
Boise State University
ScholarWorks
Civil Engineering Faculty Publications and
Presentations Department of Civil Engineering

6-1-2018

Shuffled Complex-Self Adaptive Hybrid EvoLution
(SC-SAHEL) Optimization Framework
Mojtaba Sadegh
Boise State University

For a complete list of authors, please see article.

Publication Information
Sadegh, Mojtaba. (2018). "Shuffled Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL) Optimization Framework".
Environmental Modelling & Software, 104, 215-235. http://dx.doi.org/10.1016/j.envsoft.2018.03.019

https://scholarworks.boisestate.edu
https://scholarworks.boisestate.edu/civileng_facpubs
https://scholarworks.boisestate.edu/civileng_facpubs
https://scholarworks.boisestate.edu/civileng
http://dx.doi.org/10.1016/j.envsoft.2018.03.019

Shuffled Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL) Optimization 1

Framework 2

Matin Rahnamay Naeini1, Tiantian Yang1,2, Mojtaba Sadegh1,3, Amir Aghakouchak1, Kuo-3

lin Hsu1 , Soroosh Sorooshian1, Qingyun Duan4, and Xiaohui Lei5 4

1Center for Hydrometeorology and Remote Sensing (CHRS) & Department of Civil and 5

Environmental Engineering, University of California, Irvine, California, USA. 6

2Deltares USA Inc., Silver Spring, Maryland, USA 7

3Department of Civil Engineering, Boise State University, Boise, Idaho, USA. 8

4Beijing Normal University, Faculty of Geographical Sciences. Beijing, China 9

5China Institute of Water Resources and Hydropower Research, Beijing, China 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

Corresponding author: Tiantian Yang (tiantiay@uci.edu) 20

mailto:tiantiay@uci.edu)

Abstract 21

Simplicity and flexibility of Meta-Heuristic optimization algorithms have attracted lots of 22

attention in the field of optimization. Different optimization methods, however, hold algorithm-23

specific strengths and limitations, and selecting best-performing algorithm for a specific problem 24

is a tedious task. We introduce a new hybrid optimization framework, entitled Shuffled Complex-25

Self Adaptive Hybrid EvoLution (SC-SAHEL), which combines strengths of different 26

Evolutionary Algorithms (EAs) in a parallel computing scheme. SC-SAHEL explores 27

performance of different EAs, i.e., capability to escape local attractions, speed, convergence, etc., 28

during population evolution as each individual EA suits differently to various response surfaces. 29

The SC-SAHEL algorithm is benchmarked over 29 conceptual test functions, and a real-world 30

case - hydropower reservoir model. Results show that the SC-SAHEL algorithm is rigorous and 31

effective in finding global optimum for a majority of test cases, and computationally efficient 32

comparing to individual EAs. 33

Keywords 34

Shuffled Complex Evolution (SCE); Hybrid Optimization; Evolutionary Algorithm (EA); 35

Reservoir Operation; Hydropower 36

 37

Software availability 38

Name of software: SC-SAHEL 39

Developer: Matin Rahnamay Naeini 40

Contact address: rahnamam@uci.edu 41

Program language: MATLAB 42

Year first available: 2018 43

Availability: Freely available to public at chrs.web.uci.edu/software.php and MathWorks website 44

Software requirements: MATLAB 9.0 45

mailto:rahnamam@uci.edu
http://chrs.web.uci.edu/software.php

1 Introduction 46

Meta-Heuristic optimization algorithms have gained a great deal of attention in science and 47

engineering (Blum and Roli 2003, Boussaïd et al. 2013, Lee and Geem 2005, Maier et al. 2014, 48

Nicklow et al. 2010, Reed et al. 2013). Simplicity and flexibility of these algorithms, along with 49

their robustness make them attractive tools for solving optimization problems (Coello et al. 2007, 50

Lee and Geem 2005). Many of the meta-heuristic algorithms are inspired by a physical 51

phenomenon, such as animals social and foraging behavior and natural selection. For example, 52

Simulated Annealing (Kirkpatrick et al. 1983), Big Bang-Big Crunch (Erol and Eksin 2006), 53

Gravitational Search Algorithm (Rashedi et al. 2009), Charged System Search (Kaveh and 54

Talatahari 2010) are inspired by various physical phenomena. Ant Colony Optimization (Dorigo 55

et al. 1996), Particle Swarm Optimization (Kennedy 2010), Bat-inspired Algorithm (Yang 2010), 56

Firefly Algorithm (Yang 2009), Dolphin Echolocation (Kaveh and Farhoudi 2013), Grey Wolf 57

Optimizer (Mirjalili et al. 2014), Bacterial Foraging (Passino 2002), Genetic Algorithm (Golberg 58

1989, Holland 1992), and Differential Evolution (Storn and Price 1997) are examples of algorithms 59

inspired by animal’s social and foraging behavior, and the natural selection mechanism of 60

Darwin’s Evolution Theorem. According to the No-Free-Lunch (NFL) (Wolpert and Macready 61

1997) theorem, none of these algorithms are consistently superior to others over a variety of 62

problems, although some of them may outperform on a certain type of optimization problem. 63

The NFL theorem has been a source of motivation for developing hybrid optimization 64

algorithms (Mirjalili et al. 2014, Woodruff et al. 2013). It has encouraged scientists and researchers 65

to combine the strengths of different algorithms and devise more robust and efficient optimization 66

algorithms that suit a broad class of problems (Qin and Suganthan 2005, Vrugt and Robinson 2007, 67

Vrugt et al. 2009, Hadka and Reed 2013, Sadegh et al. 2017). These efforts led to emergence of 68

multi-method and self-adaptive optimization algorithms such as Self-adaptive DE algorithm 69

(SaDE) (Qin and Suganthan 2005), A Multialgorithm Genetically Adaptive Method for Single 70

Objective Optimization (AMALGAM-SO) (Vrugt and Robinson 2007, Vrugt et al. 2009) and Borg 71

(Hadka and Reed 2013). They all reguarly update the search mechanism during the course of 72

optimization according to the information obtained from the response surface. 73

 Here, we propose a new self-adaptive hybrid optimization framework, entitled Shuffled 74

Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL). The SC-SAHEL framework employs 75

multiple Evolutionary Algorithms (EAs) as search cores, and enables competition among different 76

algorithms as optimization run progresses. The proposed framework differs from other multi-77

method algorithms as it grants independent evolution of population by each EA. In this framework, 78

population is partitioned into equally sized groups, so-called complexes; each assigned to different 79

EAs. Number of complexes assigned to each EA is regularly updated according to their 80

performance. In general, the newly developed framework has two main characteristics. First, all 81

the EAs evolve population in a parallel structure. Second, each participating EA works 82

independent of other EAs. The architecture of SC-SAHEL is inspired by the concept of the 83

Shuffled Complex Evolution algorithm - University of Arizona (SCE-UA) (Duan et al. 1992). The 84

SCE-UA algorithm is a population-evolution based algorithm (Madsen 2003), which evolves 85

individuals by partitioning population into different complexes. The complexes are evolved for a 86

specific number of iterations independent of other complexes, and then are forced to shuffle. 87

The SCE-UA framework employs Nelder-Mead simplex (Nelder and Mead 1965) 88

technique along with the concept of controlled random search (Price 1987), clustering (Kan and 89

Timmer 1987), competitive evolution (Holland 1975) and complex shuffling (Duan et al. 1993) to 90

offer a global optimization strategy. By employing these techniques, the SCE-UA algorithm 91

provides a robust optimization framework and has shown numerically to be competitive and 92

efficient comparing to other algorithms, such as GA, for calibrating rainfall-runoff models (Beven 93

2011, Gan and Biftu 1996, Wagener et al. 2004, Wang et al. 2010). The SCE-UA algorithm has 94

been widely used in water resources management (Barati et al. 2014, Eckhardt and Arnold 2001, 95

K. Ajami et al. 2004, Lin et al. 2006, Liong and Atiquzzaman 2004, Madsen 2000, Sorooshian et 96

al. 1993, Toth et al. 2000, Yang et al. 2015, Yapo et al. 1996), as well as other fields of study, such 97

as pyrolysis modeling (Ding et al. 2016, Hasalová et al. 2016) and Artificial Intelligence (Yang et 98

al. 2017). 99

 Application of the SCE-UA is not limited to solving single objective optimization 100

problems. The Multi-Objective Complex evolution, University of Arizona (MOCOM-UA), is an 101

extension of the SCE-UA for solving multi-objective problems (Boyle et al. 2000, Yapo et al. 102

1998). Besides, the SCE-UA architecture has been used to develop Markov Chain Monte Carlo 103

(MCMC) sampling, named Shuffled Complex Evolution Metropolis algorithm (SCEM-UA) and 104

the Multi-Objective Shuffled Complex Evolution Metropolis (MOSCEM) to infer posterior 105

parameter distribution of hydrologic models (Vrugt et al. 2003a, Vrugt et al. 2003b). The 106

Metropolis scheme is used as the search kernel in the SCEM-UA and MOSCEM-UA (Chu et al. 107

2010, Vrugt et al. 2003a, Vrugt et al. 2003b). There is also an enhanced version of SCE-UA, which 108

is developed by Chu et al. (2011) entitled the Shuffled Complex strategy with Principle Component 109

Analysis, developed at the University of California, Irvine (SP-UCI). Chu et al. (2011) found that 110

the SCE-UA algorithm may not converge to the best solution on high-dimensional problems due 111

to “population degeneration” phenomenon. The “population degeneration” refers to the situation 112

when the search particles span a lower dimension space than the original search space (Chu et al. 113

2010), which causes the search algorithm to fail in finding the global optimum. To address this 114

issue, the SP-UCI algorithm employs Principle Component Analysis (PCA) in order to find and 115

restore the missing dimensions during the course of search (Chu et al. 2011). 116

Both SCE-UA and SP-UCI start the evolution process by generating a population within 117

the feasible parameters space. Then, population is partitioned into different complexes, and each 118

complex is evolved independently. Each member of the complex has the potential to contribute to 119

offspring in the evolution process. In each evolution step, more than two parents may contribute 120

to generating offspring. To make the evolution process competitive, a triangular probability 121

function is used to select parents. As a result, the fittest individuals will have a higher chance of 122

being selected. Each complex is evolved for a specific number of iterations, and then complexes 123

are shuffled to globally share the information attained by individuals during the search. 124

The Competitive Complex Evolution (CCE) and Modified Competitive Complex 125

Evolution (MCCE) are the search cores of the SCE-UA and SP-UCI algorithm, respectively. The 126

CCE and MCCE evolutionary processes are developed based on Nelder-Mead (Nelder and Mead 127

1965) method with some modification. The evolution process in the SCE-UA is not limited to 128

these algorithms. In fact, several studies have incorporated different EAs into the structure of the 129

SCE-UA algorithm. For example, the Frog Leaping (FL) is developed by adapting Particle Swarm 130

Optimization (PSO) algorithm to the SCE-UA structure for solving discrete problems (Eusuff et 131

al. 2006, Eusuff and Lansey 2003). Mariani et al. (2011) proposed an SCE-UA algorithm which 132

employs DE for evolving the complexes. These studies revealed the flexibility of the SCE-UA in 133

combination with other types of EAs; however, the potential of combining different algorithms 134

into a hybrid shuffled complex scheme has not been investigated. 135

The unique structure of the SCE-UA algorithm along with the flexibility of the algorithm 136

for using different EAs, motivated us to use the SCE-UA as the cornerstone of the SC-SAHEL 137

framework. The SC-SAHEL algorithm employs multiple EAs for evolving the population in a 138

similar structure as that of the SCE-UA, with the goal of selecting the most suitable search 139

algorithm at each optimization step. On the one hand, some EAs are more capable of visiting the 140

new regions of the search space and exploring the problem space, and hence are particularly 141

suitable at the beginning of the optimization (Olorunda and Engelbrecht 2008). On the other hand, 142

some EAs are more capable of searching within the visited regions of the search space, and hence 143

boosting the convergence process after finding the region of interest (Mirjalili and Hashim 2010). 144

Balancing between these two steps, which are referred to as exploration and exploitation (Moeini 145

and Afshar 2009), is a challenging task in stochastic optimization methods (Črepinšek et al. 2013). 146

The SC-SAHEL algorithm maintains a balance between exploration and exploitation phases by 147

evaluating the performance of participating EAs at each optimization step. EAs contribute to the 148

population evolution according to their performance in previous steps. The algorithms’ 149

performance is evaluated by comparing the evolved complexes before and after evolution. In this 150

process, the most suitable algorithm for the problem space become the dominant search core. 151

In this study, four different EAs are used as search cores in the proposed SC-SAHEL 152

framework, including Modified Competitive Complex Evolution (MCCE) used in the SP-UCI 153

algorithm, Modified Frog Leaping (MFL), Modified Grey Wolf Optimizer (MGWO), and 154

Differential Evolution (DE). To better illustrate the performance of the hybrid SC-SAHEL 155

algorithm, the framework is benchmarked over 29 test functions and compared to SC-SAHEL with 156

single EA. Among the 29 employed test functions, there are 23 classic test functions (Xin et al. 157

1999) and 6 composite test functions (Liang et al. 2005), which are commonly used as benchmarks 158

in comparing optimization algorithms. 159

Furthermore, the SC-SAHEL framework is tested for a conceptual hydropower model, 160

which is built for the Folsom reservoir located in the northern California, USA. The objective is 161

to maximize the hydropower generation, by finding the optimum discharge from the reservoir. The 162

study period covers run-off season in California from April to June, in which reservoirs have the 163

highest annual storage volume (Field and Lund 2006). Using the proposed framework, we 164

compared different EAs’ capability of finding a near-optimum solution for dry, wet, and below-165

normal scenarios. The results support that the proposed algorithm is not only competitive in terms 166

of increasing power generation, but also is able to reveal the advantages and disadvantages of 167

participating EAs. 168

The rest of the paper is organized as follow. In section 2, structure of the SC-SAHEL 169

algorithm and details of four EAs are presented. Section 3 presents the test functions, settings of 170

the experiments, and results obtained for each test function. Section 4 introduces the reservoir 171

model and the optimization results for the case study. Finally, in section 5, we draw conclusion, 172

summarize some limitations about the newly introduced framework, and suggest some directions 173

for future work. 174

 175

2 Methodology 176

The SC-SAHEL algorithm is a parallel optimization framework, which is built based on 177

the original SCE-UA architecture. SC-SAHEL, however, differs from the original SCE-UA 178

algorithm by using multiple search mechanisms instead of only employing the Nelder-Mead 179

simplex downhill method. In this section, we first introduce the main structure of SC-SAHEL. 180

Then, we present four different EAs, which are employed as search cores in the SC-SAHEL 181

framework. These algorithms are selected for illustrative purpose only and can be replaced by 182

other evolutionary algorithms. Some modifications are made to the original form of these 183

algorithms, to allow fair competition between EAs. These modifications are detailed in the 184

appendix A-D. 185

 186

2.1 The SC-SAHEL framework 187

The proposed SC-SAHEL optimization strategy starts with generating a population with a 188

pre-defined sampling method within feasible parameters’ range. The framework supports user-189

defined sampling methods, besides built-in Uniform Random Sampling (URS) and Latin 190

Hypercube Sampling (LHS). The population is then partitioned into different complexes. The 191

partitioning process warrants maintaining diversity of population in each complex. In doing so, 192

population is first sorted according to (objective) function values. Then, sorted population is 193

divided into NGS equally-sized groups (NGS being the number of complexes), ensuring that 194

members of each group have similar objective function values. Each complex subsequently will 195

randomly select a member from each of these groups. This procedure maintains diversity of the 196

population within each complex. The complexes are then assigned to EAs and evolved. In contrast 197

to the original concept of the SCE-UA, the complexes are evolved with different EAs rather than 198

single search mechanism. At the beginning of the search, an equal number of complexes is 199

assigned to each evolutionary method. For instance, if population is partitioned into 8 complexes 200

and 4 different EAs are used, each algorithm will evolve 2 complexes independently (2-2-2-2). 201

After evolving the complexes for pre-specified number of steps, the Evolutionary Method 202

Performance (EMP) metric (Eq.1) will be calculated for each EA, 203

EMP = mean(𝐹𝐹)−mean(𝐹𝐹𝑁𝑁)
mean(𝐹𝐹) , (1) 204

in which, 𝐹𝐹 and 𝐹𝐹𝑁𝑁 are objective function values of individuals in each complex before and after 205

evolution, respectively. 206

The EMP metric measures change in the mean objective function value of individuals in 207

each complex in comparison to their previous state. A higher EMP value indicates a larger 208

reduction in the mean objective function value obtained by the individuals in the complex. The 209

performance of each evolutionary algorithm is then evaluated based on the mean value of EMP 210

calculated for each evolved complex. The algorithms are then ranked according to the EMP values. 211

Ranks are in turn used to assign number of complexes to each evolutionary method for the next 212

iteration. The highest ranked algorithm will be assigned an additional complex to evolve in the 213

next shuffling step, while, the lowest ranked evolutionary algorithm will lose one complex for the 214

next step. For instance, if all the EAs have 2 complexes to evolve (2-2-2-2 case), the number of 215

complexes assigned to each EA can be updated to 3-2-2-1. In other words, this logic is an “award 216

and punishment” process, in which the algorithm with best performances will be “awarded” with 217

an additional complex to evolve in the next iteration, while the worst-performing algorithm will 218

be “punished” by losing one complex. 219

It is worth mentioning that as some of the algorithms may have poor performance in the 220

exploration phase, they might lose all their complexes during the adaptation process. This might 221

be troublesome as these algorithms may be superior in the exploitation phase. If use of such 222

algorithms are terminated in the exploration phase, they cannot be selected during the convergence 223

steps. Hence, EAs termination is avoided to fully utilize the potential of EAs in all the optimization 224

steps and balance the exploration and exploitation phases. The minimum number of complexes 225

assigned to each evolutionary method is restricted to at least 1 complex in this case. If the lowest 226

ranked EA has only 1 complex to evolve, it won’t lose its last complex. If an algorithm outperforms 227

others throughout the evolution of complexes, the number of complexes assigned to the superior 228

EA will be equal to the total number of complexes minus the number of EAs plus one. In this case, 229

all other algorithms are evolving one complex only. As all algorithms are evolving at least one 230

complex, they have the chance to outperform other EAs and gain more complexes during the 231

optimization process, and to potentially become the dominant search method as the search 232

continues toward exploitation phase. Figure 1 briefly shows the flowchart of the SC-SAHEL 233

algorithm, pseudo code of which is as follows: 234

Step 0. Initialization. Select NGS > 1 and NPS (suggested NPS > 2n+1, where n is the 235

dimension of the problem), where NGS is the number of complexes and NPS is the number 236

of individuals in the complexes. NGS should be proportional to the number of evolutionary 237

algorithms so that all the participating EAs have an equal number of complexes at the 238

beginning of the search. 239

Step 1. Sample NPT points in the feasible parameter space using a user-defined sampling 240

method, where NPT equals to NGS×NPS. Compute objective function value for each point. 241

Step 2. Rank and sort all individuals in the order of increasing objective function value. 242

Step 3. Partition the entire population into complexes. Assign complexes to the 243

participating EAs. 244

Step 4. Monitor and restore population dimensionality using PCA algorithm (Optional). 245

Step 5. Evolve each complex using the corresponding EA. 246

Step 6. After evolving the complexes for a pre-defined number of iterations, calculate the 247

mean EMP for each EA. 248

Step 7. Rank the participating EAs according to the mean EMP value of each evolutionary 249

method. The highest ranked method will get additional complex in the next iteration, while 250

the worst evolutionary method will lose one. 251

Step 8. Shuffle complexes and form a new population. 252

Step 9. Check whether the convergence criteria are satisfied, otherwise go to step 3. 253

SC-SAHEL allows for different settings that can influence the performance of the 254

algorithm. Careful consideration should be devoted to the selection of these settings, including 255

number of complexes, number of individuals within each complex, number of evolution steps 256

before each shuffling, and stopping criteria thresholds. Some of these settings are adopted from 257

the suggested settings for the SCE-UA. For instance, the number of points within each complex is 258

set to 2𝑑𝑑 + 1, where 𝑑𝑑 is dimension of the problem. However, some of the suggested settings 259

cannot be applied to the SC-SAHEL framework due to use of different EAs. These settings can be 260

changed according to the complexity of the problem and the EAs used within the framework. For 261

instance, the number of complexes, the number of points within each complex, and the number of 262

evolution steps before each shuffling are problem dependent. 263

The SC-SAHEL framework employs three different stopping criteria which are adopted 264

from SCE-UA and SP-UCI. These stopping criteria include number of function evaluations, range 265

of samples that span the search space, and improvement in the objective function value in the last 266

m shuffling steps. These criteria are compared to pre-defined thresholds, which can in turn be tuned 267

according to the complexity of the problem. Improper selection of these thresholds may lead to 268

early or delayed convergence. 269

2.2 Evolutionary algorithms used in the SC-SAHEL 270

In this paper, we employ four different EAs to illustrate the flexibility of the SC-SAHEL 271

framework in adopting various EAs and show the algorithms competition. These algorithms are 272

briefly presented here. The pseudo code and details of these algorithms can be found in Appendix 273

A-D. 274

 275

Figure 1. The SC-SAHEL framework flowchart 276

2.2.1 Modified Competitive Complex Evolution (MCCE) 277

The MCCE algorithm is an enhanced version of CCE algorithm used in the SCE-UA 278

framework; which provides a robust, efficient, and effective EA for exploring and exploiting the 279

search space. The MCCE algorithm is developed based on the Nelder-Mead algorithm, however, 280

Chu et al. (2011) found that the shrink concept in the Nelder-Mead algorithm can cause premature 281

convergence to a local optimum. Interested readers can refer to (Chu et al. 2010, 2011) for further 282

details on MCCE algorithm. The pseudo code of the MCCE algorithm is detailed in Appendix A. 283

SC-SAHEL has similar performance to SP-UCI, when the MCCE algorithm is used as the only 284

search mechanism and PCA and resampling settings of SP-UCI are enabled. For simplification 285

and comparison, SC-SAHEL with the MCCE algorithm as search core is referred as SP-UCI, 286

hereafter. 287

 288

2.2.2 Modified Frog Leaping (MFL) 289

The Frog Leaping (FL) algorithm uses adapted PSO algorithm as a local search tool within the 290

SCE-UA framework (Eusuff and Lansey 2003). FL has shown to be an efficient search algorithm 291

for discrete optimization problems, and can find optimum solution much faster as compared to the 292

GA algorithm (Eusuff et al. 2006). In order to adapt the FL algorithm to the SC-SAHEL parallel 293

framework, we introduce a slightly modified version of FL algorithm entitled MFL. Further details 294

and pseudo code of the MFL can be found in Appendix B. The original FL algorithm and the MFL 295

have four main differences. First, the original FL is designed for discrete optimization problems, 296

however, the MFL is modified for continuous domain. Second, the modified FL uses the best point 297

in the subcomplex for generating new points, however, in the original FL framework new points 298

are generated using the best point in the complex and the entire population. The reason for this 299

modification is to avoid using any external information by participating EAs. In other words, the 300

amount of information given to each EAs is limited to the complex assigned to the EAs. Third, as 301

the MFL algorithm only uses the best point within the complex for generating the new generation, 302

two different jump rates are used. The reason for different jump rates is to allow MFL to have a 303

better exploration and exploitation ability during optimization process. These jump rates are 304

selected by trial and error and may need further investigation to achieve a better performance by 305

MFL algorithm. Fourth, when the generated offspring is not better than the parents, a new point is 306

randomly selected within the range of individuals in the subcomplex. This process, which is 307

referred to as censorship step in the FL algorithm (Eusuff et al. 2006), is different from the original 308

algorithm. The MFL algorithm uses the range of points in the complex rather than the whole 309

feasible parameters range. Resampling within the whole parameter space can decrease the 310

convergence speed of the FL. Hence, the resampling process is carried out only within the range 311

of points in the complex. Hereafter, the SC-SAHEL with MFL algorithm as the only search core 312

is referred as SC-MFL. 313

 314

2.2.3 Modified Grey Wolf Optimizer (MGWO) 315

The Grey Wolf Optimizer is a meta-heuristic algorithm inspired by the social hierarchy 316

and hunting behavior of grey wolves (Mirjalili et al. 2014, Mirjalili et al. 2016). The Grey wolves 317

hunting strategy has three main steps: first, chasing and approaching the prey; second, encircling 318

and pursuing the prey, and finally attacking the prey (Mirjalili et al. 2014). The GWO process 319

resembles the hunting strategy of the Grey wolves. In this algorithm, the top three fittest 320

individuals are selected and contribute to the evolution of population. Hence, the individuals in the 321

population are navigated toward the best solution. The GWO algorithm has shown to be effective 322

and efficient in many test functions and engineering problems. Furthermore, performance of the 323

GWO is comparable to other popular optimization algorithms, such as GA and PSO (Mirjalili et 324

al. 2014). GWO follows an adaptive process to update the jump rates, to maintain balance between 325

exploration and exploitation phases. The adaptive jump rate of the GWO is removed here and 3 326

different jump rates are used instead. The reason for this modification is that the information given 327

to each EA is limited to its assigned complex. Similar to MFL algorithm, the modified GWO 328

(MGWO) algorithm uses the range of parameters to resample individuals, when the generated 329

offspring are not superior to their parents. Details and pseudo code of the MGWO algorithm can 330

be found in the Appendix C. Hereafter, the SC-SAHEL with MGWO algorithm as the only search 331

core is referred as SC-MGWO. 332

 333

2.2.4 Differential Evolution (DE) 334

The DE algorithm is a powerful but simple heuristic population-based optimization 335

algorithm (Omran et al. 2005, Sadegh and Vrugt 2014) proposed by Storn and Price (1997). In 336

2011, Mariani et al. (2011) integrated the DE algorithm into SCE-UA framework and showed that 337

the new framework is able to provide more robust solutions for some optimization problems in 338

comparison to the SCE-UA. Similar to the work by Mariani et al. (2011), we use a slightly 339

modified DE algorithm based on the concepts from Omran et al. (2005), in order to integrate the 340

DE algorithm into the SC-SAHEL framework. As the DE algorithm has slower performance in 341

comparison to other EAs used here, we have added multiple steps to the DE. Here, the DE 342

algorithm uses three different mutation rates in three attempts. In the first attempt, the algorithm 343

uses a larger mutation rate. This helps exploring the search space with larger jump rates. In the 344

second attempt, the algorithm reduces the mutation rate to a quarter of the first attempt. This will 345

enhance the exploitation capability of the EA. If none of these mutation rates could generate a 346

better offspring than the parents, in the next attempt the mutation rate is set to half of the first 347

attempt. Lastly, if none of these attempts generate a better offspring in comparison to the parents, 348

a new point is randomly selected within the range of individuals in the complex. The pseudo code 349

of the modified DE algorithm is detailed in Appendix D. The SC-SAHEL algorithm is referred to 350

as SC-DE, when the DE algorithm is used as the only search algorithm. 351

3 Conceptual test functions and results 352

3.1 Test functions 353

 The SC-SAHEL framework is benchmarked over 29 mathematical test functions using 354

single-method and multi-method search mechanisms. This includes 23 classic test functions 355

obtained from Xin et al. (1999). The name and formulation of these functions along with their 356

dimensionality and range of parameters are listed in Table 1. We selected these test functions as 357

they are standard and popular benchmarks for evaluating new optimization algorithms (Mirjalili 358

et al. 2014). The remaining 6 are composite test functions, 𝑐𝑐𝑐𝑐1−6 , (Liang et al. 2005), which 359

represent complex optimization problems. Details of the composite test functions can be found in 360

the work of Liang et al. (2005) and Mirjalili et al. (2014). Classic test functions have dimensions 361

in the range of 2 to 30, and all the composite test functions are 10 dimensional. Figures 2 and 3 362

show response surface of these test functions in 2-dimension form. The SC-SAHEL settings used 363

for optimizing these test functions are listed in Table 2 for each test function. Number of points in 364

each complex and number of evolution steps for each complex are set to 2d+1 and max(d+1,10), 365

respectively, where d is the dimension of the problem. The number of evolution steps is set to 366

max(d+1,10), to guarantee that EAs evolve the complexes for enough number of steps, before 367

evaluating the EAs. In the high-dimension problems, the maximum number of function evaluation 368

should be selected with careful consideration. 369

Several experiments were conducted to find an optimal set of parameters for the SC-370

SAHEL setting. These experiments revealed that a low number of evolutionary steps before 371

shuffling the complexes, may not show the potential of the EAs. On the other hand, using a large 372

value for the number of evolution steps may shrink the complex to a small space, which cannot 373

span the whole search space (Duan et al. 1994). Maximum number of function evaluation is 374

determined according to the complexity of the problem and is different for each of the test cases. 375

In addition to the maximum number of function evaluation, the range of the parameters in the 376

population and the improvement in the objective function values are used as convergence criteria. 377

The optimization run is terminated if the population range is smaller than 10-7% of the feasible 378

range or the improvement in (objective) function value is smaller than 0.1% of the mean (objective) 379

function value in the last 50 shuffling steps. The LHS mechanism is used as the sampling algorithm 380

of SC-SAHEL for generating the initial population. The framework provides multiple settings for 381

boundary handling, which can be selected by the user. SC-SAHEL uses reflection as the default 382

boundary handling method. Other initial sampling and boundary handling methods are also 383

implemented in the SC-SAHEL framework. Sensitivity of the initial sampling and boundary 384

handling on the performance of the SC-SAHEL algorithm is not studied in this paper. The 385

aforementioned settings can be applied to a wide range of problems. 386

Table 1. The detailed information of 23 test functions from Xin et al. (1999), including mathematical expression, 387
dimension, parameters range and global optimum value (𝒇𝒇𝒎𝒎𝒎𝒎𝒎𝒎). 388

Function
Number Name Function Dim Range 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚

𝑓𝑓1(𝑥𝑥) Sphere Model 𝑓𝑓(𝑥𝑥) = � 𝑥𝑥𝑖𝑖2
𝑛𝑛

𝑖𝑖=1
 30 [-100,100] 0

𝑓𝑓2(𝑥𝑥) Schwefel’s Problem
2.22 𝑓𝑓(𝑥𝑥) = � |𝑥𝑥𝑖𝑖| + � |𝑥𝑥𝑖𝑖|

𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1
 30 [-10,10] 0

𝑓𝑓3(𝑥𝑥) Schwefel’s Problem 1.2 𝑓𝑓(𝑥𝑥) = � �� 𝑥𝑥𝑗𝑗
𝑖𝑖

𝑗𝑗=1
�
2𝑛𝑛

𝑖𝑖=1
 30 [-100,100] 0

𝑓𝑓4(𝑥𝑥) Schwefel’s Problem
2.21 𝑓𝑓(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖{|𝑥𝑥𝑖𝑖|, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛} 30 [-100,100] 0

𝑓𝑓5(𝑥𝑥) Generalized
Rosenbrock’s Function 𝑓𝑓(𝑥𝑥) = � �100�𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖2�

2
+ (𝑥𝑥𝑖𝑖 − 1)2�

𝑛𝑛−1

𝑖𝑖=1
 30 [-30,30] 0

𝑓𝑓6(𝑥𝑥) Step Function 𝑓𝑓(𝑥𝑥) = � (⌊𝑥𝑥𝑖𝑖 + 0.5⌋)2
𝑛𝑛

𝑖𝑖=1
 30 [-100,100] 0

𝑓𝑓7(𝑥𝑥) Quartic Function 𝑓𝑓(𝑥𝑥) = � 𝑖𝑖𝑥𝑥𝑖𝑖4 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[0,1)
𝑛𝑛

𝑖𝑖=1
 30 [-1.28,1.28] 0

𝑓𝑓8(𝑥𝑥) Generalized Schwefel’s
Problem 2.26 𝑓𝑓(𝑥𝑥) = � −𝑥𝑥𝑖𝑖 sin ��|𝑥𝑥𝑖𝑖|�

𝑛𝑛

𝑖𝑖=1
 30 [-500,500] -12569.5

𝑓𝑓9(𝑥𝑥) Generalized Rastrigin’s
Function 𝑓𝑓(𝑥𝑥) = � [𝑥𝑥𝑖𝑖2 − 10 cos(2𝜋𝜋𝑥𝑥𝑖𝑖) + 10]

𝑛𝑛

𝑖𝑖=1
 30 [-5.12,5.12] 0

𝑓𝑓10(𝑥𝑥) Ackley’s Function 𝑓𝑓(𝑥𝑥) = −20 exp �−0.2�
1
𝑛𝑛
� 𝑥𝑥𝑖𝑖2

𝑛𝑛

𝑖𝑖=1
� − exp �

1
𝑛𝑛
� cos(2𝜋𝜋𝑥𝑥𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
� + 20 + 𝑒𝑒 30 [-32,32] 0

𝑓𝑓11(𝑥𝑥) Generalized Griewank
Function 𝑓𝑓(𝑥𝑥) =

1
4000

� 𝑥𝑥𝑖𝑖2 −� cos �
𝑥𝑥𝑖𝑖
√𝑖𝑖
� + 1

𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1
 30 [-600,600] 0

𝑓𝑓12(𝑥𝑥) Generalized Penalized
Functions

𝑓𝑓(𝑥𝑥) =
𝜋𝜋
𝑛𝑛
�10sin2(𝜋𝜋𝑦𝑦𝑖𝑖) + � (𝑦𝑦𝑖𝑖 − 1)2[1 + 10sin2(πyi+1)]

𝑛𝑛−1

𝑖𝑖=1
+ (𝑦𝑦𝑛𝑛 − 1)2�

+ � 𝑢𝑢(𝑥𝑥𝑖𝑖, 10,100,4),
𝑛𝑛

𝑖𝑖=1

𝑦𝑦𝑖𝑖 = 1 +
1
4

(𝑥𝑥𝑖𝑖 + 1),

𝑢𝑢(𝑥𝑥𝑖𝑖, 𝑎𝑎, 𝑘𝑘,𝑚𝑚) = �
𝑘𝑘(𝑥𝑥𝑖𝑖 − 𝑎𝑎)𝑚𝑚, 𝑥𝑥𝑖𝑖 > 𝑎𝑎
0, − 𝑎𝑎 ≤ 𝑥𝑥𝑖𝑖 ≤ 𝑎𝑎
𝑘𝑘(−𝑥𝑥𝑖𝑖 − 𝑎𝑎)𝑚𝑚, 𝑥𝑥𝑖𝑖 < −𝑎𝑎

30 [-50,50] 0

𝑓𝑓13(𝑥𝑥) Generalized Penalized
Functions

𝑓𝑓(𝑥𝑥) = 0.1 �sin2(3𝜋𝜋𝑥𝑥1) + � (𝑥𝑥𝑖𝑖 − 1)2[1 + sin2(3𝜋𝜋𝑥𝑥𝑖𝑖 + 1)]
𝑛𝑛

𝑖𝑖=1
+ (𝑥𝑥𝑛𝑛 − 1)2[1 + sin2(2𝜋𝜋𝑥𝑥𝑛𝑛)]�

+ � 𝑢𝑢(𝑥𝑥𝑖𝑖, 5,100,4)
𝑛𝑛

𝑖𝑖=1

𝑢𝑢(𝑥𝑥𝑖𝑖, 𝑎𝑎, 𝑘𝑘,𝑚𝑚) = �
𝑘𝑘(𝑥𝑥𝑖𝑖 − 𝑎𝑎)𝑚𝑚, 𝑥𝑥𝑖𝑖 > 𝑎𝑎
0, − 𝑎𝑎 ≤ 𝑥𝑥𝑖𝑖 ≤ 𝑎𝑎
𝑘𝑘(−𝑥𝑥𝑖𝑖 − 𝑎𝑎)𝑚𝑚, 𝑥𝑥𝑖𝑖 < −𝑎𝑎

30 [-50,50] 0

𝑓𝑓14(𝑥𝑥) Shekel’s Foxholes
Function 𝑓𝑓(𝑥𝑥) = �

1
500

+ �
1

𝑗𝑗 + ∑ �𝑥𝑥𝑖𝑖 − 𝑎𝑎𝑖𝑖𝑖𝑖�
62

𝑖𝑖=1

25

𝑗𝑗=1
� 2 [-65.536,65.536] 1

𝑓𝑓15(𝑥𝑥) Kowalik’s Function 𝑓𝑓(𝑥𝑥) = � �𝑎𝑎𝑖𝑖 −
𝑥𝑥1�𝑏𝑏𝑖𝑖2 + 𝑏𝑏𝑖𝑖𝑥𝑥2�
𝑏𝑏𝑖𝑖2 + 𝑏𝑏𝑖𝑖𝑥𝑥3 + 𝑥𝑥4

�
211

𝑖𝑖=1
 4 [-5,5] 0.0003075

𝑓𝑓16(𝑥𝑥) Six-Hump Camel-Back
Function 𝑓𝑓(𝑥𝑥) = 4𝑥𝑥12 − 2.1𝑥𝑥14 +

1
3
𝑥𝑥16 + 𝑥𝑥1𝑥𝑥2 − 4𝑥𝑥22 + 4𝑥𝑥24 2 [-5,5] -1.0316285

𝑓𝑓17(𝑥𝑥) Branin Function 𝑓𝑓(𝑥𝑥) = �𝑥𝑥2 −
5.1
4𝜋𝜋2

𝑥𝑥12 +
5
𝜋𝜋
𝑥𝑥1 − 6�

2

+ 10 �1 −
1

8𝜋𝜋
� cos(𝑥𝑥1) + 10 2 [-5,10]×[0,15] 0.398

𝑓𝑓18(𝑥𝑥) Goldstein-Price
Function

𝑓𝑓(𝑥𝑥) = [1 + (𝑥𝑥1 + 𝑥𝑥2 + 1)2(19 − 14𝑥𝑥1 + 3𝑥𝑥12 − 14𝑥𝑥2 + 6𝑥𝑥1𝑥𝑥2 + 3𝑥𝑥22)]
× [30 + (2𝑥𝑥1 − 3𝑥𝑥2)2(18 − 32𝑥𝑥1 + 12𝑥𝑥12 + 48𝑥𝑥2 − 36𝑥𝑥1𝑥𝑥2 + 27𝑥𝑥22)] 2 [-2,2] 3

𝑓𝑓19(𝑥𝑥) Hartman’s Family 𝑓𝑓(𝑥𝑥) = −� 𝑐𝑐𝑖𝑖exp
4

𝑖𝑖=1
�−� 𝑎𝑎𝑖𝑖𝑖𝑖�𝑥𝑥𝑗𝑗 − 𝑝𝑝𝑖𝑖𝑖𝑖�

24

𝑗𝑗=1
� 4 [0,1] -3.86

𝑓𝑓20(𝑥𝑥) Hartman’s Family 𝑓𝑓(𝑥𝑥) = −� 𝑐𝑐𝑖𝑖 exp �−� 𝑎𝑎𝑖𝑖𝑖𝑖�𝑥𝑥𝑗𝑗−𝑝𝑝𝑖𝑖𝑖𝑖�
26

𝑗𝑗=1
�

4

𝑖𝑖=1
 6 [0,1] -3.32

𝑓𝑓21(𝑥𝑥) Shekel’s Family 𝑓𝑓(𝑥𝑥) = −� [(𝑥𝑥 − 𝑎𝑎𝑖𝑖)(𝑥𝑥 − 𝑎𝑎𝑖𝑖)𝑇𝑇 + 𝑐𝑐𝑖𝑖]−1
5

𝑖𝑖=1
 4 [0,10] -10.1532

𝑓𝑓22(𝑥𝑥) Shekel’s Family 𝑓𝑓(𝑥𝑥) = −� [(𝑥𝑥 − 𝑎𝑎𝑖𝑖)(𝑥𝑥 − 𝑎𝑎𝑖𝑖)𝑇𝑇 + 𝑐𝑐𝑖𝑖]−1
7

𝑖𝑖=1
 4 [0,10] -10.4028

𝑓𝑓23(𝑥𝑥) Shekel’s Family 𝑓𝑓(𝑥𝑥) = −� [(𝑥𝑥 − 𝑎𝑎𝑖𝑖)(𝑥𝑥 − 𝑎𝑎𝑖𝑖)𝑇𝑇 + 𝑐𝑐𝑖𝑖]−1
10

𝑖𝑖=1
 4 [0,10] -10.5363

 389
Figure 2. Classic test functions in 2-dimension form 390

 391

 392

Figure 3. Composite test functions in 2-dimension form 393

 394

Table 2. List of the settings for the SC-SAHEL algorithm for classic and composite test functions. NGS is the number of 395
complexes, NPS denotes the number of points in each complex and I is the maximum number of function evaluation. 396

Function NGS NPS I
𝑓𝑓1 8 61 100,000
𝑓𝑓2 8 61 100,000
𝑓𝑓3 8 61 300,000
𝑓𝑓4 8 61 300,000
𝑓𝑓5 8 61 500,000
𝑓𝑓6 8 61 100,000
𝑓𝑓7 8 61 200,000
𝑓𝑓8 8 61 200,000
𝑓𝑓9 8 61 200,000
𝑓𝑓10 8 61 200,000
𝑓𝑓11 8 61 200,000
𝑓𝑓12 8 61 300,000
𝑓𝑓13 8 61 400,000
𝑓𝑓14 8 10 100,000
𝑓𝑓15 8 10 100,000
𝑓𝑓16 8 10 100,000
𝑓𝑓17 8 10 100,000
𝑓𝑓18 8 10 100,000
𝑓𝑓19 8 10 100,000
𝑓𝑓20 8 13 100,000
𝑓𝑓21 8 10 100,000
𝑓𝑓22 8 10 100,000
𝑓𝑓23 8 10 100,000
𝑐𝑐𝑐𝑐1 16 61 100,000
𝑐𝑐𝑐𝑐2 16 61 100,000
𝑐𝑐𝑐𝑐3 16 61 100,000
𝑐𝑐𝑐𝑐4 16 61 100,000
𝑐𝑐𝑐𝑐5 16 61 100,000
𝑐𝑐𝑐𝑐6 16 61 100,000

3.2 Results and Discussion 397

Table 3 illustrates the statistics of the final function values at 30 independent runs on 29 398

test functions using the hybrid SC-SAHEL and individual EAs, with the goal to minimize the 399

function values. The best mean function value obtained for each test function is expressed in bold 400

in Table 3. Results show that the hybrid SC-SAHEL achieved the lowest function values in 15 out 401

of 29 test functions, compared to the mean function values achieved by all individual algorithms. 402

It is noteworthy that in 20 out of 29 test functions, the hybrid SC-SAHEL was among the top two 403

optimization methods in finding the minimum function value. A two-sample t-test (with 5% 404

significance level) also showed that the result generated with the SC-SAHEL algorithm is 405

generally similar to the best performing algorithms. Comparing among single-method algorithms, 406

in general, the statistics obtained by SP-UCI are superior to other participating EAs. In 12 out of 407

29 test functions, the SP-UCI algorithm achieved the lowest function value. SC-MFL, SC-MGWO, 408

and SC-DE were superior to other algorithms in 10, 11, and 6 out of 29 test functions, respectively. 409

In test functions 𝑓𝑓6, 𝑓𝑓16, 𝑓𝑓17, 𝑓𝑓18, 𝑓𝑓19, 𝑓𝑓20, and 𝑓𝑓23, the single-method and multi-method algorithms 410

achieved same function values on average in most cases. In these cases, according to the statistics 411

shown in Table 3, the SP-UCI and SC-SAHEL algorithms offer lower standard deviation values 412

and show more consistent results as compared to other EAs. The low standard deviation values 413

obtained by SP-UCI and SC-SAHEL indicate the robustness and consistency of these two 414

algorithms in comparison to other algorithms. 415

Table 3. The mean and Standard deviation (Std) of objective function values for 30 independent runs on 29 test functions 416
using the SC-SAHEL algorithm with single-method and multi-method search mechanism. 417

Function
SC-SAHEL (MCCE,
MFL, MGWO, DE) SP-UCI (SC-MCCE) SC-MFL SC-MGWO SC-DE

Mean Std Mean Std Mean Std Mean Std Mean Std
𝑓𝑓1 3.68E-11 1.60E-11 1.68E-11 1.18E-11 4.29E-11 1.01E-11 5.92E-05 5.51E-05 2.13E-06 2.98E-06
𝑓𝑓2 3.14E-06 3.92E-07 3.00E-06 5.94E-07 2.35E-06 2.75E-07 4.12E-03 1.27E-03 6.38E-04 5.26E-04
𝑓𝑓3 2.11E-10 6.08E-11 8.95E-10 4.37E-10 4.50E-10 9.15E-11 1.22E+03 2.16E+03 1.86E-09 1.48E-09
𝑓𝑓4 4.89E-06 7.88E-07 8.98E-05 4.60E-05 3.65E-06 5.43E-07 5.26E-06 5.59E-07 3.50E-01 2.35E-01
𝑓𝑓5 7.81E-09 3.15E-09 2.54E-08 1.52E-08 2.58E+01 2.85E-01 1.28E+01 1.85 1.33 1.91
𝑓𝑓6 0 0 0 0 0 0 3.33E-02 1.83E-01 6.33E-01 6.69E-01
𝑓𝑓7 1.09E-03 5.33E-04 4.78E-04 3.44E-04 1.37E-03 6.36E-04 1.34E-02 4.90E-03 2.08E-03 8.93E-04

𝑓𝑓8 -9.87E+03 6.14E+02 -5.09E+03 2.27E+02 -4.36E+03 2.90E+02 -4.91E+03 3.75E+02 -
9.75E+03 6.41E+02

𝑓𝑓9 8.29E-01 1.73 3.32E-02 1.82E-01 1.60E+01 9.78 2.01E+02 1.19E+01 2.67E+01 4.57E+01
𝑓𝑓10 1.49E-06 2.43E-07 1.08E-06 2.55E-07 1.52E-06 2.00E-07 5.47E-06 5.34E-07 1.42 4.98E-01
𝑓𝑓11 8.05E-11 2.08E-11 1.77E-10 5.19E-11 1.61E-04 8.81E-04 7.21E-03 1.15E-02 1.42E-02 1.51E-02
𝑓𝑓12 1.58E-13 5.02E-14 5.27E-13 3.38E-13 1.31E-01 8.80E-02 1.06E-12 1.80E-13 3.11E-02 7.77E-02
𝑓𝑓13 3.66E-04 2.01E-03 2.55E-12 8.69E-13 7.15E-02 8.94E-03 1.62E-11 3.31E-12 3.97E-03 6.59E-03
𝑓𝑓14 9.98E-01 1.40E-16 9.98E-01 1.27E-16 2.53 3.13 9.98E-01 2.16E-16 1.99 1.51
𝑓𝑓15 3.07E-04 5.61E-17 1.19E-03 3.80E-03 1.08E-03 3.68E-03 3.07E-04 8.87E-14 2.98E-03 6.93E-03
𝑓𝑓16 -1.03 1.37E-15 -1.03 7.61E-16 -1.03 6.28E-07 -1.03 9.51E-15 -1.03 1.18E-15
𝑓𝑓17 3.98E-01 1.47E-15 3.98E-01 0 3.98E-01 2.05E-04 3.98E-01 7.63E-15 3.98E-01 0.00
𝑓𝑓18 3.00 2.20E-14 3.00 1.25E-14 3.00 1.81E-05 3.00 7.30E-14 3.00 1.72E-14
𝑓𝑓19 -3.86 2.08E-15 -3.86 2.12E-15 -3.86 5.46E-05 -3.86 1.61E-15 -3.86 1.97E-15
𝑓𝑓20 -3.32 2.17E-02 -3.32 2.17E-02 -3.31 3.03E-02 -3.25 5.92E-02 -3.31 4.11E-02
𝑓𝑓21 -9.16 2.58 -5.92 3.28 -9.69 1.75 -9.48 1.75 -8.97 2.18
𝑓𝑓22 -1.02E+01 9.63E-01 -9.64 2.31 -1.04E+01 4.56E-04 -1.04E+01 5.05E-13 -9.35 2.46
𝑓𝑓23 -1.05E+01 1.93E-13 -1.03E+01 1.22 -1.05E+01 6.96E-06 -1.05E+01 5.00E-13 -9.64 2.35
𝑐𝑐𝑐𝑐1 6.67 2.54E+01 3.33 1.83E+01 1.00E+01 3.05E+01 9.41E-12 3.42E-12 1.35E-11 5.66E-12
𝑐𝑐𝑐𝑐2 2.00E+01 4.84E+01 1.23E+02 6.79E+01 7.76E+01 4.59E+01 3.94E+01 1.44E+01 3.14E+01 5.39E+01
𝑐𝑐𝑐𝑐3 1.32E+02 9.33E+01 1.33E+02 8.22E+01 2.80E+02 3.16E+01 3.00E+02 4.21E+01 1.28E+02 3.83E+01
𝑐𝑐𝑐𝑐4 2.71E+02 6.67E+01 2.93E+02 8.38E+01 3.46E+02 1.47E+01 3.30E+02 4.15E+01 2.63E+02 3.20E+01
𝑐𝑐𝑐𝑐5 1.70E+01 3.77E+01 9.75E+01 1.83E+01 3.05E+01 4.33E+01 3.37 1.83E+01 1.10E+01 3.05E+01
𝑐𝑐𝑐𝑐6 6.71E+02 2.00E+02 8.72E+02 6.59E+01 7.80E+02 1.85E+02 5.40E+02 1.23E+02 6.38E+02 1.86E+02

 418

 In the test functions that the hybrid SC-SAHEL algorithm was not able to produce the best 419

mean function value, the achieved mean function values deviation from that of the best-performing 420

algorithms are marginal. For instance, on the test functions 𝑓𝑓2, 𝑓𝑓4, 𝑓𝑓10, and 𝑓𝑓22, the statistics of the 421

values obtained by SC-SAHEL are similar to that achieved by the best-performing methods, which 422

are SP-UCI, and SC-MFL, respectively. In general, the hybrid SC-SAHEL algorithm is superior 423

to algorithms with individual EA on most of the test functions, although on some test functions, 424

the SC-SAHEL algorithm is slightly inferior to the best-performing algorithm with only marginal 425

differences. The performance of the SC-SAHEL in these test functions can be attributed to two 426

main reasons. First, in the hybrid algorithm, all the EAs are involved in the evolution of the 427

population. Hence, if one of the algorithms have poor performance in comparison to other EAs, it 428

still evolves a portion of the population. As the complexes are evolved independently, the poor-429

performing EAs may devastate a part of the information in the evolving complex. On the other 430

hand, when the algorithms are used individually in the SC-SAHEL framework, the EA utilizes the 431

information in all the complexes and the whole population. In this case, better result will be 432

achieved in comparison to the hybrid SC-SAHEL, if the EA is the fittest algorithm for the problem 433

space. Second, some of the EAs are faster and more efficient in a specific optimization phase 434

(exploration/exploitation) than others. However, they might not be as effective as other EAs for 435

other optimization phases. Hence, dominance of these algorithm during the exploration or 436

exploitation phases can mislead other EAs and cause early (and premature) convergence. 437

Engagement of other algorithms in the evolution process may prevent early convergence in these 438

cases. Generally, the performance criteria, EMP, is responsible for selecting the most suitable 439

algorithm in each optimization step, however, the criteria used in the SC-SAHEL is not guaranteed 440

to perform well in all problem spaces. The performance criteria are problem dependent and need 441

further investigations based on the problem space and EAs. However, the EMP metric seems to be 442

a suitable metric for a wide range of problems. 443

To further evaluate the performance of the hybrid SC-SAHEL algorithm, we present the 444

success rate of the algorithms in Figure 4. The success rate is defined by setting target values for 445

the function value for each test function. When the function value is smaller than the target value, 446

the goal of optimization is reached, and therefore, the algorithm is considered successful. A higher 447

success rate resembles a better performance. We use same target value for all algorithms in order 448

to have a fair comparison. According to Figure 4, in 16 out of 29 test functions, the hybrid 449

algorithm achieved 100% success rate. In other cases, the success rates achieved by the proposed 450

hybrid algorithm are comparable to the best-performing algorithm with single EA. For instance, 451

on the test function 𝑓𝑓9, the SC-MGWO, SC-DE and SC-MFL are not successful in finding the 452

optimum solution (success rates are 0%, 0%, and 10%, respectively). However, the hybrid SC-453

SAHEL algorithm has similar performance (80% success rate) to SP-UCI (97% success rate). On 454

the test function 𝑓𝑓21, the success rate of the hybrid SC-SAHEL algorithm (87%) is close to the SC-455

MGWO (93%), which is the most successful algorithm. The hybrid SC-SAHEL algorithm also 456

achieved a higher success rate than SP-UCI algorithm (33%) in this test function. According to 457

Figure 4, the average success rate of SC-SAHEL is about 80% over all 29 test functions, and it is 458

the highest compared to the average success rate of other EAs, i.e., 73%, 58%, 58%, and 54% for 459

SP-UCI, SC-MFL, SC-MGWO, and SC-DE algorithm, respectively. 460

461
Figure 4. The success rate of the SC-SAHEL using multi-method and single-method search mechanism for 30 462

independent runs for 29 test functions 463

 In some situations, the poor performing EAs may mislead other EAs and cause early (and 464

premature) convergence. For instance, on the test function 𝑐𝑐𝑐𝑐5, the hybrid algorithm achieved 57% 465

success rate, which is still better success rate than SP-UCI, SC-MFL and SC-MGWO, which are 466

0%, 10%, and 50%, respectively. On this test function (𝑐𝑐𝑐𝑐5), the performance of the hybrid SC-467

SAHEL is less affected by the most successful algorithm (DE). This may be due to the low 468

evolution speed of the DE algorithm, as the SC-SAHEL algorithm maintains both convergence 469

speed and efficiency during the entire search. The hybrid SC-SAHEL presents promising 470

performance on the test functions 𝑐𝑐𝑐𝑐2 and 𝑐𝑐𝑐𝑐3. On test functions 𝑐𝑐𝑐𝑐2 and 𝑐𝑐𝑐𝑐3, the success rate of 471

hybrid SC-SAHEL is significantly higher than other EAs, most of which have 0% success rates. 472

For test function 𝑐𝑐𝑐𝑐2, the SC-DE algorithm achieved the lowest objective function value and the 473

highest success rate (37%) among single-method algorithms. However, when EAs are combined 474

in the hybrid form, the objective function value and the success rate are significantly improved. 475

f
1

f
2

f
3

f
4

f
5

f
6

f
7

f
8

f
9

f
10

0

20

40

60

80

100

SC-SAHEL SP-UCI SC-MGWO SC-MFL SC-DE

f
11

f
12

f
13

f
14

f
15

f
16

f
17

f
18

f
19

f
20

0

20

40

60

80

100

Su
cc

es
s

R
at

e
(%

)

f
21

f
22

f
23

cf
1

cf
2

cf
3

cf
4

cf
5

cf
6

Average

Function

0

20

40

60

80

100

This shows that SC-SAHEL has the capability of solving complex problems by utilizing the 476

potentials and advantages of all participating algorithms and improving the search success rate. 477

Table 4. The mean and Standard deviation (Std) of the number of function evaluation for 30 independent runs for 29 test 478
functions using the SC-SAHEL algorithm with single-method and multi-method search mechanism. 479

Function
SC-SAHEL (MCCE,
MFL, MGWO, DE) SP-UCI (SC-MCCE) SC-MFL SC-MGWO SC-DE

Mean Std Mean Std Mean Std Mean Std Mean Std
𝑓𝑓1 32816.33 723.0532 26877.93 609.7676 100199.9 129.6894 33012.97 284.4416 100325.5 144.6016

𝑓𝑓2 39298.4 917.7627 29333.33 674.156 100193.7 126.3259 35876.77 344.1018 100307.9 168.2884

𝑓𝑓3 91746.23 2288.806 73474.5 5435.367 226848.3 20135.41 239199.9 31109.82 241449.1 90118.79

𝑓𝑓4 50197.6 1761.589 82183.67 19213.58 300252.9 121.2331 37987.4 1170.002 227316.4 5488.107

𝑓𝑓5 335364.2 8102.236 401124.8 14599.33 439093.2 47901.23 118900.7 38671.69 500310.9 163.5498

𝑓𝑓6 40293.63 377.0177 32537.93 151.8836 66102.9 3708.332 43063.63 1463.074 90205.23 5773.92

𝑓𝑓7 69779.5 23763.53 69823.27 24314.74 78895.43 24205.89 81421.53 22877.8 117468.4 33083.6

𝑓𝑓8 71834.83 9826.963 54020 17225.97 65629.77 5201.429 45254.8 15104.68 62555.83 21579.07

𝑓𝑓9 59710.57 12460.93 33949.6 996.5881 100705.8 22607.84 85055.73 20771.06 90930.3 34180.61

𝑓𝑓10 33765.77 887.3708 27116.33 379.9873 77520.6 15528.44 33181.03 416.0297 165489.4 4726.909

𝑓𝑓11 35504.9 629.8192 30623.53 860.8274 117357.6 13250.36 38652.4 19330.05 155148.6 16730.48

𝑓𝑓12 55908.07 4735.601 39264.23 3125.88 141722.1 31245.81 88234.23 28948.91 181820.6 5132.966

𝑓𝑓13 54148.7 3949.577 32262.23 851.2965 123903.4 20354.81 72334.73 22345.94 170930.5 3295.191

𝑓𝑓14 5216.333 443.942 5708.433 764.8273 4829.2 841.1355 14986.77 3537.605 4530.2 322.0474

𝑓𝑓15 9059.8 551.1741 6517.167 2358.518 8144.667 1151.183 66441.3 35455.39 18813.63 659.7369

𝑓𝑓16 3700.133 1115.033 2746.3 747.3937 3491.933 574.5392 8549.4 1494.076 3490.733 556.9577

𝑓𝑓17 3665.533 601.3615 2910.633 624.4692 3552.267 538.6385 11453.13 2592.687 5115.367 2082.727

𝑓𝑓18 2837.933 308.7723 2000.633 151.8512 2899.567 299.5645 8405.933 1320.571 2833.5 111.3877

𝑓𝑓19 4225.733 424.8389 2852.2 95.83045 4233.4 238.4404 13183.77 519.0798 4983.9 179.5704

𝑓𝑓20 8915.833 1069.182 5645.567 268.4028 8858.967 300.0987 17143.33 1316.025 12691.67 1818.526

𝑓𝑓21 7455.033 1741.525 7377.533 3260.208 7471.4 1554.087 18771.33 2996.925 10755.57 1573.865

𝑓𝑓22 6370.5 869.9209 4512.433 1290.258 7541.433 1582.216 17466.23 834.9485 8728.7 927.622

𝑓𝑓23 6200.133 614.6406 4084.233 464.9113 6823.7 327.7709 17351.87 861.8541 8398.067 599.0103

𝑐𝑐𝑐𝑐1 15049.43 875.8969 10293.43 233.9694 21663.47 921.1805 74089.17 17803.2 28321.6 678.283

𝑐𝑐𝑐𝑐2 16527.63 1432.21 10586.8 464.8359 20285.83 2346.093 36617.1 13118.85 30686.4 9354.096

𝑐𝑐𝑐𝑐3 25991.03 8041.928 16021.5 3833.203 23801.2 3604.495 19323.13 6052.813 29496.9 9113.814

𝑐𝑐𝑐𝑐4 22873.87 4414.168 16510.13 4052.642 21121.93 2417.582 23841.93 8026.638 35134.33 14468.31

𝑐𝑐𝑐𝑐5 17044.53 1350.845 13512.2 746.6731 21400.57 1759.215 53551.43 23577.95 39200.77 4125.908

𝑐𝑐𝑐𝑐6 13779.33 2279.744 10518.1 2977.194 14967.5 2820.062 22265.8 15340.72 27734.83 4606.317

 480

In Table 4, we present the mean and standard deviation of the number of function 481

evaluation, which indicates the speed of each algorithm. As one of the stopping criteria in SC-482

SAHEL framework is the maximum number of function evaluation, some algorithms may 483

terminate before they show their full potential. For instance, the SC-DE and the SC-MFL, usually 484

reach the maximum number of function evaluations, while other algorithms satisfy other 485

convergence criteria in much less number of function evaluations. In this case, the objective 486

function value doesn’t represent the potential of the slow algorithms. To give a better insight into 487

this matter, the mean and standard deviation (Std) of the number of function evaluations are 488

compared in Table 4. The goal is to compare the speed of the individual EAs and the hybrid 489

optimization algorithm. According to Table 4, in most of the test cases, the SP-UCI algorithm has 490

the least number of function evaluations, regardless of the objective function value achieved by 491

the EAs. 492

Comparing the success rate and the number of function evaluation for different EAs shows 493

that SP-UCI achieved 100% success rate with the lowest number of function evaluation, in 15 out 494

of 29 test functions. The SC-MGWO algorithm only achieved 100% success rate with the lowest 495

number of function evaluation in one test function. Although the hybrid SC-SAHEL algorithm is 496

not the fastest algorithm, its speed is usually close to the fastest algorithm. This is due to the 497

contribution of different EAs in the evolution process and the EAs behavior on different problem 498

spaces. For instance, DE algorithm is slower in comparison to MCCE (SP-UCI) algorithm in most 499

of the test functions. Hence, when the algorithms are working in a hybrid form, the hybrid 500

algorithm will be slower than the situation when the MCCE (SP-UCI) algorithm is used 501

individually. 502

Figures 5, 6, and 7 compare the average number of complexes assigned to each EA for the 503

29 employed test functions during the course of the search. The variation of the number of 504

complexes assigned to each EA indicates the dominance of each EA during the course of the 505

search. Hence, the performance of EAs at each optimization step can be monitored. In many test 506

cases, MCCE (SP-UCI) algorithm has a relatively higher number of complexes than other EAs 507

during the search. This shows that MCCE is a dominant search algorithm on most of the test 508

functions. However, in some other cases, MCCE is only dominant in a certain period of the search, 509

while other EAs have demonstrated better efficiency during the entire search. For example, on test 510

functions 𝑓𝑓7 and 𝑓𝑓20, MCCE algorithm appears to be dominant only during the beginning of the 511

search. In the test function 𝑓𝑓7, the exploration process starts with the dominance of the MCCE and 512

shifts between MGWO and MFL after the first 20 shuffling steps. In some of the test functions, 513

such as 𝑓𝑓7, a more random fluctuation is observed in the number of complexes assigned to each 514

EA. The reason for this behavior is that EAs have very close competition in these shuffling steps. 515

Due to the noisy response surface of the test function 𝑓𝑓7, most of the EAs cannot significantly 516

improve the (objective) function values during the exploitation phase. On test functions 𝑓𝑓8 and 𝑓𝑓18, 517

the MFL and DE algorithms are the dominant, respectively, during the beginning of the run, while 518

MCCE algorithm becomes dominant only when the algorithm is in exploitation phase. Lastly, on 519

test functions 𝑓𝑓9, 𝑓𝑓22, 𝑐𝑐𝑐𝑐1, and 𝑐𝑐𝑐𝑐4, the variations of the number of complexes and the precedence 520

of different EAs as the most dominant search algorithm are observed. 521

It is worth mentioning that, Figures 5, 6, and 7 show the number of complexes assigned to 522

each EA for a single optimization run. Our observation of each individual run results (not shown 523

herein) shows variation of the number of complexes among different runs is similar to each other 524

for most test cases. The observed variation for individual runs follows a specific pattern and is not 525

random. The similarity of the EAs dominance pattern indicates that the selection of the EAs by the 526

SC-SAHEL framework only depends on the characteristics of the problem space and the EAs 527

employed. This also indicates that different EAs have pros and cons on different optimization 528

problems. 529

 530

 531

Figure 5. Number of complexes assigned to EAs during the entire optimization process on test function 𝒇𝒇𝟏𝟏-𝒇𝒇𝟏𝟏𝟏𝟏 532

 533

Figure 6. Number of complexes assigned to EAs during the entire optimization process on test function 𝒇𝒇𝟏𝟏𝟏𝟏-𝒇𝒇𝟐𝟐𝟐𝟐 534

 535

Figure 7. Number of complexes assigned to EAs during the entire optimization process on test function 𝒇𝒇𝟐𝟐𝟐𝟐-𝒇𝒇𝟐𝟐𝟐𝟐 and 𝒄𝒄𝒄𝒄𝟏𝟏-536

𝒄𝒄𝒄𝒄𝟔𝟔 537

As a summary of our experiments on the conceptual test functions (Tables 3, and 4, and 538

Figure 4, 5, 6, and 7), the main advantage of the SC-SAHEL algorithm over other optimization 539

methods is its capability of revealing the trade-off among different EAs and illustrating the 540

competition of participating EAs. Different optimization problems have different complexity, 541

which introduces various challenges for each EA. By incorporating different types of EAs in a 542

parallel computing framework, and implementing an “award and punishment” logic, the newly 543

developed SC-SAHEL framework not only provides an effective tool for global optimization but 544

also gives the user insights about advantages and disadvantages of each participating EAs on 545

individual optimization tasks. This shows the potential of the SC-SAHEL framework for solving 546

different class of problems with different level of complexity. Besides, the hybrid SC-SAHEL 547

algorithm is superior to shuffled complex-based methods with single search mechanism, such as 548

SP-UCI, in an absolute majority of the test functions. 549

4 Example applications and results 550

In this section, we demonstrate an example application of the newly developed SC-SAHEL 551

algorithm. A conceptual reservoir model is developed with the goal of maximizing hydropower 552

generation on a daily-basis operation. The model is applied to the Folsom reservoir in Northern 553

California. 554

4.1 Reservoir Model 555

A conceptual model is set up based on the relationship between the hydropower generation, 556

storage, water head and bathymetry of the Folsom reservoir. Daily releases from the reservoir in 557

the study period are treated as the parameters of the model, which in turn determines the problem 558

dimensionality. The model objective is to maximize the hydropower generation for a specific 559

period. The total hydropower production is a function of the water head difference between forebay 560

and tailwater and the turbine flow rate. The driving equation of the model is based on mass balance 561

(water budget), which is formulated as, 562

𝑆𝑆𝑡𝑡 = 𝑆𝑆𝑡𝑡−1 + 𝐼𝐼𝑡𝑡 − 𝑅𝑅𝑡𝑡 ± 𝑀𝑀𝑡𝑡, (2) 563

where 𝑆𝑆𝑡𝑡 is storage at time step 𝑡𝑡, 𝐼𝐼𝑡𝑡 and 𝑅𝑅𝑡𝑡 signify total inflow and release from the reservoir at 564

time 𝑡𝑡, respectively. 𝑀𝑀𝑡𝑡 is total outflow/inflow error which is derived by setting up mass balance 565

for daily observed data. The objective function employed here is, 566

OF = ∑ 1 − 𝑃𝑃𝑡𝑡
𝑃𝑃𝑐𝑐

𝑁𝑁
𝑡𝑡=1 , (3) 567

where 𝑃𝑃𝑐𝑐 is total power plant capacity in MW and 𝑃𝑃𝑡𝑡 is total power generated in day 𝑡𝑡 in MW. For 568

each day 𝑃𝑃𝑡𝑡 is derived as follow, 569

𝑃𝑃𝑡𝑡 = 𝜂𝜂𝜂𝜂𝜂𝜂𝑄𝑄𝑡𝑡𝐻𝐻𝑡𝑡, (4) 570

where 𝜂𝜂 signifies turbine efficiency, 𝜌𝜌 is water density (Kg/m3), g is gravity (9.81 m/s2) and 𝑄𝑄𝑡𝑡 is 571

discharge (m3/s) at time step t. 𝐻𝐻𝑡𝑡 is hydraulic head (m) at time step t, which is defined as, 572

𝐻𝐻𝑡𝑡 = ℎ𝑓𝑓 − ℎ𝑡𝑡𝑡𝑡, (5) 573

where ℎ𝑓𝑓 and ℎ𝑡𝑡𝑡𝑡 are water elevation in forebay and tailwater, respectively. ℎ𝑓𝑓 and ℎ𝑡𝑡𝑡𝑡 are 574

derived by fitting a polynomial to reservoir bathymetry data. 575

 In the reservoir model coined above, multiple constraints are considered for better 576

representation of the real behavior of the system. These constraints include power generation 577

capacity, storage level, spill capacity, and changes in the daily hydropower discharge. Total daily 578

power generation is compared to maximum capacity of the hydropower plant. Also, rule curve is 579

used to control reservoir storage level during the operation period. Besides, final simulated 580

reservoir storage is constrained to 0.9 - 1.1 of the observed storage. In another word, 10% variation 581

from the observation data is allowed for the final simulated storage level. This constraint adds 582

information from real reservoir operation into the optimization process. This constraint can be 583

replaced by other operation rules for simulation purposes. The spill capacity of dam is calculated 584

according to the water level in the forebay and compared to simulated spilled water. A quadratic 585

function is fitted to the water level and spill capacity data, to derive the spill capacity at each time 586

step. The change in daily hydropower release is also constrained to better represent actual 587

hydropower discharge and avoid large variation in a daily release. 588

 The reservoir model used here is non-linear and continuous. The constraints of the model 589

render finding the feasible solution a challenging task for all the EAs. The SC-SAHEL framework 590

is used to maximize the hydropower generation by minimizing the objective function value. The 591

settings used for the SC-SAHEL is similar to the settings used for the mathematical test functions. 592

However, the maximum number of function evaluations is set to 106. Lower bound of the 593

parameters’ range varies monthly due to the operational rules; however, upper bound is determined 594

according to the hydraulic structure of the dam. 595

 596

4.2 Study basin 597

Folsom reservoir is located on the American river, in northern California and near 598

Sacramento, California. Folsom dam was built by the US Army Corps of Engineers during 1948 599

to 1956, and is a multi-purpose facility. The main functions of the facility are flood control, water 600

supply for irrigation, hydropower generation, maintaining environmental flow, water quality 601

purposes, and providing recreational area. The reservoir has a capacity of 1,203,878,290 m3 and 602

the power plant has a total capacity of 198.7 MW. Three different periods are considered here. The 603

first study period is April 1st, 2010 to June 30th, 2010. The year 2010 is categorized as below-604

normal period according to California Department of Water Resources. The same period is 605

selected in 2011 and 2015, as former is categorized by California Department of Water Resources 606

as wet, and latter is classified as critical dry year. The input and output from the reservoir are 607

obtained from California Data Exchange Center (CDEC). Note that demand is not included in the 608

model because the demand data was not available from a public data source. 609

 610

4.3 Results and Discussion 611

The boxplot of the objective function values is shown in Figure 8 for the Folsom reservoir 612

during the runoff season in 2015, 2010, and 2011, which are dry, below-normal, and wet years, 613

respectively. The presented results are based on 30 independent optimization runs; however, 614

infeasible objective function values are removed. The feasibility of the solution is evaluated 615

according to the objective function values. Due to the large values returned by the penalty function 616

considered for infeasible solutions, such solutions can be distinguished from the feasible solutions. 617

For wet year (2011) case, SC-MGWO, and SC-DE didn’t find a feasible solution in 2, and 4 runs 618

out of 30 independent runs, respectively. The hybrid SC-SAHEL found feasible solutions in all 619

the cases; however, some of these solutions are not global optima. On average, the hybrid SC-620

SAHEL algorithm is able to achieve the lowest objective function value as compared to other 621

algorithms during dry and below-normal period. During dry and below-normal periods, SC-622

SAHEL, SP-UCI, and SC-DE show similar performance. In the wet period, the SP-UCI algorithm 623

achieved the lowest objective function value. The SC-SAHEL algorithm ranked second, 624

comparing the mean objective function values. In this period, the results achieved by the SC-DE 625

is also comparable to SC-SAHEL and SP-UCI. The results show that overall, the hybrid SC-626

SAHEL algorithm has similar or superior performance in comparison to the single-method 627

algorithms. Also, the results achieved by SC-SAHEL and SP-UCI algorithms has less variability 628

in comparison to other algorithms, which show the robustness of these algorithms. The worst 629

performing algorithm is the SC-MGWO, which achieved the least mean objective function value 630

in all the study periods. 631

In Figure 9, boxplot of the number of function evaluations is presented for successful runs 632

from the 30 independent runs during dry, below-normal and wet period years. Although the SC-633

MGWO algorithm satisfied convergence criteria in the least number of function evaluation, the 634

SC-MGWO was not successful in achieving the optimum solution in many cases. The SP-UCI 635

algorithm is the second fastest method among all the algorithms. The hybrid SC-SAHEL, SC-636

MFL, and SC-DE are the slowest algorithm for satisfying the convergence criteria, in almost all 637

cases. The slow performance of the hybrid SC-SAHEL is due to the fact that 2 out of 4 (DE and 638

MFL) participating EAs have very slow performance over the response surface. Figure 10 639

demonstrates the number of complexes assigned to each EA during the search, which indicates the 640

dominance of the participating algorithms, and the “award and punishment” logic in the reservoir 641

model. As seen in Figure 10, the MGWO algorithm is dominant in the beginning of the search; 642

although, it is not capable of finding the optimum solution in most cases. The reason for the 643

dominance of the MGWO is the speed of the algorithm in exploring the search space. MGWO is 644

superior to other EAs in the beginning of the search, however, after a few iterations, the MCCE 645

algorithm took the precedence and become the dominant algorithm over other EAs. MGWO and 646

DE are less involved in the rest of the optimization process after the initial steps. However, 647

competition between MCCE and MFL continues. Although contribution of MGWO and DE are at 648

minimum in rest of the optimization process, they are utilizing a part of information within the 649

population. This can affect the speed and performance of the SC-SAHEL algorithm. In both the 650

wet and below-normal cases, the hybrid SC-SAHEL algorithm is mostly terminated by reaching 651

the maximum number of function evolution. However, the mean objective function value obtained 652

by the hybrid SC-SAHEL is still superior to most of the algorithms. 653

The performance of the SC-SAHEL can be affected by the settings of the algorithm. 654

Different settings have been tested and evaluated for the reservoir model. The results show that 655

the number of evolution steps before shuffling can influence the performance of the hybrid SC-656

SAHEL algorithm. In the current setting, the number of evolution steps within each complex is set 657

to d+1 (d is dimension of the problem). Although this setting seems to provide acceptable 658

performance for a wide range of problems, it may not be the optimum setting for all the problems 659

spaces and EAs. In the reservoir model, as the study period has 91 days, the model evolves each 660

complex for 92 steps. This number of evolution steps allows the algorithms to navigate the 661

complexes toward local solutions and increase the total number of function evaluations without 662

specific gain. Decreasing the number of evolution steps allows the algorithms to communicate 663

more frequently, so they can use the information obtained by other EAs. Here, for demonstrative 664

purposes, the same setting has been applied to all the problems. However, better performance is 665

observed for the hybrid SC-SAHEL algorithm when the number of evolution steps are set to a 666

value smaller than 92. The algorithm is less sensitive to other settings for the reservoir model, 667

however they can still affect the performance of the algorithm. 668

In Figure 11, we present the simulated storage level for different study periods achieved 669

by different EAs. During the dry period, not only the SC-SAHEL algorithm achieved the lowest 670

objective function value, but also the storage level is higher than the observed storage level in most 671

of the period. This is due to the fact that, power generation is a function of water height, as well as 672

discharge rate. During below-normal period, SC-SAHEL, SP-UCI, and SC-DE algorithms show a 673

similar behavior in terms of the storage level. During wet period, storage level simulated by SP-674

UCI and SC-SAHEL algorithm is lower than all other algorithms. It is worth noting that, during 675

wet period, SC-SAHEL and SP-UCI algorithms are able to find optimum solution (which objective 676

function value is 0) in some of the runs. However, the simulated storage by these algorithms show 677

some level of uncertainties (Figure 11). This shows equifinality in simulation, which means that 678

same hydropower generation can be achieved by different sets of parameters (Feng et al. 2017). 679

This equifinality can be due to deficiencies in the model structure, or the boundary conditions 680

(Freer et al. 1996). The wet period seems to offer a more complex response surface for the reservoir 681

model. During the wet period, some algorithms, such as SC-DE, are not capable of finding a 682

feasible solution in some of the runs. In this period, the large input volume and the rule curve 683

added more complexity to the optimization problem. In other study periods, the reservoir level is 684

always below the rule curve. 685

 The results of the real-world application show the potential of the newly developed SC-686

SAHEL framework for solving high dimension problems. In general, the hybrid algorithm was 687

more successful in finding a feasible solution in comparison to single-method algorithms. In some 688

cases, the hybrid SC-SAHEL was terminated due to the large number of function evaluations. 689

However, the performance of the hybrid SC-SAHEL is always comparable to the best performing 690

method. This shows the potential of the SC-SAHEL for solving a broad class of optimization 691

problems. Besides, the framework provides insight into the performance of the algorithms at 692

different steps of the optimization process. This feature of the SC-SAHEL algorithm can aid the 693

user to select the best setting and EA for the problem. 694

 695

Figure 8. Boxplots of objective function values for successful runs among 30 independent runs, for dry (A), below-normal 696
(B) and wet period (C). The mean of objective functions values is shown with pink marker. 697

 698

Figure 9 Boxplots of number of function evaluations for successful runs among 30 independent runs for dry (A), below-699
normal (B) and wet period (C). The mean number of function evaluation is shown with pink marker 700

Figure 10. The average number of complexes assigned to each EA at each shuffling step for 30 independent runs for dry 701
(A), below-normal (B), and wet (C) period 702

 703

Figure 11. Storage level for dry (A), below-normal (B), and wet (C) period 704

5 Conclusions and remarks 705

 We developed a hybrid optimization framework, named Shuffled Complex Self Adaptive 706

Hybrid EvoLution (SC-SAHEL), which uses an “award and punishment” logic in junction with 707

various types of Evolutionary Algorithms (EAs), and selects the best EA that fits well to different 708

optimization problems. The framework provides an arsenal of tools for testing, evaluating and 709

developing optimization algorithms. We compared the performance of the hybrid SC-SAHEL 710

with single-method algorithms on 29 test functions. The results showed that the SC-SAHEL 711

algorithm is superior to most of single-method optimization algorithms and in general offers a 712

more robust and efficient algorithm for optimizing various problems. Furthermore, the proposed 713

algorithm is able to reveal the characteristics of different EAs during entire search period. The 714

algorithm is also designed to work in a parallel framework which can take the advantage of 715

available computation resources. The newly developed SC-SAHEL offers different advantages 716

over conventional optimization tools. Some of the SC-SAHEL characteristics are: 717

- Intelligent evolutionary method adaptation during the optimization process 718

- Flexibility of the algorithm for using different evolutionary methods 719

- Flexibility of the algorithm for using initial sampling and boundary handling method 720

- Independent parallel evolution of complexes 721

- Population degeneration avoidance using PCA algorithm 722

- Robust and Fast optimization process 723

- Evolutionary algorithms comparison for different types of problems 724

 Although the presented results support advantage of the hybrid SC-SAHEL to individual 725

EAs algorithms, there are multiple directions for further improvement of the framework. For 726

example, EAs’ performance metric for evaluating the search mechanism. In the current algorithm, 727

the complex allocation to different EA is carried out by ranking the algorithm according to the 728

EMP metric. The performance criteria can change the allocation process and affect the 729

performance of the algorithm. Depending on the application a more comprehensive performance 730

criterion may be necessary for achieving the best performance. However, the current EMP criterion 731

does not affect the conclusion and comparison of different EAs. In addition, the current SC-732

SAHEL framework is designed to solve single objective optimization problems. A multi-objective 733

version can be developed to extend the scope of the application. This paper serves as an 734

introduction to the newly developed SC-SAHEL algorithm. We hope that more investigation on 735

the interaction among different EAs, boundary handling schemes and response surface in different 736

case studies and optimization problems reveal the advantages and limitations of SC-SAHEL. 737

Acknowledgments and data 738

This work is supported by U.S. Department of Energy (DOE Prime Award # DE-739

IA0000018), California Energy Commission (CEC Award # 300-15-005), NSF CyberSEES 740

Project (Award CCF-1331915), NOAA/NESDIS/NCDC (Prime award NA09NES4400006 and 741

NCSU CICS and subaward 2009-1380-01), and the U.S. Army Research Office (award W911NF-742

11-1-0422). The Folsom reservoir bathymetry information used here is provided by Dr. Erfan 743

Goharian from UC Davis, who also helped us for setting up the reservoir model. The authors would 744

like to thank the comments of the fours anonymous reviewers which significantly improved the 745

quality of the paper. 746

References 747

Barati, R., Neyshabouri, S.S. and Ahmadi, G. (2014) Sphere drag revisited using shuffled 748

complex evolution algorithm. 749

Beven, K.J. (2011) Rainfall-runoff modelling: the primer, John Wiley & Sons. 750

Blum, C. and Roli, A. (2003) Metaheuristics in combinatorial optimization: Overview and 751

conceptual comparison. ACM Comput. Surv. 35(3), 268-308. 752

Boussaïd, I., Lepagnot, J. and Siarry, P. (2013) A survey on optimization metaheuristics. 753

Information sciences 237(Supplement C), 82-117. 754

Boyle, D.P., Gupta, H.V., and Sorooshian, S. (2000) Toward improved calibration of 755

hydrologic models: Combining the strengths of manual and automatic methods. Water Resources 756

Research 36(12), 3663-3674. 757

Chu, W., Gao, X. and Sorooshian, S. (2010) Improving the shuffled complex evolution 758

scheme for optimization of complex nonlinear hydrological systems: Application to the 759

calibration of the Sacramento soil-moisture accounting model. Water Resources Research 46(9), 760

n/a-n/a. 761

Chu, W., Gao, X. and Sorooshian, S. (2011) A new evolutionary search strategy for global 762

optimization of high-dimensional problems. Information sciences 181(22), 4909-4927. 763

Coello, C.A.C., Lamont, G.B. and Van Veldhuizen, D.A. (2007) Evolutionary algorithms for 764

solving multi-objective problems, Springer. 765

Črepinšek, M., Liu, S.-H. and Mernik, M. (2013) Exploration and exploitation in 766

evolutionary algorithms: A survey. ACM Computing Surveys (CSUR) 45(3), 35. 767

Ding, Y., Wang, C., Chaos, M., Chen, R. and Lu, S. (2016) Estimation of beech pyrolysis 768

kinetic parameters by Shuffled Complex Evolution. Bioresource Technology 200, 658-665. 769

Dorigo, M., Maniezzo, V. and Colorni, A. (1996) Ant system: optimization by a colony of 770

cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 771

26(1), 29-41. 772

Duan, Q., Sorooshian, S. and Gupta, V. (1992) Effective and efficient global optimization for 773

conceptual rainfall-runoff models. Water Resources Research 28(4), 1015-1031. 774

Duan, Q.Y., Gupta, V.K. and Sorooshian, S. (1993) Shuffled complex evolution approach for 775

effective and efficient global minimization. Journal of Optimization Theory and Applications 776

76(3), 501-521. 777

Duan Q., Sorooshian S., Gupta V.K. Optimal use of the SCE-UA global optimization method 778

for calibrating watershed models. Journal of hydrology. 1994 Jun 15;158(3-4):265-84. 779

Eckhardt, K. and Arnold, J.G. (2001) Automatic calibration of a distributed catchment 780

model. Journal of Hydrology 251(1–2), 103-109. 781

Erol, O.K. and Eksin, I. (2006) A new optimization method: big bang–big crunch. Advances 782

in Engineering Software 37(2), 106-111. 783

Eusuff, M., Lansey, K. and Pasha, F. (2006) Shuffled frog-leaping algorithm: a memetic 784

meta-heuristic for discrete optimization. Engineering Optimization 38(2), 129-154. 785

Eusuff, M.M. and Lansey, K.E. (2003) Optimization of water distribution network design 786

using the shuffled frog leaping algorithm. Journal of Water Resources Planning and Management 787

129(3), 210-225. 788

Feng, M., Liu, P., Guo, S., Shi, L., Deng, C. and Ming, B. (2017) Deriving adaptive 789

operating rules of hydropower reservoirs using time-varying parameters generated by the EnKF. 790

Water Resources Research 53(8), 6885-6907. 791

Field, R. and Lund, J.R. (2006) Operating Reservoirs in Changing Conditions, pp. 205-214. 792

Freer, J., Beven, K. and Ambroise, B. (1996) Bayesian Estimation of Uncertainty in Runoff 793

Prediction and the Value of Data: An Application of the GLUE Approach. Water Resources 794

Research 32(7), 2161-2173. 795

Gan, T.Y. and Biftu, G.F. (1996) Automatic Calibration of Conceptual Rainfall-Runoff 796

Models: Optimization Algorithms, Catchment Conditions, and Model Structure. Water 797

Resources Research 32(12), 3513-3524. 798

Golberg, D.E. (1989) Genetic algorithms in search, optimization, and machine learning. 799

Addion wesley 1989, 102. 800

Hadka, D., Madduri, K. and Reed, P. (2013) Scalability analysis of the asynchronous, 801

master-slave Borg multiobjective evolutionary algorithm, pp. 425-434, IEEE. 802

Hadka, D. and Reed, P. (2013) Borg: An Auto-Adaptive Many-Objective Evolutionary 803

Computing Framework. Evolutionary Computation 21(2), 231-259. 804

Hasalová, L., Ira, J. and Jahoda, M. (2016) Practical observations on the use of Shuffled 805

Complex Evolution (SCE) algorithm for kinetic parameters estimation in pyrolysis modeling. 806

Fire Safety Journal 80, 71-82. 807

Holland, J.H. (1975) Adaptation in Natural and Artificial Systems, Univ. of Mich. Press. Ann 808

Arbor. 809

Holland, J.H. (1992) Adaptation in natural and artificial systems. 1975. Ann Arbor, MI: 810

University of Michigan Press and. 811

K. Ajami, N., Gupta, H., Wagener, T. and Sorooshian, S. (2004) Calibration of a semi-812

distributed hydrologic model for streamflow estimation along a river system. Journal of 813

Hydrology 298(1), 112-135. 814

Kan, A.R. and Timmer, G.T. (1987) Stochastic global optimization methods part I: 815

Clustering methods. Mathematical programming 39(1), 27-56. 816

Kaveh, A. and Farhoudi, N. (2013) A new optimization method: Dolphin echolocation. 817

Advances in Engineering Software 59, 53-70. 818

Kaveh, A. and Talatahari, S. (2010) A novel heuristic optimization method: charged system 819

search. Acta Mechanica 213(3), 267-289. 820

Kennedy, J. (2010) Encyclopedia of Machine Learning. Sammut, C. and Webb, G.I. (eds), 821

pp. 760-766, Springer US, Boston, MA. 822

Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983) Optimization by simmulated annealing. 823

science 220(4598), 671-680. 824

Lee, K.S. and Geem, Z.W. (2005) A new meta-heuristic algorithm for continuous 825

engineering optimization: harmony search theory and practice. Computer Methods in Applied 826

Mechanics and Engineering 194(36), 3902-3933. 827

Liang, J.J., Suganthan, P.N. and Deb, K. (2005) Novel composition test functions for 828

numerical global optimization, pp. 68-75. 829

Lin, J.-Y., Cheng, C.-T. and Chau, K.-W. (2006) Using support vector machines for long-830

term discharge prediction. Hydrological Sciences Journal 51(4), 599-612. 831

Liong, S.-Y. and Atiquzzaman, M. (2004) Optimal design of water distribution network 832

using shuffled complex evolution. Journal of The Institution of Engineers, Singapore 44(1), 93-833

107. 834

Madsen, H. (2000) Automatic calibration of a conceptual rainfall–runoff model using 835

multiple objectives. Journal of Hydrology 235(3), 276-288. 836

Madsen, H. (2003) Parameter estimation in distributed hydrological catchment modelling 837

using automatic calibration with multiple objectives. Advances in Water Resources 26(2), 205-838

216. 839

Maier, H.R., Kapelan, Z., Kasprzyk, J., Kollat, J., Matott, L.S., Cunha, M.C., Dandy, G.C., 840

Gibbs, M.S., Keedwell, E., Marchi, A., Ostfeld, A., Savic, D., Solomatine, D.P., Vrugt, J.A., 841

Zecchin, A.C., Minsker, B.S., Barbour, E.J., Kuczera, G., Pasha, F., Castelletti, A., Giuliani, M. 842

and Reed, P.M. (2014) Evolutionary algorithms and other metaheuristics in water resources: 843

Current status, research challenges and future directions. Environmental Modelling & Software 844

62(Supplement C), 271-299. 845

Mariani, V.C., Justi Luvizotto, L.G., Guerra, F.A. and dos Santos Coelho, L. (2011) A hybrid 846

shuffled complex evolution approach based on differential evolution for unconstrained 847

optimization. Applied Mathematics and Computation 217(12), 5822-5829. 848

Mirjalili, S. and Hashim, S.Z.M. (2010) A new hybrid PSOGSA algorithm for function 849

optimization, pp. 374-377. 850

Mirjalili, S., Mirjalili, S.M. and Lewis, A. (2014) Grey Wolf Optimizer. Advances in 851

Engineering Software 69, 46-61. 852

Mirjalili, S., Saremi, S., Mirjalili, S.M. and Coelho, L.d.S. (2016) Multi-objective grey wolf 853

optimizer: A novel algorithm for multi-criterion optimization. Expert Systems with Applications 854

47(Supplement C), 106-119. 855

Moeini, R. and Afshar, M. (2009) Application of an ant colony optimization algorithm for 856

optimal operation of reservoirs: a comparative study of three proposed formulations. Sci Iran 857

Trans A Civ Eng 16(4), 273-285. 858

Nelder, J.A. and Mead, R. (1965) A simplex method for function minimization. The 859

computer journal 7(4), 308-313. 860

Nicklow, J., Reed, P., Savic, D., Dessalegne, T., Harrell, L., Chan-Hilton, A., Karamouz, M., 861

Minsker, B., Ostfeld, A., Singh, A. and Zechman, E. (2010) State of the Art for Genetic 862

Algorithms and Beyond in Water Resources Planning and Management. Journal of Water 863

Resources Planning and Management 136(4), 412-432. 864

Olorunda, O. and Engelbrecht, A.P. (2008) Measuring exploration/exploitation in particle 865

swarms using swarm diversity, pp. 1128-1134. 866

Omran, M.G.H., Salman, A. and Engelbrecht, A.P. (2005) Computational Intelligence and 867

Security: International Conference, CIS 2005, Xi’an, China, December 15-19, 2005, Proceedings 868

Part I. Hao, Y., Liu, J., Wang, Y., Cheung, Y.-m., Yin, H., Jiao, L., Ma, J. and Jiao, Y.-C. (eds), 869

pp. 192-199, Springer Berlin Heidelberg, Berlin, Heidelberg. 870

Passino, K.M. (2002) Biomimicry of bacterial foraging for distributed optimization and 871

control. IEEE Control Systems 22(3), 52-67. 872

Price, W. (1987) Global optimization algorithms for a CAD workstation. Journal of 873

Optimization Theory and Applications 55(1), 133-146. 874

Qin, A.K. and Suganthan, P.N. (2005) Self-adaptive differential evolution algorithm for 875

numerical optimization, pp. 1785-1791 Vol. 1782. 876

Rashedi, E., Nezamabadi-Pour, H. and Saryazdi, S. (2009) GSA: a gravitational search 877

algorithm. Information sciences 179(13), 2232-2248. 878

Reed, P.M., Hadka, D., Herman, J.D., Kasprzyk, J.R. and Kollat, J.B. (2013) Evolutionary 879

multiobjective optimization in water resources: The past, present, and future. Advances in Water 880

Resources 51(Supplement C), 438-456. 881

Sadegh M, Vrugt JA. (2014) Approximate bayesian computation using markov chain monte 882

carlo simulation: Dream (abc). Water Resources Research. 50(8), 6767-6787. 883

Sadegh M., Ragno E., AghaKouchak A. Multivariate Copula Analysis Toolbox (MvCAT): 884

Describing dependence and underlying uncertainty using a Bayesian framework. Water 885

Resources Research. 2017 Jun 1. 886

Sorooshian, S., Duan, Q. and Gupta, V.K. (1993) Calibration of rainfall-runoff models: 887

Application of global optimization to the Sacramento Soil Moisture Accounting Model. Water 888

Resources Research 29(4), 1185-1194. 889

Storn, R. and Price, K. (1997) Differential Evolution – A Simple and Efficient Heuristic for 890

global Optimization over Continuous Spaces. Journal of Global Optimization 11(4), 341-359. 891

Toth, E., Brath, A. and Montanari, A. (2000) Comparison of short-term rainfall prediction 892

models for real-time flood forecasting. Journal of Hydrology 239(1), 132-147. 893

Vrugt, J.A., Gupta, H.V., Bastidas, L.A., Bouten, W. and Sorooshian, S. (2003a) Effective 894

and efficient algorithm for multiobjective optimization of hydrologic models. Water Resources 895

Research 39(8), n/a-n/a. 896

Vrugt, J.A., Gupta, H.V., Bouten, W. and Sorooshian, S. (2003b) A Shuffled Complex 897

Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model 898

parameters. Water Resources Research 39(8), n/a-n/a. 899

Vrugt, J.A. and Robinson, B.A. (2007) Improved evolutionary optimization from genetically 900

adaptive multimethod search. Proceedings of the National Academy of Sciences 104(3), 708-901

711. 902

Vrugt, J.A., Robinson, B.A. and Hyman, J.M. (2009) Self-Adaptive Multimethod Search for 903

Global Optimization in Real-Parameter Spaces. IEEE Transactions on Evolutionary Computation 904

13(2), 243-259. 905

Wagener, T., Wheater, H. and Gupta, H.V. (2004) Rainfall-runoff modelling in gauged and 906

ungauged catchments, World Scientific. 907

Wang, Y.-C., Yu, P.-S. and Yang, T.-C. (2010) Comparison of genetic algorithms and 908

shuffled complex evolution approach for calibrating distributed rainfall–runoff model. 909

Hydrological processes 24(8), 1015-1026. 910

Wolpert, D.H. and Macready, W.G. (1997) No free lunch theorems for optimization. IEEE 911

Transactions on Evolutionary Computation 1(1), 67-82. 912

Woodruff, M.J., Reed, P.M. and Simpson, T.W. (2013) Many objective visual analytics: 913

rethinking the design of complex engineered systems. Structural and Multidisciplinary 914

Optimization 48(1), 201-219. 915

Xin, Y., Yong, L. and Guangming, L. (1999) Evolutionary programming made faster. IEEE 916

Transactions on Evolutionary Computation 3(2), 82-102. 917

Yang, T., Asanjan, A.A., Faridzad, M., Hayatbini, N., Gao, X. and Sorooshian, S. (2017) An 918

enhanced artificial neural network with a shuffled complex evolutionary global optimization 919

with principal component analysis. Information sciences 418, 302-316. 920

Yang, T., Gao, X., Sellars, S.L. and Sorooshian, S. (2015) Improving the multi-objective 921

evolutionary optimization algorithm for hydropower reservoir operations in the California 922

Oroville–Thermalito complex. Environmental Modelling & Software 69, 262-279. 923

Yang, X.-S. (2009) Stochastic Algorithms: Foundations and Applications: 5th International 924

Symposium, SAGA 2009, Sapporo, Japan, October 26-28, 2009. Proceedings. Watanabe, O. and 925

Zeugmann, T. (eds), pp. 169-178, Springer Berlin Heidelberg, Berlin, Heidelberg. 926

Yang, X.-S. (2010) Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). 927

González, J.R., Pelta, D.A., Cruz, C., Terrazas, G. and Krasnogor, N. (eds), pp. 65-74, Springer 928

Berlin Heidelberg, Berlin, Heidelberg. 929

Yapo, P.O., Gupta, H.V. and Sorooshian, S. (1996) Automatic calibration of conceptual 930

rainfall-runoff models: sensitivity to calibration data. Journal of Hydrology 181(1), 23-48. 931

Yapo, P.O., Gupta, H.V. and Sorooshian, S. (1998) Multi-objective global optimization for 932

hydrologic models. Journal of Hydrology 204(1-4), 83-97. 933

Appendix A. Modified Competitive Complex Evolution (MCCE) 934

MCCE algorithm pseudo code is as follow: 935

Step 0. Initialize i = 1, and get maximum number of iteration allowed, I. 936

Step 1. Sort individuals in order of increasing objective function value. Assign individuals a 937

triangular probability (except for the fittest point) according to: 938

𝑝𝑝 = 2(NPT+1−𝑛𝑛)
NPT(NPT+1)

, (A1) 939

where NPT is the number of individuals in the complex and 𝑛𝑛 is the rank of the sorted 940

individuals. 941

Step 2. Select d+1 individuals (d is problem dimension) from the complex including the fittest 942

individual in the complex. 943

Step 3. The selected individuals are then stored in S, forming a simplex. Generate offspring 944

according to following steps. 945

I. Sort individuals in S according to their objective function value. Find centroid, 𝑐𝑐, of the 946

first q individuals. 947

II. Reflection: Reflect the worst individual in S, 𝑤𝑤��⃑ , across the centroid to generate a new 948

point, 𝑟𝑟, according to following equation: 949

𝑟𝑟 = 2𝑐𝑐 − 𝑤𝑤��⃑ . (A2) 950

Evaluate objective function for the new point, 𝑓𝑓𝑟𝑟. If 𝑓𝑓1 < 𝑓𝑓𝑟𝑟 < 𝑓𝑓𝑑𝑑 set offspring, 𝑜⃑𝑜 = 𝑟𝑟, 951

and go to (VII). 952

III. Expansion: If 𝑓𝑓𝑟𝑟 < 𝑓𝑓1, reflect 𝑐𝑐 across 𝑟𝑟 and generate 𝑒𝑒, 953

𝑒𝑒 = 2𝑟𝑟 − 𝑐𝑐. (A3) 954

Evaluate objective function for the new point, 𝑓𝑓𝑒𝑒. If 𝑓𝑓𝑒𝑒 < 𝑓𝑓𝑟𝑟, set 𝑜⃑𝑜 = 𝑒𝑒 and go to (VII); 955

otherwise, 𝑜⃑𝑜 = 𝑟𝑟 and go to (VII). 956

IV. Outside contraction: If 𝑓𝑓𝑑𝑑 ≤ 𝑓𝑓𝑟𝑟 < 𝑓𝑓𝑤𝑤, calculate the outside contraction point, 957

𝑜𝑜𝑜𝑜����⃑ = 𝑐𝑐 + 0.5(𝑟𝑟 − 𝑐𝑐). (A4) 958

Evaluate the outside contraction point, 𝑓𝑓𝑜𝑜𝑜𝑜. If 𝑓𝑓𝑜𝑜𝑜𝑜 < 𝑓𝑓𝑟𝑟 set 𝑜⃑𝑜 = 𝑜𝑜𝑜𝑜����⃑ and go to (VII); 959

otherwise, 𝑜⃑𝑜 = 𝑟𝑟 and go to (VII). 960

V. Inside contraction: If 𝑓𝑓𝑤𝑤 < 𝑓𝑓𝑟𝑟 calculate inside contraction point, 961

𝚤𝚤𝚤𝚤���⃑ = 𝑐𝑐 + 0.5(𝑤𝑤��⃑ − 𝑐𝑐). (A5) 962

Evaluate inside contraction point, 𝑓𝑓𝑖𝑖𝑖𝑖. If 𝑓𝑓𝑖𝑖𝑖𝑖 < 𝑓𝑓𝑟𝑟 set 𝑜⃑𝑜 = 𝚤𝚤𝚤𝚤���⃑ and go to (VII); otherwise 963

continue to (VI). 964

VI. Multinormal sampling: If the steps above, did not generate a better offspring, an 965

individual will be drawn with a multinormal distribution defined by simplex and replace 966

the worst individual in the simplex, regardless of objective function value. The 967

multinormal sampling is as follow, 968

a. Calculate the covariance matrix, R, for the simplex and store diagonal of matrix in 969

𝐷𝐷��⃑ . 970

b. Modify 𝐷𝐷��⃑ as follow 971

𝐷𝐷𝑚𝑚������⃑ = 2(𝐷𝐷��⃑ + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐷𝐷��⃑)). (A6) 972

c. Generate a new covariance matrix 𝑅𝑅′, with 𝐷𝐷𝑚𝑚������⃑ as diagonal and zeroes everywhere 973

else. 974

d. Sample a point with multinormal distribution with mean of 𝑐𝑐 and covariance of 𝑅𝑅′ 975

and store in 𝑜⃑𝑜. 976

VII. Replace the worst individual in the complex with 𝑜⃑𝑜. Let 𝑖𝑖 = 𝑖𝑖 + 1. If 𝑖𝑖 ≤ 𝐼𝐼, go to (Step 977

1); otherwise sort the complex and return the evolved complex. 978

Appendix B. Modified Frog Leaping (MFL) 979

Modified FL (MFL) algorithm is as follow, 980

Step 0. Initialize i = 1, and get maximum number of iteration allowed , I. 981

Step 1. Sort individuals in order of increasing objective function. Assign individuals a triangular 982

probability using following equation: 983

𝑝𝑝 = 2(NPT+1−𝑛𝑛)
NPT(NPT+1)

, (B1) 984

where NPT is the number of individuals in the complex and 𝑛𝑛 is the rank of the sorted 985

individuals. 986

Step 2. Select d+1 individuals (d is problem dimension) from the complex. 987

Step 3. The selected individuals are stored in S, forming a subcomplex. Generate offspring 988

according to following steps. 989

I. Generate a new point with the worst point in S, 𝑤𝑤��⃑ and best point 𝑏𝑏�⃑ in the subcomplex, as 990

follow, 991

𝑛𝑛𝑏𝑏����⃑ = 𝑤𝑤��⃑ + (0.5 × 𝑅𝑅 + 1.5)(𝑏𝑏�⃑ − 𝑤𝑤��⃑), (B2) 992

where 𝑅𝑅 is a random number in the range of [0,1]. Evaluate objective function for the 993

new point and get 𝑓𝑓𝑏𝑏. If 𝑓𝑓𝑏𝑏 < 𝑓𝑓𝑤𝑤; set 𝑜⃑𝑜 = 𝑛𝑛𝑏𝑏����⃑ and go to (IV). 994

II. If 𝑓𝑓𝑤𝑤 < 𝑓𝑓𝑏𝑏, generate a new point with the worst point in S,𝑤𝑤��⃑ and best point 𝑏𝑏�⃑ in the 995

subcomplex, as follow, 996

 𝑛𝑛𝐵𝐵����⃑ = 𝑤𝑤��⃑ + 0.5 × 𝑅𝑅(𝑏𝑏�⃑ − 𝑤𝑤��⃑), (B3) 997

Evaluate objective function for the new point and get 𝑓𝑓𝐵𝐵. If 𝑓𝑓𝐵𝐵 < 𝑓𝑓𝑤𝑤 set the offspring set 998

𝑜⃑𝑜 = 𝑛𝑛𝐵𝐵����⃑ and go to (IV). 999

III. Censorship step: If 𝑓𝑓𝑤𝑤 < 𝑓𝑓𝐵𝐵, randomly generate the offspring, 𝑜⃑𝑜 by sampling within 1000

the range of individuals in the subcomplex. 1001

IV. Replace the worst individual in the complex with the offspring, 𝑜⃑𝑜. Let 𝑖𝑖 = 𝑖𝑖 + 1. If 𝑖𝑖 ≤ 𝐼𝐼, 1002

go to (Step 1); otherwise sort the complex and return the evolved complex. 1003

Appendix C. Modified Grey Wolf Optimizer (GWO) 1004

Modified Grey Wolf Optimizer is as follow: 1005

Step 0. Initialize i = 1, and get maximum number of iteration allowed, I. 1006

Step 1. Sort the individuals in the order of increasing objective function value. Assign individuals 1007

a triangular probability (except for the fittest point) using following equation: 1008

𝑝𝑝 = 2(NPT+1−𝑛𝑛)
NPT(NPT+1)

, (C1) 1009

where NPT is the number of individuals in the complex and 𝑛𝑛 is the rank of the sorted 1010

individuals. 1011

Step 2. Select d+1 individuals (d is problem dimension) from the complex, with triangular 1012

probability, including the fittest point in the complex and store them in S. 1013

Step 3. Select the best three points in the S and store them in 𝛼⃑𝛼, 𝛽𝛽 and 𝛾⃑𝛾, respectively. The worst 1014

point in the S, is stored in 𝑤𝑤��⃑ 1015

Step 4. For each of 𝛼⃑𝛼, 𝛽𝛽 and 𝛾⃑𝛾 , evolve individuals according to the following procedure, 1016

I. Derive 𝐴𝐴 and 𝐶𝐶 as follow for 𝛼⃑𝛼, 𝛽𝛽 and 𝛾⃑𝛾, 1017

𝐴𝐴 = 4 × 𝑟𝑟1 − 2, (C2) 1018

𝐶𝐶 = 2 × 𝑟𝑟2. (C3) 1019

where 𝑟𝑟1���⃑ , 𝑟𝑟2���⃑ are two independent random vectors, which have d dimensions and values in 1020

range of [0,1). 1021

II. Derive 𝐷𝐷��⃑ , for 𝛼⃑𝛼, 𝛽𝛽 and 𝛾⃑𝛾 as follow, 1022

𝐷𝐷𝛼𝛼�����⃑ = �𝐶𝐶𝛼𝛼����⃑ × 𝑋𝑋𝛼𝛼����⃑ − 𝑤𝑤��⃑ � , 𝐷𝐷𝛽𝛽����⃑ = �𝐶𝐶𝛽𝛽����⃑ × 𝑋𝑋𝛽𝛽����⃑ − 𝑤𝑤��⃑ � , 𝐷𝐷𝛾𝛾����⃑ = �𝐶𝐶𝛾𝛾����⃑ × 𝑋𝑋𝛾𝛾����⃑ − 𝑤𝑤��⃑ �. (C4) 1023

III. Derive 𝑍⃑𝑍, for 𝛼⃑𝛼, 𝛽𝛽 and 𝛾⃑𝛾 as follow, 1024

 𝑍𝑍𝛼𝛼����⃑ = 𝑋𝑋𝛼𝛼����⃑ − 𝐴𝐴𝛼𝛼�����⃑ . (𝐷𝐷𝛼𝛼�����⃑) , 𝑍𝑍𝛽𝛽����⃑ = 𝑋𝑋𝛽𝛽����⃑ − 𝐴𝐴𝛽𝛽����⃑ . (𝐷𝐷𝛽𝛽����⃑) , 𝑍𝑍𝛾𝛾����⃑ = 𝑋𝑋𝛾𝛾����⃑ − 𝐴𝐴𝛾𝛾����⃑ . (𝐷𝐷𝛾𝛾����⃑) . (C5) 1025

IV. Generate new point by finding the centroid of 𝑍𝑍𝛼𝛼����⃑ , 𝑍𝑍𝛽𝛽����⃑ and 𝑍𝑍𝛾𝛾����⃑ , 1026

𝐶𝐶 = 𝑍𝑍𝛼𝛼
�����⃑ +𝑍𝑍𝛽𝛽�����⃑ +𝑍𝑍𝛾𝛾����⃑

3
. (C6) 1027

V. Calculate and store objective function value for the new point, 𝑓𝑓𝐶𝐶 . If the new point is 1028

better than the worst point among the selected points, 𝑓𝑓𝐶𝐶 < 𝑓𝑓𝑤𝑤, set 𝑜⃑𝑜 = 𝐶𝐶, go to step 7. 1029

Step 5. If 𝑓𝑓𝐶𝐶 > 𝑓𝑓𝑤𝑤, go to step 4, and use a smaller range for 𝐴𝐴. In this step, 𝐴𝐴 is calculated as 1030

follow: 1031

𝐴𝐴 = 2 × 𝑟𝑟1 − 1, (C7) 1032

Step 6. If the newly generated individual is worse than the worst individuals in subcomplex, 1033

generate a new point with uniform random sampling within the range of individuals in the 1034

complex. Store the new point in 𝑜⃑𝑜. 1035

Step 7. Replace the worst individual among selected points in the complex with the offspring, 𝑜⃑𝑜. 1036

Let 𝑖𝑖 = 𝑖𝑖 + 1. If 𝑖𝑖 ≤ 𝐼𝐼, go to (Step 1); otherwise sort the complex and return the evolved 1037

complex. 1038

Appendix D. Modified Differential Evolution (DE) 1039

Modified differential evolution algorithm is as follow: 1040

Step 0. Initialize i = 1, and get maximum number of iteration allowed, I. 1041

Step 1. Sort the individuals in the order of increasing objective function value. Assign individuals 1042

a triangular probability, using following equation: 1043

𝑝𝑝 = 2(NPT+1−𝑛𝑛)
NPT(NPT+1)

, (D1) 1044

where NPT is the number of individuals in the complex and 𝑛𝑛 is the rank of the sorted 1045

individuals. 1046

Step 2. Select d+1 points (d is problem dimension) from the complex with the assigned 1047

probability and store them along with the fittest point in the complex in S. 1048

Step 3. The selected individuals are sorted and stored in S, forming a subcomplex. Generate 1049

offspring according to following steps. 1050

I. Generate a new point with the worst point in S, 𝑤𝑤��⃑ and using the top three individuals in 1051

the subcomplex, 1052

𝑉𝑉1���⃑ = 𝑤𝑤��⃑ + 2𝑓𝑓(𝑠𝑠1���⃑ − 𝑤𝑤��⃑) + 2𝑓𝑓(𝑠𝑠2���⃑ − 𝑠𝑠3���⃑), (D2) 1053

where 𝑤𝑤��⃑ is the worst point in the S, 𝑠𝑠1���⃑ , 𝑠𝑠2���⃑ , and 𝑠𝑠3���⃑ are three selected individuals. Then 1054

mutation, and crossover operator is applied to the 𝑤𝑤��⃑ and 𝑉𝑉1���⃑ to generate 𝑉𝑉𝑛𝑛1������⃑ . The objective 1055

function value for the new point is calculated and stored in 𝑓𝑓𝑛𝑛1. If 𝑓𝑓𝑛𝑛1 < 𝑓𝑓𝑤𝑤; set 𝑜⃑𝑜 = 𝑉𝑉𝑛𝑛1������⃑ 1056

and go to (V). 1057

II. If 𝑓𝑓𝑤𝑤 < 𝑓𝑓𝑛𝑛1, generate a new point with the worst point in S, 𝑤𝑤��⃑ and using the top three 1058

points in the subcomplex as follow, 1059

𝑉𝑉2���⃑ = 𝑤𝑤��⃑ + 0.5𝑓𝑓(𝑠𝑠1���⃑ − 𝑤𝑤��⃑) + 0.5𝑓𝑓(𝑠𝑠2���⃑ − 𝑠𝑠3���⃑), (D3) 1060

After mutation, crossover operator is applied to the 𝑤𝑤��⃑ and 𝑉𝑉2���⃑ to generate 𝑉𝑉𝑛𝑛2������⃑ . Then, the 1061

objective function for the new point is derived and stored in 𝑓𝑓𝑛𝑛2. If 𝑓𝑓𝑛𝑛2 < 𝑓𝑓𝑤𝑤; set 𝑜⃑𝑜 = 𝑉𝑉𝑛𝑛2������⃑ 1062

and go to (V). 1063

III. If 𝑓𝑓𝑤𝑤 < 𝑓𝑓𝑛𝑛2, generate a new point with the worst point in S, 𝑤𝑤��⃑ and using the top three 1064

points in the subcomplex as follow, 1065

𝑉𝑉3���⃑ = 𝑤𝑤��⃑ + 𝑓𝑓(𝑠𝑠1���⃑ − 𝑤𝑤��⃑) + 𝑓𝑓(𝑠𝑠2���⃑ − 𝑠𝑠3���⃑), (D4) 1066

After mutation, crossover operator is applied to the 𝑤𝑤��⃑ and 𝑉𝑉3���⃑ to generate 𝑉𝑉𝑛𝑛3������⃑ . The 1067

objective function value is calculated and stored in 𝑓𝑓𝑛𝑛3. If 𝑓𝑓𝑛𝑛3 < 𝑓𝑓𝑤𝑤; set 𝑜⃑𝑜 = 𝑉𝑉𝑛𝑛3������⃑ and go to 1068

(V). 1069

IV. If the newly generated point is worse than the worst point in subcomplex, generate a new 1070

point from uniform random distribution within the range of points in the complex. Store 1071

the new point in 𝑜⃑𝑜. 1072

V. Replace the worst point in the complex with the offspring, 𝑜⃑𝑜. Let 𝑖𝑖 = 𝑖𝑖 + 1. If 𝑖𝑖 ≤ 𝐼𝐼, go to 1073

(Step 1); otherwise sort the complex and return the evolved complex. 1074

Abbreviation 1075

AMALGAM-SO: A Multialgorithm Genetically Adaptive Method for Single Objective 1076

Optimization 1077

CCE: Competitive Complex Evolution 1078

DE: Differential Evolution 1079

EA: Evolutionary Algorithm 1080

EMP: Evolutionary Methods Performance 1081

FL: Frog Leaping 1082

GWO: Grey Wolf Optimizer 1083

LHS: Latin Hypercube Sampling 1084

MCCE: Modified Competitive Complex Evolution 1085

MFL: Modified Frog Leaping 1086

MGWO: Modified Grey Wolf Optimizer 1087

MOCOM-UA: Multi-Objective Complex evolution, University of Arizona 1088

MOSCEM: Multi-Objective Shuffled Complex Evolution Metropolis 1089

NFL: No Free Lunch 1090

PCA: Principal Component Analysis 1091

PSO: Particle Swarm Optimization 1092

SaDE: Self-adaptive DE algorithm 1093

SCE-UA: Shuffle Complex Evolution-developed at University of Arizona 1094

SCEM-UA: Shuffled Complex Evolution Metropolis algorithm-developed at University of 1095

Arizona 1096

SC-SAHEL: Shuffle Complex-Self Adaptive Hybrid EvoLution 1097

SP-UCI: Shuffled Complex strategy with Principal component analysis-developed at University 1098

of California, Irvine 1099

URS: Uniform Random Sampling 1100

	Boise State University
	ScholarWorks
	6-1-2018

	Shuffled Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL) Optimization Framework
	Mojtaba Sadegh
	Publication Information

	1 Introduction
	2 Methodology
	2.1 The SC-SAHEL framework
	2.2 Evolutionary algorithms used in the SC-SAHEL
	2.2.1 Modified Competitive Complex Evolution (MCCE)
	2.2.2 Modified Frog Leaping (MFL)
	2.2.3 Modified Grey Wolf Optimizer (MGWO)
	2.2.4 Differential Evolution (DE)
	3 Conceptual test functions and results
	3.1 Test functions
	3.2 Results and Discussion
	4 Example applications and results
	4.1 Reservoir Model
	4.2 Study basin
	4.3 Results and Discussion
	5 Conclusions and remarks
	Acknowledgments and data
	This work is supported by U.S. Department of Energy (DOE Prime Award # DE-IA0000018), California Energy Commission (CEC Award # 300-15-005), NSF CyberSEES Project (Award CCF-1331915), NOAA/NESDIS/NCDC (Prime award NA09NES4400006 and NCSU CICS and suba...
	References
	Appendix A. Modified Competitive Complex Evolution (MCCE)
	Appendix B. Modified Frog Leaping (MFL)
	Appendix C. Modified Grey Wolf Optimizer (GWO)
	Appendix D. Modified Differential Evolution (DE)
	Abbreviation

