The design
is based on the structure of a sorting (butterfly) network.

• The algorithm that converts a propositional formula into its disjunctive nor
mal form, as presented in chapter 3, is well-known. Finding a minimum DNF
representation is an NP-hard problem. In our implementation we optimize
the result by a simple containment check, i.e., conjunctions (cubes) that are
implied by others are removed. Although this would normally require an
0 (n2) algorithm, we use a modified merge-sort (0 (n · 2log n)) algorithm that
in practice tums out to give very good results. This DNF conversion algo
rithm is used in the LTL satisfiability checker described in chapter 6.

• The BDD package that is discussed in chapter 4 and chapter 8 is generally rec
ognized as one of the better engmeered packages available today. In a recent
comparative study conducted by Bwolen Yang [YangB98] the Eindhoven BDD
package perforril.ed very satisfactorily. The package is part of Philips' YATC
verification tooi and several IBM proprietary tools such as Verity [Küehl95]
and the BSN suite of verification tools. As mentioned before, the BDD pack
age forms the heart of the verification programs discussed in this thesis.

• The observation that strongly connected components play a crudal role in
checking satisfiability of LTL formulas is already made in [Venka87]. We
believe that theorem 6.1 (chapter 6) that explîcitly emphasizes this role is
quite new. Also, our definition of elementary formulas and the treatment of
eventualities deviates from other approaches and can be shown to lead to a
more efficient implementation. Venkatesh proposed to replace eventualities
by auxiliary propositional variables and then add additional terms to the for
mula. Clearly, this would increase the number of propositional variables and
hence exponentially increases the number of states in the model graph.

• In section 6.8 we show how various types of finite state machines can be
expressed in LTL. This is valuable knowledge for any engineer using an LTL
satisfiability checker. It also formed the basis for a algorithm that we devel
oped to automatically generate an LTL formula from a given hardware
description in the BSN language.

• The treatise ón ,u-calculus in chapter 7 serves to show how a rather powerfut
forma! system can be reduced to a small set of primitive operations (namely,
propositional logic with a least-fixed point operator). The ,u-interpreter that

§11.1 Contributions and achievements 153

we sketch, is directly derived from its forma! semantics, and therefore its cor
rectness may be said to be achieved by construction.

• Chapter 9 discusses the development of a combinational circuit equivalence
checker based on a modern high-level hardware description language. This
workis derived from IBM's BSN project for which a similar tool was devel
oped around 1992. The application of BDDs in such a program was rather
novel at that time. We believe the concept of single-sided cutpoints and the
automation of cutpoint generation to be new as well.

It should not be surprising that a major effort of the thesis work went into the
development of the programs discussed in part III. Unfortunately there is little
room in a thesis to stress the importance of the availability of reliable and effi
cient software tools for verification. Most of the tools have been made available
in the public domain. Hence, numerous people both in industry and academia
have obtained copies. This has provided us with much feedback which resulted
in many bug fixes and improvements.

11.2 Directions for future research

In this thesis we have addressed three major verification problems: combina
tional circuit equivalence, also known as boolean equivalence, sequentia! circuit
equivalence, and model/property checking. These problems are all well
understood and have obvious applications in digital circuit verification. Many
researchers have stuclied these problems and quite a number of tools have been
developed. Judged by the optimistic press releases of companies that offer for
ma! verification tools, one might get the impression that all is solved and further
research be futile. The current state of the art can be roughly characterized by the
following data:

• Boolean equivalence checking is successfully applied by all major companies
in the electronics and semiconductor industry as a standard step in their chip
design flow. Designs up to 50,000 gates can typically be handled. Larger
designs can be handled provided that the design is suffidently partitioned.
Some verifiers are able to exploit the hierarchy present in a design.

• In industry there seems to be much less need for equivalence checking of
sequentia! circuits. In most design practices it is traditional to consider large
caches and (off-chip) memories as separate entities, even from a simulation
point of view. Moreover, the locations of registers, flip-flops, and latehes are
often frozen at an early stage. Hence, the sequentia! verification problem
reduces to a combinational one. The role of sequentia! verification is confined
to relatively small control-dominated designs. Tools in this area can typically
handle up to a couple of hundred single-bit memory elements.

• Model checking has as yet not found a wide-spread use in industry. Several
companies are active in this field, but this work is still much research related.

154 Conclusions Chapter 11

Of the tools proposed to solve any of the three problems we consider here, a
model checking tooi will undoubtedly have the steepest leaming curve for a
designer. This is largely due to the immaturity of current user-interfaces and
the unfamiliarity with formal methods and temporal logies. Model checkers
are typically deployed to analyze communication protoeals and safety critical
systems. Usually the actual data that is transported in such a system is of little
or no concern which allows for a large reduction in the state space. Also,
other aspects of the system can often be (manually) replaced by simpter mod
els. Hence the popularity of the Spin tooi [Hoizm91] that uses an explicit rep
resentation of the state-space, and the symbolic model checker SMV
[McMil93].

It should be obvious that the aforementioned verification probiems are doseiy
related. Most tools nowadays heavily reiy on a BDD package. In a combinational
equivalence checker the BDDs represent the boolean functions of the circuit; in
sequentia} equivalence checking and model checking the BDDs are used to repre
sent state transitions and sets of states. With BDDs the bottleneck is often not
computation time but memory size. Any breakthroughs in tooi performance are
likely to result from improvements in the implementation of the BDDs or an alta
gether different representation of the fundamental objects (such as logic func
tions and sets), or a combination of both. Some research in this area has already
been reported on. It is suggested to integrate various verification engines into a
single tooi. Each engine is optimized to efficientiy solve a particular class of prob
lems. A global strategy is applied to analyze the problem and decide on what
engine to invoke. Typkal engines are a BDD based verifier, a logic simulator, an
ATPG (automatic test pattem generation) or recursive learning based module,
and a satisfiability checker. Particularly algorithms for satisfiability enjoy a
renewed interest.

If we consider brute-force, push-button, verification tools, as opposed to tools
that require quite a bit of user intelligence to get them on their way (e.g. theorem
provers), it is clear that they are severely limited by the time and space complex
ity of the problems they try to solve. Even small problem instances might turn
out infeasible to solve. Future work should therefore concentrate on methods of
compositional verification, in which a design is partitioned in manageable pieces
that may be processed independently. More attention also needs to be paid to
automaling abstraction and reduction methods. The idea here is to tailor the
input data to the verification task. Partial order reduction (as e.g. employed in
Spin) is a good example of such a technique: execution behaviours that are indis
tinguishable with respect to the property to be verified are treated as a single
case. Abstraction aims at selectively ignoring irrelevant details in a design, of
course . without vialating the verification outcome. Although the possibility of
false negatives might in some cases be acceptable, false positives cannot be toler
ated.

§11.2 Directions for future research 155

Although the CAD vendors and specialized formal verification companies that
offer verification tools cannot (yet) fully live up to their promises, the fact that
such tools are now commercially available acknowledges their importance and
generates a strong impetus to the research community.

Probably the greatest challenge for research in formal verification is to keep up
with Moore's law: a verification tooi that today can handle a complete micropro
cessor, will in a year be required to handle a system on a chip.

156

Raferences

[Backh80] Backhouse, R.C., Syntax of Programming Languages: Theory and Practice,
Prentice-Hall, 1980.

[Baren84] Barendregt, H.P., The Lambda Calculus, North-Holland, 1984.

[Brace90] Brace, Karl S., Rudell, Richard L., and Bryant, Randal E., "Efficîent
Implementation of a BDD Package," Proc. 27-th ACM/IEEE Design Automa
tion Conference, pp. 40-45, Orlando, Florida, June 24-28, 1990.

[Breid89] Breidegard, Bjöm, "Lion Cage Example," Private communication, Lund
University, Sweden, October, 1989.

[Bryan86] Bryant, Randal E., "Graph-Based Algorithms for Boolean Function
Manipulation/' IEEE Transactions on Computers, vol. C-35, no. 8, pp. 677-691,
August 1986.

[Burch91] Burch, J.R., Clarke, E.M., and McMillan, K.L., "Symbolic Model Check
ing: 1020 States and Beyond/' International Workshop on Formal Methods in
VLSI Design, 1991.

[Burch91] Burch, Jerry R., "Using BDDs to Verify Multipliers/' Proceedings of the
28th ACM/IEEE Design Automation Conference, pp. 408-412, San Francisco,
June 1991.

[Burch94] Burch, Jerry R., Clarke, Edmund M., Long, David E., McMillan, Ken
neth L., and Dill, David L., "Symbolic Model Checking for Sequentia! Circuit
Verification/' IEEE Trans. on Computers Aided Design of Integrated Circuits and
Systems, vol. 13, no. 4, pp. 401-424, April1994.

[Buurm] Buurman, H.W., J.W.G. Fleurkens, et al., "xplog- an interactive postpro
cessor for simulation results," Manual page (les), Technica[University Eind
hoven.

157

158 Raferences

[Corme90] Cormen, Thomas H., Leiserson, Charles E., and Rivest, Ronald L.,
"Chapter 28: Sorting Networks," in Introduetion to Algorithms, MIT Press,
1990.

[Dijks76] Dijkstra, E.W., "Programming Methodologies: Their Objectives and
Their Nature," in Structured Programming, Infotech Int. Ltd., 1976.

[EijkC96] Eijk, C.A.J. van and Jess, J.A.G., "Exploiting Functional Dependendes
in Finite State Machine Verification," Proc. of the European Design and Test
Conference, pp. 9-14,1996.

[Emers90] Emerson, E.A., "Chapter 16: Temporal and Modal Logic," in Handhook
of Theoretica[Computer Science, ed. Jan van Leeuwen, vol. B: Pormal Models
and Semantics, pp. 996-1072, Elsevier Science Publishers B.V., 1990.

[Galli87] Gallier, Jean H., Logic for Computer Science: Foundations of Automatic The
orem Proving, John Wiley & Sons, 1987.

[Garey79] Garey, Michael R. and Johnson, David S., Computers and Intractability,
A Guide to the Theory ofNP-Completeness, W.H. Freeman, 1979.

[HaleR87] Hale, Roger, "Using Temporal Logic for Prototyping: The Design of a
Lift Controller," Proc. Colloquium on Temporal Logic in Specification, pp.
375-408, Springer-Verlag, Altrincham, UK, April8-10, 1987.

[Hoare85] Hoare, C.A.R., Communicating Sequentia[Processes, Prentice-Hall, 1985.

[Holzm91] Holzmann, Gerard J., Design and Validation of Computer Protocols, Pren
tice Hall, 1991.

[Janss86] Janssen, G.L.J.M., "Network Description & ModeHing Language -
NDML," in The Integrated Circuit Design Book, ed. P. DeWilde, pp. 4.60-4.108,
Delft University Press, 1986.

[Janss86] Janssen, G.L.J.M., "Circuit Description," in Circuit Analysis, Simulation
and Design, ed. A.E. Ruehli, Advances in CAD for VLSI, vol. 3, Part 1, pp.
5-43, North-Holland, 1986.

[Janss89] Janssen, G.L.J.M., "Circuit ModeHing and Animated Interactive Simula
tion in Escher+," Proceedings SCS European Simulation Multiconference, Simula
tion applied to manufactoring, energy and environmental studies and electronics
and computer engineering, pp. 265-270, Rome, 7-9 June, 1989.

[Janss90] Janssen, Geert L.J.M., "Hardware Verification using Temporal Logic: A
Practical View," in Formal VLSI Correctness Verification, VLSI Design Methods
II, ed. L.J.M. Claesen, pp. 159-168, Elsevier Science Publishers B.V. (North
Holland), IFIP, 1990.

[Janss92] Janssen, Geert L.J.M., "Progress in Verification with PTL," Third Periodic
Progress Report, BRA 3281 ASCIS, Part 2, March 19, 1992.

References 159

[Janss92] Janssen, Geert L.J.M., "Verification of Finite State Machines using Tem
poral Logic," Third Periadie Progress Report, BRA 3281 ASCIS, Part 2, March
19, 1992.

[Karpl89] Karplus, Kevin, "Using If-then-else DAGs for Multi-Level Logic Mini
mization," Advanced Research in VLSI, Proceedings of the Decennia[Caltech Con
ference on VLSI, pp. 101-117, MIT Press, Cambridge, MA, Pasedena, CA,
March 1989.

[Keist] Keister, William, "SPIN-OUT," (C) Copyright Binary Arts, 1987, 1991.

[Kropf94] Kropf, Thomas, "Benchmark-Circuits for Hardware-Verification," 2-nd
Conference on Theorem Proving in Circuit Design, September 1994.

[Küehl95] Küehlmann, Andreas, Srinivasan, Arvind, and LaPotin, David P.,
"Verity - A Pormal Verification Program for Custom CMOS Circuits," IBM
]ounal of Research and Development, vol. 39, no. 1/2, pp. 149-166, 1995.

[Malik93] Malik, Sharad, "Analysis of Cyclic Combinational Circuits," Proceed
ings ICCAD'93, pp. 618-625, Santa Clara, Ca, Nov. 7-11, 1993.

[Manna81] Manna, Z. and Pnueli, A., "Verification of concurrent programs: the
temporal framework," in The Correctness Problem in Computer Science, ed.
Robert S. Boyer, J. Strother Moore, International Lecture Series in Computer
Science, Academie Press, New York, 1981.

[McMil93] McMillan, Kenneth L., Symbolic Model Checking, Kluwer Academie
Publishers, 1993.

[MetsA94] Mets, Arjen A., "Dynamic variabie ordering for BDD minimization,"
Student report Eindhoven University, Dept. of Electrical Engineering, January
1994.

[Mohnk93) Mohnke, Janett and Malik, Sharad, "Perrnutation and phase indepen
dent Boolean comparison," INTEGRATION, the VLSI journal, voL 16, pp.
109-129,1993.

[Niess88] Niessen, Cees, Berkel, C.H. (Kees) van, Rem, Martin, and Saeijs,
Ronald W.J.J., "VLSI Programming and Silicon Cornpilation; A Novel
Approach frorn Philips Research," IEEE Int. Conf. on Computer Design: VLSI
in Computers & Processors, pp. 150-151, Rye Brook, October 3-5,1988.

[Peyto87] Peyton-Jones, Sirnon L., The Implementation of Functional Programming
Languages, Prentice Hall, 1987.

[Phili89] Philipson, Lars, "A Challenge for Formal Verification of CMOS Logic,"
Private communication, September 3, 1989.

[Raner93] Ranerup, K., Philipson, L., Madsen, J., Oleson, 0., and Janssen,
G.L.J.M., "Controller synthesis and verification, in," in Application-Driven

160 Raferences

Architecture Synthesis, ed. Francky Catthoor, Lars Svensson, pp. 211-232,
Kluwer Academie Publishers, 1993.

[Rudel93] Rudell, Richard, "Dynamic Variabie Ordering for Ordered Binary
Decision Diagrams," Proc. ICCAD'93, 1993.

[Rudel93] Rudell, Richard, "Dynamic Variabie Ordering for Ordered Binary
Decision Diagrams," Workshop Notes International Workshop on Logic Synthesis,
Granlibakken Conference Center, Tahoe City, CA., May 23-26, 1993.

[Schuu94] Schuurmans, N.J.A., "Transforming Behaviour to Structure in an
Industrial HDL Environment," Master Thesis Eindhoven Unîversity, Dept. of
Electrical Engineering, August 1994.

[Sistl85] Sistla, A.P. and Clarke, E.M., "The Complexity of Propositional Linear
Temporal Logies," Joumal of the ACM, vol. 32, no. 3, pp. 733-749, July 1985.

[Tarja72] Tarjan, Robert E., "Depth-First Search and Linear Graph Algorithms,"
SIAM Joumal Comput., voL 1, no. 2, pp. 146-160, June 1972.

[Tarsk55] Tarski, A., "A lattice-theoretical fixpoint theorem and its applications/'
Pacific Joumal of Mathematics, vol. 5, pp. 285-309, 1955.

[Venka87] Venkatesh, G., "Modeling and Verification of Digital Systems using
Temporal Logic," Proceedings of the IFIP WG 10.2 8-th International Conference
on Computer Hardware Description Languages and theîr Applications, Amster
dam, The Netherlands, 27-29 April1987.

[Warsh62] Warshall, S., "A Theorem on Boolean Matrices;' Joumal of the ACM,
vol. 9, no. 1, pp. 11-12, Jan. 1962.

[WolfW90] Wolf, Wayne, "An Algorithm for Nearly-Minimal Collapsing of
Finite-State Machine Networks," Proc. IEEE Int. Conf on Computer-Aided
Design, pp. 80-83, Santa Clara, CA, 1990.

[Wolpe83] Wolper, Pierre, "Tempora! Logic Can Be More Expressive," Information
and Control, no. 56, pp. 72-99, 1983.

[WoodW89] Wood, William G., "Specification of the Elevator Problem Using
Temporal Logic," Proc. Workshop on Automatic Verification Methods for Finite
State Systems, Grenoble, France, June 12-14, 1989.

[YangB98] Yang, Bwolen, Bryant, Randall E., O'Hallaron, David R., Biere, Armin,
Coudert, Olivier, Janssen, Geert, Ranjan, Rajeev, and Somenzi, Fabio, "A
Study of BDD Performance in Model Checking," Proc. 2-nd Int. Conf on For
mal Methods in Computer-Aided Design, Palo Alto, CA, November 3-6, 1998.

Biography

Geert Janssen was barn on April 12 1956 in Oss, a provindal town near
's-Hertogenbosch, the Netherlands. He attended Titus Brandsma Lyceum to
obtain the Atheneurn-E diploma in 1974. In 1981 he graduated from Eindhoven
University, then called Technische Hogeschool, with an ingenieur (M.Sc.) degree in
Electrical Engineering. Exactly 1 day befare the ceremony he was called for to
fulfill his military duties in Appingendam, Groningen. Following 6 weeks of
basic training, he was appointed assistant teacher at the Military Academy in
Breda. After a honorary discharge in the rank of second lieutenant, he joined
Philips Telecommunications Industries in Hilversum. There he worked as a soft
ware engineer on the development of a new operating system for telephony
exchange applications. Just befare the establishment of a joint venture with
AT&T, Mr. Janssen was affered a Ph.D. position in the group of Prof. Jess at Eind
hoven University. Three years later, in 1986, he became a universitair docent (assis
tant professor). This caused him to be more and more involved in teaching and
organizational work next to his research for a doctorate. This work was inter
rupted in the years 1990-1997 for temporary leave during the summer months
spent at IBM's T.J. Watson Research Center in Yorktown Heights, USA. His main
professional interests are formal methods for hardware design, synthesis, and
verification; language theory and programming languages; and algorithms for
symbolic computation with applications in Computer Aided Design.

161

162

Stellingen

behorende bij het proefschrift

Logies for Digital Circuit Verification:
Theory, Algorithms, and Applications

van Geert Janssen

Technische Universiteit Eindhoven, februari 1999

1. Formele verificatiemethoden voor digitale hardware worden vooralsnog door de
industrie sceptisch bekeken. Echter, deze methoden dwingen een ontwerper
precieze en ondubbelzinnige specificaties voor zijn ontwerp vast te leggen wat
allerlei voordelen heeft naast het primair beoogde doel van formele verwerking.
[dit proefschrift] .

2. De synchrone arbiter schakeling die McMillan als voorbeeld gebruikt in zijn
dissertatie [Symbolic Model Checking, Kluwer, 1993] is niet optimaal ontworpen.
[dit proefschrift, hoofdstuk 10].

3. Stelling 4 bij het proefschrift van Gjalt de Jong [Proefschrift Technische
Universiteit Eindhoven, 1993] luidend "De effectiviteit van Binary Decision

Diagrams wordt overschat." moet gezien worden als een te voorbarige en te
pessimistische uitspraak/ die nu slechts enkele jaren later door de praktijk is
achterhaald. Zie de recente studie naar het gebruik van BDDs voor Model
Checking [Bwolen Yang, FMCAD'98].

4. Het werk verricht door medewerkers van SRI International (Menlo Park/ CA)
waarbij de theorem prover PVS wordt uitgebreid met specifieke (en daardoor ook
meer efficiënte) redeneermodules, o.a. door het toepassen van het in dit
proefschrift beschreven BOD-pakket en Jl-calculus programma, geeft een
oplossing aan hoe verificatie op consistente wijze over een groot deel van het
ontwerptraject kan worden toegepast. [Cyrluk e.a., TPCD'95].

5. Blijkbaar is niet iedereen overtuigd van de noodzaak van het deadlock-vrij zijn
van een systeem. Zo laat bijvoorbeeld de wegenverkeerswet de situatie tOe dat bij
een gelijkwaardige kruising 4 auto's de kruising tegelijkertijd naderen met als
gevolg dat elke auto op een andere moet wachten.

6. In wiskundige verhandelingen zou het gebruik van het uitroepteken als leesteken
verboden moeten worden! De redenen hier voor zijn er minstens 2! Ten eerste is
het beledigend de lezer middels het uitroepteken er op te wijzen dat iets
belangrijk is en/ of vanzelf spreekt; ten tweede is verwarring met het symbool
voor faculteit van een natuurlijk getal niet te voorkomen.

7. Voor de opleiding tot Elektrotechnisch Ingenieur is kennis van en ervaring met
rnathematisch modelleren van problemen en oplossingsmethoden, in het
bijzonder middels graafmodellen en algoritmen, onontbeerlijk. Het dient dan te
worden toegejuicht dat een nieuw curriculum (5jr, 1995) voor de faculteit
Elektrotechniek van de TU Eindhoven hiervoor inderdaad een, zij het bescheiden,
plaats heeft ingeruimd.

8. De moeilijkheden die veel techniekstudenten ervaren bij het aanleren van een
programmeertaal zijn grotendeels te wijten aan hun slechte taalvaardigheid.

9. Als zelfs de goden hun eigen taal niet beheersen wat kunnen we dan verwachten
van de gewone sterveling?
[N. Wirth, "Data Structures and Algorithrns", Scientific American, sep. 1984],
[N. Wirth, "Hardware Compilation: Translating Programs into Circuits", IEEE
Computer, juni 1998].

10. Het toenemende aanbod van omvangrijke software pakketten voor PC's, en de
daardoor noodzakelijke expansie van PC's naar steeds grotere en snellere
systemen, doet vermoeden dat de aandacht voor compacte datastructuren en
efficiënte algoritmen danig aan het afnemen is. Hiermee wordt ook de waardering
voor het vakmanschap van een programmeur ondermijnd.

11. De slechtste implementatie van een eindige automaat is waarschijnlijk de CWS
handdoekautomaat die je in de meeste toiletten van de Technische Universiteit
aantreft. Mijn ervaring is dat óf de automaat bevindt zich in een niet-'resettable'
toestand (de handdoek zit vast), óf hij is aan het einde van zijn 'tape'.

ogcs for igt 0 rc t Verfic tüon
1I’Wr)VV, AI~uiithn~, mLI Aplicurions

piesents the results of inveSugatino varioLlS logics v~ith
respect to their application to verification of digital hard
ware. The approach highlights both the end-user aspects
and the implernentor’s aspects. The thesis is structured in
3 par Is. Part I discusses yen icatron oroblems in the area
of combinational circuits: part II tocLrses on sect Lrential cir
cuit verification, and part Ill presents the software tools
that have been developed and discusses details of their
implementations. Also, pat Ill contains a number of test
cases that exhibit the typical modelling of problems in Icr r’ns
of the investigated logics and shows ho’.! they are solved
by thO presented tools:

o hoc! - boolear’i iur’rctiorr manipulation

nil - lea tnoral looic satis1i~biIrtv c/racker

mu - ,nr’o,no ‘I rona/ti -ca/cult’s tool

asnk’er’i - c_r’’curl ecrurva/ence cnecker

- Cal’ CTL rnoc’el checker

This thesis focuses on techniques 0’ ~arcrv!are verification.
The approach is or rnal. i.e mat e ‘~alical theories will be
presented that tori’n the basis to mnocelling the hardware
and reasoning a out its behmrviot r. -- ~e work concentrates
on clecictaole theories, for which alt orithms exist that can

e used to prove certain)roderties of the circuit. Central
0 this thesis are he ap~lrcaiion of the theor” anc the
development of efficient algorithms.

iSBN 90 386 1560-1

