202 research outputs found

    The mirror illusion induces high gamma oscillations in the absence of movement

    Get PDF
    We tested whether mirror visual feedback (MVF) from a moving hand induced high gamma oscillation (HGO) response in the hemisphere contralateral to the mirror and ipsilateral to the self-paced movement. MEG was recorded in 14 subjects under three conditions: bilateral synchronous movements of both index fingers (BILATERAL), movements of the right hand index finger while observing the immobile left index finger (NOMIRROR), and movements of the right hand index finger while observing its mirror reflection (MIRROR). The right hemispheric spatiospectral regions of interests (ROIs) in the sensor space, sensitive to bilateral movements, were found by statistical comparison of the BILATERAL spectral responses to baseline. For these ROIs, the post-movement HGO responses were compared between the MIRROR and NOMIRROR conditions. We found that MVF from the moving hand, similarly to the real movements of the opposite hand, induced HGO (55–85 Hz) in the sensorimotor cortex. This MVF effect was frequency-specific and did not spread to oscillations in other frequency bands. This is the first study demonstrating movement-related HGO induced by MVF from the moving hand in the absence of proprioceptive feedback signaling. Our findings support the hypothesis that MVF can trigger the feedback-based control processes specifically associated with perception of one's own movements

    From locomotion to dance and back : exploring rhythmic sensorimotor synchronization

    Full text link
    Le rythme est un aspect important du mouvement et de la perception de l’environnement. Lorsque l’on danse, la pulsation musicale induit une activité neurale oscillatoire qui permet au système nerveux d’anticiper les évènements musicaux à venir. Le système moteur peut alors s’y synchroniser. Cette thèse développe de nouvelles techniques d’investigation des rythmes neuraux non strictement périodiques, tels que ceux qui régulent le tempo naturellement variable de la marche ou la perception rythmes musicaux. Elle étudie des réponses neurales reflétant la discordance entre ce que le système nerveux anticipe et ce qu’il perçoit, et qui sont nécessaire pour adapter la synchronisation de mouvements à un environnement variable. Elle montre aussi comment l’activité neurale évoquée par un rythme musical complexe est renforcée par les mouvements qui y sont synchronisés. Enfin, elle s’intéresse à ces rythmes neuraux chez des patients ayant des troubles de la marche ou de la conscience.Rhythms are central in human behaviours spanning from locomotion to music performance. In dance, self-sustaining and dynamically adapting neural oscillations entrain to the regular auditory inputs that is the musical beat. This entrainment leads to anticipation of forthcoming sensory events, which in turn allows synchronization of movements to the perceived environment. This dissertation develops novel technical approaches to investigate neural rhythms that are not strictly periodic, such as naturally tempo-varying locomotion movements and rhythms of music. It studies neural responses reflecting the discordance between what the nervous system anticipates and the actual timing of events, and that are critical for synchronizing movements to a changing environment. It also shows how the neural activity elicited by a musical rhythm is shaped by how we move. Finally, it investigates such neural rhythms in patient with gait or consciousness disorders

    Imaging the spatial-temporal neuronal dynamics using dynamic causal modelling

    Get PDF
    Oscillatory brain activity is a ubiquitous feature of neuronal dynamics and the synchronous discharge of neurons is believed to facilitate integration both within functionally segregated brain areas and between areas engaged by the same task. There is growing interest in investigating the neural oscillatory networks in vivo. The aims of this thesis are to (1) develop an advanced method, Dynamic Causal Modelling for Induced Responses (DCM for IR), for modelling the brain network functions and (2) apply it to exploit the nonlinear coupling in the motor system during hand grips and the functional asymmetries during face perception. DCM for IR models the time-varying power over a range of frequencies of coupled electromagnetic sources. The model parameters encode coupling strength among areas and allows the differentiations between linear (within frequency) and nonlinear (between-frequency) coupling. I applied DCM for IR to show that, during hand grips, the nonlinear interactions among neuronal sources in motor system are essential while intrinsic coupling (within source) is very likely to be linear. Furthermore, the normal aging process alters both the network architecture and the frequency contents in the motor network. I then use the bilinear form of DCM for IR to model the experimental manipulations as the modulatory effects. I use MEG data to demonstrate functional asymmetries between forward and backward connections during face perception: Specifically, high (gamma) frequencies in higher cortical areas suppressed low (alpha) frequencies in lower areas. This finding provides direct evidence for functional asymmetries that is consistent with anatomical and physiological evidence from animal studies. Lastly, I generalize the bilinear form of DCM for IR to dissociate the induced responses from evoked ones in terms of their functional role. The backward modulatory effect is expressed as induced, but not evoked responses

    Adaptation to temporal structure

    No full text

    L’influence de l'anticipation sur les modulations de puissance dans la bande de fréquence bêta durant la préparation du mouvement et L'effet de la variance dans les rétroactions sensorielles sur la rétention à court terme

    Get PDF
    La production du mouvement est un aspect primordial de la vie qui permet aux organismes vivants d'interagir avec l'environnement. En ce sens, pour être efficaces, tous les mouvements doivent être planifiés et mis à jour en fonction de la complexité et de la variabilité de l'environnement. Des chercheurs du domaine du contrôle moteur ont étudié de manière approfondie les processus de planification et d’adaptation motrice. Puisque les processus de planification et d'adaptation motrice sont influencés par la variabilité de l'environnement, le présent mémoire cherche à fournir une compréhension plus profonde de ces deux processus moteurs à cet égard. La première contribution scientifique présentée ici tire parti du fait que les temps de réaction (TR) sont réduits lorsqu'il est possible d'anticiper l’objectif moteur, afin de déterminer si les modulations de TR associées à l'anticipation spatiale et temporelle sont sous-tendues par une activité préparatoire similaire. Cela a été fait en utilisant l'électroencéphalographie (EEG) de surface pour analyser l'activité oscillatoire dans la bande de fréquence bêta (13 - 30 Hz) au cours de la période de planification du mouvement. Les résultats ont révélé que l'anticipation temporelle était associée à la désynchronisation de la bande bêta au-dessus des régions sensorimotrices controlatérales à la main effectrice, en particulier autour du moment prévu de l'apparition de la cible. L’ampleur de ces modulations était corrélée aux modulations de TR à travers les participants. En revanche, l'anticipation spatiale a augmenté de manière sélective la puissance de la bande bêta au-dessus des régions pariéto-occipitales bilatérales pendant toute la période de planification. Ces résultats suggèrent des états de préparation distinct en fonction de l’anticipation temporelle et spatiale. D’un autre côté, le deuxième projet traite de la façon dont la variabilité de la rétroaction sensorielle interfère avec la rétention à court terme dans l’étude de l’adaptation motrice. Plus précisément, une tâche d'adaptation visuomotrice a été utilisée au cours de laquelle la variance des rotations a été manipulée de manière paramétrique à travers trois groupes, et ce, tout au long de la période d’acquisition. Par la suite, la rétention de cette nouvelle relation visuomotrice a été évaluée. Les résultats ont révélé que, même si le processus d'adaptation était robuste à la manipulation de la variance, la rétention à court terme était altérée par des plus hauts niveaux de variance. Finalement, la discussion a d'abord cherché à intégrer ces deux contributions en revisitant l'interprétation des résultats sous un angle centré sur l'incertitude et en fournissant un aperçu des potentielles représentations internes de l'incertitude susceptibles de sous-tendre les résultats expérimentaux observés. Par la suite, une partie de la discussion a été réservée à la manière dont le champ du contrôle moteur migre de plus en plus vers l’utilisation de tâches et d’approches expérimentales plus complexes, mais écologiques aux dépends des tâches simples, mais quelque peu dénaturées que l’on retrouve dans les laboratoires du domaine. La discussion a été couronnée par une brève proposition allant dans ce sens.Abstract: Motor behavior is a paramount aspect of life that enables the living to interact with the environment through the production of movement. In order to be efficient, movements need to be planned and updated according to the complexity and the ever-changing nature of the environment. Motor control experts have extensively investigated the planning and adaptation processes. Since both motor planning and motor adaptation processes are influenced by variability in the environment, the present thesis seeks to provide a deeper understanding of both these motor processes in this regard. More specifically, the first scientific contribution presented herein leverages the fact that reaction times (RTs) are reduced when the anticipation of the motor goal is possible to elucidate whether the RT modulations associated with temporal and spatial anticipation are subtended by similar preparatory activity. This was done by using scalp electroencephalography (EEG) to analyze the oscillatory activity in the beta frequency band (13 – 30 Hz) during the planning period. Results revealed that temporal anticipation was associated with beta-band desynchronization over contralateral sensorimotor regions, specifically around the expected moment of target onset, the magnitude of which was correlated with RT modulations across participants. In contrast, spatial anticipation selectively increased beta-band power over bilateral parieto-occipital regions during the entire planning period, suggesting that distinct states of preparation are incurred by temporal and spatial anticipation. Additionally, the second project addressed how variance in the sensory feedback interferes with short-term retention of motor adaptation. Specifically, a visuomotor adaptation task was used during which the variance of exposed rotation was parametrically manipulated across three groups, and retention of the adapted visuomotor relationship was assessed. Results revealed that, although the adaptation process was robust to the manipulation of variance, the short-term retention was impaired. The discussion first sought to integrate these two projects by revisiting the interpretation of both projects under the scope of uncertainty and by providing an overview of the internal representation of uncertainty that might subtend the experimental results. Subsequently, a part of the discussion was reserved to allude how the motor control field is transitioning from laboratory-based tasks to more naturalistic paradigms by using approaches to move motor control research toward real-world conditions. The discussion culminates with a brief scientific proposal along those lines

    Adaptation to temporal structure

    Get PDF

    Adaptation to temporal structure

    Get PDF

    Neurophysiological correlates of preparation for action measured by electroencephalography

    Get PDF
    The optimal performance of an action depends to a great extend on the ability of a person to prepare in advance the appropriate kinetic and kinematic parameters at a specific point in time in order to meet the demands of a given situation and to foresee its consequences to the surrounding environment. In the research presented in this thesis, I employed high-density electroencephalography in order to study the neural processes underlying preparation for action. A typical way for studying preparation for action in neuroscience is to divide it in temporal preparation (when to respond) and event preparation (what response to make). In Chapter 2, we identified electrophysiological signs of implicit temporal preparation in a task where such preparation was not essential for the performance of the task. Electrophysiological traces of implicit timing were found in lateral premotor, parietal as well as occipital cortices. In Chapter 3, explicit temporal preparation was assessed by comparing anticipatory and reactive responses to periodically or randomly applied external loads, respectively. Higher (pre)motor preparatory activity was recorded in the former case, which resulted in lower post-load motor cortex activation and consequently to lower long-latency reflex amplitude. Event preparation was the theme of Chapter 4, where we introduced a new method for studying (at the source level) the generator mechanisms of lateralized potentials related to response selection, through the interaction with steady-state somatosensory responses. Finally, in Chapter 5 we provided evidence for the existence of concurrent and mutually inhibiting representations of multiple movement options in premotor and primary motor areas.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Cortico-muscular coherence in sensorimotor synchronisation

    Get PDF
    This thesis sets out to investigate the neuro-muscular control mechanisms underlying the ubiquitous phenomenon of sensorimotor synchronisation (SMS). SMS is the coordination of movement to external rhythms, and is commonly observed in everyday life. A large body of research addresses the processes underlying SMS at the levels of behaviour and brain. Comparatively, little is known about the coupling between neural and behavioural processes, i.e. neuro-muscular processes. Here, the neuro-muscular processes underlying SMS were investigated in the form of cortico-muscular coherence measured based on Electroencephalography (EEG) and Electromyography (EMG) recorded in human healthy participants. These neuro-muscular processes were investigated at three levels of engagement: passive listening and observation of rhythms in the environment, imagined SMS, and executed SMS, which resulted in the testing of three hypotheses: (i) Rhythms in the environment, such as music, spontaneously modulate cortico-muscular coupling, (ii) Movement intention modulates cortico-muscular coupling, and (iii) Cortico-muscular coupling is dynamically modulated during SMS time-locked to the stimulus rhythm. These three hypotheses were tested through two studies that used Electroencephalography (EEG) and Electromyography (EMG) recordings to measure Cortico-muscular coherence (CMC). First, CMC was tested during passive music listening, to test whether temporal and spectral properties of music stimuli known to induce groove, i.e., the subjective experience of wanting to move, can spontaneously modulate the overall strength of the communication between the brain and the muscles. Second, imagined and executed movement synchronisation was used to investigate the role of movement intention and dynamics on CMC. The two studies indicate that both top-down, and somatosensory and/or proprioceptive processes modulate CMC during SMS tasks. Although CMC dynamics might be linked to movement dynamics, no direct correlation between movement performance and CMC was found. Furthermore, purely passive auditory or visual rhythmic stimulation did not affect CMC. Together, these findings thus indicate that movement intention and active engagement with rhythms in the environment might be critical in modulating CMC. Further investigations of the mechanisms and function of CMC are necessary, as they could have important implications for clinical and elderly populations, as well as athletes, where optimisation of motor control is necessary to compensate for impaired movement or to achieve elite performance
    corecore