326 research outputs found

    An innovative metaheuristic strategy for solar energy management through a neural networks framework

    Get PDF
    Proper management of solar energy as an effective renewable source is of high importance toward sustainable energy harvesting. This paper offers a novel sophisticated method for predicting solar irradiance (SIr) from environmental conditions. To this end, an efficient metaheuristic technique, namely electromagnetic field optimization (EFO), is employed for optimizing a neural network. This algorithm quickly mines a publicly available dataset for nonlinearly tuning the network parameters. To suggest an optimal configuration, five influential parameters of the EFO are optimized by an extensive trial and error practice. Analyzing the results showed that the proposed model can learn the SIr pattern and predict it for unseen conditions with high accuracy. Furthermore, it provided about 10% and 16% higher accuracy compared to two benchmark optimizers, namely shuffled complex evolution and shuffled frog leaping algorithm. Hence, the EFO-supervised neural network can be a promising tool for the early prediction of SIr in practice. The findings of this research may shed light on the use of advanced intelligent models for efficient energy development

    Resource allocation technique for powerline network using a modified shuffled frog-leaping algorithm

    Get PDF
    Resource allocation (RA) techniques should be made efficient and optimized in order to enhance the QoS (power & bit, capacity, scalability) of high-speed networking data applications. This research attempts to further increase the efficiency towards near-optimal performance. RA’s problem involves assignment of subcarriers, power and bit amounts for each user efficiently. Several studies conducted by the Federal Communication Commission have proven that conventional RA approaches are becoming insufficient for rapid demand in networking resulted in spectrum underutilization, low capacity and convergence, also low performance of bit error rate, delay of channel feedback, weak scalability as well as computational complexity make real-time solutions intractable. Mainly due to sophisticated, restrictive constraints, multi-objectives, unfairness, channel noise, also unrealistic when assume perfect channel state is available. The main goal of this work is to develop a conceptual framework and mathematical model for resource allocation using Shuffled Frog-Leap Algorithm (SFLA). Thus, a modified SFLA is introduced and integrated in Orthogonal Frequency Division Multiplexing (OFDM) system. Then SFLA generated random population of solutions (power, bit), the fitness of each solution is calculated and improved for each subcarrier and user. The solution is numerically validated and verified by simulation-based powerline channel. The system performance was compared to similar research works in terms of the system’s capacity, scalability, allocated rate/power, and convergence. The resources allocated are constantly optimized and the capacity obtained is constantly higher as compared to Root-finding, Linear, and Hybrid evolutionary algorithms. The proposed algorithm managed to offer fastest convergence given that the number of iterations required to get to the 0.001% error of the global optimum is 75 compared to 92 in the conventional techniques. Finally, joint allocation models for selection of optima resource values are introduced; adaptive power and bit allocators in OFDM system-based Powerline and using modified SFLA-based TLBO and PSO are propose

    A novel approach for coordinated design of TCSC controller and PSS for improving dynamic stability in power systems

    Get PDF
    The purpose of this article is to present a novel strategy for the coordinated design of the Thyristor Controlled Series Compensator (TCSC) controller and the Power System Stabilizer (PSS). A time domain objective function that is based on an optimization problem has been defined. This objective function takes into account not only the influence that disturbances have on the mechanical power, but also, and this is more accurately the case, the impact that disturbances have on the reference voltage. When the objective function is minimized, potential disturbances are quickly mitigated, and the deviation of the speed of the generator's rotor is limited; as a result, the system's stability is ultimately improved. Particle Swarm Optimization (PSO) and the Shuffled Frog Leaping Algorithm are both components of a composite strategy that is utilized in the process of determining the optimal controller parameters. (SFLA). An independent controller design as well as a collaborative controller design utilizing PSS and TCSC are developed, which enables a direct evaluation of the functions performed by each. The presentation of the eigenvalue analysis and the findings of the nonlinear simulation can help to provide a better understanding of the efficacy of the outcomes. The findings indicate that the coordinated design is able to successfully damp low-frequency oscillations that are caused by a variety of disturbances, such as changes in the mechanical power input and the setting of the reference voltage, and significantly enhance system stability in power systems that are connected weekly

    Shuffled Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL) Optimization Framework

    Get PDF
    Simplicity and flexibility of meta-heuristic optimization algorithms have attracted lots of attention in the field of optimization. Different optimization methods, however, hold algorithm-specific strengths and limitations, and selecting the best-performing algorithm for a specific problem is a tedious task. We introduce a new hybrid optimization framework, entitled Shuffled Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL), which combines the strengths of different evolutionary algorithms (EAs) in a parallel computing scheme. SC-SAHEL explores performance of different EAs, such as the capability to escape local attractions, speed, convergence, etc., during population evolution as each individual EA suits differently to various response surfaces. The SC-SAHEL algorithm is benchmarked over 29 conceptual test functions, and a real-world hydropower reservoir model case study. Results show that the hybrid SC-SAHEL algorithm is rigorous and effective in finding global optimum for a majority of test cases, and that it is computationally efficient in comparison to algorithms with individual EA

    Time-Cost-Quality Trade-off Model for Optimal Pile Type Selection Using Discrete Particle Swarm Optimization Algorithm

    Get PDF
    The cost of pile foundations is part of the super structure cost, and it became necessary to reduce this cost by studying the pile types then decision-making in the selection of the optimal pile type in terms of cost and time of production and quality .So The main objective of this study is to solve the time–cost–quality trade-off (TCQT) problem by finding an optimal pile type with the target of "minimizing" cost and time while "maximizing" quality. There are many types In the world of piles but  in this paper, the researcher proposed five pile types, one of them is not a traditional, and   developed a model for the problem and then employed particle swarm optimization (PSO) algorithm, as one of evolutionary algorithms with the help of (Mat lab software), as a tool for decision making problem about choosing the best alternative of the traded piles, and proposes a multi objective optimization model, which aims to optimize the time, cost and quality of the pile types, and assist in selecting the most appropriate pile types. The researcher selected 10 of senior engineers to conduct interviews with them.  And prepared some questions for interviews and open questionnaire. The individuals are selected from private and state sectors each one have 10 years or more experience in pile foundations work. From personal interviews and field survey the research has shown that most of the experts, engineers are not fully aware of new soft wear techniques to helps them in choosing alternatives, despite their belief in the usefulness of using modern technology and software. The Problem is multi objective optimization problem, so after running the PSO algorithm it is usual to have more than one optimal solution, for five proposed pile types, finally the researcher  evaluated and  discussed the output results and  found out that pre-high tension spun (PHC)pile type was the optimal pile type
    • …
    corecore