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Abstract

The advent of increasingly dense and fast Very Large Scale Integrated (VLSI) circuits
allows for the design of larger and more sophisticated digital logic circuits. Efficient logic
representations are necessary for the synthesis, testing and verification of these circuits.

This thesis introduces a new logic representation, called the Free Boolean Diagram
(FBD). This representation can be manipulated in time comparable to existing methods
and the complexity of the representation for a number of circuit classes is provably
more efficient than existing representations such as the Reduced Ordered Binary Decision
Diagram (ROBDD).

Free Boolean Diagrams allow for function vertices that represent Boolean and, or and
exclusive-or, in addition to the decision vertices found in conventional Binary Decision
Diagrams. A previous result is extended to probabilistically determine the equivalence
of Free Boolean Diagrams in polynomial time.

A strongly canonical form is maintained for Free Boolean Diagrams using "signa-
tures". New algorithms for the probabilistic construction of Free Boolean Diagrams from
multilevel combinational logic circuits and the manipulation of these graphs are developed
and implemented in a software package. The results of the application of the package to
combinational logic verification and Boolean satisfiability problems are presented.

Thesis supervisor: Srinivas Devadas
Title: Associate Professor of Electrical Engineering and Computer Science
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Surfer Pet Peeve Number 5:
When you catch an amazing wave and realize your
trunks have caught a different wave.

- David Letterman Show
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Introduction

1.1 Boolean Representations

Boolean equations use arguments and values to represent Boolean functions. The

functions implemented by digital logic circuits can be described by a set of Boolean

equations. An efficient Boolean logic representation for these equations is essential in the
design cycle of complex digital circuits. In recent years, a number of methods have been

developed for representing and manipulating Boolean functions.

Early representations based upon truth tables or Karnaugh maps grow exponentially

with the number of inputs, and consequently are practical only for Boolean functions

with very few inputs. These forms, however, are canonical and easy to manipulate.

More recent representations, such as the reduced sum-of-products form and multiple-

valued variables [10] are more efficient for some common functions, but still grow exponen-

tially for other common functions. The more efficient forms, including Boolean networks,

are also not canonical, because the same function can have many representations. This

lack of canonicity makes questions such as equality, satisfiability, and tautology diffi-

cult to answer. Some fundamental Boolean operations, such as complementation, are
expensive to compute and produce results with exponential size.

In Figure 1-1, 4 different representations of the exclusive-or of 4 variables are shown.

The function can be expressed as a truth table, a Karnaugh map, and a multilevel circuit.

The truth table and Karnaugh map are unique representations, whereas the multilevel

circuit representation is not canonical. The truth table and Karnaugh map also require

an exponential number of entries, while, in this case, the multilevel circuit representation

is linear in the number of inputs. The multilevel circuits in Figure 1-1(c) and Figure
1-1(d) both represent the same exclusive-or function.

17
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FIGURE 1-2: The ROBDD that represents l -X3 + -lZ- x 2 under input ordering xz, X2, x 3

1.2 Previous Work

Binary Decision Diagrams (BDDs) are directed, acyclic binary trees that represent

Boolean logic functions. BDDs were first introduced by Lee [41], and further developed

as a representation by Akers [2]. The polynomial-time equivalence of a class of ordered

BDDs was shown in [26].

A canonical form of BDD, called the Reduced, Ordered Binary Decision Diagram

(ROBDD), is obtained by restricting the order of appearance of the variables and reducing

the graph [12]. An input variable can appear only once along any path in the ROBDD,

and the input variables must appear in the same order along any path. A reduction

algorithm identifies and removes isomorphic subgraphs in the graph, producing a unique

and canonical ROBDD.

The ROBDD shown in Figure 1-2 represents the function xl xs3 + I' 2 under

the input ordering x1,x 2, x3. There are 3 internal nodes in the graph representation of

the function, and each internal node has an associated input variable. For a given input

vector, the function represented by the graph is evaluated by traversing the nodes of the

graph from the root vertex to a terminal vertex with value 1 or 0. For example, given the

inputs x1 = 1, x2 = 0 and x3 = 0, we start at the root vertex with the variable xl. Since

X = 1, we look at the edge labeled 1, and see a node with variable x3 . Since x3 = 0, we

look at the edge labeled 0 and terminate with the result that the function evaluates to 0
with the input vector xs = 1, x2 = 0 and X3 = 0.

Operations on Boolean functions are implemented as graph algorithms on ROBDDs.

Once ROBDDs have been created, the complement of a function can be computed in

constant time, and the equivalence of two functions under the same input ordering can

be determined in constant time [9]. Boolean operations such as the 2-input and can be

computed in O(size(G1) . size(G2)) time where size(G1) and size(G2) are the sizes of
the graphs.
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The efficiency of the ROBDD representation of a function depends significantly on

the enforced global input ordering. For example, the Achilles Heel function grows ex-

ponentially for a poor input ordering, whereas with a good input ordering, the ROBDD

size is O(n), where n is the number of input variables. Consequently, the ROBDD input

ordering problem has been the subject of intensive research (e.g. [5, 27, 43]). However,

for some functions, including the hidden weighted bit (HWB) function and integer mul-

tipliers, ROBDDs are provably exponential in size, independent of the input ordering

[13].

The ROBDD representation has gained widespread acceptance due to its canonicity

and ease of manipulation. ROBDDs can be applied to a variety of problems in logic

synthesis, testing, combinational verification and sequential verification. Variations of

ROBDDs have also been used to represent special types of matrices and graphs [4, 18],

to solve graph problems and integer programming problems [40]. The usefulness of

ROBDDs has led to the exploration of other graph-based Boolean representations that

are less restrictive, and more efficient in terms of memory use.

A slightly less restrictive BDD form, the Free Binary Decision Diagram (free BDD),

also known as the read-only-once Branching Program (BP1), has been studied extensively

by complexity theorists. Free BDDs have the property that all vertices are decision

vertices, and each variable can appear at most once along any path from source to sink.

Free BDDs are computationally more powerful than ROBDDs. However, free BDD

manipulation is currently impractical due to the complexity of manipulation and the

difficulty in determining a good representation. The input variable ordering problem is

further complicated in free BDDs because different paths may require different orderings.

Note that ROBDDs are actually free BDDs restricted to the same global input ordering

for every path.

The 2 free BDDs shown in Figure 1-3 represent the same function, X1 X2 X3 + X 1 -

(i2 + 3). The variables can appear in different orders along the different paths, as

long as each variable appears no more than once along any path. Free BDDs are not

canonical in the same sense as ROBDDs because different graphs can represent the same

function, and equivalence is hard to determine.

A restricted form of free BDD, called the type-restricted free BDD was introduced in

[6, 29]. Type-restricted free BDDs can be built and manipulated in a manner similar to

ROBDDs. The ordering of the variables arong the paths of the free BDDs are restricted by

"types." The type-restricted free BDD retains the canonicity and manipulability features

of ROBDDs, in addition to retaining some of the computational power of unrestricted

free BDDs. However, the determination of a good type is crucial to finding a good free

20



(b)

FIGURE 1-3: Two different free BDD representations for the function xl X· 2 x 3 + -1'
(22 + 3). (a) The paths in the free BDD have different orderings. One path sees the
ordering l1, x2 , X3 while another path sees the ordering x1, X3, X2. (b) Another free BDD
representation of the same function, with a different order of variables along the paths

BDD representation, and this problem is more difficult than the input ordering problem

for ROBDDs.

Another powerful, ordered BDD representation was introduced as the Mod-2-OBDD

in [30, 31]. The Mod-2-OBDD allows the exclusive-or function vertex, in addition to the
decision vertices found in free BDDs and ROBDDs. Equivalence of Mod-2-OBDDs is

determined probabilistically in polynomial time. Mod-2-OBDDs are more powerful than

ROBDDs and exclusive-or sum-of-products representations.

Extended BDDs (XBDDs) introduced the and and or attributes on ROBDD edges

[38]. These XBi)Ds were applied to the combinational verification problem by cofactor-

ing the graphs until satisfiability could be determined. XBDDs sacrifice canonicity for a

smaller representation. Boolean operations on XBDDs consist of adding additional edge

attributes. The lack of a canonical form for XBDDs means that satisfiability, tautol-

ogy and equivalence checks are computationally expensive, and can frequently result in

exponential memory use.

If-then-else directed, acyclic graphs (DAGs) are graphs that represent Boolean func-

tions using ternary nodes with if, then, and else children [39]. To maintain canonicity in

If-then-else DAGs, the same restrictions imposed on ROBDDs are required for the DAGs,

and consequently, these DAGs will exhibit the same behavior as ROBDDs. Without the

restrictions, the DAGs are no longer canonical and difficult to manipulate.

Shared BDDs (SBDDs) are ROBDDs with the additional attribute edges: input in-

verter, output inverter and variable shifter [46]. Canonicity is maintained with the output
inverter attribute, but the input inverter and variable shifter attributes result in a loss

of canonicity. The proposed attributes may improve attributed ROBDD size by a con-

21
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stant factor, but the same exponential behavior seen in ROBDDs will be displayed in

attributed ROBDDs.

Several other BDD forms have been introduced for the formal verification of combi-

national circuits. These forms are used to compute the satisfiability of the exclusive-or of

two circuits. In general, they trade canonicity and manipulability for a smaller represen-

tation, so the BDDs are useful for determining satisfiability, but are not viable Boolean

logic representations.

Semi-Numeric Binary Decision Diagrams (SNBDDs) use the probabilistic equivalence

theory of Blum, Chandra and Wegman [8] to verify the equivalence of two functions by

computing integer signatures for the SNBDDs [35, 36, 37]. The method takes advantage

of orthogonal partitions in circuits to replace subgraphs with integer signatures. The

manipulation algorithms are ROBDD-based manipulation algorithms. Although it is

possible to use SNBDDs to verify otherwise unverifiable circuits, the results are highly

dependent on the circuit structure. Once the augmented ROBDDs have been built,

further manipulation of the graphs as a Boolean logic representation is difficult.

General BDDs were used to verify combinational logic circuits, including 16-bit mul-

tipliers, by checking the satisfiability of the exclusive-or of the functions being verified.

In [3], general BDDs were built by replicating inputs and using ROBDD manipulation

algorithms to order and build ROBDDs for the difference function. The satisfiability of

the difference is determined by smoothing away the replicated inputs.

Indexed BDDs (IBDDs) consist of k "layers" of OBDDs, where each OBDD layer in

the graph is allowed a different global ordering. Satisfiability of the difference function

is determined by removing inconsistent paths [7].

These generalized BDDs are typically difficult to order and construct. Once con-

structed, the BDDs are not easy to manipulate as function representations, and none

of the forms is canonical. General BDDs and SNBDDs are useful for determining the

satisfiability of the difference function of two circuits, but lack many of the characteristics

that make ROBDDs efficient Boolean representations.

1.3 Thesis Contributions

This research considers a form of a function graph that requires each variable to appear

no more than once in each path, although the order of appearance is not necessarily

restricted. A data structure called the Free Boolean Diagram (FBD) is introduced. The

FBD does not impose a global input ordering, and allows special function vertices, in

addition to the conventional multiplexor vertices. This implies that FBDs are no longer

22



FIGURE 1-4: An FBD that represents x1 . x 2 X3 + l (2 + '3)

decision diagrams, per se.

An FBD that represents the function 1 X2 X3 + -l (2 + 3) is depicted in

Figure 1-4. The root vertex of the graph represents a function, in this case the Boolean

exclusive-or of x1 and Y2 + X3. Since there are many different FBD representations for

the same function, checking the equivalence of FBDs is also a difficult problem, like the

equivalence of free BDDs.

However, the equivalence of FBDs can be determined efficiently using probabilistic

methods. The equivalence check has an associated error probability, however, the upper

bound on the error can be easily controlled. The accuracy of the probabilistic equivalence

method is extremely high, and the error associated with the probabilistic method is orders

of magnitude smaller than a comparable random simulation. The error also decreases

exponentially with each additional probabilistic simulation, whereas the error of a random

simulation decreases linearly with each additional vector applied.

Equivalence of FBDs is determined probabilistically in this thesis, and canonicity

is maintained using "signatures". Probabilistic algorithms for the manipulation and

construction of FBDs from multilevel circuits are presented and used to build two FBD

manipulation packages. The first package is based upon the probabilistic equivalence

theory presented by Blum, Chandra and Wegman [8]. The FBDs in this package allow

function vertices such as AND, OR and XOR with restrictions on the children of these

vertices. The second package is based upon the polynomial field theory of Gergov and

Meinel [30]. The FBDs in this package allow for an AND function vertex as in the previous

package and an unrestricted E function vertex. The implementation of the FBD package

is analogous to the ROBDD manipulation package introduced in [9].

We also review some lower bounds for ROBDDs, free BDDs and FBDs on certain

classes of circuits. The lower bound calculations show that for certain types of circuits, the
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ROBDD complexity is inherently exponential, i.e., the ROBDD size will be exponential

regardless of the input ordering. However, for some of these circuits, the free BDD and

FBD representation is of polynomial size. Also, there exist classes of circuits that require

exponentially-sized free BDD representations, but these circuits can still be represented

by FBDs of polynomial size.

In this thesis, we apply FBDs to combinational logic verification and the Boolean

satisfiability problem in channel routing. Two circuits can be checked for equivalence

by constructing their associated FBDs and comparing the respective signatures. The

satisfiability of a Boolean function is determined by building the FBD for the function

and comparing the FBD signature with the 0 signature.

The organization of the thesis is as follows. Chapter 2 briefly reviews logic synthesis

terminology. In Chapter 3, the ROBDD representation, manipulation algorithms, and the

input ordering problem are described. Chapter 4 reviews the probabilistic equivalence

check and the error bounds on the check. A comparison of the probabilistic method

and random vector simulation is included in the chapter. FBDs based upon integer

signatures are described in Chapter 5, and FBDs based upon polynomial signatures are

the subject of Chapter 6. The implementation of an FBD package is discussed in Chapter

7. Application of FBDs to Boolean satisfiability is the topic of Chapter 8. Chapter 9

extends complexity results to FBDs, and we draw some conclusions in Chapter 10.
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2

Notation and Definitions

2.1 Introduction

This section briefly reviews the notation and definitions of Boolean functions and

graphs. For further information on Boolean functions, the reader is referred to [47]. For

more detailed explanations of computer-aided design terminology, see [11, 23]. Graph

definitions can be found in [19]. Section 2.4 defines some of the notation used with the

FBD graph representations.

2.2 Graphs

A graph G(V, E) is a set of vertices or nodes, V and a set of edges, E, consisting

of pairs of vertices. If the edges are unordered pairs of vertices, the graph is called

undirected. Ordered pairs of vertices result in directed graphs. A graph is acyclic if there

are no cycles in the graph. The out-degree of a vertex v is the number of edges leaving v

and the in-degree is the number of entering edges.

Two vertices u and v are connected if there exists an edge (u, v). A path is a sequence

of vertices (v0, v, ..., vk) such that the edges (vi_1, vi) exist for 1 < i < k. Two graphs

G(V, E) and G'(V', E') are isomorphic if there exists a one-to-one correspondence or

bijection f such that (u, v) E E if and only if (u' = f(u), v' = f(v')) E E'.

A leaf or terminal vertex is a vertex that has no outgoing edges. The root vertex is

a node that has no incoming edges, and a graph is often identified by its root vertex.

All other nodes are called internal nodes. For the edge (u, v), u is called the parent of v

and v is called the child of u. A node u on the path from the root to node v is called an

ancestor of v and v is a descendant of u.
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2.3 Boolean Notation

A Boolean function, F, is a mapping from Bn -+ ym in Boolean space. A Boolean

equation, f, represents a Boolean function in terms of a set of variables {l,x 2,..., xn}.

A literal is a variable or its complement (e.g. xi, x). A cube is a set of literals and it is

written as a conjunction of literals (e.g. a * b). A minterm is a cube where every variable

in the space must appear once. A variable that does not appear in a cube is called a don't

care. The ON-set of a function f(xi, ..., x,) is the set of cubes such that f(xi, ..., x,) = 1.

The OFF-set is the set of cubes such that f(xsl,..., X) = 0. Two cubes cl and c2 are

disjoint if cl n C2 = .
The cofactor or restriction of a function f(x, ..., x,) with respect to the variable xi

is denoted by f,i=l or f where

fxi(Xl, -, Xi-l, Xi+l, -, XZn) = f(Zx,..., Xi-, 1 Xi+l, --, n).

Similarly, the cofactor of f with respect to the complement variable 7i is written as f,=o

or fir and

fF7(Xl..., i-, Xi+l, --, Xn) = f(ZI, ... Xi-1, 0, Xi+l, --, Zn)-

The Shannon expansion of a function f around the variable xi is

f = xi f, + 'i ' fk-

A function can also be cofactored against cubes and other functions.

The support of a Boolean function f is defined as the set of variables upon which f

depends. The support of f(xI, ..., ,n) is the set of variables {xl, ..., xn}. The supports of

two functions fi and f2 are disjoint if support(fi)nsupport(f 2 ) = q. The two functions

are orthogonal if fi n f2 = o.
The symbol e refers to the exclusive-or (xor) function,

a b = a.b + .b.

The symbol 0 refers to the exclusive-nor (xnor) function,

a b = a 3 b = a*b + b.

A Boolean network or circuit is a directed, acyclic graph where each node or gate, gi

has an associated Boolean function fi. A primary input refers to a node with fanout, but

no fanin, and it represents an external input to the network. A primary output is a node

with fanin, but no fanout. It represents an external output of the network. All other

nodes are called internal nodes.
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2.4 FBD Notation

The cardinality of a field is the number of values in the field. For the algebraic field

S, the cardinality is denoted by IISII. The signature, Ivl, of the vertex v represents the

set of values associated with that vertex. The vertex has one value for each run of the

probabilistic equivalence check.

The size of the graph f is denoted by size(f), and it represents the number of internal

nodes in the graph. A graph can also be referred to by its root vertex. The notation,

AND(f 1 ,f2), refers to an AND function vertex with low child fi and high child f2.

!AND(f 1 ,f2) indicates the AND vertex is complemented. The other function vertices

will also be described in this manner. The formal definitions for FBDs and function

vertices are presented in Chapters 5 and 6.
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3

Reduced Ordered Binary Decision
Diagrams

3.1 Introduction

A Boolean function representation that has gained widespread acceptance since its

introduction by Bryant [12] is the Reduced, Ordered Binary Decision Diagram (ROBDD).

The ROBDD representation of a Boolean function is canonical given a global input vari-

able ordering, and operations on Boolean functions have corresponding graph algorithms

on graphs. ROBDD canonicity and ease of manipulation has led to applications in logic

synthesis, verification and testing.

In multilevel network optimization, local don't cares are used to optimize individ-

ual nodes in the network. The external, observability and satisfiability don't cares are

expressed in ROBDD form as functions of the primary inputs. ROBDD-based image

computation techniques compute the local don't care set for each node in terms of the

fanin signals to the node, from the global don't cares [49].

ROBDDs have been used effectively in test pattern generation [17]. ROBDDs are

used to compute the function that represents the difference between good and faulty

circuits and input sequences that satisfy the function are valid test patterns.

In CMOS power dissipation estimation, the paths of the ROBDD can also be used

to compute static signal probabilities because the ROBDD representation of a function

is also a disjoint cover of the function [32].

Traditionally, simulation has been the predominant approach to circuit verification,
but due to increasing circuit size and the presence of memory elements, exhaustive sim-

ulation is usually infeasible. Formal verification techniques can completely determine

functional equivalence independently of any input sequences or patterns. ROBDDs were
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used in the formal verification of combinational circuits by building the ROBDDs for the

two functions being compared, and checking for equivalence [12, 43].

In sequential circuit verification, ROBDDs are used to represent sets of states and

the state transition relations of finite state machines [15, 20]. ROBDD-based image

computation techniques perform image and inverse-image computations on the state

transition relations. The image computation method was further improved to operate on

ROBDDs that represent the state transition functions [53].

The size of an ROBDD depends on the specified global input variable ordering and

this ordering can affect representation size significantly. For example, the Achilles Heel

function can be represented by an ROBDD with size linear in the number of input

variables, yet with a poor ordering, the same function will require a representation with

size exponential in the number of input variables.

For some functions, such as the integer multiplier and the hidden weighted bit func-

tion, it has been shown that the ROBDD representation size will grow exponentially,

regardless of the given input ordering [13]. However, many common functions (such

as adders and comparators) do have compact ROBDD representations, if a good input

ordering is found. A number of heuristics have been developed for determining the in-

put ordering of a circuit based upon the circuit characteristics [27, 43], and often these

heuristics work well for common functions. An active ordering heuristic that dynamically

repairs the global input ordering during the construction of ROBDDs was developed in

[48]. Ultimately, for circuits such as large multipliers, ROBDDs cannot be built within

reasonable computation time and memory limits, and for other circuits, hand orderings

may still be required.

A good survey on the fundamentals and applications of ROBDDs can be found in [14].

This chapter reviews the definition of ROBDDs, the strongly canonical form for ROBDDs,

followed by the basic manipulation algorithms, a discussion of the input variable ordering

problem and its effect on ROBDD complexity. The data structures and algorithms for

an efficient implementation of an ROBDD package are also reviewed [9].

3.2 ROBDD Representation

Definition 3.2.1 defines the representation of a Boolean function as a BDD graph.

Definition 3.2.1 A BDD F representing the Boolean function f(xl, ..., x,) is a directed,

acyclic graph with a root vertex v and defined recursively with two types of vertices:
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1 If v is a terminal vertex and value(v) = 1 then fV = 1. If value(v) = 0 then

fv = o.

2 If v is a nonterminal vertex with index(v) = i, 1 < i < n, and two children

high(v) and low(v)

fV = xi fhigh(v) + - . flow(V)

where xi is called the decision variable for vertex v.

The high child of v or high(v), represents the cofactor, f,, of the vertex with respect

to its decision variable. The low child or low(v), represents the cofactor, f~, with respect
to the complement of the decision variable. The high (low) child is also called the THEN

(ELSE) child. The decision variable xi is the input variable that appears in the ith

position in the global ordering.

An Ordered Binary Decision Diagram (OBDD) is a BDD subject to the restriction

that the variables {xl,...,x,} appear in the same ordering along every path from root
to terminal vertex. This restriction is called the global input ordering requirement. An

OBDD is called reduced (ROBDD) if all vertices v and v' in the OBDD are distinct, (no
isomorphic vertices) and the two children of the vertex v are distinct (high(v) $ low(v)).

A non-terminal decision vertex has exactly two children, but multiple parents are

possible. A vertex with multiple parents is called a shared node. The value of the

variable associated with the vertex selects between the high child and the low child.

The non-termninal vertices in the ROBDD are also known as decision or multiplexor
vertices because an ROBDD can be converted into a multiplexor-based circuit by re-

placing each vertex with a 2-input multiplexor. The data inputs to the multiplexor are

the high and low child, and the decision variable associated with the vertex controls the

select line.

The cubes of a disjoint cover of the function can be generated by traversing the paths

of the ROBDD. Each cube corresponds to the conjunction of all literals encountered

along a path from the root to the 1 terminal vertex, and all the cubes are disjoint from

all other cubes in the cover. Likewise, a disjoint cover of the OFF-set of the function can

also be generated by traversing all paths from the root to the 0 terminal vertex.

Figure 3-1 shows an example of a 6-node ROBDD for the 6-input Achilles Heel func-

tion f = Xl' x 2 + 3 x4 + 5 x 6 under the ordering Xl, X 2, x 3, x4, 25, x 6 . The vertex v0

is the root, and it is a decision vertex with decision variable xl. The high child is vertex

vl and the low child is V3. In all the figures in this thesis, the left child will correspond
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V

V3
V2

FIGURE 3-1: ROBDD for the Achilles Heel function f = xl X2 + 3 X4 + 5s X6

under the ordering xl, X2, X3, x 4, X5 , x 6

to the low child and the right child will correspond to the high child, unless explicitly

marked otherwise. Vertex v2 is a terminal vertex with value 1.

An equivalent 14-node ROBDD representation for the same function, under a different

ordering, is shown in Figure 3-2. The input variable ordering has a significant impact on

the efficiency of the representation. This problem has been the subject of scrutiny and

will be discussed in Section 3.5.

3.3 A Strongly Canonical Form

ROBDDs are canonical in the graph isomorphic sense; given an input ordering and a

function, the ROBDD that represents the function is unique. An unreduced OBDD can

be reduced by removing duplicate vertices resulting in an ROBDD where each distinct

subfunction is represented by exactly one vertex. The reduction is accomplished by

traversing the OBDD from the terminal vertices to the root, using the graph isomorphism

equivalence test to eliminate duplicate vertices.

3.3.1 Equivalence

The equivalence of two OBDDs under the same ordering can be accomplished in time

O(size(G) log(size(G))), where size(G) is the size of the graphs. Two ROBDDs under

the same ordering are equivalent if the graphs are isomorphic. If both graphs are reduced
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FIGURE 3-2: ROBDD for the Achilles Heel function f = xl X2 + 3 X4 + X5 · X6

under the ordering xl , 3,X5, X, , 64 ,

with respect to each other, the equivalence test becomes a constant time test, namely
the two ROBDDs v and v' are the same if they have the same index, high(v) = high(v')

and low(v)= low(v').

If the two ROBDDs do not have the same ordering, then the equivalence test attains

the complexity of determining equivalence for free BDDs. Under the same global input

ordering, the equivalence of ROBDDs can be determined in polynomial time.

3.3.2 Reduce

Typically, ROBDDs are reduced as they are built, by identifying equivalent vertices

and only building a new vertex if an equivalent vertex has not been located. However, if

this is not the case, a reduction algorithm can identify graph isomorphisms and reduce

the OBDD into an ROBDD in O(size(G) log(size(G))) time. An OBDD is reduced by

traversing the graph from the terminal vertices to the root, labeling all unique vertices,

and storing these vertices in a sorted list.

During this process, if we discover a vertex in the list with the same index and the

same children, the nodes are equivalent and the existing vertex should be used.

In general, all the unique vertices encountered while constructing ROBDDs are stored
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in a hash table, the unique table. Before creating a new ROBDD vertex, v, a hash table

lookup is performed, using the children and the index of the new vertex. If the vertex

already exists in the table, v is equivalent to the unique table node, and the existing node

can be used.

3.4 Boolean Operations

Every Boolean arithmetic operation on a Boolean equation has a corresponding graph

manipulation algorithm on an ROBDD. The following describes the fundamental ROBDD

manipulation algorithms: complement, cofactor, and apply [12]. These algorithms are

sufficient for constructing ROBDDs from multilevel combinational circuits.

3.4.1 Complement

The complement of an ROBDD G can be obtained in O(size(G)) time by traversing

the graph, and changing the 1(0) terminal vertex into the 0(1) terminal vertex. Al-

ternatively, Brace et al. introduced an attribute called the complement attribute [9].

The complement of an ROBDD can be obtained in constant time, simply by placing a

complement attribute on G.

The attribute allows the same graph to represent both a function and its complement.

An ROBDD without complement attributes may require almost twice as many nodes to

represent the same function. The n-input parity function,

f = xl (D 2 ... Xn ,

requires 2n- 1 nodes to represent f without complement attributes. An attributed

ROBDD represents the same function with n nodes.

3.4.2 Cofactor

The cofactor (also known as restriction) algorithm simply parses a given graph G

representing the function f and produces the function f=b where xi is the variable we

are cofactoring against, and b = 0 or b = 1. The cofactor is obtained from the given

graph by locating all nodes v with index i and setting all pointers to v to high(v) if b = 1.

All pointers are set to low(v) if b = 0.

The cofactor function will create no more than size(G) nodes, and in the case that

i < top-index(G), the cofactor can be obtained in constant time without building any

new nodes. The graph representing the cofactor is also guaranteed to have size < size(G).
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ROBDD_cofactor (F, i, phase)

if (index(F) > i)
return (F);

if (index(F) == i) {
/* The root vertex has the variable to cofactor against */
if (phase == 1)

v = high(F);
else if (phase == 0)

v = low(F);
} else {

/* recursively cofactor the children */
create vertex v with decision variable xi;
high(v) = ROBDD_cofactor (high(F),i,phase);
low(v) = ROBDD_cofactor (low(F),i,phase);
if (result = unique_tablelookup (v))) {

Free low(v) and high(v);
v = result;

}

return (v);

FIGURE 3-3: Pseudocode for the ROBDD cofactor algorithm

General cofactor is an O(size(G) log(size(G)) operation. The basis for the efficient apply

operation described in Section 3.4.3 is an efficient cofactor routine.

The pseudocode for the ROBDD general cofactor algorithm is shown in Figure 3-3.

The first step in computing the cofactor is to check the root vertex for the variable we are

cofactoring against. If the index of the variable is less than the root index, the variable

is not present and the cofactor is simply the ROBDD F itself. This pruning measure is

essential for an efficient cofactor algorithm.

If the variable is present, and it is the top variable in the ROBDD, the cofactor is

the high child if we are cofactoring with respect to xzi and the low child if cofactoring

against xi. If xi is located deeper in the ROBDD, the cofactor function simply calls itself

recursively. Once the new high and low children have been created, the cofactor routine

checks for the existence of a node with index i and the same children. If the node does

not already exist, a new node representing the cofactor is created.

A well-known property of cofactor and complement attributes is Observation 3.4.1.
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FIGURE 3-4: Different forms of the same function due to complemented edges

The implication for decision vertices is that there exist equivalent but different forms for

the same function. For example, in Figure 3-4, the function f associated with vertex v

is equivalent to the function f' associated with vertex v'. Canonicity can be enforced by

using a standard that requires an uncomplemented high child for every vertex.

Observation 3.4.1 : f = xi f, + i f2.

3.4.3 Apply

The apply operation is an O(size(G1). size(G2)) routine that computes f(op)f2.

This operation is used to build ROBDDs for circuit networks, and for performing Boolean

operations on Boolean functions. Apply recursively computes the expansion in Equation

3.1 to build a Boolean function. f I[,i= (f 2 Ii=,) is the cofactor of fl(f2) with respect

to xi. fi Ii=o (f2 Ii=o) is the cofactor of fi(f2) with respect to xi.

fl(op)f2 = (fi I=i1 (oP)f2 t,=1) + i (fi Xz,=o (op)f2 i,=o) (3.1)

To maintain the global input ordering, apply looks at the indices of the roots of the

two input ROBDDs, and chooses the smaller index, i. The cofactors of both functions,

fi and f2, are computed, and apply is called recursively until the terminal vertices are
reached. The apply operation is also known as the ITEor If-Then-Else function. The ITE

function takes three argument f, g and h and computes ITE(f,g, h) = f · g + f h.

All 2-input Boolean operations such as and, or, xor can be expressed in terms of the

apply operation:

f . g = ITE(f,g,O)

f + g = ITE(f,1,g)

f g = ITE(f,,g)

The pseudocode for the ITE algorithm is shown in Figure 3-5. ITE begins by checking

for early termination cases, such as ITE(1,g,h) = g. If the function call does not

36



ROBDD_ITE (f, g, h)

/* special cases */
if (result =: earlyterminationcases (f, g, h))

return (result);
canonicalizetriple (f, g, h);
if (result =: computedtablelookup (f,g,h))

return (result);
/* select the top variable to cofactor against */
xi = minimum of (index(f), index(g), index(h));
/* recursively call ROBDDITE */
create vertex v with decision variable xi;
high(v) = ROBDDTE (i,,gI,,hi ) ;
low(v) = ROBDDITE (fFr, gx, h );
/* check for an equivalent node */
if (result = uniquetablelookup(v))) {

Free low(v) and high(v);
v = result;

}
insert v = (f,g, h) into computedtable;
return (v);

FIGURE 3-5: Pseudocode for the ROBDD ITE algorithm

qualify for any early termination cases, the arguments are converted into a standard

form, because certain argument triples are equivalent:

ITE(f,g,h) = ITE(f,h,g) = !ITE(f,,h) = !ITE(f,h,9)

The standard triple form allows a check to the computed table for any results from previous

ROBDDITE calls. If a previous result is not available, the algorithm selects the decision

variable with the smallest index at the root of f, g or h, and proceeds to call itself

recursively with the cofactors as arguments. The cofactors are calculated in constant

time, because the variable xi is either in the root vertex of the function, or the variable

is not present in the function at all. A new node is created to represent the result unless

the node already exists in the unique table, in which case the result is recovered from

the table.
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3.5 Input Variable Ordering

The Achilles Heel example of Figure 3-1 shows that a good global input variable

ordering is crucial for the creation of small ROBDD representations. For some classes of

functions, such as multipliers and the hidden weighted bit (HWB) function, the ROBDD

representation grows exponentially. For many common circuits, such as parity trees,

comparators, adders, and incrementers, the representation is quite efficient provided a

good ordering is used.

Researchers have devoted significant effort to ordering heuristics [16, 27, 34, 43, 48].

Most of the heuristics are based upon a pre-processing step that determines an ordering

from the topological features of the circuit network. The variables can also be re-ordered

during the construction of ROBDDs, but at a significant loss of computational efficiency

[48].

Malik et al. [43] present two ordering heuristics, level and fanin, based upon infor-

mation obtained from the multilevel network implementation of a circuit. Nodes in the

network are levelized from the primary outputs to the primary inputs. The outputs are

assigned level 0, and the level assigned to any particular node is the maximum level of its

fanout + 1. For the level heuristic, nodes are sorted in decreasing level order, and this

captures the idea that the primary inputs that occur deep in the network capture more

information about the intermediate subfunctions in the outputs. The fanin heuristic is

based upon the observation that if two functions have disjoint supports, the optimum

ordering for the binary or or and of the two functions is simply the concatenation of the

optimal orderings for each function separately. Hence, the second heuristic computes the

level-based ordering for separate fanin cones and concatenates the suborderings into a

global ordering.

The ROBDD package can also periodically re-order the variables, possibly reducing

the size of the ROBDDs being constructed [48]. This dynamic variable re-ordering is done

during garbage collection. The re-ordering changes the global ordering of input variables,

and requires that all ROBDDs must be adjusted to satisfy the new ordering. The impact

of this calculation is reduced by maintaining multiple unique tables, where the nodes are

grouped based upon levels. All nodes with the same index variable are grouped into the

same level. The re-ordering algorithms proposed by Rudell [48] rely on an efficient level

swap algorithm that interchanges two levels of nodes. A sifting algorithm that trys all

possible positions for a variable assuming all other variables are fixed, is proposed. For a

number of benchmarks, the orderings obtained were able to produce significantly smaller

ROBDDs, up to 45% smaller than the ROBDDs produced by static ordering heuristics.
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3.6 Efficient ROBDD Package

Several useful speedups for manipulating ROBDDs were described in [9]. These
speedups include a hash table for storing nodes, reference counters for tracking which

nodes are in use, and a cache for storing previous results.

The efficient package uses a unique table to store all unique ROBDD nodes encoun-
tered. Before a new ROBDD node is created, the unique table is searched for an existing,

equivalent node. The unique table is stored as an array of bins, where each bin contains

a linked list of nodes. The bin for a node is located by hashing the address of the node.

Increasing the number of bins in the unique table increases the memory required by the

ROBDD package, but it reduces the size of the collision list of nodes in each bin. Smaller

collision lists lead to a faster lookup time for nodes in the unique table.

The concept of a computed table is also introduced. The computed table is a hash

cache that stores the results of recent ITE computations. The first step of the ITE

function is to check the computed table for any pre-existing results. The computed table
is essential for reducing the number of recursions necessary to create Boolean functions,

and lowers the computation time required to create ROBDDs. Usually each hit in the

computed table saves many recursive ITE calls, because a root ITE call makes many

recursive calls. Since there are different forms of equivalent ITE arguments (also called

triples), it is necessary to maintain a canonical triple form to maximize the computed
table hit rate. The canonical form for the triple (f,g, h) is to have both f and g be
uncomplemented ROBDDs.

Garbage collection during the creation of ROBDDs is accomplished by adding a ref-

erence counter field to each ROBDD node. The reference counter indicates the number

of parents for the node. During garbage collection, all nodes with 0 reference counts are

removed.

The amortized memory cost per ROBDD node for the ROBDD package is 22 bytes
per node. This cost is obtained assuming each node requires 16 bytes of memory and

the cost of the unique table bins, computed table bins and computed table entries is

distributed, with 4 nodes in each bin.

The sizes of the unique table and computed table have a significant effect on the

memory and CPU time required to build ROBDDs. Increasing the sizes of the tables
tends to reduce computation time, at the expense of increasing the memory necessary to

build the results. The frequency of garbage collection tends to have the same effect. The

suggested scheme for automatic garbage collection and table sizes is to garbage collect
when some memory limit is reached. After the limit is reached, the table sizes and the
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limit are doubled.

3.7 Conclusion

ROBDDs have gained acceptance as an efficient graph representation for Boolean

functions. Many applications in logic synthesis, testing and verification are based upon

ROBDDs. ROBDDs are popular because of their canonicity, and ease of manipulation

for many common functions. The efficiency of manipulation is directly related to the size

of the ROBDD.

Hash tables and hash caches are used to speed up ROBDD manipulation. ROBDDs

are reduced during creation, and equivalence is determined by checking for the existence

of identical nodes. The global input ordering is determined heuristically.

The global input ordering requirement has a significant impact on ROBDD size.

Heuristics for finding a good input ordering have been intensely researched, but for

certain classes of circuits, ROBDDs are highly inefficient, independent of the chosen input

ordering. This characteristic is a limitation of the graph representation, and provides the

motivation for investigating alternate graph representations.
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4

Probabilistic Equivalence

4.1 Introduction

The deterministic noncontainment problem for free BDDs is NP-complete [26]. The

function f contains the function g if g C f. This means that for all input vectors x such

that g(m) = 1, f(a) = 1 for the same input vectors. In other words, all minterms in the

ON-set of g are also in the ON-set of f. Deterministic noncontainment means that we can

give a yes or no answer to the question "does f contain g" without any possibility of error

in the answer. Although researchers have been able to prove the NP-completeness of the

noncontainment problem, no results have been proven for the deterministic equivalence

of free BDDs. However, it was shown that the equivalence problem is likely to be equally

difficult.

In contrast, the equivalence of free BDDs can be determined probabilistically by

computing signatures for the graphs. The method is computationally efficient, and the

error bounds are very low.

Blum, Chandra and Wegman show that the equivalence of free BDDs can be decided

in random polynomial time by assigning signatures from a field to the inputs of the

free BDD, and calculating the signatures for the vertices in the graphs [8]. The given

algorithm applies to free BDDs, but it also applies to FBDs with function vertices,

because the function vertices maintain the validity of the signature calculation.

Graphs with different signatures are definitely not equivalent. If two graphs have the

same signature, there is a finite probability of error in assuming the graphs are equivalent.

The probabilistic equivalence check is very powerful because the probability of error is

bounded and decreases exponentially. Also, the algorithm is defined on an algebraic field,

so different types of fields can be used in the actual implementation of the check. The
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information in this chapter is valid for both an FBD package using integer values, and

an FBD package using the polynomial values from a polynomial field of characteristic 2.

This chapter will review the probabilistic equivalence result of [8] in Section 4.2. More

detailed bounds that are also applicable to FBDs were shown in [37] and will be rederived

in Section 4.3. In Section 4.4, we compare of the probabilistic equivalence method and

random vector simulation.

4.2 Probabilistic Equivalence Check

A free BDD is a decision diagram that has a root node, termination nodes, and

internal nodes. The nodes are assigned variables, and each node, except for a terminal

vertex, has two descendants, one corresponding to the literal xi and one corresponding to

x7, where xi is associated with node i. Along any path from root to terminal vertex, each

variable can be encountered at most once, in either complemented or uncomplemented

form. Two graphs, Gi(xz, x2,...,x) and G2 (xl,x 2,.., xn) are equivalent if the Boolean

functions they represent are equivalent.

The algorithm for computing the equivalence of two free BDDs, G1 and G2, is shown

in Figure 4-1. This algorithm can be repeated with different random assignments to the

input variables xi to reduce the probability of error.

The signature of a graph G, GI, is the set of values assigned to the graph from the

algebraic field. Multiple values can be assigned to each graph, one value for each random

assignment to the input variables. Each assignment is called a run or pass.

The cardinality, or number of values, in the algebraic field S is denoted by IS1. The

algorithm randomly assigns values from the algebraic field with cardinality of at least

[ISI = 2n to the input variables. The complement signature Ijl is defined as 1 -Ixil

and n is the number of input variables. The graphs are parsed from the bottom to the

top, computing a signature for each vertex in the graph.

If two graphs have different values, the graphs must be different, because the value

of a graph is simply the sum of the values of its minterms, and if the values are different,

so are the minterms. By the same line of reasoning, if two graphs are equivalent, they

must have the same value. If two graphs are not equivalent, there is a chance that

they will still have the same value. However, for n inputs, there are at least (IISII- 1)n

assignments to the variables out of jIS11n possible assignments so that the values of the

graphs will be different. The probability that the different graphs will be distinguished,

denoted by Pr{IG I 1G21 given (G1 # G2)} is given by Equation 4.2. The terminology,

Pr{A given B}, refers to conditional probability [24], defined by:

42



Equivalence (Gl(xl, x2, ..., x,), G2 (x1, 2, -..., ))
{.

Given an algebraic field S with at least 2n elements;
Assign values from S to the variables xi;
For (all vertices v from terminal vertices to the root in G1 and G2)

lvi = x, I- high(v) + i1-xi Ilow(v)l;
if(lGll == G21)

return (G1 and G2 are probably equivalent);
else if (IGl I1G21)

return (G1 and G2 are definitely not equivalent);

FIGURE 4-1: Probabilistic equivalence test

Pr{A given B} = P{A B} (4.1)Pr{B}

Pr{(jlGjl IG21) given (G1 0 G2)} > (IIS - 1)n (4.2)
IlSIln

The probability that the non-equivalent graphs are identified equivalent is:

Pr{(IGll = 1'21) given (G1 X G2)} = 1 - Pr{(IlG1I lG2l) given (G1 ¢ G2)} (4.3)

If we substitute Equation 4.2 into Equation 4.3, we get the following:

Pr{(IGll = IG21) given (G1 X G2)1 < 1 - (IIS - (44)
Ilsli .

The binomial approximation states that if n << IISII:

1 n
(1 _[ Ii)'> 1 n; << I1Sll (4.5)

The error probability bound becomes:

n
Pr{(IGI- = IG2l) given (G1 0 G2)} < (4.6)

Equation 4.6 gives us the upper bound on the error probability associated with using

the probabilistic equivalence check because the error associated with using the check

is simply the probability that two different graphs have the same signature, denoted by

Pr{(IG1i = IG2I) (G1 - G2)}. The other error case never occurs because two equivalent
graphs can never have unequal signatures so, Pr{(IGI IG2I) (G1 - G2)} = 0. If we
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rewrite Equation 4.6 using the definition of conditional probability in Equation 4.1, we

get:

Pr{(IlGI = IG21) · (G G2 )} < IISl · Pr{GI 0 G2 } (4.7)

In the worst case, Pr{Gi G2} = 1 and the upper bound is still:

n
Pr{(IG I = IG21) (G G2 )} < ls- (4.8)

The probability of error can be decreased by making successive independent "runs" of

equivalence checks using different values assigned to the input variables. In this case, let

k be the number of runs. After k runs, we made an error in the probabilistic equivalence

check of two graphs only if all runs returned an erroneous answer:

Pr{error in check} = Prk{(lGl = G21) . (G # G2)} < (ii) (4.9)

When IjSII = 2n the probability of identifying two non-equivalent graphs as equivalent

is less than (5)k. Once all the values for the vertices in a free BDD have been calculated,

the equivalence test is simply a constant time check for equivalent values. Therefore, if

signatures are always maintained with the nodes, this equivalence test is comparable to

the ROBDD equivalence test utilizing pointer comparisons.

4.3 Error Probability Bounds

The probability that the probabilistic equivalence check made an error during the
construction of graphs for a circuit is related to the number of nodes assumed equivalent

based upon their signatures. The unique signatures and the associated nodes are stored

in the unique table. The number of unique table hits, denoted by uthits, is the number

of nodes assumed equivalent.

We assume that any error made by the probabilistic equivalence check during the

construction of graphs for a circuit will be result in an error in the representation of

the circuit. Error is introduced only when we assume two nodes are equivalent, so the

probability that the circuit representation is correct, denoted by Pr{C is correct} is given

by the probability that the equivalence check never made an error when using a node

from the unique table.

Pr{C is correct} > (1 - Prk{(lGlI = IG2l) (G1 G2 )})Uti"' (4.10)
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Substituting the bounds from Equation 4.9:

Pr{C is correct) > 1 - n (4.11)

Taking the complement to get the probability that the representation C is defective,
Pr{C is incorrect):

Pr{C is incorrect} < 1 (- - n (4.12)

Using the binomial approximation again, and assuming uthits << (ini)-k, we obtain

the following upper bound on the probability that graph for the circuit is incorrect.

Pr{C is incorrect) < ( )ll x utLhits (4.13)

The probability that we made an error during the equivalence test can be decreased

by increasing the cardinality of the field, IIS11, or by increasing the number of passes

made. Given a desired probability of error, the appropriate number of passes and field

cardinality can be selected to guarantee the error bound. The likelihood that an error

occurred increases with the number of hits in the unique table.

To get an idea of the types of bounds obtained given some typical parameters, let

IISII = 216 = 65,536, k = 4, and uthits = 106 for a circuit with n = 100 inputs.

Substituting into Equation 4.13, the error probability associated with the graphs for the

circuit is less than 5.42 x 10- 6. This bound is an absolute upper bound and it is not

affected by the distribution of the functions in the circuit.

4.4 Comparison with Random Vector Simulation

The confidence in the probabilistic equivalence method is extraordinarily high, and

a comparison with random vector simulation illustrates the differences between the two

methods, and shows why the accuracy of the probabilistic method is much higher.

Given a circuit with n inputs, random pattern simulation can determine equivalence

with another circuit exactly, but only if all of the possible 2n input vectors are simulated.

The worst case for random simulation occurs when comparing two functions that differ

in only one minterm. The probability that two functions that differ in one minterm are

identified as equivalent after the simulation of p vectors is:

1 P
2"
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For each additional vector we simulate, we improve the error probability by:

1

2n

To obtain an error bound similar to the upper bound on the probabilistic equivalence

check, we would have to simulate a huge number of input vectors. If we set the error

probabilities equal, the number of input vectors necessary is:

p = 2 . 1- uthits x I )

We can use the values HISI = 216 and k = 4, for a circuit with 100 inputs and utahits =

106. To determine the equivalence of two functions using random vector simulation to the

same error bound as the upper bound for the probabilistic equivalence check, we would

have to simulate over 99.999% of the 2100 possible input vectors. This gives an indication

of the efficiency of the probabilistic method, and the degree of certainty involved with

the answer given by the method. The probabilistic method also achieves this reliability
very efficiently in all cases, in polynomial time, whereas the random simulation would

require exponential computation time to attain the same result in the worst case.

In random vector simulation, the coverage is tied to the number of minterms that

have been simulated. The error probability arises from the unsimulated minterms. The

signature used by the probabilistic equivalence check represents all minterms, because all

minterms contribute to the value of the signature. The error occurs because the number of

possible signatures is smaller than the number of Boolean functions, so multiple functions

have the same signature.

The number of possible n-input Boolean functions is 22n. The number of unique

signatures possible under the probabilistic equivalence check is IS1 lk . For IIS = 216 and

k = 4, the number of signatures is 264. Although this number is much smaller than the

number of possible functions, it is also much larger than the number of functions we

could see in a circuit. Also, since the number of signatures is controlled by adjusting the

size of the field and the number of passes, the error bound on the probabilistic method

can be adjusted until it is satisfactorily small.

For a more detailed discussion of the error bound, and comparisons with other veri-

fication techniques, including random vector simulation, see [37].

4.5 Conclusion

The equivalence of free BDDs and FBDs can be decided probabilistically in polynomial

time by assigning signatures to the graphs. We reviewed the algorithm for computing

46



the signatures and the error bounds on the equivalence test. The specifics on the type

of arithmetic and fields used in the probabilistic equivalence check for FBDs will be
discussed in Chapters 5 and 6.

The probability that the equivalence check makes an error is less than (i)k where
n is the number of inputs, JISI1 is the cardinality of the field, and k is the number of runs.
This bound can be reduced by choosing appropriate [1SII and k. The probability that an
error occurred while constructing the free BDDs or FBDs for a circuit is bounded above
by ut-hits x ( )k

The probabilistic equivalence check is a robust and computationally efficient method
with a high degree of accuracy. The confidence in the check can be increased asymptot-
ically to 1 by increasing the number of runs in the check, until the error probability is
arbitrarily small. Increasing the number of runs also increases the runtime of the proba-
bilistic equivalence check, but this is offset by the increasing speed and datapath widths
of modern computers.
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5

Free Boolean Diagrams Based
Upon Integer Hashing

5.1 Introduction

A free BDD is a decision diagram made up of decision vertices labeled by an input
variable, and two descendants, the high child and the low child. An input variable appears
no more than once along any path from root to terminal vertex, but the order in which the

variables appear is not restricted. This chapter introduces a graph-based representation

for Boolean functions based upon the methodology of [8] for probabilistically determining

the equivalence of two Free Binary Decision Diagrams (free BDDs) in polynomial time.

This polynomial-time method is a significant improvement over deterministic methods

for free BDDs because the deterministic noncontainment of two free BDDs is an NP-

complete problem and deterministic equivalence is likely to be equally difficult [26].

Free Boolean Diagrams (FBDs) differ from free BDDs in that in addition to the

decision variables, FBDs also permit the use of restricted OR, AND and XOR vertices

[51]. FBDs are not decision diagrams per se, due to the presence of the function vertices.

The probabilistic equivalence checking scheme remains valid under the restrictions on the

function vertices. FBDs are not canonical in the graph isomorphism sense because two

different FBDs with the same input variable ordering can represent the same function,

but a form of canonicity is enforced by allowing the existence of only one graph for each

unique hash signature.

We present FBD manipulation algorithms that can be used to build FBDs for multi-

level combinational circuits. These algorithms are comparable to ROBDD algorithms, in

terms of memory use and computation time. We also give a methodology for introducing

function vertices into the FBDs. For a number of benchmarks, we were able to obtain
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FBDs that were significantly smaller than the ROBDDs.

This chapter is organized in the following fashion. The first section describes the

probabilistic equivalence check with integer modular arithmetic fields. The definition

of the FBD representation is presented in Section 5.3. A strongly canonical form and

graph reduction are described in Section 5.4. Section 5.5 shows how the manipulation

algorithms for FBDs parallel the graph algorithms for conventional ROBDDs. Results

obtained for some benchmarks using the FBD package are presented in Section 5.6,

followed by the conclusion.

5.2 Probabilistic Equivalence

The probabilistic equivalence check described by Blum et al. [8] is defined for an

algebraic field. One such field is a field of non-negative integers defined over modular-

p integer arithmetic, where p is prime. The values are integers between 0 and p - 1,

inclusive, and all arithmetic operations in the field are modular-p operations [37].

Addition and multiplication modulo p, denoted by +p and .p, are defined as [19]:

a +p b = (a + b) mod p

a . b = (a b) mod p

The following is an example of a single pass signature calculation for the graph shown

in Figure 5-1, using the prime number p = 331 as the modulus for the modular arith-

metic. The set of possible values is {0, 1,2, ..., 330}. The signature equations for all the

nodes in the graph can be determined from the bottom of the graph up, and the equations

are:

Iv21 = x21

v11 = lX11 + 11 - Xii . IV21

Ivol = Ixol IV1

One possible random assignment of integer values to the variables is Ixol = 100,

IxI = 200, and Ix21 = 300. Substituting these values into the signature equations,

and using modular arithmetic, the result is Iv21 = 300, Ivll = 80 and Ivol = 56. Note

that the complement value 11 - xll is computed using the formula 1 + p - lx11.
Given a different input ordering, but the same assignment of values to the primary

inputs, the signature of the apparently different graph, in Figure 5-2, can be computed,

obtaining Iwol = 56 for the graph. This signature is equivalent to the signature obtained
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Ivo

v1 1= 80

FIGURE 5-1: Example of a 1 pass signature calculation with Ixo = 100, |xi = 200,
Ix21 = 300, p = 331

Iw2 =21 1= 100

Iw3

FIGURE 5-2: Example of a 1 pass signature calculation under a different ordering with
Ixol = 100, IxI = 200, IX2 1 = 300, p = 331

for Figure 5-1, so the two graphs are assumed to represent the same function, with a finite

probability of error less than Il 331

5.3 FBD Representation

An FBD is a read-only-once graph with terminal vertices, decision vertices, AND, OR,

XOR, NAND, and NOR vertices. The terminal vertices and decision vertices are identical

to the vertices defined for ROBDDs. The other types of vertices are called function

vertices, and they represent functions under certain constraints. The support of an FBD

f, support(f), is the set of decision variables encountered on the paths from root to

terminal vertex. An FBD is defined as follows:
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Definition 5.3.1 An FBD representing the Boolean function f(zxl, ..., x,) is a directed,

acyclic graph with a root vertex v defined recursively with the following types of vertices:

1 A terminal vertex v has no children and it represents the function:

1. f = 1 if value(v) = 1. The signature of the 1 terminal vertex is defined

as Ivl = 1.

2. f = 0 if value(v) = O. The signature of the 0 terminal vertex is defined

as Iv = 0.

2 A decision vertex v has a decision variable xi, index i, a high child high(v)

and a low child low(v). The function represented by the decision vertex is:

fV = i . fhigh(v) + i. flow(v)

The signature for the decision vertex is computed as:

Ilv = lxil Ihigh(v)l + 1 - ill Ilow(v)l

3 An AND vertex v has a high child high(v) and a low child low(v). The

restriction on the children of the AND vertex is:

support(high(v)) n support(low(v))= =

The function represented by the AND vertex is the Boolean and of the children:

fv = fhigh(v) . flow(v)

The signature of the AND vertex is the product of the signatures of the chil-

dren:

Ivl = high(v)l Ilow(v)l

4 An OR vertex v has a high child high(v) and a low child low(v). The

restriction on the children of the OR vertex is that the children must be

orthogonal. We have:

fhigh(v) n flOw(v) = 

The function represented by the OR vertex is:

fv = fhigh(v) + flow(v)

The signature of the vertex is the sum of the signatures of the children. We

have:

Ilv = high(v)l + llow(v)l
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5 A NAND vertex v has a high child high(v) and a low child low(v). The

restriction on the children of the NAND vertex is:

support(high(v)) n support(low(v))= =

The function represented by the NAND vertex is:

fv = fhigh(v) . flow(v)

The equation for computing the signature of the vertex is:

vi = 11 - high(v) · llow(v)l I

6 A NOR vertex v has a high child high(v) and a low child low(v). The
restriction on the children of the NOR vertex is that the children must be

orthogonal:
fhigh(v) n flow,(v) =

The function represented by the NOR vertex is:

fV = fhigh(v) + flow(v)

The equation for computing the signature of the vertex is:

lvl = 11 -Ihigh(v)l - low(v)ll

7 A restricted XOR vertex v has two children and the supports of the children

must be disjoint:

support(high(v)) n support(low(v))= =

The equation for computing the signature of the vertex is:

lvi = 1- high(v)ll low(v)l + Ihigh(v)l 11- llow(v)ll

The restrictions on the children of the function vertices guarantee the correctness of

the signature calculation. NAND and NOR vertices are necessary for node replacements

that may occur due to issues discussed in later sections.

In the decision vertex, the function represented by the high child, fhigh(v), is simply the

cofactor of the function with respect to the decision variable of the vertex, xi. Likewise,

the low child is the cofactor of the function with respect to xi.
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For the function vertex, the high and low children are interchangeable, and the vertex

lacks an associated decision variable. Along any path from root to terminal vertex,

multiple function vertices can be encountered, however each decision variable will be

encountered no more than once. Modular arithmetic with a large prime number as the

modulus, such as p = 32341, is used to compute the signatures.

In Figure 5-3, we have an example of an FBD. This FBD represents the function

f = X2 (x 1 E 3 ) + X4. (X 1 E X3 ). This FBD representation is valid under the ordering
(xl, 2, x3, x4), and it requires 7 nodes. For each vertex, the left child corresponds to the
low child, and the right child corresponds to the high child unless otherwise labeled. The

root vertex, vl, is an OR vertex. The high child represents the function fhigh(vl) shown

in Equation 5.1. The low child represents the function fo"u(vl) shown in Equation 5.2.

fhih(vl) = x2 (xl 3) (5.1)

flouW(v1) = 4 (x1 E 3 ) (5.2)

Note that the functions represented by the children of v1 are orthogonal.

fhigh(vl) n flow(Vl => (5.3)

Vertices v2 and v3 are AND vertices. The children of the vertex v2 have disjoint support

sets.

{support(high(v 2)) = {x2}} n {support(low(v2)) = {(l,X 3}} = (5.4)

Edges marked by dots are complemented edges. The low child of vertex v2 is comple-

mented, and so is the high child of vertex v5 . The equivalent ROBDD representation in

Figure 5-4 without function vertices under the same ordering requires 8 nodes. In this

case, a better ROBDD can be obtained with the ordering (x2 , x 4, xs, x 3), but this is not

always possible, especially in the case of multiple-output functions that require different

orderings for different outputs. The function vertices "simulate" different orderings along

different paths in the FBD, allowing smaller representations.

Some additional properties of FBDs are stated in the following theorems. Theorem

5.3.1 shows that the cofactors of two orthogonal functions are also orthogonal. Theorem

5.3.2 shows that the cofactors of two functions with disjoint supports also have disjoint

supports. This result guarantees that the FBDs with function vertices at the root can

be cofactored by cofactoring the children. The result also has the same type of function

vertex at the root, and the children satisfy the required constraints.
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FIGURE 5-3: An FBD that has decision, OR and AND vertices

FIGURE 5-4: An equivalent ROBDD for the same function under ordering (X1, X2, X3 , x 4)
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Theorem 5.3.1 : If f ng = )= f=b n gi=b = .-

Proof:
f.g = 0
(xi -fi + -7. fi) -(xsi g + i7. g) = 0

= ~xi-f=-g + 7 f.g- = 0
= fzi .gr =O

Theorem 5.3.2 : If support(f) n support(g) = =* support(f,=b) N support(g,,=b)
= 0.

Proof: support(f,=b) C support(f) and support(g,=b) C support(g)

Proposition 5.3.1 : f n g = e =n' support(f) n support(g) : 4.

Proposition 5.3.1 states that two orthogonal functions must have common support

variables. Two functions with nonintersecting supports cannot be orthogonal.

5.4 A Strongly Canonical Form

A strongly canonical form for FBDs can be maintained using the probabilistic equiv-

alence method. Canonicity is maintained by allowing the existence of only one FBD

with a particular signature. A unique table stores the FBDs associated with all unique

signatures in use.

FBDs are reduced as they are created, from the terminal vertices to the root. Before

a new vertex, vj, is created, we calculate the signature of the new vertex and check for

the existence of that signature in the unique table. The vertex signatures are calculated

using the formulas given for each type of vertex in Definition 5.3.1.

If another node vi with signature vil is encountered in the unique table, and the

signatures vil = Ivil, the nodes vi and vj can be assumed equivalent with a quantifiable
probability of error. Vertex vi can be substituted for vertex vj, or vice versa. Likewise,

if vil = Iv1, then vi v and the complement of vj (vi) can be substituted for vi (vj).

If the FBDs represented by vi and vj are isomorphic, then no additional probability
of error is introduced. However, if the graphs are not isomorphic, the error introduced

by the probabilistic equivalence check is still bounded.
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5.5 Boolean Operations

The routines necessary for manipulating the FBD representation as a Boolean logic

representation are described here. An FBD analog exists for every ROBDD manipulation

algorithm. The complexity of the manipulation algorithms is a function of graph size, so

an efficient graph representation consumes less memory and is easier to manipulate.

The algorithms, complement, cofactor, and apply, form the complete set of operations

necessary for building FBDs from multilevel combinational circuits. Each algorithm

operates on FBDs with function vertices to produce a result that is also a valid FBD.

During the construction of FBDs, function vertices are also introduced to create smaller

graphs by exercising the unordered nature of FBDs.

5.5.1 Complement

The complement of an FBD node is marked by a complement attribute on an edge.

This scheme is identical to marking complements in an ROBDD. The signature of a

complemented vertex v is simply I1-Ivll. The complement of an FBD cannot be obtained

by interchanging 0 and 1 terminal vertices, due to the presence. of function vertices.

5.5.2 Cofactor

The FBD package requires a general cofactor algorithm due to the presence of function

vertices. In both the ROBDD and FBD packages, when cofactoring a graph with respect

to a decision variable that is not at the root of the graph, a general cofactor is required

to compute the result. In the case of FBDs, some graphs have function vertices at the

root. In these graphs, a general cofactor is needed, regardless of the decision variable we

would like to cofactor against.

The fundamental steps of the general cofactor algorithm are outlined in Figure 5-5.

The first step is a pruning step, where we check the support of the FBD f for the decision

variable xi. If the variable is not present in f, the cofactor is simply f. Otherwise, we

need to check for other cases.

If the root vertex is a decision vertex, and the decision variable of the root is the

variable we wish to cofactor against, then the procedure is done. Simply choose the high

or low child, depending on the phase of the variable.

Otherwise, the cofactor procedure is called recursively on the high and low children

to obtain the children for the new node. However, before a new node is created, the

signature for the node is computed and used in a unique table lookup. If an equivalent
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FBDcofactor(f, i, phase)
{

if (x, V support(f))
return (f);

if (type(f) is a decision vertex and index(f) == i) {
if (phase == 1)

return (high(f));
else if (phase == 0)

return (low(f));
}
create vertex v with index index(f);
high(v) = FBD_cofactor (high(f),i,phase);
low(v) = FBD_cofactor (low(f),i,phase) ;
compute signature sl of (index(f), low(v), high(v));
if (result = unique_tablelookup (sl))) {

if (size(result) < size(v)) {
Free low(v) and high(v);
v = result;

}
return (v);

FIGURE 5-5: Pseudocode for the general FBD cofactor algorithm

node was not located, the new node is created.

The general cofactor is a fairly expensive operation if the variable we are cofactoring

against is located deep in the FBD f. In the worst case, cofactor may traverse all size(f)

nodes in the graph and create O(size(f)) new nodes. If the variable is located near the

top of the FBD, then the number of recursions required will be small.

The size of the FBD, fi=b, that represents the cofactor, is bounded by the size of the

original function, size(fi=b) size(f).

Figure 5-6 shows the result of cofactoring an FBD with respect to xz = 1. All pointers

that point to node V5 in the original FBD on the left are readjusted to point to the high
child, 7. The cofactored FBD has the same function vertices as the original FBD, and

the validity of the function vertices is maintained.
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x 1= 1

FIGURE 5-6: An example of general cofactor for FBDs

Support Field

In the ROBDD package, the global ordering is an important pruning measure during

cofactor. If the variable we are cofactoring against has an index smaller than the index

at the root, we automatically know that the variable is not present in the ROBDD, and

the result of the cofactor is simply the original function.

For FBDs without a global ordering, this pruning measure is unavailable. Namely, the

cofactor algorithm cannot determine a priori if a variable is present in the FBD. Cofactor

needs to recurse to the terminal vertices before realizing a variable is not present.

The purpose of the support field for the FBD is to provide the required pruning

measure. The support field contains the indices of all decision variables that appear in

the FBD. If a variable does not appear in the support, we know the cofactor of f with

respect to the variable or its complement is simply f itself.

The support field pruning measure is more effective than the index pruning measure

for the general ROBDD cofactor algorithm. If the index of the variable is greater than

the index at the root of the ROBDD, but the variable is not present in the ROBDD, the

ROBDD cofactor algorithm will recurse until the index pruning measure is satisfied. The

FBD cofactor algorithm with the support field will be able to identify the case without

further recursions.

The support field, unfortunately, can consume a large amount of memory if the num-

ber of inputs is large, because each input requires one bit. The memory requirement

can be ameliorated by calculating the support of an FBD only when the support is re-

quired, and removing the support field when it is not necessary. This will increase the

computation time, but save memory.
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5.5.3 Apply

The ITE function is the 3-input If-Then-Else function capable of implementing all

2-input Boolean functions. The ITE algorithm for FBDs is shown in Figure 5-7. The

arguments are FBDs representing Boolean functions f,g, and h. The result computed

by ITE is an FBD that represents f g + f . h.

The procedure starts by checking the inputs for special cases. In addition to the

ROBDD special cases, there are also a number of special cases unique to FBDs, for

example, AND(f, g) · f = AND(f, g). For a list of special cases, see Appendix A.

If the ITE call does not fit any of the special cases, the arguments need to be canon-

icalized. The arguments are ordered based upon their signatures. The arguments can

now be used to look for a previous result in the computed table hash cache.

If a precomputed result is not available, ITE checks the supports of the arguments

f, g and h. If the support of f is disjoint from the supports of g and h, the FBDs can

be concatenated. For binary functions, one of the arguments f, g or h is a terminal

vertex, so usually only two FBDs need to be concatenated with an AND vertex. If all

three FBDs are nontrivial, the FBDs can still be concatenated using two AND vertices

and an OR vertex:

ITE(f,g, h) = OR(AND(f,g), AND(f, h))

AND Node Introduction

In the 2-input case, AND nodes are introduced during the computation of the and

of two graphs, f and f2, with disjoint supports. Since the support information for the

input FBDs is stored with the node, the support check is simple, and the result FBD R

requires the creation of at most one extra FBD node. Figure 5-8 shows an example of

the concatenation of two graphs. fi becomes the high child for the AND vertex, and f2

becomes the low child.

The final size of R is also bounded, namely size(R) < size(fi) + size(f 2) + 1. If
both fi and f2 are optimal representations, the size of R is guaranteed to be at most one

node greater than the smallest-sized FBD. Under a global input ordering, the AND node

version of the function may be the smallest possible representation of the result.

Once AND nodes have been introduced, they will be present in subsequent operations.

However, they tend to be pushed down towards the bottom of FBDs created with cofactor

and ITE, because only decision variables are selected.

The benefit of using AND nodes instead of just concatenating the graphs as shown in

Figure 5-9 is that when the graphs are concatenated, variables that appear earlier in the
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FBDAITE (f, g, h)
{

/* special cases */
if (result = special_cases (f,g,h))

return (result);
FBD_canonicalizetriple (f, g, h);
if (result = computed_table_lookup (f, g, h))

return (result);
if (support(f) n (support(g) U support(h)) = 4) {

result = FBD_concatenate (f, g, h);
return (result);

}
/* select the top variable to cofactor against */
xi = select_variable (f, g, h);
/* recursively call FBDITE */
create vertex v with decision variable xi;
high(v) = FBDITE (f.,,g, h.,) ;
low(v) = FBDITE (fy, , g-, ) ;
compute signature Isl of result = (xi, low(v), high(v));
if (result = unique_tablelookup (Isl))) {

if (size(result) < size(v)) {
free(low(v)) ; free(high(v))
v = result;

}
if (result = introduceor (f, g, h)) {

if (size(result) < size(v)) {
free(low(v)) ; free(high(v))
v = result;

}

if (result = retain_or (f, g, h)) {
if (size(result) < size(v)) {

free(low(v)) ; free(high(v))
v = result;

}
insert v = (Ifl, IgI, Ihl) into computed_table;
return (result);

FIGURE 5-7: Pseudocode for the FBD ITE algorithm
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R

FIGURE 5-8: Concatenation of two graphs with an AND vertex

global ordering may be placed deeply in the result graph, increasing the complexity of

further manipulations with this particular graph.

Also, an actual sequential concatenation of the two graphs may require the creation of

more nodes. The maximum number of nodes that may need to be created by concatenate

is MAX(size(fi), size(f 2)) which could be much larger than the one node required for

concatenation with an AND vertex.

The Boolean or of two graphs fi and f2 can also be computed using an AND vertex

and DeMorgan's law, fi + f2 = f · f2, if the supports of the graphs are disjoint. The

result R is shown in Figure 5-10.

XOR nodes are subject to the same support restriction as AND vertices, and can be

introduced when an or or xnor function is encountered. The XOR nodes are built in

exactly the same fashion as AND vertices, after a support check on the arguments.

Input Variable Ordering

A variable is selected and ITE calls itself with the cofactors as arguments. A difference

between the ITE for FBDs and ROBDDs is the use of a general cofactor algorithm during

ITE. In the case of ROBDDs, the top index variable, namely the variable that appears

earliest in the ordering, will always be located at the root of the arguments to the ITE,

if present. While creating FBDs, the variable chosen may not be at the root, and the

cofactor call becomes recursive. If the selected variable is located deep in the FBDs,

cofactor becomes prohibitively expensive.

The FBDs are not subject to a global input variable ordering, but this presents a

number of complications. The determination of the ordering along each path is a difficult
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R

FIGURE 5-9: Concatenation of two graphs without any AND vertices

R

f

FIGURE 5-10: R = fi + f2 with an AND vertex, support(fi) n support(f2) = 
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problem, and any complicated heuristic for selecting the variable causes the complexity of

the ITE algorithm to grow. Also, if the variables can appear in any order, the complexity

of the cofactor computation grows.

As a result, a global input variable ordering is useful while building FBDs. The global

ordering simplifies the variable selection process, and reduces the number of recursions

made by the cofactor algorithm. For our purposes, we simply obtain the global ordering

using ordering techniques for ROBDDs.

Even with the global ordering restriction, the constrained function vertices allow

for the construction of FBDs that "simulate" free BDDs, because FBDs are essentially

unordered iead-only-once graphs.

After the results of the recursive calls to ITE are available, a new FBD node is created.

The new FBD node is a representation of the result, but now a series of signature checks

will determine whether a smaller representation can be easily obtained. The first check

is the unique table check. If an equivalent node is located in the table, and the unique

table node is a smaller representation, then that representation will be used instead of

the newly created node.

OR Node Introduction

The second check is for OR node introduction. OR nodes are introduced during the

computation of the or of two orthogonal functions fi and f2. The orthogonality of the two

functions cannot be tested up front, without computing the intersection of the functions.

Hence, once fi + f2 has been computed without an OR node at the root, the check for

OR node introduction becomes:

Ifi + f21 = Ifil + If21

If the signature of the result is equivalent to the sum of the signatures of fi and f2,

then we assume fi and f2 are orthogonal functions, and an equivalent representation of

the result is OR(fl, f2), which is an OR vertex with low child, fi, and high child, f2. The

smaller representation is chosen for use.

For example, suppose we want to calculate f = f + f2 where fi = x2' (X1l x3 )

and f2 = x 4 (x 1 x3). Clearly, fi and f2 are orthogonal and the representation of

fi + f2 with an OR node at the root is shown in Figure 5-3, with vertex v2 representing

fi and vertex v 3 representing f2. In this case, we use the OR node representation, because

the alternative under ordering ( 1, x2, x3, x4 ) is larger.

By DeMorgan's law, OR nodes can also be introduced in the case of fi -f2 = fl + f2

and the condition fi n f2 = is satisfied. The condition corresponds to orthogonal
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(a)

FIGURE 5-11: (a) A representation of (x + X2) ( + 3 ) without function vertices.
(b) A representation of the same function using an OR vertex at the root

complement functions. In this case, the signature check is:

1fi f21 = I1 - Il- I211

The alternative result is the complement of an OR vertex with children fi and f2.

Let fi = xl + x2 and f2 = 2 + 3. The complements, fi = xl x2 and f2 = 2 X3,

have a null intersection, so fi · f2 = 0. The product of fi and f2 is x1 · + X2 x3. An

FBD that represents the function without an OR vertex at the root is shown in Figure

5-11(a). The alternative representation is illustrated in Figure 5-11(b). The signature
check consists of building the representation shown in Figure 5-11(a), and comparing the

signature against the signature for the representation in Figure 5-11(b), which assumes

the orthogonal children requirement is met. If the signatures are equal, then we assume

the representation in Figure 5-11(b) is valid. The new FBD simply uses the existing

FBDs for fi and f2 in addition to the OR vertex at the root.
The introduction of an OR vertex requires the use of the probabilistic equivalence

check to determine whether the two different representations are actually equivalent. If

an OR vertex is also introduced, a finite probability of error is introduced. This error is

equivalent to the error introduced by a unique table hit, and less than the upper bound
of ( )k

OR Node Retention

Once OR nodes have been introduced, the OR nodes tend to bubble down during

subsequent calculations because ITE always selects decision variables. This is not always
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+ f2

gl g2

g1
f1 + f2

91 2

FIGURE 5-12: OR node retention while computing fi + f2

desirable, since an orthogonal FBD version of the function may actually be more compact.

However, the actual size of the FBD cannot be determined without building the FBD.

OR node retention is attempted only if an OR node is already present at the root of at

least one of the FBDs representing functions fi and f2. The functions are not necessarily

orthogonal. Assume the root vertex v, of the FBD representing the function fi, is an OR

vertex.

When computing the Boolean or of fi and f2, an OR node can be retained at the root

vertex by computing the result as:

f + f2 = ff2 + f2

The resulting FBD, OR(fi .2, f2) is an OR vertex with a low child representing fi f2

and a high child representing f 2. This result is depicted in Figure 5-12. To determine

which version of the result should be smaller, one version needs to be calculated first, and

the size of this version is used as a pruning measure while calculating the second version.

If the size of the second version ever exceeds some limit, the calculation is abandoned.

Otherwise, the smaller version will be utilized.

The size of an FBD can be calculated by doing a depth-first search. The size calcu-

lation is linear in the number of nodes in the FBD, but it becomes expensive when the

size function is called recursively. As a result, the size of an FBD may not be calculated

on every function recursion, but perhaps every m recursions, where typically, m = 4.
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t1

FIGURE 5-13: 8-node FBD representation of f = ( 1- 5 + 'x5)'((x 2 ' 4'-6) + (.
x5 + 1 Z5) · x3 using an OR vertex at the root

The following is an example of OR node retention in the case of fi + f2. Under the
ordering {xl, 2 , X3 , X4 , X 5 , X 6 } let:

fi = (X 1 5 + 1 X5) (X2 X4 6 + ( X5 + 1 5) X3

f2 = X6

An FBD representing f is shown in Figure 5-13. If we calculate f = fi + f2 without
retaining OR nodes the result is shown in Figure 5-14. There are no OR nodes present
in the result FBD, and 14 nodes are required in the representation under the ordering
restriction. However, if an OR vertex is retained at the root, the result FBD in Figure
5-15 has 11 nodes, and can be computed quickly.

Figure 5-16 depicts the OR node retention in the case of computing and. OR nodes
can be retained when computing the and of the two functions f = fi f2. Without
loss of generality, assume the FBD representing fi, has an OR vertex, v at the root.
The children of v represent the functions gl and g. The resulting FBD represents the
function:

fi f2 = 91 f2 + 2 f2

The result FBD retains an OR vertex at the root, and the children represent the functions
g91 f2 and 92 g f2-

If the functions are represented by complement edges to an OR vertex, the Boolean
operation can be rewritten using DeMorgan's Law to fit either the Boolean or case or
the and case.
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fI + f2

V

FIGURE 5-14: 14-node FBD representation of f = fi + f2 without OR vertices

1' f 2 + f2

FIGURE 5-15: 11-node FBD representation of f = fi + f2 with OR vertices
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f2

flf2

1 f
2 g 2' f 2

FIGURE 5-16: OR node retention while computing f, ·f2

OR vertices can also be introduced in the above cases even when neither the root

vertex of fi nor f2 is an OR vertex. However, the introduction is difficult to control, and

computationally expensive. The introduction of excess OR vertices may result in larger

FBD representations.

Redundant Vertices

Without OR vertices, the supports of two FBDs representing two equivalent Boolean

functions should be identical. If the supports are not identical, the FBDs cannot be

equivalent, even if they have the same signature.

In the case of OR vertices, there is a possibility of redundant variables. A variable

xi is redundant in an FBD f if the Boolean function does not rely on xi. So, given two

FBDs f and f' that represent equivalent Boolean functions, if only f contains redundant

vertices and f' does not, this implies that support(f') C support(f). Redundant variables

can be removed using the general cofactor operation discussed in Section 5.5.2 because

Jfi = h- = f-
An example of an FBD with a redundant variable, x2 is shown in Figure 5-17. The

function is x1 · `2 ' X3 + X1 x2. X3 and the equivalent reduced function is x1 X3 . The

redundant variables can be removed from the function to create a reduced function.

Redundant variables are recognized when we have two different nodes with equiva-

lent signatures and different supports. The supports should be identical, so all support

variables not contained in the intersection are redundant. Redundant variables, once
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FIGURE 5-17: Function that is redundant in variable x 2

repairnode (utnode, newnode) {
if (support(utnode) C support(newnode))

/* The unique table node has the smaller support */
return (ut-node) ;

if (support(utnode) D support(newnode)) {
/* Replace the unique table node with the new node */
utnode = replacenode (ut node, newnode);
return (utnode);

}
/* Use cofactor to eliminate redundant variables */
cube = support(ut-node) support(new-node)
utnode = FBD_cofactor_wrt_cube (ut-node, cube);
return (utnode);

FIGURE 5-18: Pseudocode for redundant variable removal

identified, can be eliminated by cofactor.

Figure 5-18 shows the algorithm for eliminating redundant variables when an existing

node is recovered from the unique table. If the support of the existing node, utnode,

is contained by the support of the new node, new-node, the existing node can be used.

Otherwise, if the support of newnode is completely contained by support(utnode), the

new-node can replace the existing node in the unique table. The parents of the node do

not have to be updated because the memory location for the node is the same, just the

node data is updated.

Node replacement is allowed only if the signatures are identical, and in some cases,

NAND or NOR vertices may be required to maintain this condition. If the supports are not

contained, the existing node, ut-node, is cofactored with respect to a cube that represents
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replacenode (utnode, newnode) 
/* Update the index variable */
index(utnode) = index(newnode);
/* Update the vertex type */
type(ut_node) = type(newnode);
/* Update the children */
high(utlnode) = high(newnode);
low(utnode) = low(newnode);
/* Update the support */
support(utnode) = support(newnode);
return (utnode);

FIGURE 5-19: Pseudocode for node replacement

the redundant variables all set to 0 or 1. The cofactor algorithm is similar to the single

variable cofactor algorithm, only the cofactor is performed until no more variables are

left in the cube.

The pseudocode for the node replacement algorithm is shown in Figure 5-19. The

new-node data is simply copied into the unique table node, ut.node, leaving all other

memory locations untouched. The signature of ut-node does not need to be updated

either, because we only allow the replacement of nodes with equal signatures. Note that

the support field of utnode will change, and this will corrupt the support of the existing

parents of utnode, but the supports can be updated when the corrupted nodes are used.

We need the NAND and NOR vertices because of redundant vertices. A node can

only be replaced by another node with the same signature, and sometimes, with function

vertices this is not possible without the NAND and NOR vertices.

For example, in Figure 5-20 the function associated with the root OR vertex labeled

vl is g = fi + f2. The function fi is associated with vertex v2 and is

fl = X1 T2 + X1 3 + 4.

The OR vertex v2 represents:

f2 = xl.x 2 + X1 X3 + 4

When the function fi is cofactored with respect to 4 = 1, we discover that the

resulting function is represented by an OR node that is equivalent to the complement of

vertex vl. The FBD is shown in Figure 5-21. We want to substitute the complement
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g

FIGURE 5-20: An FBD with redundant variable x4

of node w4 into vertex vl. In order to make the substitution correctly, we have to use

the FBD shown in Figure 5-22, with a NOR node as the root vertex w5. The function

represented by this FBD is equivalent to g.

FBDs with a decision or XOR vertex, v, at the root are adjusted to the correct signature

phase during node replacement simply by adjusting the children. Figure 5-23 represents

the adjustment pictorially. The adjustment is possible because the following relationships

are true:

Xi. fhigh(v) + 7*. flow(v) = Xi. fhigh(v) + i. flow(v)

fhigh(v) eD flow(v) = fhigh(v) @ flouw(V) = fhigh(v) @ flow(v)

5.6 Results

The results of applying the FBD package to some benchmarks are summarized in

Tables 5-1 and 5-2. The same global ordering was given to the FBD package and the

ROBDD package implemented in the program sis [50]. In most cases, the same global

ordering was used for all outputs, except examples marked with an asterisk required

different orderings for different outputs in order to create graphs. For these examples,

any further manipulation of the output graphs requires the FBD package. All CPU times

are reported in seconds on a SPARCstation 10.
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f1 X4=1

FIGURE 5-21: = fl I, = XlX-2 + X1 X3

FIGURE 5-22: f 5

,

= X3 + xl.x 2

Ak
FIGURE 5-23: Phase adjustment for decision and XOR vertices
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EX #i #0 ROBDD FBD
Nodes Time Nodes Time

C432 36 7 31,195 26 31,195 28
C499 41 32 33,214 14 33,214 11
C880 60 26 7,761 2 7,761 3
C1355 41 32 33,214 14 33,214 20
C1908 33 25 12,734 9 12,734 12
C2670 233 140 57,767 21 57,767 32
C3540 50 22 88,652 82 88,652 116
C5315 178 123 26,129 11 26,129 14

C6288(14) 32 32 115,607 535 115,607 1,599
C7552 207 108 8,356 5 8,356 6
i10 257 224 880,254 306 880,254 602
s5378 199 213 6,854 2 6,854 1
s9234* 247 250 1,069,633 632 1,069,633 1,786
s13207 700 790 13,892 9 13,892 5
s15850 611 684 53,612 26 53,612 28
s35932 1,763 2,048 6,190 36 6,190 5
s38584 1,464 1,730 40,817 56 40,817 20
hwb16 16 1 614 0.4 614 0.6
hwb32 32 1 40,126 36 40,126 36
hwb64 64 1 unable unable unable unable
mm16 67 64 3,308 4 3,308 3
mm30 123 120 11,071 15 11,071 14

multl2 24 24 610,093 950 610,093 4,632
rotate32 69 1 unable unable unable unable

Table 5-1: Comparison of CPU time
package and the FBD package

required to build ROBDDs using the ROBDD

Table 5-1 shows a comparison of the ROBDDs created by the ROBDD package ver-

sus the ROBDDs created by the FBD package under the same global ordering without

function vertices.

The first column gives the name of the benchmark. The next two columns show the

number of inputs and outputs in the circuit. The two columns labeled ROBDD show the

number of nodes necessary to represent the circuit as an ROBDD, and the CPU time

required to build the ROBDDs. The last two columns labeled FBD shows the number

of nodes and the CPU times obtained from the FBD package.

The FBD package without any OR/AND/XOR vertices and the same global ordering

produces exactly the same ROBDDs as the ROBDD package for all the examples, and
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requires about 1.4X more CPU time on the average. In some cases, the FBD package is

faster and this is attributable to the different hashing scheme for the computed table.

Table 5-2 compares FBDs with function vertices against ROBDDs. Each row in Table

5-2 shows the graph sizes and CPU times for the given benchmark. The entries under

the heading ROBDD give the sizes and times required by the ROBDD package in sis.

FBDs built using a global input ordering and AND/XOR vertices appear next in the

table. The last two columns in the table show the node sizes and times for FBDs with

aL global input ordering and OR/AND/XOR function vertices. As function vertices are

added, the sizes of FBDs decrease by as much as a factor of 11 in certain cases (hwb32).

In example C1908, the FBD with function vertices is slightly larger than the ROBDD

because the AND vertices do not maximize node sharing in this case.

Most of the examples are from the ISCAS-85 and ISCAS-89 benchmark set. mm is

the min-max function. The example hwb is the hidden weighted bit function described

in [13]. O(n2 )-sized FBDs for this function can be created using OR vertices, whereas any

ROBDD representation has 0(1.14') vertices. rotate32 is the function from [22]. FBDs

of 0(n 2 ) size for this function can be created using AND vertices, whereas any ROBDD

representation has fQ(22) vertices. C2670 and C5315 also benefit significantly from OR

vertices.

In example s9234 we need different orderings for different outputs to create FBDs.

Multipliers are particularly difficult circuits even for FBDs. We have been able to create

FBDs for multipliers of up to 12 bits. For example C6288, we have been able to generate

FBDs up to the 14th output.

The probabilistic equivalence method does introduce a finite amount of error into

the experiments, but this error is bounded by the expressions given in Chapter 4, and

decreases exponentially with the number of passes made. During our experiments, we

used a field size of IIS11 = 32341 and k = 3 passes. We never encountered an error in

our experiments.

5.7 Conclusion

An FBD representation and a strongly canonical form for the representation using

probabilistic equivalence were presented. Practical FBD algorithms for probabilistically

constructing and manipulating FBDs were given, along with mechanisms for introducing

and retaining function vertices.

The finite probability of error associated with the FBDs built for a circuit is upper
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EX ROBDD AND/XOR OR/AND/XOR
Nodes Time Nodes Time Nodes I Time

C432 31,195 26 29,004 37 29,004 36
C499 33,214 14 33,214 16 33,214 16
C880 7,761 2 6,851 3 6,851 4
C1355 33,214 14 33,214 25 33,214 29
C1908 12,734 9 12,765 15 12,765 16
C2670 57,767 21 39,468 37 28,633 36
C3540 88,652 82 84,409 144 87,575 157
C5315 26,129 11 23,789 14 2,987 17
C6288(14) 115,607 535 115,607 2022 115,607 2,107
C7552 8,356 5 7,511 6 7,511 6
iO1 880,254 306 733,746 620 638,890 671
s5378 6,854 2 3,521 1 3,348 1
s9234* 1,069,633 632 1,065,835 1,658 398,211 1,665
s13207 13,892 9 4,035 3 4,001 4
s15850 53,612 26 31,278 27 28,644 29
s35932 6,190 36 5,731 8 5,731 9
s38584 40,817 56 35,854 35 27,209 35
hwb16 614 0.4 618 0.9 533 0.9
hwb32 40,126 36 40,127 43 3,474 66
hwb64 unable unable unable unable 11,599 70
mm16 3,308 4 3,276 4 3,276 4
mm30 11,071 15 10,983 17 10,983 19
multl2 610,093 950 610,112 6344 610,644 6,492
rotate32 unable unable 2,117 0.3 2,117 0.4

Table 5-2: Results comparing FBDs with function vertices against ROBDDs

bounded by the expression:

uthits x (i ).
previously derived in Section 4.3.

FBDs are provably more efficient than ROBDDs for certain classes of circuits. Ex-

perimental results also show that FBDs produce smaller graphs than ROBDDs for a

number of general benchmark circuits. The experimental results were obtained using a

global input ordering and restricted function vertices. Despite the constraints, the FBD

results were still smaller than ROBDDs, and the FBD package is both practical in terms

of memory use and CPU time.

The presence of function vertices allowed the graphs to effectively "simulate" un-

76



ordered graphs in the examples. The quality of the results does depend on the global

input ordering and the form of the circuit specification. The global ordering can be

improved by incorporating more ROBDD global ordering techniques such as dynamic

variable re-ordering [48].
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6

Free Boolean Diagrams Based
Upon Polynomial Hashing

6.1 Introduction

In the FBD package with OR and AND vertices, the values in the algebraic field used

to probabilistically determine equivalence were chosen as non-negative integers. These

values can be chosen as something other than integers, as long as the properties of fields

are still satisfied. A MOD-2 polynomial field with polynomials as elements of the field can

be used in the equivalence scheme [30, 31]. Multiplication and addition can be performed

in the MOD-2 polynomial field, and the additional characteristic of the field, a + a = 0,

allows for an efficient representation.

We built an XOR-FBD package based upon the polynomial field hashing scheme.

This scheme uses decision and terminal vertices, the restricted support AND vertex and a

new vertex [52]. The vertex is now unrestricted, meaning there are no constraints

on the children of the vertex. The unrestricted ® vertex completely subsumes the OR

and XOR vertices defined in Chapter 5.

The first section in this chapter describes the characteristic 2 polynomial fields, and

the operations defined on the field. The second section presents the representation defi-

nition, followed by the changes in the manipulation algorithms. The manipulation algo-

rithms are similar, although, the support field was eliminated. Experimental results and

a summary conclude the chapter.
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6.2 Probabilistic Equivalence

The probabilistic equivalence check described by Blum et al. [8] is defined for an

algebraic field. One such field is the field used in Chapter 5, non-negative integers

defined over modular-p integer arithmetic, where p is prime. Another field is a set of

polynomials of degree less than m defined over modular-p(x) arithmetic, where p(x) is a

prime and irreducible polynomial of degree m. We will now proceed to describe addition

and multiplication defined over the polynomial field.

6.2.1 MOD-2 Polynomial Field

The modulus for the polynomial field with 2 elements is a prime and irreducible

polynomial p(x) of degree m [42]. The elements of the field are polynomials with degree

less than m. Modulo-2 addition and multiplication are defined on the polynomials in the

field. Given two polynomials:

po(x) = am-lx- + ... + alz + ao

p1(x) = bm-lxm- l + ... + blx + bo

The coefficients are restricted to either 0 or 1, that is:

ai, bi E {0,1}

The bitwise zor of the coefficients is defined by the truth table shown in Table 6-1. The

addition of the two polynomials po(z) and p1(x) is defined as:

po(x) + p(x) = (am-l^bml)xm-l + ... + (al'bi)x + (ao bo)

The addition of two polynomials yields a polynomial of degree less than m.

The multiplication of the two polynomials yields a result with degree less than 2m.

The result is mapped into a polynomial with degree less than m by dividing the result

with the modulus p(x) and taking the remainder.

The set of polynomials with degree less than m = 4 is shown in Table 6-2. The

first column is the actual polynomial, the second column shows the bit encoding for the

coefficients in each polynomial. The least significant bit a0 represents the coefficient in

front of x0 = 1. The most significant bit a3 represents the coefficient associated with x3 .

The third column, labeled index, is used to compute multiplication.

The polynomials in the node signature are implemented as packed bits. The bit i is set

if the coefficient, ai, corresponding to the polynomial x' is set. For example, the packed
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Table 6-1: Truth table for the bitwise xor function

Table 6-2: Bit representation of polynomials with degree less than 4

field 0110 corresponds to the polynomial p = x2 + x1. This packed bit representation

allows us to perform addition using a bitwise xor operation. For example, given the

polynomials x2 + 1 and x2 + x + 1, from Table 6-2 their addition is the polynomial

x, because 0101 0111 = 0010.

We illustrate the multiplication method with an example. In Figure 6-1, the multipli-

cation of polynomials x2 + 1 and x2 + x + 1, using bitwise xor to add the intermediate

products, yields x4 + 3 + + 1. Now we have to use the chosen irreducible, prime

polynomial p(x) = x 4 + 3 + 1 of degree 4 [42] to compute modulus p(x) of the

result x4 + 3 + + 1. The modulus can be obtained by continually bitwise xor'ing

p(x) with the given polynomial until the degree of the result is less than m = 4. This is

equivalent to subtracting p(x) until the result has degree less than m. In the example,
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la blaAbl
0 0

0 1 1

1 0 1

1 0

Polynomial a3 a2 al ao index
0 0 0 0 0 na

1 0 O 0 1 0

x 0 0 1 0 1

x+1 0 0 1 1 12

x:2 0 1 0 0 2

x 2 +1 0 1 0 1 9
x 2 + x 0 1 1 0 13

x 2 +x+l 0 1 1 1 7

X3 1 0 0 0 3

x 3 +1 1 0 0 1 4

X3 + x 1 0 1 0 10

x3 + x + 1 1 0 1 1 5

X3 + x2 1 1 0 0 14

X3 + x 2 +1 1 1 0 1 11

X3 + X2 + x 1 1 1 0 8

X3 + x 2 + x + 1 1 1 1 1 6



+x+ 

X xZ +1

x2 + x +

+ x4 + 3 x 2

4 3X +X +x+1

FIGURE 6-1: Multiplication of two polynomials

one bitwise xor suffices:

(X4 + X3 + + 1)(X 4 + X3 + 1)=

Therefore the multiplication of x2 + 1 and x2 + x + 1 in GF(2 4 ) under the prime,

irreducible polynomial x4 + 3 + 1 is x.

The multiplication algorithm can be converted into two table lookups and one integer

addition step. Given the two polynomials, pi with index index(pl) and P2 with index

index(p 2 ), we look up their indices from the index table, sum the indices, and use the

modular sum to determine the polynomial associated with the index of the result. The
index of the result is:

index(pl .p 2 ) = (index(pl) + index(p2)) mod (2m - 1)

The result of the multiplication is the polynomial associated with index(pl P2), and

the polynomial can be located by using its index to access an inverse index table. The

multiplication of any polynomial with the zero polynomial is defined to be 0.

Table 6-2 is the index table for GF(24 ) and p(x) = 4 + 3 + 1. To compute the

multiplication of P1 = x2 + 1 and p2 = 2 + + 1, we look up the indices for the

polynomials in Table 6-2, and find index(pl) = 9 and index(p 2 ) = 7. The index of the

result is (9 + 7) mod 15 = 1. The inverse index table for GF(24 ) is shown in Table 6-3.

The polynomial associated with 1 is simply x. This result is the same result obtained

using the standard modular-p(x) multiplication method in the previous example.

6.2.2 Probabilistic Equivalence Test Using Polynomials

A probabilistic equivalence test for free BDDs with f nodes using polynomial fields

with characteristic 2 is described in [30]. The field is a polynomial field P. The values

of the polynomial field are polynomials pi(x).
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Table 6-3: Inverse index table for GF(24 )

If we also include AND nodes, the algorithm for computing the polynomial associated

with a node v is shown in Figure 6-2. The procedure is the same as the procedure in
Chapter 5, except we assign polynomial values instead of integer values. The computation

for determining error bounds is still valid.

The first step is to assign random polynomials to the inputs of the circuit. Then,
given two graphs, G1 and G2, the graphs are parsed from the terminal vertices to the
root, computing a signature for each node. The rules for computing the signature of a
node are determined by the type of node.

If the signatures of the graphs are different, G1 and G2 represent different functions.

If the signatures are the same, G1 and G2 are assumed equivalent with error less than

( ini) , where n is the number of inputs, [IS[[ is the cardinality of the field and k is the

number of passes.

An example of a one pass signature calculation for a graph using a polynomial field
is shown in Figure 6-3. The signatures for the vertices are polynomials. The size of field
is a large number, usually 216.

6.2.3 Properties of Polynomial Signatures

An interesting characteristic of the MOD-2 polynomial field is aj + lal = 0, implying
Ial = -ai. Consequently, the value of the complement is simply [Jl = 1 + al. By using
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Equivalence (G1(xXl, --, x n) G2(zI,, 2., , X,))

{
Given a polynomial field P with at least 2n elements;
Assign k polynomials from P to each variable xi;
For (all vertices v from terminal vertices to the root in G1 and G2)

if (v is an E vertex)
lvi = Ihigh(v) + llow(v)l;

else if (v is an AND vertex)
lv = Ihigh(v)l · low(v)l;

else
Iv1 = lxi i high(v)l + 1i -il -Ilow(v)l;

if (IGlI == IG21)

return (G1 and G2 are equivalent with probability of error < (-) );
else if (IG1I # eG21)

return (G1 and G2 are definitely not equivalent);

FIGURE 6-2: Probabilistic equivalence test using polynomials

12 4
IVll1=x +x +x

v2 1 = X12
3+ +x

I=x3+x2+1

FIGURE 6-3: An example of polynomial signature calculation
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a polynomial field with characteristic 2, the signature calculation of a b reduces to

the sum of the signatures of the arguments a and b:

la bl = lal + bl (6.1)

The validity of Equation 6.1 can be verified by expanding the sum:

lal + bl = la-bl + labi + labl + bl

lal + Ibl = la bl + la*bl

6.3 XOR-FBD Representation

The ease of signature calculation of exclusive-or is the justification for the ® node

introduced in the following definition. The terminal, decision, AND and NAND vertex are

equivalent to the vertices defined in the FBDs with integer-valued signatures.

Definition 6.3.1 An XOR-FBD representing the Boolean function f(xl,...,x,) is a

directed, acyclic graph with a root vertex v and defined recursively with five types of

vertices:

1 A terminal vertex v has no children and it represents the function fv = 1(0)

and the vertex has signature Ivi = 1(0).

2 A decision vertex v has an index i, decision variable xi, a high child, high(v)

and a low child, low(v). The function represented by the decision vertex is:

V = Xi . high(v) + flOW(V)

The signature for the decision vertex is computed as:

Ivl = lxil Ihigh(v)l + ITl · Ilow(v)l

3 An AND vertex v has a high child, high(v) and a low child, low(v). The

restriction on the children of the AND vertex is:

support(high(v)) n support(low(v))= =

The function represented by the AND vertex is:

fv = fhigh(v). flow(V)

The equation for computing the signature of the vertex is:

Iv = high(v)l · Ilow(v)I
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4 An vertex v has a high child, high(v) and a low child, low(v). There are

NO restrictions on the children of the vertex. The function represented by

the E vertex is:
ft = fhigh(v) ED flow(v)

The equation for computing the signature of the vertex is:

Ivl = high(v)l + Ilow(v)l

5 A NAND vertex v has a high child, high(v) and a low child, low(v). The

restriction on the children of the NAND vertex is:

support(high(v)) n support(low(v))= =

The function represented by the NAND vertex is:

f v = fhigh(v) . flow(v)

The equation for computing the signature of the vertex is:

lv = 11 -Ihigh(v)l · Ilow(v)ll

Since a b = a + b when a n b = b, the vertex completely subsumes the OR and

XOR vertices of Chapter 5. Unlike the XOR vertices described in Section 5.3, there are no

restrictions on the children of the e( vertex. A maximum of one additional node needs

to be created when computing the or of any two functions.

The AND vertices are identical to the AND vertices in the FBD package of Chapter 5.

The NAND vertex is simply the complement of the AND vertex.

An example of an XOR-FBD is shown in Figure 6-4. The XOR-FBD represents the

function f = (xI. 5 + 1 .x 5 ) ( 1. z2 x 3 + x1.2 .x 4). The vertex vl is an ED
node, and the children of the vertex are unrestricted. The vertex v2 is a restricted AND

vertex. The other vertices labeled with variables are decision vertices, and the terminal

vertices are labeled 0 or 1.

6.4 A Strongly Canonical Form

The strongly canonical form for XOR-FBDs with AND and e vertices is maintained

in the same manner as with FBDs and integer value signatures in Section 5.4. The sole

difference is the use of polynomial fields with the probabilistic equivalence check.

86



FIGURE 6-4: An XOR-FBD that has decision, E and AND vertices

6.5 Boolean Operations

The XOR-FBD package with E and AND function vertices is very similar to the FBD

package with OR and AND function vertices. The vertices are extremely efficient, and

completely subsume the OR vertices in the FBD package. The XOR-FBD package does

not have an apply or ITE operation, but relies solely on and and xor calls. Since and,

xor and complement form a complete basis in Boolean space, all Boolean functions can

be mapped into the available functions.

Also, the nodes in the XOR-FBD package do not carry support variables. Instead

of maintaining support information, the package assumes a global ordering restriction is

satisfied, and the index of the top decision variable is a sufficient pruning condition for

the manipulation algorithms.

If the root vertex is a decision vertex, the top variable is simply the decision variable

of the root. The index of a function vertex is simply the smallest index of the children.

So, the index of a function vertex is simply the lowest index decision variable in the

XOR-FBD rooted at the function vertex. For example, the index of the AND function

vertex, v2, in Figure 6-4 is 1, for variable xl.

6.5.1 Cofactor

The cofactor algorithm is similar to the FBD cofactor algorithm, the only significant

difference is we have vertices instead of OR vertices. The cofactor of an vertex

representing the function f = fi E f2 is valid under the Shannon expansion for the
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function:

fi E f2 = i' (fA 13i E f 2 I,.) + Xi *(f I E f2 Ir)

We also use the top variable, stored in the topindex field as the pruning condition for

cofactor when a global input ordering is enforced, so the supports are no longer necessary

in this case.

6.5.2 XOR

The or of two functions fi and f2 is computed simply by creating an e vertex, v,

and setting the low child, low(v) = fi, and setting the high child, high(v) = f2.

Similarly, the xnor of the two functions is created simply by creating the e vertex, v

and by letting high(v) = f2 and low(v) = fi.

6.5.3 AND

The fundamental algorithm for creating XOR-FBDs in this package version is the

two-input Boolean and operation. The two-input or operation can be converted into an

and using DeMorgan's Law.

The pseudocode for the and computation is shown in Figure 6-5. Given two XOR-

FBDs f and g, the first step in the computation of the and is to check for the usual

special cases. These cases are enumerated in Appendix A.

The next step is to check for a previously computed result to the and in the computed

table. If an entry matches the signatures of f and g, we can use the result in the entry as

the result to the and without further computation. Since we are dealing with only two

functions, f and g, and the and is symmetric, canonicity of the input vector is easy to

maintain. The canonicity requirement is f < g.

Additionally, even if f * g cannot be located in the computed table, we can make some

additional checks for f. g, f * 9, or f g. If any of these pairs are located in the computed

table, E vertices can be used to compute a result (see Appendix A).

Input Variable Ordering

If a result is not found in the computed table, we need to compute the cofactors of f

and g to call fbd-and recursively. To maintain a global ordering, we can simply select

the smallest index at the root of f and g.

Typically, the global input ordering is determined in advance using existing ROBDD

variable ordering techniques. When a global input variable ordering is assumed, namely

when all variables that appear along a path satisfy the global ordering, this simplifies
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fbd-and(f, g):

{

if (result = specialcases(f, g))
return (result);

if (result = computedtablelookup(f, g))
return (result);

xi = selectvariable (f, g);
create vertex v with decision variable xi;
low(v) = fbd-and (f~, gx-);
high(v) = fbd-and (f,, gi,);
Compute signature IsI of result = (xi, low(v), high(v));
if (Is If x IlI) {

Free low(v) and high(v);
Create an AND vertex v with f and g as children;

else if (sl 1- 1-(I fl + Ig)) 
if (size(result) > size(f) + size(g) + 1) {

Free low(v) and high(v);
Create an vertex v with
f and g as children;

if (f -= (fl, f2)) {
Compute fi g and f2g ;
if (size(result) > size(fi g) + size(f 2 g) + 1) (

Free low(v) and high(v);
Create an · vertex v with fi g and f2 g as children;

else
Free fi g and f2 g;

if (result = unique_table_lookup (Isl))) {
if (index(result) > index(v)) {

Free low(v) and high(v);
v = result;

}
insert v = (If , 191) into computedtable;
return (v);

FIGURE 6-5: Procedure to compute f g
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a number of computations, and a support field for each node is not required. Instead,

each node maintains a topindex field. For decision vertices, this field is the index field,

it contains the index of the decision variable associated with the vertex. The index

associated with a function vertex is simply the smallest variable that appears in the entire

XOR-FBD. Additional flags are needed to identify the type of vertex. This topindex

field is sufficient for pruning the recursive cofactor calls, and for handling redundant

vertices.

Despite the global input ordering assumption, XOR-FBDs still have a degree of

freedom not available to ROBDDs. The function vertices "emulate" unordered paths.

Namely XOR-FBDs with function vertices effectively permit results that will be similar

to XOR-FBDs with unordered variables.

AND Node Introduction

Since the support field is no longer available on the XOR-FBD nodes, AND vertices

can no longer be introduced by checking supports, as in Section 5.5.3.

Instead, when computing f g, AND vertices are introduced using the signature check:

If gl = Ifl I· gl

After computing the and by selecting decision vertices, if we discover the resulting

signature If gl is equivalent to the product of the signatures of the inputs then we assume

the supports of f and g are disjoint, and hence f and g can be concatenated with an

AND vertex, v, by setting low(v) = f and high(v) = g.

The probability of error introduced by this check, if an AND vertex is actually created,

is equivalent to the error introduced by a unique table hit. The additional error is less

than (_ii) ' where n is the number of inputs, IISII is the cardinality of the field and k is

the number of passes.

This AND vertex introduction scheme is more expensive in terms of computation time

and memory use, because additional and recursions must be made to discover the con-

catenation, whereas with support fields, the concatenation is discovered a priori without

creating any new nodes.

However, the memory consumed by the extra recursions is low, because the interme-

diate results are discarded as soon as the intermediate concatenation is discovered. Also,

we save memory because the support field is very expensive when the number of inputs

is large.
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(a)

(b)

FIGURE 6-6: (a) FBD that represents the function xl · X3 + i1 X2. (b) FBD that
represents the same function, but with an E vertex at the root

ED Node Introduction

E vertices are introduced during the computation of Boolean and if the following

check is satisfied::

Ifgl = 1 + If + 191.
The signature 1 + If I + g is associated with the xnor of functions f and g:

f ·f g=fg 9+ f
If this check is satisfied, this implies:

f g=fg + fY
This is true if the complement of f is orthogonal to the complement of g:

fny = ,
The result can be replaced by an vertex with high child, f, and low child, g.

For a specific example, let f = X + 2- and g = x + 3. The Boolean and of

f and g is xl · 3 + X1 2. The complements of f and and g do not intersect. Two

possible representations of the and are shown in Figure 6-6(a) and Figure 6-6(b). The

graph in Figure 6-6(b) has an ® vertex at the root, and children f and g. The second

representation can be computed with the creation of one additional node, the vertex

at the root, and no other nodes because the FBDs for the inputs f and g already exist.

If we use a one pass signature, and we assign IxI = x, Ix2 1 = x2 and 1x31 = X3, we see

that the signature of the graph in Figure 6-6(a) is x4 + 3 + 2 + 1. The signature
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f2 flI f2-g fl g

FIGURE 6-7: Example of ED retainment at the root

of the graph in Figure 6-6(b) is also the same, and it has signature 1 + If + gl 
x4 + x3 + x2 + 1.

E Node Retention

We check for E vertex retainment during the calculation of f .g if there is an E vertex

at the root of either f or g.

Without loss of generality, assume the root of f is an E vertex, fi and f2 are the high

and low child, respectively. The and can be computed by selecting decision variables and

bubbling the E vertex down, or by creating another ED vertex with high child fi g and

low child f2 g, as in Figure 6-7.

For a more specific example, consider f = ( 2 x3) x 4 and g = xl · 2 + X3.

Possible representations for the functions are shown in Figure 6-8(a). The result of the

product is x1 · X2 -x4 + 2. X3 . X4 + 2. X3 . X4. A representation of the result without
E vertex retainment at the root is shown in Figure 6-8(b). The result with an e vertex

is shown in Figure 6-8(c), and this FBD requires the construction of just 2 nodes, the

AND vertex and the new ED vertex.

As shown in Figure 6-9, any complement edges can be moved into the children, using:

fi E f2 = fi f2

After the computation of the two representations of the result, the smaller result is

chosen for use, and the alternate version is discarded. No additional error is introduced

by node retention, other than the error introduced by the equivalence checks during the

creation of the result.

Redundant Vertices

Redundant vertices are handled differently in the XOR-FBD package. Redundant

vertices were discovered in Chapter 5 when there are two versions of the same node
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*2 x3 X1 X2
+ X3

(a) (b)

(C)

FIGURE 6-8: (a) FBDs representing f = ( 2 . 3 ) X4 and g = x 1 · 2 + X3-. (b) The
result without function vertex retainment. (c) The result with the · vertex retained
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f T.g

A-9 M*

2 1 ff2 .g fl.g

FIGURE 6-9: Example of e retainment with complement edges

with different supports. Namely, there are two nodes vl and v2 such that support(vlI) 

support(v 2 ) but the functions represented by the nodes are equivalent so fl -= f2 and

I v1 = v2 . In the XOR-FBD package, these vertices are not actively removed from the

XOR-FBD, but rather the two XOR-FBDs are compared, and the XOR-FBD with the

larger top index is used. The XOR-FBD with the smaller top index is redundant in that

variable and is discarded.

For example, during the and operation, before constructing the node v2, an equivalent

node vl is located in the unique table. However, if topindex(vl) < topindex(v 2), we

need to use the v2 representation of the function instead of the vl representation. This

is easily accomplished by replacing vl with v2 without changing the address of the node

v1, so all parents of vl still refer to the correct function.

The input ordering restriction along each path is also satisfied after the replacement,

because v2 satisfies the ordering requirement, and all variables in v2 are guaranteed to

have greater index than the index of vl. All parents of v1 must have index less than

index(vi).

In Figure 6-10, variable X3 is the top variable in the FBD rooted at vertex vl. The

internal node, wl, is the root of an FBD that can contain more redundant variables,

but these variables do not have to be removed at this point. Vertex vl can be replaced

by vertex v2, which represents the same function without using variable x 3 . The global

ordering requirement is still satisfied, because all paths from root to vertex v2 have seen

only variables with index less than 3, and all variables seen after v2 have index greater

than 3.

Redundant vertices cannot be handled in this manner without the assumption of a
global input ordering. If the inputs are not subject to a global ordering, a support field is

required to prune the number of cofactor calls, and redundant vertices must be removed

when discovered. The lack of an overall ordering implies that no assumptions should

be made concerning the variables that have already been seen before reaching a certain

node.
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FIGURE 6-10: Removal of a redundant top variable, 3
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The NAND vertex is necessary for correctly replacing AND vertices that contain redun-

dant variables. The NAND vertex allows us to replace an AND vertex without introducing

complement edges, and altering the parents of the vertex. An ® vertex is not neces-

sary due to the symmetry in the or function. Namely, a b = a b = b.

The complement of an vertex can be obtained by simply complementing one of the

children.

6.6 Results

The results shown in Table 6-4 were obtained using the XOR-FBD package with

unrestricted and support-restricted AND function vertices. The benchmark circuits

are the same circuits used to obtain the results of Section 5.6.

The same global ordering was given to all the packages. Examples marked with an

asterisk require different orderings for different outputs to create XOR-FBDs or ROBDDs.

The first column gives the name of the example circuit. The next two columns

labeled ROBDD time and nodes show the number of nodes in the ROBDDs representing

the outputs of the circuit and the time required to obtain the results using the package

in sis. Columns labeled FBD show the results for the circuits using the FBD package

described in Chapter 5. The columns labeled AND/E show the results obtained using the

XOR-FBD package with ED aAd AND nodes. The last column is a count of the number of

function vertices present in the final XOR-FBD results.

Example C499 showed significant improvement over both the ROBDD package and

the previous FBD package. The improvement is attributable to the preponderance of

XOR gates in the circuit specification.

The benchmarks show that in a majority of examples, the final XOR-FBDs actually

used a number of function vertices. The function vertices were able to decrease the

number of graph nodes required to represent the circuit, by up to a factor of 11 in the

case of hwb32. The XOR-FBDs also required less memory to build the smaller final

results for the benchmark circuits.

The multipliers are still hard for XOR-FBDs with function vertices. multl2 is a

12-bit multiplier, and C6288(14) is the 14th output of the 16-bit integer multiplier.

The results were obtained using 4 passes and field size IISII = 65,536. No errors

were encountered in the examples.
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EX ROBDD FBD AND/F #
Nodes I Time Nodes Time Nodes I Time F.V.

C432 31,195 26 29,004 36 28,629 43 2,411
C499 33,214 14 33,214 16 5,354 17 60
C880 7,761 2 6,851 4 6,861 4 1,109
C1355 33,214 14 33,214 29 33,214 92 24
C1908 12,734 9 12,765 16 12,553 26 365
C2670 57,767 21 28,633 36 21,805 55 171
C3540 88,652 82 87,575 157 87,617 114 1,906
C5315 26,129 11 2,987 17 2,898 36 664
C6288(14) 115,607 535 115,607 2107 115,607 1,522 0
C7552 8,356 8 7,511 7 7,515 9 47
i1 880,254 306 638,890 671 680,100 471 50,804
s5378 6,854 2 3,348 1 3,599 2 706
s9234* 1,069,633 632 398,211 1665 824,958 742 262,342
s13207 13,892 9 13,892 5 5,054 6 472
s15850 53,612 26 28,644 29 28,928 40 5,036
s35932 6,190 36 5,731 9 5,731 3 290
s38584 40,817 56 27,209 35 24,808 22 3,003
hwbl6 614 0.4 533 0.9 614 0.5 0
hwb32 40,126 36 3,474 66 3,470 177 29
hwb64 unable unable 11,599 70 11,599 70 64
mm16 3,308 4 3,276 4 3,263 4 37
mm30 11,071 15 10,983 19 10,983 17 64
multl2 610,093 950 610,093 6,492 610,112 2,344 0
rotate32 unable unable 2,117 0.4 2,117 0.3 992

Table 6-4: Results using the XOR-FBD package

6.7 Conclusion

The difference between the XOR-FBD package in this chapter and the previous FBD

package is the use of sets of polynomials as signatures, instead of sets of integers. This

leads to the introduction of the unrestricted · vertex.

The global input ordering restriction is still used to build the XOR-FBDs. Under the

ordering restriction, certain assumptions can be made, and the XOR-FBD vertices no

longer carry support information on the XOR-FBD.

The OR vertices are now completely subsumed by the unrestricted vertices. The

or of two orthogonal functions is equivalent to the xor of the orthogonal functions.

XOR-FBDs with and AND function vertices are shown to benefit the representation
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of the general benchmark circuits. These XOR-FBDs subsume the FBDs with restricted

OR, AND and XOR function vertices.

Circuits that may especially benefit from an XOR-FBD representation are circuits

with XOR gates, especially if the XOR gates are near the outputs. Examples of such

functions are parity trees with other functions as the inputs.
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7

FBD Package Implementation

7.1 Introduction

The efficient implementation of an FBD package is based upon the ROBDD package of

[9]. Similar structures and routines are used with modifications for signatures, supports,

and function vertices. The structures and routines also support unordered FBDs, a

feature which is used in Chapter 8.

This chapter first discusses the fundamental FBD vertex data structure. Sections

7.3 and 7.4 detail the operation of the hash tables and hash caches essential for efficient

FBD manipulations. The Boolean operations are described in Section 7.5. A discussion

of the impact of several parameters on FBD size, memory requirement and computation

time is presented in Section 7.6. The automatic garbage collection scheme and amortized

memory usage by the FBD package are also discussed, followed by a conclusion.

7.2 FBD structures

Each vertex in the FBD is represented by a vertex structure that has one pointer to

the high child and one pointer to the low child. The FBD vertex also uses 16 bits to

represent the index of the decision variable in the case of a decision vertex, or the smallest

index present in the FBD in the case of a function vertex. The number of pointers to

the vertex is maintained in a saturating reference count that goes up to 255. The type of

vertex is maintained, distinguishing between the different types of function vertex, and

the decision and terminal vertex.

The vertex structure also maintains a pointer to the next node in the unique table

collision list, and an array of words for storing the signature of the vertex. The size of
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the signature is determined by the number of passes used. Each value in the signature

uses 16 bits, so two passes are represented by one 32-bit word. The number of passes

is relevant for bounding the error probability. When using unordered FBDs, a support

field is required and an additional pointer is necessary to maintain the array of integers

that form the packed support field.

Complemented edges are marked using the least significant bit in the pointer to a

vertex. The complement attribute requires no additional memory.

7.3 Basic Hash Tables

The unique table stores all vertices with unique signatures. The unique table consists

of an array of bins, where each bin contains the head of a singly-linked list of vertices.

Only uncomplemented nodes are stored in the unique table lists.

Given a signature, the unique table is checked for that signature in the following

fashion. The first word of the signature is used to hash into a bin in the table. The list

in the bin is traversed, comparing signatures, until a match is found, or until the list has

been fully traversed.

The lists are currently not sorted because we assume the collision lists are very short,

around four nodes on average. If the lists become long (in the case of a size limit on the

unique table), the entries can be sorted by signature.

During a search, if a matching signature was found, this is called a unique table hit.

In general, the hit rates on the unique table are quite high, over 70% for most examples.

This implies we are dealing with mostly equivalent nodes when creating FBDs. Many of

the hits also involve identical nodes, so a large percentage of the unique table hits do not

even contribute to the error probability.

The computed table is a hash-based cache that stores the results of previous apply

or and computations. The key used to access cache entries is the signatures of the

arguments to the apply or and function. It is important to use portions of the signatures

of all arguments to the function call in the key, to properly distribute the entries in the

cache.

If the signatures of parameters for the current function call match the signatures of

the cache table entry, the result stored in the entry is returned. The computed table for

FBDs does not store any actual node pointers, but rather uses the signatures as both the

result and the key.

This means that the entries in the computed table do not need to be flushed. Also,

any amount of node replacement can take place without affecting the validity of the table
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entries. The computed table hit rate for the example circuits varied, from 17% to 45%.

Even with the seemingly low hit rates, the computed table is essential for building
FBDs efficiently. The presence of the table reduces computation time from possibly
exponential to guaranteed polynomial. Also, the current caching scheme simply replaces
an old computed table entry with the new entry in the event of a collision. It seems that
the cache may benefit somewhat from some simple caching schemes, such as a replacement
scheme based upon the number of recursions saved by that entry and the depth of the
entry, or perhaps a scheme that retains entries that are hit frequently.

If node replacement in the unique table is allowed only if the alternate representations
have identical signatures, pointers can be used to access the caches, in place of signatures.
This saves memory, but the cache entries need to be checked for dead nodes during

garbage collection.

7.4 Additional Hash Tables

Additional hash caches may be necessary if the ordering requirement is removed for
FBDs, or in the case of the multiple-input and used in the Boolean satisfiability problem
(see Chapter 8).

Lifting the global input ordering restriction on FBDs implies that the general cofactor

procedure will be called extensively, and the recursive nature of the function will adversely
impact computation time. As a result, a cofactor table similar to the computed table
may help reduce the computation time significantly.

The multiple-input and also requires the use of an AND computed table to reduce

computation time. This computed table simply stores the results of the multiple-input
and, and is used in exactly the same way as the regular computed table.

7.5 Operations

The cofactor operation is recursive and general. The topindex of the FBD is used for
pruning if a global input ordering is enforced. Otherwise, the support field is necessary
for pruning purposes.

We allow the replacement of a node in the unique table by an equivalent vertex that is
either smaller or has fewer redundant vertices. There is a possibility that we will replace
a node that is actively being cofactored and this presents a problem.

During the cofactoring of a function vertex with a redundant variable, care must be
taken when replacing nodes. We have to insure that we detect the replacement of the
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node we are cofactoring. During the process of cofactoring a node, if we discover the
node has been replaced, this implies no further work is required, the node has already

been cofactored, and the result without redundant vertices has been stored in the current
node location.

The apply and and operations are straightforward. We use the general cofactor algo-

rithm to calculate the arguments for further recursions. We perform signature checks for
function vertex introduction and retainment. When calculating multiple representations

for the same arguments, the size of the first result is used to terminate extra calculations

if the size of the alternate has exceeded the size of the current result.

7.6 Parameters

Three parameters were used during the creation of FBDs. These parameters are tied
to limiting function vertex creation and retention. The parameters, intro.m, retainm
and or-limit, affect the computation time, intermediate memory requirements, and the
size of the results.

The check for introducing disjoint OR vertices or unrestricted E vertices is performed

every introm recursions of apply or and, starting with the root call. The check for

function vertex retention is also performed every retainm recursions. When deciding

between two FBD versions of the same function, the smaller representation is chosen,

otherwise the first result is used. A representation is smaller if it has at least or-limit

fewer nodes than the alternative.
Choosing a smaller value for the parameters increases the number of FBD size cal-.

culations and the number of apply or and recursions, increasing the computation time.

However, the smaller representations may improve the results of the computation, and

reduce the memory requirement for creating the FBDs. Typical values are:

intro-m = 8

retain-m = 8

or-limit = 400

More function vertices are introduced as the values get smaller.

Table 7-1 shows some of the results obtained for example circuit C5315 under differ-

ent parameters. The first column shows the value of or-limit for the runs. The three sets

of three columns show the results for retain-m = introm = 8, 4, 1. The columns la-
beled "Node" give the number of nodes required to implement the FBDs for the outputs
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orlimit m = 8 m = 4 m = 1
Nodes I Active Time Time NActive Time Nodes Active I Time

400 14,694 18,968 39.3 14,694 18,292 56.3 14,861 18,003 135
100 4,627 8,676 39.0 4,938 8,001 51.7 6,179 7,934 111.9
5 2,898 6,100 35.7 2,898 3,982 40.7 2,907 3,345 92.5

Table 7-1: Effect of the parameters on circuit example C5315

of the circuits. "Active" shows the number of active nodes required to build the FBDs,

and gives an indication of the memory required to build the results. "Time" is the CPU

time, in seconds, used to build the graphs.

The results improve as or-limit is decreased, resulting in an 80% difference between

the FBD sizes when the parameter decreases from 400 to 5. The frequency of the checks

for function vertex introduction and retention does not affect the final results signifi-

cantly, but does influence the memory required to build the FBDs. The number of active

nodes during FBD creation is a measure of memory usage. The more function vertex

introduction and retention checks we make, the smaller the active node requirement.

There is a 45% difference between m = 8 and m = 1 in the last row. However, the

computation time also increased 159%, showing the tradeoff between memory usage and

computation time.

The main consumer of computation time, when intro-m and retainm are small, is

FBD size calculation. The size can be calculated in O(size(G)), where size(G), is the

size of the graph, but when this function is repeated recursively, the cost of computing

the size becomes very high. For example, almost 60% of the time required for C1908

with m = 8 and or limit = 400 is used by the size calculation. Reducing the number

of size computations should significantly decrease the computation time.

However, as long as function vertices are still introduced and retained, the FBDs are

still smaller than ROBDDs. In the limit, when function vertex introduction and retain-

ment no longer take place, and a global input ordering is enforced, the FBD representation

is equivalent to the ROBDD representation.

7.7 Garbage Collect

The number of pointers to nodes are maintained using reference counters, as in the

efficient ROBDD package. The reference counters saturate at 255, but this is not a

common occurrence, except in the case of the terminal vertex. Garbage collection removes
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all nodes with zero reference counters, and all unique table entries that refer to the

physical address of these nodes.

During garbage collection, if fixed limits on the table sizes are not exceeded, the

unique table and the computed table are resized and the number of bins is doubled.

Two schemes were used to test for the need to garbage collect. The first scheme

garbage collects when either the load factor on the computed table exceeds a limit, or

when the unique table load factor is greater than 4. The load factor is the ratio of

entries to the number of bins. In the second scheme, garbage collection is automatically

performed when the current number of nodes in the unique table exceeds the previous

maximum by 4 and the computed table usage does not initiate a garbage collect.

The first method collects garbage more frequently, and the number of bins in the

tables increases faster. The frequency of garbage collect and the table sizes affect FBD

computation time. Although removing unreferenced nodes may slow computation time

because the nodes have to be recalculated, the expansion of the tables speeds up the

program by enlarging the hash cache and the unique table.

More bins in the unique table and the computed table will decrease computation time.

The collision lists in the unique table are shorter and hence require less traversal time

when searching the unique table. A larger computed table means that more previous

results entries are stored in the cache, reducing computation time.

However, this means more nodes are stored, so to limit memory usage, we also placed

physical limits on the number of bins in the unique table and the computed table. Once

the limits are exceeded, the computation time for manipulating the FBDs increases sig-
nificantly.

7.8 Memory Usage

The amortized memory cost per ROBDD node for the ROBDD package of [9] is 22

bytes per node. This cost is obtained assuming each node requires 16 bytes of memory

and the cost of the each unique table bin, computed table bin and computed table entry

is distributed over 4 nodes.

The amortized memory usage per FBD node in the package of Chapter 5 is 54 bytes

per node, under the same assumptions as the calculation for ROBDD nodes (4 nodes in

each unique table collision list, and the same number of bins in the unique table and the

computed table). The calculation also assumes 3 passes for the signature computation,

but not the memory necessary for the support information. Experimental results show

that the total memory usage, including all overhead, is around 60 bytes per node.
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The XOR-FBD package improved the amortized cost per FBD node to 32 bytes per

node, under the same assumptions for the hash cache and hash table, but the number

of passes has been increased to 4. If 6 passes are used, the memory cost increases to

39 bytes per vertex, because of the extra word required to store two more passes, and

the increase in the size of the computed table entries. Experimental results confirm that

XOR-FBD nodes consume 32 bytes per node.

7.9 Conclusion

The ROBDD data structures and speedups, such as the computed table, can be

generalized to work for FBDs using signatures. The ROBDD algorithms can also be

modified to account for signatures, function vertices, and the lack of a global input

ordering.

Adjustable parameters also limit the frequency of function vertex introduction and

retainment. An additional parameter controls how much smaller the alternate represen-

tation has to be before it is used. The setting of the parameters affects the size of the

result, the memory required to compute the result, and the computation time.

The FBD package uses automatic garbage collection to resize the hash tables, and to

remove nodes that are not in use. An efficient FBD package averages 32 bytes of memory

per node, about 1.45 times the ROBDD memory cost of 22 bytes per node.

In summary, the FBD package is able to mimic the functionality of the efficient

ROBDD package. Although the FBD package is computationally more expensive and

the amortized memory cost per node is higher, the FBDs can be more efficient than

ROBDDs if the FBDs are small enough, because the memory usage and graph algorithm

complexity depend on graph size.
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8

Combinatorial Optimization
Application

8.1 Introduction

This chapter describes the application of FBDs to solve combinatorial optimization

problems. A multiple-input and function is presented that computes the conjunction

of an array of functions. We use "dynamic" variable selection to exploit the unordered

nature of FBDs. AND vertices are used to concatenate FBDs with disjoint supports. We

show that the unordered FBDs outperform the conventional ROBDD-based methods in

terms of both memory usage and CPU time.

The specific problem addressed is optimal layout stated as a Boolean satisfiability

problem. Two-layer dogleg channel routing, multi-layer dogleg channel routing, two-way

partitioning, one-dimensional and two-dimensional placement problems can be trans-

formed into Boolean functions, where the satisfiability of the function shows that an

optimal assignment exists, and a satisfying assignment is an optimal assignment [21].

The problem and transformation method will be reviewed in Section 8.2, followed by

a description of the FBD-based method for solving the resulting Boolean satisfiability

problem, in Section 8.3. Results for some benchmarks are presented in Section 8.4.

Conclusions are presented in Section 8.5.

8.2 Optimal Layout Stated as a Boolean Satisfiabil-
ity Problem

Devadas presents a method for solving the optimal layout problem exactly and more

efficiently than exhaustive search, by transforming the layout problem into a Boolean
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A C C A

track 3
track 2
track 1
track 0

.. , r

B D D B

FIGURE 8-1: An example of a channel with 4 nets and 4 tracks

satisfiability problem [21]. Although the problems are NP-complete, it is still possible to

obtain an optimal solution for large problems in reasonable time and memory.

The method transforms the layout problems into a Boolean function whose inputs

grow linearly or quasi-linearly with problem size. The satisfiability of the Boolean func-

tion provides the answer to the decision problem, "can a given channel be routed in

< D tracks" and in the process of determining satisfiability, the satisfiable assignment

of tracks to nets is also discovered. Two-layer channel routing and the transformation

technique for two-layer channel routing will be reviewed here.

8.2.1 Two-Layer Channel Routing

The two-layer wiring model assumes that all routes on a layer run in only one direction,

either vertical or horizontal. A channel is composed of horizontal and vertical tracks, with

two rows of terminals, one at the top of the channel and one at the bottom of the channel.

The terminals are assigned nets which need to be routed in a limited number of tracks in

the channel. Initially, no doglegging is permitted, so each route has only one horizontal

segment.

An example of a channel with four horizontal tracks, four columns and four nets, A,

B, C, D is shown in Figure 8-1. The tracks are numbered from the bottom of the channel

to the top, in ascending order. The columns are numbered from left to right. The first

column on the left is labeled column 1. The terminals are assigned nets A, B, C, D. In

the figure, a valid route for this channel is shown. Net A is routed in track 2. Net B is

routed in track 1. Track 3 has been assigned to net C and track 0 has been assigned to

net D.

The channel routing problem is converted into a Boolean satisfiability problem by

forming the conjunction of Boolean functions that represent the constraints on the route.
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A given channel can be routed in < D tracks if the associated Boolean function is

satisfiable.

Assume there are N nets that need to be routed in < D horizontal tracks. Each net

i has M = log2(D)l Boolean variables {vil, v 2,..., viM}. These variables represent the
binary encoding for the number of the track in which this net will be routed. This means
the Boolean function that will be tested for satisfiability is a function of N- log2(D)l

input variables. The Boolean function is the conjunction of routing constraints. The

three classes of constraints are described in the sequel.

The interval of a net i is defined as Interval(i) = [li, ri], where li is the leftmost

column position of net i and ri is the rightmost position. Nets with overlapping intervals

cannot be placed in the same track and this requirement forms the first constraint. For

the net pair (i,j) if Interval(i) n Interval(j) yA then we require

vii D vrjl + v2z D vj2 + -... + vrp vjp (8.1)

to be true under the assignment.

The maximum number of functions possible from this constraint is N(N-1) because2

for N nets there are N(N-1) unique net pairs, and it is possible for all intervals to overlap.

The second type of constraint, column requirements in the channel, can be expressed

in terms of a directed graph, known as the Vertical Constraint Graph (VCG). An edge

from net i to net j in the VCG represents the appearance of net i on the top terminal of
a column that has net j on the bottom terminal. The vertical routing constraint requires
that net j must be routed on a lower numbered track than i, so the corresponding
constraint is the logic function that computes:

(Vil vi2 ... viM) > (vjl vj2 ... VjM), (8.2)

where (vil vi2 ... viM) and (vjl vj 2 ... vjM) represent bit vectors.

Due to transitivity, if edges (i, j) and (j, k) both exist, edge (i, k) is represented

implicitly and some amount of reduction is applicable to the VCG, reducing the number

of functions derived from this constraint. The maximum number of functions from this

constraint is the total number of columns in the channel, since each column gives rise to

at most one constraint. The vertical constraints may also subsume some of the inequality

constraints in Equation 8.1, because > also implies $. In this case, not all of the functions

associated with Equation 8.1 need to be represented.

The third constraint prevents the placement of routes in invalid tracks. This con-

straint is necessary if D < 2M, yielding 2M- D possible invalid tracks. At most (2M-D)N

functions are associated with the third constraint.
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One function, Equation 8.3, is built for each unused bit vector [ckl Ck2 ... CkM]. De-

pending upon track numbering assignments, unused bit vectors can often be combined

for fewer Boolean functions. We have:

vii l ck1 + vi2 Ck2 + .. + iM E CkM (8.3)

The conjunction of all the functions derived from the preceding three constraints

forms the Boolean function whose satisfiability proves that the route is possible in < D

tracks. Some of the interval constraints may be subsumed by vertical constraints, but

the resulting Boolean satisfiability problem may still be very large, and unsolvable for

larger problems in reasonable time and memory.

8.3 FBDs Applied to Boolean Satisfiability

We examine the application of unordered FBDs to Boolean satisfiability problems

derived from channel routing. The FBDs are not subject to a global input ordering

restriction, and variables are actively ordered during the construction of FBDs.

The satisfiability of a Boolean function is determined by creating the FBD for the

function and comparing the FBD signature with 0. A traversal of the nodes in the graph

produces a satisfying assignment.

The unordered nature of the FBDs used to determine satisfiability requires the use

of the support fields for each node in the FBD. The support information is necessary to

quickly compute the general cofactor necessary when working with unordered graphs.

8.3.1 Multiple-Input And

The basis for the efficient FBD-based satisfiability check is the multiple-input and.

The multiple-input and accepts a vector of subfunctions, and computes the conjunction

of the subfunctions simultaneously. The conventional ROBDD algorithms are 2-input

algorithms, where the Boolean operations are 2-input operations. The computation of

an n-input and using 2-input operations would require n - 1 and operations.

The multiple-input and computes the n-input and function recursively, with one root
call. The algorithm for the multiple-input and is shown in Figure 8-2.

The algorithm is called with n subfunctions. The algorithm first checks the subfunc-

tions for the 0 terminal vertex since a 0 subfunction means the conjunction is unsatisfiable.

If the subfunctions are all non-zero, a lookup is performed in the and computed table.

The key to this hash cache is the vector of subfunctions, and a valid entry returns the

result of a previous multiple-input and computation with the same arguments.

110



n-and (P = {fi,f2.,fn})
{

if(fi == ; l< i < n)
return (0);

if (result = and_computed_table_lookup(P))
return (result);

partition P into k sets S1, ... , Sk such that
support(S) n support(Sj) = b and S fn Sj = - for all 1 < i, j < k, i $ j;

for (i = 1 to k) {
xi = select_variable(Si);
create vertex v with decision variable xi
high(v) = n-and(Si , = 1);
low(v) = n-and(S, i = o);
compute signature Is of result = (xi, low(v), high(v));
if (result = unique_tableookup(Isj))) 

if (size(result) < size(v)) {
Free low(v) and high(v);
v = result;

}
ri = concatenate(v, r 1_);

insert rk = (fl,..., f,) into andcomputedtable;
return (rk);

FIGURE 8-2: Procedure to compute a multiple-input and
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Disjoint Support Sets

The set of input functions, P = {fi,..., f,), is partitioned into k subsets, S, ... , Sk.
The support of the subset Si, support(Si), is simply the disjunction of the supports of

the FBDs contained. The rule for partitioning the subsets is that the subsets must have

pairwise disjoint supports:

support(Si) n support(Sj) = ; 1 i,j < k, i Z j

The partition is discovered by building an undirected graph that describes the con-

nectivity of the supports of the input FBDs, and performing a depth-first search on the

graph to discover unconnected components. The nodes in the graph correspond to the

inputs of the and. An edge exists between two nodes i and j, if the functions fi and fj

share common support variables. The nodes in each component subgraph form a subset

that is going to be disjoint in supports from any other component.

Multiple-input and is called recursively on each subset of FBDs. The results of the

k multiple-input ands are concatenated together, using AND vertices, to form the final

FBD. If we discover a 0 FBD during the creation of FBDs for the subsets, calculations

terminate immediately because the final result is also the 0 terminal vertex.

Input Variable Ordering

The FBD for a subset is created by calling the n-and procedure on the cofactors

of the functions in the given subset. A variable needs to be selected as the variable to

cofactor against, and this variable is chosen based upon the properties of the constraint

functions which are the inputs to the multiple-input and.

The problem we would like to solve is the conjunction of subfunctions. The sub-

functions fall into one of the three types of constraint categories discussed in the previ-

ous section. The first two categories produce functions of the form f = (p < q) and

f2 = (p $ q), where p and q are integers, encoded by the M variables {Pl,2, ... , PM} and

{ql, q2 ... , qM}.

Subfunctions of type fi and f2 have O(M)-sized FBDs if the variables are ordered in

the following way:

{pl, qlP2q, 2, ,PM, qM} (8.4)

This is called the interleaved ordering. However, we are dealing with the conjunction

of a number of these types of functions, and there are no restrictions on the number of

constraints the nets p or q will appear in, although each pair, (p, q), can only appear once

in a satisfiable route without doglegging.
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As the number of constraints and nets increases, other orderings become more effi-
cient. The non-interleaved ordering shown in Equation 8.5, which groups all variables

that encode a particular net together, becomes more effective.

pl1, p2, M, ...--, q, q2, .. , qM}, (8.5)

The non-interleaved ordering is a better ordering when there are more constraints
because the valid track assignments will need to be fully enumerated for each net, re-
gardless of the input ordering for the FBD, so the FBDs will be smaller if the encoding

bits for each net are placed together.

Our first ordering strategy uses the interleaved ordering shown in Equation 8.4 to
build O(M)-sized FBDs for the individual subfunctions. We switch to a non-interleaved
ordering when we compute the conjunction of the subfunctions. The variables associated
with each net will be placed together, and the order in which the nets appear will be the

original order of appearance in the interleaved ordering.

Articulation Points

We also use articulation points to dynamically select variables. By choosing the vari-

ables associated with the articulation points, we may break up the set of input functions
into more disjoint sets.

A vertex is an articulation point in the graph if the removal of the vertex results in

at least two disconnected, non-empty subgraphs. The nodes in the graph are the nets in
the constraints, and an edge exists between two nodes i and j if the nets ni and nj are

involved in the same constraint. There are three possibilities for the relationship between

the assignments to ni and nj:

ni < nj or

ni > nj or

ni # nj

By selecting the variables in articulation points first, we disconnect the graph into

more unconnected components. The FBDs for the unconnected components can be
created and attached using AND vertices.

The remainder of this section reviews articulation points, and the algorithm for finding
the points in a graph. Vertices 3 and 5 in Figure 8-3 are articulation points. The resulting

graphs after the deletion of the articulation points are shown in Figure 8-4.

An efficient algorithm based upon depth-first search (DFS) for detecting articulation
points was developed in [33]. The algorithm is based upon the observation that if an
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FIGURE 8-3: A support graph

(a) (b)

FIGURE 8-4: The support graph (a) after the elimination of articulation point 3 and (b)
after the elimination of articulation point 5
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FIGURE 8-5: Depth-first spanning tree

edge (u, v) exists, without loss of generality we can assume vertex u is visited first, and

it is easy to see that the depth-first search of u is not complete until the vertex v has
been visited. This means that u will always be an ancestor of vertex v in the depth-first

spanning tree.

The depth-first spanning tree for Figure 8-3 is shown in Figure 8-5. The order in which
the nodes are visited is indicated by the number outside each vertex. This number is

called the depth-first number or DFN. Back edges in the DFS spanning tree are indicated

by the dashed lines. This spanning tree is for a search that starts at node 3.

A vertex u in the DFS spanning tree is not an articulation point if after u is removed

from the tree, each child w of u can still reach an ancestor of u using the descendants of

w and back edges. This implies that the graph is still connected after the removal of u,

so u cannot be an articulation point. The root vertex is an articulation point if it has

more than one child in the DFS spanning tree. A child of the root vertex can only reach

another child through the root vertex.

The algorithm for determining articulation points uses two numbers for each vertex

u, DFN(u) and L(u). DFN(u) is simply the depth-first number for u. L(u) is the
lowest depth node that can be reached from u using descendants of u and back edges.

The articulation points are nodes u with a child w such that L(w) > DFN(u).

Figure 8-6 shows the algorithm for performing the depth-first search and the assign-

ment of L(u) concurrently. Note that the argument v is the parent of u. Each node in

the spanning tree can have multiple children, but only one parent. The arrays DFN

and L are global. Initially, depth = 0 and DFN(u) = -1 for all u. The initialization

takes place before calling the articulation point algorithm. In the algorithm, DFN(u)

and L(u) are assigned to the current depth. Then, for each child w, if w has not been
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findart (u, v, depth)
{

/* u is the current vertex, v is the parent of u */
DFN(u) = L(u) = depth;
for (w adjacent to u) {

if (DFN(w) == -1) {
/* The node has not been visited yet, do so now */
find_art (w, u, depth + 1);
/* Assign L(u) to either L(u) or L(w), whichever is smaller */
L(u) = MIN(L(u), L(w));
if (L(w) > DFN(u))

return (u is an articulation point);
) else if (w =A v) {

/* Found a back edge, assign L(u) to the DFN(w) if it is smaller */
L(u) = MIN(L(u), DFN(w));

FIGURE 8-6: Pseudocode for finding articulation points

reached yet, find_art is called recursively and then L(u) becomes L(w) if it is smaller.

If L(w) > DFN(u), then u is an articulation point. If w has already been reached, we

have located a back edge, and L(u) = DFN(w) only if DFN(w) < L(u).

Concatenation

After we obtain the result FBDs for the disjoint sets, the FBDs are concatenated

together using AND vertices. The concatenation of FBDs with disjoint supports created

from the disjoint sets of functions is important for reducing the size of the resulting

output FBD.

8.4 Results

We obtained some results using FBDs to check the satisfiability of channel rout-

ing functions. The FBD package used support fields, general cofactor, and the n-and

multiple-input and function. The results were obtained on a SPARCstation 10 and an

IBM 590.

Table 8-1 compares the ROBDD-based satisfiability check against the multiple-input

and FBD check, without any dynamic variable ordering. The first column gives the name
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Function l ROBDD N-AND
n m c Nodes Active Time Nodes Active Time

2a 19 3 68 318 11,377 3 266 587 0.5
2b 24 3 96 73 76,285 26 73 998 77
exl 6 2 9 24 57 0.02 24 46 0.01
ex2 6 2 10 34 84 0.03 24 51 0.02
ex3 12 4 68 4,599 2,903,274 875 871 1,778 111
itest 16 3 13 96 332 0.07 96 300 0.06
nasty5.5 9 3 30 28 2,216 0.3 28 299 0.13
nasty7.5 11 3 34 34 2,450 0.3 34 335 0.11

Table 8-1: Comparison of ROBDDs and N-AND without dynamic ordering

of the function. The second column lists the number of nets in the routing problem and
the third column shows the number of encoding bits required for each net. The fourth
column is the number of constraints in the conjunction.

The next six columns show the final number of nodes in the result graphs, the max-

imum number of nodes required to compute the final result, and the time it took to
compute the results, in seconds. The first set of 3 columns shows the statistics obtained

from the ROBDD package. The second set shows the results obtained from the FBD

package using the multiple-input and without dynamic variable ordering.

Examples 2a, exl, ex2, ex3 and Itest are satisfiable. 2b, nasty5.5 and nasty7.5
are unsatisfiable examples. The multiple input and greatly improves the unsatisfiable ex-

amples because by considering all the constraints concurrently, the conflicting constraints

are going to be discovered sooner.

The multiple-input and greatly improves the active node count, which is the number
of nodes required to find the result. The final result of the output is also smaller in the

satisfiable examples. In the unsatisfiable examples, the final number of nodes reported

is simply the number of inputs plus 1 more node for the 1/0 terminal vertex.

The active node count is the primary indicator of the effectiveness of FBDs in solving

the Boolean satisfiability problem. The ROBDD-based method allows the intermediate

nodes, built while trying to compute the 2-input and, to grow. The growth in the

intermediate nodes may become so large, a final result is never obtained by the ROBDD

method within reasonable memory usage and CPU time limits.

Table 8-2 compiles the results for the same functions using multiple-input and and

dynamic variable ordering. The first column gives the name of the function. The first

set of 3 columns gives the results using just the multiple-input and and the given global
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Function N-AND INTER ART
Nodes I Active I Time Nodes' Active I Time Nodes I Active I Time

2a 266 587 0.5 268 543 1.13 228 506 0.6
2b 73 998 77 73 932 174 73 912 271
exl 24 46 0.01 24 48 0.02 24 50 0.02
ex2 24 51 0.02 24 53 0.01 24 56 0.03
ex3 871 1,778 111 872 1,421 248 877 1,437 1,129
ltest 96 300 0.06 96 204 0.1 96 220 0.1
n5.5 28 299 0.13 28 264 0.3 28 265 0.2
n7.5 34 335 0.11 34 281 0.2 34 282 0.2

Table 8-2: N-AND results with two types of dynamic ordering

input ordering. The second set of 3 columns shows the results obtained when the bits in

the net encodings are interleaved to build the constraint functions, but the bits for the

same net are later ordered together while computing the conjunction of constraints. The

third set of 3 columns shows the results obtained when in addition to the first dynamic

ordering scheme, we also select the variables in the articulation points before selecting

any other variables.

We are primarily interested in how much memory was required to build the result

of the satisfiability problem. The dynamic variable ordering is not useful on the smaller

examples because more nodes need to be created due to the different orderings. However,

on the larger examples, and especially on the satisfiable examples, the dynamic variable

ordering reduces the intermediate memory usage.

Selecting articulation points also decreases the memory usage for 2a and 2b over just

the first dynamic scheme. For some examples (but not the examples in the table), the

articulation points will significantly decrease the memory usage. This occurs in examples

where there are a few shared nodes that prevent the function sets from breaking up into

disjoint sets. However, more comprehensive experiments are necessary to justify the use

of articulation points.

8.5 Conclusion

We applied unordered FBDs to the problem of optimal two-layer routing stated as

a Boolean satisfiability problem. We showed that the multiple-input and function and

dynamic variable selection during the creation of FBDs can significantly decrease memory

usage.
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The multiple input and partitions the inputs of the and into sets such that the sup-
ports of the sets do not intersect. The FBDs for the disjoint sets are constructed by

dynamically selecting decision variables. The variables are selected by grouping the vari-

ables associated with the same net, and by selecting variables to maximize the number of

disjoint support sets. AND vertices are used to construct the final FBD from the disjoint

support FBDs.

The FBD-based method significantly outperforms ROBDD-based methods, by pro-

ducing results using less memory and CPU time. The dynamic variable selection method

and multiple-input and also extend to other combinatorial optimization problems in addi-
tion to producing more compact FBDs when computing the and of FBDs with completely

disjoint, or mostly disjoint supports.
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9

Complexity

9.1 Introduction

The complexity of ROBDDs and free BDDs has been a subject of interest because
bounds on the complexity of the BDD representations of certain functions lend insight
to the usefulness and also the limitations of BDDs as a representation. A compact BDD
representation is both memory efficient and easy to manipulate.

Exponential lower bounds for ROBDDs under any global input ordering have been
proven for integer multipliers, the hidden weighted bit function and the shift rotate

function [13, 22].

A number of bounds have been obtained for the read-only-once branching program

model for a number of circuit classes [1, 25, 29, 44, 54, 55]. The read-only-once branching
program is simply the free BDD representation of Boolean functions. Additional results
were proven for classes of 1 - BPls, also known as branching programs with function
vertices [45].

This chapter reviews some fundamental definitions. Existing complexity results and
some interesting proof techniques for various forms of BPls are summarized. The results

are then extended to FBD complexity to gain an understanding of the power of the FBD
representation.

FBDs are quite powerful, even under the constraints of restricted function vertices.
Any function representable by a free BDD can also be represented by an FBD with the
same order of complexity. For certain functions, a polynomial-sized FBD is still possible,
despite exponential lower bounds for both the ROBDD and free BDD representation.

121



9.2 Definitions

A branching program (BP) is a directed, acyclic graph with decision vertices and

terminal vertices. These vertices are exactly the vertices defined for ROBDDs. An

fQ- BP is a branching program with function vertices that represent two-input Boolean

functions. There are no restrictions on the children of the function vertices.

The size of a BP, P, is given by size(P). The number of levels or the depth of P is

denoted by length(P). The maximum width of any level is called width(P).

An oblivious BP is leveled, all paths from a source to a target node have the same

length, and all nodes on the same level have the same decision variable, or none at all.

A read-only-once branching program (BP1) is subject to the restriction that each

decision variable appears at most once along any path from root to terminal vertex. The

terms free BDD and BP1 are interchangeable. An ROBDD is a BP1 that is restricted to

the same ordering along each path.

An f2 - BP1 is subject to the read-only-once restriction. There are no restrictions on

the number of function vertex appearances along the paths in an Qf- BP1. Examples of

Qf-BP1s are the negation ( = {--}),conjunctive ( = {A}), disjunctive (2 = {V}),

and parity ( = {I}) BPls. These function vertices have no restrictions on their
children, and will be represented by symbols only. The restricted function vertices used

by FBDs will be denoted by AND, OR and so forth.

An input vector, w E {0, l}n, is accepted if the graph, P, evaluates to 1 under w.

An accepted set is the set of all input vectors such that P evaluates to 1. A rejected set,

w' E {0, l}n is the set of input vectors such that P evaluates to 0. The accepted set is

an ON-set for the function represent by P while the rejected set is an OFF-set.

Two graphs are computationally equivalent if the sizes are different by no more than

a constant factor, and the same sets are accepted. A {-}-BP1 is equivalent to a BP1

with complement attributes on the edges. It was shown that {-,}-BPls have the same

computational power as "ordinary" BPls. An ordinary BP1 can represent a {-}-BP1,

P, with size no more than 2 x size(P) [45].

A relevant result concerning relationships between the complexity classes of the BPls

is restated below [45]. The class of polynomial-sized (Q - BP1s is denoted by Pn-Bpl.

Proposition 9.2.1

PBP1 C P{V)-BP1, P{^}-BP1, P{()}-BP1
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If we obtain a polynomial-sized upper bound for a BP1, then there will also exist a
polynomial-sized Q - BP1. Likewise, if we obtain an exponential lower bound for the
fl- BP1, the BP1 and ROBDD will be at least as large as the fl - BP1.

9.3 Upper and Lower Bounds

Two types of bounds on the sizes of the graphs are of interest, the exponential lower

bound and the polynomial upper bound.

An exponential lower bound for a computation model shows that independently of

any factors (the ordering of decision variables, the function specification, etc.), the size
of the model will grow exponentially with the number of inputs to the function. In this
case, the exponential growth is inherent to the the model, and unavoidable. A function

that exhibits exponential growth as a graph is typically difficult to represent in such a

form due to physical memory and time constraints.

A polynomial upper bound shows that the function we are studying can be represented

by a graph that is polynomial size in the number of inputs. The growth rate of the
graph is linear in the number of inputs. A polynomial-sized representation constitutes

an "efficient" representation.

A compilation of some complexity results obtained from various sources is shown in

Table 9-1. The first column gives the name of the function. The remaining 5 columns

are labeled by the type of graph representation. Each entry is either a lower bound or

an upper bound on the size of representation for the type of graph in that column for

the particular function in that row.

The upper bounds are upper limits on a minimal-sized graph representation. The

lower bounds show that any graph, in that class, that represents the function under
consideration must be at least as large as the lower bound. A description of each function

in the table, and the result, is given in the following sections.

9.3.1 Hidden Weighted Bit Function

The n-input hidden weighted bit function, denoted by HWB,, is an example of a
function that requires an exponential-sized ROBDD, and a polynomial-sized BP1. A

pictorial representation of the function is given in Figure 9-1. The function has n inputs,

(x1 , ..., x) and a single output labeled HWB,. The weight of the inputs, wt(x) = {

the number of ones on the inputs }), controls the select lines of the multiplexor. The i th
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Table 9-1: Some lower and upper bounds for special functions

0 0

x1 1

. HWB n

Xn n

# of 1's in the inputs

FIGURE 9-1: n-input hidden weighted bit function

input xi is passed to the output if there are i ones in the inputs.

HWBn(xl, ...--z,) = { 0,
Xwt(xl ... Xn) 

wt(X1, ... , x,) = 0

Wt(Xl,.,--- n) > 
(9.1)

The exponential lower bound (1.14n) on the ROBDD representation was obtained

by using the fooling set argument which partitions the graph into two sections. The

amount of communication necessary between the two partitions to evaluate the function

determines the lower bound [13]. The O(n2 ) upper bound on the BP1 representation for

the HWB function [29] is obtained by defining the following functions:

Fi:j = { Xi + t(zi,...,xz)

Gi:j = { 1,
X i + Wt(i,..,Xj)1

wt(xi, ..., xz) = o
- 1, wt(xi,...,x) > 0

wt(xi, ..., xj) = j-i + 1
wt(xz, ..., Xj) < j-i + 1
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Function I ROBDD BP1 1 {V} - BP1 {A} - BP1 {E} - BP1

HWBn 1.14" O(n2 ) O(n2 ) O(n ) O(n2 )

mult, 1.09"
cln,/2 2n/ 3-o(n)
rotaten 2n/2 O(n2 ) O(n2 ) O(n2 ) O(n 2 )
fn ___ __ __(n) _(n) 20(n)(n 2)fn 2" 2" O(n)
fn 2"(n) 2"(n) O(n2 ) 2a(n)

E Cn,,3 2 0(N ) 2 "(N), N O(n 3 )

(9.2)

(9.3)



F

FIGURE 9-2: O(n 2 ) BP1 for the HWB function

Figure 9-2 shows the BP1 for the HWB function HWBn = F:,n is constructed recur-

sively from Fi:j and Gi:j using Fi:i = Gi:i = i and the expansions:

Fi:j = xj . Gi:j-1 + ' E' Fi:j-l (9.4)

Gi:j = xi Gi+lj + Ti Fi+:j (9.5)

By using different orderings along different paths in the BP1, enough sharing is possible

in the subfunctions for a polynomial-sized BP1.

9.3.2 Integer Multiplier

The n x n integer multiplier denoted by multn has 2n inputs A = {an_l, ..., ao} and

B = {bn-,l,...,bo} and 2n- 1 outputs labeled Y = {Y2n-1,... y0}. a_l and bn-1 are

the most significant bits, and ao and b0o are the least significant bits. The outputs form

the product of the two input integers. An exponential lower bound for ROBDDs that

represent multipliers is Qf(1.09n) [13].

Gergov was able to show that any linear length deterministic, nondeterministic, co-

nondeterministic and MODp oblivious ordered BDD that represents integer multiplica-

tion must have exponential size [28]. This class includes leveled, read-k general BDDs

such as IBDDs [7], and ordered, MOD 2-BPls [31].
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go = a0 bo + a1 bl + ... + an-1 bn 1 -

g1
= a b + a1 b2 + ... + a n - 1 bo

gn-1 = ao bn-1 + a b + + an-1 bn 2 -

I

.* ~ rotaten

FIGURE 9-3: n-way shift rotate function with 2n + log n inputs

9.3.3 Clique Functions

The clique function cl,,k is defined on N = ( 2 ) input variables. The function is

defined for an n-node, undirected, graph G = (V, E). The variable xij = 1 if the

edge (i,j) E E. Otherwise, xi,j = 0. The function cln,k = 1 if there exists a k-clique in

the graph G. A clique is a subset of nodes in G such that all pairs of nodes are connected

by an edge. In a k-clique, there are k nodes and ( ) edges.

Wegener shows exponential lower bounds for the clique function if k = n/2 [55]:

BPl(cln,,/ 2) = (2n/3- o(n))

9.3.4 Shift Rotate Function

The shift rotate function shown in Figure 9-3 has 2n + [log(n)l inputs and a single

output described by:

f = gi if value(muxl, ..., muxrog(n)l) = i (9.6)

n-1
gi Z= a (aj b(j+i) mod n) ; Oi<n (9.7)

j=0
The function uses the select lines to choose between one of n different Achilles Heel

functions. Each gi function requires a different input variable ordering to attain a linear

ROBDD. The ROBDD for rotate, under any global input variable ordering has size

/1(2n/2) [22]. The function has an O(n2) BP1, obtained by ordering the mux select

inputs at the top, and using the appropriate input variable ordering for each subfunction

gi. One ordering that produces a size 2n graph for the function gi is:

{ao, bi, al, bi+l mod n, ..., an-1, bi+n-1 mod n}-
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9.3.5 Permutation Matrix Function

f, is the permutation matrix function defined for an n x n matrix A. There are n2

entries in the matrix A, denoted by xi,j, where i corresponds to the row index and j

is the column index. The function f(x(o0,0o)...xz(_l,nl)) = 1 only if the matrix A is a
permutation matrix, namely it has only one 1 in each row and column, and all other

entries are 0.

The permutation function, f,, has a 2 (n) {V} - BP1 representation and an O(n 2 )

{A} - BP1 representation. The complement permutation function, fn, has a 2n (n) {A} -
BP1 representation and an O(n2) {V} - BP1 representation. The bounds obtained for
the permutation function f , and its complement, f, were proven in [45]. By Proposition

9.2.1, BPls for the permutation function have exponential size.

9.3.6 Triangle Clique Function

The triangle clique function, E cln,3 is 1 if the number of triangles or 3-node cliques

in an undirected graph G(x) is odd. The BP1 exponential lower bound for the triangle

clique function was proven by Ajtai et al. [1]. The {E} - BP1 uses nodes to compute

the function in O(n3 ) [45].

Any function that has a two-level exclusive-or sum-of-products form with a polynomial

number of product terms has a polynomial {} - BP1 representation. The {E} - BP1
is more powerful than ROBDDs and the exclusive-or sum-of-products form.

9.4 ROBDD Fooling Set Argument

The lower bounds for the integer multiplier, shift rotate and the HWB functions were

obtained using the fooling set argument [13]. The technique is a global technique that

can be applied to many classes of functions to determine ROBDD complexity. Let f,
be a single output function with inputs X. Define a subset of key inputs Y C X and a

balance parameter 0 < w < 1. The inputs X are partitioned into two sets L and R such

that the fraction of Y in L equals w. Typically, w = 0.5.

The size of the fooling set is determined by the number of left assignments I to
the variables in L such that for two distinct assignments and ', there exists a right
assignment r that distinguishes between I and 1'. Namely, f(l r) f(l '. r). The lemma
that appeared in [13] is repeated here:
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Lemma 9.4.1 : If for every balanced partition (L,R), the function f, has a fooling set

AOBDD(L, R) with at least cn elements, c > 1, then any OBDD representing f must have

n(cn) vertices.

9.5 FBD Complexity

Let fo = { AND, NAND, OR, NOR, XOR }, where the function vertices are restricted

by the rules defined in the FBD representation. The AND, NAND, XOR vertices have

children with disjoint support and the OR, NOR vertices have orthogonal children. Let

f1 = { AND, NAND, } where the D vertex is an unrestricted ezclusive-or, and the

AND and NAND vertices must have children with disjoint supports.

Theorem 9.5.1 : For each fo - FBD (1 - FBD) F that represents the function f,

there is a computationally equivalent fo - FBD (ll - FBD) F' that represents the
function f.

Proof: For the o0 - FBD, the complement of an AND(OR) node can be obtained by

replacing the AND(OR) vertex with an NAND(NOR) vertex and vice versa. The comple-

ment of a decision vertex is obtained by complementing the children. The complement of

an XOR vertex is obtained by simply complementing one child because a b = a b.

The complement of the 1(0) terminal vertex is the 0(1) terminal vertex.

In the 0h - FBD, the same rules apply to AND, NAND, decision and terminal vertices.

The complement of an vertex is obtained by complementing one child.

The rest follows by induction, and the size of the fo - FBD (l - FBD) that

represents the complemented function has size no greater than twice the original f2o -

FBD (1 - FBD) size.

The complement of an ordinary BP1 can be obtained by simply exchanging 1 and 0

terminal vertices. The computation of the complement of an FBD is complicated by the

function vertices, but the complement can still be computed by exchanging vertices. An

FBD for the complement function with size less than twice the size of the FBD for the

uncomplemented function can be constructed.

Theorem 9.5.2 : o - FBDs and { f0, }-FBDs are computationally equivalent.

fi - FBDs and { %, - }-FBDs are computationally equivalent.
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Proof: An FBD without complement attributes, P', can be constructed from an FBD

with complement attributes, P, and the new graph will have size less than 2 x size(P).

A vertex, v, in P that is used in both complemented and uncomplemented form needs

to be replicated. Call the replicated vertex v'. All parents that used v in complemented

form will now point to v'. v' is created using the rules stated in the proof of Theorem

9.5.1. U

Although the complement attribute is not included in o0 or Q1 , the results for the

FBDs are entirely valid for FBDs with the complement attributes because they are com-

putationally equivalent. The FBD without complement attributes will be no more than

2 times larger than the FBD with complement attributes.

Theorem 9.5.3 : An 0o - FBD can be represented by an fl - FBD of the same size,

within a constant factor.

Proof: To convert the o - FBD, Po, into an Q - FBD, P1, the following procedure

can be used. The AND and NAND vertices are equivalent. The OR vertex can be replaced

directly with an e because the children must be disjoint. The NOR vertex can be replaced

by an D vertex, and by complementing one child. The XOR vertex can simply be replaced

by an D vertex. The sizes of the FBDs are different by no more than a constant factor,

size(Pi) < 2 x size(Po). ·

o - FBDs can be represented by fll - FBDs with the same size, within a constant
factor. The converse, however, is not true because the vertex is unrestricted and

cannot be directly replaced. It is also possible for a function to have a much smaller

representation as an 0 - FBD.

Theorem 9.5.4 : Any BP1 can be represented by an - FBD or 1 - FBD of the

same size, within a constant factor, even under a global input ordering requirement for

the f 0 - FBD and ill - FBD.

Proof: Each decision vertex in a BP1, can be replaced by an OR vertex and two AND

vertices to obtain an lo - FBD subject to any global input ordering. Likewise, each

decision vertex in a BP1 can be replaced by an e vertex and two AND vertices to obtain

an f1 - FBD. Figure 9-4 shows a pictorial representation of the transformation.
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f ff I

FIGURE 9-4: Transformation of a decision vertex into an OR () vertex and two AND

vertices

The FBD will be valid under the global input ordering, and its size will be no more

than 3 times the size of the BP1. If no global input ordering is required for FBD, the

FBD is equivalent to the BP1. U

Theorem 9.5.5: Any {E} - BP1 can be represented by an fl - FBD of the same

size, within a constant factor, even under a global input ordering requirement for the

f - FBD. Z

Proof: The G vertices are equivalent. Decision vertices can be replaced by the combi-

nation of one e vertex and two AND vertices. This means the 01 - FBD will be less

than three times the size of the {E} - BP1, and the global input ordering restriction is

still satisfied for the fl - FBD, if present. ·

Theorem 9.5.4 and Theorem 9.5.5 show that 1l - FBDs with and without a global in-

put ordering restriction are as powerful as {e - BPls, and more powerful than ordinary

BPls. 0o - FBDs are as powerful as ordinary BPls.

Let QO = { AND, OR, NOR }. The NAND and XOR vertices are not necessary, because

they can be replaced by AND vertices and OR vertices. Let 1' = { AND, E }. The NAND

vertex is replaced by an AND vertex and an vertex. An M - FBD can represent a

function with the same order of complexity as an l - FBD.

Theorem 9.5.6 : M - FBD and 1 - FBD are computationally equivalent.

Proof: An %1 - FBD can represent an - FBD. An M - FBD can represent

an 1 - FBD by transforming the NAND vertex, v with children high(v) = b and

low(v) = a, into an D vertex, v and an AND vertex, v 2. high(vl) = b and low(vl) = V2.
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a b

a

FIGURE 9-5: Transformation for converting a NAND into an AND vertex and an e vertex

The children of the AND vertex are high(v 2) = b and low(v 2) = . The complement

edges can be eliminated using the rules for decision and vertices. The transformation

is shown in Figure 9-5, and it represents:

a.b=-d + b=.-b + b=.-b b

Lemma 9.5.1 : Q - FBD and 0 - FBD are computationally equivalent.

Ordered Qo - FBDs can represent unordered free BDDs, with graphs no more than 3

times the size of the free BDD. Ordered fl - FBDs can represent free BDDs, within the

same order of complexity, by using the restricted AND vertices. The support restriction

on the AND vertices, necessary for valid signature calculations, limits fl - FBDs to the
same complexity class as {e} - BPls.

Theorem 9.5.7 : - FBDs and (e} - BPls are computationally equivalent.

Proof: An )} - BP1 can be represented by an - FBD, by Theorem 9.5.5 and

Theorem 9.5.6. An 1 - FBD can also be represented by an {} - BP1, by bubbling

out the AND vertices to obtain an (e} - BP1.

Given an - FBD, G, start from the terminal vertices, in a levelized fashion, so we

never have to bubble an AND vertex through another AND vertex. When an AND vertex,

v with high(v) = b and low(v) = a, is encountered, the AND vertex can be bubbled down

to the terminal vertices using the following rules to account for the possible scenarios.

Without loss of generality, assume we are going to keep b and bubble the AND vertex

through the FBD represented by a. If a is a terminal vertex, then either

1.b = b or
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(b)

(C)

FIGURE 9-6: Rules for bubbling down an AND vertex, based upon the different types of
children
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0-b = 0.

This transformation is depicted in Figure 9-6(a).
Otherwise, a is either an E vertex or a decision vertex. a has high child, a 2, and low

child, al. If a is a decision vertex, the AND vertex is pushed into the children as follows:

b. (i3 ' al + xi . a2) = Yi (al ' b) + xi ' (a2 ' b)

If a is an e vertex, then we can use the distributive law.

b. (a, a2) = (b-al) d (b a 2)

The transformation for the decision vertex is shown in Figure 9-6(b) and for the 

vertex is shown in Figure 9-6(c).

After an AND vertex is removed, we go to the next AND vertex, until all AND vertices

are gone, and the result is an {D} - BP1 of the same size, representing the same function.

The bounds on the FBD representation of classes of functions will be at least as

good as the bounds for ROBDDs and BPls for those functions. Ql - FBDs and {E} -

BP1s are equivalent. In many cases, the actual FBD representation will be smaller

than the ROBDD representation, and the FBD representation is more manipulable than
the BP1 representations. The Ql - FBD representation is still in the same class as the
{ } - BP1 representation, because the support restricted AND vertex does not introduce
another degree of freedom over unordered variables in the free BDD. The relationships

are summarized in Proposition 9.5.1.

Proposition 9.5.1

PROBDD C PBP1 C Pno-FBD C Pn,-BP1 = P{E}_BP1-

9.6 FBD Time Complexity

9.6.1 FBD Evaluation Complexity

Given an ROBDD R with n decision variables and an input vector v(xl,..., x) =
(0, l}n, the time to evaluate the value of the function for the input vector is O(n) because
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FIGURE 9-7: An FBD that may require the traversal of all nodes for evaluation

depth(R) < n. At most n decision vertices will be evaluated to determine the value of

a function given an input vector.

The time it takes to evaluate an FBD for the same function will vary, and it is not

necessarily bounded by n. The depth of an FBD can exceed n and the function vertices

make the FBD a non-deterministic BP1. Multiple paths may have to be traversed to

evaluate the function. In the worst case, all nodes in the FBD need to be tested, so the

complexity of evaluating the value of FBD G is O(size(G)).

Figure 9-7 shows an FBD that requires the traversal of all nodes in the FBD to

evaluate the function given the input vector xl = 1, x2 = 1, x3 = 1, and 4 = 1.

Both children of the function vertices need to traversed to determine the value at the

function vertex. The paths that are traversed are shown in bold, and we see that all

nodes need to be evaluated before the value of the function is determined to be 0.

9.6.2 Cofactor Complexity

The complexity of general FBD cofactor on an FBD of size size(G) is O(size(G)).

The free BDD general cofactor algorithm is equivalent. A difference between cofactoring

free BDDs and FBDs arises when using AND nodes and the FBD length is less than the

free BDD length.

Two equivalent graphs are shown in Figure 9-8 and Figure 9-9. Although the FBD

in Figure 9-9 is one node larger than the free BDD in Figure 9-8, the cofactor of the

FBD with respect to x4 requires 2 steps and the creation of one node, another AND node.

The cofactor of the free BDD with respect to X4 requires four steps, because we have to

traverse 3 nodes before reaching the vertex with decision variable x 4. The result requires
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FIG1JRE 9-8: A free BDD that represents xl · 2 X3 X 4 X 5 X 6

FIGURE 9-9: An FBD that represents X1 · X 2 · X 3 X 4 X5 · X6

the creation of three nodes.

!).6.3 Signal Probability Evaluation

A disjoint cover of a function, f, can be derived from the paths of an ROBDD
representing the function. Given the static signal probabilities of the inputs of f, the
static signal probability of f itself can be computed with a single traversal of the ROBDD.
The signal probability of a decision vertex v, prob(v), with decision vertex xi, high child
high(v), and low child low(v) is given by

prob(v) = prob(xi) . prob(high(v)) + (1 - prob(xi)) prob(low(v)).
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The signal probability of a free BDD can also be evaluated with a single traversal

of the graph, using the same equation. The probability of an f0 - FBD can also be

computed, using the appropriate probability equations for the function vertices. The

equations are simply the equations for computing the integer signatures of the function

vertices. The computation is valid because of the restrictions on the function vertices.

The signal probability of l - FBDs, however, cannot be easily computed from the

graph, due to the unrestricted E vertices. The signal probability computation is simply

signature calculation using a set of non-negative real numbers between 0 and 1 and real

number arithmetic. This field does not have characteristic two, the requirement for E
vertices, so the signal probabilities are difficult to calculate. The E vertices have to be

removed by performing the xor operation, and the fl - FBDs have to be converted into

0o- FBDs.

9.7 Conclusion

Some functions, such as the hidden weighted bit function and the shift rotate function,

have exponential-sized ROBDDs under any input ordering, but polynomial-sized free

BDD and FBD representations. Other functions, such as the triangle clique function,

have exponential-sized free BDD representations, but polynomial-sized ED}-BP1 and

FBD representations. Some functions, such as integer multipliers, seem to be difficult for

the BP1 representations, but this is still an open problem.

We reviewed bounds on the sizes of ROBDDs, free BDDs, and {(E}-BPls for certain

classes of functions. We showed that these bounds also apply to FBDs because FBDs

are as powerful as these BPls, even with the restricted function vertices and the global

input ordering.
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Conclusion

This thesis presented a graph-based Boolean logic representation called the Free

Boolean Diagram (FBD). In addition to the decision vertices and terminal vertices in

ROBDDs, FBDs allow for some types of function vertices, and unordered variables along

the paths, as long as each variable is seen no more than once along the path. However,

function vertices may appear multiple times along the paths.

Since the deterministic equivalence of these graphs is a difficult problem, the represen-

tation uses a probabilistic equivalence check to determine FBD equivalence in polynomial

time. The type of arithmetic used in the check determines the type of signatures, and

the function vertices.

If modular-p integer arithmetic is used, the allowed function vertices are AND, OR,

XOR, NAND, and NOR. The AND, XOR, and NAND vertices impose a support restriction

on the children: the supports of the children must be disjoint. The OR and NOR vertices

must have orthogonal children. The restrictions on the function vertices are necessary to

maintain the validity of the signature calculation and the equivalence check.

If modular-p polynomial arithmetic is used, the allowed function vertices are AND,

NAND, and ED. The AND and NAND vertices have children with disjoint supports, but the

ED vertex computes the exclusive-or of the two children without imposing any restrictions

on the children.

The probabilistic equivalence check identifies two FBDs equivalent with a finite and

bounded probability of error. The error introduced by the check is guaranteed to be less

than ( )k' where n is the number of inputs, IISI[ is the cardinality of the field, and k

is the number of passes. The probability that we made an error while creating the final

FBDs for a circuit is less than ut-hits x (ii)k' where ut-hits is the number of hits to

the unique table.
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The error bound associated with the probabilistic equivalence check can be adjusted

by changing the number of passes or the size of the field used by the equivalence check.

However, even with current constraints, the error bound is extremely small. The equiva-

lence check will also become more efficient and the error bound will decrease even more, as

the speed of machines increases, and as the datapath width on these machines increases.

A strongly canonical form for FBDs is maintained by allowing the existence of only

one FBD representation for each unique signature. The unique signatures in use are

stored in the unique table. If two nodes have the same signature, we assume the nodes

are equivalent and choose the smaller representation.

The fundamental FBD algorithms necessary for creating FBD representations from

multilevel combinational circuits and for manipulating the representations were pre-

sented. The FBD algorithms, complement, cofactor, apply, and and xor were given.

We showed that the algorithms work with function vertices and unordered variables.

The complexity of the algorithms is related to the size of the FBD representations being

manipulated.

The complement of an FBD is obtained using complement attributes. The FBD

cofactor algorithm is a general cofactoring method that handles function vertices and

does not require a global input ordering to compute the cofactor. Procedures apply and

and use the general cofactor to make recursive function calls. We also introduce and

retain function vertices in the FBDs during these functions. The xor of two functions is

easily computed using the function vertices.

The FBD representation and manipulation algorithms were implemented in two FBD

software packages. We were able to use these packages to create and manipulate FBDs

for benchmark circuits. The FBD package mimics the behavior of the ROBDD package,

and uses modifications of the ROBDD structures and algorithms.

For the sake of efficiency, the FBDs we created still enforced a global input ordering.

However, even with the global ordering, and the restricted function vertices, we were still

able to obtain FBDs that were smaller than the ROBDDs for many benchmarks. This

demonstrates the power of the FBD representation in the general case. The function
vertices in the FBD allow for essentially unordered graphs.

Theoretically, FBDs with function vertices are more powerful than both ROBDDs and

free BDDs. We show that any free BDD has a computationally equivalent FBD, even if

a global ordering is enforced. Some functions, such as the triangle clique function, have

exponential free BDD representations under any ordering, yet still have a polynomial-

sized FBD representation.

We successfully applied the FBDs to both combinational logic verification and Boolean
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satisfiability. The increased power of the FBD representation over ROBDDs translates

into more powerful logic verification methods. For Boolean satisfiability, we were able to

obtain significant improvements in the memory required to determine an answer to large

satisfiability problems. The memory improvement was obtained by using AND vertices

and by exploiting the characteristics of the problem to dynamically determine a free

ordering for the FBDs.

Multipliers are still difficult for FBDs and although the complexity of FBDs repre-

senting multipliers has not been proven to be exponential, indications are that multipliers

will be difficult to represent. Additional work of interest includes work in improving the

efficiency of algorithms for determining the satisfiability and equivalence for multiplier-

type circuits. Efficient methods for the verification of large multipliers using general

BDDs, probabilistic methods, and hierarchical verification is an ongoing area of research.

Future work with FBDs includes the incorporation of dynamic variable re-ordering [48]

to modify the global input ordering. FBDs can be applied to sequential logic verification

[15, 20]. Additional work can be done with the relaxation of the ordering requirement,

and with finding other methods to exploit the power of FBDs during the construction of

FBDs from circuits.
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A

Special Cases

A.1 Introduction

The appendix enumerates some of the early termination conditions for ITE, and, and

additional computed table checks. Section A.2 lists the early termination cases checked

at the beginning of the ROBDD ITE algorithm. Section A.3.1 names some of the early

termination cases encountered during FBD ITE when at least one of the input FBDs

has an AND vertex at the root. Section A.3.2 lists the termination cases for ITE calls on

FBDs with OR vertices at the root, and Section A.3.3 does the same for FBDs with XOR

vertices at the root.

Section A.4 shows the basic termination cases for computing the and of two FBDs.

The computed table special cases in Section A.5 show functions that can be created

quickly from existing computed table results.

A.2 ROBDD ITE Special Cases

ITE(1,g,h) = g

ITE(O,g, h) = h

ITE(f,1,O) = f

ITE(f,O, 1) = f
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A.3 FBD ITE Special Cases

A.3.1 AND Vertex Special Cases

AND(f,g) f = AND(f,g)

AND(f,g) + f = f

AND(f,g) f = AND(f,y)

AND(f,g) f = 0

AND(f,g) + f = !AND(f,y)

AND(f,g) f =!AND(f,y)

AND(f,g) AND(f,h) = AND(f,g h)

AND(f,g) !AND(f,h) = AND(f,g · h)

AND(f,g) AND(f,h) = 0

AND(f,g) !AND(f,h) = AND(f,g)

AND(f,g) + AND(f,h) = AND(f,g + h)

AND(f,g) +!AND(f,h) = !AND(f, · h)

AND(f,g) + !AND(f,h) = !AND(f,h)

AND(f,g)+ !AND(f,h) = !AND(f,g · h)

AND(f,g) + !AND(f,h) = !AND(f,h)

AND(f,g) + AND(f,h) = AND(f,g + h)

AND(f,g) AND(f,h) = AND(f,g h)

AND(f,g) · !AND(f,h) = !AND(f,g D h)
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A.3.2 OR 'Vertex Special Cases

OR(f,g) f = f

OR(f, g) + f = OR(f, g)

OR(f,g) f = f g = 9

OR(f,g) f = g g
OR(f,g) + f = 1

OR(f,g) f = f + = 
OR(f,g) + OR(f,h) = 1

OR(f,g) + !OR(f,h) = OR(f,g)

A.3.3 XOR Vertex Special Cases

XOR(f,g) f = AND(f,g)

XOR(f,g) + f =!AND(f,g)

XOR(f,g) E f = g

XOR(f,g) f = AND(f,g)

XOR(f,g) + f =!AND(f,g)

XOR(f,g) f =g
XOR(f,g) XOR(f,h) = g h

XOR(f,g) XOR(f,h) =!(g h)

XOR(f,g) !XOR(f,h) =!(g h)

XOR(f,g) e !XOR(f,h) = g h

A.4 FBD AND Special Cases

o g = 0

1 g =1

f.O = O

f 1 =1
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A.5 FBD AND Computed Table Special Cases

f g = XOR(g,f g)

f g = XOR(f,f - ~)

f · g = XOR(XOR(f,g),f · )
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