
Tree Matching Problems with Applicationsto Structured Text DatabasesPekka Kilpel�ainenPh.D. dissertationDepartment of Computer Science, University of HelsinkiReport A-1992-6, Helsinki, Finland, November 1992

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/14916884?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AbstractTree matching is concerned with �nding the instances, or matches, of a givenpattern tree in a given target tree. We introduce ten interrelated matchingproblems called tree inclusion problems. A speci�c tree inclusion problemis de�ned by specifying the trees that are instances of the patterns. Theproblems di�er from each other in the amount of similarity required betweenthe patterns and their instances. We present and analyze algorithms forsolving these problems, and show that the computational complexities of theproblems range from linear to NP-complete.The problems are motivated by the study of query languages for struc-tured text databases. The structure of a text document can be described bya context-free grammar, and text collections can be represented as collectionsof parse trees. Matching-based operations are an intuitive basis for accessingthe contents of structured text databases. In \G-grammatical" tree inclusionproblems the target tree is a parse tree over a context-free grammar G. Weshow that a certain natural class of grammars allows solving some of thegrammatical inclusion problems in linear time.Tree inclusion problems are extended by introducing logical variables inthe patterns. These variables allow extracting substructures of the patternmatches and posing equality constraints on them. We show that most of thetree inclusion problems with logical variables are NP-hard, and also considersolving their polynomial versions. As an application of these problems we�nally show how tree inclusion with logical variables can be used for queryingstructured text databases, and discuss how the inclusion queries should beevaluated in practice.

Contents1 Introduction 12 Preliminaries 53 Tree inclusion problems 113.1 Unordered tree inclusion : 113.2 Ordered tree inclusion : 133.3 Unordered path inclusion : 153.4 Ordered path inclusion : 163.5 Unordered region inclusion : 173.6 Ordered region inclusion : 183.7 Unordered child inclusion : 193.8 Ordered child inclusion : 203.9 Unordered subtree problem : : : : : : : : : : : : : : : : : : : 213.10 Ordered subtree problem : 223.11 Relating various inclusion problems : : : : : : : : : : : : : : : 234 Solving tree inclusion problems 264.1 A general solution scheme : 274.2 Unordered tree inclusion is NP-complete : : : : : : : : : : : : 314.3 An algorithm for unordered tree inclusion : : : : : : : : : : : 344.4 Solving unordered path inclusion problems : : : : : : : : : : : 394.5 Left ordered embeddings : 444.6 Left embedding algorithm : 474.7 A space e�cient algorithm for ordered tree inclusion : : : : : : 514.8 Solving ordered path inclusion problems : : : : : : : : : : : : 574.9 Classical tree pattern matching : : : : : : : : : : : : : : : : : 604.10 Subtree problems are solvable in linear time : : : : : : : : : : 624.11 Summary of complexities : 641

5 Grammatical tree inclusion 655.1 Grammatical targets and tree pattern matching : : : : : : : : 655.2 Solving ordered tree inclusion on nonperiodic targets : : : : : 695.3 Preprocessing grammatical patterns : : : : : : : : : : : : : : : 716 Tree inclusion with logical variables 746.1 Logical variables in patterns : : : : : : : : : : : : : : : : : : : 746.2 Complexity of inclusion problems with logical variables : : : : 786.3 Ordered child inclusion with logical variables : : : : : : : : : : 846.4 Polynomial subclasses of ordered tree inclusion with logicalvariables : 866.5 Summary of complexities : 897 Applying tree inclusion to structured text databases 907.1 Text databases : 907.2 Querying with inclusion patterns : : : : : : : : : : : : : : : : 937.3 Evaluation of queries : 988 Conclusions 101

Chapter 1IntroductionTrees are one of the most important ways of structuring data. They are suit-able for representing any information with hierarchical structure. Trees canbe used to represent natural language sentences, computer programs, alge-braic formulae, molecule structures, and family relationships, just to mentionsome application areas.Pattern matching is the process of locating substructures of a larger struc-ture, the target, by comparing them against a given form called the pattern.Posing pattern matching requests is descriptive by nature in the sense thatone describes how the results of the search should look like, instead of ex-pressing how they are to be found. This makes pattern matching a centraloperation in many declarative programming systems, and also a promisingframework for the retrieval of information.Matching of tree structures and the related uni�cation problem have animportant role in the de�nition and implementation of functional and logicprogramming languages like Lisp and Prolog. Representing terms as treestructures is typical in those systems. For example, consider a programmingsystem that deals with simplifying arithmetic expressions. The system mightbe required to simplify a term like f(1; (0 + 2 � 3); 4) that represents somefunction f applied to arguments 1, 0 + 2 � 3 and 4. This term could berepresented inside the system as the following tree structure.1

������������������������ ����������� ZZZ��� ZZZ��� ZZZf1 +0 �2 34Assume that the system includes a rewriting rule 0+x! x, which tells thatany expression of the form 0 + x can be simpli�ed to x. Now this rule canbe implemented by treating the left-hand side of the rule as the pattern treebelow. ������������ZZZ���0 + xThe earlier tree that represents the object of simpli�cation is then treated as atarget tree, and the pattern is matched against the target. Matching succeedsagainst the subtree whose root is labeled by the +-sign. The simpli�cationstep can be implemented by replacing that tree by its second subtree thatwas matched by the x-node of the pattern. The result is as follows.�������������������� ������� ZZZ��� ZZZf1 4�2 3The above was an example of classical tree pattern matching. In thisproblem the pattern describes its matches rather precisely. For instance, theprevious pattern matches only against trees that have exactly two immediate2

subtrees, whose root label is +, and whose �rst subtree is 0; the secondsubtree of the pattern occurrences can be arbitrary.Sometimes we may need more liberal matching of tree structures thanclassical tree pattern matching. For example, assume that we have a largecollection of parse trees for some natural language sentences. Figure 1.1 isan example of such a parse tree. PPPPPP������LLLL���� bbbbb#####

 JJJ\the" \tightly"\cat"\boy" \holds"\The" \big"
snp ndet vp advv det adj nnpFigure 1.1: A parse treeLinguists might want to locate sentences from the collection by expressingconditions on the form of their parse trees. For example the following querieson the data might be of interest.1. Locate those sentences that contain verb \holds", noun \cat", and someadverb.2. Locate those sentences that contain a noun phrase consisting of deter-miner \the", adjective \big", and noun \cat", in this order.3. Extract the nouns that are preceded in a verb phrase by the verb\holds".4. Extract the words that appear in a sentence both as a verb and a noun.The richness of natural language leads to very diverse syntactic structures andmakes queries like those above di�cult to express using classical tree patternmatching. We consider in this thesis extensions of the tree pattern matching3

problem that allow us to express conditions like those above. We call theseextensions tree inclusion problems. The �rst two sample queries above canbe treated as tree inclusion problems, where we search for occurrences of apattern tree. The last two queries above can be treated as inclusion problemsextended with logical variables. Logical variables can be used to extractsubstructures of the pattern occurrences and for posing equality constraintson those structures.The speci�c application that we have in mind is to apply tree matchingto locating structures in structured text databases. Various text documentscomprise some kind of internal structure. Examples of such documents aremanuals for software and equipment, encyclopedias, and dictionaries. Astructured text database system is a computer system that utilizes the struc-ture of the texts in its task of storing and manipulating text documents.The model for text databases that we consider uses grammars as databaseschemas and parse trees as database instances. In this setting, pattern treescan be given as queries for locating parts of interest in database trees.The main theme of the thesis is the study of reasonable variations ofpattern matching on tree structures. The contents are organized as follows.Chapter 2 presents the basic notions of trees that are used in the rest of thethesis. Tree inclusion problems are introduced in Chapter 3. In Chapter 4we consider solving these problems. We give a general solution scheme forthe problems, and present and analyze algorithms for solving particular treeinclusion problems. The computational complexities of the problems areshown to range from linear to NP-complete.In Chapter 5 we discuss application oriented special cases called grammat-ical tree inclusion problems. In a grammatical problem the target is a parsetree over some grammar. We show that the class of so called nonperiodicgrammars allow certain tree inclusion problems to be solved in linear time.We also discuss possibilities to preprocess the pattern when the grammarof the target is known. In Chapter 6 we consider extending the tree inclu-sion problems by allowing the patterns to contain logical variables. Most ofthe tree inclusion problems with logical variables are shown to be NP-hard.Solving the polynomially solvable problems and some polynomial subclassesof ordered tree inclusion with logical variables are considered at the end ofChapter 6. In Chapter 7 we discuss querying structured text databases usingtree inclusion. We give examples of using inclusion queries and outline howthey should be evaluated in practice. Chapter 8 is a conclusion.4

Chapter 2PreliminariesThis chapter de�nes the basic notions of trees and their components usedin the rest of the thesis. The concepts are standard and can be found,although with slightly di�ering notations, in many sources that deal withtree algorithms; [Knu69], [AHU74], and [Tar83] are three basic references.A binary relation on a set D is a subset of the cartesian product D �D.Let R be a binary relation on D. The transitive closure of R, denoted byR+, and the reexive transitive closure of R, denoted by R�, are de�ned asfollows: R0 = f(x; x) j x 2 Dg ;Rn+1 = f(x; y) j 9 z 2 D : (x; z) 2 R; (z; y) 2 Rng ; for n � 0;R+ = [n>0Rn ; andR� = [n�0Rn = R0 [R+ :A rooted tree is a structure T = (V;E; root(T)), where V is a �nite setof nodes, root(T) 2 V is a node called the root of tree T , and E is a binaryrelation on V that satis�es the conditions listed below. If (u; v) 2 E, we saythat (u; v) is an edge and that node u is the parent of node v, denoted byparent(v). The set of edges must satisfy the following:1. The root has no parent.2. Every node of the tree except the root has exactly one parent.3. All nodes are reachable via edges from the root, i.e., (root(T); v) 2 E�for all nodes v 2 V . 5

If we omit the special status of the root of a rooted tree and the directionof the edges, we get an unrooted tree. We consider only rooted trees if notespecially stated otherwise.Rooted trees are a special case of directed graphs; graphs do not poserestrictions on their edges. The nodes of a graph are also called vertices. Agraph (tree) is labeled, if a function label from the nodes of the graph (tree)to some alphabet is given.A path in a directed graph is a sequence of edges (v1; v2), (v2; v3), : : :,(vn�1; vn); this is called a path from v1 to vn and its length is n � 1. In atree there is a unique path from the root to each node. We de�ne the depthor the height of a tree T , denoted by depth(T), to be one greater than thelength of the longest path in T .The nodes of a rooted tree with a common parent are children of theirparent, denoted by children(u) = fv 2 V j (u; v) 2 Eg :A node without children is a leaf. Nodes which are not leaves are internalnodes. Leaves are sometimes called external nodes. The descendants of anode u are de�ned bydesc(u) = fv 2 V j (u; v) 2 E+g ;and the ancestors of u are de�ned byanc(u) = fv 2 V j (v; u) 2 E+g :The set Ai(u) = fv 2 V j (v; u) 2 Eig is obviously for each i either empty ora singleton; if it is a singleton, the node v belonging to the set Ai(u) is calledthe ith ancestor of u. A node is its own zeroth ancestor, and the parent isthe �rst ancestor of a node.A rooted tree is ordered if the children of each internal node having kchildren are uniquely numbered by 1; : : : ; k. Let u be a node in an orderedtree. The child number i of node u is denoted by child (u; i). If node u has kchildren (k > 0), the node child (u; 1) is the leftmost child of u, and child(u; k)is the rightmost child of u.Let u be a node in a rooted tree T = (V;E; root(T)). The subtree of Trooted by node u, denoted by T [u], is the tree (V 0; E 0; u), whereV 0 = fug [desc(u) ; andE 0 = E \ (V 0 � V 0) :6

The subtrees of a tree T are the trees rooted by the nodes of T . If T is orderedor labeled, the labeling of nodes and ordering of children in the subtrees of Tare the same as the labeling and ordering in T . The tree rooted by the childnumber i of a node u is called the subtree number i of node u. The subtreesof root(T) are the immediate subtrees of tree T . A subtree of T is a propersubtree of T if it is not rooted by the root of T .We can omit the ordering of an ordered tree and consider it as an un-ordered tree. In the sequel, if not stated otherwise, we mean by trees orderedand labeled trees. Trees have a natural representation as linear terms. Let Tbe a tree with immediate subtrees T1; : : : ; Tk and label (root(T)) = a. Thenthe term representation of T , denoted by Term(T), is de�ned inductively byTerm(T) = a(Term(T1); : : : ;Term(Tk)) ;if k = 0, we omit the parentheses after a. If s is the term representationof a tree T , we say that T is the tree represented by term s, and denote itby Tree(s). Sometimes we refer to tree Tree(s) simply by term s. For anexample, see Figure 2.1. ��������������������@@@### a dcb aFigure 2.1: The tree represented by the term a(b; c(a); d).A forest is an ordered sequence of trees no two of which have nodesin common. The forest of trees T1; : : : ; Tk is denoted by hT1; : : : ; Tki. LetF = hT1; : : : ; Tki be a forest, and u a node in a tree Ti of F . The subtree ofF rooted by u, denoted by F [u], is de�ned by F [u] = Ti[u]. The subtrees ofa forest F are the subtrees of the trees in F .The subtrees of a node u with k children in a tree T form the foresthT [child(u; 1)]; : : : ; T [child(u; k)]i. The roots of the trees forming a forestare siblings to each other. Let u = root(Ti) in a forest hT1; : : : ; Tki. If i > 1,the nodes root(Tj) where 1 � j < i are left siblings of node u, and root(Ti�1)is the previous sibling of u. If i < k, the nodes root(Tj) where i < j � k are7

right siblings of u, and root(Ti+1) is the next sibling of u. Usually we do notdistinguish between a single tree T and the forest hT i.The nodes u of a forest F = hT1; : : : ; Tki where k > 0 can be assignedpreorder numbers pre(u) along the following rules:1. The preorder number of root(T1) is 1.2. The preorder number of the leftmost child of a node u is pre(u) + 1.3. Let node u be the next sibling of node v, and let p be the largestpreorder number assigned to the nodes in F [v]. Then pre(u) = p+ 1.The leaf in a forest F with the smallest preorder number is the leftmost leafof F , and the leaf with the greatest preorder number is the rightmost leaf ofF . Postorder numbers are assigned to the nodes of a forest hT1; : : : ; Tki wherek > 0 by the following rules:1. Let u be the leftmost leaf of T1. Then the postorder number post(u) ofu is 1.2. Let u be an internal node, and let p be the largest postorder numberassigned to the descendants of u. Then post(u) = p + 1.3. Let node v be the next sibling of node u. Then the postorder numberof the leftmost leaf of F [v] is post(u) + 1.Figure 2.2 is an example of preorder and postorder numbering.The following lemma binds the ancestorship relation and the preorderand postorder numbers together.Lemma 2.1 Let u and v be nodes in a forest F . Then u is an ancestor of vif and only if pre(u) < pre(v) and post(u) > post(v).Proof. See Exercise 2.3.2-20 in [Knu69]. 2Many of the tree inclusion problems in the next chapter can be character-ized operationally by tree edit operations. Tree edit operations form the basisfor the edit distance of trees, which can be used for measuring the similarityof trees. This topic is discussed in [Sel77], [Tai79], and [ZS89].Let u be a node in a tree T . The e�ect of the deletion of node u fromT is as follows. If u is the root of T , the result is the forest of immediatesubtrees of T . Otherwise, let u be the ith child of a node v. In this case8

���������������� ����
��������
�������� �������� ������������ @@@ �������� JJJ%%% HHHH aaaaa8 1413129542 67 10 1131 VII XIVXIIXIX IX VIIIVIVIII VI XIIIIII

Figure 2.2: Numbering nodes of a forest. The preorder numbers are shownas Arabic numbers inside the nodes, and the postorder numbers are shownas Roman numbers to the left of the corresponding nodes.the result is tree T with node u removed and the edge from v to u replacedby edges from v to the children of u. The relative order of children doesnot change: Let the children of v be v1; : : : ; vi; : : : ; vk, and the children ofu be u1; : : : ; ul. Then, after the removal of u = vi, the children of v arev1; : : : ; vi�1; u1; : : : ; ul; vi+1; : : : ; vk. For an example, see Figure 2.3.������ ��������������� ��������������� ���eee%%% eee%%% HHHHHH����� ��� @@@dfe gcb auT delete(T; u) af db e gFigure 2.3: The e�ect of deleting the node u from the tree T .An insertion is the inverse operation of a deletion. Two derived operationscan be de�ned by the deletion of nodes [WJZS91]. Pruning at a node umeansdeleting all the descendants of u. Cutting at a node u means pruning at u9

and deleting u.Another basic tree editing operation is the permutation of siblings. Let u,v and p be nodes in tree T with u = child (p; i) and v = child (p; j). Permutingu and v changes u to be child (p; j) and v to be child (p; i).

10

Chapter 3Tree inclusion problemsThe general tree inclusion problem given a pattern tree P and a target treeT is to locate the subtrees of T that are instances of P . A speci�c inclusionproblem is de�ned by �xing the instance relation that speci�es the instancesof each pattern. The pattern is said to match or occur at the root of the treesthat are instances of the pattern. If P matches at a node v of T , we say thatv is an occurrence of P .In this chapter we introduce ten interrelated inclusion problems on trees.The problems are introduced by restricting their instance relation step bystep. The problems divide into two groups of �ve problems: the unorderedproblems, where the left-to-right order of the pattern nodes does not mat-ter, and the ordered problems, where it does matter. The motivation forintroducing the problems is to provide means of locating data in a targettree by giving a pattern tree that describes the wanted-for occurrences on anappropriate level of precision.The problems are introduced in Sections 3.1 through 3.10. Section 3.11relates the instance relations of the problems together. Solving the problemsis considered in Chapter 4.3.1 Unordered tree inclusionTree inclusion problems are de�ned via embeddings between trees. Let P =(V;E; root(P)) and T = (W;F; root(T)) be trees. An injective function ffrom the nodes of P to the nodes of T is an embedding of P into T , if itpreserves labels and ancestorship. That is, for all nodes u and v of P werequire that 11

1. f(u) = f(v) if and only if u = v,2. label (u) = label (f(u)), and3. u is an ancestor of v in P if and only if f(u) is an ancestor of f(v) inT .We say that P is an unordered included tree of T if there is an embedding ofP in T . Figure 3.1 shows an example of unordered tree inclusion.����
���� ������������������������������������ cccc####ZZZZ�������� ZZZZ ���� ZZZZTP

baca cb
Figure 3.1: Tree P is an unordered included tree of tree T .Alternative characterizations for the unordered tree inclusion can be given.Intuitively we think that a subset of nodes of the target together with theirinduced ancestorship relation resembles the pattern. Operationally, an un-ordered included tree can be obtained from a tree by deleting nodes andpermuting siblings.Example 3.1 The tree a(b; c(a); d) has 42 unordered included trees. Theyare represented by the terms a, b, c, d, a(a), a(b), a(c), a(d), c(a), a(a; b),a(a; d), a(b; a), a(b; c), a(b; d), a(c; b), a(c; d), a(d; a), a(d; b), a(d; c), a(c(a)),a(a; b; d), a(a; d; b), a(b; a; d), a(b; c; d), a(b; d; a), a(b; d; c), a(c; b; d), a(c; d; b),a(d; a; b), a(d; b; a), a(d; b; c), a(d; c; b), a(b; c(a)), a(c(a); b), a(c(a); d),a(d; c(a)), a(b; c(a); d), a(b; d; c(a)), a(c(a); b; d), a(c(a); d; b), a(d; b; c(a)), anda(d; c(a); b). 212

If P is an unordered included tree of T , then P is an unordered includedtree of every tree that is rooted by an ancestor of root(T). Therefore it isreasonable to consider trees that include P minimally. We say that tree Tincludes P minimally if T includes P but no proper subtree of T does.Problem 1 (Unordered tree inclusion problem, UTI)Given a pattern tree P and a target tree T , locate the subtrees of T thatinclude P minimally. 2A mapping f from the nodes of P to the nodes of T is root preserving, iff(root(P)) = root(T). It is immediate that a tree T includes P minimally ifand only if there is an embedding of P in T and every embedding of P in Tis root preserving.3.2 Ordered tree inclusionThe second inclusion problem, the ordered tree inclusion problem, resultsfrom the previous one by �xing the left-to-right order of nodes. That is,ordered tree inclusion allows us to locate subtrees of the target that con-tain nodes that agree with the nodes of the pattern with regard to labeling,ancestorship relation, and the left-to-right order induced by the target.An embedding of a tree P into a tree T is an ordered embedding of P intoT , if it preserves the left-to-right-order of nodes. That is, for all nodes u andv of pattern P we have thatpost(u) < post(v) if and only if post(f(u)) < post(f(v)) :Since f preserves the ancestorship, the above condition is by Lemma 2.1equivalent to requiring thatpre(u) < pre(v) if and only if pre(f(u)) < pre(f(v)) :Tree P is an ordered included tree of T , and T is an ordered includingtree of P , if there is an ordered embedding of P into T . For an example ofordered tree inclusion see Figure 3.2.Again, the instance relation can also be characterized operationally: treeP is an ordered included tree of T , if P can be obtained from T by deletingnodes. 13

����
���� ������������������������������������ cccc####ZZZZ�������� ZZZZ ���� ZZZZ cbTP aa cb

Figure 3.2: Tree P is an ordered included tree of tree T .Example 3.2 The tree a(b; c(a); d) has 20 ordered included trees. They area, b, c, d, a(a), a(b), a(c), a(d), c(a), a(a; d), a(b; a), a(b; c), a(b; d), a(c; d),a(c(a)), a(b; a; d), a(b; c; d), a(b; c(a)), a(c(a); d), and a(b; c(a); d). 2A tree T includes tree P with order minimally if P is an ordered includedtree of exactly one subtree of T , namely T itself.Problem 2 (Ordered tree inclusion problem, OTI)Given a pattern tree P and a target tree T , locate the subtrees of T thatinclude P with order minimally. 2Again it is immediate that U includes tree P with order minimally if andonly if there is an ordered embedding of P into U and every ordered embed-ding of P into U is root preserving. It is obvious from the de�nitions thatif P is an ordered included tree of T , then P is also an unordered includedtree of T . On the other hand, a tree T can include P with order minimallyand have a proper subtree that includes P without order minimally: Con-sider trees P = a(b; c) and T = a(b; a(c; b)). Now T includes P with orderminimally, but the subtree a(c; b) of T includes P without order minimally.The ordered tree inclusion problem appears in Exercise 2.3.2-22 of [Knu69];in the solution Knuth gives a su�cient condition for the existence of an or-dered embedding. 14

3.3 Unordered path inclusionAn embedding f of a tree P = (V;E; root(P)) in a tree T = (W;F; root(T))is a path embedding if it preserves the parent relation. That is, for all nodesu and v, (u; v) 2 E if and only if (f(u); f(v)) 2 F :Pattern tree P is an unordered path-included tree of target tree T if thereis a path embedding of P in T . For an example see Figure 3.3. Intuitively,a path-included tree of T consists of paths originating from a single node ofT . ����
���� ������������������������������������ cccc####ZZZZ�������� ZZZZ ���� ZZZZTP ba c acb

Figure 3.3: Tree P is an unordered path-included tree of tree T .Let G = (V;E) and H = (W;F) be two directed and labeled graphs. Abijection f : V ! W that satis�es label (v) = label (f(v)) for all v 2 V , andwhere (u; v) 2 E if and only if (f(u); f(v)) 2 F , is an isomorphism betweenG and H. The graphs are isomorphic if there is an isomorphism betweenthem. A graph G0 = (V 0; E 0) is a subgraph of G, if V 0 � V and E 0 � E. Nowa tree P is an unordered path-included tree of a tree T if and only if P isisomorphic to a subgraph of T .Operationally, the unordered path-included trees of T can be obtainedfrom the subtrees of T by cutting and permuting siblings.Example 3.3 The tree a(b; c(a); d) has 31 unordered path-included trees.They are a, b, c, d, a(b), a(c), a(d), c(a), a(b; c), a(b; d), a(c; b), a(c; d),15

a(d; b), a(d; c), a(c(a)), a(b; c; d), a(b; d; c), a(c; b; d), a(c; d; b), a(d; b; c),a(d; c; b), a(b; c(a)), a(c(a); b), a(c(a); d), a(d; c(a)), a(b; c(a); d), a(b; d; c(a)),a(c(a); b; d), a(c(a); d; b), a(d; b; c(a)), and a(d; c(a); b). 2As a search problem, we do not want to locate all unordered path includ-ing trees; instead, we limit ourselves again to root preserving embeddings.Problem 3 (Unordered path inclusion, UPI)Given a pattern tree P and a target tree T , locate the subtrees U of T suchthat there is a root preserving path embedding of P in U . 2It is again immediate from the de�nitions that if P is an unordered path-included tree of T , then P is also an unordered included tree of T .3.4 Ordered path inclusionAn ordered embedding f of a tree P = (V;E; root(P)) in a tree T =(W;F; root(T)) is an ordered path embedding if it preserves the parent rela-tion. Tree P is an ordered path-included tree of tree T , if there is an orderedpath embedding of P in T . Figure 3.4 shows an example of ordered pathinclusion. ����
���� ������������������������������������ cccc####ZZZZ�������� ZZZZ ���� ZZZZcbTP a acb

Figure 3.4: Tree P is an ordered path-included tree of tree T .Intuitively, an ordered path-included tree P of T consists of paths in Thaving a common start node, and the left-to-right order of the nodes are the16

same in P and in T . Operationally, the ordered path-included trees of T canbe obtained from the subtrees of T by cutting.Example 3.4 The tree a(b; c(a); d) has 16 ordered path-included trees. Theyare a, b, c, d, a(b), a(c), a(d), c(a), a(b; c), a(b; d), a(c; d), a(c(a)), a(b; c; d),a(b; c(a)), a(c(a); d), and a(b; c(a); d). 2As a search problem, we do not want to locate all ordered path includingtrees; instead, we restrict ourselves again to root preserving embeddings.Problem 4 (Ordered path inclusion, OPI)Given a pattern tree P and a target tree T , locate the subtrees U of T suchthat there is an ordered root preserving path embedding of P in U . 2It is again immediate from the de�nitions that if P is an ordered path-included tree of T , then P is also an unordered path-included tree of T .3.5 Unordered region inclusionLet P = (V;E; root(P)) and T = (W;F; root(T)) be trees, and let f be apath embedding of P in T . Denote by f(V) the range of f . Embedding f isa region embedding of P in T , if whenever u; v 2 f(V), and v is a right siblingof u, all nodes of T that are right siblings of u and left siblings of v belong tof(V). Pattern tree P is an unordered region-included tree of target tree T , ifthere is a region embedding of P in T . For an example see Figure 3.5.Intuitively, an unordered region-included tree of T is an integral region ofT where the left-to-right order inside the region is irrelevant. Operationally,the unordered region-included trees of T can be obtained from the subtreesof T by �rst repeatedly cutting at some leftmost and rightmost children, andthen permuting the remaining siblings.Example 3.5 The tree a(b; c(a); d) has 29 unordered region-included trees.They are a, b, c, d, a(b), a(c), a(d), c(a), a(b; c), a(c; b), a(c; d), a(d; c),a(c(a)), a(b; c; d), a(b; d; c), a(c; b; d), a(c; d; b), a(d; b; c), a(d; c; b), a(b; c(a)),a(c(a); b), a(c(a); d), a(d; c(a)), a(b; c(a); d), a(b; d; c(a)), a(c(a); b; d),a(c(a); d; b), a(d; b; c(a)), and a(d; c(a); b). 2In the search problem, we restrict ourselves again to root preserving em-beddings. 17

����
���� ������������������������������������

cccc####ZZZZ�������� ZZZZ ���� ZZZZTP c ba acb
Figure 3.5: Tree P is an unordered region-included tree of tree T .Problem 5 (Unordered region inclusion, URI)Given a pattern tree P and a target tree T , locate the subtrees U of T suchthat there is a root preserving region embedding of P in U . 2It is obvious from the de�nition that an unordered region-included treeof T is also an unordered path-included tree of T .3.6 Ordered region inclusionPattern tree P is an ordered region-included tree of target tree T , if there isan ordered region embedding of P in T , i.e., an embedding that preserves theparent relation and the order and adjacency of siblings. For an example ofordered region inclusion see Figure 3.6.Intuitively, an ordered region-included tree of T is an integral region ofT . Operationally, the ordered region-included trees of T can be obtainedfrom the subtrees of T by cutting repeatedly at some leftmost and rightmostchildren.Example 3.6 The tree a(b; c(a); d) has 15 ordered region-included trees.They are a, b, c, d, a(b), a(c), a(d), c(a), a(b; c), a(c; d), a(c(a)), a(b; c; d),a(b; c(a)), a(c(a); d), and a(b; c(a); d). 2We restrict the search problem again to root preserving embeddings.18

����
���� ������������������������������������

cccc####ZZZZ�������� ZZZZ ���� ZZZZcbTP a acb
Figure 3.6: Tree P is an ordered region-included tree of tree T .Problem 6 (Ordered region inclusion, ORI)Given a pattern tree P and a target tree T , locate the subtrees U of T suchthat there is a root preserving ordered region embedding of P in U . 2It is evident that an ordered region-included tree of T is also an unorderedregion-included tree of T .3.7 Unordered child inclusionLet P and T be trees. A path embedding f of P in T is a child embedding, ifit preserves the number of children of the internal nodes. That is, whenevera node u of P has k children, k > 0, then f(u) has also k children. TreeP is an unordered child-included tree of T , if there is a root preserving childembedding of P in T . Tree P is an unordered child-included subtree of T , if Pis an unordered child-included tree of a subtree of T , or equivalently, if thereis a child embedding of P in T . See Figure 3.7 for an example of unorderedchild-included subtree.Operationally, the unordered child-included subtrees of T can be obtainedfrom the subtrees of T by pruning at some nodes, and permuting siblings.Example 3.7 The tree a(b; c(a); d) has 17 unordered child-included sub-trees. They are a, b, c, d, c(a), a(b; c; d), a(b; d; c), a(c; b; d), a(c; d; b),19

����
���� ������������������������������������ cccc####ZZZZ�������� ZZZZ ���� ZZZZTP aca bcb

Figure 3.7: Tree P is an unordered child-included subtree of tree T .a(d; b; c), a(d; c; b), a(b; c(a); d), a(b; d; c(a)), a(c(a); b; d), a(c(a); d; b),a(d; b; c(a)), and a(d; c(a); b). 2Problem 7 (Unordered child inclusion, UCI)Given a pattern tree P and a target tree T , locate the subtrees U of T suchthat P is an unordered child-included tree of U . 2Obviously every child embedding is a region embedding and thereforeevery unordered child-included subtree of T is also an unordered region-included tree of T .3.8 Ordered child inclusionA tree P is an ordered child-included tree of a tree T if there is an orderedroot preserving child embedding of P in T , and P is an ordered child-includedsubtree of T if there is an ordered child embedding of P in T . If f is anordered child embedding of P in T and u is an internal node of P with kchildren, then f(u) has also k children, and f(child (u; i)) = child (f(u); i) forall i = 1; : : : ; k. For an example see Figure 3.8.An ordered child-included tree of T can be considered to be a simpli-�ed representation of the concept represented by T , where the subconceptsrepresented by the descendants of pruned nodes have been abstracted away.20

����
���� ������������������������������������ cccc####ZZZZ�������� ZZZZ ���� ZZZZTP cb aa cb

Figure 3.8: Tree P is an ordered child-included subtree of tree T .Operationally, the ordered child-included subtrees of T can be obtained fromthe subtrees of T by pruning.Example 3.8 The tree a(b; c(a); d) has 7 ordered child-included subtrees.They are a, b, c, d, c(a), a(b; c; d), and a(b; c(a); d). 2Problem 8 (Ordered child inclusion, OCI)Given a pattern tree P and a target tree T , locate the subtrees U of T suchthat P is an ordered child-included tree of U . 2Obviously every ordered child-included tree of T is also an unorderedchild-included tree of T .The ordered child-included subtree problem is usually called the tree pat-tern matching problem. Tree pattern matching has many applications, espe-cially in the implementation of rewriting systems. For this reason, it is themost extensively studied of the inclusion problems presented here. (See forexample [HO82].)3.9 Unordered subtree problemA tree P is an unordered subtree of a tree T , if P is isomorphic to a subtreeof T . Operationally, the unordered subtrees of a tree T are obtained fromthe subtrees of T by permuting siblings. For an example see Figure 3.9.21

����
���� ������������������������������������ cccc####ZZZZ�������� ZZZZ ���� ZZZZTP
c baa cb

Figure 3.9: Tree P is an unordered subtree of tree T .Example 3.9 The tree a(b; c(a); d) has 10 unordered subtrees. They are a,b, d, c(a), a(b; c(a); d), a(b; d; c(a)), a(c(a); b; d), a(c(a); d; b), a(d; b; c(a)), anda(d; c(a); b). 2Problem 9 (Unordered subtree problem, UST)Given a pattern tree P and a target tree T , locate the subtrees U of T thatare isomorphic to P . 2An isomorphism between P and a subtree of T is a child embedding of Pin T , and so every unordered subtree of T is also an unordered child-includedtree of T . We say that an isomorphism between P and a subtree of T is asubtree embedding of P in T just to streamline the terminology.The unordered subtree problem is sometimes erroneously mixed with theunordered path inclusion problem, as was noted in [Dub90].3.10 Ordered subtree problemLet f be an isomorphism between two trees P and U . If f preserves theleft-to-right order of the nodes of P we say that f is an ordered isomorphismof P in U . If there is an ordered isomorphism between two trees we say thatthe trees are identical. In order to streamline the terminology we call anordered isomorphism between P and a subtree of T also an ordered subtreeembedding of P in T . 22

The ordered subtree problem is the most restricted one of the tree inclusionproblems: we search for subtrees of the target that are identical with thepattern. Figure 3.10 shows an instance of the ordered subtree problem.����
���� ������������������������������������ cccc####ZZZZ�������� ZZZZ ���� ZZZZTP

cb aa cb
Figure 3.10: Tree T contains a subtree that is identical to tree P .A tree with n nodes has n ordered subtrees; however some of these maybe identical to each other.Example 3.10 The tree a(b; c(a); d) has 5 ordered subtrees. They are a, b,d, c(a), and a(b; c(a); d). 2Problem 10 (Ordered subtree problem, OST)Given a pattern tree P and a target tree T , locate the subtrees U of T thatare identical to P . 2It is trivial that ordered subtrees of T are also unordered subtrees of T .3.11 Relating various inclusion problemsAfter introducing the problems, let us restate the inclusions of the instancerelations that were noti�ed in the previous sections. First, the unorderedproblems form a chain, in which each problem is a special case of the previousone: 23

Theorem 3.11 Let T be a tree. Then the following inclusions between thesets of unordered included trees of T hold:1. The set of unordered subtrees of T is a subset of the set of unorderedchild-included subtrees of T .2. The set of unordered child-included subtrees of T is a subset of the setof unordered region-included trees of T .3. The set of unordered region-included trees of T is a subset of the setof unordered path-included trees of T .4. The set of unordered path-included trees of T is a subset of the set ofunordered included trees of T . 2The corresponding result holds for the ordered problems.Theorem 3.12 Let T be a tree. Then the following inclusions between thesets of ordered included trees of T hold:1. The set of ordered subtrees of T is a subset of the set of ordered child-included subtrees of T .2. The set of ordered child-included subtrees of T is a subset of the set ofordered region-included trees of T .3. The set of ordered region-included trees of T is a subset of the set ofordered path-included trees of T .4. The set of ordered path-included trees of T is a subset of the set ofordered included trees of T . 2Finally, each ordered problem is a special case of the corresponding un-ordered problem:Theorem 3.13 Let T be a tree. Then the following inclusions between thesets of ordered and unordered included trees of T hold:1. The set of ordered subtrees of T is a subset of the set of unorderedsubtrees of T . 24

2. The set of ordered child-included subtrees of T is a subset of the set ofunordered child-included trees of T .3. The set of ordered region-included trees of T is a subset of the set ofunordered region-included trees of T .4. The set of ordered path-included trees of T is a subset of the set ofunordered path-included trees of T .5. The set of ordered included trees of T is a subset of the set of unorderedincluded trees of T . 2

25

Chapter 4Solving tree inclusion problemsIn this chapter we study algorithms for the tree inclusion problems presentedin the previous chapter.Section 4.1 presents a general algorithm schema that can be modi�ed tosolve many of the specialized inclusion problems, and some mathematicalresults that help analyzing variations of the schema. The time complexitiesof the algorithms are expressed in terms of m and n, where m is the numberof nodes in the pattern, and n the number of nodes in the target. Section 4.3presents algorithms for solving the unordered tree inclusion problem. Thetime required by the algorithms is superpolynomial in m; this seems almostinevitable, since in Section 4.2 we show that the unordered tree inclusionproblem is NP-complete.Section 4.4 considers solving a group of unordered inclusion problemswhose solving and complexity are closely related to computing matchings inbipartite graphs. Those problems are unordered path inclusion, unorderedregion inclusion, and unordered child inclusion. The corresponding orderedproblems, together with ordered tree inclusion, form a group with a com-mon O(mn) upper bound complexity and a conjectured non-linear worst-case lower bound complexity.1 Solving ordered tree inclusion e�ciently isbased on left embeddings, which are introduced in Section 4.5. Section 4.6then presents an algorithm for ordered tree inclusion based on left embed-dings. Another algorithm for ordered tree inclusion that requires in practical1We are mainly concerned with the worst case running time complexities. The followingnotation is used for asymptotics: If f and g are functions on nonnegative variablesm;n; : : :we write f = O(g) if there is a constant c such that f(m;n; : : :) � cg(m;n; : : :) for allsu�ciently large values of m;n; : : :. We write f =
(g) if g = O(f), and f = �(g) iff = O(g) and f =
(g). If limm!1;n!1;::: fg = 0, we may write f = o(g).26

situations substantially less space is then presented in Section 4.7. Solvingordered path inclusion problems is discussed in Section 4.8. We show therethat ordered path inclusion and ordered region inclusion are not easier prob-lems than string matching with don't care symbols, for which no linear timealgorithm is known.The ordered child inclusion problem, i.e., the widely studied classical treepattern matching di�ers from the other O(mn) problems, since it has recentlybeen shown to be solvable in o(mn) time. Methods for solving classical treepattern matching are discussed in Section 4.9. Finally, the easiest groupof problems solvable in linear time consists of the subtree problems. Thisis shown in Section 4.10 as an application of a general condition for treematching problems to be solvable in linear time.Section 4.11 summarizes what is known of the computational complexitiesof the tree inclusion problems.4.1 A general solution schemeSolving tree inclusion problems leads us to considering embeddings and in-clusions between forests. The de�nitions for embeddings between forests aresimilar to the corresponding de�nitions of embeddings between trees. LetF = hP1; : : : ; Pki and G = hT1; : : : ; Tli be forests. An embedding f of F in Gis root preserving if f(root(Pi)) 2 froot(T1); : : : ; root(Tl)g for all i = 1; : : : ; k.We say that1. F is an included forest of G if there is an embedding of F in G.2. F is an ordered included forest of G if there is an ordered embeddingof F in G.3. F is a path-included forest of G if there is a path embedding of F in G.4. F is an ordered path-included forest of G if there is an ordered pathembedding of F in G.5. F is a region-included forest of G if there is a region embedding of Fin G.6. F is an ordered region-included forest of G if there is an ordered regionembedding of F in G. 27

Each of the above relations between F and G is denoted by F v G; themeaning of the notation should always be clear from the context.The following lemma is easy to prove from the de�nitions of embeddings.Lemma 4.1 For each of the unordered interpretations above, the relation vis a partial ordering, i.e., it is reexive, transitive, and antisymmetric up toisomorphism. That is, for all forests F , G and H,1. F v F ,2. If F v G and G v H, then F v H, and3. If F v G and G v F , then F and G are isomorphic.For each of the ordered interpretations, the relation is a partial ordering upto identity. (As above, but F v G and G v F imply that F and G areidentical.) 2The equality of root labels is a necessary condition for the existence ofany root preserving embedding between trees. The following lemma containsthe basic idea of the algorithms that search for root preserving embeddingsof a pattern in the subtrees of the target.Lemma 4.2 Let P and T be trees with label (root(P)) = label (root(T)), andlet the immediate subtrees of P be P1; : : : ; Pk and the immediate subtrees ofT be T1; : : : ; Tl.1. There is a root preserving embedding of P in T if and only if the foresthP1; : : : ; Pki is an included forest of hT1; : : : ; Tli.2. There is a root preserving ordered embedding of P in T if and only ifhP1; : : : ; Pki is an ordered included forest of hT1; : : : ; Tli.3. There is a root preserving path embedding of P in T if and only if thereis a root preserving path embedding of hP1; : : : ; Pki in hT1; : : : ; Tli.4. There is a root preserving ordered path embedding of P in T if and onlyif there is a root preserving ordered path embedding of hP1; : : : ; Pki inhT1; : : : ; Tli.5. There is a root preserving region embedding of P in T if and only ifthere is a root preserving region embedding of hP1; : : : ; Pki in hT1; : : : ; Tli.28

6. There is a root preserving ordered region embedding of P in T ifand only if there is a root preserving ordered region embedding ofhP1; : : : ; Pki in hT1; : : : ; Tli. 2The algorithms for solving various tree inclusion problems can be pre-sented as variations of a single dynamic programming scheme. The schemeis parameterized by a match predicate that expresses the required relationbetween the occurrences of the immediate subtrees of the pattern.The generic algorithm refers to the nodes by their postorder numbers.The algorithm consists of two loops that process the nodes of the target andthe nodes of the pattern in ascending postorder. This means that when twonodes v and w are compared, the proper subtrees of P [v] and T [w] havealready been tested against each other. The algorithm scheme uses an arrayM , where for each target node w the entry M(w) will contain the set of thepattern nodes that match at w.Algorithm 4.3 General tree matching scheme.Input: Pattern tree P = (V;E; root(P)) and target tree T = (W;F; root(T)).Output: The nodes of W that are occurrences of P .Method:for w := 1; : : : ; n docomment: Process the target nodes in postorder;M(w) := ;;for all v := 1; : : : ;m docomment: Process the pattern nodes in postorder;if label (v) = label (w) thenLet v1; : : : ; vk be the children of v;if there are nodes w1; : : : ; wk 2 desc(w)such that vi 2M(wi) for i = 1; : : : ; kand (w;w1; : : : ; wk) holds thenM(w):= M(w) [fvg;�;�;od;if root(P) 2 M(w) thencomment: an occurrence found;29

output w;�;od;Algorithm 4.3 can easily be modi�ed to output only the roots of thesubtrees that include the pattern minimally. This is achieved by markingthe ancestors of each occurrence in the target, and by considering only non-marked target nodes in the outer loop of the algorithm.The time analysis of the variations of the above schema often leads toexpressions of the form Xw2WXv2V g(jwj)f(jvj) ;where jwj (jvj) denotes the number of children of node w (of node v), and fand g are convex functions. In order to facilitate simplifying these expres-sions, we present the following lemmas.A function f de�ned on a closed real interval [a; b] is convex if for allx; y 2 [a; b] and all � 2]0; 1[f(z) � �f(x) + (1 � �)f(y) ; (4:1)when z = �x + (1 � �)y. The geometric interpretation of (4.1) is simple:When x < y, the graph of f in [x; y] stays below the line segment from(x; f(x)) to (y; f(y)).Lemma 4.4 Let f be a convex function that is de�ned on a real intervalI = [0; b], such that f(0) = 0. Let a1; : : : ; an be numbers in interval I suchthat Pni=1 ai 2 I. Then X1�i�n f(ai) � f(X1�i�n ai) : (4:2)Proof. Let u, v, and u+ v be numbers in]0; b]. By assigning in (4.1) 0for x, u+ v for y, u for z, and v=(u+ v) for � we getf(u) � uu+ vf(u+ v) : (4:3)Similarly, by substituting v for z and u=(u+ v) for �, we getf(v) � vu+ vf(u + v) : (4:4)30

From (4.3) and (4.4) we getf(u) + f(v) � f(u + v) :From this, (4.2) is obtained by induction. 2The following lemma gives a useful test for recognizing many convex func-tions. For a proof see any book on calculus.Lemma 4.5 Assume that f is a real-valued function that is de�ned on aclosed interval [a; b], and that is di�erentiable on]a; b[. If the �rst derivativeof f is increasing on]a; b[, then f is convex on [a; b]. In particular, f is convexif its second derivative exists and is nonnegative in]a; b[. 24.2 Unordered tree inclusion is NP-completeThe existence of an e�cient general algorithm for unordered tree inclusion ishighly improbable, since the problem appears to be NP-complete.Tree inclusion problems are special cases of the minor containment prob-lem for graphs [RS86, Joh87]. In that problem, given two graphs G = (V;E)and H = (U;F), one has to decide whether G contains H as a minor, i.e., isthere a subgraph of G that can be converted to H by a sequence of contrac-tions. In a contraction, two adjacent vertices and an edge between them arereplaced by a single new vertex. All other edges previously incident on eithercontracted vertex become incident to the new vertex. For trees, a contractionis equivalent to the deletion of a node.Minor containment is known to be NP-complete even for unrooted trees,when both H and G are given as inputs. (For every �xed planar graph H,and therefore for every �xed tree and forest H, there is a polynomial timealgorithm for testing whetherH is a minor of a given graph G [RS86, Joh87].)This implies that minor containment is NP-complete also for rooted trees, orin our framework that unordered tree inclusion is NP-complete. The proofsof these results have not been published; we prove the NP-completeness ofunordered tree inclusion by a reduction from the basic NP-complete problemsatis�ability [Coo71, GJ79].Problem 11 (Satis�ability)Given a �nite collection of clauses C over a �nite set of Boolean variables U ,decide whether or not there is a satisfying truth assignment for C. 231

For proving the NP-completeness of unordered tree inclusion we use thefollowing lemma stating that a slight restriction of satis�ability is still NP-complete.Lemma 4.6 Let U = fu1; : : : ; ung be a set of Boolean variables and C =fc1; : : : ; cmg be a collection of clauses over U . Now C can be transformed inpolynomial time into a collection of clauses C 0 = fc01; : : : ; c0m0g such that1. C is satis�able if and only if C 0 is satis�able, and2. no negated variable occurs in two clauses of C 0.Proof. Let D = ffu; yug; f�u; �yug j u 2 Ug, where yu is a new variablefor each u 2 U . Clauses fu; yug and f�u; �yug express exclusive-or of u and yu,i.e., a truth assignment satis�es them if and only if it assigns opposite valuesto u and yu. Let E be the set of clauses obtained from C by replacing eachnegated occurrence �u of a variable by yu, and let C 0 = D [E. Now C 0 issatis�able if and only if C is satis�able. The transformation can obviouslybe done in polynomial time. 2Theorem 4.7 [KM91a] Unordered tree inclusion is an NP-complete prob-lem.Proof. It is easy to see that all the tree inclusion problems presented inChapter 3 are in NP: an algorithm can guess a mapping from the patternnodes to the target nodes and check in polynomial time that it is indeed anembedding.The completeness for NP is shown by a reduction from satis�ability.Let an instance of satis�ability be given by a collection of variables U =fu1; : : : ; ung and a collection of clauses C = fc1; : : : ; cmg over U . Lemma 4.6allows us to assume that no negated variable appears in two clauses of C.Form a pattern tree P and a target tree T as follows. Let P = (VP ; EP ; 0)be the tree given by nodes VP = f0; : : : ;mg and by parent-child edgesEP = f(0; x) j x 2 VP ; x 6= 0g :Let label (x) = x for all x 2 VP . The intuition is that the nodes of tree P ,excluding the root, represent clauses of C and each of them is labeled by theindex of the corresponding clause. Let T = (VT ; ET ; (0; 0)) be the tree whosenodes consist of pairs VT = f(0; 0)g [f(u; j) j u 2 cj 2 Cg [f(�u; j) j �u 2 cj 2 Cg ;32

and whose parent-child edges areET = f((0; 0); (�u; j)) j �u 2 cj 2 Cg [f((0; 0); (u; j)) j u 2 cj 2 C; �u 62[Cg [f((�u; j); (u; k)) j �u 2 cj 2 C; u 2 ck 2 Cg :The assumption of unique occurrences of negative literals implies that Tis indeed a tree, i.e., each node except the root has a unique parent. Letlabel ((x; y)) = y for all nodes (x; y) 2 VT . So, tree T has one node corre-sponding to each literal occurrence in some clause of C, plus an additionalroot node (0; 0). The nodes corresponding to literal occurrences in clausecj are labeled by j. A node v = (�u; j) corresponding to the negated occur-rence of a variable u is the parent of the nodes corresponding to the positiveoccurrences of u, and the root is the parent of v. The nodes correspondingto the positive occurrences of a variable that does not occur negated in Care children of the root of T . An example of the construction is shown inFigure 4.1.
(y,3)

(x,1)

(x,2)
__

(z,3)32

32

311

2

0

1

0P

T
(0,0)

(y,1)

(y,2)Figure 4.1: Trees for clauses c1 = fx; yg, c2 = f�x; �yg, and c3 = fy; zg. Theembedding shown by arrows corresponds to satisfying truth assignments thatset x to false and y to true.Trees P and T can clearly be formed in polynomial time.Now we claim that there is a satisfying truth assignment for C if and onlyif P is an unordered included tree of T . First assume that t is a satisfyingtruth assignment for C. De�ne a mapping h from the nodes of P onto the33

nodes of T as follows: For the root of P set h(0) = (0; 0) and for other nodesj of P set h(j) = (l; j), where (l; j) 2 VT is some node such that literal l istrue under truth assignment t; such a node can be selected because t satis�esat least one literal of every clause cj 2 C. Now h is an unordered embeddingsince it is obviously injective and label preserving, and it cannot map twosibling nodes of P to an ancestor and its descendant in T . Otherwise, bythe construction of T , truth assignment t would satisfy both a positive anda negative occurrence of the same variable, which is impossible.Next assume that h is an unordered embedding of P into T . Set t(x) =false if the range of h contains a node (�x; j) corresponding to a negativeoccurrence of variable x, and t(x) = true if the range of h contains a node(x; j) corresponding to a positive occurrence of variable x. It is easy to seethat t is a well de�ned truth assignment for a subset of variables in C andthat t satis�es at least one literal in each clause of C. 2One should not be too disappointed by the above negative result. Thenext section shows that the apparently unavoidable exponentiality comesfrom the size of the pattern only; if m, the size of the pattern, is o(log log n)the problem is solvable in time O(n).4.3 An algorithm for unordered tree inclu-sionIn this section we present an algorithm for solving the unordered tree in-clusion problem. The algorithm manipulates match systems consisting ofsubsets of pattern nodes. In the worst case the size of a match system isexponential in m, i.e., the size of the pattern. The previous section showedthat it is unlikely that we can do essentially any better. On the other hand,the exponentiality in m does not cause problems if m is small. We show howto build tables from the pattern in a preprocessing phase. Using these tablesthe matching can be performed in time that is linear in the size of the target.The match system S(w) for a target node w consists of all the subsetsfv1; : : : ; vkg of pattern nodes such that hP [v1]; : : : ; P [vk]i is an included forestof T [w]. The following algorithm computes the match systems for each targetnode while going through the target in a bottom-up order. Note that if w0is an ancestor of a target node w, then T [w0] includes T [w] and thereforeS(w) � S(w0). Also, for a pattern node v we have that fvg 2 S(w) only ifchildren(v) 2 S(w). 34

Algorithm 4.8 Unordered tree inclusion algorithm.Input: Trees P = (V;E; root(P)) and T = (W;F; root(T)).Output: The nodes w of T such that there is a root preserving embeddingof P in T [w].Method:1. for w := 1; : : : ; n do2. comment: Go through the target nodes in postorder;3. S := f;g;4. Let w1; : : : ; wl, l � 0, be the children of w;5. for i := 1; : : : ; l do6. S := fA [B j A 2 S;B 2 S(wi)g;7. od;8. S� := ;;9. for all v 2 V such that label (v) = label (w) do10. if children(v) 2 S then11. S� := S� [ffvgg;12. �;13. od;14. if froot(P)g 2 S� then15. comment: A match found;16. output w;17. �;18. S(w) := S [S�;19. od;Algorithm 4.8 computes the match system S(w) for a target node w asfollows. Let w1; : : : ; wl be the children of w. First the loop on lines 5{7computes from the match systems of the children of w a set S. The invariantfor the loop is central to the correctness of the algorithm. It says that fori = 0; : : : ; l the set S consists of the subsets fv1; : : : ; vkg of such pattern nodesthat hP [v1]; : : : ; P [vk]i is an included forest of the forest hT [w1]; : : : ; T [wi]i.For i = 0 this is clearly true since then S = f;g. Next assume induc-tively that the invariant holds for i � 1 when 0 < i � l, and that S(wi) isthe correct match system for wi. Now it is rather easy to see that a for-est hP [v1]; : : : ; P [vk]i has an embedding in hT [w1]; : : : ; T [wi]i if and only iffv1; : : : ; vkg = A [B for some A 2 S and B 2 S(wi).35

Next the algorithm computes in a set S� the singleton sets fvg of thepattern nodes v for which there is a root preserving embedding of P [v] inT [w]; these are exactly those nodes v whose label matches the label of w andwhose set of children belongs to S. (Cf. Lemma 4.2.) After this process,S [S� is the the match system of w.Like Algorithm 4.3, also Algorithm 4.8 can easily be modi�ed to reportthe roots of only those subtrees that include the pattern minimally.We can restrict S to consist of sets of siblings, since they only a�ect theinsertion of new pattern nodes to the match systems. (See line 10 of thealgorithm.) Each match system S is monotone decreasing, i.e., if A 2 S,then B 2 S for each B � A. Thus we can represent the match systems bymaintaining their maximal elements only. Such a representation is a Spernersystem, i.e., a system where no set includes another one. We will see in amoment that also the size of a Sperner system on a set of m elements can beexponential in m.Note that the size of the systems in S depends on P only. If P is �xed,executing line 6 and the loop on lines 9{13 takes constant time. The algo-rithm examines every target node at most twice; once as w and at most onceas a child of w. Therefore we have the following result.Theorem 4.9 For a �xed pattern P , an instance (P; T) of the unorderedtree inclusion problem can be solved in time O(jT j). 2By using preprocessing of the pattern Algorithm 4.8 can be modi�ed tooperate in linear time with respect to the size of the target. The preprocessingis based on enumerating the possible values of variable S, and it resembles thepreprocessing of the bottom-up tree pattern matching algorithm in [HO82].Let P = (V;E; root(P)) be the given pattern, and let L be the set oflabels. (The labels in P together with a symbol for all other labels is asu�cient representation for L.) In addition to the restrictions above, eachmatch system S is descendant-closed. By this we mean that if u 2 A forsome A 2 S, then children(u) 2 S. Denote by S = S(P) the collection ofthe descendant-closed Sperner systems on V such that each set in a systemconsists of sibling nodes only. We can use an enumeration of S for represent-ing in arrays two functions u : S � S ! S and r : S � L! S. The value ofu(S1; S2) is the representation of the element-wise union of S1 and S2, thatis, the set of the maximal elements in the systemfA [B j A 2 S1; B 2 S2; A [B is a set of siblings in Pg :36

Having this function in an array, executing Line 6 in Algorithm 4.8 takesconstant time. The loop on lines 9{13 and line 18 can be replaced by a singleassignment if we precompute the function r : S � L! S, wherer(S; l) = S [ffvg j v 2 V; label (v) = l; children(v) 2 S; v 62[Sg :As an example, consider the following pattern P .
����������������ccc��� a2 c31 b a4

Now the systems of S(P) can be enumerated as follows.1: f;g2: ff1gg3: ff2gg4: ff1g; f2gg5: ff2g; f3gg6: ff1g; f2g; f3gg7: ff2g; f1; 3gg8: ff2g; f4g; f1; 3ggNote that for example the system ff1g; f3gg is excluded, because it is notdescendant-closed; node 2, the child of node 3, is missing. System number 8stands for an occurrence of P , since it contains 4, the root of P .The element-wise union of the match systems can be performed using thefollowing table u. Only the upper right corner of the table is �lled, sincethe table is symmetric. For example, combining element-wise the systems5 and 6, i.e., the systems ff2g; f3gg and ff1g; f2g; f3gg gives the systemff2g; f1; 3gg, because nodes 1 and 3 are the only siblings in P . The numberof the result system is 7. 37

u 1 2 3 4 5 6 7 81 1 2 3 4 5 6 7 82 2 4 4 7 7 7 83 3 4 5 6 7 84 4 7 7 7 85 5 7 7 86 7 7 87 7 88 8The table r is in this case as follows (with x standing for labels not appearingin the pattern): r a b c x1 3 2 1 12 4 2 2 23 3 4 5 34 4 4 6 45 5 6 5 56 6 6 6 67 8 7 7 78 8 8 8 8For example, r(7; a) = 8, because label (4) = a, children(4) = f1; 3g 2ff2g; f1; 3gg, which is the system number 7, and ff2g; f4g; f1; 3gg is thesystem number 8.The size of table u is jS(P)j2 and the size of table r is O(m jS(P)j).These bounds suggest that the preprocessing is reasonable only when thesize of S(P) is not too large. The collection S(P) depends strongly on theform of the pattern P . If P consists of m nodes that form a path from theroot to a single leaf, S(P) consists of m+ 1 systems, which are f;g, ff1gg,: : :, and ff1g; : : : ; fmgg. At the other extreme, the size of S(P) can bedoubly exponential in m. Consider a pattern P consisting of a root nodeand m� 1 leaves. Let A be the system consisting of the sets of b(m� 1)=2cleaves of P . Obviously jAj = � m�1b(m�1)=2c�, and every subset of A belongs toS(P). Therefore jS(P)j > 2(m�1b(m�1)=2c) :Next we present an upper bound for the size of the collection S(P). Thefollowing results give an upper bound for the number of Sperner systems onm nodes. 38

Proposition 4.10 [Spe28, Bol86] The size of a Sperner system on an m-element set is at most � mbm=2c�. 2Proposition 4.11 [BDK+91] The number of set systemsA on anm-elementset, satisfying jAj � c� mbm=2c� (4:5)is at most 2 c2(mbm=2c) logm(1+o(1)) : 2The second proposition tells that there is an upper bound of the form 2f(m)for the number of set systems A on an m-element set satisfying (4.5), wheref(m) is arbitrarily close to c2� mbm=2c� logm when m is large enough. Puttingthese results together gives the following upper bound for the number ofSperner systems on an m-element set, denoted by �(m):�(m) � 2 12(mbm=2c) logm(1+o(1)) :Because the systems in S(P) are Sperner systems, this is also an upper boundfor the size of S(P). As discussed above, a pattern consisting of a root nodeand m� 1 leaves brings S(P) fairly close to this bound.4.4 Solving unordered path inclusion prob-lemsThis section considers solving the problems of unordered path inclusion, un-ordered region inclusion and unordered child inclusion. These problems areeasier than unordered tree inclusion. The reason is that for path inclusion itis su�cient to test the immediate subtrees of the pattern against the treesrooted by the children of a target node w when testing if the pattern occursat w. With tree inclusion we have to examine descendants of w, which leadsto more combinations to embed the immediate subtrees of the pattern andto more complicated dependencies between the occurrences of pattern sub-trees. In Section 4.2 we saw that these dependencies allow representing thesatis�ability problem of Boolean formulas as a tree inclusion problem.39

The problems are again solved using the scheme of Algorithm 4.3 thatstores in an array the information of the matches between all pairs of pattern-target nodes. Solving the match predicate that expresses the required relationbetween the occurrences of the immediate subtrees of the pattern includesin these problems computing a maximum matching in a bipartite graph.A matching in a graph G is a set of edges of G, no two of which sharea vertex. A node is matched if it is incident to an edge in the matching. Amaximum matching is a matching with the maximum number of edges. Adirected graph G = (V;E) is bipartite, if its vertices can be partitioned intwo disjoint sets X and Y such that E � X � Y .Problem 12 (Bipartite matching)Given a bipartite graph G, �nd a maximum matching in G. 2Now we explain how bipartite matching relates to solving unorderedpath inclusion problems. Let P be a pattern tree with immediate subtreesP1; : : : ; Pk rooted by the nodes v1; : : : ; vk, and let T be a target tree with im-mediate subtrees T1; : : : ; Tl rooted by the nodes w1; : : : ; wl. By Lemma 4.2there is a root preserving path embedding of P in T if and only if the rootlabels of P and T match and there is a root preserving path embedding offorest hP1; : : : ; Pki in forest hT1; : : : ; Tli. The latter condition can be solvedas a graph matching problem if the matches between the immediate subtreesof P and T have been computed. Let G be the bipartite graph whose verticesare v1; : : : ; vk; w1; : : : ; wl with an edge from pattern node vi to target nodewj if and only if P [vi] has a root preserving path embedding in T [wj]. Thenthere is a root preserving path embedding of forest hP1; : : : ; Pki in foresthT1; : : : ; Tli if and only if G has a maximum matching of k edges.Bipartite matching algorithms start with an empty matching of the graphand extend it by searching augmenting paths. An augmenting path withrespect to a matching M in a bipartite graph G = (X [Y;E) is a path pfrom a node x to a node y, where neither x nor y is matched, the �rst andthe last edge in p are in E nM , and the edges in p are alternatively in Mand in E nM . The number of edges of an augmenting path p in E nM isone greater than the number of edges of p in M . Therefore replacing in amatchingM all the edges of an augmenting path p that are inM by the edgesof p that are in E nM produces a new matching that has one more edge thanM . A bipartite matching algorithm stops when no more augmenting pathscan be found. The correctness of these algorithms is based on the followingproposition. 40

Proposition 4.12 A matching M in a graph G is maximum if and only ifthere is no augmenting path with respect to M .Proof. One direction follows from the above considerations. For theother direction, see for example [PS82] or [vL90]. 2Each augmenting path can be computed in time proportional to the sizeof the graph, and each of them extends the matching by one edge. The basicbipartite matching algorithm (see, e.g., [PS82]) �nds one augmenting pathin one search step; therefore its time complexity is O(sjEj), where s is thesize of a maximum matching. The algorithm of Hopcroft and Karp �nds inone O(jEj) search step a set of augmenting paths, and the number of thesesearch steps is O(ps) [HK73]. This result is utilized in the next algorithm.Lemma 4.13 The bipartite matching problem on a graph G = (V;E) canbe solved in time O(ps jEj), where s is the size of a maximum matching. 2The unordered path inclusion algorithms store their results in an m � nBoolean array a; the value of a(v;w) is set to true if and only if P [v] has aroot preserving embedding (of appropriate type for the problem at hand) inT [w].The next algorithm for unordered path inclusion was sketched in [Mat68].A more complete presentation and analysis of the algorithm can be foundin [Rey77] and [Chu87]. (See also [vL90].) Using bipartite matching as asubroutine of this algorithm is mentioned also in [HK73].Algorithm 4.14 [Mat68, Rey77] Unordered path inclusion algorithm.Input: Trees P = (V;E; root(P)) and T = (W;F; root(T)).Output: The nodes w of T such that there is a root preserving path em-bedding of P in T [w].Method:1. for w := 1; : : : ; n do2. comment: Go through the target nodes bottom-up;3. Let w1; : : : ; wl, l � 0, be the children of w;4. for v := 1; : : : ;m do5. comment: Go through the pattern nodes bottom-up;6. a(v;w) := false;41

7. Let v1; : : : ; vk, k � 0, be the children of v;8. Let G = (X [Y;E), whereX = fv1; : : : ; vkg, Y = fw1; : : : ; wlg, andE = f(x; y) j x 2 X; y 2 Y; a(x; y) = trueg;9. if label (v) = label (w) and10. the size of a maximum matching of G is k then11. a(v;w) := true;12. �;13. od;14. if a(root(P); w) = true then15. comment: An occurrence found;16. output w;17. �;18. od;Again, the algorithm can easily be modi�ed to report only those sub-trees of the target that include the pattern minimally. The correctnessof Algorithm 4.14 is based on Lemma 4.2 and on observing that foresthP [v1]; : : : ; P [vk]i has a root preserving embedding in forest hT [w1]; : : : ; T [wl]iif and only if a maximum matching of graph G on line 8 has k edges.The graph G does not have to be explicitly constructed on line 8 of thealgorithm. On line 10 we need to compute a maximum matching of size atmost jvj in a graph having at most jvj � jwj edges. (Notation juj stands forthe number of children of a node u.) This can be done by Lemma 4.13 intime O(pjvj jvjjwj). Therefore the total complexity of Algorithm 4.14 isO(Xw2W(1 +Xv2V (1 + jvj3=2jwj))) = O(n+ nm+Xv2V jvj3=2 Xw2W jwj) : (4:6)By Lemmas 4.4 and 4.5 expression (4.6) is O(m3=2n). (Note that summingthe number of children of each node in a tree of n nodes gives the number ofedges in the tree, which is n� 1.)The unordered child inclusion problem can be solved by a slight modi�-cation of Algorithm 4.14; if v is an internal pattern node we need to requireon line 9 also that w has the same number of children as v. Therefore wehave the following result.Theorem 4.15 The problems of unordered path inclusion and unorderedchild inclusion can be solved in time O(m3=2n). 242

Chung has shown that the above complexity also applies to testing whethera given tree is a subgraph of a given unrooted tree [Chu87].Algorithm 4.14 can be modi�ed to solve unordered region inclusion, too.Let pattern node v have children v1; : : : ; vk, and let target node w havechildren w1; : : : ; wl where l � k. At the core of the algorithm we need to testwhether the subtrees of v match on k adjacent children of w. This is a specialrestriction to bipartite matching. The instances of the problem consist of agraph with k+ l vertices and at most k� l edges, and the size of a maximummatching is at most k.The bipartite matching problem with the restriction that the image nodeshave to be adjacent siblings can be solved by considering l� k+1 subgraphsthat are obtained by restricting at a time to k adjacent sibling nodes ofthe target. The number of edges in each such subgraph is at most k2. Byrepeating the algorithm of [HK73] (l � k + 1) times we get total time (l �k + 1)O(pk k2) = O(k2:5l).The basic bipartite matching algorithm can be applied incrementally forthis version of the problem. Consider the graph G = (X [Y;E) whereX consists of k children of a pattern node and Y consists of the childrenfw1; : : : ; wlg of a target node, and E = f(x; y) j x 2 X; y 2 Y; a(x; y) =trueg. First we compute a maximum matching for graph G restricted tonodes X [fw1; : : : ; wkg. Matching this �rst subgraph requires at most kaugmenting steps using the basic bipartite matching algorithm. As soon aswe �nd a matching of k edges we are done.Assume then that we have computed a maximum matching M of sizep for a subgraph that contains the target nodes wi; : : : ; wi+k�1. Next weconsider the subgraph with target nodes wi+1; : : : ; wi+k. At least p�1 edges ofmatchingM belong to the new subgraph, and they are taken as the matchingto be extended by the basic algorithm. At most two augmenting steps can beperformed for this matching because matchingM was maximum. Therefore,for each of the l target nodes at most two augmenting paths are computedin a subgraph of size k2. Thus the total time for the bipartite matching isO(k2l).Applying this version of bipartite matching we get that the dominatingterm in the time complexity of the algorithm for unordered region inclusionis Xv2V Xw2W jvj2jwj =Xv2V jvj2 Xw2W jwj : (4:7)Like above, we get from (4.7) the upper bound time complexity for unordered43

region inclusion.Theorem 4.16 Unordered region inclusion can be solved in time O(m2n).24.5 Left ordered embeddingsIn this section we present the concept of left embeddings that helps us tosolve ordered tree inclusion problems e�ciently. There may be exponentiallymany ordered embeddings of a tree P in a tree T . To avoid searching amongthese embeddings, we develop an algorithm that tries to match P at the rootof T by embedding the subtrees of P as deep and as left as possible in T .In order to discuss the order of images of sibling nodes in an embeddingwe de�ne the right and left relatives of a node. Let F be a forest, N the setof its nodes, and u a node in F . The set of right relatives of u is de�ned byrr(u) = fx 2 N j pre(u) < pre(x) ^ post(u) < post(x)g ;i.e., the right relatives of u are those nodes that follow u in both preorder andpostorder. Correspondingly, the set of left relatives of a node u, denoted bylr(u), consists of the nodes that precede u both in preorder and in postorder.(See Figure 4.2.) �������������� \\�������������� \\ ���� �������� �������� ������������ HHHHH����� \\�� rr(u)lr(u) uFigure 4.2: The left and right relatives of node u.44

Lemma 4.17 Let u, v and x be three nodes in a forest. Then it is notpossible that bothpre(u) < pre(v) < pre(x) andpost(x) < post(u) < post(v)hold.Proof. The above conditions imply by Lemma 2.1 that u and v areancestors of x, and neither of them is an ancestor of the other, which isimpossible. 2The next simple lemma states that the descendants of a right relative arealso right relatives.Lemma 4.18 Let u and v be nodes, and assume v 2 rr(u). Then desc(v) �rr(u).Proof. Let a node x be a descendant of v, which is by Lemma 2.1equivalent to pre(v) < pre(x) and post(x) < post(v). Node u precedes v inboth orders which implies especially that pre(u) < pre(x). Now Lemma 4.17implies also that post(u) < post(x). 2The next lemma states that the right relatives of a node v are contained inthe right relatives of the nodes that precede v in postorder. This fact is thejusti�cation for the strategy of embedding the trees as early as possible inpostorder, when searching for an embedding of a forest.Lemma 4.19 Let u and v be nodes in a forest. If post(u) � post(v), thenrr(v) � rr(u).Proof. If post(u) = post(v), then u = v and rr(u) = rr(v). Let post(u) <post(v) and y 2 rr(v), which meanspre(v) < pre(y) and (4.8)post(u) < post(v) < post(y)In order to show that y 2 rr(u), it su�ces to show that pre(u) < pre(y). Ifpre(u) < pre(v), we have pre(u) < pre(y) by (4.9); otherwise pre(u) < pre(y)by Lemma 4.17. 2De�nition 4.20 Let F = hP1; : : : ; Pki where k � 1 and G be forests, andlet E be a collection of embeddings of F in G. An embedding f 2 E is a leftembedding of E if for every g 2 Epost(f(root(Pk))) � post(g(root(Pk))) :45

A left embedding of the set of all ordered embeddings of F in G is called aleft ordered embedding, or simply a left embedding, of F in G. 2It is obvious that every �nite nonempty set of embeddings has at leastone left embedding. Therefore we can concentrate on left embeddings whentesting for the existence of an ordered embedding.Theorem 4.21 Let F and G be forests. There is an ordered embedding ofF in G if and only if there is a left embedding of F in G. 2The next theorem presents a method to build left embeddings by pro-ceeding from left to right. The method is applied in the next algorithm.Theorem 4.22 Let F = hP1; : : : ; Pki where k � 2 and G be forests, and letf be a left embedding of F1 = hP1; : : : ; Pii in G, where 1 � i < k. Let F2 bethe forest hPi+1; : : : ; Pki and let E be the set of ordered embeddings g of F2in G such that g(root(Pi+1)) 2 rr(f(root(Pi))). Then the following hold:1. If E is empty, there is no ordered embedding of F in G.2. If E is nonempty and g is a left embedding of E, then f [g is a leftembedding of F in G.Proof.1. Assume counterpositively that g is an ordered embedding of F inG. Let g1 and g2 be the restrictions of g in F1 and F2, respectively. Theng2(root(Pi+1)) 2 rr(g1(root(Pi))), and post(f(root(Pi))) � post(g1(root(Pi))),since f is a left embedding of F1 in G. Thereforeg2(root(Pi+1)) 2 rr(f(root(Pi)))by Lemma 4.19, which means that g2 2 E.2. First we show that f [g is an ordered embedding of F in G. It issu�cient to show that f [g preserves the relative order of any two nodes xof F1 and y of F2. Now root(Pi) is the last node of forest F1 in postorder.Therefore we have by Lemma 4.19 that root(Pj) 2 rr(x) for all i < j � k,and Lemma 4.18 states that y 2 rr(x) also when y is not the root of any ofthe trees P1; : : : ; Pk. Then we can see that g(y) 2 rr(f(x)) by applying thesame argument to the images of the above nodes.Then we show that f [g is a left embedding of F in G. For this, let hbe any ordered embedding of F in G, and let h1 and h2 be the restrictionsof h to F1 and F2, respectively. Now we have that h2 2 E, and there-fore post(g(root(Pk))) � post(h2(root(Pk))). This entails the claim sinceg(root(Pk)) = f [g(root(Pk)) and h2(root(Pk)) = h(root(Pk)). 246

4.6 Left embedding algorithmNow we are ready to give an algorithm for searching the nodes w of the targetT such that T [w] includes the pattern P with order minimally. The algorithmis another variation of the general bottom-up dynamic programming schemaof Algorithm 4.3. As before, the algorithm manipulates nodes as postordernumbers. For example, the minimum of a set of nodes refers to the �rst nodeof the set in postorder. The algorithm uses an auxiliary target node 0 thatis a left relative of all the other target nodes.Consider the situation where the algorithm compares a pattern node vagainst a target node w, and the subtrees of v are P1; : : : ; Pk. First thealgorithm searches for the �rst occurrence in postorder of P1 among thedescendants of node w, if there is any. The algorithm uses a pointer p fortraversing the descendants of node w. After �nding a left embedding ffor the forest hP1; : : : ; Pii pointer p points at node f(root(Pi)). In order toextend f to a left embedding of hP1; : : : ; Pi+1i into the subtrees of w wechoose the closest right relative of p in postorder that is an occurrence ofPi+1 and a descendant of w. The central idea of the algorithm is to applydynamic programming in a way that allows this node to be chosen in constanttime. This is achieved by using a table e having rows 1; : : : ;m and columns0; : : : ; n � 1. The nodes of P are used as row indices of the table, and thenodes of T are used as column indices and contents of the table. Denote byR(P; T) the collection of root preserving ordered embeddings of tree P intotree T . We compute into table e the valuese(v;w) = min(fx 2 rr(w) j 9 f 2 R(P [v]; T [x])g[fn+ 1g) ; (4:9)where v is a node of P and w is a node of T excluding the root of T . Thatis, e(v;w) contains the closest occurrence of P [v] among the right relativesof target node w, or if there is no such node, the value in e(v;w) is greaterthan any postorder number in T . Columns 0; : : : ; n� 1 su�ce for the tablebecause node n, the root of T , has no right relatives.The �nal result of the computation can be found on row root(P) of thetable. There is a root preserving embedding of P in T [w] for every w � nthat appears on row root(P), and P is an ordered included tree of T if andonly if e(root(P); 0) � n.When a root preserving embedding of P [v] in T [w] is found, a pointer qis used for writing value w into e(v; q) for those nodes q that satisfy equa-tion (4.9). Note that those nodes q are left relatives of node w.47

Algorithm 4.23 [KM91b] Left embedding algorithm for ordered tree inclu-sion.Input: Trees P = (V;E; root(P)) and T = (W;F; root(T)).Output: Table e �lled so that for all v 2 V and w = 0; : : : ; n� 1e(v;w) = min(fx 2 rr(w) j 9 f 2 R(P [v]; T [x])g[fn+ 1g) :Method:1. for v := 1; : : : ;m do2. comment: Initialize row v of e;3. for w := 0; : : : ; n� 1 do e(v;w) := n+ 1; od;4. Let v1; : : : ; vk be the children of v;5. q := 0;6. for w := 1; : : : ; n do7. if label (v) = label (w) then8. p := min(desc(w) [fn+ 1g)� 1;9. i := 0;10. while i < k and p < w do11. p := e(vi+1; p);12. if p 2 desc(w) then i := i+ 1; �;13. od;14. if i = k then15. while q 2 lr(w) do16. e(v; q) := w;17. q := q + 1;18. od;19. �;20. �;21. od;22. od;The loop on lines 10{13 tests whether there is a left embedding of the for-est hP [v1]; : : : ; P [vk]i into the forest of subtrees of w. This is by Theorem 4.21and Lemma 4.2 equivalent to testing whether there is a root preserving or-dered embedding of P [v] in T [w], because on these lines label (v) = label (w).The test is successful if and only if all the subtrees of v can be embedded inthe loop, i.e., if and only if i = k on line 14.48

Next we show that the above test is correct. This is obvious if patternnode v is a leaf. Let then pattern node v have children. If node w is a leaf,P [v] can not be embedded in T [w]. In this case p gets value n on line 8of the algorithm, which prevents the execution of lines 10{19. Otherwise pgets the value min(desc(w))� 1, which is the closest left relative of w. Thepostorder numbers of the descendants of w are then fp+1; p+2; : : : ; w�1g.By Lemma 4.18, desc(w) � rr(p). Assume that correct values have beencomputed in the rows of table e corresponding to the children of v; this willbe established in Theorem 4.24. The �rst execution of line 11 �nds then inp the leftmost occurrence of P [v1] among the descendants of w, if there areany. The correctness of the remaining executions of the loop follows fromTheorem 4.22.As an example, consider how Algorithm 4.23 �nds the embedding of atree P = a(c; e) into a tree T = a(b(c); a(b(d); a(b(e)))). The trees and theresult of the computation are shown in Figure 4.3. Each column of table eis shown to the right of the corresponding node of tree T .First, v = 1, the leaf of P labeled by c, and w = 1, the similar leaf ofT . Since the labels match and v has no children (i = k = 0), we have anembedding. The value of w = 1 is written into e(1; 0) only, since 0 is the onlyleft relative of w. After that, no more matching labels are found for v = 1 innodes w = 2; : : : ; 9 of T .Next v = 2, the second leaf of P . The �rst node w of T such thatlabel (v) = label (w) = e is node 5. As above, we have an embedding, andthe value of w = 5 is written into e(2; q) for the left relatives q = 0; : : : ; 4of w. Then again the remaining nodes w = 6; : : : ; 9 are scanned withoutencountering any matching labels.Finally v = 3 = root(P). Node w = 7 is the �rst node of T withlabel (v) = label (w) = a. The node p preceding desc(w) in postorder is node4. The �rst child of v is node number 1. Its image in rr(p) � desc(w) islooked up from e(1; 4); value 10 means that there is no embedding of thechild into desc(w). Next, a similar failure occurs with w = 8 and p = 2.Finally w = 9 = root(T) and label (v) = label (w) = a, which leads to testingthe embedding of the children of v by executing p := 0, p := e(1; 0) = 1, andp := e(2; 1) = 5. The algorithm has found a root preserving embedding of Pinto T . The value of w = 9 is written as the �nal result into e(3; 0). Since 0is the only left relative of 9, the computation ends.Theorem 4.24 Algorithm 4.23 �lls the table e correctly.Proof. Consider a �xed pattern node v. We outline a proof that all49

1051010510 1051010510 101010 101010101010101010������������ ������ ������������ ������ ��� llllSS HHH"""����%% .. .3e ebadb aabc 5678439T 21c a1 3 2P 0 95112
Figure 4.3: The result of applying the algorithm to trees P and T .columns of row v get correct values in the while-loop on lines 15{18 of thealgorithm. First, the precondition that all columns up to q have got thecorrect values is initially true. We show that the following invariant holds online 16: 9 f 2 R(P [v]; T [w]) ^ w 2 rr(q) (4.10)^ 8 1 � x < w : (9 g 2 R(P [v]; T [x])) x 62 rr(q)) : (4.11)The invariant tells that the loop writes correct values into e(v; q). Since q in-creases only in the loop, the truth of the invariant maintains the preconditionfor the subsequent executions of the loop.The previous discussion about the loop on lines 10{13 showed that theloop on lines 15{18 is executed if and only if there is a root preserving orderedembedding of P [v] in T [w]. Therefore (4.10) holds when we are on line 16.(Note that q 2 lr(w) and w 2 rr(q) are equivalent.) When line 16 is executedfor the �rst time (4.11) is vacuously true. By Lemma 4.19 we can strengthen(4.11) into8 1 � x < w;8 y � q : (9 g 2 R(P [v]; T [x])) x 62 rr(y)) : (4:12)At the exit from the loop w 62 rr(q) allows further strengthen (4.12) into8 1 � x � w;8 y � q : (9 g 2 R(P [v]; T [x])) x 62 rr(y)) :50

This postcondition makes (4.11) true on the subsequent executions of theloop. It also tells that the writing is complete, i.e., value w must not bewritten into e(v; y) for any column y � q. 2Theorem 4.25 Algorithm 4.23 requires �(mn) time and space.Proof. Space: Table e requires �(mn) space.Time: During every execution of the outermost loop the pointer q mayincrease in steps of one from 0 to n. Therefore the while-loop incrementingq requires O(n) steps per one outermost loop. One execution of the while-loop on lines 10{13 requires time O(1 + jvj), where jvj is the number of thechildren of node v. We get total timeO(mXv=1(n+ nXw=1(1 + jvj))) = O(n mXv=1(2 + jvj)) :The sum Pmv=1 jvj equals the number of edges in tree P , which is m � 1.Therefore the total time is O(n(3m� 1)) = O(mn). On the other hand, thealgorithm uses obviously time
(mn). 24.7 A space e�cient algorithm for orderedtree inclusionIn an application where the target tree is very large the �(mn) space andtime requirements of Algorithm 4.23 may be unacceptable. This sectionimproves on the previous result by presenting an algorithm that solves theordered tree inclusion problem in O(m depth(T)) space. The result is usefulin practice, since most text databases can be represented by trees havinga small constant depth. Moreover, the complexity of the new algorithm issensitive to the instances of the problem: it runs in time O(cP (T)n), wherecP (T) is the number of the subtrees of P that are included in T . Especially,if no part of the pattern appears in the target, the algorithm runs in timeO(n).Let P be a pattern tree. Call a nonempty sequence hv1; : : : ; vki of nodesof P a sibling interval of P , if node vi+1 is the next sibling of node vi forall i = 1; : : : ; k � 1. The parent of the nodes in a sibling interval is calledthe parent of the sibling interval. A sibling interval is complete if it containsall the children of its parent. We say that a sibling interval hv1; : : : ; vki can51

be embedded in a tree T (in a forest F) if there is an ordered embedding ofhP [v1]; : : : ; P [vk]i in T (in F).The following algorithm is a variation of Algorithm 4.8. It computes inbottom-up fashion for each target node w a match set M(w). The match setM(w) consists of the sibling intervals hv1; : : : ; vki of P that can be embeddedin T [w].For a target node w the algorithm �rst computes the set of the siblingintervals hv1; : : : ; vki that can be embedded in the forest of the subtrees ofw. This set is computed from the match sets of the children of w. Thecomputation is based on a combining operation denoted by �. Let A and Bbe the sets of sibling intervals that can be embedded in forests hT1; : : : ; Tiiand hTi+1; : : : ; Tli, respectively. Then A � B is the set of sibling intervalsthat can be embedded in hT1; : : : ; Tli. We defer the implementation of thisoperation for a moment.After computing in a variable S the sibling intervals that can be embeddedin the descendants of w, the algorithm computes in a set S� the siblingintervals consisting of single pattern nodes that can be mapped in an orderedembedding to w. These are exactly the pattern nodes whose label matcheswith the label of w and that are either leaves or have the sibling intervalconsisting of their children in S. After this process S [S� is the match setof w. The algorithm is represented as a recursive function that returns amatch set and reports the target subtrees that match the pattern.Algorithm 4.26 Space e�cient algorithm for ordered tree inclusion.Input: Trees P = (V;E; root(P)) and T = (W;F; root(T)).Output: The nodes w of T such that T [w] is an ordered including tree ofP .Method: Call function M(P; T);function M(P; T):1. S := ;;2. Let T1; : : : ; Tk, k � 0, be the immediate subtrees of T ;3. for i := 1; : : : ; k do4. S := S �M(P; Ti);5. od;6. S� := ;; 52

7. for all v 2 V such that label (v) = label (root(T)) do8. if (children(v) = ; or hchildren(v)i 2 S) then9. S� := S� [fhvig;10. �;11. od;12. if hroot(P)i 2 S� then13. output root(T);14. �;15. return S [S�;We can form a set of k(k+1)=2 sibling intervals from k sibling nodes, butwe can do with smaller representations for match sets. A set of intervals issimple if it does not have two distinct members one of which is a subintervalof the other. If a sibling interval belongs to a match set, then all of itssubintervals belong there, too. Knowing this we can represent the matchsets by simple sets, keeping only the maximal intervals in S.Lemma 4.27 Let P be a tree (or a forest) on m nodes. Then a simple setof sibling intervals of P has at most m members.Proof. Each node of P can be the leftmost node of at most one siblinginterval. 2To measure the amount of \partial inclusion" of a pattern P in a targetT we de�ne the P -content of T , denoted by cP (T), as the number of subtreesof P that are ordered included trees of T . Note that 0 � cP (T) � jP j,and P is an ordered included tree of T if and only if cP (T) = jP j. By thesame argument as in Lemma 4.27, the size of a simple match set is at mostcP (T). We will see in a moment how the operation � on line 4 and lines 7{15 can be performed in time proportional to the number of elements in thereturned match set. Therefore Algorithm 4.26 uses for each target node wtime O(1 + cP (T [w])). By noting that the algorithm uses O(1 + cP (T [w]))space for each recursive call to inspect the target subtree T [w] we get thefollowing result.Theorem 4.28 Algorithm 4.26 uses timeO Xw2W(1 + cP (T [w]))!53

���� ���������������� ��������%%% JJJ @@aaaa!!!! 17 543 108Figure 4.4: The interval numbering for easy recognition of sibling nodes.and space O((1 + cP (T)) depth(T)). Especially, the algorithm works in thebest case in O(n) time and in O(depth(T)) space, and in the worst case inO(mn) time and in O(m depth(T)) space. 2Since the size of match sets depends on P only, executing lines 4 and7{15 with a �xed pattern takes constant time. This observation shows thefollowing result, which follows for time also immediately from Theorem 4.25.Theorem 4.29 For a �xed pattern P , the ordered tree inclusion problemcan be solved in time O(jT j) and in space O(depth(T)). 2We can also perform preprocessing similar to Algorithm 4.8 by enumer-ating the simple sets of sibling intervals and building tables that allow per-forming lines 4 and 7{11 in constant time. Again the preprocessing wouldrequire exponential time and space; although the number of simple sets ofsibling intervals is smaller than the number of all sets of sibling intervals, itcan easily be seen to be
(2m) in the worst case.Algorithm 4.26 called for e�cient representation and manipulation ofsimple sets of sibling intervals. For the manipulation of sibling intervals weneed to be able to recognize sibling nodes of P and to compare their relativeorder easily. For this reason we number the pattern nodes in the followingmanner. First, assign 1 to the root of P . Then, during a level-wise traversalnumber the children of each internal node consecutively starting from x+2,when x is the largest number assigned so far. A pattern node u is the nextsibling of a pattern node v if and only if the sibling number of u is onegreater than the sibling number of v. In the rest of this section we refer tothe pattern nodes by these numbers, which we call interval numbers. For anexample of this numbering, see Figure 4.4.54

A sibling interval ha; a+ 1; : : : ; bi can be represented by the pair [a; b] ofinterval numbers; a is called the start point of the interval, and b is calledthe end point of the interval.Next we present an algorithm for combining interval sets. Let L be theset of sibling intervals that can be embedded in the forest hT1; : : : ; Tii, and Rthe set of sibling intervals that can be embedded in the forest hTi+1; : : : ; Tki.The intervals in L and R are called left and right intervals, respectively. Aleft interval l = [l:a; l:b] and a right interval r = [r:a; r:b] can be combinedif l:a � r:a � l:b + 1; in this case the combination lr of l and r is theinterval [l:a;max(l:b; r:b)]. The result of the combination L�R is such a setof intervals S that1. for each interval x 2 L [R there is an interval y 2 S that includes x,2. for each l 2 L and r 2 R that can be combined there is an intervaly 2 S that includes the combined interval lr, and3. each y 2 S is either a left interval, a right interval, or a combination ofa left and a right interval.The next algorithm combines two simple sets of intervals yielding a simpleset of intervals. The merging-like method is based on representing the setsas lists of intervals sorted by start points. Because the sets are simple theintervals are sorted by the end points, too.Algorithm 4.30 Combining intervals.Input: Sorted and simple lists of intervals L = l1; : : : ; lm and R = r1; : : : ; rn.Output: Sorted and simple representation of L�R.Method:i := 1; j := 1;lm+1 := [1;1]; rn+1 := [1;1];while i � m or j � n doif li:b+ 1 < rj:a thencomment: li cannot be combined with rj ;output li;outb := li:b;else comment: li:b+ 1 � rj:a;55

if li:a � rj :a thenwhile li:b+ 1 � rj:a docomment: li can be combined with rj;x := rj:b;j := j + 1;od;outb:= max(li:b; x);output [li:a; outb];else comment: li:a > rj:a;output rj;outb := rj:b;j := j + 1;�;while li:b � outb and li:b+ 1 < rj:a docomment: skip those li's that are included in output intervaland cannot be combined with rj;i := i+ 1;od;od;It is easy to see that every output interval is either in L [R or thecombination lr of some l 2 L and r 2 R. It is also straightforward to checkthat the result intervals are output in strictly increasing order with respectto both their start and end points; therefore the result list is both sorted andsimple. The completeness of the result list can be shown by induction on thelengths of the input lists.Algorithm 4.30 can combine two match sets in time proportional to thenumber of their elements. Now we continue to show that Algorithm 4.26can compute the result S [S� in time that is proportional to its size. SetS� can be implemented as two sorted lists of intervals consisting of singlenodes. A list SI is used for intervals of internal nodes and a list SL is used forintervals of leaves. Note that for any nodes u and v of P such that 1 < u < v(ordered as interval numbers) we have parent(u) � parent(v). Therefore wecan form list SI by a single scan in the sorted list S locating the completesibling intervals that have a parent whose label equals the label of the rootof T . Computing list SL is done a bit di�erently. In the preprocessing phasethat performs the interval numbering of P , we can link all leaves of P withthe same label in a list in increasing order of their interval numbers. Thenwe can form list SL from the list of pattern leaves labeled by the label of56

root(T). To form the representation of the result S [S� we need to mergelists SI and SL in S keeping it simple. This is straightforward to do in timeproportional to the �nal length of the result.These considerations complete the claim that Algorithm 4.26 uses timeO(1 + cP (T [w])) for a target node w.4.8 Solving ordered path inclusion problemsOrdered path inclusion and ordered region inclusion problems are easier tosolve than ordered tree inclusion problems. The reason is that with pathinclusion and region inclusion it is su�cient to test the immediate subtreesof the pattern against the trees rooted by the children of a target node w whentesting if the pattern occurs at w. With tree inclusion we have to examinetrees rooted by the descendants of w, which o�ers more combinations toembed the immediate subtrees of the pattern.Ordered path inclusion and ordered region inclusion can be solved usingthe familiar algorithm scheme that stores in an array the information of thematches between all pairs of pattern-target nodes. We compare again at thecore of the algorithms a pattern node v with children v1; : : : ; vk against atarget node w with children w1; : : : ; wl.The algorithm for ordered path inclusion has to �nd an ordered subse-quence wj1; : : : ; wjk of w1; : : : ; wl, where 1 � j1 < : : : < jk � l are such thatvi matches at wji for all i = 1; : : : ; k. This can be done by scanning thechildren of w from left to right and using a counter to indicate the number ofchildren of v already matched. This solution yields the following complexity:O(Xw2W(1 +Xv2V (1 + jwj))) = O(n+ nm+m(n� 1)) = O(mn) :Note that with a minor change we can modify also Algorithm 4.26 tosolve the ordered path inclusion problem. The modi�cation is to return fromthe recursive calls only the set S� that contains essentially the pattern nodesthat match at the root of the tested target subtree.The algorithm for ordered region inclusion has to �nd a continuous se-quence wj; : : : ; wj+k�1 of children of w, such that node vi matches at wj+i�1for all i = 1; : : : ; k. This can be done by a method resembling trivial stringmatching: Starting with j = 1, the sequences v1; : : : ; vk and wj; : : : ; wj+k�1are compared from left to right against each other as long as they match,57

and at a failure j is incremented by one and the comparison is started anew.The complexity of this solution to ordered region inclusion isO(Xw2W(1 +Xv2V (1 + jvjjwj))) = O(mn) : (4:13)We state these results as a theorem:Theorem 4.31 The problems ordered path inclusion and ordered regioninclusion are solvable in time O(mn). 2Tree inclusion problems can be considered to be special cases of theediting distance problem for trees [Tai79, ZS89]. Ordered tree inclusionproblems can be described and solved in the framework of Zhang, Shasha,Wang, and Jeong [ZSW91, WJZS91]. They allow patterns to contain vari-able length don't care symbols (VLDCs). A path VLDC is a pseudo node inthe pattern that matches at an arbitrary path in the target. The algorithmsof [ZSW91, WJZS91] allow tree matching with cut: the instances of the pat-tern are the subtrees of the target that are identical with the pattern afterdeleting the nodes matched with the VLDCs and possibly cutting at somenodes. Therefore, the ordered tree inclusion problem can be presented as amatching problem with cut after inserting a path VLDC on each edge of thepattern. Ordered path inclusion is the same problem as the tree matchingproblem with cut.The algorithms of Zhang, Shasha and Wang [ZSW91, ZSW92] requiretimeO(jP j � jT j �min(depth(P); leaves(P)) �min(depth(T); leaves(T))) ;where depth(T) is the length of the longest root-to-leaf paths in tree T andleaves(T) is the number of leaves in T . Thus our algorithms are faster thantheirs by a factor ofmin(depth(P); leaves(P)) �min(depth(T); leaves(T)) :Nontrivial lower bounds for the complexity of the above problems are notknown, but they do not seem to be easily solvable in linear time. We showbelow how string pattern matching with don't care symbols can be reducedin linear time to ordered path inclusion problems. The time complexity ofthe best known algorithm for string matching with don't care symbols isO(polylog(m)n) [FP74], and the existence of a faster algorithm has been an58

open problem for almost 20 years. The idea of the reduction was presentedin [Kos89], and it was also noted in [Ver92].Let P be a pattern string p1; : : : ; pm and T a target string t1; : : : ; tn wherem � n, both over the alphabet f0; 1; dg. The don't care character d matchesat any other character, and the other characters match at themselves and atd. Pattern string P matches target string T at position i if pj matches atti+j�1 for every j = 1; : : : ;m.Problem 13 (String matching with don't care symbols)Given a pattern string P and a target string T , both over the alphabetf0; 1; dg, compute the set of positions at which P matches T . 2The reduction of string matching to ordered path or region inclusionis as follows. Each character c is represented as a term �(c) as follows:�(0) = b(a), �(1) = b(b), and �(d) = b for don't care characters in thepattern and �(d) = b(a; b) for the don't care characters in the target. Notethat a pattern character p matches at a target character t if and only if thereis a root preserving path or region embedding of Tree(�(p)) into Tree(�(t)).The strings P = p1; : : : ; pm and T = t1; : : : ; tn are represented as the treesrepresented by the terms �(P) and �(T). The terms are constructed alongthe following recursive rule:�(c1; : : : ; ck) = a(�(c1); �(c2; : : : ; ck)) when k > 1�(c1; : : : ; ck) = �(c1) when k = 1 :An example of the reduction is shown in Figure 4.5.Now it is easy to see that P matches T at position i if and only if thereis an ordered root preserving path or region embedding of tree Tree(�(P))in tree Tree(�(ti; : : : ; tn)). Since m + n is the trivial lower bound for thecomplexity of inclusion problems, we can state the following theorem, whichindicates the di�culty of obtaining linear time algorithms for ordered pathinclusion problems.Theorem 4.32 If ordered path inclusion or ordered region inclusion can besolved in time O(f(m;n)), then also string matching with don't care symbolscan be solved in time O(f(m;n)). 259

������������ ���� �� �������� �������� ����������QQDD��� �� HHH bbb���!!!�� bbb ���

�� llaaa TT��
a bbb bbb aa

�(T)�(P) aa aaaaaabb b bb a bbFigure 4.5: Representing the pattern string P = d10 and the target stringT = 01d1d as trees.4.9 Classical tree pattern matchingIn this section we give a short review of the most important methods forsolving the ordered child inclusion problem, i.e., the classical tree patternmatching problem. The problem has been extensively studied, and we onlytouch upon the various approaches to it. The presentation follows mainlythe review in [RR88] and in [RR92].If we have any knowledge about the structure of the target, we can tryto utilize it for solving the matching problem more e�ciently than in thegeneral case. We discuss this idea in Chapter 5, where we show how treepattern matching can be solved e�ciently if the target is a parse tree overan appropriate grammar.The naive or basic tree pattern matching algorithm belongs to the folkloreof computing. The basic algorithm traverses the target tree in preorder andcompares the pattern to each subtree of the target in turn. In the worst casethis algorithm requires O(mn) time, but it can be shown to have a linearexpected time behaviour [SF83].Ho�man and O'Donnell [HO82] have presented advanced bottom-up andtop-down tree pattern matching techniques. The key idea of the bottom-upalgorithm is to �nd at each target node w a match set that consists of the60

subtrees of the pattern that match w. The match sets can be enumerated andcoded by the enumeration. The method assumes that the alphabet is ranked,i.e., the label of a node determines the number of its children. (The leaves ofthe pattern that match at arbitrary nodes are represented by variables. Wetreat inclusion problems with variables in Chapter 6.) For each label there isa table whose dimension is equal to the rank of the label. The code assignedto a target node labeled by a is determined using the table of a on the basisof the codes of the match sets assigned to the children of the node. Oncethe tables have been computed, the matching takes O(n) time. The maindrawback of the method is the size of the tables and the time taken by thepreprocessing; both are exponential in m.The top-down tree matching algorithm of [HO82] is based on representingthe pattern as a set of path strings, i.e., sequences of interleaved labels andchild numbers each representing a unique path from the root to a leaf. (Apath string begins with the label of the root, which is followed by the numberof the child that is the next node on the path, and so on up to the label ofthe leaf at the end of the path.) The length of a path string is the number ofchild numbers in it. These path strings can be transformed in O(m) time intoan Aho-Corasick like multiple string recognition automaton [AC75]. A single�nal state of the automaton may accept many path strings; their lengthsare stored in the corresponding �nal state. The nodes of the target treeare decorated with counters initialized to zero. The occurrences of the pathstrings in the target are recognized by running the automaton on the targettree. When a �nal state that accepts path strings of lengths fl1; : : : ; lpg isreached at a target node w, the counters of the l1th, the l2th, : : : ; and thelpth ancestor of w are incremented by one. The pattern occurs at those nodeswhose counter reaches the number of leaves of P . The time required to dothe matching is the maximum of n and the number of times a counter isincremented.The amount of periodicity in the path strings of the pattern is measuredby the su�x index s(P) of the pattern. The su�x index of P is the maximumnumber of path strings of P such that they all are su�xes of some path stringof P ; it can range from 1 to m. The su�x index sets a tight upper boundon the number of counters that are incremented by the top-down algorithm.Therefore the matching time of the top-down algorithm is O(s(P)n).Recently Kosaraju [Kos89] broke the quadratic O(mn) complexity barrierof tree pattern matching. Dubiner, Galil, and Magen [DGM90] improved theresult of Kosaraju by introducing an O(npm polylog(m)) time algorithm.61

We state this best known upper bound as a theorem.Theorem 4.33 [DGM90] Classical tree pattern matching can be solved intime O(npm polylog(m)). 2The algorithms of [Kos89] and [DGM90] apply sophisticated but compli-cated techniques like su�x trees of trees and convolutions; therefore they aremore of theoretical than practical value. Considerable e�ort is needed in thealgorithms to handle periodic patterns e�ciently. In Chapter 5 we considerrestricting the periodicity of the target tree, which makes the tree patternmatching problem essentially easier.In the applications of tree pattern matching the nodes of the pattern areusually either function symbols or variables. Variables can appear only asleaves, and a variable matches at any node. Function symbols match only atnodes with the same label and the same number of children. This variationcan easily be included in the de�nition of child inclusion problems.If we require that repeating occurrences of the same variable match onlyat the roots of identical subtrees, we get another problem that is calledeither nonlinear tree pattern matching or tree pattern matching with logicalvariables. Solving this problem is considered in [RR88]. We discuss treeinclusion problems with logical variables in Chapter 6.4.10 Subtree problems are solvable in lineartimeIn this section we show that the unordered and ordered subtree problems canbe solved in time linear in the size of the target tree.An instance relation is linearly solvable if there is a constant c such thatthe question \Is U an instance of P ?" can be answered in time boundedby cjU j for all trees P and U . For example, the instance relation of theunordered subtree problem is linearly solvable:Lemma 4.34 The relation \trees P and U are isomorphic" is linearly solv-able.Proof. A linear time algorithm for the problem, based on lexicographicsorting, is given in [AHU74, p. 84{86]. 2A set of nodes of T is a candidate set of occurrences of P , if it is a supersetof the set of occurrences of P . A set of nodes N is k-thin if any node n 2 N62

has at most k � 1 ancestors in N . A 1-thin set of nodes is at. That is, aat set of nodes does not contain two nodes one of which is an ancestor ofthe other. Note that in tree pattern matching the set of occurrences neednot be at, since the pattern may match both at a node and at some of itsdescendants.Lemma 4.35 Assume that for a tree inclusion problem there is a k-thincandidate set of occurrences that can be computed in time O(kn), and thatthe instance relation is linearly solvable. Then the tree inclusion problem issolvable in time O(kn).Proof. First compute a k-thin candidate set C in time O(kn). For eachnode u in C, test whether P matches at u. Since the instance relation islinearly solvable, this requires time at most cPu2C jT [u]j for some constantc. Because C is k-thin, each node of T can belong to at most k di�erent treesrooted by nodes in C, and thereforecXu2C jT [u]j � ckn = O(kn) : 2The next lemma states the simple result that the instance relation ofordered child inclusion is linearly solvable.Lemma 4.36 The instance relation \P is an ordered child-included tree ofU" is linearly solvable.Proof. The relation can be tested simply by comparing the correspondingnodes of the trees against each other; at most minfjP j; jU jg nodes of U areexamined. 2Now we are ready to state the time complexities of the subtree problems.Theorem 4.37 The unordered and the ordered subtree problem can besolved in time O(n).Proof. The roots of the subtrees of size m form a at candidate setof occurrences. They can be located in time O(n) by traversing the targetbottom-up and counting the sizes of its subtrees. The instance relationsare linearly solvable by Lemmas 4.34 and 4.36. The result follows fromLemma 4.35. 263

Lemma 4.35 is a generalization of an argument used in [Gro91]. Grossishows that locating subtrees of the target that are identical to the pattern ordi�er only with regard to don't care labels or up to m mismatching labels canbe done in O(n) sequential time. The same idea appears also in the orderedsubtree algorithm of [Dub90].4.11 Summary of complexitiesThe table below summarizes the complexity results for the tree inclusionproblems considered in this chapter. Shorthand NPC stands for NP-complete,and m and n stand for the size of the pattern and for the size of the target,as elsewhere. Notation O denotes an upper bound for the worst-case com-plexity of a problem, and � denotes tight complexity (i.e., one that equalsthe worst-case lower bound complexity) for the problem.incl. path incl. region incl. child incl. subtreeunordered NPC O(m1:5n) O(m2n) O(m1:5n) �(n)ordered O(mn) O(npm polylog(m)) �(n)Table 4.1: The complexities of the tree inclusion problems

64

Chapter 5Grammatical tree inclusionIn this chapter we consider tree inclusion problems with targets that are parsetrees over some grammar. Motivation for this comes from text databasesmodeled by context-free grammars. Context-free grammars are rather com-monly used for describing the structure of text documents [GT87, BR84,CIV86, FQA88, QV86, KLMN90].First in Section 5.1 we discuss describing the structure of targets bycontext-free grammars. We de�ne nonperiodic grammars and argue thatthey are adequate for describing the structure of many text databases ap-pearing in practice. Then we show that classical tree pattern matching can besolved in linear time on nonperiodic target trees. In Section 5.2 we show thatalso ordered tree inclusion is solvable in linear time on nonperiodic targets.Section 5.3 discusses utilizing the grammar of the target in inclusion prob-lems. The possibilities include checking patterns for syntactic correctnessbefore actual matching, and transforming inclusion problems to equivalentbut easier problems.More discussion about text databases appears in Chapter 7, where wealso give examples of using inclusion patterns as database queries.5.1 Grammatical targets and tree patternmatchingWe de�ne a grammar to be a quadruple G = (V;T ;P; S), where V is the setof nonterminals, T is the set of terminals, P is the set of productions andS 2 V is the start symbol. 65

It is useful to allow regular expressions on the right-hand-sides of pro-ductions. This leads to fewer nonterminals and seems to be a form easilycomprehensible also to nonspecialists. Therefore, we de�ne the productionsto be of the form A ! �, where � is a regular expression over V [T . Wesay that a production A ! w is an instance of A ! �, if w belongs to theregular language de�ned by �.As an example we show a grammar for describing the structure of a listof bibliographic references stored in a text database system.publications ! publication�publication ! authors title journal volume year pagesauthors ! author�author ! initials nameinitials ! textname ! texttitle ! textjournal ! textvolume ! numberyear ! numberpages ! start endstart ! numberend ! numbertext ! character�number ! digit�The obvious productions for nonterminals character and digit have been ex-cluded. The grammar is allowed to be ambiguous because it will not be usedfor parsing. Producing string representations of a parse tree and parsing themback to trees can be done using versions of the grammar that are annotatedwith extra terminal symbols. The methodology is explained in [KLMN90]and in [Nik90].To de�ne parse trees over a grammar G, we de�ne sets T (G; a) for termi-nals a 2 T and sets T (G;A) for nonterminals A 2 V:T (G; a) = fag for terminals a ;T (G;A) = fA(t1; : : : ; tn) j A! B1; : : : ; Bnis an instance of a production in Pand ti 2 T (G;Bi) for each i = 1; : : : ; ng :66

Here A(t1; : : : ; tn) stands for a tree whose root is labeled by the nonterminalA and whose ith immediate subtree is ti for all i = 1; : : : ; n. That is, elementsof T (G;A) represent derivations of terminal strings from the nonterminal Aaccording to G. Finally, the trees that represent derivations from the startsymbol of G, i.e., the trees in T (G;S), are the parse trees over G.A tree inclusion problem is G-grammatical if the target is a parse tree overa grammar G. Grammatical inclusion problems are in general not easier thanthe unrestricted ones. Let T be a tree and let fa1; : : : ; alg be the set of labelsoccurring in T . Consider then the following grammar GS ! a1 j a2 j : : : j ala1 ! (a1 j a2 j : : : j al)�...al ! (a1 j a2 j : : : j al)� :Now any inclusion problem with target T is G-grammatical.A grammar is nonperiodic1 if it has no nonterminal A that can derive astring of the form �A�. A tree T is k-periodic if any nonterminal appearsat most k times on a single root-to-leaf path in T . A 1-periodic tree isnonperiodic, or equivalently, a tree T is nonperiodic if and only if T is aparse tree over some nonperiodic grammar. An inclusion problem (P; T) isnonperiodic, if it is G-grammatical for a nonperiodic grammar G (i.e., thetarget T is nonperiodic).It is easy to see that nonperiodic grammars with regular expressions intheir productions de�ne exactly the regular languages [HU79]. For example,we could describe the previous list of bibliographic references also by a singleproduction of the following form.publications ! ((character� character�)�character� character�digit� digit� digit� digit�)�The subexpressions character and digit that simply describe the set of rec-ognized characters and the digits `0'{`9' have been left unspeci�ed. It isclear from this example that using descriptive nonterminals may clarify thelogical structure of a text database. Although nonperiodic grammars are1Nonperiodic grammars are usually called nonrecursive. We use the term nonperiodicto avoid confusing nonperiodic matching problems with nonrecursive, i.e., undecidableproblems. 67

too weak for modeling programming languages, they are powerful enough tomodel the structure of most text databases. In practice, nonperiodic gram-mars with regular expressions in productions support modeling long lists of,say, dictionary articles, but unlimited nesting of structures is of course notpossible.Note that if T is a parse tree over a nonperiodic grammar G, then theheight of T is at most jVj+ 1. It is known that restricting the height of thepattern improves the running time of the basic algorithm for classical treepattern matching:Lemma 5.1 [DGM90] If the height of the pattern is h, then the basic algo-rithm for tree pattern matching takes time O(nh). 2In a matching problem the height of P is at most the height of T . Thusnonperiodic tree pattern matching can be solved using the basic algorithmin time O(jVjn). Next we show how Lemma 4.35 makes it possible to solvethe tree pattern matching problem in time O(kn) for a k-periodic target, andhence G-grammatical tree pattern matching in time O(n) for an arbitrarynonperiodic grammar G.Lemma 5.2 A k-thin candidate set of occurrences for any tree inclusionproblem can be computed in a k-periodic target in time O(n).Proof. The nodes of the target which have the same label as the rootof the pattern form a candidate set of occurrences; they can be located bya simple traversal of the target. The set is k-thin, because the target isk-periodic. 2Now the next theorem follows directly from Lemmas 4.35, 5.2, and 4.36.Theorem 5.3 The ordered child inclusion problem with k-periodic targetscan be solved in time O(kn). 2Theorem 5.3 tells especially that nonperiodic tree pattern matching issolvable in linear time. To obtain the same result for nonperiodic orderedtree inclusion, we show in the next section that the instance relation \Uincludes P with order minimally" is solvable in linear time, when U is anonperiodic tree. 68

5.2 Solving ordered tree inclusion on non-periodic targetsNext we give an algorithm for testing the instance relation of ordered treeinclusion between a pattern P and a nonperiodic tree U . The nonperiodicityof U means that if v is a node of U then there are no nodes labeled bylabel (v) in the descendants of v. This implies two further facts utilized inthe algorithm. First, tree U includes P with order minimally if and only ifthere is a root preserving ordered embedding of P into U . Second, let N bea nonempty set of nodes of U all of which have the same label. Then the�rst node of N in the preorder of U and the �rst node of N in the postorderof U are the same node.Let P1; : : : ; Pk be the immediate subtrees of the pattern P rooted by nodesu1; : : : ; uk. The principle of the algorithm is the same as in Algorithm 4.23:to search for a left embedding of hP1; : : : ; Pki in U .Algorithm 5.4 [KM92] Testing the instance relation of ordered tree inclu-sion with a nonperiodic target.Input: Trees P and U , where U is nonperiodic.Output: true if U includes P with order minimally; otherwise false.Method: if label (root(P)) = label (root(U)) thenreturn emb(root(P); root(U));else return false �;1. function emb(u; v);2. if u is a leaf then return true;3. else Let u1; : : : ; uk be the children of u;4. Let p be the �rst descendant of v in preordersuch that label (p) = label (u1);if there is no such node p then return false; �;5. i := 1;6. while i � k do7. if emb(ui; p) then i := i+ 1; �;8. if i � k then9. Let p be the �rst node in rr(p) \ desc(v) inpreorder of U such that label (p) = label (ui);69

if there is no such p then return false; �;10. �;11. od;12. return true;13. �;14. end;Lemma 5.5 Algorithm 5.4 tests the relation \U includes P with order min-imally" correctly for all trees P and all nonperiodic trees U .Proof. If P consists of a single node u, the claim is obvious. Then assumethat the height of P is h > 0 and and that the algorithm works correctly withall patterns of height less than h. Let the immediate subtrees of P rootedby u1; : : : ; uk be P1; : : : ; Pk. Now the following two invariants can be shownto hold for the loop on lines 6{11. First, before each execution of the loop,post(p) � post(f(ui)) for all ordered embeddings f of hP1; : : : ; Pii into theforest of immediate subtrees of U . Second, after each execution of the loop,the forest hP1; : : : ; Pi�1i has a left embedding into the forest of immediatesubtrees of U . The correctness of the algorithm follows from these invariants.2Lemma 5.6 The instance relation \U includes P with order minimally" islinearly solvable for nonperiodic trees U .Proof. Algorithm 5.4 tests the relation for nonperiodic trees U correctlyby Lemma 5.5. We show that there is a constant c such that the algorithmworks in time bounded by cjU j for all trees P and U .Denote by t(n) the maximum time needed to compare the root labels ofP and U and to perform the function call emb(root(P); root(U)), when Pand U are trees and jU j = n. First, consider testing a single node. Obviouslythere is a constant c0 such that t(1) � c0. Then assume that jU j = n > 1 andt(m) � c0m for all targets of size m < n. Let n00 be the number of nodes ofU that are examined during the traversal on lines 4 and 9 of Algorithm 5.4,excluding the roots of the subtrees of U that are examined in the recursivecalls on line 7. Let n0 be the total size of the subtrees of U that are examinedin the recursive calls. There is a constant c00 such that the traversal can beperformed in time c00n00. Therefore we get for n > 1t(n) � c0n0 + c00n00Now, since the regions of U examined outside and in the recursive calls donot overlap, n0 + n00 � n. From this we get for all n > 0t(n) � cn70

by selecting c = maxfc0; c00g. 2Theorem 5.7 [KM92] The ordered tree inclusion problem can be solved onnonperiodic targets in O(n) time.Proof. By Lemma 5.2 a at candidate set of occurrences can be com-puted in O(n) time, and by Lemma 5.6 the instance relation is linearly solv-able. Therefore the problem is solvable in linear total time by Lemma 4.35.2Periodic targets seem to be more di�cult to handle. Trying to apply theapproach of Algorithm 5.4 to testing the instance relation with k-periodictargets leads to backtracking with
(2kn) worst case running times. Thismeans that the specialized approach of this section would be feasible fork-periodic targets if k < logm.5.3 Preprocessing grammatical patternsIn this section we consider further utilizing the grammar of the target inconnection to tree inclusion problems. First, the patterns can be checkedsyntactically against the grammar in order to test whether they can haveoccurrences in the target. Second, in some cases the grammar can be usedfor transforming the problem to an easier but equivalent problem.In the nonperiodic tree inclusion problems considered above obviouslyonly nonperiodic patterns can have occurrences in the target. More generally,in a G-grammatical inclusion problem one can check, before performing theactual matching, whether P can have an occurrence in a parse tree over G.For example, in a text database application query patterns not passing thistest could result in informative diagnostics about the impossibility of locatingdata using such patterns on a database modeled by grammar G.An alternative and a more co-operative way of ensuring that only sensiblepatterns are given through a query interface is to provide the user withpattern templates, which the user can edit. This kind of an interface has beenimplemented in the LQL system [Byr89]. Next we sketch what conditionsthe patterns have to meet, whether their correct form is guaranteed by atemplate editor or whether they are checked separately.In what follows, we can assume that the grammar G = (V;T ;P; S) ofthe target contains only useful nonterminals. That is, every nonterminal inV appears in a derivation of a string of terminals from the start symbol S ofG. (See [HU79, p. 88{90].) 71

For tree pattern matching one checks that each node of pattern P islabeled by a symbol of grammar G and that the children of each internalnode of P correspond to an appropriate production in G. Let u be an internalnode of P with label A and with children u1; : : : ; uk. Checking u is performedby applying to the string of labels in u1; : : : ; uk an automaton that recognizesthe instances of the right-hand sides of the productions for nonterminal A.These �nite automata need to be constructed only once for a grammar. Ifthe automata are deterministic, checking pattern P takes only time O(jP j).If the worst case O(2jGj) size of the deterministic automata is prohibitive, itis also possible to construct nondeterministic �nite automata for the sametask; this can be done in time O(jGj). The children of each pattern nodecan then be checked by simulating the NFAs, yielding total time O(jGjjP j).(See [AHU74].)For the tree inclusion problem the condition is slightly more complicated.For each node of P labeled by A and having children labeled by a1; : : : ; akthe following should hold in G:A �) �0a1�1 : : : �k�1ak�k ;where �i 2 (V [T)�: This can be checked in the following manner. For eachnonterminal B 2 V let B 0 be a unique terminal not belonging to T , and for aset of nonterminals N let N 0 = fA0 j A 2 Ng. For each terminal t 2 T let t0be a unique new nonterminal not belonging to V, and for a set of terminalsC let C 0 = ft0 j t 2 Cg. For a production p denote by p0 the productionobtained by replacing each terminal t in p by t0. For a set of productions Qdenote by Q0 the set fp0 j p 2 Qg. Finally, for grammar G = (V;T ;P; S)and a nonterminal A 2 V let G0A = (V 00;T 00;P 00; S 00) be the grammar withV 00 = V [T 0T 00 = T [V 0P 00 = P 0[fA! (A0 j �) j A 2 Vg[ft0 ! (t j �) j t 2 T gS00 = AThe idea is that grammar G0A generates the subsequences of the sententialforms that are derivable from nonterminal A in grammar G. (Note that G0Aand G0B may di�er only with regard to the start symbol.) Now checking apattern node labeled by A and having children labeled by a1; : : : ; ak is done72

by �rst substituting B 0 for each nonterminal B in the sequence a1; : : : ; ak andthen parsing this sequence using G0A.Above we have outlined possibilities to check the patterns against thegrammar before performing the actual matching. Another promising direc-tion for preprocessing patterns with regard to the grammar, analogical toquery optimization in databases, is trying to transform the given inclusionproblem to an easier one that still yields the same set of occurrences as theoriginal problem.For some patterns P and grammars G we may be able to compute aunique sequence of labels on any path between two nodes labeled by a andb in any parse tree over G, when a and b are labels of a node u and itsdescendant v in pattern P . Such knowledge allows us to complete the or-dered tree inclusion pattern by adding nodes labeled by the correspondingsequence of labels between every node-descendant pair u; v in P , and to solvethe problem, possibly more e�ciently as an ordered path inclusion problem.Another problem that is feasible for this transformation is unordered treeinclusion. It would be convenient to ignore the left-to-right order of subtreesin expressing queries on a grammatical database. Unfortunately, unorderedtree inclusion is an NP-complete problem. (See Section 4.2.) If the unorderedtree inclusion pattern P and grammar G allow transforming P as above, theproblem reduces to an unordered path inclusion problem, which is solvablein polynomial time.

73

Chapter 6Tree inclusion with logicalvariablesIn this chapter we consider tree inclusion with logical variables. In this exten-sion of tree inclusion the pattern leaves can be labeled by variable symbols.This provides means for extracting subtrees of the target using substitutionsto the variables in the pattern. Moreover, labeling various pattern nodesby the same variable symbol is a way of requiring identity of the subtreesmatched by those nodes.The addition of logical variables makes most of our problems NP-hard;only the ordered child inclusion problem and the ordered subtree problemretain their polynomial complexities. The inclusion problems with logicalvariables are de�ned in Section 6.1. The NP-hardness proofs are given inSection 6.2. Section 6.3 outlines how the ordered child inclusion problems,i.e., the classical tree pattern matching and the ordered subtree problemwith logical variables, can be solved in polynomial time. Some polynomialsubclasses of ordered tree inclusion with logical variables are considered inSection 6.4. Section 6.5 is a summary of the computational complexities ofthe tree inclusion problems with logical variables.6.1 Logical variables in patternsSo far we have considered tree inclusion problems where the patterns andthe targets are trees labeled by symbols without any speci�c semantics. Nowwe assume that the set of labels consists of disjoint sets Const of constantsymbols and Var of variable symbols, and extend the inclusion problems by74

allowing pattern leaves to be labeled by variables.We denote constants by letters a, b, c, : : :, and variables by letters x, y,z, : : :, possibly with subscripts. A node in a pattern is called a variable nodeif it is labeled by a variable symbol; otherwise it is a constant node. In bothcases we may call nodes labeled by a symbol c simply c-nodes. A patternwith logical variables is a tree whose internal nodes are constant nodes andwhose leaves are labeled by symbols in Const [Var.Let tree P = (V;E; root(P)) be a pattern with logical variables andT = (W;F; root(T)) a tree. An injective function f : V ! W is a patternembedding of P into T if it preserves ancestorship and the labels of constantnodes, and respects variables. Function f respects variables if it maps nodeslabeled with identical variables to roots of identical subtrees. That is, f is apattern embedding, if for all nodes u and v of P we have that1. f(u) = f(v) if and only if u = v,2. u is an ancestor of v in P if and only if f(u) is an ancestor of f(v) inT ,3. if label (u) 2 Const then label (u) = label (f(u)), and4. if label (v) 2 Var and label (u) = label (v) then the trees T [f(u)] andT [f(v)] are identical.Ordered pattern embeddings, path pattern embeddings, region pattern em-beddings, and child pattern embeddings are de�ned analogously to the corre-sponding tree embeddings in Chapter 3.Let G = (V;E) and H = (W;F) be directed and labeled graphs. Abijection f : V ! W is a pattern isomorphism between G and H, if for allnodes u; v 2 V1. (u; v) 2 E if and only if (f(u); f(v)) 2 F ,2. label (v) = label (f(v)) if label (v) 2 Const, and3. label (f(u)) = label (f(v)) if label (v) 2 Var and label (u) = label (v).A pattern isomorphism between a pattern P with logical variables and a treeT is a subtree pattern embedding of P in T . If a subtree pattern embeddingpreserves the left-to-right order of the nodes, it is an ordered subtree patternembedding. 75

The tree inclusion problems with logical variables are now derived from thecorresponding tree inclusion problems simply by replacing the embeddingsby the corresponding pattern embeddings. We refer for shortness to orderedand unordered C-embeddings, C-inclusion problems, C-pattern embeddings,and C-inclusion problems with logical variables, where \C-" is empty orstands for a phrase from the list \path", \region", \child", \subtree". Theabbreviations for a particular tree inclusion problem with logical variables isproduced by su�xing the initials of the corresponding tree inclusion problemby \-V" (referring to \with variables"). For example, the abbreviation of theordered tree inclusion problem with logical variables is OTI-V, which stemsfrom Ordered Tree Inclusion with Variables. We can further refer to thedecision versions (\Is there a C-embedding of P in T ?") of the problems byattaching the pre�x \D-" to the problem identi�ers.A binding is a pair consisting of a variable x and a term t, denoted nor-mally by x = t. A substitution is a set of bindings xi = ti, where the variablesxi are distinct. Let P = (V;E; root(P)) be a pattern with logical variablesand let T be a tree. If f is an ordered (unordered) C-pattern embedding ofP into T , the substitutionfx = t j x 2 Var; 9 v 2 V : label (v) = x and t = Term(T [f(v)])g ;is called a solution to the instance (P; T) of the ordered (unordered) C-treeinclusion problem with logical variables. That is, a solution is a substitutionthat binds each variable x occurring in the pattern to the term representationof the subtrees matched by the x-nodes. The answer to the instance (P; T)of an ordered (unordered) C-inclusion problem with logical variables � is theset of solutions to the instance (P; T) of �. We often refer to the instancesof problems as \problems". If there is no ordered (unordered) C-embeddingof P into T , the answer to the problem (P; T) is the empty set. On the otherhand, if P is an ordered (unordered) C-included pattern of T but no nodesof P are labeled by variables, the answer is the singleton set consisting of theempty substitution.As an example, consider the pattern P and the target T shown in Fig-ure 6.1. Since permutation of siblings does not change the pattern, theanswers to the ordered and unordered problems are the same. The answerto the instance (P; T) of the tree inclusion problems with logical variablesOTI-V and UTI-V is ffx = bg; fx = cgg, which contains two solutions. Inthe case of the path inclusion problems OPI-V and UPI-V the answer isffx = bgg. If (P; T) is an instance of region inclusion with logical variables76

������������ ��������������������������������ZZZ���ZZZ���ZZZ��� ZZZ��� ababxx a cdc aTP
Figure 6.1: An instance of tree inclusion problems with logical variables.ORI-V or URI-V, the answer is the empty set. This is because the target Tdoes not contain two identical subtrees rooted by adjacent sibling nodes.We obtain the following relationships between the answers to di�erenttree inclusion problems with logical variables analogically to Section 3.11.Theorem 6.1 Let tree P be a pattern with logical variables and T a tree.Then the following inclusions hold between the answers to the tree inclusionproblems with logical variables:1. The answer to the ordered (unordered) path inclusion problem withlogical variables (P; T) is a subset of the answer to the ordered (un-ordered) tree inclusion problem with logical variables (P; T).2. The answer to the ordered (unordered) region inclusion problem withlogical variables (P; T) is a subset of the answer to the ordered (un-ordered) path inclusion problem with logical variables (P; T).3. The answer to the ordered (unordered) child inclusion problem withlogical variables (P; T) is a subset of the answer to the ordered (un-ordered) region inclusion problem with logical variables (P; T).4. The answer to the ordered (unordered) subtree problem with logicalvariables (P; T) is a subset of the answer to the ordered (unordered)child inclusion problem with logical variables (P; T). 277

Further, each ordered C-pattern embedding of P into T is also an un-ordered C-pattern embedding of P into T .Theorem 6.2 Let tree P be a pattern with logical variables and T a tree.Then the answer to the ordered C-inclusion problem with logical variables(P; T) is a subset of the answer to the unordered C-inclusion problem withlogical variables (P; T). 26.2 Complexity of inclusion problems withlogical variablesIn this section we show that most of the tree inclusion problems with logi-cal variables are NP-hard in the general case. The intuitive reason for thedi�culty of these problems is common to many NP-complete problems: itis di�cult to do local choices that are globally consistent. In the case oftree inclusion with logical variables the requirement for global consistencyappears in the requirement that embeddings respect variables.Also string pattern matching becomes di�cult if we allow repeating vari-ables in the pattern. Angluin has shown in [Ang80] that it is NP-completeto decide whether a given string can be obtained by substituting strings tothe logical variables in a given string pattern. In string pattern matching thedi�culty lies in deciding the right lengths for the substrings matched by thevariables.A tree inclusion problem with logical variables may have exponentiallymany solutions. Consider the ordered tree inclusion problem with logicalvariables (P; T) withP = Tree(a(x1; : : : ; xm)); and T = Tree(a(b1; : : : ; bn)) ;where x1; : : : ; xm are distinct variable symbols and b1; : : : ; bn are distinctconstant symbols. The answer to the problem consists of �nm� substitutions.Thus tree inclusion problems with logical variables may require in generalexponential time in the size of the input.The decision problems \Is there a C-pattern embedding of P into T ?" arein NP, since guessing a mapping and checking whether it is a C-embeddingcan be done in polynomial time with respect to the size of input.If no variable appears twice in the pattern, the decision versions of treeinclusion problems with logical variables are not harder than the correspond-ing tree inclusion problems. They can be solved by straightforward variants78

of the corresponding tree inclusion algorithms by simply ignoring the labelsof the variable nodes.Next we show that all unordered inclusion problems with logical variablesare NP-hard. The proof is based on a pseudo-polynomial reduction from 3-PARTITION.A decision problem� is NP-hard in the strong sense if a variant of � whereall input numbers are expressed in unary notation is NP-hard. A decisionproblem � is NP-complete in the strong sense if � is NP-hard in the strongsense and � 2 NP. A pseudo-polynomial transformation from a problem �to a problem �0 is a transformation from � to �0 that can be computed intime limited by a polynomial over both the length of the instance of � andthe magnitude of the largest number appearing in the instance of �. For amore rigorous development of these concepts, see [GJ78] or [GJ79].Lemma 6.3 [GJ79] If � is NP-hard in the strong sense and there exists apseudo-polynomial transformation from � to �0, then �0 is NP-hard in thestrong sense. 2Problem 14 (3-PARTITION)Instance: A set A = fa1; : : : ; a3kg, a positive integer bound B and a posi-tive integer size s(a) for each element a of A, such that each size s(a)satis�es B=4 < s(a) < B=2 and such that Pa2A s(a) = kB.Question: Is there a partition of A into disjoint sets A1; : : : ; Ak such thatPa2Ai s(a) = B for each i = 1; : : : ; k? 2The constraints of the above problem imply that each subset Ai in thepartition A1; : : : ; Ak contains exactly three elements of A; hence the name3-PARTITION.Theorem 6.4 [GJ79] 3-PARTITION is NP-complete in the strong sense.2We give a pseudo-polynomial transformation from 3-PARTITION to theunordered subtree problem with logical variables (UST-V). Let an instanceof 3-PARTITION be given by the set A = fa1; : : : ; a3kg, the positive integerbound B and the positive integer sizes s(a) for each element a of A. Werepresent the instance of 3-PARTITION as an instance of tree inclusion withlogical variables as follows. Set A is represented by the leaves of a pattern79

P = (V;E; root(P)) consisting of a root and kB leaves. Each element ai ofA is represented by a unique variable symbol xi, called the label of ai. Foreach element ai of A we label s(ai) leaves of P by the label xi of ai. The rootof P is labeled by 0. A target T = (W;F; root(T)) consisting of a root andkB leaves represents the partitioning of A. The leaves of T are divided intok groups of B nodes; the nodes in group i are labeled by i. The root of T islabeled by 0. (See Figure 6.2.)���� ���������������� ��������������������"""""" bbbbbb bbbbbb""""""���� AAAA SSSS����x1 0x3k k kB copiesB copies ...xi 110 ...xilabeled by xis(ai) nodes TPFigure 6.2: Trees P and T corresponding to an instance of 3-PARTITION.Lemma 6.5 Let a set A = fa1; : : : ; a3kg with a size s(a) for each of itselements a and a bound B form an instance of 3-PARTITION. Let (P; T)be the representation of the instance of 3-PARTITION as an instance of theunordered subtree problem with logical variables. Then there is a patternisomorphism between P and T if and only if there is a partition of A intodisjoint sets A1; : : : ; Ak such that Pa2Ai s(a) = B for each i = 1; : : : ; k.Proof. Let Wi = fw 2 W j label (w) = ig be the set of the nodes of Tthat are labeled by i. Then jWij = B for i = 1; : : : ; k.First assume that there is a partition of A into disjoint sets fA1; : : : ; Akgsuch that Pa2Ai s(a) = B for each i = 1; : : : ; k. For i = 1; : : : ; k, letVi = fv 2 V j label (v) = xj and aj 2 Aigbe the set of the nodes of P that are labeled by the label xj of some elementaj 2 Ai. Sets V1; : : : ; Vk form a partition of the leaves of P in disjointsubsets. For each element aj there are s(aj) leaves of P labeled by xj. SincePa2Ai s(a) = B, we have that jVij = B for each i = 1; : : : ; k. Therefore foreach i = 1; : : : ; k there is a bijection fi between the sets Vi and Wi. Now it80

is easy to see that the functionk[i=1 fi [f(root(P); root(T))gis a pattern isomorphism between P and T .Assume for the converse that there is a pattern isomorphism f betweenP and T . Let Vi = fv 2 V j f(v) 2 Wig be the set of the nodes of P that fmaps to nodes of T labeled by i. For all the leaves v of P denote the labelof v by xv. For each i = 1; : : : ; k let Li = fxv 2 Var j v 2 Vig be the set ofvariables that are labels of nodes in set Vi. Because f is a variable respectingfunction from the nodes of P to the nodes of T , the sets L1; : : : ; Lk form apartition of the set of variables occurring in P . For each i = 1; : : : ; k letAi = faj 2 A j xj 2 Ligbe the set of elements aj of A whose label xj belongs to set Li. Now it isclear that the sets A1; : : : ; Ak form a partition of A.Then we show that the total size Pa2Ai s(a) of each subset Ai in thepartition A1; : : : ; Ak of A equals B. The leaves of P are labeled so thats(aj) = jfv 2 V j label (v) = xjgj for each element aj of A. Since two sets ofpattern nodes labeled by the labels of two di�erent elements of A are disjointwe see that Xaj2Ai s(aj) = j [aj2Aifv 2 V j label (v) = xjgjfor each i = 1; : : : ; k. Now for each i = 1; : : : ; k we have[aj2Aifv 2 V j label (v) = xjg = [xj2Lifv 2 V j label (v) = xjg= fv 2 V j xv 2 Lig= Vi :Because f is a bijection, jVij = jWij = B for each i = 1; : : : ; k. 2Note that in the above construction any pattern embedding of P into Tis also a pattern isomorphism since both P and T consist of a root node andkB leaves. Therefore we have shown that none of the unordered inclusionproblems with logical variables is easier than 3-PARTITION.81

Theorem 6.6 The unordered inclusion problems with logical variables areNP-hard. 2Benanav, Kapur, and Narendran have derived closely related results formatching terms built of logical variables and symbols in a ranked alpha-bet [BKN87]. Especially, they show that commutative matching of terms isNP-complete.We have studied mainly trees as representations for terms. Terms canbe represented concisely as directed graphs by sharing the representationsof some identical subterms. Applying this idea to the trees of the previ-ous transformation leads to a proof of the NP-completeness of a version ofGRAPH HOMOMORPHISM. Given two graphs G and H, the problem ofGRAPH HOMOMORPHISM is to decide whether a graph isomorphic to Hcan be obtained from G by a sequence of identi�cations of non-adjacent ver-tices. The e�ect of identifying two vertices u and v is to replace them bya single new vertex that is adjacent to all the vertices that were previouslyadjacent to u or v. It is well known that GRAPH HOMOMORPHISM is anNP-complete problem [GJ79].A multigraph is a graph which may have more than one edge between twovertices. Two multigraphs G = (VG; EG) and H = (VH ; EH) are isomorphicif there are bijections f : VG ! VH and g : EG ! EH such that for allvertices u and v 2 VG and all edges e 2 EG we have that e is an edge fromu to v if and only if g(e) is an edge from f(u) to f(v). A graph is acyclic ifnone of its nodes can be reached by following a nonempty sequence of edgesstarting from the node itself. Let u be a vertex in a directed graph G. If uhas no incoming edges and all vertices of G are reachable from u we say thatu is the root of graph G.Now we can show that GRAPH HOMOMORPHISM is NP-complete alsoin the version where both graphs G and H are directed acyclic multigraphswith a single root, and whose longest paths contain only two nodes. The proofis rather similar to the previous reduction. Let an instance of 3-PARTITIONbe given by a set A = fa1; : : : ; a3kg, a positive integer bound B and a positiveinteger size s(a) for each element a of A. Then we build a multigraph G outof a root and a distinct node va for each element a of A; va is pointed toby s(a) edges starting from the root of G. Multigraph H is built out of aroot and k other nodes; each of the non-root vertices of H are pointed toby B edges starting from the root of H. Now it is easy to see that there isa partition of A in k disjoint subsets, each having total size B if and onlyif G can be made isomorphic to H by identifying non-adjacent vertices of82

G. (Identifying two vertices va1 and va2 of G corresponds to choosing theelements a1 and a2 of A to the same subset in the partition.)The proof of NP-hardness of the ordered inclusion problems with logicalvariables OTI-V, OPI-V and ORI-V is by a reduction from the NP-completeproblem 3-SATISFIABILITY [GJ79].Problem 15 (3-SATISFIABILITY, 3SAT)Given a collection C = fc1; : : : ; ckg of clauses, each consisting of three literalsover a �nite set of variables U , decide whether there is a truth assignmentfor U that satis�es each clause in C. 2The problem 3SAT can be reduced in polynomial time to ordered treeinclusion with logical variables, ordered path inclusion with logical variables,and ordered region inclusion with logical variables. Let an instance of 3SATbe given by the set of clauses C = fc1; : : : ; ckg, where jcij = 3 for all i =1; : : : ; k. We represent C as the following instance (P; T) of ordered treeinclusion with logical variables. Pattern tree P consists of a root node labeledby 0 and of k immediate subtrees P1; : : : ; Pk. Each pattern subtree Pi is astraightforward representation of clause ci; for an example see Figure 6.3.����
��������������������eeee%%%% gx znycFigure 6.3: The pattern subtree representing clause fx; �y; zg.The target tree T consists also of a root node labeled by 0 and of kimmediate subtrees T1; : : : ; Tk. Target subtree Ti is a representation for thegroup of clauses consisting of the seven instances of clause ci that evaluate totrue. Each immediate subtree of Ti is obtained from the immediate subtree83

of pattern subtree Pi by substituting zeros and ones for its variables. Anexample is shown in Figure 6.4. ������������ ��������
����

�������������������� %%%% eeee������� HHHHHHHeeee%%%% cn1 1 1. . . .gnc0 0 0Figure 6.4: The target subtree representing the true instances of clausefx; �y; zg.Now it is easy to check that there is an ordered pattern embedding ofP in T if and only if C is satis�able. Further, there is an ordered patternembedding of P in T if and only if there is an ordered path pattern embeddingof P in T , which holds if and only if there is an ordered region patternembedding of P in T . We have derived the following result.Theorem 6.7 The problems1. ordered tree inclusion with logical variables (OTI-V),2. ordered path inclusion with logical variables (OPI-V), and3. ordered region inclusion with logical variables (ORI-V)are NP-hard. 26.3 Ordered child inclusion with logical vari-ablesIn this section we outline how the ordered child inclusion problems withlogical variables OCI-V and OST-V can be solved in the same asymptotic84

time as the corresponding inclusion problems OCI and OST. We consideredsolving the ordered child inclusion problem OCI in Section 4.9 and the subtreeproblems, including the ordered subtree problem OST, in Section 4.10. Thenew feature in the problems with logical variables is the need to consideronly embeddings that respect variables.Let P be a pattern tree with logical variables and let T be a target tree.In order to test whether an embedding of P in T respects variables we mustcheck whether the subtrees of the target that are matched by similarly labeledvariable nodes are identical. Checking whether trees T [u] and T [v] are identi-cal can be done in time O(minfjT [u]j; jT [v]jg) by simply comparing the treesnode-by-node against each other. If we have preprocessed target T we candecide in constant time whether the trees rooted by two nodes of T are iden-tical. Indeed, repeated occurrences of identical subtrees can be representedby links to a single representative of those trees, leading to a representationof T as a directed acyclic graph. We call the link to the representative ofa tree U the signature of U . Recognizing identical substructures is calledcommon subexpression elimination.1 Common subexpression elimination ina tree T can be performed in time O(jT j) [DST80]. (See also [FSS90].)The image of the root of P determines unambiguously the images of allthe other pattern nodes in an ordered child embedding of P in T . Thismeans that there are at most n ordered child pattern embeddings into atarget of size n. Assume that common subexpression elimination has beenperformed in the target T . The basic tree pattern matching method canbe extended to check the consistency of variable matches simultaneouslywith the top-down traversal of the pattern. This can be done for exampleby using an array that stores the bindings for each variable symbol in thepattern. When the algorithm compares the �rst node labeled by a variablex against a target node u, it stores the signature of T [u] in the slot of x.Then the later comparisons between pattern nodes labeled by x and targetnodes v are performed by comparing the signature stored in the slot of x andthe signature of T [v]. Clearly this requires a total O(m) time at each of theO(n) potential occurrences of the pattern. These considerations lead to thefollowing result.Theorem 6.8 Ordered child inclusion with logical variables can be solvedin O(mn) time. 21This process is employed for example in optimizing programming language compilersto produce e�cient code for evaluating arithmetic expressions [AU77].85

Ramesh and Ramakrishnan call ordered child inclusion with logical vari-ables nonlinear tree pattern matching. They have presented in [RR88] andin [RR92] an algorithm for the problem working in time O(s(P)n), wheres(P) is the su�x index of the pattern. As discussed in Section 4.9, the su�xindex is �(m) in the worst case.Next we consider solving the ordered subtree problem with logical vari-ables. Let P be a pattern with logical variables consisting of m nodes, andlet T be a target tree consisting of n nodes. In subtree problems the patterninstances are of the same size as the pattern. Therefore we can form a atset of candidate occurrences in O(n) time by selecting those target subtreesthat have m nodes. The instance relation of the ordered subtree problemwith logical variables is tested between P and a tree U by comparing P andU node-by-node against each other; constant nodes have to be identical andpattern leaves labeled by identical variables have to match at identical targetleaves. The method outlined above for checking the consistency of variablematches can be applied also here. Therefore we see that the instance re-lation of ordered subtree problem with logical variables is linearly solvable.Lemma 4.35 gives then the following result.Theorem 6.9 The ordered subtree problem with logical variables is solvablein O(n) time. 26.4 Polynomial subclasses of ordered tree in-clusion with logical variablesIn this section we consider some cases where the decision version of theordered pattern inclusion problem D-OTI-V is solvable in polynomial time.We focus on ordered inclusion since we believe it to be a feasible operationfor practical data retrieval. In Chapter 7 we show how ordered tree inclusionwith logical variables can be applied to querying structured text databases.Let tree P be a pattern with logical variables. A variable symbol x isrepeating in P if there are at least two nodes labeled by x in P . A patternnode that is labeled by a non-repeating variable matches at every node. Thisrule is easy to add to the tree inclusion algorithms of Chapter 4; thereforethe decision versions of inclusion problems with logical variables are solvablein the same time as the corresponding tree inclusion problems, as long as novariable occurs more than once in the pattern. We assume in the sequel thatthe non-repeating variable nodes are handled this way in the algorithms.86

A strategy for solving inclusion problems with logical variables is �rst tosubstitute signatures of target subtrees to the variables of the pattern (seeSection 6.3), and then apply the corresponding tree inclusion algorithm. Ifthe number of di�erent variables occurring in P is limited by a constant k,the ordered decision problems can be solved in polynomial time: Consistentsubstituting produces at most nk di�erent instantiations of the pattern, andeach of them can be handled in time that is polynomial in m and n usingalgorithms for ordered tree inclusion problems.There are some weaker restrictions to ordered tree inclusion with logicalvariables that also result in polynomially solvable problems. The generalstrategy is to consider cases where the e�ect of variable bindings is localized,i.e., the interaction between the substitutions to di�erent variables of thepattern is limited. One way to achieve this is to consider separable patterns.Let F be a forest (or a tree). Recall from Section 4.7 that a siblinginterval of F is a nonempty sequence hu1; : : : ; uki of nodes of F , where nodeui+1 is the next sibling of ui for each i = 1; : : : ; k � 1. Forest hT1; : : : ; Tkiis a sibling forest in F , if there is a sibling interval hu1; : : : ; uki of F suchthat Ti = F [ui] for each i = 1; : : : ; k. For each pattern P and each variablex appearing in P there is a unique sibling forest F in P with the propertythat F contains all x-nodes but no sibling forest in F other than F itselfcontains all x-nodes. We call such a forest F the x-forest of P . A patternP is separable if for any two distinct repeating variables x and y the x-forestand the y-forest of P are disjoint. Note that if F is an x-forest of a separablepattern P , then no variable label occurs both in F and in any sibling forestG in P that is disjoint from F ; in such situations we say that the forests Fand G are variable disjoint.Let E be the set of all ordered pattern embeddings of a forest F of patternswith logical variables into a forest or tree G. Then the left embeddings ofE are called left pattern embeddings of F in G. Now the previous results ofSection 4.5 about constructing left embeddings extend easily to constructingleft pattern embeddings of variable disjoint forests.Theorem 6.10 Let F be a forest of patterns with logical variables and letT be a tree. There is an ordered pattern embedding of F in T if and only ifthere is a left pattern embedding of F in T . 2Theorem 6.11 Let F = hP1; : : : ; Pki where k � 2 be a forest of patternswith logical variables and let T be a tree. Let F1 = hP1; : : : ; Pii and F2 =hPi+1; : : : ; Pki where 1 � i < k be two variable disjoint subforests of F . Let87

f be a left pattern embedding of F1 in T and let E be the set of such orderedpattern embeddings g of F2 in T that g(root(Pi+1)) 2 rr(f(root(Pi))). Thenthe following hold:1. If E is empty, there is no ordered pattern embedding of F in T .2. If E is nonempty and g is a left pattern embedding of E, then f [g isa left pattern embedding of F in T . 2Assume that P is a separable pattern containing at least two repeatingvariables, and that T is a target tree. We outline an e�cient method to decidewhether there is an ordered pattern embedding of P in T . The overall ideais to compute left pattern embeddings for variable disjoint subforests of thepattern. This can be done applying Algorithm 4.23. The pattern nodes thatdo not belong to any variable forest are treated exactly as in Algorithm 4.23.Consider then the �rst node u in postorder of an x-forest F of P . Let p bethe parent node of forest F and let the children of p be p1; : : : ; pk. Let thechildren pi and pj of p be the roots of the leftmost and the rightmost treesof forest F . The situation is depicted in Figure 6.5.
���x���x ������ ������ ��� ��� ������� LLLLLLL������� LLLLLLL XXXXXXXXXXXXXXX��������������� @@@@������ LLLLLLL����� ������� LLLLLLLu pj pkpi F. . .p1 p

Figure 6.5: The context of an x-forest F in pattern P .For each target node w we compute a left pattern embedding fw of theforest F 0 = hP [p1]; : : : ; P [pj]i in the subtrees of node w. This is done by88

substituting the signature s of each target subtree in turn for variable x inF , and applying Algorithm 4.23 to the resulting instance of F 0 and targetT . The collection of left embeddings of all the instantiations of F 0 to thesubtrees of node w is the collection of ordered pattern embeddings of F 0 tothe subtrees of w, and fw is a left embedding of this collection. Note that leftembeddings for the forest hP [p1]; : : : ; P [pi�1]i have already been computed,and that the only pattern nodes that are needed to compute fw are pi�1 andthe nodes of x-forest F .The total time of applying Algorithm 4.23 to one instantiation of eachvariable forest of P is O(mn). There are at most n di�erent instantiations,which leads to total time O(mn2) for the variable forests of P . This com-putation dominates the O(mn) time used for the pattern nodes outside thevariable forests of P . We have the following result.Theorem 6.12 For a given separable pattern P with logical variables anda tree T we can test in time O(mn2) whether there is an ordered patternembedding of P in T . 26.5 Summary of complexitiesThe table below summarizes the complexity results for the inclusion problemswith logical variables. The notations are explained in Section 4.11.incl. path incl. region incl. child incl. subtreeordered NP-hard O(mn) �(n)unordered NP-hardTable 6.1: The complexities of the inclusion problems with logical variablesWe derived relative lower bounds for the complexities of many of theinclusion problems with logical variables. The NP-hard problems can beconsidered to be in general intractable. We showed in Section 6.4 that or-dered tree inclusion with logical variables is solvable in polynomial time whenthe patterns are separable. One can search for other e�ciently solvable sub-classes of the problems. Another open question is the complexity of childinclusion with logical variables; both nontrivial lower bounds and more e�-cient algorithms for the problem could be searched for.89

Chapter 7Applying tree inclusion tostructured text databasesIn this chapter we show how tree inclusion can be applied to querying struc-tured text databases. Using tree inclusion as a query primitive providesdata independence and strong expressiveness with concise query syntax. Thechapter is organized as follows. Section 7.1 reviews some methods that areused or proposed for modeling and retrieving computerized text data, andexplains our idea of a structured text database. In Section 7.2 we explainhow tree inclusion with logical variables can be applied to querying data ina structured text database, and give examples of its usage. We show thattree inclusion owns some power of recursive database queries, and that theprimitive is robust with respect to certain modi�cations of the database. Theevaluation of queries is discussed in Section 7.3.7.1 Text databasesA text database system is a system for storing, editing, and querying textdocuments. In this section we review di�erent approaches to modeling andquerying text databases, and describe our idea of a text database.E�cient locating and accessing of relevant text documents has been ac-tively studied in the area known as information retrieval (IR) already since1960's. Information retrieval has been mainly concerned with identifyingthose text documents in bibliographic databases that best satisfy the user'sinformation needs. This identi�cation traditionally happens by comparing aset of keywords given by the user against the contents of the database [SM83].90

In IR the result of a retrieval is a set of documents. Documents can be forexample books, scienti�c reports, or newspaper articles.We can deviate from information retrieval by allowing more exible query-ing and manipulating of sub-parts of the text instead of restricting it to�xed complete documents. This leads to approaches to modeling documentdatabases that we classify as text-based, grammatical, and hypertext.An obvious approach for storing text documents is to try to apply tra-ditional data models and database techniques. Despite their many virtues,commercial database systems do not seem most appropriate for manipulat-ing text documents, which often have complicated structure and contain freetext of variable length. Enhancements to a relational database managementsystem to support document processing have been proposed in [SSL+83].A text-based system views text documents as strings. An example is thePatTM free text search system. The Pat system has initially been devel-oped for e�ciently accessing the computerized version of the Oxford EnglishDictionary [Tom92]. The query language of the Pat system allows searchingany substrings of the text stored in the system [ST92].In Chapter 5 we touched upon modeling text databases by context-freegrammars. A grammatical system models the structure of data by grammars.The conceptual view of a document in a grammatical system is a parse tree.A text database system that utilizes and maintains the structure of textdocuments is called a structured text database system.The p-string algebra of Gonnet and Tompa [GT87] has been an inu-ential query language proposal for structured text databases. The p-stringalgebra is a procedural language for the manipulation of parse trees. Gyssens,Paradaens, and Van Gucht have further developed both an algebraic and alogic-oriented language for querying grammatical databases [GPG89]. Man-nila's and R�aih�a's work [MR90] on query languages for the p-string datamodel has been an important source of inspiration for this thesis. Orderedtree inclusion appears as a primitive in the calculus of [MR90].The implementation of the Lexical Query Language (LQL) [Byr89] is asystem for querying static structured text documents. LQL combines model-ing ideas from grammatical text databases and user-interface ideas from theQuery-by-Example database query language [Zlo77].Helsinki Structured Text Database System (HST) [KLMN90] is a pro-totype text database system that is based on modeling text documents bycontext-free grammars. HST enables the manipulation of structured docu-ments on two levels of abstraction. On the higher level, the database designer91

can de�ne views for producing di�erent textual appearances out of the doc-ument instances in the database [Nik90]. Views are annotated grammars,which resemble syntax directed translation schemas [AU72]. Ad-hoc queriescan be given in HST by writing small programs in the P-string Query Lan-guage (PQL) [KLM+91]. PQL is a procedural derivative of the p-stringalgebra.Burkowski has proposed a containment model that lies between the text-based and grammatical approaches [Bur92]. Containment model views atext database as a collection of concordance lists. A concordance list is alist of contiguous non-overlapping text segments like occurrences of a wordor chapters. The containment model provides an algebra for selecting sub-lists of concordance lists based on relative containment criteria of their textsegments. The abstraction level of the containment model is rather close tothe concepts of the Pat language. On the other hand, Burkowski describesa text database system based on the containment model that utilizes thestructure of the documents and supports interfaces with a hierarchic view ofthe text.Hypertext is a way to organize information in a collection of nodes con-nected by associative links [SW88]. While grammatical systems view docu-ments as parse trees, hypertext systems view them as graphs. The typicalway to search information from a hypertext database is to use a graphicaluser interface to navigate through the database by following the links.We take the grammatical approach to a text database and view it as acollection of parse trees over some grammar. Each document is presentedin the database as a labeled and ordered tree. The internal nodes of thetrees are labeled by nonterminals of the grammar, and they correspond tomeaningful document components like titles, headers, chapters, and para-graphs. The leaves of the database trees are text strings contained in thedocument components that correspond to their parent nodes. For example,the leaf below a node u labeled by title would be the text content of thetitle-structure represented by node u. This kind of databases can originatefrom explicit representations of document structures conforming for exampleto standards like ODA and SGML [Bro89]. In our model a search is usedfor locating subtrees of the database. This means that a search can eitherreturn complete documents or their parts.92

7.2 Querying with inclusion patternsIn this section we show how tree inclusion with logical variables can be ap-plied to querying structured text data. We use ordered tree inclusion withlogical variables for several reasons. First, ordered inclusion allows express-ing both containment and ordering conditions that are essential in structuredtext documents. It is characteristic for example of books that their chaptersconsist of sections consisting of subsections, and so forth, and that the or-dering of the chapters and sections is essential. Second, inclusion patternsallow irrelevant structures to be ignored in the queries. Third, we believethat queries based on ordered tree inclusion with logical variables can beimplemented e�ciently. We discuss the evaluation of inclusion queries inSection 7.3.The tree inclusion problems with logical variables, as were de�ned inChapter 6, are a viable query formalism as such. Variables in the patternscan be used to retrieve parts of the target. We extend now the syntax slightly.A tree pattern can state conditions on the values of the variables that occurin the pattern, that is, we can restrict the retrieved parts of data by theircontext. It is often useful also to be able to access parts of the database bytheir content. For this reason we allow patterns of the formx : p ; (7:1)where x is a variable and p is a term. We say that expression (7.1) attachesvariable x to the root of Tree(p). This gives a way to attach variables also tothe constant nodes of patterns. We say that a variable x occurs at patternnode v if v is labeled by x or x is attached to node v. To take this extensioninto account in the de�nition of pattern embeddings, we require that allpattern nodes where a variable x occurs have to be mapped to roots ofidentical subtrees of the target.We also allow strings as leaves of the patterns and agree that a string smatches at a target leaf l if s is a substring of l. This is a simple way totreat strings in patterns; for practical purposes one can provide e.g. matchingbased on regular expressions.A single pattern can state a single structural condition on the data. Weoften need to express multiple search conditions. For this reason we de�ne aquery to be a sequence of patterns, all of which are matched or embedded inthe database simultaneously.Before de�ning the precise meaning of queries we present some exam-ples of applying inclusion patterns to structured text documents. We use in93

the examples Prolog-like syntax [CM84, SS86], where lower-case identi�ersare constants, upper-case identi�ers are variables, patterns constituting thequery are represented as terms separated by commas and queries are precededby \?- ". The examples are borrowed from [Byr89]. They consider query-ing the Collins-Robert French Dictionary. The simpli�ed structure of thedictionary used in the examples can be described by the following grammar.dictionary ! eng-fren fren-engeng-fren ! entry�fren-eng ! entry�entry ! hdw superhom�superhom ! pronunc homograph�homograph ! f homnum g pos translatThat is, the dictionary consists of the English-French part and the French-English part, in this order. Each part consists of entries formed of a head-word followed by a number of superhomographs; a single written word canhave various pronunciations that di�er in their meaning; each of them istreated in its own superhomograph. Finally the superhomographs consistof homographs containing possibly a homograph number, the part-of-speechindication (e.g., a verb or a noun), and the translation. The nonterminalsfor which no productions are shown produce plain text.`````````````̀XXXXXXX������ ���� llll�������� llll����\cluck" \kl�k"pronunc superhomhdw entry
\vi"poshomographhomnum\1" translat\glousser" translat\gloussement"\2"homnum \n"poshomograph

Figure 7.1: The parse tree of the dictionary entry for cluck.94

For example, the English-French entry for cluck, whose representation asa tree is shown in Figure 7.1, has one superhomograph with two homographs.A typical typeset appearance of the entry could be as below.cluck [kl�k] 1 vi glousser. 2 n gloussement.The following query would fetch the whole entry for cluck. Note that thequery pattern needs to express only those components of the entry that arerelevant for fetching it.?- X : entry(hdw("cluck")).The following query accesses only the parts-of-speech and translation �eldsfor cluck.?- entry(hdw("cluck"), homograph(pos(P), translat(T))).Compare the two queries above. The �rst query describes the wanted-forcomplete entry X by its partial content, whereas the second one describesthe wanted-for strings P and T by their partial context. Also note how thesecond query restricts the structures matched by pos(P) and translat(T) toappear inside the same homograph.Sometimes we need to express multiple search conditions. For instance,assume that we do not know the relative order of the translations of a word.Then we might give the following query to fetch those English words thatcan be translated by both glousser and gloussement. (This feature is a con-sequence of the decision to restrict to ordered inclusion.)?- eng-fren(entry(hdw(X), translat("glousser"))),eng-fren(entry(hdw(X), translat("gloussement"))).Finally, repeating variables allow expressing join-like queries quite easily.For example, the following query shows all English words E that are trans-lations of any French words F that are themselves translations of capital.?- eng-fren(entry(hdw("capital"), translat(F))),fren-eng(entry(hdw(F), translat(E))).Next we de�ne the meaning of queries on trees and forests. Let Q =P1; : : : ; Pk be a query and T a tree or a forest. The nodes of the treesP1; : : : ; Pk are the nodes of query Q. Let f be a function from the nodes ofquery Q to the nodes of T . If f maps nodes u and v of Q to the roots of95

identical subtrees of T whenever the same variable occurs at u and v we saythat f respects variables in query Q. If function f respects variables in Qand the restriction fi of f to Pi is an ordered pattern embedding of Pi in Tfor each i = 1; : : : ; k then f is a query embedding of Q in T . The substitutionconsisting of the bindings x = Term(T [f(v)]), where x is a variable thatoccurs at a node v of Q and f is a query embedding of Q in T , is a solutionto query Q on T . The set of solutions to query Q on T is the answer to queryQ on T .Let T be a tree or a forest. Denote by st(T) the set of all subtrees of T ,and by st�(T) the set of all proper subtrees of T .Example 7.1 Let T be a tree, X a variable and a a constant symbol. Theanswer to the query Q1 = X on tree T is the set of substitutionsffX = tg j 9U 2 st(T) : t = Term(U))g :That is, query Q1 in e�ect retrieves every subtree of tree T .The answer to the query Q2 = X : a on tree T is the set of substitutionsffX = tg j 9U 2 st(T) : label (root(U)) = a and t = Term(U))g :That is, query Q2 retrieves every subtree of T rooted by an a-node.The answer to the query Q3 = a(X) on tree T is the set of substitutionsffX = tg j 9U 2 st(T)9V 2 st�(U) :label (root(U)) = a and t = Term(V))g :That is, query Q3 retrieves all proper subtrees of the subtrees of T whoseroot is labeled by a. 2We show in the next example how tree inclusion with logical variablescan be used to access arbitrarily deep structures easily. Assume that thedatabase contains information about the structure of various engines. Eachengine has a name and consists of named components. The components areeither basic components or compound components that consist recursivelyof other components. The problem is to �nd out the names for the basiccomponents of a given engine. Problems like this are often used as examplesfor the need of recursive database queries [CGT90]. The database in questioncan be modeled as a structured text database by the following grammar.96

engines ! engine�engine ! engine-name component�component ! compound-compcomponent ! basic-compcompound-comp ! name component�basic-comp ! nameIn a database modeled by the above schema the following inclusion querywould compute the names for all basic components of vacuum cleaner.?- engine(engine-name("vacuum cleaner"), basic-comp(X)).As a query primitive, tree inclusion is tolerant to certain variations inthe structure of the data. Let T be a database represented as a tree or aforest, and let M be a modi�cation of T . Denote the modi�ed version ofthe database by M(T). We say that a query Q on database T is robust withrespect to modi�cationM if applying query Q onM(T) gives the same resultas modifying by M the answer of Q on T . We omit the precise de�nitions.Still, we note that the inclusion primitive owns some robustness. Let P =(V;E; root(P)) and T be trees. If there is an ordered embedding f of P inT , there is also an ordered embedding of P in T 0, when tree T 0 is obtainedfrom T by deleting any nodes not belonging to f(V), or by inserting anynew nodes in T . Let now T be a structured text database and Q a simpleinclusion query expressed as x : p, where x is a variable and p is a variable-free term. Then the above considerations show that modifying database Tby inserting in T or deleting from T any nonterminals or strings that do notappear in P does not essentially change the answer to query Q; the sametrees are retrieved, although possibly modi�ed.A serious query language would need many features in addition to thoserepresented in this chapter. An ability to express negation like \Accepthere the structures that are not matched by this pattern" and disjunctiveconditions like \Accept here the structures matched by this or that" wouldcertainly be useful in practice. Another extension that might be useful is theintroduction of Prolog-like rules. A rule that consists of a head and a query-like body would generate new structures as instantiations of its head by allthe solutions to its body. The rules could also be allowed to be recursive andbe given a �xed-point semantics, but the need for such a powerful extensionis not clear yet. 97

7.3 Evaluation of queriesThe evaluation of queries poses interesting algorithmic questions that havealready been discussed in the previous chapters. We saw in Section 6.2 thatanswers to inclusion queries may consist of exponentially many solutions. Weshowed that even the decision version of ordered tree inclusion with logicalvariables is NP-complete. Here we give some hints for solving queries con-sisting of a sequence of inclusion patterns. The treatment is rather sketchy.Let Q = P1; : : : ; Pk be a query and T a database represented as a treeor a forest. We can solve the query by generating one solution at a time bya strategy that resembles the backtracking-based control of Prolog [War77,Bru82, MW88]. That is, we �rst �nd a solution for the �rst pattern andinstantiate the variables in the remaining patterns using it. Then the eval-uation continues similarly with the remaining patterns. When no solutionto some pattern instance can be found, or when the entire query has beensolved, the control backtracks to the most recently solved pattern and triesto seek a new solution for it.There are two basic kinds of optimizations found in relational query pro-cessors, namely algebraic manipulation and cost-estimation strategies [Ull89].We discussed in Section 5.3 some possibilities for transforming the inclu-sion queries to more restricted forms by using the grammar of the database.Such methods can be considered to correspond to the optimization of queriesthrough algebraic manipulation. Query optimization algorithms usually takeindices into account because their usage can render the evaluation of databasequeries essentially more e�cient. Next we discuss some ideas about using in-dices in the evaluation of inclusion queries.Lexicographical indices like inverted �les [Knu73] and Pat trees [GBYS91]allow e�ciently locating occurrences of words in text �les. An inverted �le isa sorted list of keywords together with links to the documents that containthem. The indices in most commercial library systems are inverted �les. APat tree for a text is a Patricia tree [Knu73] built from all su�xes of thetext. A Pat tree allows locating the occurrences of any substring s of thetext in time that is proportional to the length of s and to the number of theoccurrences. (Counting the number of those occurrences can be done evenin time that depends only on the length of s.) Pat trees are used in theimplementation of the PatTM text search system.We saw in Section 5.2 how simple inclusion queries can be solved in O(n)time on a database that is modeled by a nonperiodic grammar. We alsoclaimed that most text databases seem to be natural to model using non-98

periodic grammars. However, for large databases no method of answering aquery is acceptable if it needs to scan through the entire database. Luck-ily, most useful query patterns contain string components that restrict thenumber of possible occurrences drastically. Therefore a reasonable strategyof evaluating such queries is �rst to locate the occurrences of their stringcomponents in the database, and then concentrate on the ancestors of theseoccurrences in the evaluation of the rest of the pattern. This kind of anapproach has been taken in the Maestro project [Mac91], where a prototyperetrieval tool for hierarchic text structures has been implemented on top ofthe full text retrieval system Ful/Text.Note that the patterns forming a query can be treated in any suitableorder. In fact, patterns or pattern instances that do not have any vari-ables in common do not a�ect each other and can be solved even in parallel.Some orders of matching the patterns may be though much more economicalthan others. For example, reconsider from Section 7.2 the following queryfor �nding the English counterparts for the French translations of the word\capital".?- eng-fren(entry(hdw("capital"), translat(F))),fren-eng(entry(hdw(F), translat(E))).Now the second patternfren-eng(entry(hdw(F), translat(E)))is likely to have at least one embedding in each entry of the French-Englishdictionary. Thus solving it �rst would produce a large number of instan-tiations of the �rst pattern to be matched against the database. On theother hand, solving the �rst pattern �rst is much better: It has probablya small number of embeddings to the dictionary, and produces therefore asmall number of instantiations of the other pattern. For the evaluation of aquery consisting of many patterns it can be useful to try to �nd an orderingthat is likely to minimize the number of alternatives to be considered.We outline a simple heuristic for ordering patterns in the query. Theheuristic is inspired by the query planning algorithm of [War81]. The orderingof patterns is based on the frequencies of string occurrences in the database,which can be easily found in a suitable index. Assume that a Pat tree hasbeen built from the strings in the leaves of a database tree (or forest) T .Then the number of occurrences of any string s in the leaves of the databasecan be extracted from the index in time �(jsj). We call this number the99

cost of string s in T . The cost of a label a in T is de�ned to be the numberof times that label a appears in database T . Let P = a(: : :) be a pattern.De�ne the cost of pattern P in T be the minimum of the cost of label a andthe costs of any string appearing in P . The meaning of the cost of a patternP in T is that it is an estimate for the number of solutions to P on T . Theabove cost function is a crude one; more complicated cost functions couldlead to more accurate estimates.Now the strategy for optimizing the evaluation order of patterns is simple:select a pattern with the smallest cost and �nd a solution to the pattern.Then the same process is started anew for the remaining patterns instantiatedby that solution.On the basis of the above considerations we believe that evaluating in-clusion queries can be done reasonably e�ciently in practice.

100

Chapter 8ConclusionsWe have studied a collection of tree matching problems called tree inclusionproblems. The general motivation for this research comes from the impor-tance of tree structures and from the intuitiveness of pattern matching as anaccess operation. A speci�c motivation for these problems is the research ofstructured text databases and their query languages.In Chapter 3 we introduced the tree inclusion problems as variations ofthe general problem of locating instances of a given pattern tree among thesubtrees of a given target tree. The common feature of various tree inclusionproblems is that the instances contain distinct nodes that correspond tothe pattern nodes and have similar hierarchical relationships. The classesof unordered and ordered inclusion problems result, correspondingly, if weeither ignore the left-to-right ordering of pattern nodes or require that thepattern instances resemble the pattern also with respect to this ordering.We o�ered a uni�ed treatment for the problems by presenting algorithmsfor most of them in Chapter 4. Most of the algorithms were derived froma single dynamic programming schema. New algorithms were presented forthe unordered and ordered tree inclusion problems. We derived upper com-plexity bounds for the tree inclusion problems from their algorithms. Thelower bounds of most of the problems are open. We showed that unorderedtree inclusion is an NP-complete problem. The relationship between treematching and string pattern matching with don't care symbols, which hasbeen noted by Kosaraju, implies that the ordered path inclusion and regioninclusion problems cannot be solved asymptotically faster than string pat-tern matching with don't care symbols. No linear time algorithm is knownfor string pattern matching with don't care symbols.The jP j�jT j space required by the dynamic programming algorithms can101

be prohibitive in applications with large targets T . In the case of orderedtree inclusion we solved this problem by presenting an algorithm whose spacecomplexity isO(jP j depth(T)). The result is signi�cant for applications wherethe patterns can be expected to be small or the targets can be expected tobe shallow.We presented a simple general condition for tree matching problems tobe solvable in linear time. In Chapter 5 we considered G-grammatical treematching problems where the targets are parse trees over some grammarG. The general condition was applied to showing that G-grammatical treepattern matching and ordered tree inclusion can be solved in linear time withnonperiodic grammars G. Such grammars seem su�cient for modeling manypractical text databases. We also outlined how a grammar G can be used topreprocess patterns in G-grammatical matching problems.In Chapter 6 we extended tree inclusion problems by logical variables.The variables can be used to extract substructures of the pattern instancesand to express equality constraints on them. We gave many NP-hardnessresults for the tree inclusion problems with logical variables and sketchede�cient algorithms for the polynomial variants.The intended application of the inclusion problems is in structured textdatabases. In Chapter 7 we showed how tree inclusion can be used for query-ing structured text databases and gave examples of using inclusion queries.Tree inclusion was shown to be a powerful and robust query primitive. Wealso discussed how inclusion queries can be evaluated e�ciently in practiceby utilizing lexicographical indices.We plan to develop a complete query language for structured text databasesbased on these notions.
102

Bibliography[AC75] A. V. Aho and M. J. Corasick. E�cient string matching: an aidto bibliographic search. Communications of the ACM, 18(6):333{340, June 1975.[AHU74] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design andAnalysis of Computer Algorithms. Addison-Wesley, 1974.[Ang80] D. Angluin. Finding patterns common to a set of strings. Journalof Computer and System Sciences, 21:46{62, 1980.[AU72] A. V. Aho and J. D. Ullman. The Theory of Parsing, Translation,and Compiling, vol I and II. Prentice-Hall, 1972.[AU77] A. V. Aho and J. D. Ullman. Principles of Compiler Design.Addison-Wesley, 1977.[BDK+91] G. Burosch, J. Demetrovics, G. O. H. Katona, D. J. Kleitman,and A. A. Sapozhenko. On the number of databases and closureoperations. Theoretical Computer Science, 78:377{381, 1991.[BKN87] D. Benanav, D. Kapur, and P. Narendran. Complexity of match-ing problems. Journal of Symbolic Computation, 3(1&2):203{216,February/April 1987.[Bol86] B. Bollob�as. Combinatorics. Cambridge University Press, 1986.[BR84] F. Bancilhon and P. Richard. Managing texts and facts in a mixeddata base environment. In G. Gardarin and E. Gelenbe, editors,New Applications of Data Bases, pages 87{107. Academic Press,1984.[Bro89] H. Brown. Standards for structured documents. The ComputerJournal, 32(6):505{514, December 1989.103

[Bru82] M. Bruynooghe. The memory management of Prolog implemen-tations. In K. L. Clark and S.-�A. T�arnlund, editors, Logic Pro-gramming, pages 83{98. Academic Press, 1982.[Bur92] F. J. Burkowski. Retrieval activities in a database consistingof heterogeneous collections of structured text. In N. Belkin,P. Ingwersen, and A. M. Pejtersen, editors, Proceedings of theFifteenth Annual International ACM SIGIR Conference on Re-search and Development in Information Retrieval, pages 112{125.ACM Press, June 1992.[Byr89] R. J. Byrd. LQL user notes: An informal guide to the lexicalquery language. Technical Report RC 14853 8/17/89, IBM T.J.Watson Research Center, August 1989.[CGT90] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming andDatabases. Springer-Verlag, 1990.[Chu87] M. J. Chung. O(n2:5) time algorithms for the subgraph homeo-morphism problem on trees. Journal of Algorithms, 8:106{112,1987.[CIV86] G. Coray, R. Ingold, and C. Vanoirbeek. Formatting structureddocuments: Batch versus interactive. In J. C. van Vliet, edi-tor, Text Processing and Document Manipulation, pages 154{170.Cambridge University Press, 1986.[CM84] W. F. Clocksin and C. S. Mellish. Programming in Prolog.Springer-Verlag, second edition, 1984.[Coo71] S. A. Cook. The complexity of theorem-proving procedures. InProc. of the 3rd Annual ACM Symposium on Theory of Comput-ing, pages 151{158. ACM, 1971.[DGM90] M. Dubiner, Z. Galil, and E. Magen. Faster tree pattern match-ing. In Proc. of the Symposium on Foundations of ComputerScience (FOCS'90), pages 145{150, 1990.[DST80] P. J. Downey, R. Sethi, and R. E. Tarjan. Variations of thecommon subexpression problem. Journal of the ACM, 27(4):758{771, October 1980. 104

[Dub90] P. Dublish. Some comments on the subtree isomorphism problemfor ordered trees. Information Processing Letters, 36:273{275,1990.[FP74] M. J. Fischer and M. S. Paterson. String-matching and otherproducts. In Complexity of Computation, pages 113{125. SIAM-AMS, 1974.[FQA88] R. Furuta, V. Quint, and J. Andr�e. Interactively editing struc-tured documents. Electronic Publishing, 1(1):19{44, 1988.[FSS90] P. Flajolet, P. Sipala, and J.-M. Steyaert. Analytic variationson the common subexpression problem. In Automata, Languagesand Programming, pages 220{234. Springer-Verlag, 1990.[GBYS91] G. H. Gonnet, R. A. Baeza-Yates, and T. Snider. Lexicographicalindices for text: Inverted �les vs. pat trees. Report OED-91-01,UW Centre for the New Oxford English Dictionary and TextResearch, 1991.[GJ78] M. R. Garey and D. S. Johnson. \Strong" NP-completeness re-sults: Motivation, examples and implications. Journal of theACM, 25(3):499{508, July 1978.[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability.W. H. Freeman and Company, 1979.[GPG89] M. Gyssens, J. Paradaens, and D. Van Gucht. A grammar-basedapproach towards unifying hierarchical data models. Report, Uni-versity of Antwerp, Dept. of Math. and Comp. Science, 1989.[Gro91] R. Grossi. A note on the subtree isomorphism for ordered treesand related problems. Information Processing Letters, 39:81{84,1991.[GT87] G. H. Gonnet and F. Wm. Tompa. Mind your grammar - a newapproach to text databases. In Proc. of the Conference on VeryLarge Data Bases (VLDB'87), pages 339{346, 1987.[HK73] J. E. Hopcroft and R. M. Karp. An n5=2 algorithm for maxi-mummatching in bipartite graphs. SIAM Journal on Computing,2(4):225{231, December 1973.105

[HO82] C. M. Ho�man and M. J. O'Donnell. Pattern matching in trees.Journal of the ACM, 29(1):68{95, January 1982.[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata The-ory, Languages, and Computation. Addison-Wesley, 1979.[Joh87] D. S. Johnson. The NP-completeness column: An ongoing guide.Journal of Algorithms, 8:285{303, 1987.[KLM+91] P. Kilpel�ainen, G. Lind�en, H. Mannila, E. Nikunen, and K.-J.R�aih�a. The data model and query language of the Helsinki struc-tured text database system (HST). Technical report, Universityof Helsinki, Department of Computer Science, November 1991.[KLMN90] P. Kilpel�ainen, G. Lind�en, H. Mannila, and E. Nikunen. Astructured document database system. In R. Furuta, editor,EP90 { Proceedings of the International Conference on Elec-tronic Publishing, Document Manipulation & Typography, TheCambridge Series on Electronic Publishing. Cambridge Univer-sity Press, 1990.[KM91a] P. Kilpel�ainen and H. Mannila. Ordered and unordered tree in-clusion. Report A-1991-4, University of Helsinki, Dept. of Comp.Science, August 1991. To appear in SIAM Journal on Computing.[KM91b] P. Kilpel�ainen and H. Mannila. The tree inclusion problem. InS. Abramsky and T. S. E. Maibaum, editors, TAPSOFT'91, Proc.of the International Joint Conference on the Theory and Practiceof Software Development, Vol. 1: Colloqium on Trees in Algebraand Programming (CAAP'91), pages 202{214. Springer-Verlag,1991.[KM92] P. Kilpel�ainen and H. Mannila. Grammatical tree matching. InA. Apostolico, M. Crochemore, Z. Galil, and U. Manber, editors,Proceedings of the Third Annual Symposium on CombinatorialPattern Matching, pages 162{174. Springer-Verlag, 1992.[Knu69] D. E. Knuth. The Art of Computer Programming, volume 1.Addison-Wesley, 1969.[Knu73] D. E. Knuth. The Art of Computer Programming: Sorting andSearching, volume 3. Addison-Wesley, 1973.106

[Kos89] S. R. Kosaraju. E�cient tree pattern matching. In Proc. ofthe Symposium on Foundations of Computer Science (FOCS'89),pages 178{183, 1989.[Mac91] I. A. Macleod. A query language for retrieving information fromhierarchic text structures. The Computer Journal, 34(3):254{264,1991.[Mat68] D. W. Matula. An algorithm for subtree identi�cation. SIAMRev., 10:273{274, 1968. Abstract.[MR90] H. Mannila and K.-J. R�aih�a. On query languages for the p-stringdata model. In H. Kangassalo, S. Ohsuga, and H. Jaakkola, ed-itors, Information Modelling and Knowledge Bases, pages 469{482. IOS Press, 1990.[MW88] D. Maier and D. S. Warren. Computing with Logic - Logic Pro-gramming with Prolog. The Benjamin/Cummings PublishingCompany, Inc., 1988.[Nik90] E. Nikunen. Views in structured text databases. Phil.lic. thesis,University of Helsinki, Department of Computer Science, Decem-ber 1990.[PS82] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimiza-tion: Algorithms and Complexity. Prentice-Hall, 1982.[QV86] V. Quint and I. Vatton. Grif: An interactive system for structureddocument manipulation. In J. C. van Vliet, editor, Text Pro-cessing and Document Manipulation, pages 200{213. CambridgeUniversity Press, 1986.[Rey77] S. W. Reyner. An analysis of a good algorithm for the subtreeproblem. SIAM Journal on Computing, 6(4):730{732, December1977.[RR88] R. Ramesh and I. V. Ramakrishnan. Nonlinear pattern matchingin trees. In T. Lepist�o and A. Salomaa, editors, Automata, Lan-guages and Programming, pages 473{488. Springer-Verlag, 1988.[RR92] R. Ramesh and I. V. Ramakrishnan. Nonlinear pattern matchingin trees. Journal of the ACM, 39(2):295{316, April 1992.107

[RS86] N. Robertson and P. D. Seymour. Graph minors. II. Algorithmicaspects of tree-width. Journal of Algorithms, 7:309{322, 1986.[Sel77] S. M. Selkow. The tree-to-tree editing problem. InformationProcessing Letters, 6(6):184{186, December 1977.[SF83] J.-M. Steyaert and P. Flajolet. Patterns and pattern-matching intrees: An analysis. Information and Control, 58:19{58, 1983.[SM83] G. Salton and M. J. McGill. Introduction to Modern InformationRetrieval. McGraw-Hill, 1983.[Spe28] E. Sperner. Ein Satz �uber Untermengen einer endlichen Menge.Math. Z., 27:544{548, 1928.[SS86] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.[SSL+83] M. Stonebraker, H. Stettner, N. Lynn, J. Kalash, andA. Guttman. Document processing in a relational databasesystem. ACM Transactions on O�ce Information Systems,1(2):143{158, April 1983.[ST92] A. Salminen and F. Wm. Tompa. PAT expressions: an algebrafor text search. Technical Report OED{92{02, UW Centre forthe New Oxford English Dictionary and Text Research, 1992.[SW88] J. B. Smith and S. F. Weiss. An overview of hypertext. Commu-nications of the ACM, 31(7):816{819, July 1988.[Tai79] K.-C. Tai. The tree-to-tree correction problem. Journal of theACM, 26(3):422{433, July 1979.[Tar83] R. E. Tarjan. Data Structures and Network Algorithms. Societyfor Industrial and Applied Mathematics, 1983.[Tom92] F. Wm. Tompa. An overview of Waterloo's database softwarefor the OED. In T. R. Wooldridge, editor, Historical DictionaryDatabases, pages 125{143. University of Toronto, 1992. Centrefor Computing in the Humanities Working Papers 2.[Ull89] J. D. Ullman. Principles of Database and Knowledge-Base Sys-tems, volume II: The New Technologies. Computer Science Press,1989. 108

[Ver92] R. M. Verma. Strings, trees, and patterns. Information ProcessingLetters, 41:157{161, March 1992.[vL90] J. van Leeuwen. Graph algorithms. In J. van Leeuwen, editor,Handbook of Theoretical Computer Science, chapter 10. ElsevierScience Publishers B.V., 1990.[War77] D. H. D. Warren. Implementing Prolog - compiling predicate logicprograms. Volumes 1 and 2. D.A.I. research reports 39 and 40,Department of Arti�cial Intelligence, University of Edinburgh,May 1977.[War81] D. H. D. Warren. E�cient processing of interactive relationaldatabase queries expressed in logic. In Proceedings of the SeventhInternational Conference on Very Large Data Bases, pages 272{281. Computer Society Press, 1981.[WJZS91] J. T.-L. Wang, K. Jeong, K. Zhang, and D. Shasha. Referencemanual for ATBE { a tool for approximate tree pattern match-ing. Technical Report 551, New York University, Dept. of Comp.Science, Courant Institute of Mathematical Sciences, March 1991.[Zlo77] M. Zloof. Query-by-example: a data base language. IBM SystemsJournal, 16(4):324{343, 1977.[ZS89] K. Zhang and D. Shasha. Simple fast algorithms for the editingdistance between trees and related problems. SIAM Journal onComputing, 18(6):1245{1262, December 1989.[ZSW91] K. Zhang, D. Shasha, and J. T.-L. Wang. Approximate treematching in the presence of variable length don't cares. Submittedfor publication, July 1991.[ZSW92] K. Zhang, D. Shasha, and J. T.-L. Wang. Fast serial and par-allel algorithms for approximate tree matching with VLDC's. InA. Apostolico, M. Crochemore, Z. Galil, and U. Manber, editors,Proceedings of the Third Annual Symposium on CombinatorialPattern Matching, pages 151{161. Springer-Verlag, 1992.109

