-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by Helsingin yliopiston digitaalinen arkisto

Tree Matching Problems with Applications
to Structured Text Databases

Pekka Kilpelainen

Ph.D. dissertation
Department of Computer Science, University of Helsinki

Report A-1992-6, Helsinki, Finland, November 1992

https://core.ac.uk/display/14916884?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Tree matching is concerned with finding the instances, or matches, of a given
pattern tree in a given target tree. We introduce ten interrelated matching
problems called tree inclusion problems. A specific tree inclusion problem
is defined by specifying the trees that are instances of the patterns. The
problems differ from each other in the amount of similarity required between
the patterns and their instances. We present and analyze algorithms for
solving these problems, and show that the computational complexities of the
problems range from linear to NP-complete.

The problems are motivated by the study of query languages for struc-
tured text databases. The structure of a text document can be described by
a context-free grammar, and text collections can be represented as collections
of parse trees. Matching-based operations are an intuitive basis for accessing
the contents of structured text databases. In “G-grammatical” tree inclusion
problems the target tree is a parse tree over a context-free grammar G. We
show that a certain natural class of grammars allows solving some of the
grammatical inclusion problems in linear time.

Tree inclusion problems are extended by introducing logical variables in
the patterns. These variables allow extracting substructures of the pattern
matches and posing equality constraints on them. We show that most of the
tree inclusion problems with logical variables are NP-hard, and also consider
solving their polynomial versions. As an application of these problems we
finally show how tree inclusion with logical variables can be used for querying
structured text databases, and discuss how the inclusion queries should be
evaluated in practice.

Contents

1 Introduction
2 Preliminaries

3 Tree inclusion problems

3.1 Unordered tree inclusion
3.2 Ordered tree inclusion, .
3.3 Unordered path inclusion
3.4 Ordered path inclusion
3.5 Unordered region inclusion
3.6 Ordered region inclusion L.
3.7 Unordered child inclusion L.
3.8 Ordered child inclusion 0.
3.9 Unordered subtree problem
3.10 Ordered subtree problem
3.11 Relating various inclusion problems

Solving tree inclusion problems

4.1 A general solution scheme
4.2 Unordered tree inclusion is NP-complete
4.3 An algorithm for unordered tree inclusion
4.4 Solving unordered path inclusion problems
4.5 Left ordered embeddingso
4.6 Left embedding algorithm
4.7 A space efficient algorithm for ordered tree inclusion.
4.8 Solving ordered path inclusion problems
4.9 Classical tree pattern matching
4.10 Subtree problems are solvable in linear time
4.11 Summary of complexities

11
13
15
16
17
18
19
20
21
22
23

Grammatical tree inclusion

5.1 Grammatical targets and tree pattern matching
5.2 Solving ordered tree inclusion on nonperiodic targets
5.3 Preprocessing grammatical patternso L.

Tree inclusion with logical variables

6.1 Logical variables in patterns

6.2 Complexity of inclusion problems with logical variables

6.3 Ordered child inclusion with logical variables

6.4 Polynomial subclasses of ordered tree inclusion with logical
variables Lo

6.5 Summary of complexitieso

Applying tree inclusion to structured text databases

7.1 Text databases Lo
7.2 Querying with inclusion patterns
7.3 Evaluation of queries

Conclusions

65
65
69
71

74
74
78
84

86
89

Chapter 1

Introduction

Trees are one of the most important ways of structuring data. They are suit-
able for representing any information with hierarchical structure. Trees can
be used to represent natural language sentences, computer programs, alge-
braic formulae, molecule structures, and family relationships, just to mention
some application areas.

Pattern matching is the process of locating substructures of a larger struc-
ture, the target, by comparing them against a given form called the pattern.
Posing pattern matching requests is descriptive by nature in the sense that
one describes how the results of the search should look like, instead of ex-
pressing how they are to be found. This makes pattern matching a central
operation in many declarative programming systems, and also a promising
framework for the retrieval of information.

Matching of tree structures and the related unification problem have an
important role in the definition and implementation of functional and logic
programming languages like Lisp and Prolog. Representing terms as tree
structures is typical in those systems. For example, consider a programming
system that deals with simplifying arithmetic expressions. The system might
be required to simplify a term like f(1,(0 4 2 * 3),4) that represents some
function f applied to arguments 1, 0 4+ 2 % 3 and 4. This term could be
represented inside the system as the following tree structure.

Assume that the system includes a rewriting rule 0 +2 — x, which tells that
any expression of the form 0 + = can be simplified to . Now this rule can
be implemented by treating the left-hand side of the rule as the pattern tree

b(ilO W.

The earlier tree that represents the object of simplification is then treated as a
target tree, and the pattern is matched against the target. Matching succeeds
against the subtree whose root is labeled by the +-sign. The simplification
step can be implemented by replacing that tree by its second subtree that
was matched by the z-node of the pattern. The result is as follows.

The above was an example of classical tree pattern matching. In this
problem the pattern describes its matches rather precisely. For instance, the
previous pattern matches only against trees that have exactly two immediate

subtrees, whose root label is 4+, and whose first subtree is 0; the second
subtree of the pattern occurrences can be arbitrary.

Sometimes we may need more liberal matching of tree structures than
classical tree pattern matching. For example, assume that we have a large
collection of parse trees for some natural language sentences. Figure 1.1 is
an example of such a parse tree.

/S\

/ np\ |
det n V/ np adv

| /IN

“The” uboyn “hOldS” det adJ n “tightly”

Lﬁthe” Lﬁbig” “Ca;t”

Figure 1.1: A parse tree

Linguists might want to locate sentences from the collection by expressing
conditions on the form of their parse trees. For example the following queries
on the data might be of interest.

1. Locate those sentences that contain verb “holds”, noun “cat”, and some
adverb.

2. Locate those sentences that contain a noun phrase consisting of deter-
miner “the”, adjective “big”, and noun “cat”, in this order.

3. Extract the nouns that are preceded in a verb phrase by the verb
“holds”.

4. Extract the words that appear in a sentence both as a verb and a noun.

The richness of natural language leads to very diverse syntactic structures and
makes queries like those above difficult to express using classical tree pattern
matching. We consider in this thesis extensions of the tree pattern matching

problem that allow us to express conditions like those above. We call these
extensions tree inclusion problems. The first two sample queries above can
be treated as tree inclusion problems, where we search for occurrences of a
pattern tree. The last two queries above can be treated as inclusion problems
extended with logical variables. Logical variables can be used to extract
substructures of the pattern occurrences and for posing equality constraints
on those structures.

The specific application that we have in mind is to apply tree matching
to locating structures in structured text databases. Various text documents
comprise some kind of internal structure. Examples of such documents are
manuals for software and equipment, encyclopedias, and dictionaries. A
structured text database system is a computer system that utilizes the struc-
ture of the texts in its task of storing and manipulating text documents.
The model for text databases that we consider uses grammars as database
schemas and parse trees as database instances. In this setting, pattern trees
can be given as queries for locating parts of interest in database trees.

The main theme of the thesis is the study of reasonable variations of
pattern matching on tree structures. The contents are organized as follows.
Chapter 2 presents the basic notions of trees that are used in the rest of the
thesis. Tree inclusion problems are introduced in Chapter 3. In Chapter 4
we consider solving these problems. We give a general solution scheme for
the problems, and present and analyze algorithms for solving particular tree
inclusion problems. The computational complexities of the problems are
shown to range from linear to NP-complete.

In Chapter 5 we discuss application oriented special cases called grammat-
ical tree inclusion problems. In a grammatical problem the target is a parse
tree over some grammar. We show that the class of so called nonperiodic
grammars allow certain tree inclusion problems to be solved in linear time.
We also discuss possibilities to preprocess the pattern when the grammar
of the target is known. In Chapter 6 we consider extending the tree inclu-
sion problems by allowing the patterns to contain logical variables. Most of
the tree inclusion problems with logical variables are shown to be NP-hard.
Solving the polynomially solvable problems and some polynomial subclasses
of ordered tree inclusion with logical variables are considered at the end of
Chapter 6. In Chapter 7 we discuss querying structured text databases using
tree inclusion. We give examples of using inclusion queries and outline how
they should be evaluated in practice. Chapter 8 is a conclusion.

Chapter 2

Preliminaries

This chapter defines the basic notions of trees and their components used
in the rest of the thesis. The concepts are standard and can be found,
although with slightly differing notations, in many sources that deal with
tree algorithms; [Knu69], [AHU74], and [Tar83] are three basic references.

A binary relation on a set D is a subset of the cartesian product D x D.
Let R be a binary relation on D. The transitive closure of R, denoted by
Rt and the reflexive transitive closure of R, denoted by R*, are defined as
follows:

R = {(z,x) |z €D},
R = {(x,y) |32z € D :(x,2) € R, (2,y) € R"}, for n >0,
Rt = U R" | and
n>0
R = |JR =RURT.
n>0
A rooted tree is a structure T' = (V| E, root(T')), where V is a finite set
of nodes, root(T) € V is a node called the root of tree T', and F is a binary
relation on V' that satisfies the conditions listed below. If (u,v) € E, we say

that (u,v) is an edge and that node u is the parent of node v, denoted by
parent(v). The set of edges must satisfy the following:

1. The root has no parent.
2. Every node of the tree except the root has exactly one parent.

3. All nodes are reachable via edges from the root, i.e., (root(T),v) € E*
for all nodes v € V.

If we omit the special status of the root of a rooted tree and the direction
of the edges, we get an unrooted tree. We consider only rooted trees if not
especially stated otherwise.

Rooted trees are a special case of directed graphs; graphs do not pose
restrictions on their edges. The nodes of a graph are also called vertices. A
graph (tree) is labeled, if a function label from the nodes of the graph (tree)
to some alphabet is given.

A path in a directed graph is a sequence of edges (vq,vz2), (v2,v3), ...,
(Up—1,v,); this is called a path from vy to v, and its length is n — 1. In a
tree there is a unique path from the root to each node. We define the depth
or the height of a tree T, denoted by depth(T), to be one greater than the
length of the longest path in T

The nodes of a rooted tree with a common parent are children of their
parent, denoted by

children(u) = {v € V| (u,v) € E} .

A node without children is a leaf. Nodes which are not leaves are internal
nodes. Leaves are sometimes called external nodes. The descendants of a
node u are defined by

desc(u) ={v eV |(u,v)e ET},
and the ancestors of u are defined by
anc(u) ={v eV | (v,u) € ET}.

The set A'(u) = {v € V | (v,u) € E'} is obviously for each 7 either empty or
a singleton; if it is a singleton, the node v belonging to the set A*(u) is called
the i1th ancestor of u. A node is its own zeroth ancestor, and the parent is
the first ancestor of a node.

A rooted tree is ordered if the children of each internal node having &
children are uniquely numbered by 1,..., k. Let u be a node in an ordered
tree. The child number ¢ of node u is denoted by child(u,). If node u has k
children (k > 0), the node child(u, 1) is the leftmost child of u, and child(u, k)
is the rightmost child of u.

Let u be a node in a rooted tree T' = (V| F, root(T')). The subtree of T
rooted by node u, denoted by T[u], is the tree (V', K, u), where

V' = {u} Udesc(u), and
E = En(V xV).

The subtrees of a tree T' are the trees rooted by the nodes of T'. If T"is ordered
or labeled, the labeling of nodes and ordering of children in the subtrees of T'
are the same as the labeling and ordering in T'. The tree rooted by the child
number ¢ of a node u is called the subtree number ¢ of node u. The subtrees
of root(T) are the immediate subtrees of tree T. A subtree of T' is a proper
subtree of T if it is not rooted by the root of T'.

We can omit the ordering of an ordered tree and consider it as an un-
ordered tree. In the sequel, if not stated otherwise, we mean by trees ordered
and labeled trees. Trees have a natural representation as linear terms. Let T’
be a tree with immediate subtrees Ty,..., T} and label(root(T)) = a. Then
the term representation of T', denoted by Term(T), is defined inductively by

Term(T) = a(Term(Ty), ..., Term(Ty)) ;

if £ = 0, we omit the parentheses after a. If s is the term representation
of a tree T', we say that T is the tree represented by term s, and denote it
by Tree(s). Sometimes we refer to tree Tree(s) simply by term s. For an
example, see Figure 2.1.

@@
@

Figure 2.1: The tree represented by the term a(b, ¢(a), d).

A forest is an ordered sequence of trees no two of which have nodes
in common. The forest of trees Ti,..., Ty is denoted by (T4,...,Tk). Let
F = {T1,...,Ty) be a forest, and u a node in a tree T; of F'. The subtree of
F rooted by u, denoted by F[u], is defined by Flu] = T;[u]. The subtrees of
a forest F' are the subtrees of the trees in F.

The subtrees of a node w with &k children in a tree T'" form the forest
(Tlehild(u,1)],...,T[child(u, k)]). The roots of the trees forming a forest
are siblings to each other. Let u = root(T;) in a forest (Ty, ..., Ty). If ¢ > 1,
the nodes root(T;) where 1 < j <1 are left siblings of node w, and root(T;_1)
is the previous sibling of u. If i < k, the nodes root(T};) where i < j < k are

right siblings of u, and root(T;41) is the next sibling of u. Usually we do not
distinguish between a single tree T" and the forest (T').

The nodes u of a forest F' = (T1,...,T}) where k > 0 can be assigned
preorder numbers pre(u) along the following rules:

1. The preorder number of root(T}) is 1.
2. The preorder number of the leftmost child of a node w is pre(u) + 1.

3. Let node u be the next sibling of node v, and let p be the largest
preorder number assigned to the nodes in F[v]. Then pre(u) = p + 1.

The leaf in a forest F' with the smallest preorder number is the leftmost leaf
of F', and the leaf with the greatest preorder number is the rightmost leaf of
F.

Postorder numbers are assigned to the nodes of a forest (Ty,...,T})) where
k > 0 by the following rules:

1. Let u be the leftmost leaf of T;. Then the postorder number post(u) of
wis 1.

2. Let u be an internal node, and let p be the largest postorder number
assigned to the descendants of u. Then post(u) = p + 1.

3. Let node v be the next sibling of node u. Then the postorder number
of the leftmost leaf of Fv]is post(u)+ 1.

Figure 2.2 is an example of preorder and postorder numbering.
The following lemma binds the ancestorship relation and the preorder
and postorder numbers together.

Lemma 2.1 Let u and v be nodes in a forest F'. Then u is an ancestor of v
if and only if pre(u) < pre(v) and post(u) > post(v).
Proof. See Exercise 2.3.2-20 in [Knu69]. O

Many of the tree inclusion problems in the next chapter can be character-
ized operationally by tree edit operations. Tree edit operations form the basis
for the edit distance of trees, which can be used for measuring the similarity
of trees. This topic is discussed in [Sel77], [Tai79], and [ZS89].

Let u be a node in a tree T'. The effect of the deletion of node u from
T is as follows. If u is the root of T, the result is the forest of immediate
subtrees of T'. Otherwise, let u be the ¢th child of a node v. In this case

Figure 2.2: Numbering nodes of a forest. The preorder numbers are shown
as Arabic numbers inside the nodes, and the postorder numbers are shown
as Roman numbers to the left of the corresponding nodes.

the result is tree T' with node u removed and the edge from v to u replaced
by edges from v to the children of u. The relative order of children does

not change: Let the children of v be vy,...,v;,...,v;, and the children of
u be uy,...,u;. Then, after the removal of u = v;, the children of v are
Vfyeee s Uim1y Upy e v ey UL, Vigt, - - -, V. For an example, see Figure 2.3.

Figure 2.3: The effect of deleting the node u from the tree T'.

An insertion is the inverse operation of a deletion. Two derived operations
can be defined by the deletion of nodes [WJZS91]. Pruning at a node v means
deleting all the descendants of u. Cutting at a node u means pruning at u

and deleting w.

Another basic tree editing operation is the permutation of siblings. Let u,
v and p be nodes in tree T' with v = child(p,¢) and v = child(p, 7). Permuting
u and v changes u to be child(p,j) and v to be child(p,1).

10

Chapter 3

Tree inclusion problems

The general tree inclusion problem given a pattern tree P and a target tree
T is to locate the subtrees of T' that are instances of P. A specific inclusion
problem is defined by fixing the instance relation that specifies the instances
of each pattern. The pattern is said to match or occur at the root of the trees
that are instances of the pattern. If P matches at a node v of T', we say that
v is an occurrence of P.

In this chapter we introduce ten interrelated inclusion problems on trees.
The problems are introduced by restricting their instance relation step by
step. The problems divide into two groups of five problems: the unordered
problems, where the left-to-right order of the pattern nodes does not mat-
ter, and the ordered problems, where it does matter. The motivation for
introducing the problems is to provide means of locating data in a target
tree by giving a pattern tree that describes the wanted-for occurrences on an
appropriate level of precision.

The problems are introduced in Sections 3.1 through 3.10. Section 3.11
relates the instance relations of the problems together. Solving the problems
is considered in Chapter 4.

3.1 Unordered tree inclusion

Tree inclusion problems are defined via embeddings between trees. Let P =
(V, E,root(P)) and T = (W, F,root(T)) be trees. An injective function f
from the nodes of P to the nodes of 1" is an embedding of P into T', if it
preserves labels and ancestorship. That is, for all nodes v and v of P we
require that

11

L. f(u) = f(v) if and only if u = v,
2. label(u) = label(f(u)), and

3. u is an ancestor of v in P if and only if f(u) is an ancestor of f(v) in

T.

We say that P is an unordered included tree of T'if there is an embedding of
P in T Figure 3.1 shows an example of unordered tree inclusion.

P 6 T

Figure 3.1: Tree P is an unordered included tree of tree T

Alternative characterizations for the unordered tree inclusion can be given.
Intuitively we think that a subset of nodes of the target together with their
induced ancestorship relation resembles the pattern. Operationally, an un-
ordered included tree can be obtained from a tree by deleting nodes and
permuting siblings.

Example 3.1 The tree a(b,c(a),d) has 42 unordered included trees. They
are represented by the terms a, b, ¢, d, a(a), a(b), a(c), a(d), c(a), a(a,b),
a(a,d), a(b,a), a(b,c), a(b,d), a(c,b), a(e,d), a(d,a), a(d,b), a(d, ¢), a(c(a)),
ala,b,d), a(a,d,b), a(b,a,d), a(b,c,d), a(b,d,a), a(b,d,c), a(e,b,d), a(c,d,b),

,0), ald,b,a), a(d,b,c), a(d,c,b), a(b,c(a)), alela),b), a(c(a),d),
c(a)), a(b,c(a),d), a(b,d,c(a)), a(c(a),b,d), a(c(a),d,b), a(d, b, c(a)), and
c(a),b). 0

12

If P is an unordered included tree of T', then P is an unordered included
tree of every tree that is rooted by an ancestor of root(7T"). Therefore it is
reasonable to consider trees that include P minimally. We say that tree T'
includes P minimally if T includes P but no proper subtree of T' does.

Problem 1 (Unordered tree inclusion problem, UTTI)
Given a pattern tree P and a target tree T, locate the subtrees of T' that
include P minimally. a

A mapping f from the nodes of P to the nodes of T'is root preserving, if
f(root(P)) = root(T). It is immediate that a tree T includes P minimally if
and only if there is an embedding of P in T" and every embedding of P in T
is root preserving.

3.2 Ordered tree inclusion

The second inclusion problem, the ordered tree inclusion problem, results
from the previous one by fixing the left-to-right order of nodes. That is,
ordered tree inclusion allows us to locate subtrees of the target that con-
tain nodes that agree with the nodes of the pattern with regard to labeling,
ancestorship relation, and the left-to-right order induced by the target.

An embedding of a tree P into a tree T'is an ordered embedding of P into
T, if it preserves the left-to-right-order of nodes. That is, for all nodes u and
v of pattern P we have that

post(u) < post(v) if and only if post(f(u)) < post(f(v)) .

Since f preserves the ancestorship, the above condition is by Lemma 2.1
equivalent to requiring that

pre(u) < pre(v) if and only if pre(f(u)) < pre(f(v)) .

Tree P is an ordered included tree of T', and T is an ordered including
tree of P, if there is an ordered embedding of P into T. For an example of
ordered tree inclusion see Figure 3.2.

Again, the instance relation can also be characterized operationally: tree
P is an ordered included tree of T, if P can be obtained from T' by deleting
nodes.

13

Figure 3.2: Tree P is an ordered included tree of tree T'.

Example 3.2 The tree a(b,c(a),d) has 20 ordered included trees. They are

o
a, b, ¢, d, a(a), a(b), a(c), a(d), c(a), a(a,d), a(b,a), a(b,c), a(b,d), a(c,d),
a(e(a)), a(b,ad), alb,e,d), a(b, e{a)), a(e(a),), and a(b, c(a), d). -

A tree T includes tree P with order minimally if P is an ordered included
tree of exactly one subtree of T', namely T itself.

Problem 2 (Ordered tree inclusion problem, OTI)
Given a pattern tree P and a target tree T, locate the subtrees of T' that
include P with order minimally. a

Again it is immediate that U includes tree P with order minimally if and
only if there is an ordered embedding of P into U and every ordered embed-
ding of P into U is root preserving. It is obvious from the definitions that
if P is an ordered included tree of T', then P is also an unordered included
tree of T'. On the other hand, a tree T' can include P with order minimally
and have a proper subtree that includes P without order minimally: Con-
sider trees P = a(b,¢) and T" = a(b,a(c,b)). Now T includes P with order
minimally, but the subtree a(c, b) of T includes P without order minimally.

The ordered tree inclusion problem appears in Exercise 2.3.2-22 of [Knu69];
in the solution Knuth gives a sufficient condition for the existence of an or-

dered embedding.

14

3.3 Unordered path inclusion

An embedding f of a tree P = (V, F, root(P)) in a tree T' = (W, F, root(T'))
is a path embedding if it preserves the parent relation. That is, for all nodes
u and v,

(u,v) € Eif and only if (f(u), f(v)) € F'.

Pattern tree P is an unordered path-included tree of target tree T' if there
is a path embedding of P in T'. For an example see Figure 3.3. Intuitively,
a path-included tree of T' consists of paths originating from a single node of

T.

Figure 3.3: Tree P is an unordered path-included tree of tree T

Let G = (V,E) and H = (W, F') be two directed and labeled graphs. A
bijection f : V — W that satisfies label(v) = label(f(v)) for all v € V', and
where (u,v) € E if and only if (f(u), f(v)) € F, is an isomorphism between
GG and H. The graphs are isomorphic it there is an isomorphism between
them. A graph G' = (V', E') is a subgraph of G, if V' CV and F' C E. Now
a tree P is an unordered path-included tree of a tree T' if and only if P is
isomorphic to a subgraph of T'.

Operationally, the unordered path-included trees of 7' can be obtained
from the subtrees of T' by cutting and permuting siblings.

Example 3.3 The tree a(b,c(a),d) has 31 unordered path-included trees.
They are a, b, ¢, d, a(b), a(c), a(d), c(a), a(b,c), a(b,d), a(ec,b), a(c,d),

15

a(d,b), a(d,c), a(c(a)), a(b,c,d), a(b,d,c), a(c,b,d)
(,b), a(,c(a))7 G(C(a)ab)a a(c(a), d), a(d, c(a)), (bvc())7 a(b,d, c(a
c(a),b a(d,b,c(a)), and a(d c(a),b).

Y

As a search problem, we do not want to locate all unordered path includ-
ing trees; instead, we limit ourselves again to root preserving embeddings.

Problem 3 (Unordered path inclusion, UPI)
Given a pattern tree P and a target tree T', locate the subtrees U of T' such
that there is a root preserving path embedding of P in U. O

It is again immediate from the definitions that if P is an unordered path-
included tree of T', then P is also an unordered included tree of T

3.4 Ordered path inclusion

An ordered embedding f of a tree P = (V,E, root(P)) in a tree T =
(W, F, root(T)) is an ordered path embedding if it preserves the parent rela-
tion. Tree P is an ordered path-included tree of tree T, if there is an ordered
path embedding of P in T'. Figure 3.4 shows an example of ordered path
inclusion.

O

Figure 3.4: Tree P is an ordered path-included tree of tree T'.

Intuitively, an ordered path-included tree P of T' consists of paths in T'
having a common start node, and the left-to-right order of the nodes are the

16

same in P and in T'. Operationally, the ordered path-included trees of T' can
be obtained from the subtrees of T' by cutting.

Example 3.4 The tree a(b, c(a has 16 ordered path-included trees. They

);d)
are a, b, ¢, d, a(b), a(c), a(d), cla), alb,c), a(b,d), alc,d), alc(a)), a(b,c,d),
a(b,(a)), ale(a).). and (b, c(a),). =
As a search problem, we do not want to locate all ordered path including
trees; instead, we restrict ourselves again to root preserving embeddings.

Problem 4 (Ordered path inclusion, OPI)
Given a pattern tree P and a target tree T', locate the subtrees U of T' such
that there is an ordered root preserving path embedding of P in U. O

It is again immediate from the definitions that if P is an ordered path-
included tree of T', then P is also an unordered path-included tree of T

3.5 Unordered region inclusion

Let P = (V. E,root(P)) and T = (W, F,root(T)) be trees, and let f be a
path embedding of P in T'. Denote by f(V') the range of f. Embedding f is
a region embedding of P in T, if whenever u,v € f(V'), and v is a right sibling
of u, all nodes of T' that are right siblings of u and left siblings of v belong to
f(V). Pattern tree P is an unordered region-included tree of target tree T', if
there is a region embedding of P in T'. For an example see Figure 3.5.
Intuitively, an unordered region-included tree of T' is an integral region of
T where the left-to-right order inside the region is irrelevant. Operationally,
the unordered region-included trees of T' can be obtained from the subtrees
of T' by first repeatedly cutting at some leftmost and rightmost children, and
then permuting the remaining siblings.
Example 3.5 The tree a(b, ¢(a
They are a, b, ¢, d, a(b), a(c
af

,d) has 29 unordered region-included trees.

), d
), a(d), c(a), a(b,c), a(e,b), ale,d), a(d,c),
b,d

a(e(a)). a(b.c.d). a(b.d.c), a(c.b.d), a(c.d.b), a(d,b.c), a(d,c.b), a(b.c(a)).
a(e(a), b), ((a),d). a(d,c(a)). a(b.c(a),d), a(b.d,c(a)). alc(a),b,d)
a(e(a),d,b), a(d, b, c(a)), and a(d,e(a),b). 0

In the search problem, we restrict ourselves again to root preserving em-

beddings.

17

Figure 3.5: Tree P is an unordered region-included tree of tree T'.

Problem 5 (Unordered region inclusion, URI)
Given a pattern tree P and a target tree T', locate the subtrees U of T' such
that there is a root preserving region embedding of P in U. O

It is obvious from the definition that an unordered region-included tree
of T'is also an unordered path-included tree of T

3.6 Ordered region inclusion

Pattern tree P is an ordered region-included tree of target tree T, if there is
an ordered region embedding of P in T, i.e., an embedding that preserves the
parent relation and the order and adjacency of siblings. For an example of
ordered region inclusion see Figure 3.6.

Intuitively, an ordered region-included tree of 7' is an integral region of
T'. Operationally, the ordered region-included trees of T can be obtained
from the subtrees of T by cutting repeatedly at some leftmost and rightmost
children.

Example 3.6 The tree a(b,c(a),d) has 15 ordered region-included trees.
They are o, b, e, d, a(b), a(e), a(d), e(a), a(b.c), a(cd), a{c(a)), a(b,c,d)
b, c(a)), a(c(a),d), and a(b, c(a), d) e

We restrict the search problem again to root preserving embeddings.

18

Figure 3.6: Tree P is an ordered region-included tree of tree T

Problem 6 (Ordered region inclusion, ORI)
Given a pattern tree P and a target tree T', locate the subtrees U of T' such
that there is a root preserving ordered region embedding of P in U. O

It is evident that an ordered region-included tree of T' is also an unordered
region-included tree of T'.

3.7 Unordered child inclusion

Let P and T be trees. A path embedding f of P in T is a child embedding, if
it preserves the number of children of the internal nodes. That is, whenever
a node u of P has k children, k& > 0, then f(u) has also k children. Tree
P is an unordered child-included tree of T, if there is a root preserving child
embedding of P in T'. Tree P is an unordered child-included subtree of T', if P
is an unordered child-included tree of a subtree of T', or equivalently, if there
is a child embedding of P in T'. See Figure 3.7 for an example of unordered
child-included subtree.

Operationally, the unordered child-included subtrees of T' can be obtained
from the subtrees of T' by pruning at some nodes, and permuting siblings.

Example 3.7 The tree a(b,c(a),d) has 17 unordered child-included sub-
trees. They are a, b, ¢, d, c(a), a(b,c,d), a(b,d,c), a(c,b,d), a(c,d,b),

19

Figure 3.7: Tree P is an unordered child-included subtree of tree T

a(d,b,c), a(d,e,b), a(bcla),d), a(b,d,c(a)), al(cla),b,d), a(c(a),d,b),
a(d,b,c(a)), and a(d, c(a),b). O

Problem 7 (Unordered child inclusion, UCI)
Given a pattern tree P and a target tree T', locate the subtrees U of T' such
that P is an unordered child-included tree of U. O

Obviously every child embedding is a region embedding and therefore
every unordered child-included subtree of T' is also an unordered region-
included tree of T

3.8 Ordered child inclusion

A tree P is an ordered child-included tree of a tree T if there is an ordered
root preserving child embedding of P in T, and P is an ordered child-included
subtree of T" if there is an ordered child embedding of P in T. If f is an
ordered child embedding of P in T and w is an internal node of P with k
children, then f(u) has also k children, and f(child(u,?)) = child(f(u),?) for
alle=1,..., k. For an example see Figure 3.8.

An ordered child-included tree of T' can be considered to be a simpli-
fied representation of the concept represented by T', where the subconcepts
represented by the descendants of pruned nodes have been abstracted away.

20

Figure 3.8: Tree P is an ordered child-included subtree of tree T

Operationally, the ordered child-included subtrees of T' can be obtained from
the subtrees of T by pruning.

Example 3.8 The tree a(b,c(a),d) has 7 ordered child-included subtrees.
They are a, b, ¢, d, ¢(a), a(b,¢,d), and a(b, c(a),d). O

Problem 8 (Ordered child inclusion, OCI)
Given a pattern tree P and a target tree T', locate the subtrees U of T' such
that P is an ordered child-included tree of U. O

Obviously every ordered child-included tree of T' is also an unordered
child-included tree of T'.

The ordered child-included subtree problem is usually called the tree pat-
tern matching problem. Tree pattern matching has many applications, espe-
cially in the implementation of rewriting systems. For this reason, it is the
most extensively studied of the inclusion problems presented here. (See for

example [HO82].)
3.9 Unordered subtree problem
A tree P is an unordered subtree of a tree T, if P is isomorphic to a subtree

of T'. Operationally, the unordered subtrees of a tree T are obtained from
the subtrees of T' by permuting siblings. For an example see Figure 3.9.

21

P 6 T

Figure 3.9: Tree P is an unordered subtree of tree T'.

Example 3.9 The tree a(b, ¢(a),d) has 10 unordered subtrees. They are a,
b, d, c(a), a(b,c(a),d), a(b,d,c(a)), a(c(a),b,d), a(c(a),d, b), a(d, b, c(a)), and
a(d,e(a),b). O

Problem 9 (Unordered subtree problem, UST)
Given a pattern tree P and a target tree T', locate the subtrees U of T' that
are isomorphic to P. a

An isomorphism between P and a subtree of T is a child embedding of P
in T', and so every unordered subtree of T is also an unordered child-included
tree of T'. We say that an isomorphism between P and a subtree of T is a
subtree embedding of P in T just to streamline the terminology.

The unordered subtree problem is sometimes erroneously mixed with the
unordered path inclusion problem, as was noted in [Dub90].

3.10 Ordered subtree problem

Let f be an isomorphism between two trees P and U. If f preserves the
left-to-right order of the nodes of P we say that f is an ordered isomorphism
of P in U. If there is an ordered isomorphism between two trees we say that
the trees are identical. In order to streamline the terminology we call an
ordered isomorphism between P and a subtree of T' also an ordered subtree

embedding of P in T.

22

The ordered subtree problem is the most restricted one of the tree inclusion
problems: we search for subtrees of the target that are identical with the
pattern. Figure 3.10 shows an instance of the ordered subtree problem.

P 6 T

Figure 3.10: Tree T' contains a subtree that is identical to tree P.

A tree with n nodes has n ordered subtrees; however some of these may
be identical to each other.

Example 3.10 The tree a(b, ¢(a),d) has 5 ordered subtrees. They are a, b,
d, c(a), and a(b, c(a),d). O

Problem 10 (Ordered subtree problem, OST)

Given a pattern tree P and a target tree T', locate the subtrees U of T' that
are identical to P. O

It is trivial that ordered subtrees of 1" are also unordered subtrees of 7.

3.11 Relating various inclusion problems

After introducing the problems, let us restate the inclusions of the instance
relations that were notified in the previous sections. First, the unordered
problems form a chain, in which each problem is a special case of the previous
one:

23

Theorem 3.11 Let T be a tree. Then the following inclusions between the
sets of unordered included trees of T" hold:

1. The set of unordered subtrees of T is a subset of the set of unordered

child-included subtrees of 7.

2. The set of unordered child-included subtrees of T is a subset of the set
of unordered region-included trees of T

3. The set of unordered region-included trees of T' is a subset of the set
of unordered path-included trees of T

4. The set of unordered path-included trees of T' is a subset of the set of
unordered included trees of T

The corresponding result holds for the ordered problems.

Theorem 3.12 Let T be a tree. Then the following inclusions between the
sets of ordered included trees of T" hold:

1. The set of ordered subtrees of 1" is a subset of the set of ordered child-
included subtrees of 7.

2. The set of ordered child-included subtrees of T is a subset of the set of
ordered region-included trees of T'.

3. The set of ordered region-included trees of T' is a subset of the set of
ordered path-included trees of T

4. The set of ordered path-included trees of 1" is a subset of the set of
ordered included trees of T

a

Finally, each ordered problem is a special case of the corresponding un-
ordered problem:

Theorem 3.13 Let T be a tree. Then the following inclusions between the
sets of ordered and unordered included trees of 1" hold:

1. The set of ordered subtrees of 71" is a subset of the set of unordered
subtrees of 7.

24

. The set of ordered child-included subtrees of 71" is a subset of the set of
unordered child-included trees of 7.

. The set of ordered region-included trees of T' is a subset of the set of
unordered region-included trees of T'.

. The set of ordered path-included trees of T' is a subset of the set of
unordered path-included trees of T'.

. The set of ordered included trees of T' is a subset of the set of unordered
included trees of 7.

25

Chapter 4

Solving tree inclusion problems

In this chapter we study algorithms for the tree inclusion problems presented
in the previous chapter.

Section 4.1 presents a general algorithm schema that can be modified to
solve many of the specialized inclusion problems, and some mathematical
results that help analyzing variations of the schema. The time complexities
of the algorithms are expressed in terms of m and n, where m is the number
of nodes in the pattern, and n the number of nodes in the target. Section 4.3
presents algorithms for solving the unordered tree inclusion problem. The
time required by the algorithms is superpolynomial in m; this seems almost
inevitable, since in Section 4.2 we show that the unordered tree inclusion
problem is NP-complete.

Section 4.4 considers solving a group of unordered inclusion problems
whose solving and complexity are closely related to computing matchings in
bipartite graphs. Those problems are unordered path inclusion, unordered
region inclusion, and unordered child inclusion. The corresponding ordered
problems, together with ordered tree inclusion, form a group with a com-
mon O(mn) upper bound complexity and a conjectured non-linear worst-
case lower bound complexity.! Solving ordered tree inclusion efficiently is
based on left embeddings, which are introduced in Section 4.5. Section 4.6
then presents an algorithm for ordered tree inclusion based on left embed-
dings. Another algorithm for ordered tree inclusion that requires in practical

We are mainly concerned with the worst case running time complexities. The following
notation is used for asymptotics: If f and ¢ are functions on nonnegative variables m, n, . ..
we write f = O(g) if there is a constant ¢ such that f(m,n,...) < cg(m,n,...) for all
sufficiently large values of m,n,.... We write f = Q(g) if ¢ = O(f), and f = O(g) if

F=0(g) and f=Q(g). If imy—con—oo,... 5 =0, we may write f = o(g).

26

situations substantially less space is then presented in Section 4.7. Solving
ordered path inclusion problems is discussed in Section 4.8. We show there
that ordered path inclusion and ordered region inclusion are not easier prob-
lems than string matching with don’t care symbols, for which no linear time
algorithm is known.

The ordered child inclusion problem, i.e., the widely studied classical tree
pattern matching differs from the other O(mn) problems, since it has recently
been shown to be solvable in o(mn) time. Methods for solving classical tree
pattern matching are discussed in Section 4.9. Finally, the easiest group
of problems solvable in linear time consists of the subtree problems. This
is shown in Section 4.10 as an application of a general condition for tree
matching problems to be solvable in linear time.

Section 4.11 summarizes what is known of the computational complexities
of the tree inclusion problems.

4.1 A general solution scheme

Solving tree inclusion problems leads us to considering embeddings and in-
clusions between forests. The definitions for embeddings between forests are
similar to the corresponding definitions of embeddings between trees. Let
F={(P,...,P)and G = (Ty,...,T)) be forests. An embedding f of F'in (¢
is root preserving if f(root(P;)) € {root(11),...,root(1})} foralli =1,... k.
We say that

1. Fis an included forest of GG if there is an embedding of F' in G.

2. F'is an ordered included forest of GG if there is an ordered embedding
of F'in G.

3. Fis a path-included forest of GG if there is a path embedding of F'in G.

4. F'is an ordered path-included forest of (G if there is an ordered path
embedding of I in (.

5. F'is a region-included forest of GG if there is a region embedding of I
in G.

6. F'is an ordered region-included forest of GG if there is an ordered region

embedding of I in (.

27

Each of the above relations between F' and G is denoted by F' C G; the
meaning of the notation should always be clear from the context.
The following lemma is easy to prove from the definitions of embeddings.

Lemma 4.1 For each of the unordered interpretations above, the relation C
is a partial ordering, i.e., it is reflexive, transitive, and antisymmetric up to
isomorphism. That is, for all forests F', G and H,

1. FC F,
2. f FEG and GC H, then FC H, and
3. f FC G and G C F, then F' and G are isomorphic.

For each of the ordered interpretations, the relation is a partial ordering up
to identity. (As above, but F' C G and ¢ C F imply that F and G are
identical.) O

The equality of root labels is a necessary condition for the existence of
any root preserving embedding between trees. The following lemma contains
the basic idea of the algorithms that search for root preserving embeddings
of a pattern in the subtrees of the target.

Lemma 4.2 Let P and T be trees with label(root(P)) = label(root(T)), and
let the immediate subtrees of P be Py,..., P, and the immediate subtrees of

T be Ty,.... T

1. There is a root preserving embedding of P in T if and only if the forest
(P1,..., Py is an included forest of (T4,...,T)).

2. There is a root preserving ordered embedding of P in T if and only if
(P1,..., P is an ordered included forest of (11,...,T;).

3. There is a root preserving path embedding of P in T'if and only if there
is a root preserving path embedding of (Py,..., Py) in (Ty,...,T}).

4. There is a root preserving ordered path embedding of P in T if and only
if there is a root preserving ordered path embedding of (Py,..., Py) in
(Ty, ...,).

5. There is a root preserving region embedding of P in T"if and only if
there is a root preserving region embedding of (Py, ..., P)in (T4,...,T}).

28

6. There is a root preserving ordered region embedding of P in T if
and only if there is a root preserving ordered region embedding of

<P1,...,Pk>iH<T1,...,T[>. 0

The algorithms for solving various tree inclusion problems can be pre-
sented as variations of a single dynamic programming scheme. The scheme
is parameterized by a match predicate 1 that expresses the required relation
between the occurrences of the immediate subtrees of the pattern.

The generic algorithm refers to the nodes by their postorder numbers.
The algorithm consists of two loops that process the nodes of the target and
the nodes of the pattern in ascending postorder. This means that when two
nodes v and w are compared, the proper subtrees of P[v] and T[w]| have
already been tested against each other. The algorithm scheme uses an array
M, where for each target node w the entry M (w) will contain the set of the
pattern nodes that match at w.

Algorithm 4.3 General tree matching scheme.
Input: Pattern tree P = (V, F, root(P)) and target tree T' = (W, F, root(T)).

Output: The nodes of W that are occurrences of P.

Method:

for w:=1,...,n do

comment: Process the target nodes in postorder;
M(w) :=0;
for allv:=1,...,m do

comment: Process the pattern nodes in postorder;
if label(v) = label(w) then
Let vq1,..., v, be the children of v;
if there are nodes wy, ..., w; € desc(w)
such that v; € M(w;) for e =1,...,k
and ¥ (w,ws,...,wy) holds then
M(w):= M(w) U{v};

fi;

ﬁ.

?

od;

if root(P) € M(w) then

comment: an occurrence found;

29

output w;

od:

Algorithm 4.3 can easily be modified to output only the roots of the
subtrees that include the pattern minimally. This is achieved by marking
the ancestors of each occurrence in the target, and by considering only non-
marked target nodes in the outer loop of the algorithm.

The time analysis of the variations of the above schema often leads to

> 2 gl (el

weW veV

expressions of the form

where |w] (Jv]) denotes the number of children of node w (of node v), and f
and ¢ are convex functions. In order to facilitate simplifying these expres-
sions, we present the following lemmas.

A function f defined on a closed real interval [a,b] is convex if for all
z,y € [a,b] and all « €]0,1]

fz) <af(@)+ (1 =-a)fly), (4.1)

when z = ax + (1 — a)y. The geometric interpretation of (4.1) is simple:
When = < y, the graph of f in [z,y] stays below the line segment from

(z, f(x)) to (v, f(y)).

Lemma 4.4 Let f be a convex function that is defined on a real interval
I = [0,b], such that f(0) = 0. Let ay,...,a, be numbers in interval I such
that > a; € I. Then

IRICOESIOIRDE (4.2)

1<i<n 1<i<n

Proof. Let u, v, and u + v be numbers in]0,b]. By assigning in (4.1) 0
for @, u + v for y, u for z, and v/(u + v) for o we get

flu) < flu+v). (4.3)

u—+v
Similarly, by substituting v for z and u/(u + v) for a, we get

flv) <

u+vf(u+v)) (4.4)

30

From (4.3) and (4.4) we get

flu) + f(v) < flu+v).

From this, (4.2) is obtained by induction. O

The following lemma gives a useful test for recognizing many convex func-
tions. For a proof see any book on calculus.

Lemma 4.5 Assume that f is a real-valued function that is defined on a
closed interval [a, b], and that is differentiable on]a, b[. If the first derivative
of fisincreasing on |a, b[, then f is convex on [a, b]. In particular, f is convex
if its second derivative exists and is nonnegative in |a, b[. O

4.2 Unordered tree inclusion is NP-complete

The existence of an efficient general algorithm for unordered tree inclusion is
highly improbable, since the problem appears to be NP-complete.

Tree inclusion problems are special cases of the minor containment prob-
lem for graphs [RS86, Joh87]. In that problem, given two graphs G = (V| F)
and H = (U, F'), one has to decide whether ¢ contains H as a minor, i.e., is
there a subgraph of G that can be converted to H by a sequence of contrac-
tions. In a contraction, two adjacent vertices and an edge between them are
replaced by a single new vertex. All other edges previously incident on either
contracted vertex become incident to the new vertex. For trees, a contraction
is equivalent to the deletion of a node.

Minor containment is known to be NP-complete even for unrooted trees,
when both H and G are given as inputs. (For every fized planar graph H,
and therefore for every fixed tree and forest H, there is a polynomial time
algorithm for testing whether H is a minor of a given graph ' [RS86, Joh87].)
This implies that minor containment is NP-complete also for rooted trees, or
in our framework that unordered tree inclusion is NP-complete. The proofs
of these results have not been published; we prove the NP-completeness of
unordered tree inclusion by a reduction from the basic NP-complete problem

satisfiability [CooT1, GJ79].
Problem 11 (Satisfiability)

Given a finite collection of clauses C' over a finite set of Boolean variables U,
decide whether or not there is a satisfying truth assignment for C'. O

31

For proving the NP-completeness of unordered tree inclusion we use the
following lemma stating that a slight restriction of satisfiability is still NP-
complete.

Lemma 4.6 Let U = {uy,...,u,} be a set of Boolean variables and C' =
{e1,...,¢n} be a collection of clauses over U. Now C' can be transformed in
polynomial time into a collection of clauses C’ = {¢},...,¢ ,} such that

1. C' is satisfiable if and only if (" is satisfiable, and

2. no negated variable occurs in two clauses of C".

Proof. Let D = {{u,y.},{t, 9.} | v € U}, where y, is a new variable
for each u € U. Clauses {u,y,} and {u,y,} express exclusive-or of u and y,,
i.e., a truth assignment satisfies them if and only if it assigns opposite values
to u and y,. Let E be the set of clauses obtained from C' by replacing each
negated occurrence u of a variable by y,, and let ¢ = DU E. Now (" is
satisfiable if and only if C' is satisfiable. The transformation can obviously
be done in polynomial time. a

Theorem 4.7 [KM91a] Unordered tree inclusion is an NP-complete prob-
lem.

Proof. It is easy to see that all the tree inclusion problems presented in
Chapter 3 are in NP: an algorithm can guess a mapping from the pattern
nodes to the target nodes and check in polynomial time that it is indeed an
embedding.

The completeness for NP is shown by a reduction from satisfiability.
Let an instance of satisfiability be given by a collection of variables U =
{u1,...,u,} and a collection of clauses C' = {¢1,..., ¢y} over U. Lemma 4.6
allows us to assume that no negated variable appears in two clauses of C.

Form a pattern tree P and a target tree T' as follows. Let P = (Vp, Ep,0)
be the tree given by nodes Vp = {0,...,m} and by parent-child edges

Ep ={(0,z) |2z e Vp,x #0} .

Let label(x) = x for all @ € Vp. The intuition is that the nodes of tree P,
excluding the root, represent clauses of ' and each of them is labeled by the
index of the corresponding clause. Let T'= (Vr, E7,(0,0)) be the tree whose
nodes consist of pairs

{(u,j) [u€c; €CHU

Vr = {(070)}U
u?j
{(u,j) |u€ec;eC},

32

and whose parent-child edges are

Er = {((0,0),(u,j)) |u€c; e CLU
{((0,0), (w.) |u€ ;e Ca g | JOIU
{((u,7),(u, k) Ju€ec;eCuceeC}.

Y

The assumption of unique occurrences of negative literals implies that T
is indeed a tree, i.e., each node except the root has a unique parent. Let
label((x,y)) = y for all nodes (x,y) € Vy. So, tree T has one node corre-
sponding to each literal occurrence in some clause of €', plus an additional
root node (0,0). The nodes corresponding to literal occurrences in clause
¢; are labeled by j. A node v = (u, j) corresponding to the negated occur-
rence of a variable u is the parent of the nodes corresponding to the positive
occurrences of u, and the root is the parent of v. The nodes corresponding
to the positive occurrences of a variable that does not occur negated in C'
are children of the root of T'. An example of the construction is shown in
Figure 4.1.

/

Figure 4.1: Trees for clauses ¢; = {z,y}, ¢ = {z,y}, and ¢35 = {y,z}. The
embedding shown by arrows corresponds to satisfying truth assignments that

(0,0

_ , 3
(v, 2) (z.3)

set x to false and y to true.

Trees P and T' can clearly be formed in polynomial time.

Now we claim that there is a satisfying truth assignment for €' if and only
if P is an unordered included tree of T'. First assume that ¢ is a satisfying
truth assignment for . Define a mapping & from the nodes of P onto the

33

nodes of T' as follows: For the root of P set h(0) = (0,0) and for other nodes
g of Pset h(j) = (I,7), where (I,7) € Vr is some node such that literal [is
true under truth assignment ¢; such a node can be selected because t satisfies
at least one literal of every clause ¢; € C'. Now h is an unordered embedding
since it is obviously injective and label preserving, and it cannot map two
sibling nodes of P to an ancestor and its descendant in T'. Otherwise, by
the construction of T', truth assignment ¢ would satisfy both a positive and
a negative occurrence of the same variable, which is impossible.

Next assume that h is an unordered embedding of P into T'. Set t(x) =
false if the range of h contains a node (z,j) corresponding to a negative
occurrence of variable x, and t(x) = true if the range of h contains a node
(x,j) corresponding to a positive occurrence of variable x. It is easy to see
that ¢ is a well defined truth assignment for a subset of variables in C' and
that ¢ satisfies at least one literal in each clause of C. O

One should not be too disappointed by the above negative result. The
next section shows that the apparently unavoidable exponentiality comes
from the size of the pattern only; if m, the size of the pattern, is o(loglogn)
the problem is solvable in time O(n).

4.3 An algorithm for unordered tree inclu-
sion

In this section we present an algorithm for solving the unordered tree in-
clusion problem. The algorithm manipulates match systems consisting of
subsets of pattern nodes. In the worst case the size of a match system is
exponential in m, i.e., the size of the pattern. The previous section showed
that it is unlikely that we can do essentially any better. On the other hand,
the exponentiality in m does not cause problems if m is small. We show how
to build tables from the pattern in a preprocessing phase. Using these tables
the matching can be performed in time that is linear in the size of the target.

The match system S(w) for a target node w consists of all the subsets
{v1,...,vx} of pattern nodes such that (P[vy],..., P[vg]) is an included forest
of Tw]. The following algorithm computes the match systems for each target
node while going through the target in a bottom-up order. Note that if w’
is an ancestor of a target node w, then T'[w'] includes T'[w] and therefore
S(w) € S(w'). Also, for a pattern node v we have that {v} € S(w) only if
children(v) € S(w).

34

Algorithm 4.8 Unordered tree inclusion algorithm.
Input: Trees P = (V, E,root(P)) and T = (W, F, root(T)).

Output: The nodes w of T such that there is a root preserving embedding

of P in T w].
Method:
1. for w:=1,...,n do
2. comment: Go through the target nodes in postorder;
3. S={0};
4. Let wy,...,w;, [> 0, be the children of w;
3. for::=1,...,1do
6. S:={AUB| A€ S, BeS(w)};
7. od;
8. SA =0
9. for all v € V such that label(v) = label(w) do
10. if children(v) € S then
11. SA:=SAU{{v}};
12. fi;
13. od;
14. if {root(P)} € SA then
15. comment: A match found;
16. output w;
17. fi;
18. S(w) = S USA;
19. od;

Algorithm 4.8 computes the match system S(w) for a target node w as
follows. Let wq,...,w; be the children of w. First the loop on lines 5-7
computes from the match systems of the children of w a set S. The invariant
for the loop is central to the correctness of the algorithm. It says that for

i =0,...,lthe set S consists of the subsets {vy, ..., v} of such pattern nodes
that (P[vy],..., P[vg]) is an included forest of the forest (T'[wy],..., T wi]).
For ¢« = 0 this is clearly true since then S = {{}. Next assume induc-

tively that the invariant holds for i — 1 when 0 < ¢ < [, and that S(w;) is
the correct match system for w;. Now it is rather easy to see that a for-
est (P[v1],..., P[vg]) has an embedding in (T[w.],...,T[w;]) if and only if
{v1,...,v5} = AU B for some A € S and B € S(w;).

35

Next the algorithm computes in a set SA the singleton sets {v} of the
pattern nodes v for which there is a root preserving embedding of P[v] in
T'[w]; these are exactly those nodes v whose label matches the label of w and
whose set of children belongs to S. (Cf. Lemma 4.2.) After this process,
S U SA is the the match system of w.

Like Algorithm 4.3, also Algorithm 4.8 can easily be modified to report
the roots of only those subtrees that include the pattern minimally.

We can restrict S to consist of sets of siblings, since they only affect the
insertion of new pattern nodes to the match systems. (See line 10 of the
algorithm.) FEach match system S is monotone decreasing, i.e., if A € S,
then B € S for each B C A. Thus we can represent the match systems by
maintaining their maximal elements only. Such a representation is a Sperner
system, i.e., a system where no set includes another one. We will see in a
moment that also the size of a Sperner system on a set of m elements can be
exponential in m.

Note that the size of the systems in .S depends on P only. If P is fixed,
executing line 6 and the loop on lines 9-13 takes constant time. The algo-
rithm examines every target node at most twice; once as w and at most once
as a child of w. Therefore we have the following result.

Theorem 4.9 For a fixed pattern P, an instance (P,T) of the unordered
tree inclusion problem can be solved in time O(|T). O

By using preprocessing of the pattern Algorithm 4.8 can be modified to
operate in linear time with respect to the size of the target. The preprocessing
is based on enumerating the possible values of variable S, and it resembles the
preprocessing of the bottom-up tree pattern matching algorithm in [HO82].

Let P = (V, E,root(P)) be the given pattern, and let L be the set of
labels. (The labels in P together with a symbol for all other labels is a
sufficient representation for L.) In addition to the restrictions above, each
match system S is descendant-closed. By this we mean that if u € A for
some A € S, then children(u) € S. Denote by § = S(P) the collection of
the descendant-closed Sperner systems on V' such that each set in a system
consists of sibling nodes only. We can use an enumeration of & for represent-
ing in arrays two functions u : S x§ — S and r : § x L — §. The value of
u(S1,52) is the representation of the element-wise union of S; and S5, that
is, the set of the maximal elements in the system

{AUB| A€ S;,Be Sy, AU B is a set of siblings in P} .

36

Having this function in an array, executing Line 6 in Algorithm 4.8 takes
constant time. The loop on lines 9-13 and line 18 can be replaced by a single
assignment if we precompute the function r : & x L — S, where

r(S.0) = SU{{v} |v eV, label(v) = I, children(v) € S, v & |]S} .

As an example, consider the following pattern P.

Now the systems of S(P) can be enumerated as follows.

{0}

{{1}}

{21}
{{1}:{2}}

{2} 431}

{1}, {2}, {3}
{{2},{1,3}}
{2}, {4}, {1, 3}}

Note that for example the system {{1},{3}} is excluded, because it is not
descendant-closed; node 2, the child of node 3, is missing. System number 8
stands for an occurrence of P, since it contains 4, the root of P.

The element-wise union of the match systems can be performed using the
following table u. Only the upper right corner of the table is filled, since
the table is symmetric. For example, combining element-wise the systems
5 and 6, i.e., the systems {{2},{3}} and {{1},{2},{3}} gives the system
{{2},{1,3}}, because nodes 1 and 3 are the only siblings in P. The number

of the result system is 7.

37

u 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
2 2 4 4 7 7T 7 8
3 3 4 5 6 7 8
4 4 7 7T T 8
3 5 7 7 8
6 7T 7 8
7 7 8
8 8

The table r is in this case as follows (with & standing for labels not appearing
in the pattern):

rla b ¢ =
113 2 1 1
214 2 2 2
313 4 5 3
414 4 6 4
55 6 5 b5
66 6 6 6
T8 7T T 7
818 8 8 8

For example, r(7,a) = 8, because label(4) = a, children(4) = {1,3} €
{{2},{1,3}}, which is the system number 7, and {{2},{4},{1,3}} is the
system number 8.

The size of table u is |S(P)|* and the size of table r is O(m|S(P)]).
These bounds suggest that the preprocessing is reasonable only when the
size of S(P) is not too large. The collection S(P) depends strongly on the
form of the pattern P. If P consists of m nodes that form a path from the
root to a single leaf, S(P) consists of m + 1 systems, which are {0}, {{1}},

., and {{1},...,{m}}. At the other extreme, the size of S(P) can be
doubly exponential in m. Consider a pattern P consisting of a root node
and m — 1 leaves. Let A be the system consisting of the sets of |(m — 1)/2]
leaves of P. Obviously |A| = <L(mm—_1;/2j>’ and every subset of A belongs to
S(P). Therefore

S(P)| > 2l

Next we present an upper bound for the size of the collection S(P). The
following results give an upper bound for the number of Sperner systems on
m nodes.

38

Proposition 4.10 [Spe28, Bol86] The size of a Sperner system on an m-
element set is at most <Lm772J>' 0

Proposition 4.11 [BDK*91] The number of set systems .A on an m-element

set, satisfying
Al < c(mn) 4.5

2%(LmW;QJ) logm(1+0(1)) .

is at most

a

The second proposition tells that there is an upper bound of the form 2/(™)
for the number of set systems A on an m-element set satisfying (4.5), where
f(m) is arbitrarily close to %(Uﬁzj) logm when m is large enough. Putting
these results together gives the following upper bound for the number of
Sperner systems on an m-element set, denoted by a(m):

a(m) < 95 (|myjay) losm(14o(1))

Because the systems in S(P) are Sperner systems, this is also an upper bound
for the size of S(P). As discussed above, a pattern consisting of a root node
and m — 1 leaves brings S(P) fairly close to this bound.

4.4 Solving unordered path inclusion prob-
lems

This section considers solving the problems of unordered path inclusion, un-
ordered region inclusion and unordered child inclusion. These problems are
easier than unordered tree inclusion. The reason is that for path inclusion it
is sufficient to test the immediate subtrees of the pattern against the trees
rooted by the children of a target node w when testing if the pattern occurs
at w. With tree inclusion we have to examine descendants of w, which leads
to more combinations to embed the immediate subtrees of the pattern and
to more complicated dependencies between the occurrences of pattern sub-
trees. In Section 4.2 we saw that these dependencies allow representing the
satisfiability problem of Boolean formulas as a tree inclusion problem.

39

The problems are again solved using the scheme of Algorithm 4.3 that
stores in an array the information of the matches between all pairs of pattern-
target nodes. Solving the match predicate that expresses the required relation
between the occurrences of the immediate subtrees of the pattern includes
in these problems computing a maximum matching in a bipartite graph.

A matching in a graph G is a set of edges of (4, no two of which share
a vertex. A node is matched if it is incident to an edge in the matching. A
mazimum matching is a matching with the maximum number of edges. A
directed graph G' = (V, E) is bipartite, if its vertices can be partitioned in
two disjoint sets X and Y such that £ C X x Y.

Problem 12 (Bipartite matching)
Given a bipartite graph &, find a maximum matching in G. O

Now we explain how bipartite matching relates to solving unordered
path inclusion problems. Let P be a pattern tree with immediate subtrees
Py, ..., P, rooted by the nodes vy,...,vx, and let T' be a target tree with im-
mediate subtrees T4, ...,T; rooted by the nodes wy,...,w;. By Lemma 4.2
there is a root preserving path embedding of P in T if and only if the root
labels of P and T' match and there is a root preserving path embedding of
forest (P1,..., Py) in forest (T1,...,T}). The latter condition can be solved
as a graph matching problem if the matches between the immediate subtrees
of P and T have been computed. Let G be the bipartite graph whose vertices
are vi,...,0g, Wi,...,w; with an edge from pattern node v; to target node
w; if and only if Plv;] has a root preserving path embedding in T[w;]. Then
there is a root preserving path embedding of forest (Py,..., P) in forest
(Ty,...,T)) if and only if G has a maximum matching of k edges.

Bipartite matching algorithms start with an empty matching of the graph
and extend it by searching augmenting paths. An augmenting path with
respect to a matching M in a bipartite graph ¢ = (X U Y, F) is a path p
from a node x to a node y, where neither x nor y is matched, the first and
the last edge in p are in £\ M, and the edges in p are alternatively in M
and in £\ M. The number of edges of an augmenting path p in £\ M is
one greater than the number of edges of p in M. Therefore replacing in a
matching M all the edges of an augmenting path p that are in M by the edges
of p that are in £\ M produces a new matching that has one more edge than
M. A bipartite matching algorithm stops when no more augmenting paths
can be found. The correctness of these algorithms is based on the following
proposition.

40

Proposition 4.12 A matching M in a graph G is maximum if and only if
there is no augmenting path with respect to M.

Proof. One direction follows from the above considerations. For the
other direction, see for example [PS82] or [vL.90]. O

Each augmenting path can be computed in time proportional to the size
of the graph, and each of them extends the matching by one edge. The basic
bipartite matching algorithm (see, e.g., [PS82]) finds one augmenting path
in one search step; therefore its time complexity is O(s|E|), where s is the
size of a maximum matching. The algorithm of Hopcroft and Karp finds in
one O(|FE|) search step a set of augmenting paths, and the number of these
search steps is O(y/s) [HK73]. This result is utilized in the next algorithm.

Lemma 4.13 The bipartite matching problem on a graph GG = (V| F) can
be solved in time O(y/s | E|), where s is the size of a maximum matching. O

The unordered path inclusion algorithms store their results in an m x n
Boolean array a; the value of a(v,w) is set to true if and only if P[v] has a
root preserving embedding (of appropriate type for the problem at hand) in
T[w].

The next algorithm for unordered path inclusion was sketched in [Mat68].
A more complete presentation and analysis of the algorithm can be found
in [Rey77] and [Chu87]. (See also [vL90].) Using bipartite matching as a

subroutine of this algorithm is mentioned also in [HK73].

Algorithm 4.14 [Mat68, Rey77] Unordered path inclusion algorithm.
Input: Trees P = (V, E,root(P)) and T = (W, F, root(T)).

Output: The nodes w of T' such that there is a root preserving path em-
bedding of P in T w].

Method:

1. for w:=1,...,n do

2. comment: Go through the target nodes bottom-up;

3. Let wy,...,w;, [> 0, be the children of w;

4. forv:=1,...,m do

3. comment: Go through the pattern nodes bottom-up;
6. a(v,w) := false;

41

7. Let vq,...,vr, k& > 0, be the children of v;
8. Let G = (X UY, F), where
X =A{v1,...,v}, Y ={wy,...,w}, and
E={(r,y) |z € X,y € Y,a(z,y) = true};

9. if label(v) = label(w) and

10. the size of a maximum matching of G is k£ then
11. a(v,w) := true;

12. fi;

13. od;

14. if a(root(P),w) = true then

15. comment: An occurrence found;

16. output w;

17. fi;

18. od;

?

Again, the algorithm can easily be modified to report only those sub-
trees of the target that include the pattern minimally. The correctness
of Algorithm 4.14 is based on Lemma 4.2 and on observing that forest
(P[v1], ..., Plvg]) has a root preserving embedding in forest (1w}, ..., T [w])
if and only if a maximum matching of graph G on line 8 has k edges.

The graph G does not have to be explicitly constructed on line 8 of the
algorithm. On line 10 we need to compute a maximum matching of size at
most |v| in a graph having at most |v| X |w]| edges. (Notation |u| stands for
the number of children of a node u.) This can be done by Lemma 4.13 in
time O(y/]v] |[v||w]). Therefore the total complexity of Algorithm 4.14 is

O (1 + > (+[pl*lw))) = Otn+nm+ > [of* > jw|) . (4.6)

weW veV veV weW

By Lemmas 4.4 and 4.5 expression (4.6) is O(m*?n). (Note that summing
the number of children of each node in a tree of n nodes gives the number of
edges in the tree, which is n — 1.)

The unordered child inclusion problem can be solved by a slight modifi-
cation of Algorithm 4.14; if v is an internal pattern node we need to require
on line 9 also that w has the same number of children as v. Therefore we
have the following result.

Theorem 4.15 The problems of unordered path inclusion and unordered
child inclusion can be solved in time O(m*?n). O

42

Chung has shown that the above complexity also applies to testing whether
a given tree is a subgraph of a given unrooted tree [Chu87].

Algorithm 4.14 can be modified to solve unordered region inclusion, too.
Let pattern node v have children vq,...,v;, and let target node w have
children wy, ..., w; where [> k. At the core of the algorithm we need to test
whether the subtrees of v match on k& adjacent children of w. This is a special
restriction to bipartite matching. The instances of the problem consist of a
graph with &+ [vertices and at most k£ x [edges, and the size of a maximum
matching is at most k.

The bipartite matching problem with the restriction that the image nodes
have to be adjacent siblings can be solved by considering [— k+ 1 subgraphs
that are obtained by restricting at a time to £ adjacent sibling nodes of
the target. The number of edges in each such subgraph is at most k?. By
repeating the algorithm of [HK73] (I — k 4 1) times we get total time (I —
k+ 1Ok k?) = O(k*51).

The basic bipartite matching algorithm can be applied incrementally for
this version of the problem. Consider the graph G = (X U Y, E) where
X consists of k£ children of a pattern node and Y consists of the children
{w1,...,w} of a target node, and F = {(a,y) | v € X,y € Y,a(z,y) =
true}. First we compute a maximum matching for graph G restricted to
nodes X U {wy,...,wr}. Matching this first subgraph requires at most &
augmenting steps using the basic bipartite matching algorithm. As soon as
we find a matching of £ edges we are done.

Assume then that we have computed a maximum matching M of size
p for a subgraph that contains the target nodes w;,... w;1r_1. Next we
consider the subgraph with target nodes w; 1, ..., w;1r. Atleast p—1 edges of
matching M belong to the new subgraph, and they are taken as the matching
to be extended by the basic algorithm. At most two augmenting steps can be
performed for this matching because matching M was maximum. Therefore,
for each of the [target nodes at most two augmenting paths are computed
in a subgraph of size k. Thus the total time for the bipartite matching is
O(k*1).

Applying this version of bipartite matching we get that the dominating
term in the time complexity of the algorithm for unordered region inclusion

DD Pl = ol Y fel (4.7)

veV weWw veV weW

Like above, we get from (4.7) the upper bound time complexity for unordered

43

region inclusion.

Theorem 4.16 Unordered region inclusion can be solved in time O(m?*n).
O

4.5 Left ordered embeddings

In this section we present the concept of left embeddings that helps us to
solve ordered tree inclusion problems efficiently. There may be exponentially
many ordered embeddings of a tree P in a tree T'. To avoid searching among
these embeddings, we develop an algorithm that tries to match P at the root
of T' by embedding the subtrees of P as deep and as left as possible in T
In order to discuss the order of images of sibling nodes in an embedding
we define the right and left relatives of a node. Let F' be a forest, NV the set
of its nodes, and v a node in F'. The set of right relatives of u is defined by

rr(u) = {x € N | pre(u) < pre(xz) A post(u) < post(x)} ,
i.e., the right relatives of u are those nodes that follow w in both preorder and
postorder. Correspondingly, the set of left relatives of a node u, denoted by

Ir(u), consists of the nodes that precede u both in preorder and in postorder.

(See Figure 4.2.)

Ir(u)

Figure 4.2: The left and right relatives of node wu.

44

Lemma 4.17 Let u, v and = be three nodes in a forest. Then it is not
possible that both

pre(u) < pre(v) < pre(z) and
post(x) < post(u) < post(v)

hold.

Proof. The above conditions imply by Lemma 2.1 that v and v are
ancestors of x, and neither of them is an ancestor of the other, which is
impossible. a

The next simple lemma states that the descendants of a right relative are
also right relatives.

Lemma 4.18 Let v and v be nodes, and assume v € rr(u). Then desc(v) C
rr(u).

Proof. Let a node = be a descendant of v, which is by Lemma 2.1
equivalent to pre(v) < pre(x) and post(x) < post(v). Node u precedes v in
both orders which implies especially that pre(u) < pre(x). Now Lemma 4.17
implies also that post(u) < post(x). O

The next lemma states that the right relatives of a node v are contained in
the right relatives of the nodes that precede v in postorder. This fact is the
justification for the strategy of embedding the trees as early as possible in
postorder, when searching for an embedding of a forest.

Lemma 4.19 Let v and v be nodes in a forest. If post(u) < post(v), then
rr(v) C rr(u).
Proof. If post(u) = post(v), then u = v and rr(u) = rr(v). Let post(u) <
post(v) and y € rr(v), which means
pre(v) < pre(y) and (4.8)
post(u) < post(v) < post(y)
In order to show that y € rr(u), it suffices to show that pre(u) < pre(y). If
pre(u) < pre(v), we have pre(u) < pre(y) by (4.9); otherwise pre(u) < pre(y)
by Lemma 4.17. O

Definition 4.20 Let F' = (Py,..., P;) where k > 1 and G be forests, and
let € be a collection of embeddings of I in (G. An embedding f € & is a left
embedding of £ if for every g € €

post(f(root(Pr))) < post(g(root(Fy))) .

45

A left embedding of the set of all ordered embeddings of F'in (G is called a
left ordered embedding, or simply a left embedding, of F'in (. O

It is obvious that every finite nonempty set of embeddings has at least
one left embedding. Therefore we can concentrate on left embeddings when
testing for the existence of an ordered embedding.

Theorem 4.21 Let I' and G be forests. There is an ordered embedding of
Fin G if and only if there is a left embedding of I in G. O

The next theorem presents a method to build left embeddings by pro-
ceeding from left to right. The method is applied in the next algorithm.

Theorem 4.22 Let F'= (P,..., P,) where k > 2 and G be forests, and let
f be aleft embedding of Fy = (P1,..., P;) in G, where 1 <7 < k. Let F; be
the forest (P;41,..., Py) and let £ be the set of ordered embeddings ¢ of F3
in G such that g(root(Pi41)) € rr(f(root(P;))). Then the following hold:

1. If £ is empty, there is no ordered embedding of F'in (.

2. If £ is nonempty and ¢ is a left embedding of &, then f U g is a left
embedding of I in (.

Proof.

1. Assume counterpositively that ¢ is an ordered embedding of F' in
GG. Let g; and g, be the restrictions of ¢ in F; and Fj, respectively. Then
g2(root(Piy1)) € rr(gi(root(P;))), and post(f(root(P;))) < post(gi(root(F;))),
since f is a left embedding of I} in (G. Therefore

g2(root(Piy1)) € rr(f(root(F;)))

by Lemma 4.19, which means that g, € &.

2. First we show that f U g is an ordered embedding of F' in G. It is
sufficient to show that f U ¢ preserves the relative order of any two nodes z
of F1 and y of F,. Now root(F;) is the last node of forest Fy in postorder.
Therefore we have by Lemma 4.19 that root(P;) € rr(z) for all 1 < j <k,
and Lemma 4.18 states that y € rr(z) also when y is not the root of any of
the trees Pi,..., P.. Then we can see that g(y) € rr(f(x)) by applying the
same argument to the images of the above nodes.

Then we show that f U g is a left embedding of F'in (. For this, let A
be any ordered embedding of F' in (7, and let hy and hy be the restrictions
of h to I} and F;, respectively. Now we have that hy € &, and there-
fore post(g(root(Py))) < post(ha(root(Py))). This entails the claim since
g(root(Pr)) = fUg(root(Py)) and hy(root(FPy)) = h(root(Py)). O

46

4.6 Left embedding algorithm

Now we are ready to give an algorithm for searching the nodes w of the target
T such that T[w] includes the pattern P with order minimally. The algorithm
is another variation of the general bottom-up dynamic programming schema
of Algorithm 4.3. As before, the algorithm manipulates nodes as postorder
numbers. For example, the minimum of a set of nodes refers to the first node
of the set in postorder. The algorithm uses an auxiliary target node 0 that
is a left relative of all the other target nodes.

Consider the situation where the algorithm compares a pattern node v
against a target node w, and the subtrees of v are Pi,..., P,. First the
algorithm searches for the first occurrence in postorder of P, among the
descendants of node w, if there is any. The algorithm uses a pointer p for
traversing the descendants of node w. After finding a left embedding f
for the forest (P,..., P;) pointer p points at node f(root(F;)). In order to
extend f to a left embedding of (P;,..., P,41) into the subtrees of w we
choose the closest right relative of p in postorder that is an occurrence of
P11 and a descendant of w. The central idea of the algorithm is to apply
dynamic programming in a way that allows this node to be chosen in constant
time. This is achieved by using a table e having rows 1,...,m and columns
0,...,n — 1. The nodes of P are used as row indices of the table, and the
nodes of T" are used as column indices and contents of the table. Denote by
R(P,T) the collection of root preserving ordered embeddings of tree P into
tree T'. We compute into table e the values

e(v,w) =min({z € rr(w) | 3 f € R(P[v], T[z)}U{n+1}), (4.9)

where v is a node of P and w is a node of T" excluding the root of T'. That
is, e(v,w) contains the closest occurrence of P[v] among the right relatives
of target node w, or if there is no such node, the value in e(v,w) is greater
than any postorder number in T'. Columns 0,...,n — 1 suffice for the table
because node n, the root of T', has no right relatives.

The final result of the computation can be found on row root(P) of the
table. There is a root preserving embedding of P in T'[w] for every w < n
that appears on row root(P), and P is an ordered included tree of T' if and
only if e(root(P),0) < n.

When a root preserving embedding of P[v] in T'[w] is found, a pointer ¢
is used for writing value w into e(v, ¢) for those nodes ¢ that satisfy equa-
tion (4.9). Note that those nodes ¢ are left relatives of node w.

47

Algorithm 4.23 [KM91b] Left embedding algorithm for ordered tree inclu-

sion.
Input: Trees P = (V, E,root(P)) and T = (W, F, root(T)).
Output: Table e filled so that for allv € V and w=0,...,n—1

e(v,w) =min({z € rr(w) | 3 f € R(P],T[z])}U{n+1}).

Method:

1. forv:=1,...,mdo

2. comment: Initialize row v of ¢;

3. for w:=0,...,n—1do e(v,w):=n+1; od,;
4. Let vq1,..., v, be the children of v;

D. q = 0;

6. for w:=1,....,n do

7. if label(v) = label(w) then

8. p:=min(desc(w) U{n +1}) —1;
9. v = 0;

10. while ¢ < k and p < w do

11. p = e(vit1, p);

12. if p € desc(w) then ¢ :=¢ + 1; fi;
13. od;

14. if 7 = k then

15. while ¢ € Ir(w) do

16. e(v,q) := w;

17. q:=q+1;

18. od;

19. fi:

20. fi:

21. od;

22. od;

?

The loop on lines 10-13 tests whether there is a left embedding of the for-
est (Plv1], ..., Plvg]) into the forest of subtrees of w. This is by Theorem 4.21
and Lemma 4.2 equivalent to testing whether there is a root preserving or-
dered embedding of P[v] in T[w], because on these lines label(v) = label(w).
The test is successful if and only if all the subtrees of v can be embedded in
the loop, i.e., if and only if 2 = k on line 14.

48

Next we show that the above test is correct. This is obvious if pattern
node v is a leaf. Let then pattern node v have children. If node w is a leaf,
Plv] can not be embedded in T[w]. In this case p gets value n on line 8
of the algorithm, which prevents the execution of lines 10-19. Otherwise p
gets the value min(desc(w)) — 1, which is the closest left relative of w. The
postorder numbers of the descendants of w are then {p+1,p+2,... ,w—1}.
By Lemma 4.18, desc(w) C rr(p). Assume that correct values have been
computed in the rows of table e corresponding to the children of v; this will
be established in Theorem 4.24. The first execution of line 11 finds then in
p the leftmost occurrence of Plv;] among the descendants of w, if there are
any. The correctness of the remaining executions of the loop follows from
Theorem 4.22.

As an example, consider how Algorithm 4.23 finds the embedding of a
tree P = a(c,e) into a tree T' = a(b(c),a(b(d),a(b(e)))). The trees and the
result of the computation are shown in Figure 4.3. Each column of table e
is shown to the right of the corresponding node of tree T

First, v = 1, the leaf of P labeled by ¢, and w = 1, the similar leaf of
T. Since the labels match and v has no children (¢ = k& = 0), we have an
embedding. The value of w = 1 is written into e(1,0) only, since 0 is the only
left relative of w. After that, no more matching labels are found for v = 1 in
nodes w=12,...,9 of T

Next v = 2, the second leaf of P. The first node w of T such that
label(v) = label(w) = e is node 5. As above, we have an embedding, and
the value of w = 5 is written into e(2,¢) for the left relatives ¢ = 0,...,4
of w. Then again the remaining nodes w = 6,...,9 are scanned without
encountering any matching labels.

Finally v = 3 = root(P). Node w = 7 is the first node of T with
label(v) = label(w) = a. The node p preceding desc(w) in postorder is node
4. The first child of v is node number 1. Its image in rr(p) O dese(w) is
looked up from e(1,4); value 10 means that there is no embedding of the
child into dese(w). Next, a similar failure occurs with w = 8 and p = 2.
Finally w =9 = root(T') and label(v) = label(w) = a, which leads to testing
the embedding of the children of v by executing p := 0, p:=¢e(1,0) = 1, and
p:=e(2,1) = 5. The algorithm has found a root preserving embedding of P
into 7. The value of w =9 is written as the final result into e(3,0). Since 0
is the only left relative of 9, the computation ends.

Theorem 4.24 Algorithm 4.23 fills the table e correctly.
Proof. Consider a fixed pattern node v. We outline a proof that all

49

10] 10]

2 ()L 10

1@ 20 YV SN W
! 10 10 10

0 23] — = —
L (@ 10 10,

5 — 10

[10] 3 () [10] [10]

o

10 10

5@5

Figure 4.3: The result of applying the algorithm to trees P and T'.

columns of row v get correct values in the while-loop on lines 15-18 of the
algorithm. First, the precondition that all columns up to ¢ have got the
correct values is initially true. We show that the following invariant holds on
line 16:

1 fe R(Pp,Tw]) N werr(q) (4.10)
AVI<z<w:(Fge RPW],Tx]) = «d&rr(q) . (4.11)

The invariant tells that the loop writes correct values into e(v, ¢). Since ¢ in-
creases only in the loop, the truth of the invariant maintains the precondition
for the subsequent executions of the loop.

The previous discussion about the loop on lines 10-13 showed that the
loop on lines 15-18 is executed if and only if there is a root preserving ordered
embedding of P[v] in T[w]. Therefore (4.10) holds when we are on line 16.
(Note that ¢ € Ir(w) and w € rr(q) are equivalent.) When line 16 is executed
for the first time (4.11) is vacuously true. By Lemma 4.19 we can strengthen
(4.11) into

Vi<a<wVy>q:(FgeRP,Tx])=a¢&rr(y)) . (4.12)
At the exit from the loop w ¢ rr(q) allows further strengthen (4.12) into

Vi<ez<wVy>q:(Fge RP,Tz])=a&rmly)) .

30

This postcondition makes (4.11) true on the subsequent executions of the
loop. It also tells that the writing is complete, i.e., value w must not be
written into e(v,y) for any column y > ¢. O

Theorem 4.25 Algorithm 4.23 requires ©(mn) time and space.

Proof. Space: Table e requires ©(mn) space.

Time: During every execution of the outermost loop the pointer ¢ may
increase in steps of one from 0 to n. Therefore the while-loop incrementing
q requires O(n) steps per one outermost loop. One execution of the while-
loop on lines 10-13 requires time O(1 + |v|), where |v] is the number of the
children of node v. We get total time

m

Oy (n+) (L+1o)=0(ny (2+]]).

v=1

The sum " |v] equals the number of edges in tree P, which is m — 1.
Therefore the total time is O(n(3m — 1)) = O(mn). On the other hand, the

algorithm uses obviously time Q(mn). O

4.7 A space efficient algorithm for ordered
tree inclusion

In an application where the target tree is very large the @(mn) space and
time requirements of Algorithm 4.23 may be unacceptable. This section
improves on the previous result by presenting an algorithm that solves the
ordered tree inclusion problem in O(m depth(T)) space. The result is useful
in practice, since most text databases can be represented by trees having
a small constant depth. Moreover, the complexity of the new algorithm is
sensitive to the instances of the problem: it runs in time O(cp(7T')n), where
cp(T') is the number of the subtrees of P that are included in T'. Especially,
if no part of the pattern appears in the target, the algorithm runs in time
O(n).

Let P be a pattern tree. Call a nonempty sequence (v, ..., vs) of nodes
of P a sibling interval of P, if node v,y is the next sibling of node v; for
all 2 = 1,...,k — 1. The parent of the nodes in a sibling interval is called
the parent of the sibling interval. A sibling interval is complete if it contains
all the children of its parent. We say that a sibling interval (vq,...,v;) can

51

be embedded in a tree T' (in a forest F') if there is an ordered embedding of
(Plv1], ..., Plog]y in T (in F').

The following algorithm is a variation of Algorithm 4.8. It computes in
bottom-up fashion for each target node w a match set M(w). The match set
M (w) consists of the sibling intervals (v, ..., vg) of P that can be embedded
in Tw].

For a target node w the algorithm first computes the set of the sibling
intervals (vq,...,v;) that can be embedded in the forest of the subtrees of
w. This set is computed from the match sets of the children of w. The
computation is based on a combining operation denoted by &. Let A and B
be the sets of sibling intervals that can be embedded in forests (74,...,T;)
and (Ti41,...,T7), respectively. Then A @ B is the set of sibling intervals
that can be embedded in (74,...,7;). We defer the implementation of this
operation for a moment.

After computing in a variable S the sibling intervals that can be embedded
in the descendants of w, the algorithm computes in a set SA the sibling
intervals consisting of single pattern nodes that can be mapped in an ordered
embedding to w. These are exactly the pattern nodes whose label matches
with the label of w and that are either leaves or have the sibling interval
consisting of their children in S. After this process S U SA is the match set
of w. The algorithm is represented as a recursive function that returns a
match set and reports the target subtrees that match the pattern.

Algorithm 4.26 Space efficient algorithm for ordered tree inclusion.
Input: Trees P = (V, E,root(P)) and T = (W, F, root(T)).

Output: The nodes w of T" such that T[w] is an ordered including tree of
P.

Method: Call function M(P,T);

function M(P,T):

1. S = 0;

2. Let Ty, ...,T%, k > 0, be the immediate subtrees of T
3. for::=1,....k do

4. S:S@M(P,TZ),

3. od;

6. SA = ;

52

7. for all v € V such that label(v) = label(root(T')) do

8. if (children(v) = 0 or (children(v)) € 5) then
9. SA = SAU{{v)};

10. fi;

11. od;

12. if (root(P)) € SA then

13. output root(1');

14. fi;

15. return S U SA;

We can form a set of k(k+ 1)/2 sibling intervals from k sibling nodes, but
we can do with smaller representations for match sets. A set of intervals is
simple it it does not have two distinct members one of which is a subinterval
of the other. If a sibling interval belongs to a match set, then all of its
subintervals belong there, too. Knowing this we can represent the match
sets by simple sets, keeping only the maximal intervals in S.

Lemma 4.27 Let P be a tree (or a forest) on m nodes. Then a simple set
of sibling intervals of P has at most m members.

Proof. Each node of P can be the leftmost node of at most one sibling
interval. O

To measure the amount of “partial inclusion” of a pattern P in a target
T we define the P-content of T, denoted by ¢p(T'), as the number of subtrees
of P that are ordered included trees of T. Note that 0 < ep(T) < |P|,
and P is an ordered included tree of T if and only if ¢p(T) = |P|. By the
same argument as in Lemma 4.27, the size of a simple match set is at most
cp(T'). We will see in a moment how the operation & on line 4 and lines 7—
15 can be performed in time proportional to the number of elements in the
returned match set. Therefore Algorithm 4.26 uses for each target node w
time O(1 4 ¢p(T[w])). By noting that the algorithm uses O(1 + ¢p(T[w]))
space for each recursive call to inspect the target subtree T'[w] we get the
following result.

Theorem 4.28 Algorithm 4.26 uses time

0 (Z (1+ CP(T[w]))>

weW

33

Figure 4.4: The interval numbering for easy recognition of sibling nodes.

and space O((1 + ¢p(T)) depth(T)). Especially, the algorithm works in the
best case in O(n) time and in O(depth(T)) space, and in the worst case in
O(mn) time and in O(m depth(T)) space. O

Since the size of match sets depends on P only, executing lines 4 and
7-15 with a fixed pattern takes constant time. This observation shows the
following result, which follows for time also immediately from Theorem 4.25.

Theorem 4.29 For a fixed pattern P, the ordered tree inclusion problem
can be solved in time O(|T'|) and in space O(depth(T)). O

We can also perform preprocessing similar to Algorithm 4.8 by enumer-
ating the simple sets of sibling intervals and building tables that allow per-
forming lines 4 and 7-11 in constant time. Again the preprocessing would
require exponential time and space; although the number of simple sets of
sibling intervals is smaller than the number of all sets of sibling intervals, it
can easily be seen to be 2(2™) in the worst case.

Algorithm 4.26 called for efficient representation and manipulation of
simple sets of sibling intervals. For the manipulation of sibling intervals we
need to be able to recognize sibling nodes of P and to compare their relative
order easily. For this reason we number the pattern nodes in the following
manner. First, assign 1 to the root of P. Then, during a level-wise traversal
number the children of each internal node consecutively starting from = + 2,
when z is the largest number assigned so far. A pattern node u is the next
sibling of a pattern node v if and only if the sibling number of u is one
greater than the sibling number of v. In the rest of this section we refer to
the pattern nodes by these numbers, which we call interval numbers. For an
example of this numbering, see Figure 4.4.

o4

A sibling interval (a,a + 1,...,b) can be represented by the pair [a, b] of
interval numbers; a is called the start point of the interval, and b is called
the end point of the interval.

Next we present an algorithm for combining interval sets. Let L be the
set of sibling intervals that can be embedded in the forest (74,...,7;), and R
the set of sibling intervals that can be embedded in the forest (Ti4q,...,Tk).
The intervals in L and R are called left and right intervals, respectively. A
left interval [= [l.a,l.b] and a right interval r = [r.a,r.b] can be combined
if l.a < r.a < 1.b+ 1; in this case the combination [r of [and r is the
interval [l.a, max([.b,r.b)]. The result of the combination L & R is such a set
of intervals S that

1. for each interval x € L U R there is an interval y € S that includes =z,

2. for each [€ L and r € R that can be combined there is an interval
y € S that includes the combined interval [r, and

3. each y € S is either a left interval, a right interval, or a combination of
a left and a right interval.

The next algorithm combines two simple sets of intervals yielding a simple
set of intervals. The merging-like method is based on representing the sets
as lists of intervals sorted by start points. Because the sets are simple the
intervals are sorted by the end points, too.

Algorithm 4.30 Combining intervals.
Input: Sorted and simple lists of intervals L = [;,... [, and R =rq,...,7,.

Output: Sorted and simple representation of L & R.

Method:
vi=1; 9 :=1;
lm-l-l = [O0,00]; Tnt1 i = [O0,00];

while : < m or 5 <n do
if Lb+1< r;.a then
comment: /; cannot be combined with r;;
output /;
outb := [;.b;
else comment: [;.b+1 > r;.q;

)

if /;.a <rj;.a then
while /;.b4+1 > r;.a do
comment: [; can be combined with r;
x = r;.b;
J=7+1L
od;
outh:= max(/;.b, x);
output [/;.a, outh];
else comment: [;.a > r;.a;
output r;;
outb := r;.b;
J=7+1L
fi;
while /;.b6 < outb and /;.6+ 1 < rj.a do
comment: skip those [;’s that are included in output interval
and cannot be combined with r;;
=01+ 1;
od;
od;
It is easy to see that every output interval is either in I U R or the
combination /r of some [€ L and r € R. It is also straightforward to check
that the result intervals are output in strictly increasing order with respect
to both their start and end points; therefore the result list is both sorted and
simple. The completeness of the result list can be shown by induction on the
lengths of the input lists.

Algorithm 4.30 can combine two match sets in time proportional to the
number of their elements. Now we continue to show that Algorithm 4.26
can compute the result S U SA in time that is proportional to its size. Set
SA can be implemented as two sorted lists of intervals consisting of single
nodes. A list St is used for intervals of internal nodes and a list S, is used for
intervals of leaves. Note that for any nodes u and v of P such that 1 <u <wv
(ordered as interval numbers) we have parent(u) < parent(v). Therefore we
can form list S; by a single scan in the sorted list S locating the complete
sibling intervals that have a parent whose label equals the label of the root
of T'. Computing list Sz is done a bit differently. In the preprocessing phase
that performs the interval numbering of P, we can link all leaves of P with
the same label in a list in increasing order of their interval numbers. Then
we can form list Sp from the list of pattern leaves labeled by the label of

56

root(T'). To form the representation of the result S U SA we need to merge
lists St and Sz, in S keeping it simple. This is straightforward to do in time
proportional to the final length of the result.

These considerations complete the claim that Algorithm 4.26 uses time

O(1 + ¢cp(T]w])) for a target node w.

4.8 Solving ordered path inclusion problems

Ordered path inclusion and ordered region inclusion problems are easier to
solve than ordered tree inclusion problems. The reason is that with path
inclusion and region inclusion it is sufficient to test the immediate subtrees
of the pattern against the trees rooted by the children of a target node w when
testing if the pattern occurs at w. With tree inclusion we have to examine
trees rooted by the descendants of w, which offers more combinations to
embed the immediate subtrees of the pattern.

Ordered path inclusion and ordered region inclusion can be solved using
the familiar algorithm scheme that stores in an array the information of the
matches between all pairs of pattern-target nodes. We compare again at the
core of the algorithms a pattern node v with children vq,...,v; against a
target node w with children wq, ... w;.

The algorithm for ordered path inclusion has to find an ordered subse-
. of wy, ... w, where 1 < jy < ... < j, <[are such that
v; matches at w;, for all © = 1,..., k. This can be done by scanning the
children of w from left to right and using a counter to indicate the number of
children of v already matched. This solution yields the following complexity:

quence wj,, ..., Ww;

O (14> (14 w])) = O(n+nm+m(n — 1)) = O(mn) .

weW veV

Note that with a minor change we can modify also Algorithm 4.26 to
solve the ordered path inclusion problem. The modification is to return from
the recursive calls only the set SA that contains essentially the pattern nodes
that match at the root of the tested target subtree.

The algorithm for ordered region inclusion has to find a continuous se-
quence wj, ..., wjtp_1 of children of w, such that node v; matches at w;4; 4
for all : = 1,..., k. This can be done by a method resembling trivial string
matching: Starting with 7 = 1, the sequences vq,...,v; and wj, ..., w51
are compared from left to right against each other as long as they match,

57

and at a failure j is incremented by one and the comparison is started anew.
The complexity of this solution to ordered region inclusion is

O (14 (1 +v]Jw])) = O(mn) . (4.13)

weW veV

We state these results as a theorem:

Theorem 4.31 The problems ordered path inclusion and ordered region
inclusion are solvable in time O(mn). O

Tree inclusion problems can be considered to be special cases of the
editing distance problem for trees [Tai79, 7ZS89]. Ordered tree inclusion
problems can be described and solved in the framework of Zhang, Shasha,
Wang, and Jeong [ZSW9I1, WJZS91]. They allow patterns to contain vari-
able length don’t care symbols (VLDCs). A path VLDC'is a pseudo node in
the pattern that matches at an arbitrary path in the target. The algorithms
of [ZSWOI1, WJZS91] allow tree matching with cut: the instances of the pat-
tern are the subtrees of the target that are identical with the pattern after
deleting the nodes matched with the VLDCs and possibly cutting at some
nodes. Therefore, the ordered tree inclusion problem can be presented as a
matching problem with cut after inserting a path VLDC on each edge of the
pattern. Ordered path inclusion is the same problem as the tree matching
problem with cut.

The algorithms of Zhang, Shasha and Wang [ZSW91, ZSW92] require

time
O(|P|-|T| - min(depth(P), leaves(P)) - min(depth(T), leaves(T))) ,

where depth(T') is the length of the longest root-to-leaf paths in tree T and
leaves(T') is the number of leaves in T'. Thus our algorithms are faster than
theirs by a factor of

min(depth(P), leaves(P)) - min(depth(T), leaves(T)) .

Nontrivial lower bounds for the complexity of the above problems are not
known, but they do not seem to be easily solvable in linear time. We show
below how string pattern matching with don’t care symbols can be reduced
in linear time to ordered path inclusion problems. The time complexity of
the best known algorithm for string matching with don’t care symbols is
O(polylog(m)n) [FP74], and the existence of a faster algorithm has been an

38

open problem for almost 20 years. The idea of the reduction was presented
in [Kos89], and it was also noted in [Ver92].

Let P be a pattern string pq,...,p, and T a target string ¢4,...,%, where
m < n, both over the alphabet {0,1,d}. The don’t care character d matches
at any other character, and the other characters match at themselves and at
d. Pattern string P matches target string 7" at position ¢ if p; matches at
liyj—1 for every j =1,...,m.

Problem 13 (String matching with don’t care symbols)
Given a pattern string P and a target string 7T, both over the alphabet
{0,1,d}, compute the set of positions at which P matches T'. O

The reduction of string matching to ordered path or region inclusion
is as follows. FEach character ¢ is represented as a term [(c¢) as follows:
B(0) = b(a), B(1) = b(b), and S(d) = b for don’t care characters in the
pattern and 3(d) = b(a,b) for the don’t care characters in the target. Note
that a pattern character p matches at a target character ¢ if and only if there
is a root preserving path or region embedding of Tree(S(p)) into Tree(3(1)).
The strings P = py,...,p, and T = t4,...,1, are represented as the trees
represented by the terms «(P) and (7). The terms are constructed along
the following recursive rule:

aler,...,cr) = a(Bler),alea, ...,) when k> 1
alcr,...,c) = ple) when k=1.

An example of the reduction is shown in Figure 4.5.

Now it is easy to see that P matches T' at position ¢ if and only if there
is an ordered root preserving path or region embedding of tree Tree(a(P))
in tree Tree(a(t;,...,t,)). Since m + n is the trivial lower bound for the
complexity of inclusion problems, we can state the following theorem, which
indicates the difficulty of obtaining linear time algorithms for ordered path
inclusion problems.

Theorem 4.32 If ordered path inclusion or ordered region inclusion can be
solved in time O(f(m,n)), then also string matching with don’t care symbols
can be solved in time O(f(m,n)). O

39

Figure 4.5: Representing the pattern string P = d10 and the target string
T = 01d1d as trees.

4.9 Classical tree pattern matching

In this section we give a short review of the most important methods for
solving the ordered child inclusion problem, i.e., the classical tree pattern
matching problem. The problem has been extensively studied, and we only
touch upon the various approaches to it. The presentation follows mainly
the review in [RR88] and in [RR92].

It we have any knowledge about the structure of the target, we can try
to utilize it for solving the matching problem more efficiently than in the
general case. We discuss this idea in Chapter 5, where we show how tree
pattern matching can be solved efficiently if the target is a parse tree over
an appropriate grammar.

The naive or basic tree pattern matching algorithm belongs to the folklore
of computing. The basic algorithm traverses the target tree in preorder and
compares the pattern to each subtree of the target in turn. In the worst case
this algorithm requires O(mn) time, but it can be shown to have a linear
expected time behaviour [SF83].

Hoffman and O’Donnell [HO82] have presented advanced bottom-up and
top-down tree pattern matching techniques. The key idea of the bottom-up
algorithm is to find at each target node w a match set that consists of the

60

subtrees of the pattern that match w. The match sets can be enumerated and
coded by the enumeration. The method assumes that the alphabet is ranked,
i.e., the label of a node determines the number of its children. (The leaves of
the pattern that match at arbitrary nodes are represented by variables. We
treat inclusion problems with variables in Chapter 6.) For each label there is
a table whose dimension is equal to the rank of the label. The code assigned
to a target node labeled by a is determined using the table of a on the basis
of the codes of the match sets assigned to the children of the node. Once
the tables have been computed, the matching takes O(n) time. The main
drawback of the method is the size of the tables and the time taken by the
preprocessing; both are exponential in m.

The top-down tree matching algorithm of [HO82] is based on representing
the pattern as a set of path strings, i.e., sequences of interleaved labels and
child numbers each representing a unique path from the root to a leaf. (A
path string begins with the label of the root, which is followed by the number
of the child that is the next node on the path, and so on up to the label of
the leaf at the end of the path.) The length of a path string is the number of
child numbers in it. These path strings can be transformed in O(m) time into
an Aho-Corasick like multiple string recognition automaton [ACT5]. A single
final state of the automaton may accept many path strings; their lengths
are stored in the corresponding final state. The nodes of the target tree
are decorated with counters initialized to zero. The occurrences of the path
strings in the target are recognized by running the automaton on the target
tree. When a final state that accepts path strings of lengths {ly,...,[,} is
reached at a target node w, the counters of the [;th, the [3th, ..., and the
[,th ancestor of w are incremented by one. The pattern occurs at those nodes
whose counter reaches the number of leaves of P. The time required to do
the matching is the maximum of n and the number of times a counter is
incremented.

The amount of periodicity in the path strings of the pattern is measured
by the suffiz index s(P) of the pattern. The suffix index of P is the maximum
number of path strings of P such that they all are suffixes of some path string
of P; it can range from 1 to m. The suffix index sets a tight upper bound
on the number of counters that are incremented by the top-down algorithm.
Therefore the matching time of the top-down algorithm is O(s(P)n).

Recently Kosaraju [Kos89] broke the quadratic O(mn) complexity barrier
of tree pattern matching. Dubiner, Galil, and Magen [DGM90] improved the
result of Kosaraju by introducing an O(ny/m polylog(m)) time algorithm.

61

We state this best known upper bound as a theorem.

Theorem 4.33 [DGM90] Classical tree pattern matching can be solved in
time O(n+/m polylog(m)). O

The algorithms of [Kos89] and [DGM90] apply sophisticated but compli-
cated techniques like suffix trees of trees and convolutions; therefore they are
more of theoretical than practical value. Considerable effort is needed in the
algorithms to handle periodic patterns efficiently. In Chapter 5 we consider
restricting the periodicity of the target tree, which makes the tree pattern
matching problem essentially easier.

In the applications of tree pattern matching the nodes of the pattern are
usually either function symbols or variables. Variables can appear only as
leaves, and a variable matches at any node. Function symbols match only at
nodes with the same label and the same number of children. This variation
can easily be included in the definition of child inclusion problems.

It we require that repeating occurrences of the same variable match only
at the roots of identical subtrees, we get another problem that is called
either nonlinear tree pattern matching or tree pattern matching with logical
variables. Solving this problem is considered in [RR88]. We discuss tree
inclusion problems with logical variables in Chapter 6.

4.10 Subtree problems are solvable in linear
time

In this section we show that the unordered and ordered subtree problems can
be solved in time linear in the size of the target tree.

An instance relation is linearly solvable if there is a constant ¢ such that
the question “Is U an instance of P?” can be answered in time bounded
by ¢|U| for all trees P and U. For example, the instance relation of the
unordered subtree problem is linearly solvable:

Lemma 4.34 The relation “trees P and U are isomorphic” is linearly solv-
able.

Proof. A linear time algorithm for the problem, based on lexicographic
sorting, is given in [AHUT74, p. 84-86]. O

A set of nodes of T'is a candidate set of occurrences of P, if it is a superset
of the set of occurrences of P. A set of nodes N is k-thin if any node n € N

62

has at most k£ — 1 ancestors in N. A 1-thin set of nodes is flat. That is, a
flat set of nodes does not contain two nodes one of which is an ancestor of
the other. Note that in tree pattern matching the set of occurrences need
not be flat, since the pattern may match both at a node and at some of its
descendants.

Lemma 4.35 Assume that for a tree inclusion problem there is a k-thin
candidate set of occurrences that can be computed in time O(kn), and that
the instance relation is linearly solvable. Then the tree inclusion problem is
solvable in time O(kn).

Proof. First compute a k-thin candidate set C' in time O(kn). For each
node u in C', test whether P matches at u. Since the instance relation is
linearly solvable, this requires time at most ¢ . |T[u]| for some constant
¢. Because (' is k-thin, each node of T' can belong to at most k different trees
rooted by nodes in (', and therefore

¢ |T[u]] < ckn = O(kn) .

ueC

a

The next lemma states the simple result that the instance relation of
ordered child inclusion is linearly solvable.

Lemma 4.36 The instance relation “P is an ordered child-included tree of
U7 is linearly solvable.

Proof. The relation can be tested simply by comparing the corresponding
nodes of the trees against each other; at most min{|P|, |U|} nodes of U are
examined. O

Now we are ready to state the time complexities of the subtree problems.

Theorem 4.37 The unordered and the ordered subtree problem can be
solved in time O(n).

Proof. The roots of the subtrees of size m form a flat candidate set
of occurrences. They can be located in time O(n) by traversing the target
bottom-up and counting the sizes of its subtrees. The instance relations
are linearly solvable by Lemmas 4.34 and 4.36. The result follows from
Lemma 4.35. a

63

Lemma 4.35 is a generalization of an argument used in [Gro91]. Grossi
shows that locating subtrees of the target that are identical to the pattern or
differ only with regard to don’t care labels or up to m mismatching labels can
be done in O(n) sequential time. The same idea appears also in the ordered

subtree algorithm of [Dub90].

4.11 Summary of complexities

The table below summarizes the complexity results for the tree inclusion
problems considered in this chapter. Shorthand NPC stands for NP-complete,
and m and n stand for the size of the pattern and for the size of the target,
as elsewhere. Notation O denotes an upper bound for the worst-case com-
plexity of a problem, and © denotes tight complexity (i.e., one that equals
the worst-case lower bound complexity) for the problem.

incl. | path incl. | region incl. child incl. subtree
unordered | NPC | O(m'*n) O(m?n) O(m!'"n) O(n)
ordered O(mn) O(ny/m polylog(m)) | O(n)

Table 4.1: The complexities of the tree inclusion problems

64

Chapter 5

Grammatical tree inclusion

In this chapter we consider tree inclusion problems with targets that are parse
trees over some grammar. Motivation for this comes from text databases
modeled by context-free grammars. Context-free grammars are rather com-
monly used for describing the structure of text documents [GT87, BR84,
CIV86, FQA8S, QV86, KLMN90].

First in Section 5.1 we discuss describing the structure of targets by
context-free grammars. We define nonperiodic grammars and argue that
they are adequate for describing the structure of many text databases ap-
pearing in practice. Then we show that classical tree pattern matching can be
solved in linear time on nonperiodic target trees. In Section 5.2 we show that
also ordered tree inclusion is solvable in linear time on nonperiodic targets.
Section 5.3 discusses utilizing the grammar of the target in inclusion prob-
lems. The possibilities include checking patterns for syntactic correctness
before actual matching, and transforming inclusion problems to equivalent
but easier problems.

More discussion about text databases appears in Chapter 7, where we
also give examples of using inclusion patterns as database queries.

5.1 Grammatical targets and tree pattern
matching
We define a grammar to be a quadruple G = (V, 7, P, 5), where V is the set

of nonterminals, T is the set of terminals, P is the set of productions and
S €V is the start symbol.

65

It is useful to allow regular expressions on the right-hand-sides of pro-
ductions. This leads to fewer nonterminals and seems to be a form easily
comprehensible also to nonspecialists. Therefore, we define the productions
to be of the form A — «, where « is a regular expression over V U7. We
say that a production A — w is an instance of A — «, if w belongs to the
regular language defined by «.

As an example we show a grammar for describing the structure of a list
of bibliographic references stored in a text database system.

publications — publication*
publication — authors title journal volume year pages
authors — author”
author — initials name
initials — text

name — text

title — text

journal — text

volume — number

year — number
pages — start end
start — number

end — number

text — character”
number — digit*

The obvious productions for nonterminals character and digit have been ex-
cluded. The grammar is allowed to be ambiguous because it will not be used
for parsing. Producing string representations of a parse tree and parsing them
back to trees can be done using versions of the grammar that are annotated
with extra terminal symbols. The methodology is explained in [KL.MN90]
and in [Nik90].

To define parse trees over a grammar G, we define sets T'((, a) for termi-
nals a € 7 and sets T'((G, A) for nonterminals A € V:

T(G,a) = {a} for terminals a ;
T(G,A)={A(t1,...,t,) | A— B1,..., B,

is an instance of a production in P

and t; € T(G, B;) for each i =1,...,n} .

66

Here A(t4,...,1,) stands for a tree whose root is labeled by the nonterminal
A and whose ith immediate subtree is ¢; for allz = 1,...,n. That is, elements
of T(G, A) represent derivations of terminal strings from the nonterminal A
according to (. Finally, the trees that represent derivations from the start
symbol of G, i.e., the trees in T((, 5), are the parse trees over G.

A tree inclusion problem is G-grammatical if the target is a parse tree over
a grammar (. Grammatical inclusion problems are in general not easier than
the unrestricted ones. Let T' be a tree and let {aq, ..., a;} be the set of labels
occurring in T'. Consider then the following grammar ¢

S = ar|ay|...|a
a; — (ay|az]|...|@)”
ap — (aq |ag|...]a)" .

Now any inclusion problem with target T"is G-grammatical.

A grammar is nonperiodict if it has no nonterminal A that can derive a
string of the form aAB. A tree T' is k-periodic if any nonterminal appears
at most k times on a single root-to-leaf path in 7. A 1-periodic tree is
nonperiodic, or equivalently, a tree T' is nonperiodic if and only if T" is a
parse tree over some nonperiodic grammar. An inclusion problem (P, T) is
nonperiodic, if it is G-grammatical for a nonperiodic grammar G (i.e., the
target T is nonperiodic).

It is easy to see that nonperiodic grammars with regular expressions in
their productions define exactly the regular languages [HU79]. For example,
we could describe the previous list of bibliographic references also by a single
production of the following form:.

publications — ((character* character®)*
character® character®
digit* digit* digit* digit*)*

The subexpressions character and digit that simply describe the set of rec-
ognized characters and the digits ‘0’—'9” have been left unspecified. It is
clear from this example that using descriptive nonterminals may clarify the
logical structure of a text database. Although nonperiodic grammars are

!Nonperiodic grammars are usually called nonrecursive. We use the term nonperiodic
to avoid confusing nonperiodic matching problems with nonrecursive, i.e., undecidable
problems.

67

too weak for modeling programming languages, they are powerful enough to
model the structure of most text databases. In practice, nonperiodic gram-
mars with regular expressions in productions support modeling long lists of,
say, dictionary articles, but unlimited nesting of structures is of course not
possible.

Note that if T' is a parse tree over a nonperiodic grammar G, then the
height of T'is at most |V|+ 1. It is known that restricting the height of the
pattern improves the running time of the basic algorithm for classical tree
pattern matching:

Lemma 5.1 [DGMY0] If the height of the pattern is &, then the basic algo-
rithm for tree pattern matching takes time O(nh). O

In a matching problem the height of P is at most the height of T'. Thus
nonperiodic tree pattern matching can be solved using the basic algorithm
in time O(|V|n). Next we show how Lemma 4.35 makes it possible to solve
the tree pattern matching problem in time O(kn) for a k-periodic target, and
hence G-grammatical tree pattern matching in time O(n) for an arbitrary
nonperiodic grammar .

Lemma 5.2 A k-thin candidate set of occurrences for any tree inclusion
problem can be computed in a k-periodic target in time O(n).

Proof. The nodes of the target which have the same label as the root
of the pattern form a candidate set of occurrences; they can be located by
a simple traversal of the target. The set is k-thin, because the target is
k-periodic. a

Now the next theorem follows directly from Lemmas 4.35, 5.2, and 4.36.

Theorem 5.3 The ordered child inclusion problem with k-periodic targets
can be solved in time O(kn). O

Theorem 5.3 tells especially that nonperiodic tree pattern matching is
solvable in linear time. To obtain the same result for nonperiodic ordered
tree inclusion, we show in the next section that the instance relation “U
includes P with order minimally” is solvable in linear time, when U is a
nonperiodic tree.

63

5.2 Solving ordered tree inclusion on non-
periodic targets

Next we give an algorithm for testing the instance relation of ordered tree
inclusion between a pattern P and a nonperiodic tree /. The nonperiodicity
of U means that if v is a node of U then there are no nodes labeled by
label(v) in the descendants of v. This implies two further facts utilized in
the algorithm. First, tree U includes P with order minimally if and only if
there is a root preserving ordered embedding of P into U. Second, let N be
a nonempty set of nodes of U all of which have the same label. Then the
first node of N in the preorder of U and the first node of V in the postorder
of U are the same node.

Let Py, ..., P, be the immediate subtrees of the pattern P rooted by nodes
Uy, ..., ug. The principle of the algorithm is the same as in Algorithm 4.23:
to search for a left embedding of (Py,..., P;) in U.

Algorithm 5.4 [KM92] Testing the instance relation of ordered tree inclu-
sion with a nonperiodic target.

Input: Trees P and U, where U is nonperiodic.
Output: true if U includes P with order minimally; otherwise false.

Method: if label(root(P)) = label(root(U)) then
return emb(root(P), root(U));
else return false fi;

function emb(u,v);
if v is a leaf then return true;
else Let uq,...,u; be the children of u;
Let p be the first descendant of v in preorder
such that label(p) = label(uy);
if there is no such node p then return false; fi;
1= 1;
while : < k do
if emb(u;, p) then ¢ := 1+ 1; fi;
if : < k then
Let p be the first node in rr(p) N dese(v) in
preorder of U such that label(p) = label(u;);

e o=

Lo

69

if there is no such p then return false; fi;

10. fi;

11. od;

12. return true;
13. fi;

14. end;

?

Lemma 5.5 Algorithm 5.4 tests the relation “U includes P with order min-
imally” correctly for all trees P and all nonperiodic trees U.

Proof. If P consists of a single node u, the claim is obvious. Then assume
that the height of Pis A > 0 and and that the algorithm works correctly with
all patterns of height less than h. Let the immediate subtrees of P rooted
by wuq,...,ur be Py,..., P,. Now the following two invariants can be shown
to hold for the loop on lines 6-11. First, before each execution of the loop,
post(p) < post(f(u;)) for all ordered embeddings f of (Py,..., P;) into the
forest of immediate subtrees of . Second, after each execution of the loop,
the forest (Py,..., Pi_1) has a left embedding into the forest of immediate
subtrees of U. The correctness of the algorithm follows from these invariants.

O

Lemma 5.6 The instance relation “U includes P with order minimally” is
linearly solvable for nonperiodic trees U.

Proof. Algorithm 5.4 tests the relation for nonperiodic trees U correctly
by Lemma 5.5. We show that there is a constant ¢ such that the algorithm
works in time bounded by ¢|U]| for all trees P and U.

Denote by #(n) the maximum time needed to compare the root labels of
P and U and to perform the function call emb(root(P), root(U)), when P
and U are trees and |U| = n. First, consider testing a single node. Obviously
there is a constant ¢’ such that ¢(1) < ¢. Then assume that |U| =n > 1 and
t(m) < ¢'m for all targets of size m < n. Let n” be the number of nodes of
U that are examined during the traversal on lines 4 and 9 of Algorithm 5.4,
excluding the roots of the subtrees of U that are examined in the recursive
calls on line 7. Let n’ be the total size of the subtrees of U that are examined
in the recursive calls. There is a constant ¢” such that the traversal can be

performed in time ¢’n”. Therefore we get for n > 1

t(n) < n' + A

Now, since the regions of U examined outside and in the recursive calls do
not overlap, n’ + n” < n. From this we get for all n > 0

t(n) <cn

70

by selecting ¢ = max{¢c,"}. O

Theorem 5.7 [KM92] The ordered tree inclusion problem can be solved on
nonperiodic targets in O(n) time.

Proof. By Lemma 5.2 a flat candidate set of occurrences can be com-
puted in O(n) time, and by Lemma 5.6 the instance relation is linearly solv-
able. Therefore the problem is solvable in linear total time by Lemma 4.35.

O

Periodic targets seem to be more difficult to handle. Trying to apply the
approach of Algorithm 5.4 to testing the instance relation with k-periodic
targets leads to backtracking with ©(2*n) worst case running times. This
means that the specialized approach of this section would be feasible for
k-periodic targets if k£ < log m.

5.3 Preprocessing grammatical patterns

In this section we consider further utilizing the grammar of the target in
connection to tree inclusion problems. First, the patterns can be checked
syntactically against the grammar in order to test whether they can have
occurrences in the target. Second, in some cases the grammar can be used
for transforming the problem to an easier but equivalent problem.

In the nonperiodic tree inclusion problems considered above obviously
only nonperiodic patterns can have occurrences in the target. More generally,
in a G-grammatical inclusion problem one can check, before performing the
actual matching, whether P can have an occurrence in a parse tree over (3.
For example, in a text database application query patterns not passing this
test could result in informative diagnostics about the impossibility of locating
data using such patterns on a database modeled by grammar G.

An alternative and a more co-operative way of ensuring that only sensible
patterns are given through a query interface is to provide the user with
pattern templates, which the user can edit. This kind of an interface has been
implemented in the LQL system [Byr89]. Next we sketch what conditions
the patterns have to meet, whether their correct form is guaranteed by a
template editor or whether they are checked separately.

In what follows, we can assume that the grammar G = (V,7,P,S) of
the target contains only useful nonterminals. That is, every nonterminal in
Y appears in a derivation of a string of terminals from the start symbol S of

G. (See [HUTY, p. 88-90].)

71

For tree pattern matching one checks that each node of pattern P is
labeled by a symbol of grammar G and that the children of each internal
node of P correspond to an appropriate production in (. Let u be an internal
node of P with label A and with children uq, ..., u;. Checking u is performed
by applying to the string of labels in uq, ..., u; an automaton that recognizes
the instances of the right-hand sides of the productions for nonterminal A.
These finite automata need to be constructed only once for a grammar. If
the automata are deterministic, checking pattern P takes only time O(|P|).
If the worst case O(2!1) size of the deterministic automata is prohibitive, it
is also possible to construct nondeterministic finite automata for the same
task; this can be done in time O(|G]). The children of each pattern node
can then be checked by simulating the NFAs, yielding total time O(|G/||P|).
(See [AHUT4].)

For the tree inclusion problem the condition is slightly more complicated.
For each node of P labeled by A and having children labeled by aq, ..., a
the following should hold in G

AS Boar 1 ... Br_1a1P

where 3; € (VU T)*. This can be checked in the following manner. For each
nonterminal B € V let B’ be a unique terminal not belonging to 7, and for a
set of nonterminals N let N' = {A’| A € N}. For each terminal t € 7 let ¢/
be a unique new nonterminal not belonging to V, and for a set of terminals
Clet "= {t'|t e C}. For a production p denote by p’ the production
obtained by replacing each terminal ¢ in p by #'. For a set of productions)
denote by @' the set {p’ | p € Q}. Finally, for grammar G = (V,7,P,5)
and a nonterminal A € V let Gy = (V", 7", P",S") be the grammar with

V' = yuT’
7" = TUY
73// — Pl

UA— (A] AeV)
U (tloteT)
S// — A
The idea is that grammar G’ generates the subsequences of the sentential
forms that are derivable from nonterminal A in grammar (. (Note that G’

and G’ may differ only with regard to the start symbol.) Now checking a
pattern node labeled by A and having children labeled by aq,..., a; is done

72

by first substituting B’ for each nonterminal B in the sequence ay, ..., a; and
then parsing this sequence using G/,.

Above we have outlined possibilities to check the patterns against the
grammar before performing the actual matching. Another promising direc-
tion for preprocessing patterns with regard to the grammar, analogical to
query optimization in databases, is trying to transform the given inclusion
problem to an easier one that still yields the same set of occurrences as the
original problem.

For some patterns P and grammars G we may be able to compute a
unique sequence of labels on any path between two nodes labeled by @ and
b in any parse tree over (¢, when a and b are labels of a node u and its
descendant v in pattern P. Such knowledge allows us to complete the or-
dered tree inclusion pattern by adding nodes labeled by the corresponding
sequence of labels between every node-descendant pair u, v in P, and to solve
the problem, possibly more efficiently as an ordered path inclusion problem.
Another problem that is feasible for this transformation is unordered tree
inclusion. It would be convenient to ignore the left-to-right order of subtrees
in expressing queries on a grammatical database. Unfortunately, unordered
tree inclusion is an NP-complete problem. (See Section 4.2.) If the unordered
tree inclusion pattern P and grammar G allow transforming P as above, the
problem reduces to an unordered path inclusion problem, which is solvable
in polynomial time.

73

Chapter 6

Tree inclusion with logical
variables

In this chapter we consider tree inclusion with logical variables. In this exten-
sion of tree inclusion the pattern leaves can be labeled by variable symbols.
This provides means for extracting subtrees of the target using substitutions
to the variables in the pattern. Moreover, labeling various pattern nodes
by the same variable symbol is a way of requiring identity of the subtrees
matched by those nodes.

The addition of logical variables makes most of our problems NP-hard;
only the ordered child inclusion problem and the ordered subtree problem
retain their polynomial complexities. The inclusion problems with logical
variables are defined in Section 6.1. The NP-hardness proofs are given in
Section 6.2. Section 6.3 outlines how the ordered child inclusion problems,
i.e., the classical tree pattern matching and the ordered subtree problem
with logical variables, can be solved in polynomial time. Some polynomial
subclasses of ordered tree inclusion with logical variables are considered in
Section 6.4. Section 6.5 is a summary of the computational complexities of
the tree inclusion problems with logical variables.

6.1 Logical variables in patterns

So far we have considered tree inclusion problems where the patterns and
the targets are trees labeled by symbols without any specific semantics. Now
we assume that the set of labels consists of disjoint sets Const of constant
symbols and Var of variable symbols, and extend the inclusion problems by

74

allowing pattern leaves to be labeled by variables.
We denote constants by letters a, b, ¢, ..., and variables by letters z, y,

Z, ..., possibly with subscripts. A node in a pattern is called a variable node

)
if it is labeled by a variable symbol; otherwise it is a constant node. In both
cases we may call nodes labeled by a symbol ¢ simply c-nodes. A pattern
with logical variables is a tree whose internal nodes are constant nodes and
whose leaves are labeled by symbols in Const U Var.

Let tree P = (V,F,root(P)) be a pattern with logical variables and
T = (W, F,root(T)) a tree. An injective function f : V — W is a pattern
embedding of P into T if it preserves ancestorship and the labels of constant
nodes, and respects variables. Function f respects variables if it maps nodes
labeled with identical variables to roots of identical subtrees. That is, f is a

pattern embedding, if for all nodes u and v of P we have that
L. f(u) = f(v) if and only if u = v,

2. u is an ancestor of v in P if and only if f(u) is an ancestor of f(v) in

T

Y

3. if label(u) € Const then label(u) = label(f(u)), and

4. if label(v) € Var and label(u) = label(v) then the trees T[f(u)] and
T[f(v)] are identical.

Ordered pattern embeddings, path pattern embeddings, region pattern em-
beddings, and child pattern embeddings are defined analogously to the corre-
sponding tree embeddings in Chapter 3.

Let G = (V,E) and H = (W, F) be directed and labeled graphs. A
bijection f : V — W is a pattern isomorphism between G and H, if for all
nodes u,v € V

1. (u,v) € Eif and only if (f(u), f(v)) € F,
2. label(v) = label(f(v)) if label(v) € Const, and
3. label(f(u)) = label(f(v)) if label(v) € Var and label(u) = label(v).

A pattern isomorphism between a pattern P with logical variables and a tree
T is a subtree pattern embedding of P in T'. If a subtree pattern embedding
preserves the left-to-right order of the nodes, it is an ordered subtree pattern
embedding.

75

The tree inclusion problems with logical variables are now derived from the
corresponding tree inclusion problems simply by replacing the embeddings
by the corresponding pattern embeddings. We refer for shortness to ordered
and unordered C-embeddings, C-inclusion problems, C-pattern embeddings,
and C-inclusion problems with logical variables, where “C-” is empty or
stands for a phrase from the list “path”, “region”, “child”, “subtree”. The
abbreviations for a particular tree inclusion problem with logical variables is
produced by suffixing the initials of the corresponding tree inclusion problem
by “-V” (referring to “with variables”). For example, the abbreviation of the
ordered tree inclusion problem with logical variables is OTI-V, which stems
from Ordered Tree Inclusion with Variables. We can further refer to the
decision versions (“Is there a C-embedding of P in T'7”) of the problems by
attaching the prefix “D-” to the problem identifiers.

A binding is a pair consisting of a variable z and a term ¢, denoted nor-
mally by © = t. A substitution is a set of bindings x; = t;, where the variables
x; are distinct. Let P = (V, F, root(P)) be a pattern with logical variables
and let T' be a tree. If f is an ordered (unordered) C-pattern embedding of
P into T, the substitution

{r =t]a€Var, Jv eV :label(v) =z and t = Term(T[f(v)])} ,

is called a solution to the instance (P,T') of the ordered (unordered) C-tree
inclusion problem with logical variables. That is, a solution is a substitution
that binds each variable x occurring in the pattern to the term representation
of the subtrees matched by the z-nodes. The answer to the instance (P,T)
of an ordered (unordered) C-inclusion problem with logical variables Il is the
set of solutions to the instance (P,T') of II. We often refer to the instances
of problems as “problems”. If there is no ordered (unordered) C-embedding
of P into T', the answer to the problem (P, T') is the empty set. On the other
hand, if P is an ordered (unordered) C-included pattern of T' but no nodes
of P are labeled by variables, the answer is the singleton set consisting of the
empty substitution.

As an example, consider the pattern P and the target T' shown in Fig-
ure 6.1. Since permutation of siblings does not change the pattern, the
answers to the ordered and unordered problems are the same. The answer
to the instance (P,T) of the tree inclusion problems with logical variables
OTI-V and UTI-V is {{x = b}, {x = ¢}}, which contains two solutions. In
the case of the path inclusion problems OPI-V and UPI-V the answer is
{{z = b}}. If (P, T) is an instance of region inclusion with logical variables

76

Figure 6.1: An instance of tree inclusion problems with logical variables.

ORI-V or URI-V, the answer is the empty set. This is because the target T

does not contain two identical subtrees rooted by adjacent sibling nodes.
We obtain the following relationships between the answers to different

tree inclusion problems with logical variables analogically to Section 3.11.

Theorem 6.1 Let tree P be a pattern with logical variables and T' a tree.
Then the following inclusions hold between the answers to the tree inclusion
problems with logical variables:

1. The answer to the ordered (unordered) path inclusion problem with
logical variables (P,T') is a subset of the answer to the ordered (un-
ordered) tree inclusion problem with logical variables (P, T)).

2. The answer to the ordered (unordered) region inclusion problem with
logical variables (P,T') is a subset of the answer to the ordered (un-
ordered) path inclusion problem with logical variables (P, T').

3. The answer to the ordered (unordered) child inclusion problem with
logical variables (P,T') is a subset of the answer to the ordered (un-
ordered) region inclusion problem with logical variables (P, T').

4. The answer to the ordered (unordered) subtree problem with logical
variables (P, T) is a subset of the answer to the ordered (unordered)
child inclusion problem with logical variables (P, T'). O

77

Further, each ordered C-pattern embedding of P into T' is also an un-
ordered C-pattern embedding of P into T'.

Theorem 6.2 Let tree P be a pattern with logical variables and T' a tree.
Then the answer to the ordered C-inclusion problem with logical variables
(P,T) is a subset of the answer to the unordered C-inclusion problem with

logical variables (P, T). O

6.2 Complexity of inclusion problems with
logical variables

In this section we show that most of the tree inclusion problems with logi-
cal variables are NP-hard in the general case. The intuitive reason for the
difficulty of these problems is common to many NP-complete problems: it
is difficult to do local choices that are globally consistent. In the case of
tree inclusion with logical variables the requirement for global consistency
appears in the requirement that embeddings respect variables.

Also string pattern matching becomes difficult if we allow repeating vari-
ables in the pattern. Angluin has shown in [Ang80] that it is NP-complete
to decide whether a given string can be obtained by substituting strings to
the logical variables in a given string pattern. In string pattern matching the
difficulty lies in deciding the right lengths for the substrings matched by the
variables.

A tree inclusion problem with logical variables may have exponentially
many solutions. Consider the ordered tree inclusion problem with logical

variables (P, T') with
P = Tree(a(xy,...,x,)), and T' = Tree(a(by,...,b,)),

where x1,...,x,, are distinct variable symbols and bq,...,b6, are distinct
constant symbols. The answer to the problem consists of (:L) substitutions.
Thus tree inclusion problems with logical variables may require in general
exponential time in the size of the input.

The decision problems “Is there a C-pattern embedding of P into T'?” are
in NP, since guessing a mapping and checking whether it is a C-embedding
can be done in polynomial time with respect to the size of input.

If no variable appears twice in the pattern, the decision versions of tree
inclusion problems with logical variables are not harder than the correspond-

ing tree inclusion problems. They can be solved by straightforward variants

78

of the corresponding tree inclusion algorithms by simply ignoring the labels
of the variable nodes.

Next we show that all unordered inclusion problems with logical variables
are NP-hard. The proof is based on a pseudo-polynomial reduction from 3-
PARTITION.

A decision problem Il is NP-hard in the strong sense if a variant of Il where
all input numbers are expressed in unary notation is NP-hard. A decision
problem II is NP-complete in the strong sense if 11 is NP-hard in the strong
sense and Il € NP. A pseudo-polynomial transformation from a problem II
to a problem II' is a transformation from II to II' that can be computed in
time limited by a polynomial over both the length of the instance of 11 and
the magnitude of the largest number appearing in the instance of 1I. For a
more rigorous development of these concepts, see [GJ78] or [GJT79].

Lemma 6.3 [GJ79] If IT is NP-hard in the strong sense and there exists a
pseudo-polynomial transformation from II to II', then II' is NP-hard in the
strong sense. 0

Problem 14 (3-PARTITION)

Instance: A set A = {ay,... a3}, a positive integer bound B and a posi-
tive integer size s(a) for each element a of A, such that each size s(a)

satisfies B/4 < s(a) < B/2 and such that > _, s(a) = kB.

Question: Is there a partition of A into disjoint sets Ay, ..., Ag such that
D uea, Sla) = Bforeachi=1,... k7 0

The constraints of the above problem imply that each subset A; in the
partition Aj,..., Ay contains exactly three elements of A; hence the name

3-PARTITION.

Theorem 6.4 [GJ79] 3-PARTITION is NP-complete in the strong sense.
O

We give a pseudo-polynomial transformation from 3-PARTITION to the
unordered subtree problem with logical variables (UST-V). Let an instance
of 3-PARTITION be given by the set A = {aq,..., a3}, the positive integer
bound B and the positive integer sizes s(a) for each element a of A. We
represent the instance of 3-PARTITION as an instance of tree inclusion with
logical variables as follows. Set A is represented by the leaves of a pattern

79

P = (V,E,root(P)) consisting of a root and kB leaves. Fach element a; of
A is represented by a unique variable symbol x;, called the label of a;. For
each element a; of A we label s(a;) leaves of P by the label «; of a;. The root
of P is labeled by 0. A target T' = (W, F, root(T')) consisting of a root and
kB leaves represents the partitioning of A. The leaves of T" are divided into
k groups of B nodes; the nodes in group ¢ are labeled by 2. The root of T'is
labeled by 0. (See Figure 6.2.)

s(a;) nodes

labeled by x;

Figure 6.2: Trees P and T corresponding to an instance of 3-PARTITION.

Lemma 6.5 Let a set A = {a1,...,as;} with a size s(a) for each of its
elements @ and a bound B form an instance of 3-PARTITION. Let (P,T)
be the representation of the instance of 3-PARTITION as an instance of the
unordered subtree problem with logical variables. Then there is a pattern
isomorphism between P and T' if and only if there is a partition of A into
disjoint sets Ay,..., Ay such that 3 ., s(a) = B for eachi =1,... k.

Proof. Let W; = {w € W | label(w) = ¢} be the set of the nodes of T
that are labeled by ¢. Then |W;|= B for:=1,... k.

First assume that there is a partition of A into disjoint sets {Aq,..., A}
such that) ., s(a) = Bforeachi=1,....k Fori=1,... k, let

Vi={v eV |label(v) = x; and a; € A;}

be the set of the nodes of P that are labeled by the label z; of some element
a; € A;. Sets Vi,...,V; form a partition of the leaves of P in disjoint
subsets. For each element a; there are s(a;) leaves of P labeled by ;. Since

> uea, S(a) = B, we have that |V;| = B for each 7 = 1,... k. Therefore for
each ¢ = 1,...,k there is a bijection f; between the sets V; and W,. Now it

80

is easy to see that the function

k

| £: U {(root(P), root(T'))}

=1

is a pattern isomorphism between P and T.

Assume for the converse that there is a pattern isomorphism f between
Pand T. Let V; = {v € V| f(v) € W.} be the set of the nodes of P that f
maps to nodes of T' labeled by ¢. For all the leaves v of P denote the label
of v by @,. Foreach i =1,... . klet L; = {z, € Var | v € V;} be the set of
variables that are labels of nodes in set V;. Because f is a variable respecting
function from the nodes of P to the nodes of T', the sets Lq,...,L; form a
partition of the set of variables occurring in P. For each : = 1,... k let

Ai:{a]‘EA|$]‘ELZ’}

be the set of elements a; of A whose label x; belongs to set L;. Now it is
clear that the sets Ay,..., Ay form a partition of A.

Then we show that the total size EaeAi s(a) of each subset A; in the
partition Aq,..., Ar of A equals B. The leaves of P are labeled so that
s(aj) = [{v € V | label(v) = x;}| for each element a; of A. Since two sets of
pattern nodes labeled by the labels of two different elements of A are disjoint
we see that

Z s(aj) =| U {v eV |label(v) = x;}|

a;EA; a;€EA;

for each ¢ = 1,..., k. Now for each ¢ = 1,...,k we have

U {v eV |label(v) =x;} = U {v eV |label(v) = x;}

a;€EA; z €L,
= {veV |z, €L}
- V.
Because f is a bijection, |V;| = |W;| = B for each i = 1,... k. O

Note that in the above construction any pattern embedding of P into T
is also a pattern isomorphism since both P and T' consist of a root node and
kB leaves. Therefore we have shown that none of the unordered inclusion

problems with logical variables is easier than 3-PARTITION.

81

Theorem 6.6 The unordered inclusion problems with logical variables are

NP-hard. O

Benanav, Kapur, and Narendran have derived closely related results for
matching terms built of logical variables and symbols in a ranked alpha-
bet [BKN8T]. Especially, they show that commutative matching of terms is
NP-complete.

We have studied mainly trees as representations for terms. Terms can
be represented concisely as directed graphs by sharing the representations
of some identical subterms. Applying this idea to the trees of the previ-
ous transformation leads to a proof of the NP-completeness of a version of
GRAPH HOMOMORPHISM. Given two graphs G and H, the problem of
GRAPH HOMOMORPHISM is to decide whether a graph isomorphic to H
can be obtained from G by a sequence of identifications of non-adjacent ver-
tices. The effect of identifying two vertices v and v is to replace them by
a single new vertex that is adjacent to all the vertices that were previously
adjacent to v or v. It is well known that GRAPH HOMOMORPHISM is an
NP-complete problem [GJ79].

A multigraph is a graph which may have more than one edge between two
vertices. Two multigraphs GG = (Viz, F) and H = (Vig, Ep) are isomorphic
if there are bijections f : Vi — Vg and ¢ : K — Ep such that for all
vertices u and v € V7 and all edges e € Eg we have that e is an edge from
u to v if and only if g(e) is an edge from f(u) to f(v). A graph is acyelic if
none of its nodes can be reached by following a nonempty sequence of edges
starting from the node itself. Let u be a vertex in a directed graph G. If u
has no incoming edges and all vertices of GG are reachable from u we say that
u is the root of graph G.

Now we can show that GRAPH HOMOMORPHISM is NP-complete also
in the version where both graphs G and H are directed acyclic multigraphs
with a single root, and whose longest paths contain only two nodes. The proof
is rather similar to the previous reduction. Let an instance of 3-PARTITION
be given by a set A = {a1,..., a3}, a positive integer bound B and a positive
integer size s(a) for each element a of A. Then we build a multigraph G out
of a root and a distinct node v, for each element a of A; v, is pointed to
by s(a) edges starting from the root of GG. Multigraph H is built out of a
root and k other nodes; each of the non-root vertices of H are pointed to
by B edges starting from the root of H. Now it is easy to see that there is
a partition of A in k£ disjoint subsets, each having total size B if and only
if G can be made isomorphic to H by identifying non-adjacent vertices of

82

(. (Identifying two vertices v,, and v,, of GG corresponds to choosing the
elements a; and az of A to the same subset in the partition.)

The proof of NP-hardness of the ordered inclusion problems with logical
variables OTI-V, OPI-V and ORI-V is by a reduction from the NP-complete
problem 3-SATISFIABILITY [GJ79].

Problem 15 (3-SATISFIABILITY, 3SAT)

Given a collection C' = {¢q, ..., ¢} of clauses, each consisting of three literals
over a finite set of variables U, decide whether there is a truth assignment
for U that satisfies each clause in C. O

The problem 3SAT can be reduced in polynomial time to ordered tree
inclusion with logical variables, ordered path inclusion with logical variables,
and ordered region inclusion with logical variables. Let an instance of 3SAT
be given by the set of clauses C' = {e¢1,..., ¢}, where |¢;| = 3 for all + =
L,..., k. We represent C' as the following instance (P,T') of ordered tree
inclusion with logical variables. Pattern tree P consists of a root node labeled
by 0 and of k immediate subtrees P,..., P;. Fach pattern subtree P; is a
straightforward representation of clause ¢;; for an example see Figure 6.3.

©

©
©

Figure 6.3: The pattern subtree representing clause {z,y, z}.

The target tree T consists also of a root node labeled by 0 and of &
immediate subtrees Ti,...,Ty. Target subtree T} is a representation for the
group of clauses consisting of the seven instances of clause ¢; that evaluate to
true. Fach immediate subtree of T; is obtained from the immediate subtree

83

of pattern subtree P; by substituting zeros and ones for its variables. An
example is shown in Figure 6.4.

ONO
© ®

Figure 6.4: The target subtree representing the true instances of clause
{w,9,2}.

Now it is easy to check that there is an ordered pattern embedding of
P in T if and only if C' is satisfiable. Further, there is an ordered pattern
embedding of P in T if and only if there is an ordered path pattern embedding
of P in T, which holds if and only if there is an ordered region pattern
embedding of P in T'. We have derived the following result.

Theorem 6.7 The problems

1. ordered tree inclusion with logical variables (OTI-V),
2. ordered path inclusion with logical variables (OPI-V), and

3. ordered region inclusion with logical variables (ORI-V)
are NP-hard. O

6.3 Ordered child inclusion with logical vari-
ables

In this section we outline how the ordered child inclusion problems with
logical variables OCI-V and OST-V can be solved in the same asymptotic

84

time as the corresponding inclusion problems OCI and OST. We considered
solving the ordered child inclusion problem OCI in Section 4.9 and the subtree
problems, including the ordered subtree problem OST, in Section 4.10. The
new feature in the problems with logical variables is the need to consider
only embeddings that respect variables.

Let P be a pattern tree with logical variables and let T' be a target tree.
In order to test whether an embedding of P in T respects variables we must
check whether the subtrees of the target that are matched by similarly labeled
variable nodes are identical. Checking whether trees T'[u] and T'[v] are identi-
cal can be done in time O(min{|T[u]|, |T'[v]|}) by simply comparing the trees
node-by-node against each other. If we have preprocessed target T" we can
decide in constant time whether the trees rooted by two nodes of T" are iden-
tical. Indeed, repeated occurrences of identical subtrees can be represented
by links to a single representative of those trees, leading to a representation
of T" as a directed acyclic graph. We call the link to the representative of
a tree U the signature of U. Recognizing identical substructures is called

common subexpression elimination.'! Common subexpression elimination in

a tree T' can be performed in time O(|T']) [DST80]. (See also [F5590].)

The image of the root of P determines unambiguously the images of all
the other pattern nodes in an ordered child embedding of P in T'. This
means that there are at most n ordered child pattern embeddings into a
target of size n. Assume that common subexpression elimination has been
performed in the target T'. The basic tree pattern matching method can
be extended to check the consistency of variable matches simultaneously
with the top-down traversal of the pattern. This can be done for example
by using an array that stores the bindings for each variable symbol in the
pattern. When the algorithm compares the first node labeled by a variable
r against a target node wu, it stores the signature of T'[u] in the slot of x.
Then the later comparisons between pattern nodes labeled by x and target
nodes v are performed by comparing the signature stored in the slot of x and
the signature of T'[v]. Clearly this requires a total O(m) time at each of the
O(n) potential occurrences of the pattern. These considerations lead to the
following result.

Theorem 6.8 Ordered child inclusion with logical variables can be solved
in O(mn) time. 0

!This process is employed for example in optimizing programming language compilers
to produce efficient code for evaluating arithmetic expressions [AU77].

89

Ramesh and Ramakrishnan call ordered child inclusion with logical vari-
ables nonlinear tree pattern matching. They have presented in [RR88] and
in [RR92] an algorithm for the problem working in time O(s(P)n), where
s(P) is the suffix index of the pattern. As discussed in Section 4.9, the suffix
index is ©(m) in the worst case.

Next we consider solving the ordered subtree problem with logical vari-
ables. Let P be a pattern with logical variables consisting of m nodes, and
let T be a target tree consisting of n nodes. In subtree problems the pattern
instances are of the same size as the pattern. Therefore we can form a flat
set of candidate occurrences in O(n) time by selecting those target subtrees
that have m nodes. The instance relation of the ordered subtree problem
with logical variables is tested between P and a tree U by comparing P and
U node-by-node against each other; constant nodes have to be identical and
pattern leaves labeled by identical variables have to match at identical target
leaves. The method outlined above for checking the consistency of variable
matches can be applied also here. Therefore we see that the instance re-
lation of ordered subtree problem with logical variables is linearly solvable.
Lemma 4.35 gives then the following result.

Theorem 6.9 The ordered subtree problem with logical variables is solvable
in O(n) time. 0

6.4 Polynomial subclasses of ordered tree in-
clusion with logical variables

In this section we consider some cases where the decision version of the
ordered pattern inclusion problem D-OTI-V is solvable in polynomial time.
We focus on ordered inclusion since we believe it to be a feasible operation
for practical data retrieval. In Chapter 7 we show how ordered tree inclusion
with logical variables can be applied to querying structured text databases.
Let tree P be a pattern with logical variables. A variable symbol z is
repeating in P if there are at least two nodes labeled by = in P. A pattern
node that is labeled by a non-repeating variable matches at every node. This
rule is easy to add to the tree inclusion algorithms of Chapter 4; therefore
the decision versions of inclusion problems with logical variables are solvable
in the same time as the corresponding tree inclusion problems, as long as no
variable occurs more than once in the pattern. We assume in the sequel that
the non-repeating variable nodes are handled this way in the algorithms.

86

A strategy for solving inclusion problems with logical variables is first to
substitute signatures of target subtrees to the variables of the pattern (see
Section 6.3), and then apply the corresponding tree inclusion algorithm. If
the number of different variables occurring in P is limited by a constant k,
the ordered decision problems can be solved in polynomial time: Consistent
substituting produces at most n* different instantiations of the pattern, and
each of them can be handled in time that is polynomial in m and n using
algorithms for ordered tree inclusion problems.

There are some weaker restrictions to ordered tree inclusion with logical
variables that also result in polynomially solvable problems. The general
strategy is to consider cases where the effect of variable bindings is localized,
i.e., the interaction between the substitutions to different variables of the
pattern is limited. One way to achieve this is to consider separable patterns.

Let F' be a forest (or a tree). Recall from Section 4.7 that a sibling

interval of F' is a nonempty sequence (uq,...,u;) of nodes of F, where node
uiy1 1s the next sibling of w; for each ¢ = 1,...,k — 1. Forest (T1,...,T})
is a sibling forest in F, if there is a sibling interval (uq,...,ux) of F such

that T; = F|u,] for each i = 1,... k. For each pattern P and each variable
x appearing in P there is a unique sibling forest F' in P with the property
that F' contains all z-nodes but no sibling forest in F' other than F' itself
contains all z-nodes. We call such a forest F' the x-forest of P. A pattern
P is separable if for any two distinct repeating variables = and y the z-forest
and the y-forest of P are disjoint. Note that if F'is an x-forest of a separable
pattern P, then no variable label occurs both in F' and in any sibling forest
GG in P that is disjoint from F'; in such situations we say that the forests F
and G are variable disjoint.

Let &€ be the set of all ordered pattern embeddings of a forest I of patterns
with logical variables into a forest or tree (G. Then the left embeddings of
& are called left pattern embeddings of F' in (G. Now the previous results of
Section 4.5 about constructing left embeddings extend easily to constructing
left pattern embeddings of variable disjoint forests.

Theorem 6.10 Let [’ be a forest of patterns with logical variables and let
T be a tree. There is an ordered pattern embedding of F' in T if and only if
there is a left pattern embedding of F'in T O

Theorem 6.11 Let F' = (Py,..., P;) where k > 2 be a forest of patterns

with logical variables and let T' be a tree. Let Iy = (P,..., P;) and Fy =
(Piy1,..., Py) where 1 <1 < k be two variable disjoint subforests of F. Let

87

f be a left pattern embedding of F} in T" and let £ be the set of such ordered
pattern embeddings g of Fy in T that g(root(Piy1)) € rr(f(root(F;))). Then
the following hold:

1. If £ is empty, there is no ordered pattern embedding of F in T

2. If € is nonempty and ¢ is a left pattern embedding of &£, then f U g is
a left pattern embedding of F'in T 0

Assume that P is a separable pattern containing at least two repeating
variables, and that 7' is a target tree. We outline an efficient method to decide
whether there is an ordered pattern embedding of P in T'. The overall idea
is to compute left pattern embeddings for variable disjoint subforests of the
pattern. This can be done applying Algorithm 4.23. The pattern nodes that
do not belong to any variable forest are treated exactly as in Algorithm 4.23.
Consider then the first node u in postorder of an z-forest F' of P. Let p be
the parent node of forest F' and let the children of p be py,...,pr. Let the
children p; and p; of p be the roots of the leftmost and the rightmost trees
of forest F'. The situation is depicted in Figure 6.5.

Figure 6.5: The context of an z-forest F' in pattern P.

For each target node w we compute a left pattern embedding f,, of the
forest £ = (P[p1],..., Plp;]) in the subtrees of node w. This is done by

88

substituting the signature s of each target subtree in turn for variable = in
F, and applying Algorithm 4.23 to the resulting instance of F’ and target
T. The collection of left embeddings of all the instantiations of F’ to the
subtrees of node w is the collection of ordered pattern embeddings of F to
the subtrees of w, and f, is a left embedding of this collection. Note that left
embeddings for the forest (P[pi],..., P[pi—1]) have already been computed,
and that the only pattern nodes that are needed to compute f,, are p;,_1 and
the nodes of z-forest F'.

The total time of applying Algorithm 4.23 to one instantiation of each
variable forest of P is O(mn). There are at most n different instantiations,
which leads to total time O(mn?) for the variable forests of P. This com-
putation dominates the O(mn) time used for the pattern nodes outside the
variable forests of P. We have the following result.

Theorem 6.12 For a given separable pattern P with logical variables and
a tree T we can test in time O(mn?) whether there is an ordered pattern

embedding of P in T O

6.5 Summary of complexities

The table below summarizes the complexity results for the inclusion problems
with logical variables. The notations are explained in Section 4.11.

incl. ‘ path incl. ‘ region incl. | child incl. | subtree

ordered NP-hard O(mn) O(n)
unordered NP-hard

Table 6.1: The complexities of the inclusion problems with logical variables

We derived relative lower bounds for the complexities of many of the
inclusion problems with logical variables. The NP-hard problems can be
considered to be in general intractable. We showed in Section 6.4 that or-
dered tree inclusion with logical variables is solvable in polynomial time when
the patterns are separable. One can search for other efficiently solvable sub-
classes of the problems. Another open question is the complexity of child
inclusion with logical variables; both nontrivial lower bounds and more effi-
cient algorithms for the problem could be searched for.

89

Chapter 7

Applying tree inclusion to
structured text databases

In this chapter we show how tree inclusion can be applied to querying struc-
tured text databases. Using tree inclusion as a query primitive provides
data independence and strong expressiveness with concise query syntax. The
chapter is organized as follows. Section 7.1 reviews some methods that are
used or proposed for modeling and retrieving computerized text data, and
explains our idea of a structured text database. In Section 7.2 we explain
how tree inclusion with logical variables can be applied to querying data in
a structured text database, and give examples of its usage. We show that
tree inclusion owns some power of recursive database queries, and that the
primitive is robust with respect to certain modifications of the database. The
evaluation of queries is discussed in Section 7.3.

7.1 Text databases

A text database system is a system for storing, editing, and querying text
documents. In this section we review different approaches to modeling and
querying text databases, and describe our idea of a text database.

Efficient locating and accessing of relevant text documents has been ac-
tively studied in the area known as information retrieval (IR) already since
1960’s. Information retrieval has been mainly concerned with identifying
those text documents in bibliographic databases that best satisfy the user’s
information needs. This identification traditionally happens by comparing a
set of keywords given by the user against the contents of the database [SM83].

90

In IR the result of a retrieval is a set of documents. Documents can be for
example books, scientific reports, or newspaper articles.

We can deviate from information retrieval by allowing more flexible query-
ing and manipulating of sub-parts of the text instead of restricting it to
fixed complete documents. This leads to approaches to modeling document
databases that we classify as text-based, grammatical, and hypertext.

An obvious approach for storing text documents is to try to apply tra-
ditional data models and database techniques. Despite their many virtues,
commercial database systems do not seem most appropriate for manipulat-
ing text documents, which often have complicated structure and contain free
text of variable length. Enhancements to a relational database management
system to support document processing have been proposed in [SSL*83].

A text-based system views text documents as strings. An example is the
PAT™ free text search system. The PAT system has initially been devel-
oped for efficiently accessing the computerized version of the Oxford English
Dictionary [Tom92]. The query language of the PAT system allows searching
any substrings of the text stored in the system [ST92].

In Chapter 5 we touched upon modeling text databases by context-free
grammars. A grammatical system models the structure of data by grammars.
The conceptual view of a document in a grammatical system is a parse tree.
A text database system that utilizes and maintains the structure of text
documents is called a structured text database system.

The p-string algebra of Gonnet and Tompa [GT87] has been an influ-
ential query language proposal for structured text databases. The p-string
algebra is a procedural language for the manipulation of parse trees. Gyssens,
Paradaens, and Van Gucht have further developed both an algebraic and a
logic-oriented language for querying grammatical databases [GPG89]. Man-
nila’s and Raihd’s work [MR90] on query languages for the p-string data
model has been an important source of inspiration for this thesis. Ordered
tree inclusion appears as a primitive in the calculus of [MR90].

The implementation of the Lexical Query Language (LQL) [Byr89] is a
system for querying static structured text documents. LQL combines model-
ing ideas from grammatical text databases and user-intertace ideas from the
Query-by-Example database query language [Z1o77].

Helsinki Structured Text Database System (HST) [KLMN90] is a pro-
totype text database system that is based on modeling text documents by
context-free grammars. HST enables the manipulation of structured docu-
ments on two levels of abstraction. On the higher level, the database designer

91

can define views for producing different textual appearances out of the doc-
ument instances in the database [Nik90]. Views are annotated grammars,
which resemble syntax directed translation schemas [AU72]. Ad-hoc queries
can be given in HST by writing small programs in the P-string Query Lan-
guage (PQL) [KLM7*91]. PQL is a procedural derivative of the p-string
algebra.

Burkowski has proposed a containment model that lies between the text-
based and grammatical approaches [Bur92]. Containment model views a
text database as a collection of concordance lists. A concordance list is a
list of contiguous non-overlapping text segments like occurrences of a word
or chapters. The containment model provides an algebra for selecting sub-
lists of concordance lists based on relative containment criteria of their text
segments. The abstraction level of the containment model is rather close to
the concepts of the PAT language. On the other hand, Burkowski describes
a text database system based on the containment model that utilizes the
structure of the documents and supports interfaces with a hierarchic view of
the text.

Hypertext is a way to organize information in a collection of nodes con-
nected by associative links [SW88]. While grammatical systems view docu-
ments as parse trees, hypertext systems view them as graphs. The typical
way to search information from a hypertext database is to use a graphical
user interface to navigate through the database by following the links.

We take the grammatical approach to a text database and view it as a
collection of parse trees over some grammar. Each document is presented
in the database as a labeled and ordered tree. The internal nodes of the
trees are labeled by nonterminals of the grammar, and they correspond to
meaningful document components like titles, headers, chapters, and para-
graphs. The leaves of the database trees are text strings contained in the
document components that correspond to their parent nodes. For example,
the leaf below a node u labeled by title would be the text content of the
title-structure represented by node u. This kind of databases can originate
from explicit representations of document structures conforming for example
to standards like ODA and SGML [Bro89]. In our model a search is used
for locating subtrees of the database. This means that a search can either
return complete documents or their parts.

92

7.2 Querying with inclusion patterns

In this section we show how tree inclusion with logical variables can be ap-
plied to querying structured text data. We use ordered tree inclusion with
logical variables for several reasons. First, ordered inclusion allows express-
ing both containment and ordering conditions that are essential in structured
text documents. It is characteristic for example of books that their chapters
consist of sections consisting of subsections, and so forth, and that the or-
dering of the chapters and sections is essential. Second, inclusion patterns
allow irrelevant structures to be ignored in the queries. Third, we believe
that queries based on ordered tree inclusion with logical variables can be
implemented efficiently. We discuss the evaluation of inclusion queries in
Section 7.3.

The tree inclusion problems with logical variables, as were defined in
Chapter 6, are a viable query formalism as such. Variables in the patterns
can be used to retrieve parts of the target. We extend now the syntax slightly.
A tree pattern can state conditions on the values of the variables that occur
in the pattern, that is, we can restrict the retrieved parts of data by their
context. It is often useful also to be able to access parts of the database by
their content. For this reason we allow patterns of the form

rip, (7.1)

where x is a variable and p is a term. We say that expression (7.1) attaches
variable x to the root of Tree(p). This gives a way to attach variables also to
the constant nodes of patterns. We say that a variable x occurs at pattern
node v if v 1s labeled by = or x is attached to node v. To take this extension
into account in the definition of pattern embeddings, we require that all
pattern nodes where a variable x occurs have to be mapped to roots of
identical subtrees of the target.

We also allow strings as leaves of the patterns and agree that a string s
matches at a target leaf [if s is a substring of [. This is a simple way to
treat strings in patterns; for practical purposes one can provide e.g. matching
based on regular expressions.

A single pattern can state a single structural condition on the data. We
often need to express multiple search conditions. For this reason we define a
query to be a sequence of patterns, all of which are matched or embedded in
the database simultaneously.

Before defining the precise meaning of queries we present some exam-
ples of applying inclusion patterns to structured text documents. We use in

93

the examples Prolog-like syntax [CM84, SS86], where lower-case identifiers
are constants, upper-case identifiers are variables, patterns constituting the
query are represented as terms separated by commas and queries are preceded
by “?- 7. The examples are borrowed from [Byr89]. They consider query-
ing the Collins-Robert French Dictionary. The simplified structure of the
dictionary used in the examples can be described by the following grammar.

dictionary — eng-fren fren-eng
eng-fren — entry”

fren-eng — entry”

entry — hdw superhom*
superhom — pronunc homograph™
homograph — { homnum } pos translat

That is, the dictionary consists of the English-French part and the French-
English part, in this order. Each part consists of entries formed of a head-
word followed by a number of superhomographs; a single written word can
have various pronunciations that differ in their meaning; each of them is
treated in its own superhomograph. Finally the superhomographs consist
of homographs containing possibly a homograph number, the part-of-speech
indication (e.g., a verb or a noun), and the translation. The nonterminals
for which no productions are shown produce plain text.

entry
hdw superhom
pronunc homograph homograph
homnum pos translat homnum pos translat
“Cluck” “klAk” “177 “Vi” Cﬁglousser” “277 C(n” (Cgloussement”

Figure 7.1: The parse tree of the dictionary entry for cluck.

94

For example, the English-French entry for cluck, whose representation as
a tree is shown in Figure 7.1, has one superhomograph with two homographs.
A typical typeset appearance of the entry could be as below.

cluck [klak] 1 vi glousser. 2 n gloussement.

The following query would fetch the whole entry for cluck. Note that the
query pattern needs to express only those components of the entry that are
relevant for fetching it.

?- X : entry(hdw(”cluck”)).

The following query accesses only the parts-of-speech and translation fields
for cluck.

?- entry(hdw(”cluck”), homograph(pos(P), translat(T))).

Compare the two queries above. The first query describes the wanted-for
complete entry X by its partial content, whereas the second one describes
the wanted-for strings P and T' by their partial context. Also note how the
second query restricts the structures matched by pos(P) and translat(T) to
appear inside the same homograph.

Sometimes we need to express multiple search conditions. For instance,
assume that we do not know the relative order of the translations of a word.
Then we might give the following query to fetch those English words that
can be translated by both glousser and gloussement. (This feature is a con-
sequence of the decision to restrict to ordered inclusion.)

?- eng-fren(entry(hdw(X), translat("glousser”))),
eng-fren(entry(hdw(X), translat(”gloussement”))).

Finally, repeating variables allow expressing join-like queries quite easily.
For example, the following query shows all English words F that are trans-
lations of any French words F' that are themselves translations of capital.

?- eng-fren(entry(hdw(”capital”), translat(F))),
fren-eng(entry(hdw(F), translat(F))).

Next we define the meaning of queries on trees and forests. Let () =
Pi,...,P. be a query and T" a tree or a forest. The nodes of the trees
Py, ..., P, are the nodes of query (). Let f be a function from the nodes of
query () to the nodes of T'. If f maps nodes u and v of () to the roots of

95

identical subtrees of T' whenever the same variable occurs at v and v we say
that f respects variables in query (). If function f respects variables in ()
and the restriction f; of f to P, is an ordered pattern embedding of P; in T
foreach ¢ =1,...,k then fis a query embedding of () in T'. The substitution
consisting of the bindings « = Term(T[f(v)]), where x is a variable that
occurs at a node v of () and f is a query embedding of () in T, is a solution
to query Q) on T'. The set of solutions to query) on T is the answer to query
Q onT.

Let T be a tree or a forest. Denote by st(T') the set of all subtrees of T,
and by st°(T') the set of all proper subtrees of 7.

Example 7.1 Let T be a tree, X a variable and a a constant symbol. The
answer to the query ()7 = X on tree T' is the set of substitutions

{X =t} | IU e st(T):t = Term(U))} .

That is, query () in effect retrieves every subtree of tree T
The answer to the query ()3 = X : a on tree T is the set of substitutions

H{X =t} | JU € st(T) : label(root(U)) = a and t = Term(U))} .

That is, query (), retrieves every subtree of T' rooted by an a-node.
The answer to the query Q3 = a(X) on tree T is the set of substitutions

H{X =t} IV e st(1)TV € st°(U)
label(root(U)) =a and t = Term(V))} .

That is, query ()3 retrieves all proper subtrees of the subtrees of T" whose
root is labeled by a. a

We show in the next example how tree inclusion with logical variables
can be used to access arbitrarily deep structures easily. Assume that the
database contains information about the structure of various engines. Fach
engine has a name and consists of named components. The components are
either basic components or compound components that consist recursively
of other components. The problem is to find out the names for the basic
components of a given engine. Problems like this are often used as examples
for the need of recursive database queries [CGT90]. The database in question
can be modeled as a structured text database by the following grammar.

96

engines — engine”

engine — engine-name component”®
component — compound-comp
component — basic-comp
compound-comp — name component*
basic-comp — name

In a database modeled by the above schema the following inclusion query
would compute the names for all basic components of vacuum cleaner.

?- engine(engine-name(”vacuum cleaner”), basic-comp(X)).

As a query primitive, tree inclusion is tolerant to certain variations in
the structure of the data. Let T be a database represented as a tree or a
forest, and let M be a modification of 1. Denote the modified version of
the database by M(T'). We say that a query () on database T'is robust with
respect to modification M if applying query ¢ on M(T') gives the same result
as modifying by M the answer of () on T'. We omit the precise definitions.
Still, we note that the inclusion primitive owns some robustness. Let P =
(V, E,root(P)) and T be trees. If there is an ordered embedding f of P in
T, there is also an ordered embedding of P in T’, when tree T’ is obtained
from T by deleting any nodes not belonging to f(V'), or by inserting any
new nodes in 7'. Let now T be a structured text database and () a simple
inclusion query expressed as x : p, where x is a variable and p is a variable-
free term. Then the above considerations show that modifying database T'
by inserting in 7' or deleting from 7" any nonterminals or strings that do not
appear in P does not essentially change the answer to query (); the same
trees are retrieved, although possibly modified.

A serious query language would need many features in addition to those
represented in this chapter. An ability to express negation like “Accept
here the structures that are not matched by this pattern” and disjunctive
conditions like “Accept here the structures matched by this or that” would
certainly be useful in practice. Another extension that might be useful is the
introduction of Prolog-like rules. A rule that consists of a head and a query-
like body would generate new structures as instantiations of its head by all
the solutions to its body. The rules could also be allowed to be recursive and
be given a fixed-point semantics, but the need for such a powerful extension
is not clear yet.

97

7.3 Evaluation of queries

The evaluation of queries poses interesting algorithmic questions that have
already been discussed in the previous chapters. We saw in Section 6.2 that
answers to inclusion queries may consist of exponentially many solutions. We
showed that even the decision version of ordered tree inclusion with logical
variables is NP-complete. Here we give some hints for solving queries con-
sisting of a sequence of inclusion patterns. The treatment is rather sketchy.

Let) = P,..., P, be a query and T" a database represented as a tree
or a forest. We can solve the query by generating one solution at a time by
a strategy that resembles the backtracking-based control of Prolog [WarT77,
Bru82, MWS88]. That is, we first find a solution for the first pattern and
instantiate the variables in the remaining patterns using it. Then the eval-
uation continues similarly with the remaining patterns. When no solution
to some pattern instance can be found, or when the entire query has been
solved, the control backtracks to the most recently solved pattern and tries
to seek a new solution for it.

There are two basic kinds of optimizations found in relational query pro-
cessors, namely algebraic manipulation and cost-estimation strategies [UllI89].
We discussed in Section 5.3 some possibilities for transforming the inclu-
sion queries to more restricted forms by using the grammar of the database.
Such methods can be considered to correspond to the optimization of queries
through algebraic manipulation. Query optimization algorithms usually take
indices into account because their usage can render the evaluation of database
queries essentially more efficient. Next we discuss some ideas about using in-
dices in the evaluation of inclusion queries.

Lexicographical indices like inverted files [Knu73] and PAT trees [GBYS91]
allow efficiently locating occurrences of words in text files. An inverted file is
a sorted list of keywords together with links to the documents that contain
them. The indices in most commercial library systems are inverted files. A
PAT tree for a text is a Patricia tree [Knu73] built from all suffixes of the
text. A PAT tree allows locating the occurrences of any substring s of the
text in time that is proportional to the length of s and to the number of the
occurrences. (Counting the number of those occurrences can be done even
in time that depends only on the length of s.) PAT trees are used in the
implementation of the PAT™ text search system.

We saw in Section 5.2 how simple inclusion queries can be solved in O(n)
time on a database that is modeled by a nonperiodic grammar. We also
claimed that most text databases seem to be natural to model using non-

98

periodic grammars. However, for large databases no method of answering a
query is acceptable if it needs to scan through the entire database. Luck-
ily, most useful query patterns contain string components that restrict the
number of possible occurrences drastically. Therefore a reasonable strategy
of evaluating such queries is first to locate the occurrences of their string
components in the database, and then concentrate on the ancestors of these
occurrences in the evaluation of the rest of the pattern. This kind of an
approach has been taken in the Maestro project [Mac91], where a prototype
retrieval tool for hierarchic text structures has been implemented on top of
the full text retrieval system Ful/Text.

Note that the patterns forming a query can be treated in any suitable
order. In fact, patterns or pattern instances that do not have any vari-
ables in common do not affect each other and can be solved even in parallel.
Some orders of matching the patterns may be though much more economical
than others. For example, reconsider from Section 7.2 the following query
for finding the FEnglish counterparts for the French translations of the word
“capital”.

?- eng-fren(entry(hdw(”capital”), translat(F))),
fren-eng(entry(hdw(F), translat(F))).

Now the second pattern
fren-eng(entry(hdw(F), translat(E)))

is likely to have at least one embedding in each entry of the French-English
dictionary. Thus solving it first would produce a large number of instan-
tiations of the first pattern to be matched against the database. On the
other hand, solving the first pattern first is much better: It has probably
a small number of embeddings to the dictionary, and produces therefore a
small number of instantiations of the other pattern. For the evaluation of a
query consisting of many patterns it can be useful to try to find an ordering
that is likely to minimize the number of alternatives to be considered.

We outline a simple heuristic for ordering patterns in the query. The
heuristic is inspired by the query planning algorithm of [War81]. The ordering
of patterns is based on the frequencies of string occurrences in the database,
which can be easily found in a suitable index. Assume that a PAT tree has
been built from the strings in the leaves of a database tree (or forest) 7.
Then the number of occurrences of any string s in the leaves of the database
can be extracted from the index in time ©(|s|). We call this number the

99

cost of string s in T'. The cost of a label a in T is defined to be the number
of times that label a appears in database T'. Let P = a(...) be a pattern.
Define the cost of pattern P in T' be the minimum of the cost of label a and
the costs of any string appearing in P. The meaning of the cost of a pattern
P in T is that it is an estimate for the number of solutions to P on T'. The
above cost function is a crude one; more complicated cost functions could
lead to more accurate estimates.

Now the strategy for optimizing the evaluation order of patterns is simple:
select a pattern with the smallest cost and find a solution to the pattern.
Then the same process is started anew for the remaining patterns instantiated
by that solution.

On the basis of the above considerations we believe that evaluating in-
clusion queries can be done reasonably efficiently in practice.

100

Chapter 8

Conclusions

We have studied a collection of tree matching problems called tree inclusion
problems. The general motivation for this research comes from the impor-
tance of tree structures and from the intuitiveness of pattern matching as an
access operation. A specific motivation for these problems is the research of
structured text databases and their query languages.

In Chapter 3 we introduced the tree inclusion problems as variations of
the general problem of locating instances of a given pattern tree among the
subtrees of a given target tree. The common feature of various tree inclusion
problems is that the instances contain distinct nodes that correspond to
the pattern nodes and have similar hierarchical relationships. The classes
of unordered and ordered inclusion problems result, correspondingly, if we
either ignore the left-to-right ordering of pattern nodes or require that the
pattern instances resemble the pattern also with respect to this ordering.

We offered a unified treatment for the problems by presenting algorithms
for most of them in Chapter 4. Most of the algorithms were derived from
a single dynamic programming schema. New algorithms were presented for
the unordered and ordered tree inclusion problems. We derived upper com-
plexity bounds for the tree inclusion problems from their algorithms. The
lower bounds of most of the problems are open. We showed that unordered
tree inclusion is an NP-complete problem. The relationship between tree
matching and string pattern matching with don’t care symbols, which has
been noted by Kosaraju, implies that the ordered path inclusion and region
inclusion problems cannot be solved asymptotically faster than string pat-
tern matching with don’t care symbols. No linear time algorithm is known
for string pattern matching with don’t care symbols.

The |P|x |T'| space required by the dynamic programming algorithms can

101

be prohibitive in applications with large targets T. In the case of ordered
tree inclusion we solved this problem by presenting an algorithm whose space
complexity is O(|P| depth(T')). The result is significant for applications where
the patterns can be expected to be small or the targets can be expected to
be shallow.

We presented a simple general condition for tree matching problems to
be solvable in linear time. In Chapter 5 we considered G-grammatical tree
matching problems where the targets are parse trees over some grammar
GG. The general condition was applied to showing that G-grammatical tree
pattern matching and ordered tree inclusion can be solved in linear time with
nonperiodic grammars G. Such grammars seem sufficient for modeling many
practical text databases. We also outlined how a grammar G can be used to
preprocess patterns in G-grammatical matching problems.

In Chapter 6 we extended tree inclusion problems by logical variables.
The variables can be used to extract substructures of the pattern instances
and to express equality constraints on them. We gave many NP-hardness
results for the tree inclusion problems with logical variables and sketched
efficient algorithms for the polynomial variants.

The intended application of the inclusion problems is in structured text
databases. In Chapter 7 we showed how tree inclusion can be used for query-
ing structured text databases and gave examples of using inclusion queries.
Tree inclusion was shown to be a powerful and robust query primitive. We
also discussed how inclusion queries can be evaluated efficiently in practice
by utilizing lexicographical indices.

We plan to develop a complete query language for structured text databases
based on these notions.

102

Bibliography

[ACT5]

[AHUT74]

[Ang80]

[AUT2]

[AUTT]

[BDK*91]

[BKNS7]

[BolS6]
[BRS4]

[Bro89]

A. V. Aho and M. J. Corasick. Efficient string matching: an aid
to bibliographic search. Communications of the ACM, 18(6):333—
340, June 1975.

A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley, 1974.

D. Angluin. Finding patterns common to a set of strings. Journal
of Computer and System Sciences, 21:46—62, 1980.

A. V. Aho and J. D. Ullman. The Theory of Parsing, Translation,
and Compiling, vol I and II. Prentice-Hall, 1972.

A. V. Aho and J. D. Ullman. Principles of Compiler Design.
Addison-Wesley, 1977.

G. Burosch, J. Demetrovics, G. O. H. Katona, D. J. Kleitman,
and A. A. Sapozhenko. On the number of databases and closure
operations. Theoretical Computer Science, 78:377-381, 1991.

D. Benanav, D. Kapur, and P. Narendran. Complexity of match-
ing problems. Journal of Symbolic Computation, 3(1&2):203-216,
February/April 1987.

B. Bollobas. Combinatorics. Cambridge University Press, 1986.

F. Bancilhon and P. Richard. Managing texts and facts in a mixed
data base environment. In G. Gardarin and E. Gelenbe, editors,
New Applications of Data Bases, pages 87-107. Academic Press,
1984.

H. Brown. Standards for structured documents. The Computer

Journal, 32(6):505-514, December 1989.

103

[Bru82]

[Bur92]

[Byrg9]

[CGTY0]

[Chu87]

[CTVS6]

[CM84]

[CooTl]

[DGM90]

[DSTS0]

M. Bruynooghe. The memory management of Prolog implemen-
tations. In K. L. Clark and S.-A. Tarnlund, editors, Logic Pro-
gramming, pages 83-98. Academic Press, 1982.

F. J. Burkowski. Retrieval activities in a database consisting
of heterogeneous collections of structured text. In N. Belkin,
P. Ingwersen, and A. M. Pejtersen, editors, Proceedings of the
Fifteenth Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, pages 112-125.
ACM Press, June 1992.

R. J. Byrd. LQL user notes: An informal guide to the lexical
query language. Technical Report RC 14853 8/17/89, IBM T.J.
Watson Research Center, August 1989.

S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and
Databases. Springer-Verlag, 1990.

M. J. Chung. O(n*?) time algorithms for the subgraph homeo-
morphism problem on trees. Journal of Algorithms, 8:106-112,

1987.

G. Coray, R. Ingold, and C. Vanoirbeek. Formatting structured
documents: Batch versus interactive. In J. C. van Vliet, edi-
tor, Text Processing and Document Manipulation, pages 154-170.
Cambridge University Press, 1986.

W. F. Clocksin and C. S. Mellish. Programming in Prolog.
Springer-Verlag, second edition, 1984.

S. A. Cook. The complexity of theorem-proving procedures. In
Proc. of the 3rd Annual ACM Symposium on Theory of Comput-
ing, pages 151-158. ACM, 1971.

M. Dubiner, Z. Galil, and E. Magen. Faster tree pattern match-
ing. In Proc. of the Symposium on Foundations of Computer
Science (FOCS90), pages 145-150, 1990.

P. J. Downey, R. Sethi, and R. E. Tarjan. Variations of the
common subexpression problem. Journal of the ACM, 27(4):758—
771, October 1980.

104

[Dub90]

[FP74]

[FQASS]

[FSS90]

[GBYS91]

[GJT8]

[GJIT9]

[GPGRY]

[Gro91]

[GTST]

[HK 73]

P. Dublish. Some comments on the subtree isomorphism problem
for ordered trees. [Information Processing Letters, 36:273-275,
1990.

M. J. Fischer and M. S. Paterson. String-matching and other
products. In Complezity of Computation, pages 113-125. STAM-
AMS, 1974.

R. Furuta, V. Quint, and J. André. Interactively editing struc-
tured documents. FElectronic Publishing, 1(1):19-44, 1988.

P. Flajolet, P. Sipala, and J.-M. Steyaert. Analytic variations
on the common subexpression problem. In Automata, Languages
and Programming, pages 220-234. Springer-Verlag, 1990.

G. H. Gonnet, R. A. Baeza-Yates, and T. Snider. Lexicographical
indices for text: Inverted files vs. PAT trees. Report OED-91-01,
UW Centre for the New Oxford English Dictionary and Text
Research, 1991.

M. R. Garey and D. S. Johnson. “Strong” NP-completeness re-
sults: Motivation, examples and implications. Journal of the

ACM, 25(3):499-508, July 1978.

M. R. Garey and D. S. Johnson. Computers and Intractability.
W. H. Freeman and Company, 1979.

M. Gyssens, J. Paradaens, and D. Van Gucht. A grammar-based
approach towards unifying hierarchical data models. Report, Uni-
versity of Antwerp, Dept. of Math. and Comp. Science, 1989.

R. Grossi. A note on the subtree isomorphism for ordered trees
and related problems. Information Processing Letters, 39:81-84,
1991.

G. H. Gonnet and F. Wm. Tompa. Mind your grammar - a new
approach to text databases. In Proc. of the Conference on Very
Large Data Bases (VLDB’87), pages 339-346, 1987.

J. E. Hopcroft and R. M. Karp. An n®? algorithm for maxi-
mum matching in bipartite graphs. SIAM Journal on Computing,
2(4):225-231, December 1973.

105

[HOS2]

[HU79]

[Joh&7]

[KLM+91]

C. M. Hoffman and M. J. O’Donnell. Pattern matching in trees.
Journal of the ACM, 29(1):68-95, January 1982.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata The-
ory, Languages, and Computation. Addison-Wesley, 1979.

D. S. Johnson. The NP-completeness column: An ongoing guide.
Journal of Algorithms, 8:285-303, 1987.

P. Kilpelainen, G. Lindén, H. Mannila, E. Nikunen, and K.-J.
Raiha. The data model and query language of the Helsinki struc-
tured text database system (HST). Technical report, University
of Helsinki, Department of Computer Science, November 1991.

[KLMN90] P. Kilpeldinen, G. Lindén, H. Mannila, and E. Nikunen. A

[KM91a]

[KM91h]

[KM92]

[Knu69]

[Knu73]

structured document database system. In R. Furuta, editor,
EP90 — Proceedings of the International Conference on FElec-
tronic Publishing, Document Manipulation & Typography, The
Cambridge Series on Electronic Publishing. Cambridge Univer-
sity Press, 1990.

P. Kilpelainen and H. Mannila. Ordered and unordered tree in-
clusion. Report A-1991-4, University of Helsinki, Dept. of Comp.
Science, August 1991. To appear in SIAM Journal on Computing.

P. Kilpelainen and H. Mannila. The tree inclusion problem. In
S. Abramsky and T. S. E. Maibaum, editors, TAPSOFT 91, Proc.
of the International Joint Conference on the Theory and Practice
of Software Development, Vol. 1: Collogium on Trees in Algebra
and Programming (CAAP’91), pages 202-214. Springer-Verlag,
1991.

P. Kilpelainen and H. Mannila. Grammatical tree matching. In
A. Apostolico, M. Crochemore, 7. Galil, and U. Manber, editors,
Proceedings of the Third Annual Symposium on Combinatorial
Pattern Matching, pages 162—174. Springer-Verlag, 1992.

D. E. Knuth. The Art of Computer Programming, volume 1.
Addison-Wesley, 1969.

D. E. Knuth. The Art of Computer Programming: Sorting and
Searching, volume 3. Addison-Wesley, 1973.

106

[Kos89]

[Mac91]

[Mat68]

[MR0]

IMWSS]

[Nik90]

[PS82]

[QV86]

[Rey77]

[RRSS]

[RR92

S. R. Kosaraju. Efficient tree pattern matching. In Proc. of
the Symposium on Foundations of Computer Science (FOCS'89),
pages 178-183, 1989.

I. A. Macleod. A query language for retrieving information from
hierarchic text structures. The Computer Journal, 34(3):254-264,
1991.

D. W. Matula. An algorithm for subtree identification. SIAM
Rev., 10:273-274, 1968. Abstract.

H. Mannila and K.-J. Raiha. On query languages for the p-string
data model. In H. Kangassalo, S. Ohsuga, and H. Jaakkola, ed-
itors, Information Modelling and Knowledge Bases, pages 469—
482. 10S Press, 1990.

D. Maier and D. S. Warren. Computing with Logic - Logic Pro-
gramming with Prolog. The Benjamin/Cummings Publishing
Company, Inc., 1988.

E. Nikunen. Views in structured text databases. Phil.lic. thesis,

University of Helsinki, Department of Computer Science, Decem-

ber 1990.

C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimiza-
tion: Algorithms and Complexity. Prentice-Hall, 1982.

V. Quint and . Vatton. Grif: An interactive system for structured
document manipulation. In J. C. van Vliet, editor, Text Pro-
cessing and Document Manipulation, pages 200-213. Cambridge
University Press, 1986.

S. W. Reyner. An analysis of a good algorithm for the subtree
problem. STAM Journal on Computing, 6(4):730-732, December
1977.

R. Ramesh and I. V. Ramakrishnan. Nonlinear pattern matching
in trees. In T. Lepisto and A. Salomaa, editors, Automata, Lan-
guages and Programming, pages 473-488. Springer-Verlag, 1988.

R. Ramesh and I. V. Ramakrishnan. Nonlinear pattern matching

in trees. Journal of the ACM, 39(2):295-316, April 1992.

107

[RSS6]

[Sel77]

[SFS3]

[SMS3]

[Spe28]

[SS86]
[SSL+83]

[ST92]

[SWSS]

[Tai79]

[Tar83]

[Tom92]

[U1189]

N. Robertson and P. D. Seymour. Graph minors. I1. Algorithmic
aspects of tree-width. Journal of Algorithms, 7:309-322, 1986.

S. M. Selkow. The tree-to-tree editing problem. Information
Processing Letters, 6(6):184-186, December 1977.

J.-M. Steyaert and P. Flajolet. Patterns and pattern-matching in
trees: An analysis. Information and Control, 58:19-58, 1983.

G. Salton and M. J. McGill. Introduction to Modern Information
Retrieval. McGraw-Hill, 1983.

E. Sperner. Ein Satz tiber Untermengen einer endlichen Menge.

Math. 7., 27:544-548, 1928.
L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.
M. Stonebraker, H. Stettner, N. Lynn, J. Kalash, and

A. Guttman. Document processing in a relational database

system. ACM Transactions on Office Information Systems,
1(2):143-158, April 1983.

A. Salminen and F. Wm. Tompa. PAT expressions: an algebra
for text search. Technical Report OED-92-02, UW Centre for
the New Oxford English Dictionary and Text Research, 1992.

J. B. Smith and S. F. Weiss. An overview of hypertext. Commu-
nications of the ACM, 31(7):816-819, July 1988.

K.-C. Tai. The tree-to-tree correction problem. Journal of the
ACM, 26(3):422-433, July 1979.

R. E. Tarjan. Data Structures and Network Algorithms. Society
for Industrial and Applied Mathematics, 1983.

F. Wm. Tompa. An overview of Waterloo’s database software

for the OED. In T. R. Wooldridge, editor, Historical Dictionary
Databases, pages 125-143. University of Toronto, 1992. Centre
for Computing in the Humanities Working Papers 2.

J. D. Ullman. Principles of Database and Knowledge-Base Sys-
tems, volume II: The New Technologies. Computer Science Press,

1989.

108

[Ver92]

[vL90]

[WarT7]

[War81]

[WJ7591]

[Z1077]

[7.589]

[ZSWO1]

[ZSW92]

R. M. Verma. Strings, trees, and patterns. Information Processing

Letters, 41:157-161, March 1992.

J. van Leeuwen. Graph algorithms. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, chapter 10. Elsevier
Science Publishers B.V., 1990.

D. H. D. Warren. Implementing Prolog - compiling predicate logic
programs. Volumes 1 and 2. D.A.L research reports 39 and 40,
Department of Artificial Intelligence, University of Edinburgh,
May 1977.

D. H. D. Warren. Efficient processing of interactive relational
database queries expressed in logic. In Proceedings of the Seventh
International Conference on Very Large Data Bases, pages 272—
281. Computer Society Press, 1981.

J. T.-L. Wang, K. Jeong, K. Zhang, and D. Shasha. Reference
manual for ATBE — a tool for approximate tree pattern match-
ing. Technical Report 551, New York University, Dept. of Comp.
Science, Courant Institute of Mathematical Sciences, March 1991.

M. Zloof. Query-by-example: a data base language. IBM Systems
Journal, 16(4):324-343, 1977.

K. Zhang and D. Shasha. Simple fast algorithms for the editing
distance between trees and related problems. SIAM Journal on

Computing, 18(6):1245-1262, December 1989.

K. Zhang, D. Shasha, and J. T.-L. Wang. Approximate tree
matching in the presence of variable length don’t cares. Submitted
for publication, July 1991.

K. Zhang, D. Shasha, and J. T.-L. Wang. Fast serial and par-
allel algorithms for approximate tree matching with VLDC’s. In
A. Apostolico, M. Crochemore, 7. Galil, and U. Manber, editors,
Proceedings of the Third Annual Symposium on Combinatorial
Pattern Matching, pages 151-161. Springer-Verlag, 1992.

109

