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Abstract 21 

Simplicity and flexibility of Meta-Heuristic optimization algorithms have attracted lots of 22 

attention in the field of optimization. Different optimization methods, however, hold algorithm-23 

specific strengths and limitations, and selecting best-performing algorithm for a specific problem 24 

is a tedious task. We introduce a new hybrid optimization framework, entitled Shuffled Complex-25 

Self Adaptive Hybrid EvoLution (SC-SAHEL), which combines strengths of different 26 

Evolutionary Algorithms (EAs) in a parallel computing scheme. SC-SAHEL explores 27 

performance of different EAs, i.e., capability to escape local attractions, speed, convergence, etc., 28 

during population evolution as each individual EA suits differently to various response surfaces. 29 

The SC-SAHEL algorithm is benchmarked over 29 conceptual test functions, and a real-world 30 

case - hydropower reservoir model. Results show that the SC-SAHEL algorithm is rigorous and 31 

effective in finding global optimum for a majority of test cases, and computationally efficient 32 

comparing to individual EAs. 33 
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1 Introduction 46 

Meta-Heuristic optimization algorithms have gained a great deal of attention in science and 47 

engineering (Blum and Roli 2003, Boussaïd et al. 2013, Lee and Geem 2005, Maier et al. 2014, 48 

Nicklow et al. 2010, Reed et al. 2013). Simplicity and flexibility of these algorithms, along with 49 

their robustness make them attractive tools for solving optimization problems (Coello et al. 2007, 50 

Lee and Geem 2005). Many of the meta-heuristic algorithms are inspired by a physical 51 

phenomenon, such as animals social and foraging behavior and natural selection. For example, 52 

Simulated Annealing (Kirkpatrick et al. 1983), Big Bang-Big Crunch (Erol and Eksin 2006), 53 

Gravitational Search Algorithm (Rashedi et al. 2009), Charged System Search (Kaveh and 54 

Talatahari 2010) are inspired by various physical phenomena. Ant Colony Optimization (Dorigo 55 

et al. 1996), Particle Swarm Optimization (Kennedy 2010), Bat-inspired Algorithm (Yang 2010), 56 

Firefly Algorithm (Yang 2009), Dolphin Echolocation (Kaveh and Farhoudi 2013), Grey Wolf 57 

Optimizer (Mirjalili et al. 2014), Bacterial Foraging (Passino 2002), Genetic Algorithm (Golberg 58 

1989, Holland 1992), and Differential Evolution (Storn and Price 1997) are examples of algorithms 59 

inspired by animal’s social and foraging behavior, and the natural selection mechanism of 60 

Darwin’s Evolution Theorem. According to the No-Free-Lunch (NFL) (Wolpert and Macready 61 

1997) theorem, none of these algorithms are consistently superior to others over a variety of 62 

problems, although some of them may outperform on a certain type of optimization problem. 63 

The NFL theorem has been a source of motivation for developing hybrid optimization 64 

algorithms (Mirjalili et al. 2014, Woodruff et al. 2013). It has encouraged scientists and researchers 65 

to combine the strengths of different algorithms and devise more robust and efficient optimization 66 

algorithms that suit a broad class of problems (Qin and Suganthan 2005, Vrugt and Robinson 2007, 67 

Vrugt et al. 2009, Hadka and Reed 2013, Sadegh et al. 2017). These efforts led to emergence of 68 

multi-method and self-adaptive optimization algorithms such as Self-adaptive DE algorithm 69 

 



(SaDE) (Qin and Suganthan 2005), A Multialgorithm Genetically Adaptive Method for Single 70 

Objective Optimization (AMALGAM-SO) (Vrugt and Robinson 2007, Vrugt et al. 2009) and Borg 71 

(Hadka and Reed 2013). They all reguarly update the search mechanism during the course of 72 

optimization according to the information obtained from the response surface.  73 

 Here, we propose a new self-adaptive hybrid optimization framework, entitled Shuffled 74 

Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL). The SC-SAHEL framework employs 75 

multiple Evolutionary Algorithms (EAs) as search cores, and enables competition among different 76 

algorithms as optimization run progresses. The proposed framework differs from other multi-77 

method algorithms as it grants independent evolution of population by each EA. In this framework, 78 

population is partitioned into equally sized groups, so-called complexes; each assigned to different 79 

EAs. Number of complexes assigned to each EA is regularly updated according to their 80 

performance. In general, the newly developed framework has two main characteristics. First, all 81 

the EAs evolve population in a parallel structure. Second, each participating EA works 82 

independent of other EAs. The architecture of SC-SAHEL is inspired by the concept of the 83 

Shuffled Complex Evolution algorithm - University of Arizona (SCE-UA) (Duan et al. 1992). The 84 

SCE-UA algorithm is a population-evolution based algorithm (Madsen 2003), which evolves 85 

individuals by partitioning population into different complexes. The complexes are evolved for a 86 

specific number of iterations independent of other complexes, and then are forced to shuffle.  87 

The SCE-UA framework employs Nelder-Mead simplex (Nelder and Mead 1965) 88 

technique along with the concept of controlled random search (Price 1987), clustering (Kan and 89 

Timmer 1987), competitive evolution (Holland 1975) and complex shuffling (Duan et al. 1993) to 90 

offer a global optimization strategy. By employing these techniques, the SCE-UA algorithm 91 

provides a robust optimization framework and has shown numerically to be competitive and 92 

efficient comparing to other algorithms, such as GA, for calibrating rainfall-runoff models (Beven 93 

 



2011, Gan and Biftu 1996, Wagener et al. 2004, Wang et al. 2010). The SCE-UA algorithm has 94 

been widely used in water resources management (Barati et al. 2014, Eckhardt and Arnold 2001, 95 

K. Ajami et al. 2004, Lin et al. 2006, Liong and Atiquzzaman 2004, Madsen 2000, Sorooshian et 96 

al. 1993, Toth et al. 2000, Yang et al. 2015, Yapo et al. 1996), as well as other fields of study, such 97 

as pyrolysis modeling (Ding et al. 2016, Hasalová et al. 2016) and Artificial Intelligence (Yang et 98 

al. 2017). 99 

 Application of the SCE-UA is not limited to solving single objective optimization 100 

problems. The Multi-Objective Complex evolution, University of Arizona (MOCOM-UA), is an 101 

extension of the SCE-UA for solving multi-objective problems (Boyle et al. 2000, Yapo et al. 102 

1998). Besides, the SCE-UA architecture has been used to develop Markov Chain Monte Carlo 103 

(MCMC) sampling, named Shuffled Complex Evolution Metropolis algorithm (SCEM-UA) and 104 

the Multi-Objective Shuffled Complex Evolution Metropolis (MOSCEM) to infer posterior 105 

parameter distribution of hydrologic models (Vrugt et al. 2003a, Vrugt et al. 2003b). The 106 

Metropolis scheme is used as the search kernel in the SCEM-UA and MOSCEM-UA (Chu et al. 107 

2010, Vrugt et al. 2003a, Vrugt et al. 2003b). There is also an enhanced version of SCE-UA, which 108 

is developed by Chu et al. (2011) entitled the Shuffled Complex strategy with Principle Component 109 

Analysis, developed at the University of California, Irvine (SP-UCI). Chu et al. (2011) found that 110 

the SCE-UA algorithm may not converge to the best solution on high-dimensional problems due 111 

to “population degeneration” phenomenon. The “population degeneration” refers to the situation 112 

when the search particles span a lower dimension space than the original search space (Chu et al. 113 

2010), which causes the search algorithm to fail in finding the global optimum. To address this 114 

issue, the SP-UCI algorithm employs Principle Component Analysis (PCA) in order to find and 115 

restore the missing dimensions during the course of search (Chu et al. 2011).  116 

 



Both SCE-UA and SP-UCI start the evolution process by generating a population within 117 

the feasible parameters space. Then, population is partitioned into different complexes, and each 118 

complex is evolved independently. Each member of the complex has the potential to contribute to 119 

offspring in the evolution process. In each evolution step, more than two parents may contribute 120 

to generating offspring. To make the evolution process competitive, a triangular probability 121 

function is used to select parents. As a result, the fittest individuals will have a higher chance of 122 

being selected. Each complex is evolved for a specific number of iterations, and then complexes 123 

are shuffled to globally share the information attained by individuals during the search.  124 

The Competitive Complex Evolution (CCE) and Modified Competitive Complex 125 

Evolution (MCCE) are the search cores of the SCE-UA and SP-UCI algorithm, respectively. The 126 

CCE and MCCE evolutionary processes are developed based on Nelder-Mead (Nelder and Mead 127 

1965) method with some modification. The evolution process in the SCE-UA is not limited to 128 

these algorithms.  In fact, several studies have incorporated different EAs into the structure of the 129 

SCE-UA algorithm. For example, the Frog Leaping (FL) is developed by adapting Particle Swarm 130 

Optimization (PSO) algorithm to the SCE-UA structure for solving discrete problems (Eusuff et 131 

al. 2006, Eusuff and Lansey 2003). Mariani et al. (2011) proposed an SCE-UA algorithm which 132 

employs DE for evolving the complexes. These studies revealed the flexibility of the SCE-UA in 133 

combination with other types of EAs; however, the potential of combining different algorithms 134 

into a hybrid shuffled complex scheme has not been investigated.   135 

The unique structure of the SCE-UA algorithm along with the flexibility of the algorithm 136 

for using different EAs, motivated us to use the SCE-UA as the cornerstone of the SC-SAHEL 137 

framework. The SC-SAHEL algorithm employs multiple EAs for evolving the population in a 138 

similar structure as that of the SCE-UA, with the goal of selecting the most suitable search 139 

algorithm at each optimization step. On the one hand, some EAs are more capable of visiting the 140 

 



new regions of the search space and exploring the problem space, and hence are particularly 141 

suitable at the beginning of the optimization (Olorunda and Engelbrecht 2008). On the other hand, 142 

some EAs are more capable of searching within the visited regions of the search space, and hence 143 

boosting the convergence process after finding the region of interest (Mirjalili and Hashim 2010). 144 

Balancing between these two steps, which are referred to as exploration and exploitation (Moeini 145 

and Afshar 2009), is a challenging task in stochastic optimization methods (Črepinšek et al. 2013). 146 

The SC-SAHEL algorithm maintains a balance between exploration and exploitation phases by 147 

evaluating the performance of participating EAs at each optimization step. EAs contribute to the 148 

population evolution according to their performance in previous steps. The algorithms’ 149 

performance is evaluated by comparing the evolved complexes before and after evolution. In this 150 

process, the most suitable algorithm for the problem space become the dominant search core. 151 

In this study, four different EAs are used as search cores in the proposed SC-SAHEL 152 

framework, including Modified Competitive Complex Evolution (MCCE) used in the SP-UCI 153 

algorithm, Modified Frog Leaping (MFL), Modified Grey Wolf Optimizer (MGWO), and 154 

Differential Evolution (DE). To better illustrate the performance of the hybrid SC-SAHEL 155 

algorithm, the framework is benchmarked over 29 test functions and compared to SC-SAHEL with 156 

single EA. Among the 29 employed test functions, there are 23 classic test functions (Xin et al. 157 

1999) and 6 composite test functions (Liang et al. 2005), which are commonly used as benchmarks 158 

in comparing optimization algorithms.  159 

Furthermore, the SC-SAHEL framework is tested for a conceptual hydropower model, 160 

which is built for the Folsom reservoir located in the northern California, USA. The objective is 161 

to maximize the hydropower generation, by finding the optimum discharge from the reservoir. The 162 

study period covers run-off season in California from April to June, in which reservoirs have the 163 

highest annual storage volume (Field and Lund 2006). Using the proposed framework, we 164 

 



compared different EAs’ capability of finding a near-optimum solution for dry, wet, and below-165 

normal scenarios. The results support that the proposed algorithm is not only competitive in terms 166 

of increasing power generation, but also is able to reveal the advantages and disadvantages of 167 

participating EAs. 168 

The rest of the paper is organized as follow. In section 2, structure of the SC-SAHEL 169 

algorithm and details of four EAs are presented. Section 3 presents the test functions, settings of 170 

the experiments, and results obtained for each test function. Section 4 introduces the reservoir 171 

model and the optimization results for the case study. Finally, in section 5, we draw conclusion, 172 

summarize some limitations about the newly introduced framework, and suggest some directions 173 

for future work. 174 

 175 

2 Methodology 176 

The SC-SAHEL algorithm is a parallel optimization framework, which is built based on 177 

the original SCE-UA architecture. SC-SAHEL, however, differs from the original SCE-UA 178 

algorithm by using multiple search mechanisms instead of only employing the Nelder-Mead 179 

simplex downhill method. In this section, we first introduce the main structure of SC-SAHEL. 180 

Then, we present four different EAs, which are employed as search cores in the SC-SAHEL 181 

framework. These algorithms are selected for illustrative purpose only and can be replaced by 182 

other evolutionary algorithms. Some modifications are made to the original form of these 183 

algorithms, to allow fair competition between EAs. These modifications are detailed in the 184 

appendix A-D. 185 

 186 

 



2.1 The SC-SAHEL framework 187 

The proposed SC-SAHEL optimization strategy starts with generating a population with a 188 

pre-defined sampling method within feasible parameters’ range. The framework supports user-189 

defined sampling methods, besides built-in Uniform Random Sampling (URS) and Latin 190 

Hypercube Sampling (LHS). The population is then partitioned into different complexes. The 191 

partitioning process warrants maintaining diversity of population in each complex. In doing so, 192 

population is first sorted according to (objective) function values. Then, sorted population is 193 

divided into NGS equally-sized groups  (NGS being the number of complexes), ensuring that 194 

members of each group have similar objective function values. Each complex subsequently will 195 

randomly select a member from each of these groups. This procedure maintains diversity of the 196 

population within each complex. The complexes are then assigned to EAs and evolved. In contrast 197 

to the original concept of the SCE-UA, the complexes are evolved with different EAs rather than 198 

single search mechanism. At the beginning of the search, an equal number of complexes is 199 

assigned to each evolutionary method. For instance, if population is partitioned into 8 complexes 200 

and 4 different EAs are used, each algorithm will evolve 2 complexes independently (2-2-2-2). 201 

After evolving the complexes for pre-specified number of steps, the Evolutionary Method 202 

Performance (EMP) metric (Eq.1) will be calculated for each EA, 203 

EMP = mean(𝐹𝐹)−mean(𝐹𝐹𝑁𝑁)
mean(𝐹𝐹) ,                                                    (1) 204 

in which, 𝐹𝐹 and 𝐹𝐹𝑁𝑁 are objective function values of individuals in each complex before and after 205 

evolution, respectively.  206 

The EMP metric measures change in the mean objective function value of individuals in 207 

each complex in comparison to their previous state. A higher EMP value indicates a larger 208 

reduction in the mean objective function value obtained by the individuals in the complex. The 209 

 



performance of each evolutionary algorithm is then evaluated based on the mean value of EMP 210 

calculated for each evolved complex. The algorithms are then ranked according to the EMP values. 211 

Ranks are in turn used to assign number of complexes to each evolutionary method for the next 212 

iteration. The highest ranked algorithm will be assigned an additional complex to evolve in the 213 

next shuffling step, while, the lowest ranked evolutionary algorithm will lose one complex for the 214 

next step. For instance, if all the EAs have 2 complexes to evolve (2-2-2-2 case), the number of 215 

complexes assigned to each EA can be updated to 3-2-2-1. In other words, this logic is an “award 216 

and punishment” process, in which the algorithm with best performances will be “awarded” with 217 

an additional complex to evolve in the next iteration, while the worst-performing algorithm will 218 

be “punished” by losing one complex.  219 

It is worth mentioning that as some of the algorithms may have poor performance in the 220 

exploration phase, they might lose all their complexes during the adaptation process. This might 221 

be troublesome as these algorithms may be superior in the exploitation phase. If use of such 222 

algorithms are terminated in the exploration phase, they cannot be selected during the convergence 223 

steps. Hence, EAs termination is avoided to fully utilize the potential of EAs in all the optimization 224 

steps and balance the exploration and exploitation phases. The minimum number of complexes 225 

assigned to each evolutionary method is restricted to at least 1 complex in this case. If the lowest 226 

ranked EA has only 1 complex to evolve, it won’t lose its last complex. If an algorithm outperforms 227 

others throughout the evolution of complexes, the number of complexes assigned to the superior 228 

EA will be equal to the total number of complexes minus the number of EAs plus one. In this case, 229 

all other algorithms are evolving one complex only. As all algorithms are evolving at least one 230 

complex, they have the chance to outperform other EAs and gain more complexes during the 231 

optimization process, and to potentially become the dominant search method as the search 232 

 



continues toward exploitation phase. Figure 1 briefly shows the flowchart of the SC-SAHEL 233 

algorithm, pseudo code of which is as follows: 234 

Step 0. Initialization. Select NGS > 1 and NPS (suggested NPS > 2n+1, where n is the 235 

dimension of the problem), where NGS is the number of complexes and NPS is the number 236 

of individuals in the complexes. NGS should be proportional to the number of evolutionary 237 

algorithms so that all the participating EAs have an equal number of complexes at the 238 

beginning of the search. 239 

Step 1. Sample NPT points in the feasible parameter space using a user-defined sampling 240 

method, where NPT equals to NGS×NPS. Compute objective function value for each point. 241 

Step 2. Rank and sort all individuals in the order of increasing objective function value. 242 

Step 3. Partition the entire population into complexes. Assign complexes to the 243 

participating EAs. 244 

Step 4. Monitor and restore population dimensionality using PCA algorithm (Optional). 245 

Step 5. Evolve each complex using the corresponding EA. 246 

Step 6. After evolving the complexes for a pre-defined number of iterations, calculate the 247 

mean EMP for each EA. 248 

Step 7. Rank the participating EAs according to the mean EMP value of each evolutionary 249 

method. The highest ranked method will get additional complex in the next iteration, while 250 

the worst evolutionary method will lose one.  251 

Step 8. Shuffle complexes and form a new population. 252 

Step 9. Check whether the convergence criteria are satisfied, otherwise go to step 3. 253 

SC-SAHEL allows for different settings that can influence the performance of the 254 

algorithm. Careful consideration should be devoted to the selection of these settings, including 255 

number of complexes, number of individuals within each complex, number of evolution steps 256 

 



before each shuffling, and stopping criteria thresholds. Some of these settings are adopted from 257 

the suggested settings for the SCE-UA. For instance, the number of points within each complex is 258 

set to 2𝑑𝑑 + 1, where 𝑑𝑑 is dimension of the problem. However, some of the suggested settings 259 

cannot be applied to the SC-SAHEL framework due to use of different EAs. These settings can be 260 

changed according to the complexity of the problem and the EAs used within the framework. For 261 

instance, the number of complexes, the number of points within each complex, and the number of 262 

evolution steps before each shuffling are problem dependent.  263 

The SC-SAHEL framework employs three different stopping criteria which are adopted 264 

from SCE-UA and SP-UCI. These stopping criteria include number of function evaluations, range 265 

of samples that span the search space, and improvement in the objective function value in the last 266 

m shuffling steps. These criteria are compared to pre-defined thresholds, which can in turn be tuned 267 

according to the complexity of the problem. Improper selection of these thresholds may lead to 268 

early or delayed convergence.  269 

2.2 Evolutionary algorithms used in the SC-SAHEL 270 

In this paper, we employ four different EAs to illustrate the flexibility of the SC-SAHEL 271 

framework in adopting various EAs and show the algorithms competition. These algorithms are 272 

briefly presented here. The pseudo code and details of these algorithms can be found in Appendix 273 

A-D. 274 

 



 275 

Figure 1. The SC-SAHEL framework flowchart 276 

2.2.1 Modified Competitive Complex Evolution (MCCE) 277 

The MCCE algorithm is an enhanced version of CCE algorithm used in the SCE-UA 278 

framework; which provides a robust, efficient, and effective EA for exploring and exploiting the 279 

search space. The MCCE algorithm is developed based on the Nelder-Mead algorithm, however, 280 

Chu et al. (2011) found that the shrink concept in the Nelder-Mead algorithm can cause premature 281 

convergence to a local optimum. Interested readers can refer to (Chu et al. 2010, 2011) for further 282 

details on MCCE algorithm. The pseudo code of the MCCE algorithm is detailed in Appendix A. 283 

SC-SAHEL has similar performance to SP-UCI, when the MCCE algorithm is used as the only 284 

search mechanism and PCA and resampling settings of SP-UCI are enabled. For simplification 285 

 



and comparison, SC-SAHEL with the MCCE algorithm as search core is referred as SP-UCI, 286 

hereafter. 287 

 288 

2.2.2 Modified Frog Leaping (MFL) 289 

The Frog Leaping (FL) algorithm uses adapted PSO algorithm as a local search tool within the 290 

SCE-UA framework (Eusuff and Lansey 2003). FL has shown to be an efficient search algorithm 291 

for discrete optimization problems, and can find optimum solution much faster as compared to the 292 

GA algorithm (Eusuff et al. 2006). In order to adapt the FL algorithm to the SC-SAHEL parallel 293 

framework, we introduce a slightly modified version of FL algorithm entitled MFL. Further details 294 

and pseudo code of the MFL can be found in Appendix B. The original FL algorithm and the MFL 295 

have four main differences. First, the original FL is designed for discrete optimization problems, 296 

however, the MFL is modified for continuous domain. Second, the modified FL uses the best point 297 

in the subcomplex for generating new points, however, in the original FL framework new points 298 

are generated using the best point in the complex and the entire population. The reason for this 299 

modification is to avoid using any external information by participating EAs. In other words, the 300 

amount of information given to each EAs is limited to the complex assigned to the EAs. Third, as 301 

the MFL algorithm only uses the best point within the complex for generating the new generation, 302 

two different jump rates are used. The reason for different jump rates is to allow MFL to have a 303 

better exploration and exploitation ability during optimization process. These jump rates are 304 

selected by trial and error and may need further investigation to achieve a better performance by 305 

MFL algorithm. Fourth, when the generated offspring is not better than the parents, a new point is 306 

randomly selected within the range of individuals in the subcomplex. This process, which is 307 

referred to as censorship step in the FL algorithm (Eusuff et al. 2006), is different from the original 308 

algorithm. The MFL algorithm uses the range of points in the complex rather than the whole 309 
 



feasible parameters range. Resampling within the whole parameter space can decrease the 310 

convergence speed of the FL. Hence, the resampling process is carried out only within the range 311 

of points in the complex. Hereafter, the SC-SAHEL with MFL algorithm as the only search core 312 

is referred as SC-MFL. 313 

 314 

2.2.3 Modified Grey Wolf Optimizer (MGWO) 315 

The Grey Wolf Optimizer is a meta-heuristic algorithm inspired by the social hierarchy 316 

and hunting behavior of grey wolves (Mirjalili et al. 2014, Mirjalili et al. 2016). The Grey wolves 317 

hunting strategy has three main steps: first, chasing and approaching the prey; second, encircling 318 

and pursuing the prey, and finally attacking the prey (Mirjalili et al. 2014). The GWO process 319 

resembles the hunting strategy of the Grey wolves. In this algorithm, the top three fittest 320 

individuals are selected and contribute to the evolution of population. Hence, the individuals in the 321 

population are navigated toward the best solution. The GWO algorithm has shown to be effective 322 

and efficient in many test functions and engineering problems. Furthermore, performance of the 323 

GWO is comparable to other popular optimization algorithms, such as GA and PSO (Mirjalili et 324 

al. 2014). GWO follows an adaptive process to update the jump rates, to maintain balance between 325 

exploration and exploitation phases. The adaptive jump rate of the GWO is removed here and 3 326 

different jump rates are used instead. The reason for this modification is that the information given 327 

to each EA is limited to its assigned complex. Similar to MFL algorithm, the modified GWO 328 

(MGWO) algorithm uses the range of parameters to resample individuals, when the generated 329 

offspring are not superior to their parents. Details and pseudo code of the MGWO algorithm can 330 

be found in the Appendix C. Hereafter, the SC-SAHEL with MGWO algorithm as the only search 331 

core is referred as SC-MGWO. 332 

 333 
 



2.2.4 Differential Evolution (DE) 334 

The DE algorithm is a powerful but simple heuristic population-based optimization 335 

algorithm (Omran et al. 2005, Sadegh and Vrugt 2014) proposed by Storn and Price (1997). In 336 

2011, Mariani et al. (2011) integrated the DE algorithm into SCE-UA framework and showed that 337 

the new framework is able to provide more robust solutions for some optimization problems in 338 

comparison to the SCE-UA. Similar to the work by Mariani et al. (2011), we use a slightly 339 

modified DE algorithm based on the concepts from Omran et al. (2005), in order to integrate the 340 

DE algorithm into the SC-SAHEL framework. As the DE algorithm has slower performance in 341 

comparison to other EAs used here, we have added multiple steps to the DE. Here, the DE 342 

algorithm uses three different mutation rates in three attempts. In the first attempt, the algorithm 343 

uses a larger mutation rate. This helps exploring the search space with larger jump rates. In the 344 

second attempt, the algorithm reduces the mutation rate to a quarter of the first attempt. This will 345 

enhance the exploitation capability of the EA. If none of these mutation rates could generate a 346 

better offspring than the parents, in the next attempt the mutation rate is set to half of the first 347 

attempt. Lastly, if none of these attempts generate a better offspring in comparison to the parents, 348 

a new point is randomly selected within the range of individuals in the complex. The pseudo code 349 

of the modified DE algorithm is detailed in Appendix D. The SC-SAHEL algorithm is referred to 350 

as SC-DE, when the DE algorithm is used as the only search algorithm. 351 

3 Conceptual test functions and results 352 

3.1 Test functions 353 

 The SC-SAHEL framework is benchmarked over 29 mathematical test functions using 354 

single-method and multi-method search mechanisms. This includes 23 classic test functions 355 

obtained from Xin et al. (1999). The name and formulation of these functions along with their 356 

 



dimensionality and range of parameters are listed in Table 1. We selected these test functions as 357 

they are standard and popular benchmarks for evaluating new optimization algorithms (Mirjalili 358 

et al. 2014). The remaining 6 are composite test functions, 𝑐𝑐𝑐𝑐1−6 , (Liang et al. 2005), which 359 

represent complex optimization problems. Details of the composite test functions can be found in 360 

the work of Liang et al. (2005) and Mirjalili et al. (2014). Classic test functions have dimensions 361 

in the range of 2 to 30, and all the composite test functions are 10 dimensional. Figures 2 and 3 362 

show response surface of these test functions in 2-dimension form. The SC-SAHEL settings used 363 

for optimizing these test functions are listed in Table 2 for each test function. Number of points in 364 

each complex and number of evolution steps for each complex are set to 2d+1 and max(d+1,10), 365 

respectively, where d is the dimension of the problem. The number of evolution steps is set to 366 

max(d+1,10), to guarantee that EAs evolve the complexes for enough number of steps, before 367 

evaluating the EAs. In the high-dimension problems, the maximum number of function evaluation 368 

should be selected with careful consideration. 369 

Several experiments were conducted to find an optimal set of parameters for the SC-370 

SAHEL setting. These experiments revealed that a low number of evolutionary steps before 371 

shuffling the complexes, may not show the potential of the EAs. On the other hand, using a large 372 

value for the number of evolution steps may shrink the complex to a small space, which cannot 373 

span the whole search space (Duan et al. 1994). Maximum number of function evaluation is 374 

determined according to the complexity of the problem and is different for each of the test cases. 375 

In addition to the maximum number of function evaluation, the range of the parameters in the 376 

population and the improvement in the objective function values are used as convergence criteria. 377 

The optimization run is terminated if the population range is smaller than 10-7% of the feasible 378 

range or the improvement in (objective) function value is smaller than 0.1% of the mean (objective) 379 

function value in the last 50 shuffling steps. The LHS mechanism is used as the sampling algorithm 380 

 



of SC-SAHEL for generating the initial population. The framework provides multiple settings for 381 

boundary handling, which can be selected by the user. SC-SAHEL uses reflection as the default 382 

boundary handling method. Other initial sampling and boundary handling methods are also 383 

implemented in the SC-SAHEL framework. Sensitivity of the initial sampling and boundary 384 

handling on the performance of the SC-SAHEL algorithm is not studied in this paper. The 385 

aforementioned settings can be applied to a wide range of problems.  386 

 



Table 1. The detailed information of 23 test functions from Xin et al. (1999), including mathematical expression, 387 
dimension, parameters range and global optimum value (𝒇𝒇𝒎𝒎𝒎𝒎𝒎𝒎). 388 

Function 
Number Name Function Dim Range 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 

𝑐𝑐1(𝑥𝑥) Sphere Model 𝑐𝑐(𝑥𝑥) =  � 𝑥𝑥𝑚𝑚2
𝑚𝑚

𝑚𝑚=1
 30 [-100,100] 0 

𝑐𝑐2(𝑥𝑥) Schwefel’s Problem 
2.22 𝑐𝑐(𝑥𝑥) =  � |𝑥𝑥𝑚𝑚| + � |𝑥𝑥𝑚𝑚|

𝑚𝑚

𝑚𝑚=1

𝑚𝑚

𝑚𝑚=1
 30 [-10,10] 0 

𝑐𝑐3(𝑥𝑥) Schwefel’s Problem 1.2 𝑐𝑐(𝑥𝑥) =  � �� 𝑥𝑥𝑗𝑗
𝑚𝑚

𝑗𝑗=1
�
2𝑚𝑚

𝑚𝑚=1
 30 [-100,100] 0 

𝑐𝑐4(𝑥𝑥) Schwefel’s Problem 
2.21 𝑐𝑐(𝑥𝑥) =  𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚{|𝑥𝑥𝑚𝑚|, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛} 30 [-100,100] 0 

𝑐𝑐5(𝑥𝑥) Generalized 
Rosenbrock’s Function 𝑐𝑐(𝑥𝑥) = � �100�𝑥𝑥𝑚𝑚+1 − 𝑥𝑥𝑚𝑚2�

2
+ (𝑥𝑥𝑚𝑚 − 1)2�

𝑚𝑚−1

𝑚𝑚=1
 30 [-30,30] 0 

𝑐𝑐6(𝑥𝑥) Step Function 𝑐𝑐(𝑥𝑥) =  � (⌊𝑥𝑥𝑚𝑚 + 0.5⌋)2
𝑚𝑚

𝑚𝑚=1
 30 [-100,100] 0 

𝑐𝑐7(𝑥𝑥) Quartic Function 𝑐𝑐(𝑥𝑥) = � 𝑖𝑖𝑥𝑥𝑚𝑚4 + 𝑟𝑟𝑚𝑚𝑛𝑛𝑑𝑑𝑟𝑟𝑚𝑚[0,1)
𝑚𝑚

𝑚𝑚=1
 30 [-1.28,1.28] 0 

𝑐𝑐8(𝑥𝑥) Generalized Schwefel’s 
Problem 2.26 𝑐𝑐(𝑥𝑥) = � −𝑥𝑥𝑚𝑚 sin ��|𝑥𝑥𝑚𝑚|�

𝑚𝑚

𝑚𝑚=1
 30 [-500,500] -12569.5 

𝑐𝑐9(𝑥𝑥) Generalized Rastrigin’s 
Function 𝑐𝑐(𝑥𝑥) = � [𝑥𝑥𝑚𝑚2 − 10 cos(2𝜋𝜋𝑥𝑥𝑚𝑚) + 10]

𝑚𝑚

𝑚𝑚=1
 30 [-5.12,5.12] 0 

𝑐𝑐10(𝑥𝑥) Ackley’s Function 𝑐𝑐(𝑥𝑥) =  −20 exp�−0.2�
1
𝑛𝑛
� 𝑥𝑥𝑚𝑚2

𝑚𝑚

𝑚𝑚=1
� − exp �

1
𝑛𝑛
� cos(2𝜋𝜋𝑥𝑥𝑚𝑚)

𝑚𝑚

𝑚𝑚=1
� + 20 + 𝑒𝑒 30 [-32,32] 0 

𝑐𝑐11(𝑥𝑥) Generalized Griewank 
Function 𝑐𝑐(𝑥𝑥) =  

1
4000

� 𝑥𝑥𝑚𝑚2 −� cos �
𝑥𝑥𝑚𝑚
√𝑖𝑖
� + 1

𝑚𝑚

𝑚𝑚=1

𝑚𝑚

𝑚𝑚=1
 30 [-600,600] 0 

𝑐𝑐12(𝑥𝑥) Generalized Penalized 
Functions 

𝑐𝑐(𝑥𝑥) =  
𝜋𝜋
𝑛𝑛
�10sin2(𝜋𝜋𝑦𝑦𝑚𝑚) + � (𝑦𝑦𝑚𝑚 − 1)2[1 + 10sin2(πyi+1)]

𝑚𝑚−1

𝑚𝑚=1
+ (𝑦𝑦𝑚𝑚 − 1)2�

+ � 𝑢𝑢(𝑥𝑥𝑚𝑚 , 10,100,4),
𝑚𝑚

𝑚𝑚=1
 

𝑦𝑦𝑚𝑚 = 1 +
1
4

(𝑥𝑥𝑚𝑚 + 1), 

𝑢𝑢(𝑥𝑥𝑚𝑚 ,𝑚𝑚, 𝑘𝑘,𝑚𝑚) = �
𝑘𝑘(𝑥𝑥𝑚𝑚 − 𝑚𝑚)𝑚𝑚,          𝑥𝑥𝑚𝑚 > 𝑚𝑚
0,               − 𝑚𝑚 ≤ 𝑥𝑥𝑚𝑚 ≤ 𝑚𝑚
𝑘𝑘(−𝑥𝑥𝑚𝑚 − 𝑚𝑚)𝑚𝑚,    𝑥𝑥𝑚𝑚 < −𝑚𝑚

 

30 [-50,50] 0 

𝑐𝑐13(𝑥𝑥) Generalized Penalized 
Functions 

𝑐𝑐(𝑥𝑥) = 0.1 �sin2(3𝜋𝜋𝑥𝑥1) + � (𝑥𝑥𝑚𝑚 − 1)2[1 + sin2(3𝜋𝜋𝑥𝑥𝑚𝑚 + 1)]
𝑚𝑚

𝑚𝑚=1
+ (𝑥𝑥𝑚𝑚 − 1)2[1 + sin2(2𝜋𝜋𝑥𝑥𝑚𝑚)]�

+ � 𝑢𝑢(𝑥𝑥𝑚𝑚 , 5,100,4)
𝑚𝑚

𝑚𝑚=1
 

𝑢𝑢(𝑥𝑥𝑚𝑚 ,𝑚𝑚, 𝑘𝑘,𝑚𝑚) = �
𝑘𝑘(𝑥𝑥𝑚𝑚 − 𝑚𝑚)𝑚𝑚,          𝑥𝑥𝑚𝑚 > 𝑚𝑚
0,               − 𝑚𝑚 ≤ 𝑥𝑥𝑚𝑚 ≤ 𝑚𝑚
𝑘𝑘(−𝑥𝑥𝑚𝑚 − 𝑚𝑚)𝑚𝑚,    𝑥𝑥𝑚𝑚 < −𝑚𝑚

 

30 [-50,50] 0 

𝑐𝑐14(𝑥𝑥) Shekel’s Foxholes 
Function 𝑐𝑐(𝑥𝑥) =  �

1
500

+ �
1

𝑗𝑗 + ∑ �𝑥𝑥𝑚𝑚 − 𝑚𝑚𝑚𝑚𝑗𝑗�
62

𝑚𝑚=1

25

𝑗𝑗=1
� 2 [-65.536,65.536] 1 

𝑐𝑐15(𝑥𝑥) Kowalik’s Function 𝑐𝑐(𝑥𝑥) = � �𝑚𝑚𝑚𝑚 −
𝑥𝑥1�𝑏𝑏𝑚𝑚2 + 𝑏𝑏𝑚𝑚𝑥𝑥2�
𝑏𝑏𝑚𝑚2 + 𝑏𝑏𝑚𝑚𝑥𝑥3 + 𝑥𝑥4

�
211

𝑚𝑚=1
 4 [-5,5] 0.0003075 

𝑐𝑐16(𝑥𝑥) Six-Hump Camel-Back 
Function 𝑐𝑐(𝑥𝑥) =  4𝑥𝑥12 − 2.1𝑥𝑥14 +

1
3
𝑥𝑥16 + 𝑥𝑥1𝑥𝑥2 − 4𝑥𝑥22 + 4𝑥𝑥24 2 [-5,5] -1.0316285 

𝑐𝑐17(𝑥𝑥) Branin Function 𝑐𝑐(𝑥𝑥) =  �𝑥𝑥2 −
5.1
4𝜋𝜋2

𝑥𝑥12 +
5
𝜋𝜋
𝑥𝑥1 − 6�

2

+ 10 �1 −
1

8𝜋𝜋
� cos(𝑥𝑥1) + 10 2 [-5,10]×[0,15] 0.398 

𝑐𝑐18(𝑥𝑥) Goldstein-Price 
Function 

𝑐𝑐(𝑥𝑥) = [1 + (𝑥𝑥1 + 𝑥𝑥2 + 1)2(19 − 14𝑥𝑥1 + 3𝑥𝑥12 − 14𝑥𝑥2 + 6𝑥𝑥1𝑥𝑥2 + 3𝑥𝑥22)]
×  [30 + (2𝑥𝑥1 − 3𝑥𝑥2)2(18 − 32𝑥𝑥1 + 12𝑥𝑥12 + 48𝑥𝑥2 − 36𝑥𝑥1𝑥𝑥2 + 27𝑥𝑥22)] 2 [-2,2] 3 

𝑐𝑐19(𝑥𝑥) Hartman’s Family 𝑐𝑐(𝑥𝑥) =  −� 𝑐𝑐𝑚𝑚exp
4

𝑚𝑚=1
�−� 𝑚𝑚𝑚𝑚𝑗𝑗�𝑥𝑥𝑗𝑗 − 𝑝𝑝𝑚𝑚𝑗𝑗�

24

𝑗𝑗=1
� 4 [0,1] -3.86 

𝑐𝑐20(𝑥𝑥) Hartman’s Family 𝑐𝑐(𝑥𝑥) = −� 𝑐𝑐𝑚𝑚 exp �−� 𝑚𝑚𝑚𝑚𝑗𝑗�𝑥𝑥𝑗𝑗−𝑝𝑝𝑚𝑚𝑗𝑗�
26

𝑗𝑗=1
�

4

𝑚𝑚=1
 6 [0,1] -3.32 

𝑐𝑐21(𝑥𝑥) Shekel’s Family 𝑐𝑐(𝑥𝑥) = −� [(𝑥𝑥 − 𝑚𝑚𝑚𝑚)(𝑥𝑥 − 𝑚𝑚𝑚𝑚)𝑇𝑇 + 𝑐𝑐𝑚𝑚]−1
5

𝑚𝑚=1
 4 [0,10] -10.1532 

𝑐𝑐22(𝑥𝑥) Shekel’s Family 𝑐𝑐(𝑥𝑥) = −� [(𝑥𝑥 − 𝑚𝑚𝑚𝑚)(𝑥𝑥 − 𝑚𝑚𝑚𝑚)𝑇𝑇 + 𝑐𝑐𝑚𝑚]−1
7

𝑚𝑚=1
 4 [0,10] -10.4028 

𝑐𝑐23(𝑥𝑥) Shekel’s Family 𝑐𝑐(𝑥𝑥) = −� [(𝑥𝑥 − 𝑚𝑚𝑚𝑚)(𝑥𝑥 − 𝑚𝑚𝑚𝑚)𝑇𝑇 + 𝑐𝑐𝑚𝑚]−1
10

𝑚𝑚=1
 4 [0,10] -10.5363 
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Figure 2. Classic test functions in 2-dimension form 390 

 391 

 



 392 

Figure 3. Composite test functions in 2-dimension form 393 

  394 

 



Table 2. List of the settings for the SC-SAHEL algorithm for classic and composite test functions. NGS is the number of 395 
complexes, NPS denotes the number of points in each complex and I is the maximum number of function evaluation. 396 

Function NGS NPS I 
𝑐𝑐1 8 61 100,000 
𝑐𝑐2 8 61 100,000 
𝑐𝑐3 8 61 300,000 
𝑐𝑐4 8 61 300,000 
𝑐𝑐5 8 61 500,000 
𝑐𝑐6 8 61 100,000 
𝑐𝑐7 8 61 200,000 
𝑐𝑐8 8 61 200,000 
𝑐𝑐9 8 61 200,000 
𝑐𝑐10 8 61 200,000 
𝑐𝑐11 8 61 200,000 
𝑐𝑐12 8 61 300,000 
𝑐𝑐13 8 61 400,000 
𝑐𝑐14 8 10 100,000 
𝑐𝑐15 8 10 100,000 
𝑐𝑐16 8 10 100,000 
𝑐𝑐17 8 10 100,000 
𝑐𝑐18 8 10 100,000 
𝑐𝑐19 8 10 100,000 
𝑐𝑐20 8 13 100,000 
𝑐𝑐21 8 10 100,000 
𝑐𝑐22 8 10 100,000 
𝑐𝑐23 8 10 100,000 
𝑐𝑐𝑐𝑐1 16 61 100,000 
𝑐𝑐𝑐𝑐2 16 61 100,000 
𝑐𝑐𝑐𝑐3 16 61 100,000 
𝑐𝑐𝑐𝑐4 16 61 100,000 
𝑐𝑐𝑐𝑐5 16 61 100,000 
𝑐𝑐𝑐𝑐6 16 61 100,000 

3.2 Results and Discussion 397 

Table 3 illustrates the statistics of the final function values at 30 independent runs on 29 398 

test functions using the hybrid SC-SAHEL and individual EAs, with the goal to minimize the 399 

function values. The best mean function value obtained for each test function is expressed in bold 400 

in Table 3. Results show that the hybrid SC-SAHEL achieved the lowest function values in 15 out 401 

of 29 test functions, compared to the mean function values achieved by all individual algorithms. 402 

It is noteworthy that in 20 out of 29 test functions, the hybrid SC-SAHEL was among the top two 403 

optimization methods in finding the minimum function value. A two-sample t-test (with 5% 404 

significance level) also showed that the result generated with the SC-SAHEL algorithm is 405 
 



generally similar to the best performing algorithms. Comparing among single-method algorithms, 406 

in general, the statistics obtained by SP-UCI are superior to other participating EAs. In 12 out of 407 

29 test functions, the SP-UCI algorithm achieved the lowest function value. SC-MFL, SC-MGWO, 408 

and SC-DE were superior to other algorithms in 10, 11, and 6 out of 29 test functions, respectively. 409 

In test functions 𝑐𝑐6, 𝑐𝑐16, 𝑐𝑐17, 𝑐𝑐18, 𝑐𝑐19, 𝑐𝑐20, and 𝑐𝑐23, the single-method and multi-method algorithms 410 

achieved same function values on average in most cases. In these cases, according to the statistics 411 

shown in Table 3, the SP-UCI and SC-SAHEL algorithms offer lower standard deviation values 412 

and show more consistent results as compared to other EAs. The low standard deviation values 413 

obtained by SP-UCI and SC-SAHEL indicate the robustness and consistency of these two 414 

algorithms in comparison to other algorithms. 415 

Table 3. The mean and Standard deviation (Std) of objective function values for 30 independent runs on 29 test functions 416 
using the SC-SAHEL algorithm with single-method and multi-method search mechanism. 417 

Function 
SC-SAHEL (MCCE, 
MFL, MGWO, DE) SP-UCI (SC-MCCE) SC-MFL SC-MGWO SC-DE 

Mean Std Mean Std Mean Std Mean Std Mean Std 
𝑐𝑐1 3.68E-11 1.60E-11 1.68E-11 1.18E-11 4.29E-11 1.01E-11 5.92E-05 5.51E-05 2.13E-06 2.98E-06 
𝑐𝑐2 3.14E-06 3.92E-07 3.00E-06 5.94E-07 2.35E-06 2.75E-07 4.12E-03 1.27E-03 6.38E-04 5.26E-04 
𝑐𝑐3 2.11E-10 6.08E-11 8.95E-10 4.37E-10 4.50E-10 9.15E-11 1.22E+03 2.16E+03 1.86E-09 1.48E-09 
𝑐𝑐4 4.89E-06 7.88E-07 8.98E-05 4.60E-05 3.65E-06 5.43E-07 5.26E-06 5.59E-07 3.50E-01 2.35E-01 
𝑐𝑐5 7.81E-09 3.15E-09 2.54E-08 1.52E-08 2.58E+01 2.85E-01 1.28E+01 1.85 1.33 1.91 
𝑐𝑐6 0 0 0 0 0 0 3.33E-02 1.83E-01 6.33E-01 6.69E-01 
𝑐𝑐7 1.09E-03 5.33E-04 4.78E-04 3.44E-04 1.37E-03 6.36E-04 1.34E-02 4.90E-03 2.08E-03 8.93E-04 

𝑐𝑐8 -9.87E+03 6.14E+02 -5.09E+03 2.27E+02 -4.36E+03 2.90E+02 -4.91E+03 3.75E+02 -
9.75E+03 6.41E+02 

𝑐𝑐9 8.29E-01 1.73 3.32E-02 1.82E-01 1.60E+01 9.78 2.01E+02 1.19E+01 2.67E+01 4.57E+01 
𝑐𝑐10 1.49E-06 2.43E-07 1.08E-06 2.55E-07 1.52E-06 2.00E-07 5.47E-06 5.34E-07 1.42 4.98E-01 
𝑐𝑐11 8.05E-11 2.08E-11 1.77E-10 5.19E-11 1.61E-04 8.81E-04 7.21E-03 1.15E-02 1.42E-02 1.51E-02 
𝑐𝑐12 1.58E-13 5.02E-14 5.27E-13 3.38E-13 1.31E-01 8.80E-02 1.06E-12 1.80E-13 3.11E-02 7.77E-02 
𝑐𝑐13 3.66E-04 2.01E-03 2.55E-12 8.69E-13 7.15E-02 8.94E-03 1.62E-11 3.31E-12 3.97E-03 6.59E-03 
𝑐𝑐14 9.98E-01 1.40E-16 9.98E-01 1.27E-16 2.53 3.13 9.98E-01 2.16E-16 1.99 1.51 
𝑐𝑐15 3.07E-04 5.61E-17 1.19E-03 3.80E-03 1.08E-03 3.68E-03 3.07E-04 8.87E-14 2.98E-03 6.93E-03 
𝑐𝑐16 -1.03 1.37E-15 -1.03 7.61E-16 -1.03 6.28E-07 -1.03 9.51E-15 -1.03 1.18E-15 
𝑐𝑐17 3.98E-01 1.47E-15 3.98E-01 0 3.98E-01 2.05E-04 3.98E-01 7.63E-15 3.98E-01 0.00 
𝑐𝑐18 3.00 2.20E-14 3.00 1.25E-14 3.00 1.81E-05 3.00 7.30E-14 3.00 1.72E-14 
𝑐𝑐19 -3.86 2.08E-15 -3.86 2.12E-15 -3.86 5.46E-05 -3.86 1.61E-15 -3.86 1.97E-15 
𝑐𝑐20 -3.32 2.17E-02 -3.32 2.17E-02 -3.31 3.03E-02 -3.25 5.92E-02 -3.31 4.11E-02 
𝑐𝑐21 -9.16 2.58 -5.92 3.28 -9.69 1.75 -9.48 1.75 -8.97 2.18 
𝑐𝑐22 -1.02E+01 9.63E-01 -9.64 2.31 -1.04E+01 4.56E-04 -1.04E+01 5.05E-13 -9.35 2.46 
𝑐𝑐23 -1.05E+01 1.93E-13 -1.03E+01 1.22 -1.05E+01 6.96E-06 -1.05E+01 5.00E-13 -9.64 2.35 
𝑐𝑐𝑐𝑐1 6.67 2.54E+01 3.33 1.83E+01 1.00E+01 3.05E+01 9.41E-12 3.42E-12 1.35E-11 5.66E-12 
𝑐𝑐𝑐𝑐2 2.00E+01 4.84E+01 1.23E+02 6.79E+01 7.76E+01 4.59E+01 3.94E+01 1.44E+01 3.14E+01 5.39E+01 
𝑐𝑐𝑐𝑐3 1.32E+02 9.33E+01 1.33E+02 8.22E+01 2.80E+02 3.16E+01 3.00E+02 4.21E+01 1.28E+02 3.83E+01 
𝑐𝑐𝑐𝑐4 2.71E+02 6.67E+01 2.93E+02 8.38E+01 3.46E+02 1.47E+01 3.30E+02 4.15E+01 2.63E+02 3.20E+01 
𝑐𝑐𝑐𝑐5 1.70E+01 3.77E+01 9.75E+01 1.83E+01 3.05E+01 4.33E+01 3.37 1.83E+01 1.10E+01 3.05E+01 
𝑐𝑐𝑐𝑐6 6.71E+02 2.00E+02 8.72E+02 6.59E+01 7.80E+02 1.85E+02 5.40E+02 1.23E+02 6.38E+02 1.86E+02 

 418 

 



 In the test functions that the hybrid SC-SAHEL algorithm was not able to produce the best 419 

mean function value, the achieved mean function values deviation from that of the best-performing 420 

algorithms are marginal. For instance, on the test functions 𝑐𝑐2, 𝑐𝑐4, 𝑐𝑐10, and 𝑐𝑐22, the statistics of the 421 

values obtained by SC-SAHEL are similar to that achieved by the best-performing methods, which 422 

are SP-UCI, and SC-MFL, respectively. In general, the hybrid SC-SAHEL algorithm is superior 423 

to algorithms with individual EA on most of the test functions, although on some test functions, 424 

the SC-SAHEL algorithm is slightly inferior to the best-performing algorithm with only marginal 425 

differences. The performance of the SC-SAHEL in these test functions can be attributed to two 426 

main reasons. First, in the hybrid algorithm, all the EAs are involved in the evolution of the 427 

population. Hence, if one of the algorithms have poor performance in comparison to other EAs, it 428 

still evolves a portion of the population. As the complexes are evolved independently, the poor-429 

performing EAs may devastate a part of the information in the evolving complex. On the other 430 

hand, when the algorithms are used individually in the SC-SAHEL framework, the EA utilizes the 431 

information in all the complexes and the whole population. In this case, better result will be 432 

achieved in comparison to the hybrid SC-SAHEL, if the EA is the fittest algorithm for the problem 433 

space. Second, some of the EAs are faster and more efficient in a specific optimization phase 434 

(exploration/exploitation) than others. However, they might not be as effective as other EAs for 435 

other optimization phases. Hence, dominance of these algorithm during the exploration or 436 

exploitation phases can mislead other EAs and cause early (and premature) convergence. 437 

Engagement of other algorithms in the evolution process may prevent early convergence in these 438 

cases. Generally, the performance criteria, EMP, is responsible for selecting the most suitable 439 

algorithm in each optimization step, however, the criteria used in the SC-SAHEL is not guaranteed 440 

to perform well in all problem spaces. The performance criteria are problem dependent and need 441 

 



further investigations based on the problem space and EAs. However, the EMP metric seems to be 442 

a suitable metric for a wide range of problems. 443 

To further evaluate the performance of the hybrid SC-SAHEL algorithm, we present the 444 

success rate of the algorithms in Figure 4. The success rate is defined by setting target values for 445 

the function value for each test function. When the function value is smaller than the target value, 446 

the goal of optimization is reached, and therefore, the algorithm is considered successful. A higher 447 

success rate resembles a better performance.  We use same target value for all algorithms in order 448 

to have a fair comparison.  According to Figure 4, in 16 out of 29 test functions, the hybrid 449 

algorithm achieved 100% success rate. In other cases, the success rates achieved by the proposed 450 

hybrid algorithm are comparable to the best-performing algorithm with single EA. For instance, 451 

on the test function 𝑐𝑐9, the SC-MGWO, SC-DE and SC-MFL are not successful in finding the 452 

optimum solution (success rates are 0%, 0%, and 10%, respectively). However, the hybrid SC-453 

SAHEL algorithm has similar performance (80% success rate) to SP-UCI (97% success rate). On 454 

the test function 𝑐𝑐21, the success rate of the hybrid SC-SAHEL algorithm (87%) is close to the SC-455 

MGWO (93%), which is the most successful algorithm. The hybrid SC-SAHEL algorithm also 456 

achieved a higher success rate than SP-UCI algorithm (33%) in this test function. According to 457 

Figure 4, the average success rate of SC-SAHEL is about 80% over all 29 test functions, and it is 458 

the highest compared to the average success rate of other EAs, i.e., 73%, 58%, 58%, and 54% for 459 

SP-UCI, SC-MFL, SC-MGWO, and SC-DE algorithm, respectively.   460 

 



461 
Figure 4. The success rate of the SC-SAHEL using multi-method and single-method search mechanism for 30 462 

independent runs for 29 test functions 463 

 In some situations, the poor performing EAs may mislead other EAs and cause early (and 464 

premature) convergence. For instance, on the test function 𝑐𝑐𝑐𝑐5, the hybrid algorithm achieved 57% 465 

success rate, which is still better success rate than SP-UCI, SC-MFL and SC-MGWO, which are 466 

0%, 10%, and 50%, respectively. On this test function (𝑐𝑐𝑐𝑐5), the performance of the hybrid SC-467 

SAHEL is less affected by the most successful algorithm (DE). This may be due to the low 468 

evolution speed of the DE algorithm, as the SC-SAHEL algorithm maintains both convergence 469 

speed and efficiency during the entire search. The hybrid SC-SAHEL presents promising 470 

performance on the test functions 𝑐𝑐𝑐𝑐2 and 𝑐𝑐𝑐𝑐3. On test functions 𝑐𝑐𝑐𝑐2 and 𝑐𝑐𝑐𝑐3, the success rate of 471 

hybrid SC-SAHEL is significantly higher than other EAs, most of which have 0% success rates. 472 

For test function 𝑐𝑐𝑐𝑐2, the SC-DE algorithm achieved the lowest objective function value and the 473 

highest success rate (37%) among single-method algorithms. However, when EAs are combined 474 

in the hybrid form, the objective function value and the success rate are significantly improved. 475 
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This shows that SC-SAHEL has the capability of solving complex problems by utilizing the 476 

potentials and advantages of all participating algorithms and improving the search success rate. 477 

Table 4. The mean and Standard deviation (Std) of the number of function evaluation for 30 independent runs for 29 test 478 
functions using the SC-SAHEL algorithm with single-method and multi-method search mechanism. 479 

Function 
SC-SAHEL (MCCE, 
MFL, MGWO, DE) SP-UCI (SC-MCCE) SC-MFL SC-MGWO SC-DE 

Mean Std Mean Std Mean Std Mean Std Mean Std 
𝑐𝑐1 32816.33 723.0532 26877.93 609.7676 100199.9 129.6894 33012.97 284.4416 100325.5 144.6016 

𝑐𝑐2 39298.4 917.7627 29333.33 674.156 100193.7 126.3259 35876.77 344.1018 100307.9 168.2884 

𝑐𝑐3 91746.23 2288.806 73474.5 5435.367 226848.3 20135.41 239199.9 31109.82 241449.1 90118.79 

𝑐𝑐4 50197.6 1761.589 82183.67 19213.58 300252.9 121.2331 37987.4 1170.002 227316.4 5488.107 

𝑐𝑐5 335364.2 8102.236 401124.8 14599.33 439093.2 47901.23 118900.7 38671.69 500310.9 163.5498 

𝑐𝑐6 40293.63 377.0177 32537.93 151.8836 66102.9 3708.332 43063.63 1463.074 90205.23 5773.92 

𝑐𝑐7 69779.5 23763.53 69823.27 24314.74 78895.43 24205.89 81421.53 22877.8 117468.4 33083.6 

𝑐𝑐8 71834.83 9826.963 54020 17225.97 65629.77 5201.429 45254.8 15104.68 62555.83 21579.07 

𝑐𝑐9 59710.57 12460.93 33949.6 996.5881 100705.8 22607.84 85055.73 20771.06 90930.3 34180.61 

𝑐𝑐10 33765.77 887.3708 27116.33 379.9873 77520.6 15528.44 33181.03 416.0297 165489.4 4726.909 

𝑐𝑐11 35504.9 629.8192 30623.53 860.8274 117357.6 13250.36 38652.4 19330.05 155148.6 16730.48 

𝑐𝑐12 55908.07 4735.601 39264.23 3125.88 141722.1 31245.81 88234.23 28948.91 181820.6 5132.966 

𝑐𝑐13 54148.7 3949.577 32262.23 851.2965 123903.4 20354.81 72334.73 22345.94 170930.5 3295.191 

𝑐𝑐14 5216.333 443.942 5708.433 764.8273 4829.2 841.1355 14986.77 3537.605 4530.2 322.0474 

𝑐𝑐15 9059.8 551.1741 6517.167 2358.518 8144.667 1151.183 66441.3 35455.39 18813.63 659.7369 

𝑐𝑐16 3700.133 1115.033 2746.3 747.3937 3491.933 574.5392 8549.4 1494.076 3490.733 556.9577 

𝑐𝑐17 3665.533 601.3615 2910.633 624.4692 3552.267 538.6385 11453.13 2592.687 5115.367 2082.727 

𝑐𝑐18 2837.933 308.7723 2000.633 151.8512 2899.567 299.5645 8405.933 1320.571 2833.5 111.3877 

𝑐𝑐19 4225.733 424.8389 2852.2 95.83045 4233.4 238.4404 13183.77 519.0798 4983.9 179.5704 

𝑐𝑐20 8915.833 1069.182 5645.567 268.4028 8858.967 300.0987 17143.33 1316.025 12691.67 1818.526 

𝑐𝑐21 7455.033 1741.525 7377.533 3260.208 7471.4 1554.087 18771.33 2996.925 10755.57 1573.865 

𝑐𝑐22 6370.5 869.9209 4512.433 1290.258 7541.433 1582.216 17466.23 834.9485 8728.7 927.622 

𝑐𝑐23 6200.133 614.6406 4084.233 464.9113 6823.7 327.7709 17351.87 861.8541 8398.067 599.0103 

𝑐𝑐𝑐𝑐1 15049.43 875.8969 10293.43 233.9694 21663.47 921.1805 74089.17 17803.2 28321.6 678.283 

𝑐𝑐𝑐𝑐2 16527.63 1432.21 10586.8 464.8359 20285.83 2346.093 36617.1 13118.85 30686.4 9354.096 

𝑐𝑐𝑐𝑐3 25991.03 8041.928 16021.5 3833.203 23801.2 3604.495 19323.13 6052.813 29496.9 9113.814 

𝑐𝑐𝑐𝑐4 22873.87 4414.168 16510.13 4052.642 21121.93 2417.582 23841.93 8026.638 35134.33 14468.31 

𝑐𝑐𝑐𝑐5 17044.53 1350.845 13512.2 746.6731 21400.57 1759.215 53551.43 23577.95 39200.77 4125.908 

𝑐𝑐𝑐𝑐6 13779.33 2279.744 10518.1 2977.194 14967.5 2820.062 22265.8 15340.72 27734.83 4606.317 

 480 

In Table 4, we present the mean and standard deviation of the number of function 481 

evaluation, which indicates the speed of each algorithm. As one of the stopping criteria in SC-482 

SAHEL framework is the maximum number of function evaluation, some algorithms may 483 

terminate before they show their full potential. For instance, the SC-DE and the SC-MFL, usually 484 

reach the maximum number of function evaluations, while other algorithms satisfy other 485 

convergence criteria in much less number of function evaluations. In this case, the objective 486 

function value doesn’t represent the potential of the slow algorithms. To give a better insight into 487 
 



this matter, the mean and standard deviation (Std) of the number of function evaluations are 488 

compared in Table 4. The goal is to compare the speed of the individual EAs and the hybrid 489 

optimization algorithm. According to Table 4, in most of the test cases, the SP-UCI algorithm has 490 

the least number of function evaluations, regardless of the objective function value achieved by 491 

the EAs.  492 

Comparing the success rate and the number of function evaluation for different EAs shows 493 

that SP-UCI achieved 100% success rate with the lowest number of function evaluation, in 15 out 494 

of 29 test functions. The SC-MGWO algorithm only achieved 100% success rate with the lowest 495 

number of function evaluation in one test function. Although the hybrid SC-SAHEL algorithm is 496 

not the fastest algorithm, its speed is usually close to the fastest algorithm. This is due to the 497 

contribution of different EAs in the evolution process and the EAs behavior on different problem 498 

spaces. For instance, DE algorithm is slower in comparison to MCCE (SP-UCI) algorithm in most 499 

of the test functions. Hence, when the algorithms are working in a hybrid form, the hybrid 500 

algorithm will be slower than the situation when the MCCE (SP-UCI) algorithm is used 501 

individually. 502 

Figures 5, 6, and 7 compare the average number of complexes assigned to each EA for the 503 

29 employed test functions during the course of the search. The variation of the number of 504 

complexes assigned to each EA indicates the dominance of each EA during the course of the 505 

search. Hence, the performance of EAs at each optimization step can be monitored. In many test 506 

cases, MCCE (SP-UCI) algorithm has a relatively higher number of complexes than other EAs 507 

during the search. This shows that MCCE is a dominant search algorithm on most of the test 508 

functions. However, in some other cases, MCCE is only dominant in a certain period of the search, 509 

while other EAs have demonstrated better efficiency during the entire search. For example, on test 510 

functions  𝑐𝑐7 and 𝑐𝑐20, MCCE algorithm appears to be dominant only during the beginning of the 511 

 



search.  In the test function 𝑐𝑐7, the exploration process starts with the dominance of the MCCE and 512 

shifts between MGWO and MFL after the first 20 shuffling steps. In some of the test functions, 513 

such as 𝑐𝑐7, a more random fluctuation is observed in the number of complexes assigned to each 514 

EA. The reason for this behavior is that EAs have very close competition in these shuffling steps. 515 

Due to the noisy response surface of the test function 𝑐𝑐7, most of the EAs cannot significantly 516 

improve the (objective) function values during the exploitation phase. On test functions 𝑐𝑐8 and 𝑐𝑐18, 517 

the MFL and DE algorithms are the dominant, respectively, during the beginning of the run, while 518 

MCCE algorithm becomes dominant only when the algorithm is in exploitation phase. Lastly, on 519 

test functions 𝑐𝑐9, 𝑐𝑐22, 𝑐𝑐𝑐𝑐1, and 𝑐𝑐𝑐𝑐4, the variations of the number of complexes and the precedence 520 

of different EAs as the most dominant search algorithm are observed.  521 

It is worth mentioning that, Figures 5, 6, and 7 show the number of complexes assigned to 522 

each EA for a single optimization run. Our observation of each individual run results (not shown 523 

herein) shows variation of the number of complexes among different runs is similar to each other 524 

for most test cases. The observed variation for individual runs follows a specific pattern and is not 525 

random. The similarity of the EAs dominance pattern indicates that the selection of the EAs by the 526 

SC-SAHEL framework only depends on the characteristics of the problem space and the EAs 527 

employed. This also indicates that different EAs have pros and cons on different optimization 528 

problems. 529 

 



 530 

  531 

Figure 5. Number of complexes assigned to EAs during the entire optimization process on test function 𝒇𝒇𝟏𝟏-𝒇𝒇𝟏𝟏𝟏𝟏 532 

  533 

Figure 6. Number of complexes assigned to EAs during the entire optimization process on test function 𝒇𝒇𝟏𝟏𝟏𝟏-𝒇𝒇𝟐𝟐𝟏𝟏 534 

 



 535 

Figure 7. Number of complexes assigned to EAs during the entire optimization process on test function 𝒇𝒇𝟐𝟐𝟏𝟏-𝒇𝒇𝟐𝟐𝟐𝟐 and 𝒄𝒄𝒇𝒇𝟏𝟏-536 

𝒄𝒄𝒇𝒇𝟔𝟔 537 

As a summary of our experiments on the conceptual test functions (Tables 3, and 4, and 538 

Figure 4, 5, 6, and 7), the main advantage of the SC-SAHEL algorithm over other optimization 539 

methods is its capability of revealing the trade-off among different EAs and illustrating the 540 

competition of participating EAs. Different optimization problems have different complexity, 541 

which introduces various challenges for each EA. By incorporating different types of EAs in a 542 

parallel computing framework, and implementing an “award and punishment” logic, the newly 543 

developed SC-SAHEL framework not only provides an effective tool for global optimization but 544 

also gives the user insights about advantages and disadvantages of each participating EAs on 545 

individual optimization tasks. This shows the potential of the SC-SAHEL framework for solving 546 

different class of problems with different level of complexity. Besides, the hybrid SC-SAHEL 547 

algorithm is superior to shuffled complex-based methods with single search mechanism, such as 548 

SP-UCI, in an absolute majority of the test functions. 549 
 



4 Example applications and results 550 

In this section, we demonstrate an example application of the newly developed SC-SAHEL 551 

algorithm. A conceptual reservoir model is developed with the goal of maximizing hydropower 552 

generation on a daily-basis operation. The model is applied to the Folsom reservoir in Northern 553 

California.  554 

4.1 Reservoir Model 555 

A conceptual model is set up based on the relationship between the hydropower generation, 556 

storage, water head and bathymetry of the Folsom reservoir. Daily releases from the reservoir in 557 

the study period are treated as the parameters of the model, which in turn determines the problem 558 

dimensionality. The model objective is to maximize the hydropower generation for a specific 559 

period. The total hydropower production is a function of the water head difference between forebay 560 

and tailwater and the turbine flow rate. The driving equation of the model is based on mass balance 561 

(water budget), which is formulated as, 562 

𝑆𝑆𝑡𝑡 =  𝑆𝑆𝑡𝑡−1 + 𝐼𝐼𝑡𝑡 − 𝑅𝑅𝑡𝑡 ± 𝑀𝑀𝑡𝑡,                (2) 563 

where 𝑆𝑆𝑡𝑡 is storage at time step 𝑡𝑡, 𝐼𝐼𝑡𝑡 and 𝑅𝑅𝑡𝑡 signify total inflow and release from the reservoir at 564 

time 𝑡𝑡, respectively.  𝑀𝑀𝑡𝑡 is total outflow/inflow error which is derived by setting up mass balance 565 

for daily observed data. The objective function employed here is, 566 

OF =  ∑ 1 − 𝑃𝑃𝑡𝑡
𝑃𝑃𝑐𝑐

𝑁𝑁
𝑡𝑡=1 ,                 (3) 567 

where 𝑃𝑃𝑐𝑐 is total power plant capacity in MW and 𝑃𝑃𝑡𝑡 is total power generated in day 𝑡𝑡 in MW. For 568 

each day 𝑃𝑃𝑡𝑡 is derived as follow, 569 

𝑃𝑃𝑡𝑡 =  𝜂𝜂𝜂𝜂𝜂𝜂𝑄𝑄𝑡𝑡𝐻𝐻𝑡𝑡,                  (4) 570 

where 𝜂𝜂 signifies turbine efficiency, 𝜂𝜂 is water density (Kg/m3), g is gravity (9.81 m/s2) and 𝑄𝑄𝑡𝑡 is 571 

discharge (m3/s) at time step t. 𝐻𝐻𝑡𝑡 is hydraulic head (m) at time step t, which is defined as, 572 

 



𝐻𝐻𝑡𝑡 = ℎ𝑓𝑓 − ℎ𝑡𝑡𝑡𝑡,                                 (5) 573 

where ℎ𝑓𝑓  and ℎ𝑡𝑡𝑡𝑡  are water elevation in forebay and tailwater, respectively. ℎ𝑓𝑓  and ℎ𝑡𝑡𝑡𝑡  are 574 

derived by fitting a polynomial to reservoir bathymetry data.  575 

 In the reservoir model coined above, multiple constraints are considered for better 576 

representation of the real behavior of the system. These constraints include power generation 577 

capacity, storage level, spill capacity, and changes in the daily hydropower discharge. Total daily 578 

power generation is compared to maximum capacity of the hydropower plant. Also, rule curve is 579 

used to control reservoir storage level during the operation period. Besides, final simulated 580 

reservoir storage is constrained to 0.9 - 1.1 of the observed storage. In another word, 10% variation 581 

from the observation data is allowed for the final simulated storage level. This constraint adds 582 

information from real reservoir operation into the optimization process. This constraint can be 583 

replaced by other operation rules for simulation purposes. The spill capacity of dam is calculated 584 

according to the water level in the forebay and compared to simulated spilled water. A quadratic 585 

function is fitted to the water level and spill capacity data, to derive the spill capacity at each time 586 

step. The change in daily hydropower release is also constrained to better represent actual 587 

hydropower discharge and avoid large variation in a daily release. 588 

 The reservoir model used here is  non-linear and continuous. The constraints of the model 589 

render finding the feasible solution a challenging task for all the EAs. The SC-SAHEL framework 590 

is used to maximize the hydropower generation by minimizing the objective function value. The 591 

settings used for the SC-SAHEL is similar to the settings used for the mathematical test functions. 592 

However, the maximum number of function evaluations is set to 106. Lower bound of the 593 

parameters’ range varies monthly due to the operational rules; however, upper bound is determined 594 

according to the hydraulic structure of the dam.  595 

 596 

 



4.2 Study basin 597 

Folsom reservoir is located on the American river, in northern California and near 598 

Sacramento, California. Folsom dam was built by the US Army Corps of Engineers during 1948 599 

to 1956, and is a multi-purpose facility. The main functions of the facility are flood control, water 600 

supply for irrigation, hydropower generation, maintaining environmental flow, water quality 601 

purposes, and providing recreational area. The reservoir has a capacity of 1,203,878,290 m3 and 602 

the power plant has a total capacity of 198.7 MW. Three different periods are considered here. The 603 

first study period is April 1st, 2010 to June 30th, 2010. The year 2010 is categorized as below-604 

normal period according to California Department of Water Resources. The same period is 605 

selected in 2011 and 2015, as former is categorized by California Department of Water Resources 606 

as wet, and latter is classified as critical dry year. The input and output from the reservoir are 607 

obtained from California Data Exchange Center (CDEC). Note that demand is not included in the 608 

model because the demand data was not available from a public data source. 609 

 610 

4.3 Results and Discussion 611 

The boxplot of the objective function values is shown in Figure 8 for the Folsom reservoir 612 

during the runoff season in 2015, 2010, and 2011, which are dry, below-normal, and wet years, 613 

respectively. The presented results are based on 30 independent optimization runs; however, 614 

infeasible objective function values are removed. The feasibility of the solution is evaluated 615 

according to the objective function values. Due to the large values returned by the penalty function 616 

considered for infeasible solutions, such solutions can be distinguished from the feasible solutions. 617 

For wet year (2011) case, SC-MGWO, and SC-DE didn’t find a feasible solution in 2, and 4 runs 618 

out of 30 independent runs, respectively. The hybrid SC-SAHEL found feasible solutions in all 619 

 



the cases; however, some of these solutions are not global optima. On average, the hybrid SC-620 

SAHEL algorithm is able to achieve the lowest objective function value as compared to other 621 

algorithms during dry and below-normal period. During dry and below-normal periods, SC-622 

SAHEL, SP-UCI, and SC-DE show similar performance. In the wet period, the SP-UCI algorithm 623 

achieved the lowest objective function value. The SC-SAHEL algorithm ranked second, 624 

comparing the mean objective function values. In this period, the results achieved by the SC-DE 625 

is also comparable to SC-SAHEL and SP-UCI. The results show that overall, the hybrid SC-626 

SAHEL algorithm has similar or superior performance in comparison to the single-method 627 

algorithms. Also, the results achieved by SC-SAHEL and SP-UCI algorithms has less variability 628 

in comparison to other algorithms, which show the robustness of these algorithms. The worst 629 

performing algorithm is the SC-MGWO, which achieved the least mean objective function value 630 

in all the study periods.  631 

In Figure 9, boxplot of the number of function evaluations is presented for successful runs 632 

from the 30 independent runs during dry, below-normal and wet period years. Although the SC-633 

MGWO algorithm satisfied convergence criteria in the least number of function evaluation, the 634 

SC-MGWO was not successful in achieving the optimum solution in many cases. The SP-UCI 635 

algorithm is the second fastest method among all the algorithms. The hybrid SC-SAHEL, SC-636 

MFL, and SC-DE are the slowest algorithm for satisfying the convergence criteria, in almost all 637 

cases. The slow performance of the hybrid SC-SAHEL is due to the fact that 2 out of 4 (DE and 638 

MFL) participating EAs have very slow performance over the response surface. Figure 10 639 

demonstrates the number of complexes assigned to each EA during the search, which indicates the 640 

dominance of the participating algorithms, and the “award and punishment” logic in the reservoir 641 

model. As seen in Figure 10, the MGWO algorithm is dominant in the beginning of the search; 642 

although, it is not capable of finding the optimum solution in most cases. The reason for the 643 

 



dominance of the MGWO is the speed of the algorithm in exploring the search space. MGWO is 644 

superior to other EAs in the beginning of the search, however, after a few iterations, the MCCE 645 

algorithm took the precedence and become the dominant algorithm over other EAs. MGWO and 646 

DE are less involved in the rest of the optimization process after the initial steps. However, 647 

competition between MCCE and MFL continues. Although contribution of MGWO and DE are at 648 

minimum in rest of the optimization process, they are utilizing a part of information within the 649 

population. This can affect the speed and performance of the SC-SAHEL algorithm. In both the 650 

wet and below-normal cases, the hybrid SC-SAHEL algorithm is mostly terminated by reaching 651 

the maximum number of function evolution. However, the mean objective function value obtained 652 

by the hybrid SC-SAHEL is still superior to most of the algorithms. 653 

The performance of the SC-SAHEL can be affected by the settings of the algorithm. 654 

Different settings have been tested and evaluated for the reservoir model. The results show that 655 

the number of evolution steps before shuffling can influence the performance of the hybrid SC-656 

SAHEL algorithm. In the current setting, the number of evolution steps within each complex is set 657 

to d+1 (d is dimension of the problem). Although this setting seems to provide acceptable 658 

performance for a wide range of problems, it may not be the optimum setting for all the problems 659 

spaces and EAs. In the reservoir model, as the study period has 91 days, the model evolves each 660 

complex for 92 steps. This number of evolution steps allows the algorithms to navigate the 661 

complexes toward local solutions and increase the total number of function evaluations without 662 

specific gain. Decreasing the number of evolution steps allows the algorithms to communicate 663 

more frequently, so they can use the information obtained by other EAs. Here, for demonstrative 664 

purposes, the same setting has been applied to all the problems. However, better performance is 665 

observed for the hybrid SC-SAHEL algorithm when the number of evolution steps are set to a 666 

 



value smaller than 92. The algorithm is less sensitive to other settings for the reservoir model, 667 

however they can still affect the performance of the algorithm. 668 

In Figure 11, we present the simulated storage level for different study periods achieved 669 

by different EAs. During the dry period, not only the SC-SAHEL algorithm achieved the lowest 670 

objective function value, but also the storage level is higher than the observed storage level in most 671 

of the period. This is due to the fact that, power generation is a function of water height, as well as 672 

discharge rate. During below-normal period, SC-SAHEL, SP-UCI, and SC-DE algorithms show a 673 

similar behavior in terms of the storage level. During wet period, storage level simulated by SP-674 

UCI and SC-SAHEL algorithm is lower than all other algorithms. It is worth noting that, during 675 

wet period, SC-SAHEL and SP-UCI algorithms are able to find optimum solution (which objective 676 

function value is 0) in some of the runs. However, the simulated storage by these algorithms show 677 

some level of uncertainties (Figure 11). This shows equifinality in simulation, which means that 678 

same hydropower generation can be achieved by different sets of parameters (Feng et al. 2017). 679 

This equifinality can be due to deficiencies in the model structure, or the boundary conditions 680 

(Freer et al. 1996). The wet period seems to offer a more complex response surface for the reservoir 681 

model. During the wet period, some algorithms, such as SC-DE, are not capable of finding a 682 

feasible solution in some of the runs. In this period, the large input volume and the rule curve 683 

added more complexity to the optimization problem. In other study periods, the reservoir level is 684 

always below the rule curve. 685 

 The results of the real-world application show the potential of the newly developed SC-686 

SAHEL framework for solving high dimension problems. In general, the hybrid algorithm was 687 

more successful in finding a feasible solution in comparison to single-method algorithms. In some 688 

cases, the hybrid SC-SAHEL was terminated due to the large number of function evaluations. 689 

However, the performance of the hybrid SC-SAHEL is always comparable to the best performing 690 

 



method. This shows the potential of the SC-SAHEL for solving a broad class of optimization 691 

problems. Besides, the framework provides insight into the performance of the algorithms at 692 

different steps of the optimization process. This feature of the SC-SAHEL algorithm can aid the 693 

user to select the best setting and EA for the problem. 694 

  695 

Figure 8. Boxplots of objective function values for successful runs among 30 independent runs, for dry (A), below-normal 696 
(B) and wet period (C). The mean of objective functions values is shown with pink marker. 697 

 



  698 

Figure 9 Boxplots of number of function evaluations for successful runs among 30 independent runs for dry (A), below-699 
normal (B) and wet period (C). The mean number of function evaluation is shown with pink marker 700 

Figure 10. The average number of complexes assigned to each EA at each shuffling step for 30 independent runs for dry 701 
(A), below-normal (B), and wet (C) period  702 

 



 703 

Figure 11. Storage level for dry (A), below-normal (B), and wet (C) period 704 

 



5 Conclusions and remarks 705 

  We developed a hybrid optimization framework, named Shuffled Complex Self Adaptive 706 

Hybrid EvoLution (SC-SAHEL), which uses an “award and punishment” logic in junction with 707 

various types of Evolutionary Algorithms (EAs), and selects the best EA that fits well to different 708 

optimization problems. The framework provides an arsenal of tools for testing, evaluating and 709 

developing optimization algorithms.  We compared the performance of the hybrid SC-SAHEL 710 

with single-method algorithms on 29 test functions. The results showed that the SC-SAHEL 711 

algorithm is superior to most of single-method optimization algorithms and in general offers a 712 

more robust and efficient algorithm for optimizing various problems. Furthermore, the proposed 713 

algorithm is able to reveal the characteristics of different EAs during entire search period.  The 714 

algorithm is also designed to work in a parallel framework which can take the advantage of 715 

available computation resources. The newly developed SC-SAHEL offers different advantages 716 

over conventional optimization tools. Some of the SC-SAHEL characteristics are: 717 

- Intelligent evolutionary method adaptation during the optimization process 718 

- Flexibility of the algorithm for using different evolutionary methods 719 

- Flexibility of the algorithm for using initial sampling and boundary handling method 720 

- Independent parallel evolution of complexes 721 

- Population degeneration avoidance using PCA algorithm 722 

- Robust and Fast optimization process 723 

- Evolutionary algorithms comparison for different types of problems 724 

           Although the presented results support advantage of the hybrid SC-SAHEL to individual 725 

EAs algorithms, there are multiple directions for further improvement of the framework. For 726 

example, EAs’ performance metric for evaluating the search mechanism. In the current algorithm, 727 

the complex allocation to different EA is carried out by ranking the algorithm according to the 728 
 



EMP metric. The performance criteria can change the allocation process and affect the 729 

performance of the algorithm. Depending on the application a more comprehensive performance 730 

criterion may be necessary for achieving the best performance. However, the current EMP criterion 731 

does not affect the conclusion and comparison of different EAs. In addition, the current SC-732 

SAHEL framework is designed to solve single objective optimization problems. A multi-objective 733 

version can be developed to extend the scope of the application. This paper serves as an 734 

introduction to the newly developed SC-SAHEL algorithm. We hope that more investigation on 735 

the interaction among different EAs, boundary handling schemes and response surface in different 736 

case studies and optimization problems reveal the advantages and limitations of SC-SAHEL.  737 
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Appendix A. Modified Competitive Complex Evolution (MCCE) 934 

MCCE algorithm pseudo code is as follow: 935 

Step 0. Initialize i = 1, and get maximum number of iteration allowed, I. 936 

Step 1. Sort individuals in order of increasing objective function value. Assign individuals a 937 

triangular probability (except for the fittest point) according to: 938 

𝑝𝑝 =  2(NPT+1−𝑚𝑚)
NPT(NPT+1)

,                         (A1) 939 

where NPT is the number of individuals in the complex and 𝑛𝑛 is the rank of the sorted 940 

individuals. 941 

Step 2. Select d+1 individuals (d is problem dimension) from the complex including the fittest 942 

individual in the complex. 943 

Step 3. The selected individuals are then stored in S, forming a simplex. Generate offspring 944 

according to following steps. 945 

I. Sort individuals in S according to their objective function value. Find centroid, 𝑐𝑐, of the 946 

first q individuals. 947 

II. Reflection: Reflect the worst individual in S, 𝑤𝑤��⃑  , across the centroid to generate a new 948 

point, 𝑟𝑟, according to following equation: 949 

𝑟𝑟 = 2𝑐𝑐 − 𝑤𝑤��⃑ .                   (A2) 950 

Evaluate objective function for the new point, 𝑐𝑐𝑟𝑟. If 𝑐𝑐1 < 𝑐𝑐𝑟𝑟 < 𝑐𝑐𝑑𝑑 set offspring,  �⃑�𝑟 = 𝑟𝑟, 951 

and go to (VII). 952 

III. Expansion: If 𝑐𝑐𝑟𝑟 < 𝑐𝑐1, reflect 𝑐𝑐 across 𝑟𝑟 and generate 𝑒𝑒, 953 

𝑒𝑒 = 2𝑟𝑟 − 𝑐𝑐.                  (A3) 954 

Evaluate objective function for the new point, 𝑐𝑐𝑒𝑒. If 𝑐𝑐𝑒𝑒 < 𝑐𝑐𝑟𝑟, set �⃑�𝑟 = 𝑒𝑒 and go to (VII); 955 

otherwise, �⃑�𝑟 = 𝑟𝑟 and go to (VII). 956 

 



IV. Outside contraction: If 𝑐𝑐𝑑𝑑 ≤ 𝑐𝑐𝑟𝑟 < 𝑐𝑐𝑡𝑡, calculate the outside contraction point, 957 

𝑟𝑟𝑐𝑐����⃑ = 𝑐𝑐 + 0.5(𝑟𝑟 − 𝑐𝑐).                 (A4) 958 

Evaluate the outside contraction point, 𝑐𝑐𝑜𝑜𝑐𝑐. If 𝑐𝑐𝑜𝑜𝑐𝑐 < 𝑐𝑐𝑟𝑟 set �⃑�𝑟 = 𝑟𝑟𝑐𝑐����⃑  and go to (VII); 959 

otherwise, �⃑�𝑟 = 𝑟𝑟 and go to (VII). 960 

V. Inside contraction: If 𝑐𝑐𝑡𝑡 < 𝑐𝑐𝑟𝑟 calculate inside contraction point, 961 

𝚤𝚤𝑐𝑐���⃑ = 𝑐𝑐 + 0.5(𝑤𝑤��⃑ − 𝑐𝑐).                (A5) 962 

Evaluate inside contraction point, 𝑐𝑐𝑚𝑚𝑐𝑐. If 𝑐𝑐𝑚𝑚𝑐𝑐 < 𝑐𝑐𝑟𝑟 set �⃑�𝑟 = 𝚤𝚤𝑐𝑐���⃑  and go to (VII); otherwise 963 

continue to (VI). 964 

VI. Multinormal sampling: If the steps above, did not generate a better offspring, an 965 

individual will be drawn with a multinormal distribution defined by simplex and replace 966 

the worst individual in the simplex, regardless of objective function value. The 967 

multinormal sampling is as follow, 968 

a. Calculate the covariance matrix, R, for the simplex and store diagonal of matrix in 969 

𝐷𝐷��⃑ . 970 

b. Modify 𝐷𝐷��⃑  as follow 971 

𝐷𝐷𝑚𝑚������⃑ =  2(𝐷𝐷��⃑ +  𝑚𝑚𝑒𝑒𝑚𝑚𝑛𝑛(𝐷𝐷��⃑ )).           (A6) 972 

c. Generate a new covariance matrix 𝑅𝑅′, with 𝐷𝐷𝑚𝑚������⃑  as diagonal and zeroes everywhere 973 

else.  974 

d. Sample a point with multinormal distribution with mean of 𝑐𝑐 and covariance of 𝑅𝑅′ 975 

and store in �⃑�𝑟. 976 

VII. Replace the worst individual in the complex with �⃑�𝑟. Let 𝑖𝑖 = 𝑖𝑖 + 1. If 𝑖𝑖 ≤ 𝐼𝐼, go to (Step 977 

1); otherwise sort the complex and return the evolved complex.  978 

 



Appendix B. Modified Frog Leaping (MFL) 979 

Modified FL (MFL) algorithm is as follow, 980 

Step 0. Initialize i = 1, and get maximum number of iteration allowed , I. 981 

Step 1. Sort individuals in order of increasing objective function. Assign individuals a triangular 982 

probability using following equation: 983 

𝑝𝑝 =  2(NPT+1−𝑚𝑚)
NPT(NPT+1)

,                         (B1) 984 

where NPT is the number of individuals in the complex and 𝑛𝑛 is the rank of the sorted 985 

individuals. 986 

Step 2. Select d+1 individuals (d is problem dimension) from the complex. 987 

Step 3. The selected individuals are stored in S, forming a subcomplex. Generate offspring 988 

according to following steps. 989 

I. Generate a new point with the worst point in S, 𝑤𝑤��⃑  and best point 𝑏𝑏�⃑  in the subcomplex, as 990 

follow, 991 

𝑛𝑛𝑏𝑏����⃑ = 𝑤𝑤��⃑ +  ( 0.5 × 𝑅𝑅 + 1.5)(𝑏𝑏�⃑ − 𝑤𝑤��⃑ ),                                            (B2) 992 

where 𝑅𝑅 is a random number in the range of [0,1]. Evaluate objective function for the 993 

new point and get 𝑐𝑐𝑏𝑏. If 𝑐𝑐𝑏𝑏 < 𝑐𝑐𝑡𝑡; set �⃑�𝑟 = 𝑛𝑛𝑏𝑏����⃑  and go to (IV). 994 

II. If 𝑐𝑐𝑡𝑡 < 𝑐𝑐𝑏𝑏, generate a new point with the worst point in S,𝑤𝑤��⃑  and best point 𝑏𝑏�⃑  in the   995 

subcomplex, as follow, 996 

            𝑛𝑛𝐵𝐵����⃑ = 𝑤𝑤��⃑ +  0.5 × 𝑅𝑅(𝑏𝑏�⃑ − 𝑤𝑤��⃑ ),                                   (B3) 997 

Evaluate objective function for the new point and get 𝑐𝑐𝐵𝐵. If 𝑐𝑐𝐵𝐵 < 𝑐𝑐𝑡𝑡 set the offspring set 998 

�⃑�𝑟 = 𝑛𝑛𝐵𝐵����⃑  and go to (IV). 999 

III. Censorship step: If 𝑐𝑐𝑡𝑡 < 𝑐𝑐𝐵𝐵, randomly generate the offspring, �⃑�𝑟 by sampling within      1000 

the range of individuals in the subcomplex. 1001 

 



IV. Replace the worst individual in the complex with the offspring, �⃑�𝑟. Let 𝑖𝑖 = 𝑖𝑖 + 1. If 𝑖𝑖 ≤ 𝐼𝐼, 1002 

go to (Step 1); otherwise sort the complex and return the evolved complex.  1003 

 



Appendix C. Modified Grey Wolf Optimizer (GWO) 1004 

Modified Grey Wolf Optimizer is as follow: 1005 

Step 0. Initialize i = 1, and get maximum number of iteration allowed, I. 1006 

Step 1. Sort the individuals in the order of increasing objective function value. Assign individuals 1007 

a triangular probability (except for the fittest point) using following equation: 1008 

𝑝𝑝 =  2(NPT+1−𝑚𝑚)
NPT(NPT+1)

,                             (C1) 1009 

where NPT is the number of individuals in the complex and 𝑛𝑛 is the rank of the sorted 1010 

individuals. 1011 

Step 2. Select d+1 individuals (d is problem dimension) from the complex, with triangular 1012 

probability, including the fittest point in the complex and store them in S. 1013 

Step 3. Select the best three points in the S and store them in �⃑�𝛼, 𝛽𝛽 and �⃑�𝛾, respectively. The worst 1014 

point in the S, is stored in 𝑤𝑤��⃑  1015 

Step 4. For each of �⃑�𝛼, 𝛽𝛽 and �⃑�𝛾 , evolve individuals according to the following procedure, 1016 

I. Derive 𝐴𝐴 and 𝐶𝐶 as follow for �⃑�𝛼, 𝛽𝛽 and �⃑�𝛾, 1017 

𝐴𝐴 =  4 × 𝑟𝑟1 − 2,                        (C2) 1018 

𝐶𝐶 =  2 × 𝑟𝑟2.                             (C3) 1019 

where 𝑟𝑟1���⃑ , 𝑟𝑟2���⃑  are two independent random vectors, which have d dimensions and values in 1020 

range of [0,1). 1021 

II. Derive 𝐷𝐷��⃑ , for �⃑�𝛼, 𝛽𝛽 and �⃑�𝛾 as follow, 1022 

𝐷𝐷𝛼𝛼�����⃑ =  �𝐶𝐶𝛼𝛼����⃑ × 𝑋𝑋𝛼𝛼����⃑ − 𝑤𝑤��⃑ � , 𝐷𝐷𝛽𝛽����⃑ =  �𝐶𝐶𝛽𝛽����⃑ × 𝑋𝑋𝛽𝛽����⃑ − 𝑤𝑤��⃑ � , 𝐷𝐷𝛾𝛾����⃑ =  �𝐶𝐶𝛾𝛾����⃑ × 𝑋𝑋𝛾𝛾����⃑ − 𝑤𝑤��⃑ �.                 (C4) 1023 

III. Derive �⃑�𝑍, for �⃑�𝛼, 𝛽𝛽 and �⃑�𝛾 as follow,       1024 

  𝑍𝑍𝛼𝛼����⃑ = 𝑋𝑋𝛼𝛼����⃑ − 𝐴𝐴𝛼𝛼�����⃑ . (𝐷𝐷𝛼𝛼�����⃑ ) , 𝑍𝑍𝛽𝛽����⃑ = 𝑋𝑋𝛽𝛽����⃑ − 𝐴𝐴𝛽𝛽����⃑ . (𝐷𝐷𝛽𝛽����⃑ ) , 𝑍𝑍𝛾𝛾����⃑ = 𝑋𝑋𝛾𝛾����⃑ − 𝐴𝐴𝛾𝛾����⃑ . (𝐷𝐷𝛾𝛾����⃑ ) .                      (C5) 1025 

 



IV. Generate new point by finding the centroid of  𝑍𝑍𝛼𝛼����⃑ , 𝑍𝑍𝛽𝛽����⃑  and 𝑍𝑍𝛾𝛾����⃑ , 1026 

𝐶𝐶 =  𝑍𝑍𝛼𝛼
�����⃑ +𝑍𝑍𝛽𝛽�����⃑ +𝑍𝑍𝛾𝛾����⃑

3
.                             (C6) 1027 

V. Calculate and store objective function value for the new point, 𝑐𝑐𝐶𝐶 . If the new point is 1028 

better than the worst point among the selected points, 𝑐𝑐𝐶𝐶 < 𝑐𝑐𝑡𝑡, set �⃑�𝑟 = 𝐶𝐶, go to step 7. 1029 

Step 5. If 𝑐𝑐𝐶𝐶 > 𝑐𝑐𝑡𝑡, go to step 4, and use a smaller range for 𝐴𝐴. In this step, 𝐴𝐴 is calculated as 1030 

follow: 1031 

𝐴𝐴 =  2 × 𝑟𝑟1 − 1,                                                            (C7) 1032 

Step 6. If the newly generated individual is worse than the worst individuals in subcomplex, 1033 

generate a new point with uniform random sampling within the range of individuals in the 1034 

complex. Store the new point in �⃑�𝑟. 1035 

Step 7. Replace the worst individual among selected points in the complex with the offspring, �⃑�𝑟. 1036 

Let 𝑖𝑖 = 𝑖𝑖 + 1. If 𝑖𝑖 ≤ 𝐼𝐼, go to (Step 1); otherwise sort the complex and return the evolved 1037 

complex.  1038 

 



Appendix D. Modified Differential Evolution (DE) 1039 

Modified differential evolution algorithm is as follow: 1040 

Step 0. Initialize i = 1, and get maximum number of iteration allowed, I. 1041 

Step 1. Sort the individuals in the order of increasing objective function value. Assign individuals 1042 

a triangular probability, using following equation: 1043 

𝑝𝑝 =  2(NPT+1−𝑚𝑚)
NPT(NPT+1)

,                         (D1) 1044 

where NPT is the number of individuals in the complex and 𝑛𝑛 is the rank of the sorted 1045 

individuals. 1046 

Step 2. Select d+1 points (d is problem dimension) from the complex with the assigned 1047 

probability and store them along with the fittest point in the complex in S. 1048 

Step 3. The selected individuals are sorted and stored in S, forming a subcomplex. Generate 1049 

offspring according to following steps. 1050 

I. Generate a new point with the worst point in S, 𝑤𝑤��⃑  and using the top three individuals in 1051 

the subcomplex, 1052 

𝑉𝑉1���⃑ = 𝑤𝑤��⃑ +  2𝑐𝑐(𝑠𝑠1���⃑ − 𝑤𝑤��⃑ ) + 2𝑐𝑐(𝑠𝑠2���⃑ − 𝑠𝑠3���⃑ ),                                      (D2) 1053 

where 𝑤𝑤��⃑  is the worst point in the S, 𝑠𝑠1���⃑ , 𝑠𝑠2���⃑ , and 𝑠𝑠3���⃑  are three selected individuals. Then 1054 

mutation, and crossover operator is applied to the 𝑤𝑤��⃑  and 𝑉𝑉1���⃑  to generate 𝑉𝑉𝑚𝑚1������⃑ . The objective 1055 

function value for the new point is calculated and stored in 𝑐𝑐𝑚𝑚1. If 𝑐𝑐𝑚𝑚1 < 𝑐𝑐𝑡𝑡; set �⃑�𝑟 = 𝑉𝑉𝑚𝑚1������⃑  1056 

and go to (V).  1057 

II. If 𝑐𝑐𝑡𝑡 < 𝑐𝑐𝑚𝑚1, generate a new point with the worst point in S, 𝑤𝑤��⃑  and using the top three 1058 

points in the subcomplex as follow, 1059 

𝑉𝑉2���⃑ = 𝑤𝑤��⃑ +  0.5𝑐𝑐(𝑠𝑠1���⃑ − 𝑤𝑤��⃑ ) + 0.5𝑐𝑐(𝑠𝑠2���⃑ − 𝑠𝑠3���⃑ ),                                      (D3) 1060 

 



After mutation, crossover operator is applied to the 𝑤𝑤��⃑  and 𝑉𝑉2���⃑  to generate 𝑉𝑉𝑚𝑚2������⃑ . Then, the 1061 

objective function for the new point is derived and stored in 𝑐𝑐𝑚𝑚2. If 𝑐𝑐𝑚𝑚2 < 𝑐𝑐𝑡𝑡; set �⃑�𝑟 = 𝑉𝑉𝑚𝑚2������⃑  1062 

and go to (V).  1063 

III. If 𝑐𝑐𝑡𝑡 < 𝑐𝑐𝑚𝑚2, generate a new point with the worst point in S, 𝑤𝑤��⃑  and using the top three 1064 

points in the subcomplex as follow, 1065 

𝑉𝑉3���⃑ = 𝑤𝑤��⃑ +  𝑐𝑐(𝑠𝑠1���⃑ − 𝑤𝑤��⃑ ) + 𝑐𝑐(𝑠𝑠2���⃑ − 𝑠𝑠3���⃑ ),                                                         (D4) 1066 

After mutation, crossover operator is applied to the 𝑤𝑤��⃑  and 𝑉𝑉3���⃑  to generate 𝑉𝑉𝑚𝑚3������⃑ . The 1067 

objective function value is calculated and stored in 𝑐𝑐𝑚𝑚3. If 𝑐𝑐𝑚𝑚3 < 𝑐𝑐𝑡𝑡; set �⃑�𝑟 = 𝑉𝑉𝑚𝑚3������⃑  and go to 1068 

(V).  1069 

IV. If the newly generated point is worse than the worst point in subcomplex, generate a new 1070 

point from uniform random distribution within the range of points in the complex. Store 1071 

the new point in �⃑�𝑟. 1072 

V. Replace the worst point in the complex with the offspring, �⃑�𝑟. Let 𝑖𝑖 = 𝑖𝑖 + 1. If 𝑖𝑖 ≤ 𝐼𝐼, go to 1073 

(Step 1); otherwise sort the complex and return the evolved complex.  1074 

 



Abbreviation 1075 

AMALGAM-SO: A Multialgorithm Genetically Adaptive Method for Single Objective 1076 

Optimization 1077 

CCE: Competitive Complex Evolution 1078 

DE: Differential Evolution 1079 

EA: Evolutionary Algorithm 1080 

EMP: Evolutionary Methods Performance 1081 

FL: Frog Leaping 1082 

GWO: Grey Wolf Optimizer 1083 

LHS: Latin Hypercube Sampling 1084 

MCCE: Modified Competitive Complex Evolution 1085 

MFL: Modified Frog Leaping 1086 

MGWO: Modified Grey Wolf Optimizer 1087 

MOCOM-UA: Multi-Objective Complex evolution, University of Arizona 1088 

MOSCEM: Multi-Objective Shuffled Complex Evolution Metropolis 1089 

NFL: No Free Lunch 1090 

PCA: Principal Component Analysis 1091 

PSO: Particle Swarm Optimization 1092 

SaDE: Self-adaptive DE algorithm 1093 

SCE-UA: Shuffle Complex Evolution-developed at University of Arizona 1094 

SCEM-UA: Shuffled Complex Evolution Metropolis algorithm-developed at University of 1095 

Arizona 1096 

SC-SAHEL: Shuffle Complex-Self Adaptive Hybrid EvoLution 1097 

 



SP-UCI: Shuffled Complex strategy with Principal component analysis-developed at University 1098 

of California, Irvine 1099 

URS: Uniform Random Sampling 1100 
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