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Abstract

Oscillatory brain activity is a ubiquitous feature of neuronal dynamics and
the synchronous discharge of neurons is believed to facilitate integration both
within functionally segregated brain areas and between areas engaged by the same
task. There is growing interest in investigating the neural oscillatory networksin
vivo. The aims of this thesis are to (1) develop an advanced method, Dynamic
Causal Modelling for Induced Responses (DCM for IR), for modelling the brain
network functions and (2) apply it to exploit the nonlinear coupling in the motor
system during hand grips and the functional asymmetries during face perception.

DCM for IR models the time-varying power over a range of
frequencies of coupled electromagnetic sources. The model parameters encode
coupling strength among areas and alows the differentiations between linear
(within frequency) and nonlinear (between-frequency) coupling. | applied DCM
for IR to show that, during hand grips, the nonlinear interactions among neuronal
sources in motor system are essential while intrinsic coupling (within source) is
very likely to be linear. Furthermore, the normal aging process alters both the
network architecture and the frequency contents in the motor network.

| then use the bilinear form of DCM for IR to model the experimental
manipulations as the modulatory effects. | use MEG data to demonstrate
functional asymmetries between forward and backward connections during face
perception: Specifically, high (gamma) frequencies in higher cortica areas
suppressed low (alpha) frequencies in lower areas. This finding provides direct
evidence for functional asymmetries that is consistent with anatomical and

physiological evidence from animal studies. Lastly, | generalize the bilinear form



of DCM for IR to dissociate the induced responses from evoked ones in terms of
their functional role. The backward modulatory effect is expressed as induced, but

not evoked responses.
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CHAPTER 1

INTRODUCTION

1.1 Oscillatory activitiesin thebrain

Neur ol ogists should take brain rhythms serioudly.
Smon F. Farmer, Brain (2002)

Oscillatory activity in the brain is ubiquitous and a halmark of many
neuronal systems. Rhythmic neuronal oscillations were first observed in rabbit
brainsin 1890 by Beck (see Swartz B.E. and Goldensohn E.S., 1998 for a review
of EEG-related history) (Swartz and Goldensohn, 1998). Since then oscillatory
activity in human brains has been seen consistently across different spatial scales,
from single unit recordings, through local field potential (LFPs) recordings, to
macroscopic  measures  such  as  electroencephalogram  (EEG)  or
magnetoencephalogram (MEG) (Crone et al., 1998a; Crone et al., 1998b; Kilner et
al., 2003; Leocani et al., 1997). Furthermore, several different cortical regions
have been shown to be involved, predominantly in the vicinity of the primary
motor, sensory, visual and auditory cortices as well as subcortical structures such
as the thalami and basal ganglia (BG) (Gray et a., 1989; Tiitinen et al 1993; Tass

et a 1998; Singer, 1999; Talon-Baudry and Bertrand, 1999; Varela et al, 2001,
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Singh et a 2002, Brown, 2007; Priori et a., 2004). In addition, neurons can
exhibit a broad range of oscillations from theta to gamma-band oscillations (~4-70
Hz) as well as high gamma (~80-150 Hz). Brain rhythms are of interest in
neuroscience because of the idea that oscillations might facilitate integration both
within functionally segregated brain areas (i.e. small-scale circuits) and between
areas engaged by the same task (large-scale networks) (Singer and Gray, 1995;
Kahana et al., 1999; Rodriguez et al., 1999; Engel et a., 1991; Gray et al., 1992;
Gray and Viana Di Prisco, 1997 ; Konig et a., 1995; Murthy and Fetz, 1992;
Sanes and Donoghue, 1993; Singer, 1969; Steriade et a., 1996). In short, neuronal
oscillations exhibit a variety of gpatial distributions, frequencies and are

associated with several brain network functions.

Electromagnetic waves are defined by their frequency contents (i.e. spectrum)
and this principle applies also to brain rhythms. In general, brain rhythms can be
divided into theta (4-8 Hz), alpha (8-15 Hz), beta (15-30), gamma (30-80) and
more recent, high gamma (80-150 Hz) bands according to their frequency span.
Depending on the brain region or the underlying task they might have a different
name or frequency content. For example, mu (10- and 20- Hz) rhythms are seenin
sensori-motor regions during the resting condition and Piper (40- Hz)
electromyogram (EMG) rhythms (Salmelin and Hari 1994; Brown et. al., 1998).
In this thesis, | will focus on the oscillations between 4 and 48 Hz in the motor
system (Murthy & Fetz, 1992, 19964, b; Sanes & Donoghue, 1993; Baker, Olivier

& Lemon, 1997) and in the "core system" for face processing identified by Haxby
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and colleagues (Haxby et a., 2000). In the following section, the recognized

functional roles of brain rhythmsin terms of frequency and phase are reviewed.

1.1.1 Frequency aspects of neuronal rhythms

Dynamic modulation of oscillatory power at 10- , 20- and 30- Hz in primary
motor cortex (M1), supplementary motor area (SMA) and premotor cortex (PM)
has been examined intensively in numerous studies. In general, alpha and beta
power in M1, SMA and PM are suppressed before movement emerges and
rebound after the end of movement. These changes are known as event-related
desynchronization (ERD) and event-related synchronization (ERS) respectively,
and are sometimes accompanied by transient gamma ERS (Andrew and
Pfurtscheller, 1996; Crone et a., 1998a; Crone et al., 1998b; Leocani et a., 1997,
Pfurtscheller and Lopes da Silva, 1999; Pfurtscheller et al., 1998; Toro et al., 1994;
Wheaton et al., 2008). According to their topographical patterns, apha, beta and
gamma activities exhibit a somatotopic representation in M1 and are believed to
be associated with the control of movement (Pfurtscheller, 2003; Salmelin and
Hari, 1994). Studies of corticomuscular coherence and transcranial magnetic
stimulation (TMS) further verify that beta and gamma range (15 - 40) oscillations
originating from M1 contribute to motor control by driving the spindl
motorneurons via the corticospinal tract (Darling et a., 2006; Mima and Hallett,
1999; Thut and Miniussi, 2009; Grosse et al., 2002). In addition, corticomuscular
coherence and spectral densities can be modulated by movement kinematics, such

as movement speed and movement type (Kilner et a., 2002; Kilner et al., 2003;
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Leocani et a., 1997, Manganotti 1998; Muller-Putz et al., 2007; Muller et a.,
2003; Neuper and Pfurtscheller, 2001; Patino et al., 2008; Pfurtscheller, 1992; Rau
et a., 2003; Omlor et a., 2007). In particular, mu (8-13) rhythm power fluctuation
can also be seen during observing action execution and is believed to play arole
in the ‘mirror neuron’ system (Oberman et a., 2005; Ulloa and Pineda, 2007). In
relation to the time course of apha, beta and gamma power dynamics, it was
suggested that changes in these oscillations are also associated with motor
preparation/planning in addition to motor execution (Ohara et al., 2000; Rektor et
al., 2006). Sensory feedback is aso clearly important for optimal motor control,
and studies of deafferented subjects have shown that the power of 15-30 Hz
neuronal oscillations and 15- to 30-Hz coherence between EMG activity in hand
muscles significantly decrease compared to that of control subjects. This suggests
that proprioceptive information contributes to the modulation of 15- to 30-Hz
oscillations in the motor system (Kilner et a., 2004; Patino et al., 2008). In other
pathological states, those oscillatory activities are especially interesting and can be
used to address questions about the underlying mechanisms as an index of
functional deficits (Czigler et al., 2007; Patino et a., 2006; Raethjen et al., 2007).
For example, in Parkinson's patients, the substantial synchronization at 4~6 Hz
between the contralateral primary motor cortex and forearm muscles is thought to
contribute to resting tremors, while the excessive synchrony at 10- to 35 Hz in
basal ganglia (BG) and subthalamic nucleus is likely to contribute to bradykinesia

(for review, Brown, 2007).
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There is growing interest in the functional significance of oscillations in
‘non-motor’ areas, e.g. face perception. Multiple oscillations are engaged in face
processing, including delta (0.5-4 Hz), theta, adpha, beta, and gamma oscillations
(see Basar et al., 2006 for review). Perception of faces can induce changes in the
coherence of broadband (4-45 Hz) power between the fusiform gyrus and
temporal, parietal, and frontal cortices (Klopp et a. 1999; Klopp et al. 2000).
Specifically, the perception of a known picture (for instance, grandmother’ s face)
compared to unknown elderly faces induced greater theta oscillations in the
frontal area (Basar et al., 2006). Moreover, the emotional facial expression
induced greater theta oscillation in the right temporal-occipital locations than that
in right central areas (Balconi and Pozzoli, 2008; Guntekin and Basar, 2007;

Ozgoren et al., 2005).

1.1.2 Evoked and induced activities

Operationally speaking, cortical oscillatory activity can be divided into (i)
ongoing (or spontaneous), (ii) evoked and (iii) induced components (Galambos,
1992; Tdlon-Baudry and Bertrand, 1999). Evoked and induced activities are
event-related and elicited by the changes of the environment, either internaly (e.g.
a thought) or externally (e.g. electrical stimulus) or both, whereas ongoing
components are not associated with the processing of a stimulus or the occurrence
of specific events. The work in this thesis focuses on event-related evoked and
induced responses. The difference between evoked and induced responses is their

phase-relationship to the stimulus. Specifically, evoked components are phase-
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locked to the stimulus, whereas induced responses are not. Conventionally, in
order to extract the evoked activities from unwanted disturbance (mainly non-
phase locked signals including measurement noise and induced activities) an
averaging technique is employed. Averaging the E/MEG signals across trias
eliminates the non-stationary components and yields the evoked potentials/fields
with enhanced signal-to-noise ratio (proportional to N¥? where N = the number of
averaged trials). Evoked spectral properties can be obtained subsequently via
Fourier or wavelet transform. In contrast, induced responses can only be derived
in the time-frequency domain because the non-phase locked property will lead to
their cancellation when averaging (Figure 1.1 left). The extraction of induced
responses comprises two steps: In the first, each trial is projected into the time—
frequency domain to obtain the spectral densities without the cancellation effect.
These are then averaged across trials to obtain the total power (Figure 1.1 right).
In the second step, the power of evoked and background components are
subtracted from this total power to obtain the induced power. In short, evoked
responses are the power of the average; while induced responses are the average
power without the power of the average. The functional role of induced responses
has been described as mediating ‘top-down’ modulation through backward
connections in cognitive studies of attention, learning and face perception; as
opposed to the bottom-up driving process that may be more manifest evoked
components, which are considered to be mediated mainly via feed-forward
projections (Talon-Baudry and Bertrand, 1999). The implication is that the
evoked and induced activities may reflect different neuronal processes and

mechanisms.
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However, a recent study using ssmulated data has reported that the evoked
and induced responses may “share” common generating mechanisms up to certain
level (David et.a, 2006). In the work of David and colleagues, the authors
propose two generating mechanisms for neuronal processes. dynamic and
structural; both dynamic and structural mechanisms can mediate induced
responses (see David et.al, 2006 for details). For example, if the transfer
functions of the system change, reflecting changes in the systems coupling
parameters, the input power will be expressed differently in the induced power.
These are structural effects. On the other hand, if there are amplitude variations in
stimulus-locked inputs, the evoked power will be recapitulated in the induced
power as the variance of the amplitude increases, athough the evoked responses
in time domain remains the same. These are dynamic causes. One possible
explanation of these amplitude variations (gain effects) is the effect of attention
(McAdams and Maunsell, 1999; Treue and Martinez-Trujillo, 1999). In the work
of David and colleagues, the authors propose two generating mechanisms for
neuronal processes. dynamic and structural; Dynamic mechanisms express the
changes of the inputs as part of the perturbation to the system while structural
mechanisms reflect the changes in the responses resulted from the perturbation.
Both dynamic and structural mechanisms can mediate the induced responses (see
David et.al, 2006 for details). For example, if the transfer functions of the system
change at time t, reflecting the changes of systems coupling parameters, the input
power will be expressed as the induced power. This is the structural effects. On
the other hand, if there are amplitude variations in stimulus-locked inputs, the

evoked power will be recapitulated in the induced power as the variance of the
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amplitude increases, although the evoked responses in time domain remains the
same. This is the dynamic causes. One possible explanation of these amplitude
variations (gain effects) is the effect of attention (McAdams and Maunsell, 1999;
Treue and Martinez-Trujillo, 1999). Figure 1.2 (adapted from David et a. 2006)
illustrates the concept of this many-to-many mapping between evoked and
induced activities and the underlying mechanisms. Therefore, a generative model
which can account for the ‘shared’ generating mechanisms is needed when
studying the underlying neuronal processing. Indeed, the conventional way of
separating evoked and induced responses posits an assumption that they are
linearly related but this may not hold when modelling the oscillatory networks
with respect to their generating mechanisms. In this thesis, | propose a generative
model that models the average of total power, i.e. both the evoked and induced
components, termed Dynamic Causal Modelling for induced responses (DCM for
IR). Thus the term ‘induced responses in DCM for IR refers to both the evoked
and induced responses which is different from the conventional definition of
induced responses. In chapter 2, |1 will describe DCM for IR in detail, and in
chapter 6, |1 will further exploit/disassociate the relationship of evoked and
induced responses in terms of the generating mechanisms using a generative

dynamic causal mode!.
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Figure 1.1 Schematic illustration of obtaining evoked and induced responses
(adapted from Tallon-Baudry and Bertrand, 1999). Left : the evoked components
can be derived from the average of trials in time domain. Right : the induced
responses are averaged in the time- frequency domain, preserving non-phase
locked components.
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Figure 1.2 Schematic illustration of the relations between dynamic v.s. structural
causes and evoked and induced responses (from David et al, 2006)
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1.2 Measuring the brainweb: methodological consider ations

No man isan idand, entire of itsalf.
John Donne (1572-1631)

The human brain has more than one hundred billion neurons (of the order of
10" and those neurons work together in ‘distributed networks (Jacobs and
Scheibel, 1993; Kandel, 2000). The concept of neural assemblies inspires the
analysis of functional neuronal networks. One of the first attempts was to use
neuroanatomical maps of cytoarchiteacture that define the connection between
brain regions to understand functional networks (Brodmann, 1909). The advent of
modern brain mapping techniques has made it possible to investigate cerebral
functions in the intact human brain, non-invasively. In particular, the rich and
versatile information embedded in EEG/MEG signal s together with high temporal
resolution offers a good opportunity to understand the dynamics of complex brain
functions. However, given the fact that neuronal processing is complex and
nonlinear in nature, it is difficult to decipher the neural code completely and the
need for development of new modelling methods is growing. In the following
section, several methodological issues in studying neural networks are briefly
introduced, including linear and nonlinear methods, univariate and multivariate
approaches, inferential and non-inferential modelling, and power modulation and
phase-synchrony. More comprehensive discussion of the methodological and
functional relevance to the specific aims of this thesis work will be provided in

chapters 2 to 6.
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1.2.1 Linear versus Nonlinear methods

In mathematics, a function f of a set of independent variables

X={%,%... %} R is linear if it can be written as f(X)=AX+B whilst a
nonlinear function is a function that cannot be written in that form, for instance

— 2
F(X)=AX"+BX+C \here the matrices A, B and C contain arbitrary

constants. The key feature of a linear function is that it satisfies the principle of
superposition : f(aX; +bX,)=af(X,)+bf(X,) . In the field of signal
processing and control theory, the characteristics of a system can be described
entirely by a fundamental function (Oppenheim, 1999; Stark H., 1994; Moon,
2000). A system is a set of multiple interconnected functional components,
comprising three elements:. the input X(t), the output Y (t) and the system function
f(t) (also called impulse response function in the time domain or transfer function
in the frequency domain). The system function provides a transformation from
the input to the output. A system can be represented mathematicaly:
Y (H)=f(t) A X(t) (A is the convolution operator) and is linear if and only if this
system function f(t) is linear. This notation enables the effective estimation of
neural systems (i.e. coupling) by characterizing the system function. Linear
methods use a linear system function to measure dependencies between or among
variables whereas nonlinear approaches have a nonlinear system function. In other
words, linear analysis engages only the first-order transfer function, which is easy
to solve while non-linear methods have the high-order, generalised transfer
functions and are capable of catching subtle yet important brain dynamics; in

addition to linear features (in some cases, without linear features, for example,
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bispectral analysis, see Appendix B for mathematical description ). Specifically,
in the frequency domain, this speaks to the fact that cross-frequency interactions
must be nonlinear because different frequencies can only be coupled through
high-order transfer functions (Friston et al 2001). Linear methods can measure
only the within frequency coupling using a first order transfer function. This
notion is central to my thesis and | will elaborate this point in more detail in

chapter 2, along with an exploratory simulation using a neural mass mode!.

Linear approaches such as coherence and correlation have been used
intensively to study oscillatory neuronal activity (Gerloff and Hallett, 1999,
Gerloff et al., 1998 and Manganotti et al., 1998; Andrew and Pfurtscheller, 1996;
Babiloni et al., 2004; Gross et al., 2001; Kilner et a., 2004; Serrien et al., 2005).
Linear methods can extract the most significant features of the data and provide a
means of summarizing the system characteristics. However, a linear
approximation may not be able to represent al the properties of brain signals
accurately (Micheloyannis et al., 2003) as evidence has emerged that nonlinearity
is a crucia aspect of brain function (for review, see Stam, 2005). Importantly,
nonlinear approaches have been applied widely to study inter-areal
communication in the expression of cross-frequency coupling in spectral
characterisations of the time-series (Breakspear, 2002; Chen et al., 2009; Jensen
and Colgin, 2007; Talon-Baudry and Bertrand, 1999; Varela et al., 2001; von
Stein and Sarnthein, 2000). At the microscopic scale, nonlinear interactions at
synaptic connections are believed to have a modulatory effect on generating the
post-synaptic responses (Kandel, 2000; see also chapter 5 for examples).

However, at the macroscopic scale, the functional role of nonlinear coupling is yet
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to be determined (Breakspear, 2002; Robinson et al., 2003; Wright et al., 2001). In
animal studies, it has been reported that hippocampa neurons in rats exhibit
nested oscillations, where the phase of theta rhythms (~8 Hz) is coupled to the
amplitude of a high rhythm at gamma (~40 Hz) frequencies during active
exploration. The network of interneurons targeting fast and slow r-aminobutyric
acid (GABA) type A receptors is thought to provide substrate for these rhythms
and nonlinear coupling (nested oscillation) is believed to associate with
declarative memory (White et al., 2000). Nevertheless, evidence is emerging to
suggest that nonlinear coupling may mediate the modulatory effects reflecting top-
down processing (Friston 2003; von Stein and Sarnthein, 2000a; von Stein et al.,
2000b; Breakspear, 2002). This may be important as a behavioural goal can be
achieved successfully when the higher areas of the cortical hierarchy predict
incoming sensory information and can pass it to lower levels to explain away
bottom-up inputs; This is known as predictive coding (Rao and Ballard 1999;
Friston 2005). Moreover, nonlinear coupling mechanisms seem to play a critical
role in pathological states. From work in patients with Parkinson’s disease it has
been shown that in the absence of dopamine treatment, the low-beta rhythms (13-
20 Hz) in subthalamic nucleus are nonlinearly correlated with the high-beta
rhythms (20-35 Hz), as revealed by bispectral analysis (Marceglia et al., 2006)
and nonlinear properties of multichannel EEG are manifest (Pezard et a., 2001).
In contrast, under the same pathological conditions (symptomatic), cortico-cortical
coherence in the motor system is diminished (i.e. decreases of linear relationship)
(Cassidy and Brown, 2001) despite the fact that oscillations tend to become

synchronized (Brown, 2007). It seems that linear and nonlinear interactions are a
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pair of complementary functions of neurona networks that are dynamically
engaged in different brain states and can be differentially modulated in health and

disease.

In short, linear measures of the statistical dependency between two time-
series are very useful for quantifying long-range interactions using EEG (Bresdler,
1995; Gross et a., 2001; Nunez et a., 1997) while nonlinear methods account for
the additional coupling among different frequencies. As suggested by Peredaet al,
linear and non-linear approaches may assess different parts of the interdependency
between signals and one should not be biased by nonlinear methods when

choosing analysis strategies (Pereda et al., 2005).

1.2.2 Univariate ver sus M ultivariate approaches

In mathematics, the difference between univariate and multivariate
approaches relates to the number of variables being studied. Univariate methods
characterize the features of only one variable, whereas multivariate methods deal
with more than one variable. Univariate methods provide the estimates of
parameters controlling the local fluctuations of neurona activities at one point
(e.g. one MEG channel), whilst multivariate approaches allow the assessment of
dependence between signals taking into account the large-scale interactions
among distributed network elements. For example, the univariate analyses, such
as task-related power (TRPow) or ERD/ERS (Andrew and Pfurtscheller, 1996;
Babiloni et al., 2004; Gerloff et al., 1998; Klimesch et al., 1996; Leocani et al.,

1997; Manganotti et al., 1998; Oishi et al., 2007; Toro et al., 1994) or correlation
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dimension (D2) (Grassberger and Procaccia, 1983; Pritchard and Duke, 1995;
Molnar, 1999;Miller et al., 2001) are applied to single time-series and activity in
relation to the task manipulation, such as task complexity (the higher the task
loading, the greater the D2 value is). Conversely, multivariate methods like
Coherence (Andrew and Pfurtscheller, 1996; Babiloni et a., 2004; Kilner et al.,
2004; Kilner et a., 2000), Granger Causality (GC) (Granger, 1969 and Granger
1980; see Appendix A for mathematical description) and DCM (Chen et a., 2008;
Chen et al., 2009; Friston et a., 2003; Garrido et a., 2007) analyze two or more
time-series and provide an estimate of neuronal connectivity, which describes the
underlying network functions. Generally speaking, univariate methods are easy to
implement and tractable, whereas multivariate approaches involve the estimation
of covariance among random fluctuations in different time-series; which is often
complicated and difficult without certain assumptions. For example, by assuming
the observation errors are independent (or not correlated), the estimate of error
covariance becomes simpler since the error covariance matrix becomes a diagonal
matrix (Penny et. al. 2004). Perceptions, actions or thoughts, rely upon the
integration of functionally specialized brain areas; therefore the multivariate
methods seem to be a more appropriate approach when it comes to study brain
function as a whole. Although univariate and multivariate analyses address
distinct features of the neurophysiological systems, they are not mutually
independent of each other. For example, the dimensional complexity of systems
described by D2 values (a univariate measurement) decreases as the connectivity

of neuronal networks (a multivariate characteristic) increases (Friston 1997b).
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1.2.3 Inferential ver sus Non-inferential modelling

Neuroscience provides abundant data, which call for the development of
inferential methods for studying the functional organization of brain. Inferential
methods can incorporate prior knowledge into data analysis as deterministic or
probabilistic models using Bayes theorem (Stark H., 1994). Evaluating the
posterior distribution on model parameters allows one to make inferences about
the underlying model. Non-inferential (or model-free; data-driven) methods, such
as independent component anaysis (ICA), characterize sources of variation
without an explicit model and can be useful in examining properties of dataset and
in outlier detection (Jung et al., 2000a; Jung et al., 2000b). When measuring brain
network function, non-inferential methods are closely related to descriptive
approaches that detect functional connectivity (e.g., correlation or coherence),
while inferential methods are required to estimate effective connectivity (see
chapter 2 for the distinction between functional and effective connectivity).
Importantly, inferential and non-inferential methods differ in the philosophy of
analysis strategy: Inferential methods, such as the Genera linear model (GLM)
and Dynamic causal modeling (DCM) (Chen et a., 2008; Chen et al., 2009;
Friston et al., 2003), posit certain assumptions about the underlying model and
formulate a framework. The analysis and inference that follows focuses on the
parameters of the model being tested. In contrast, non-inferential modelling, such
as principa component analysis (PCA) or ICA (Dien et a., 2007; Friston et al.,
1999; Friston et al., 2000; Jung et a., 2001; Makeig et a., 2004) explores the data

and reveals the most likely structure or model suggested by the data. Since non-
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inferential modelling requires no priors or formal model specification, it is usually
easy to apply but very often difficult to interpret the results. Figure 1.3

summarizes the differences between inferential and non-inferential approaches.

f Inferential )
\ approach
Maodel/
PQTE!EE{ Data — Prior
distribution
— Analysis — Conclusions

Non-inferential

{ approach )
Problem
, / Data — Analysis
Question
— Model — Conclusions

Figure 1.3 The flowchart of data analysis steps with respect to inferential and

non-inferential approaches

1.2.4 Power modulation ver sus Phase synchronization

Oscillatory activity can be projected into two dimensiona (time-frequency)
space using Fourier or wavelet transforms. This is based on Fourier’s discovery

200 years ago that time series (here, the oscillatory activity) are a weighted sum of



basis functions at different frequencies. If the basis functions are known, then the
weighting at different frequencies w and time bin t of the time series, i.e. spectrum

W(w,t), can be estimated by a convolution procedure (a convolution of the time

W, =exf (-od

signa x(t) with a basis function J (t)) :
functions are a sinusoidal and morlet wavelet for Fourier and morlet wavelet
transforms, respectively. As the basis functions in both transforms are complex, so

are the spectrum. Therefore, the spectrum comprises two components. the

frequency-specific amplitudes (i.e. the power), the squared magnitude of the real
part of complex numbers and the instantaneous phase qw,t) , derived from the

imaginary part of complex numbers using 9 W t) = atan(im(w(w, t)), re(w(w,1)))
Neuroscience studies in animals suggest that the synchronous discharge of certain
neuronal assemblies reflects an underlying interaction among neurons/areas
mediating the functional organizations in the brain, i.e. the binding hypothesis
(Singer and Gray 1995). ....For example, one functional role of neural synchrony
IS apparent in sensorimotor integration. Synchronization of neural responses is
observed between visual and parietal areas; as well as between parietal and motor
cortices, when awake behaving and well-trained cats process visua information
attentively to direct motor responses. Synchrony patterns vary with behavioural
situation. This suggests that synchronization may serve for the integration of
sensory and motor aspects of behaviour (Roelfsema et a., 1996; Roelfsema et al.
1996 1997). Similar results have been found in monkey studies (Murthy and Fetz,
1992, 1996 a, b; see also the review paper by Engel et al, 1999). This

synchronization of neuronal discharges results in the increase of signa power and
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constant phase relation between neurons. This phenomenon can be modulated
internally or externally before, during or after an event. In other words, “... this
modulation is context dependent, occurs over different time scales and can be
transient (e.g., changes of connectivity due to attention modulation) or enduring
(e.g., somatotopic reorganisation due to limb amputation)” (David et al., 2004)
and lead to the dynamic fluctuation of the spectral densities (Kilner et al., 2003;
Pfurtscheller 1999) and partial phase resetting/shifting over multiple frequencies
(Breakspear, 2002; Makeig et a., 2002; Penny et al., 2008; Penny et al., 2002).
The dynamic spectral changes of neuronal activity can be considered as the
changes of the parameters (for example, coupling strength) that control
oscillations in neuronal networks (Pfurtscheller and Lopes da Silva, 1999) where
high phase synchronization may revea the intrinsic firing properties of neurons
(Varela et a., 2001). Although phase and power appear to be two different
phenomena, they must of course be related by some common generative model
(see discussion in chapter 7). Indeed, they could serve as complementary
characterizations. Studying the characteristics of oscillatory activity in terms of
power modulation and phase synchronization can be atool to access the functional
relations among cortical areas, such as resolving the *’binding problem’” (Gray et

al., 1989; Singer 1999; Engel et al., 2001).

In summary, the complex nature of brain function makes it difficult to
unravel the information processing in neuronal networks and leads to a debate on
the best method to analyze neurobiological data (David et a., 2004). The choice
of an appropriate method is dependent on the quality and characteristics of the

data and the interpretation of the analytic results is restricted by the methods
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employed. Table 1.1 summarizes the main characteristics of the methods

discussed above.

Table 1.1 Summary of the main characteristics of mentioned methods

8
q) R
Q B o o
g § @ = qg
@ = E 3 o T o} %
= § |2 |5 |& 5 3
3 z 5 = E z e T
Task-related Power % % % v
(TRPow)
Correlation Dimension (D2) % % % %
Coherence v % % %
Granger Causality (GC) v V' Vv v v
Principal Component % % % %
Analysis (PCA) /
Independent Component
Analysis (ICA)
Phase synchrony \ \ Y v
Genera Linear Model v % % %
(GLM)
Dynamic Causal Modelling v v* % % v
for Induced responses
(DCM for IR)

+

GC can be extended to measure the nonlinear coupling

* DCM for IR can measure the cross-frequency coupling, i.e. nonlinear
interactions, though it uses only the linear/bilinear form to approximate the
differential state equations (linearization of the state equations) (see chapter 2 for
details).
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1.3 Experimental techniques: MEG and EEG

In this thesis, MEG and EEG will be used to measure oscillatory activity in
the brain. According to Maxwell's equations, any changes of electrical field will
induce an orthogonally oriented magnetic field and vice-versa. In neuronal
systems, electric currents flow in the intra- and extracellular space to propagate
messages among neurons and their compartments. MEG and EEG provide a
measurement that is directly related to electric currents in neurons (Cohen, 1972;
Hamalainen, 1992) (Figure 1.4 A). Both MEG and EEG have excellent temporal
resolution on a millisecond scale and are particularly suitable for measuring
dynamic neura activation. The important distinctions between MEG and EEG are

summarized below:

(1) First, the origins of EEG/ MEG signals are different. Signals in MEG
and EEG derive from the net effect of ionic currents flowing in the dendrites of
neurons during synaptic transmission. EEG is sensitive to extracellular volume
currents produced by postsynaptic potentials, MEG primarily detects intracellular
currents associated with these synaptic potentials because the field components
generated by volume currents tend to cancel out in a spherical volume conductor
(Hamalainen, 1992). Action potentials are not usually detectable, mainly because
the currents associated with action potentials flow in opposite directions and yield

zero net magnetic field and very transient time constant (~1ms).

(2) Second, the detection sensitivity of signal direction. According to the

right-hand rule in electromagnetic theory, the propagation direction of electric
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waves is perpendicular to that of magnetic waves (Figure 1.4 B). Therefore, MEG
is mainly sensitive to the activity arising from neurons in sulci, which generate
currents tangentially with respect to the surface of the head (tangential dipoles)
whereas EEG can detect primarily radial sources located in the cortical gyri and

those tangential sources secondly (Figure 1.4 C).

(3) Third, the volume conduction effect. EEG signal is the result of
distortion when electric currents pass through different tissues, as the resistivity is
tissue-dependent (such as skull, scalp and cerebrospinal fluid), but not the
permeability. So the brain is transparent to MEG resulting in a higher spatia

resolution in MEG.

(4) Finally, MEG needs no reference channel which contrasts with EEG,

where an active reference can lead to difficulties in the interpretation of the data.

In summary, both MEG and EEG have excellent temporal resolution and are
able to follow neural dynamics on amillisecond scale. Although the origins of
EEG and MEG signals are different, they can be considered as the complementary

device to each other.
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Figure 1.4 The neuronal origins of EEG/MEG signals. A) Pyramidal cellsin the
cortex . B) The directed electric field (E) and magnetic field (B). C) The
difference of directiona sensitivity in MEG and EEG. (adapted from a report of
The EEG and MEG inverse problems. The adjoint state approach |: The

continuous case %)

1.4 Aims of thisthesis

The work in this thesis ams to characterize spatiotempora dynamics of
neural and functional connectivity in human brains. It comprises four main
components, covering the development of the methodology followed by scientific

applications. Specificaly, the aims of thisthesis are to:

l. Chapter 2 : Develop an advanced method, Dynamic Causal
Modelling for Induced responses ; DCM for IR, for studying brain

networks

! This report can be found at
http://hal.inriafriview_by stamp.php?abel=INRIARRRT & halsid=emgvuuhekiv9
8jn3b55511nk14& action_todo=view&id=inria00077112& version=1
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Chapter 3 and 4. Explore nonlinear coupling in the motor system
(chapter 3) and address the age-dependent changes in the motor
networks (chapter 4) using asimple linear form of DCM

Chapter 5: Test whether there are functional asymmetries during
face perception using a bilinear form of DCM

Chapter 6: Dissociate the evoked and induced responses in terms

of their generating mechanisms.
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CHAPTER 2

DYNAMIC CAUSAL MODELLING
OF INDUCED RESPONSES:
THE METHOD

2.1 Introduction

The aim of this chapter isto describe a dynamic causal model for induced or
spectral responses (DCM for IR) measured with EEG and MEG. The importance
and functional roles of induced oscillations have been described in chapter 1 and it
is that which motivated this work. The purpose of this chapter is to establish a
phenomenological model of how induced responses are caused, and how they
evolve dynamically, in a distributed system of coupled electromagnetic sources.
This work represents a further extension of dynamic causal modelling to cover
spectral responses as measured by the EEG or MEG (David et a 2006a; Kiebel et
al 2006, Moran et al., 2007). Inversion of this model, given empirica data,
furnishes inferences about different models and the parameters of a particular
model. This alows one to disambiguate between different connectivity

architectures that may underlie induced responses and to make quantitative
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inferences about the coupling among distributed cortical regions. Furthermore,
one can assess changes in coupling that result from experimental manipulations or
pathophysiology. Critically, this model allows one to distinguish between changes
in linear and nonlinear coupling in the brain. The machinery presented here
contributes to this endeavour by allowing one to make inferences and quantify
changes in either linear or nonlinear coupling, induced experimentally or
associated with pathophysiology. | will demonstrate this in the next three chapters
to ask whether there is a difference in the relative contribution of linear and
nonlinear mechanisms between intrinsic (within-area) and extrinsic (between-area)
coupling (chapter 3) and age-dependent changes in the motor networks (chapter 4)
and whether backward connections exert greater nonlinear influences than
forward connections in visual processing hierarchies (chapter 5). These sorts of
questions are central to understanding the nature of neuronal computations and
how they are implemented in the brain. In a future work, | will apply this method

to assess coupling in the motor system, during recovery from stroke.

There are many approaches to detecting and estimating neuronal coupling
using frequency-based analyses of electrophysiological recordings. These can be
divided into descriptive and mechanistic; a distinction that is closely related to the
difference between functional and effective connectivity. In the following, |
discuss various approaches to motivate the present model. In contrast to dynamic

causal modelling, the majority of current approaches are descriptive in nature:



2.1.1 Descriptive approaches. detecting functional connectivity

Functional connectivity has been defined as the statistical dependence
among remote neurophysiological time-series. To establish functional
connectivity one has to show that the statistical dependencies are significant. This
entails, in its most general formulation, measuring the mutual information among
two or more time-series (Roulston, 1999; Quian Quiroga et a., 2002). There are
severa approaches to assessing mutual information, which divide broadly into
linear and non-linear. The most common approach uses linear systems theory and
measures the correlation or coherence between two time-series. It has been shown
repeatedly that these measures (the information in the cross-correlation function
and coherence is identical) are very useful for quantifying long-range interactions
using EEG (Bressler, 1995; Gross et a., 2001; Nunez et a., 1997). Measures of
linear dependencies can be generalised to multivariate time-series to furnish
interesting formulations in terms of directed transfer functions and Granger

causality (Brovelli et al., 2004; Bernasconi et al., 1999).

Nonlinear methods

In terms of non-linear approaches; the most general approach relies upon
the notion of generalised synchrony (Rulkov et al., 1995; Schiff et al., 1996),
which posits a mapping between the manifolds containing the state-space
trajectories of two time-series. These time series may not be correlated or indeed

have any obvious formal similarity in their periodic structure. These techniques



usually rely upon some form of temporal embedding or attractor reconstruction.
An attractor is a set that describes how a dynamic system will evolve after along
period of time. An attractor could be a point, a torus or have a fractal structure
(stranger attractor; examples of which can be found in chaotic dynamics theory).
One benefit of reconstructing an attractor for a dynamic system is that one can
reduce the dimensionality of a system. For example, for an oscillatory dynamic
system, the state-space of the system may be high, but the system can be projected
onto alower dimension space, uniquely determined by its phase. Examples can be
found in Penny et al, 2009 and Breakspear and Terry, 2002. Generalised
synchronisation exists between two dynamical systems when the state of the
response system is a function of the state of the driving system. If this function is
continuous, two neighbouring points on the attractor of one system should
correspond to two nearby points on the attractor of the other. This correspondence
is used to see if the evolution of neighbouring trajectories in one attractor can be
used to predict the evolution of a point on the other attractor (see Breakspear and
Terry, 2002 for an example). Usually, generalised synchrony is used to detect
nonlinear coupling by comparing the mutual predictability (information) between
time series before and after destroying their nonlinear dependencies (by
randomising their phase relationships). A special case of generalised synchrony is

phase-synchrony.

Phase-synchronisation, between two oscillators, is a ubiquitous

phenomenon, which appears when they are coupled in a broad range of structures,

including EEG sources (Pikovsky et a., 2001). Time-frequency analysis of phase-
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synchronisation is popular in current research on cortical networks (David et a.,
2003; Engel et al., 2001; Varela et a., 2001). Establishing phase-synchronisation
proceeds in two steps; estimation of instantaneous phase and the quantification of
the phase-locking. This quantification uses the distribution of phase differencesto
establish significant mutual information between the two time-series. Both
generalised and phase-synchrony can be expressed between coupled systems that

show autonomous or indeed chaotic dynamics.

Another approach to detecting nonlinear coupling is based on nonlinear
system identification theory for controllable systems. This approach formulates
dependencies in terms of generalised or nonlinear transfer functions that are
estimated using generalised or poly-spectral analysis. Bispectral measures such as
bicoherence (Dumermuth et a., 1971) have been used to detect nonlinear coupling
in human EEG (Jeffrey and Chamoun, 1994; Shils et al., 1996). The key thing
about nonlinear coupling is that it induces dependencies among different
frequencies. | will exploit this below (see aso Friston 2000). The same nonlinear
cross-frequency coupling is seen in phase-synchrony; two principal forms of
cross-frequency phase interactions are recognized (Palva et al, 2005): n:m phase-
synchrony, which indicates amplitude-independent phase locking of n cycles of
one oscillation to m cycles of another (Tass et a., 1998), and nested oscillations,
which reflect the locking of the amplitude fluctuations of faster oscillations to the
phase of a slower oscillation (Vanhatalo et al., 2004). These forms of phase
synchronisation can be used to disclose non-linear coupling, in which a slower

frequency comesto entrain or be entrained by afaster frequency.
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In summary, there are severa ways to establish the statistical dependencies
between two measured time-series (see David et al 2004 for a comparison of these
approaches and Pereda et a 2005 for a comprehensive overview of nonlinear
methods). However, they are all concerned principally with detecting functional
connectivity; they are not concerned with the mechanisms or causes that underlie

these dependencies.

2.1.2 Modedlling approaches: estimation of effective connectivity

Effective connectivity is defined as the influence that one neural system
exerts over another. Ciritically, this definition posits a causal mechanism for the
dependencies described above. In atime-series setting, these models are usually
dynamic and rest on differential equations that are causal in a control theory sense.
| refer to these models as Dynamic Causal Models (Friston 2003; David et a
2006b). The idea behind Dynamic Causal Modelling is to explain observed
responses in terms of a dynamic system that is perturbed by exogenous inputs that
are either known or unknown. The model is defined by the form and parameters
of differential equations that describe the evolution of the system states. Inversion
of these models allows one to make inferences about the models and their
parameters. Critically, this alows one to compare different models and quantify
them in terms of the conditional density over both models and parameters. These
models are based on specific hypotheses about putative sources and their assumed

connectivity. This is a fundamental departure from descriptive approaches to
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functional connectivity because it allows one to answer questions about the
mechanisms and functional architectures that cause observed responses. These
guestions are posed in terms of competing models, which are evaluated in relation
to each other; clearly, the answers that obtain are conditional on the models

considered.

In contrast to the descriptive approaches, there are relatively few causal
models of spectral responses. Those that do exist can, again, be divided into
linear and non-linear. Linear models are normally derived by linearising a
neurobiologically informed nonlinear model of neuronal dynamics (e.g., a mean-
field or neural mass model) and evaluating the spectral response under some
assumptions about the spectral composition of exogenous input (Wright and Liley
1994). Steady-state spectral measurements can then be used to invert the model
and infer on important biophysical parameters such as rate constants or coupling
parameters (Rowe et a, 2005; Moran et a 2007). In the non-linear and dynamic
domain there are even fewer models. An important class are models that are

based upon loosely coupled oscillators:

Models of spectral dynamics

The theory of coupled phase oscillators has found many applications to

biological, chemical and physical phenomenon (Kuramoto, 1984; Kopell and

Ermentrout, 1986). Under certain assumptions, the behaviour of networks of

neurons with largely oscillatory output can be approximated by a system of
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equations that govern the phases of each oscillator (Ermentrout and Kleinfeld

2001)

y. =w+a f¢,-y ) 1
j

Herey , is the instantaneous phase of the i-th unit or population; w = 2pv,
where v istheintrinsic frequency of the oscillatorsand fy ; -y ;) isthe effective

coupling, which is a non-linear [periodic] function of the phase-difference
between two oscillators. The sum runs over all units that are connected. In these
models, it is assumed that the amplitude of the oscillations is unimportant and the
key dynamics are narrow-band. This equation recently has been used recently as
the basis of a dynamic causal model for phase coupling (Penny et al, 2009).

The model above speaks to a specific class of DCMs. DCMs can be
phenomenological or biophysical. Biophysicak DCMs are constrained by the
known physical or biological processes generating the observed signals. In
contrast, phenomenological DCMs describe the causal dynamics in a purely
formal fashion. Equation 1 is an example of this, where the form of the effective
coupling can be motivated using neurobiological constraints (see Ermentrout and
Kleinfeld 2001) but is not formulated explicitly in terms of neuronal processes.
The DCM described in this chapter is phenomenological and complements models

based on instantaneous phase by modelling the evolution of instantaneous power:

gw), =a f(gw);, gw),) 2
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Here, g(w), is the spectral density, over frequencyW, of the i-th unit. In
this model, tempora changes of power in a source are explained as a network
function of power in all sources. This sort of model can dea with situations in
which oscillations in one area become amplitude modulated by oscillations in
another band in the same or another areas; e.g. theta-band modulation of gamma
activity (e.g., Guderian and Duzel 2005). Here, high levels of theta activity would

engender increases in gamma.

This model is phenomenological in the sense | make no attempt to motivate

the form of effective coupling, f(g;,g;) but simply use the coefficients of its

Taylor expansion as parameters (see below). Note that it is possible to model the
nested rhythms (see chapter 1 for the definition and chapter 7 for examples), but it
is beyond the scope of thisthesis. Thisis exactly the same device used in bilinear
DCMs for functional magnetic resonance imaging (fMRI) time-series (Friston et
al, 2003) and is recapitulated here for spectral responses as measured with EEG or
MEG. The ensuing simple form for the DCM is particularly useful because it
allows us to partition the effective coupling between regions at the same
frequency and between regions across frequencies. This is important because, as
noted above, within-frequency coupling is generally mediated by linear
mechanisms, whereas cross-frequency coupling rests on non-linear mechanisms.
This is pertinent to neuronal dynamics, where nonlinear mechanisms may

predominate in functional integration.
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In summary, the DCM elaborated below describes the phenomenological
evolution of spectral densities in multivariate time-series; it is formulated to
model coupling within and between frequencies that are associated with linear and
non-linear mechanisms respectively. This is similar to the bilinear form adopted
for fMRI, which distinguishes between task or stimulus-invariant coupling (linear)

and context-sensitive (nonlinear or bilinear) changesin that coupling.

2.1.3 Overview

This chapter comprises four sections. In the first, | reprise, briefly, a
generalised convolution model of neuronal coupling (Friston 2000) to demonstrate
the link between cross-frequency coupling and nonlinear mechanisms. | illustrate
these phenomena using a neural-mass model that is the basis of biophysical DCMs
for ERPs (David et a 2006b). In the second section, | describe a DCM for
induced responses and relate its parameterisation to the generalised convolution
models of the first section. The model provides the likelihood function of a
generative model, which is inverted using standard variationa techniques. This
inversion is summarized briefly in the last part of this section. In the third section,
| try to establish the face validity of the model using synthetic data, where the true
inputs and architecture are known. | generated synthetic data and compared linear
and nonlinear models to identify the veridical model. This enabled us to establish
face validity and see how the inversion behaves under different noise levels. The
fourth section provides a demonstration of the model and its inversion using real

EEG data acquired during face perception.
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2.2 Nonlinear and cross-frequency coupling

In this section, | show why nonlinear mechanisms are mandatory for
coupling across frequencies. | have dealt with this issue in a series of papers on
the theoretical neurobiology of functiona integration (e.g. Friston 2000; 2001)
and summarize the main points here. The results in this section are not necessary
to derive the DCM of the next section; they are used to highlight the sorts of

behaviours that this model has to accommodate.

2.2.1 Generalised convolution models

In what follows, | treat any neuronal system or electromagnetic source as an
input-state-output system. | will show that if this neuronal system is nonlinear, the
energy at one frequency in the inputs (from other sources) manifests at different
frequencies in the outputs. This induces cross-frequency coupling between any
two sources, when the output of one serves as the input the other. The Fliess
fundamental formula (Fliess et al 1983) describes the causal relationship between
system outputs and the history of its inputs. This relationship conforms to a
Volterra series, which expresses the output as a generalised convolution of the
input, critically without reference to any hidden states. This seriesis a functional

Taylor expansion of the outputs, y(t) with respect to the inputs u(t) (Bendat
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1990). Thereason it is afunctional expansion is that the inputs are a function of

time'.

y(t) =é O--cKiS 1S )uUt-S,),...,u(t- s,)ds,,...,ds,

K.(S,...,S;) = ﬂly(t)
flult-s,),....ut-s;)

where k(s ,,...S ;) isthei-th order kernel. The integrals are over the past

or history of the inputs, which renders the system causal. Introducing the spectral

representation in terms of the unitary Fourier transform pair?

u(t) = ¢p, (w)edw
s, (W) = cu(t)e ™ dt 4

where, g,(w) =(s,(w),s,(-w)) is spectral density; | can rewrite the

Volterra expansion and it transform as

he]
he]

y(t):é O-- B G W, .. W )S, (W), ..., S, (W, )dw, ..., dw,
-p
p

u;:q

sy(w):é O OF Wy, WS, (W), S, (W= Wy o= W)W, W
1 -p -

©
ol

where the functions

' For simplicity, | will deal with a single input and a single output
2 Omitting constants of proportionality for clarity
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GWw,) = ¢ "k, (s,)ds,

¥ ¥
Gz(Wsz) — C\I\F j(wss 1 +wos 2)k 2(5 S z)dS 1dS )

00

are the Fourier transforms of the kernels. These functions are called
generalised transfer functions and mediate the expression of frequencies in the
output given those in the input. Critically, the influence of higher order kernels,
or equivalently generalised transfer functions means that a given frequency in the
input can induce a different frequency in the output. A simple example of this
would be squaring a sine wave input to produce an output of twice the frequency
(Friston 2001). Generalised transfer functions are usually estimated through
estimates of polyspectra. For example, the spectral form of Equation 5 and its

high-order counterparts are®

guy (_ Wl) = Gl(Wl)gu (Wl)
Qo (- Wy, W, ) = 2G, (w;,W,) g, (W;)g, (W,)

gu...y(_Wl""’-Wn) = n!Gh(Wl""’Wn)gu(Wl)"'gu(Wn)

Coherence (sometimes called coherency), g, (w) is smply the second-

order cross-spectrum between the input and output and is related to first-order

% These equalities hold only when the Volterra expansion contains just the n-th order term
and are a generalisation of the classical results for the transfer function of a linear system.
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effects (i.e. the first-order kernel or transfer function). Coherence is therefore a

surrogate for first-order or linear connectivity. Bicoherence or the cross-bi-

spectrum g, (W,,w,) is the third-order cross-poly-spectrum and implies a non-

zero second-order kernel or transfer function. See Friston (2000), Jeffrey and
Chamoun (1994) and Shils et a (1996) for examples of detecting nonlinear
coupling with bi-spectral analyses and Priestley (1988) for the mathematical

background.

In the present context, the thing | need to take from this formulation is that
the only way one frequency in the input can modulate another frequency in the
output is through second or higher-order kernels. This means that dependencies
between different frequencies are mediated by non-linear coupling. | can express
this in terms of the changes in the spectral density of the response, induced by

changes in the input; where, under linear coupling

T, (w,)
ﬂgu (W2 )

QW) w, =w, 7
0 w; tw,

_i
=1

T
2.2.2 An illustration using a nonlinear neural-mass model

To illustrate the induction of responses across different frequency bands, |
evaluated the time-frequency power of the input and response of a nonlinear

neural-mass model of electromagnetic sources. The neural mass model is the
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same model used in David et a (2006b) and is used in DCM for event-related

potentials.

Briefly, the model is based on linear post-synaptic responses to pre-synaptic
input. Three different populations are coupled using their mean firing rates, which
are a static nonlinear function of voltage as shown in Figure 2.1. The dynamics of
each neuronal subpopulation i are governed by second-order differential equations

in voltage of the form

V‘i+2ki\]i +ki2\/i :kiHiégijS(\/j) 8
i

The form of the implicit response kernel and nonlinear voltage-firing curve,

S(V,) are shown in Figure 2.2. The three subpopulations correspond roughly to

the supragranular, infragranular and granular layers of cortex and are

interconnected (with coupling parameters, g; ) according to known connectivity

rules. The nonlinearity in Equation 8 makes this a useful model of weak nonlinear
coupling among neuronal sources. Figures 2.3 and 2.4 such show the results of
perturbing this model of neural masses; the time-frequency profile of the input and
responses show how nonlinear transformations induce frequencies not present in

the input:

The top panels of Figure 2.3 show the input (left) and output (right) in the

time-domain and the lower panels show the same data in time-frequency format.
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The response at each time and frequency was estimated using a Fourier transform

with a diding Gaussian window
g, (W,t) = ¢y(s- t)exp(- s*/2s *)e ™ ds[ 9

where s =256 ms specifies the width of the window. The input was a four
second box-car function plus random fluctuations, sampled from a Gaussian
density with a standard deviation of one sixteenth of the box-cars amplitude. It
can be seen that the response has a very different spectral profile to the input, with
marked power in the 10 — 20 Hz range. However, this response could be
meditated by linear effects and represent a filtering of the broad band input. To
illustrate nonlinearity, | repeated the simulation but using a four second pure sine-
wave input at 16Hz. The left-hand panels of Figure 2.4 show clearly that this
single frequency induces structured responses at much higher frequencies. To
ensure this cross-frequency induction was mediated by nonlinear mechanisms, |
repeated the simulation but scaled the input down by a factor of 128; this keeps
neuronal states within the linear regime of the models depolarisation-firing curve
and suppresses nonlinearity (see Figure 2.2, right). Following this single change,
the spectral output is now a quasi-copy of the input (see right-hand panels). It is
this sort of linear and nonlinear neuronal coupling, among neuronal populations, |

want to model and make inferences about.
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H,=325 =30 Nonlinear neural-mass model
H,=293 p,=d40

g, =110ms  py=12

K =115ms  yy =12
r=0.56 8=10ms

Vi = KHy:S5(05) - 26,0, - KV,
Va Vs
inhibitory
interneurons Exogenous input
Y, = i, H, (nS0)+ o) - 26,0, - &2, ¢
D— |
spiny
stellate le— i
cells insi
?1 Intrinsic ','/2
connections
pramics V= 500 - 280, - 2,
Vy= GH S0 - 260, - &Y,
Vo=V, - Y

Figure 2.1 Nonlinear neural-mass model used to illustrate non-linear
transformations (see David et al. 2003 for details). This model comprises three

interconnected subpopulations. The model uses a transmembrane potential state-

space model at the synaptic level and a nonlinear sigmoid transformation SV) at

the soma of neurons to model spike rates.

1
= — sSFy=—- 1
(), = x H_texp( —x,t) ) 1+ exp(—rV) °
04 05
0.2 \\ 0
01 N
0 \ 05
0 2 4 6 8 -10 0 10
f |14
Voltage response to synaptic Synaptic input as a function
input of voltage

Figure 2.2 The implicit form of the linear impulse response function of
transmembrane potential (left) and the sigmoid firing-input curve S(V) (right).

58



Figure 2.3 The input-output relation of the neural mass model (Figure 2.1) in the
time-frequency domain. Left: deterministic input comprising afour second box-
car function plus random fluctuations (top) and its spectral profile (bottom). Right:

response time course (top) and its spectral profile (bottom).

In the next section, | describe DCM for induced responses, where the states
of each neuronal source are summarised in terms of their spectral profiles. | will
see that a simple parameterisation of this model allows for a partitioning of within
and between frequency coupling and, implicitly, a partitioning into dynamics that

can be attributed to linear and nonlinear effects.
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High amplitude inputs (nonlinear)
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Figure 2.4 The time-frequency profiles of inputs and responses of the neural mass
model in previous figures, showing nonlinear and linear effects. Upper panel:
High input amplitude engages the nonlinear regime of the neuronal mass model,
such that narrow-band input induces structured responses at higher frequencies.
Lower panel: after scaling the input down by 128, the system operatesin the linear

regime and the spectral output is a simple copy of the input.

2.3 Dynamic causal model

This section describes the dynamic causal model, which | will invert in
subsequent sections to make inferences about synthetic and real data
Probabilistic model inversion requires a generative model. A probabilistic
generative model requires the specification of a likelihood model and its priors.
The likelihood model simply describes the probability of obtaining some data
features (in this case spectra) given a model and its parameters, while the priors

place constraints on the parameters.

2.3.1 A model for spectral features

The generalised convolution model of the previous section assumes
neuronal dynamics are stationary; i.e., they express the same power over time.

This model is fine for continuous steady-state el ectrophysiological recordings and
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has been used as a DCM for steady-state local field potential recordings (Moran et
a 2007). However, evoked brain dynamics are non-stationary and evolve over
peristimulus time. This means | need a DCM of time-dependent changes in
spectral energy. The model described below assumes that the spectral energy at
one frequency in a source causes changes in the same (linear coupling) or
different (nonlinear coupling) frequencies, in other sources. It is fairly smple to
show that, under a linear state-space model of these changes in spectral density,
the coupling between changes in frequency determines the coupling between
frequencies at steady-state. This means that between-frequency coupling in the
DCM must be mediated by nonlinear mechanisms (by Equation 7 of the previous

section).

Consider J sources in the brain, each described by a state vector,

g, (w,t)T A" of spectral densitiesat K frequencies

ggj(wlit)g
gj(W’t)z U

s 10
&o; i, DY

| will treat these spectral states as perturbations around their expected levels,
in the absence of exogenous input. | can model the dynamics of these spectral

states using afirst-order Taylor expansion of Eq. 2 to give
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e0.u €A, = AU G0

e.-u_e. .. - u €

sigTei v L:Jg(t)+§. E}J(t) 11
H @AJl AJJH g:JH

Where the matrices A and C contain coupling parameters that control
changes in spectral activity induced by other sources and exogenous (e.g.,

stimulus) inputs, u(t)

eay’ a; d éc; U
e . . u e. u
A=e: g GiTetg 12
A, K1 KK L:I A K L:I
%ij ij u g:' u

Under this model, the scalar ai'j" encodes how changes in the k-th frequency

in the i-th source depend on the I-th frequency in the j-th source. The leading

diagonal elements are ai* = - 1; this means that each frequency has an intrinsic

tendency to decay or dissipate. Similarly, ¢ controls the frequency-specific
influence of exogenous inputs on the k-th frequency in the i-th source. This
enables within and between-frequency coupling within and between sources. In
later work, | will generalise the above mode, tg=Ag+Cu to a bilinear
approximation, in which experimental effects, v (e.g., condition or trial-type
under which the responses were elicited) can change the coupling. This involves

theinclusion of abilinear term in Equation 11 to give
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tg=(A+Q v,B)g+Cu 13
j

In this chapter | will focus on the modelling of induced responses for a

singletrial type and ignore trial-specific influences.
Steady-states responses

This smple first-order DCM can be related to the spectral representation of
input-output systems of the preceding section by considering its equilibrium
solution; in other words, the states to which the DCM converges. Under these

steady-state conditions, g =0 and Ag =-Cu. Recal that a' =-1; this means
that when the DCM is at equilibrium, the within-frequency coupling ai'j‘k between

sources plays the same role as the first-order transfer function of the previous

section (c.f.,, Eq. 5).

g w)=0
:él a'iijdgj(wl)-'-ciku P
i,

gw,)= aalg,Ww)+cu 14

jltik

b ﬂgi(wk) _iaili(k W =W,

Mg, (W) _%ailj(l w tw,
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Equation 14 says that if the inputs are changing slowly (and | can assume

9> 0y | would see that long-term fluctuations in the k-th frequency in the i-th

source scale with fluctuations in the I-th frequency of the j-th source in proportion

to &Jkl . However, | know from the previous section that any dependencies among
frequencies are mediated by nonlinear mechanisms. This means that, under linear
coupling, al the crossfrequency coupling parameters must be zero;
Tt :ailid =O. If any are not; St :ailid ' O, | can infer a nonlinear coupling
between sourcesi and j. Clearly, | am not suggesting that steady-state is actually
attained by the brain; but | can assume convergence, following perturbation, is fast
relative to changes in exogenous input. In other words, | can integrate the
differential state questions by linearising the dynamics with respect to their fixed
points, under the assumption that the changes in spectral dynamics are sufficiently
slow, with respect to the changes in exogenous input (i.e. steady state). The fixed
points (or equilibrium points) can be found when the changes of spectral densities
are close enough to zero and this is governed by the (unknown) convergence rate
parameter U in Eq. 11, estimated from the data. Tau can be regarded as a global

(lumped) time-constant that reflects the characteristic time-constant of the

underlying population dynamics.

In summary, if 1 discount all the between-frequency couplings and consider
the equilibrium solution of spectral dynamics (i.e., when the rate of change
frequency is zero): the spectral power at a given frequency in one region is

determined by the power at the same frequency in other regions. This is the sort

65



of coupling that would be expected under linear mechanisms. Conversely,

between-frequency coupling can be attributed to nonlinear coupling.

The spectral dynamics of sources

Having established a model of spectral responses of the sources it is now
necessary to specify how these responses are expressed in measurement space. In
some instances this would not be necessary; for example, in local field potential or
intracranial recordings obtained directly from each source. However, | will
assume the measurements have been obtained non-invasively using EEG or MEG.
Consider the conventional linear forward model for electromagnetic sources
X(t) =[x, (1),... %, (t)]" and the corresponding lead-field matrix L for muilti-
channel of data, d(t). The observed response is a mixture of activity over al

SOurces

d(t) = Lx(t) P
S, (W) = Ls(w) 15
gy (W) = L(sw)s(-w)" )L

This means spectral responses in channel space are a mixture of the inner
product of Fourier coefficients. Unfortunately, this DCM does not model these

coefficients; this would require modelling both the power and phase of source

activity, so that the coherence among sources (s(w)s(-w)") could be generated.
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To circumnavigate this problem, | project the data from channel space to the

sources and then compute the spectral density

x(t) = L d(t)

. 16
G, (w,1) = ¢x, (- exp(- 5°/25 2)e ™ ds

where g(w,t) are the spectral responses modelled by the DCM and L is
the generalised inverse of the lead-field matrix for the chosen sources. EQ.16 is

formally equivalent to a Morlet wavelet transform, where the window width scales

inversely with the frequency. Inthiswork | use S = kW'l, which covers about K

cycles. In theory, this k parameter allows a trade-off between time and frequency
resolution. A larger parameter results in a smoother spectral density estimate and
loss of temporal resolution. Usually, this parameter must be greater than 5 to give
an efficient estimate of spectrum (Lachaux et al., 2002), because of spectral
leakage (as the window becomes small, in relation to wavelength). In thisthesis, 7
was chosen based on prior knowledge (the characteristic time-constants of event-

related spectral responses).

The inversion of the electromagnetic part here can be seen as feature
selection, in the sense that Eq. 16 is a deterministic nonlinear function of channel
data that returns spectral features associated with specific source locations. The
advantage is that there is a unique solution for the features because the prior

specification of source locations means the inverse problem is not ill-posed;
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provided the number of (equivalent current dipoles ; ECD) sources is small
relative to the number of channels. Note that the generalised inverse of the lead-
field in Eqg. 16 is one of many inversion schemes that one can use to project data
from channel to source space (Darvas et al., 2004; Friston et al., 2008; Kiebel et
a., 2007; Michel et a., 2004). The generalised inverse is an appropriate projector
if one knows a priori where the sources are located. In other words, when there is
no source localization problem. Once these locations have been established, the
generalised inverse of the associated lead-field matrix furnishes a near-optimum
ECD summary of activity that avoids suppression of local correlated activity. In
this model, | assume the source locations are specified and leave optimization of

these spatial parameters to another study.

Note that the model generates time-varying power at each source, whereas
the spectral features | extract in EQ.16 have three moments. It would be smple to
include free parameters that map the predicted source power to these three
moments but these parameters are of no interest. Therefore, | ssimply add the

power over the moments and estimate a single free parameter, G, , which scales

the power of underlying neuronal dynamics to give the observed mixture g; (w,t).

2.3.2 The probabilistic model
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| now have, under Gaussian assumptions about observation error, e, a

likelihood model for observed spectral activity in sources g; (w;,t,) that can be
expressed as a mixture of predicted activity g;(w;,t,), baseline power and

random fluctuations:

@(Wj’tk) =GgWw,,t)+r; +ey O p(@'t)la)=NGg' (t)+ ol V)17

The predicted activity obtains by integrating EQ.11, given the parameters,

q Et,AC,G and input u(t). The scalar r; models baseline power over time at

the i-th source and j-th frequency®. A likelihood model furnishes a way of
measuring the likelihood of observed data; put simply, one generates a prediction
using the model parameters and input. The probability of getting the observed
data-features is then specified by the amplitude of the prediction errors, relative to
the precision (inverse variance) of the random fluctuations. | is the precision of
this measurement noise in feature-space (power over sources and frequency) and
is estimated as a free parameter. This scale parameter scales atemporal correlation
matrix V encoding serial correlations among the observation noise. Because the
time-frequency analysis necessarily smoothes random effects, | made V a
Gaussian autocorrelation matrix, with a standard deviation of 32ms. The standard

deviation of the noise autocorrelation s,, >s is bound by the window-width, s

in the time-frequency analysis in Eqg.16. This window imposes seria correlations

on spectral data-features and implicitly any random fluctuations. | chose a value

“In practice, | estimate the baseline power as the frequency at the first time-bin.
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that corresponds to the correlations induced by evauating frequencies at

f »s ' »30Hz

In this work, the priors p(q) on the model parameters were Gaussian

shrinkage priors. Table 2.1 lists their prior densities and Figure 2.5 provides a

graphical summary of the ensuing model. Note that non-negative scale parameters

have log-normal priors’.

Table 2.1 Priors on model parameters

Parameter

Description

Prior density p(Q)

a =q./q,

b =q,/0,

d,, = 80exp(g,)
g, =1024exp(d,)

input (Gamma) parameter

p@,) = N(0,5%)
p@,) = N(0,)

t =1/16exp(k)

Convergence time

p(k)=N(0,3)

ki
i

Internal coupling

i N(0Y)
p(AY) =1 N(0O)
IN(-10) i=jUk=I

present

absent

Cik External coupling iN(O,L) i=input
pCH=i
71 N(O,0) i input
G = exp(in) Power scaling p(in) =N(0,2)

®| also used weakly informative log-normal hyperpriors on the precision hyperparameter.
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Exogenous input

The predicted power obtains by integrating Eq. 11. This requires the
stimulus input to be specified. This exogenous input causes a burst of power in
the network of sources. The frequency selectivity of this perturbation is encoded
by the free parameters C above. This input models changes in source activity,
caused by putative subcortical afferents whose activities are time-locked to stimuli.
The frequencies induced depend on the model’s free parameters, which are
optimised during inversion. From the point of view of each source, there is no real
difference between the effects of exogenous input and input from other sources
(see Eq. 11).Typically, only afew sources are alowed to receive exogenous input,
which can have an arbitrary and source-specific frequency profile. Sources that
do not receive input have their input parameters ‘switched off’ by priors that are
precisely zero. The temporal form of the input is not known and has to be
estimated. In this study, | use a ssmple parameterisation, which assumes the

spectral perturbation has the form of a gamma distribution.

bata-le- bt

18
G@)

u(t)

where €@ ) is the gamma function and priors on the input parameters, a,b

are chosen such that the peak of the input is at about 80ms, with a dispersion of

about 32ms (see Table 2.1). The free parameters now comprise,
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qEa,bt,ACG nNpe that the C parameter encodes the frequency-selective
responses to the exogenous input (see Figure 2.8 b for example); and will have
zero mean and zero variance for areas that do not receive any exogenous inputs
(see Table 2.1). Gi scales the output of the dynamic system (i.e. caused by
exogenous input and input from other areas, through non-zero coupling) to give

the observed spectrum. Gi is area-dependent but not frequency-dependent.

The choice of 80ms as the prior latency of the input is motivated by known
latencies from single-unit electrode recording studies of visual and inferotemporal
cortex (e.g., Hirsch et a 2002). It takes this amount of time for visua input to
reach secondary and higher visual areas. This is aso the time when evoked
sensory potentials start to express themselves in cortical sources (i.e., the N1
component). Note that the latency is a free parameter, so that suboptimal priors
(within some reasonable bound), will be corrected during model inversion. In
addition, relatively informative priors were placed on uninteresting free
parameters to alow for small variations; these include the input parameter
(gamma function), convergence time (tau), external coupling (C) and the power
scaling (Gi). These weakly informative priors, come from an earlier study (Friston
et a, 2003), while the interna coupling parameters (A and B) have essentially

non-informative priors (variance of one) aswe aim to infer on these.

Frequency bands and modes
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Hitherto, | have considered the states as spectral densities at a discrete
number of frequencies or frequency bands. These states can be regarded as the
coefficients of narrow-band spectral basis functions or frequency-modes. In
practice, | actually use the orthonormal principa modes of the source data,

U=[U,...,U,], obtained by a singular value decomposition (SVD) of the
spectral responses over time and sources, where § =ULV' and L is a leading

diagonal matrix of singular values. This means that instead of working with K¢
frequencies, | can reduce the problem to modelling the coupling among K < K¢

modes that cover all frequenciesin different proportions.

In this context, the states g* represent the contribution of the k-th
frequency-mode, U, (w) to the spectral dynamics of the i-th region. | can project
the predicted spectral dynamics in the state-space of frequency modes to
frequency space using, g;(w) =Ug,. Similarly, one can characterise the coupling
as functions of frequency; i.e, A (w,,w,)=UAUT and C (w) =UC,. These

projections are possible because the frequency modes are orthonormal and | am
using alinear DCM. | typically use between two and four modes, which account
for about ninety percent of the observed variance in spectral responses. | have
specified the likelihood and priors of this generative model and can now turn to

model inversion and comparison.
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2.3.3 Bayesian inversion of DCMs

In this section, | review briefly model inversion and selection. For a given
DCM, say model m; parameter estimation corresponds to approximating the

moments of the conditional or posterior distribution given by Bayesrule

m) = P(919.m p@. m)

= 19
p(g [m)

p@ | g,

The estimation procedure employed in DCM is described in Friston et al
(2006). The posterior moments (conditional mean m and covariance S) are
updated iteratively using Variationa Bayes under a fixed-form Laplace (i.e,
Gaussian) approximation to the conditional density g(q) = N(r,S). This is
equivalent to Expectation-Maximization (EM) that employs a local linearization
of the predicted responses about the current conditional expectation of the
parameters. The E-step conforms to a Fisher-scoring scheme that optimises the
variational free energy F(q,I ,m) with respect to the conditional moments. In the
M-step, the precision parameters | are updated in exactly the same way to
provide their maximum likelihood estimates. The estimation scheme can be

summarized as follows;
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E-sep 97 mAF@Im

M-step | = mlaxF(q,I ,m)
20

F(a!,m=(Inp(glg,l ) +Inp@)- Ina@)),
=Inp(g(l)- D@l p@|g.!))

The free energy is ssmply a function of the log-likelihood and the log-prior
and q(q), which is an approximation to the posterior density p(q|g,! ,m) |

require. The last line of Equation 20 shows that the free energy is the log-
evidence or marginal likelihood minus the Kullback-Leibler divergence between
the real and approximate conditional density. This means that the variational
parameters (conditional moments and precision) maximize the log-evidence,
while minimising the discrepancy between the true and approximate conditional

density. Thisschemeisidentical to that employed by DCM for fMRI and ERP.

2.3.4 M odel comparison and selection

Inference on the parameters of a particular model uses the conditional

density, g(@). Usudly, this involves specifying a parameter or compound of
parameters as a contrast, ¢’ m. Inferences about this contrast are made using its

conditional covariance, ¢'S(I )c. For example, one can compute the probability

that a contrast is greater than zero. Thisinference is conditioned on the particular
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model specified. However, in many situations one wants to compare different
models, for example models with and without particular connections. This entails
Bayesian model comparison. Different models are compared using their evidence

(Penny et al. 2004). The model evidence or marginal likelihood is
p(gm) =¢p(gla.mp@ | mdq . 21

This is the normalization term of equation (19). By using the Laplace
approximation (see Penny et a., 2004 for the details of this Laplace

approximation), the log model evidence can be expressed as

logP(g | m), = Accuracy(m) - Complexity(m)
where

Accuracy(m) = - %Iog|Ce| - %r(q)T C.'r(@)

1 .
+2dal C;'dal

Complexity(m) = %Iong - %|09|5|

22

The evidence can be decomposed into two components. an accuracy term
and a complexity term. The accuracy term is simply the log-likelihood of the data
expected under the conditional density and the complexity term is the Kullback-
Leibler divergence between the approximating posterior and prior density. Clearly,
for two models with identical accuracy, the model with the simpler network
architecture will win; as the complexity term decreases the model evidence. A

detailed description of the optimization procedure and Bayesian model selection
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employed in this thesis can be found in Friston, 2002, Friston et al., 2003 and
Penny et al., 2004.

In the following, | approximate the model evidence for model m, with its
free energy bound. After convergence, the divergence above is minimized and this

bound becomes tight such that
Inp(g | m) » F(m) 23

The most likely model is the one with the largest log-evidence. This
enables Bayesian model selection. Model comparison rests on the likelihood ratio

of the evidence for two models. Thisratio is the Bayes factor B;. For modelsi

and |

ng, =inPIM=D _ oy Fm=j) 24
p(g |m=j)

Conventionally, strong evidence in favour of one model requires the
difference in log-evidence to be about three or more (i.e. a relative probability of
about twenty). In what follows, | will use model comparison to compare models
with and without various sorts of connections. By assuming uniform priors on the
models | can convert the model evidence into a conditional probability over
models by normalising the evidences so that they sum to one. Under this
assumption, two models with a log-evidence of three imply that | can be 95%

confident that the better model is more likely, given the data features.
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2.3.5 Summary

Figure 2.5 summarises DCM for induced responses, which entails two steps.
The first is to specify the model; i.e. the source locations and the network, based
on prior knowledge or beliefs about the functional anatomy of the paradigm. For
source locations, one can employ conventional source reconstruction methods; for
example, source imaging (Mattout et al. 2006) or equivalent current dipoles (ECD)
models (Kiebel et al., 2007; Kiebel et al., 2006). In terms of the network
architecture, one needs to specify whether directed connections exist and whether
they are linear or nonlinear (i.e., whether the cross-frequency termsin A are, a

priori precisely zero or not).
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Figure 2.5 Schematic illustration of the analysis procedure. Upper panel: The

spectral dynamics in the sources, 9i (t), are first evaluated from observations in
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sensor space; They are projected onto source space using the pseudo-inverse of

the lead-field, L . The spectral densities obtain by squaring the absolute values
after Morlet wavelet transform. Lower panel: the linear form of state equations. At
the neuronal level, the DCM comprises a vector of states for each electromagnetic

source, allowing for linear and nonlinear coupling.

The second step is to invert the model given some observed spectral

features. The source spectra obtain by projecting the channel data, d(t), to source
space and evaluating the spectral density over K¢ frequency bins using Eqg. 16.
These spectral features are reduced in number, using orthonormal frequency
modes U =[U,,...,U,] to encode spectral dynamics. These dynamics are
modelled using linear state equations (Eq. 14), where the elements of the coupling
matrix ai‘j‘I comprises the within (i = j) and between (i * j) source coupling
parameters, which can be either within (k =1) or between (k® |) frequencies.
The coupling between two regions can then be characterised as a function of
source and target frequencies; A, (w,,w,) =UA,U T and displayed as a matrix or
image. Linear coupling matrices have strong coupling among the same
frequencies so that large coupling values are deployed along the leading diagonal.
Conversely, nonlinear coupling entails between frequency effects with large off-
diagonal terms (see Figure 2.6). Because | use a small number of frequency
modes, these coupling matrices encode broad-band coupling among the modes.

This means that linear coupling can ‘diffuse’ away from the leading diagonal but

retains its symmetrical form.
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The above procedure can be repeated for severa models or hypotheses
about the underling architecture generating induced activity and the competing

models compared using their differences in log-evidence.

| have now covered the specification, estimation and comparison of DCMs
for induced responses. In the next section | try to establish their validity using

synthetic data.

2.4 Facevalidity: Simulations

This section addresses the face validity of the DCM described in the
previous section. First | generated synthetic data to show that, using model
comparison, the scheme can disambiguate competing models correctly. | use a
very simple example to demonstrate the basic features of model selection. In the
second simulations | used a more realistic model (based on the analysis of rea
data in the next section) to establish the identifiability of various parameters and
ensure they can be estimated accurately under typical levels of noise. In al
simulations, data were generated by integrating EQ.11 given known model
parameters (which also specify exogenous input). | then added noise to create
synthetic data that were generated by a known architecture and known parameters.
Critically, | used parameters that were based on the estimates from the analysis of

real EEG data. This ensured that the simulations were biologically plausible.
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Observation noise was created by evaluating the time-frequency power of a white
noise process, using the same wavelet-transform employed in the empirical
analyses. This ensured the serial correlations in the noise matched those observed
empirically. Simulated noise processes were scaled and mixed with synthetic

signal to give the desired signal to noiseratio (SNR).

2.4.1 Model selection: distinguishing between linear and nonlinear

coupling

In these ssimulations, | generated data using a very ssmple DCM under linear
and nonlinear coupling, with a SNR of 19.46 dB. The model comprised two
sources with two frequency modes in each source, where the first source projected
to the second. See Table 2 for of the values of the coupling parameters used
(other parameters were set to their prior expectationsin Table 1). The input to the
system was a bump function that elicited responses in both modes in, and only in,
the first region. The first DCM modelled all the connections as linear. The second
used the same coupling parameters but allowed for fairly weak nonlinear coupling
from the second to the first frequency mode. | used two DCMs to invert these two
data sets. The first modelled linear coupling only and the second allowed for
nonlinear coupling between the two sources. The model parameters and results of
Bayesian inversion of these two simulated datasets are summarized in Table 2.
For nonlinear data, the nonlinear DCM had a greater model evidence than the

linear DCM (InB,, =126) and vice versa, for linear data, where the linear DCM
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has the higher model evidence (InB,, =66). When data are generated under a

nonlinear model, the linear model simply cannot explain them, which is reflected
in the relatively large difference in log-model evidences. For linear data, this

difference is much smaller (InB,, = 66), because the nonlinear fit to the datais as

good as the linear one. However, the nonlinear model has more parameters, which
decrease the model evidence relative to the linear model, rendering it aless likely
model. The agreement between the true and conditional estimates of coupling is
self-evident and, under this level of noise, | would be very confident that this

coupling was not zero.

2.4.2 Model inversion under different levels of noise

In these smulations, | use the posterior expectations computed for real EEG data
set as generating model parameters. The architecture was based on the model used
to analyse the data in the next section obtained during a face-presentation
paradigm. This model comprised two pairs of homologous regions in the right
and left hemispheres, corresponding to early visual and fusiform sources. The
sources within each hemisphere were connected reciprocally, whereas only the
fusiform sources were connected between hemispheres. The spectral activity in
each source was expressed in four frequency modes (identified by a singular value
decomposition of the real EEG data; see Figure 2.7). The input enters bilaterally at
the visual sources. This exogenous input introduces a burst of power that perturbs

the network at a time corresponding roughly to the arrival of subcortical input
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conveying sensory information (about 60ms after stimulus onset). The responses
were generated as described above by integrating EQ.11 to gives, for each source,

dynamics in the state-space of frequency modes

To produce observation noise at the source level | generated sensor level
white noise at four different variances. | then projected these random effects to
source space using the pseudo-inverse of the lead-field and finally transformed it
into the time-frequency domain (c.f., Eq.16). After projection onto the frequency
modes | added the resulting noise spectra to the simulated source spectra. |
quantified the resulting noise levels, in source space, in terms of signal to noise
ratio (SNR) at 20.38, 14.8, 10.83, and 4.54 dB; where | take 14.8 dB as
representative of typical data. For example, real EEG data had an estimated SNR
of 19.74 dB. Table 2.3 summarizes the results of model inversion in terms of (i)
selected posterior expectations and (ii) average errors on the linear and nonlinear
coupling parameters (i.e., differences between the true values and conditional
expectations). These results suggest that, when the SNR is greater than 15 dB, the
connection strengths are estimated with a high degree of accuracy. As anticipated,
the errors increase with noise. When the SNR is too low, inference can change in
a qualitative sense. For example, at 4.54 dB, | found that one non-linear coupling
was a posteriori very likely to be present (p > 0.95), although the true parameter
was zero. This may be because as the noise variance increases, the optimization
scheme gets trapped in the local minimum; however, a more likely explanation is
due to the conditional dependencies among the estimates, where one parameter is

over-estimated at the expense of another being under-estimated: At high noise
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levels in this simulation, there is an underestimate of one coupling parameter at
10.83dB. This coupling parameter should be significant but Bayesian inversion
fails to show this. Note that these dependencies are accommodated in Bayesian
model selection (which integrates over the parameters). In conclusion, a typical
SNR of 20 to 15dB gives veridical estimates, whereas higher noise levels (i.e.,
SNR of 10 to 5) can lead to inappropriate inferences (as indicated by the starred
entries, with a posterior inference that the coupling parameter was greater or less

than zero).
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Table 2.2 First simulations: results of inverting a linear and nonlinear model

using linear and nonlinear data (SNR = 19.46 dB).

p(A) indicates the

conditional probability that the coupling parameter is greater than zero. F is the

log-evidence of each model and data pair. The winning model for each data set is

indicated by a grey box.

Nonlinear data Linear data
11 11
Aoi_ 0.72 Ao 0.72
True
2,2 2,2
Parameter 1 —_0u45 1 =_.0.45
21
1= 024
A;,J. 11
1= 082 p=0.99 1= 072 p=099
2,2 2,2
Non-linear 1=.045 p=099 1=.064 p=099
DCM A22’1 21
1l =032 p=099 1= 003 p=096
F= -2561 F= -4420
T T
1l=13 p=079 AM: 076 p= 1.00
Linear
2,2 2,2
DCM 1-.019 p=0.99 1-.029 p=099
F = -2687 F = -4354
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Table 2.3 Second simulations: The impact of noise level on estimation accuracy of the
parameters. The first column displays the true parameters for a selected subset of linear
and non-linear parameters. Each subsequent column shows their posterior mean for
decreasing signal-to-noise ratios (SNR). The last three rows display the errors of the

linear and non-linear parameters, averaged over connections and expressed as a percent.

Non-linear DCM SNR (dB)
20.38 14.80 10.83 454
31
1 =189 1.89 1.89 184 175
A{Lz
1 =205 2.05 2.05 2.00 194
34
1 =105 -1.05 -1.05 -1.03 -1.19
31
d=_162 -1.62 -1.62 -1.60 -1.49
A&4,2
3 =0.10 0.10 0.10 0.08 0.09
A
2 =0.65 0.62 0.65 0.62 0.64
4,3
A1 -175 -1.75 -1.75 -1.76 -1.70
2,4
1 =097 -0.97 -0.97 -0.88* -0.94
p<0.95
16&4,3
2 =0 0.00 0.00 0.00 0.48*
p >0.95
Average error  for | <0.1 % <0.1 % 2.33% 8.60 %
linear coupling
parameters (%)
Average error for non- | <0.1 % <0.1 % 253 % 20.9%
linear coupling
parameters (%)
Average error for all | <0.1 % <0.1 % 13.8% 14.8%
parameters (%)
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2.5 Analyses of real EEG data

In this section, | demonstrate DCM for induced responses using EEG data.
The data represents a single-subject data set from a study by Henson et al. (2003)°.
The subject performed a judgement task on faces and scrambled faces. The data
were sampled at 200 Hz using a whole-head, 128-channel ActiveTwo system.
Bipolar horizontal and vertical electro-oculograms (EOG) were obtained using
electrodes placed at the bilateral outer canthi and the left eye respectively to
exclude trials with an EOG artefact. The data used here comprise time-frequency

responses averaged over 86 trias.

The lead-field or gain matrix was computed for a canonical mesh (Mattout
et a 2007) and co-registered channel locations, using a three-sphere head model

as encoded in BrainStorm (http://neuroimage.usc.edu/brainstorm/). The co-

registration and forward model was computed within  SPM5

(http://www.fil.ion.ucl.ac.uk/spm).

2.5.1 Exemplar analysisusing DCM

Note that this single-subject analysis is used only to illustrate DCM for
induced responses; | will not attempt a neurobiological interpretation of these

results. Furthermore, face-perception is not necessarily the most interesting

® These data are available from http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces.html
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paradigm, in terms of induced responses. | used these data because they are easily

available (from http://www.fil.ion.ucl.ac.uk/spm), which means other people can

reproduce the analysis reported below.

The specification of a DCM, i.e., the network and source locations, is a
critical step. | envisage that, for a given study, there would be several competing
models that one might want to test. In the current framework, one does this by
specifying models in terms of their connections and whether these connections are
linear or nonlinear. Model comparison’ can then be used to select the best model
and inferences about the parameters of the selected model can proceed using the
conditional mean and covariance of the coupling parameters. Here, | will ssimply
test two models to illustrate model specification, comparison, and inference. |
used prior knowledge about sources in visual and fusiform cortices and employed
source reconstruction implemented in SPM5 to localize four sources from a
conventional ERP analysis of the data (Friston et al. in press). These source
comprised the left and right visual cortex (LV and RV), and left and right
fusiform area (LF and RF). The locations of these sources are provided in Figure
2.7a, in canonical space. For these sources, spectral changes, in several frequency
bands, have been found during face processing (Klopp et al., 1999). Spectra were
constructed from -100ms to 400ms. | used a Morlet wavelet transform with a
coefficient, k =7, over 4 to 64 Hz. The resulting spectra were de-trended and

reduced using four principal modes as described above (see Figure 2.7b). In the

’ Note that due to the feature selection (Eq. 16) one cannot compare models based on
different lead-fields. In other words, models can only be compared if they include the
same sources.
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first (nonlinear) DCM, | allowed bi-directional cross-frequency coupling between
source pairs LF-RF, LV-LF, and RV-RF. In the second (linear) model, | allowed
only within-frequency interactions among these sources. | use two exogenous
inputs to LV and RV. The (estimated) tempora dynamics and spectral effects of

these inputs on both visual sources are shown in Fig.2.8.

2.5.2 Results

Figure 2.9 summarizes the results based on the nonlinear DCM. The arrows
indicate directed connections. Coupling strengths are represented as functions of
source and target frequency (c.f., Figure 2.6). | only show coupling matrices for
which one or more of the underlying coupling parameters was greater than zero,
with 95% confidence or more. These matrices encode the coupling among
frequencies; for example, there are several cross-frequency influences in the
forward connection from RV to RF, in which apha (8-12Hz) in the fusiform
source is induced by apha in the visual source. However, the same apha
suppresses beta (16Hz), while increasing fusiform gamma power. These changes
recapitulate the simulations in Figure 2.4, where low frequencies in the input

produce high frequency responses.

Figure 2.10 shows the equivalent results for the linear DCM. In this case,

only the forward connections and one transcallosal connection contained

parameters that were greater then zero (at 95% confidence). This model islargely
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constrained to predicting the dynamics of alpha power and is unable to account for

any cross-frequency effects.

Bayesian model comparison clearly favoured the nonlinear model with a
log-Bayes factor of 392. Figure 2.11 shows the observed and predicted spectra
densities of the selected (nonlinear) model. Using these spectral densities, |
estimated the SNR to be 19.74 dB. Interestingly, the coupling strengths in the
right hemisphere were stronger than those in the left. Previous studies have found
a right lateralization for face processing (Kanwisher and Yovel, 2006). One can
directly test this with DCM, using contrasts; for example, | found that the
difference between the left and right (right minus left), averaged over all cross-
frequency coupling parameters, is greater than zero, with a posterior confidence of
99%. In summary, using DCM and model comparison | find strong evidence for

right-lateralised nonlinear coupling among early visual and fusiform sources.
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Figure 2.7 Real EEG data analysis. Left (a): System or graph underlying the DCM
(RV —right visua; RF — right fusiform; LV — left visual; RF - right fusiform).
Right (b): the frequency modes, U,(w) , identified using singular value

decomposition of spectral dynamics in source space (over time and sources).

it inpul frequency response to input 1
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time (ms) ~ Frequency (Hz)
Estimated inputs over peristimulus time Frequency responses to input

Figure 2.8 Inputs to the DCM of real EEG data: (a): estimated time course of
inputs to RV and LV based on the conditional means of the input function (Eq.18).

(b). spectral response to input in the same areas. These profiles correspond to

ucC,

93



input
F=-3104

Figure 2.9 Results for non-linear DCM of rea EEG data: The arrows show the
directed connections from one source to another. The coupling strengths are
represented as coupling functions of frequency, which show the effects the
spectral density in one source has on the density in another. The source names are

asinFigure 2.7.
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Figure 2.10 Results for linear DCM of real EEG data: As for Figure 2.8 but for a
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reduced linear model. The source names are asin Figure 2.7.
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Figure 2.11 The observed and predicted spectral densities of the selected (nonlinear)
model. Upper panels: Observed EEG time-frequency power data for all four sources.
Lower Panels: Fitted data. It can be seen that the model captures the main spectral
dynamics fairly well. There is pronounced alpha activity around 140ms with a partial
return to pre-stimulus levels by 260ms. This corresponds largely to the evoked
components. Although not very easy to see, there is also a late increase in gamma power

that starts around 250ms (arrow). The images correspond to the observed and predicted

guantities Ug; (1) and Ug, (1) respectively.
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2.6 Discussion

Nonlinearities in neuronal activity are an important aspect of processing in
large-scale neuronal networks and have led to many different proposals of how to
best to characterise them given some data (e.g., David et a., 2004). As | have
illustrated above, linear coupling is mediated by first-order transfer functions that
transfer energy in the source to the target, while non-linear mechanisms express
themselves as cross-frequency interactions, through high-order, generalised
transfer functions. A simple example of this is frequency doubling when one
squares a sinusoid; i.e., exp(jwt)® =exp(j2wt) (see Friston 2001). Biological
evidence speaks to the prevalence of nonlinear interactions among cortical areas
during cognitive tasks (e.g., Bullock et al., 1997; Schack et al., 2002). | have
shown that second-order features of the data (i.e., the spectrum) can be modelled
by DCM for induced responses in away that can disambiguate between linear and
non-linear coupling. DCM is not for a surrogate for widely used linear models
(e.g., coherence, correlations) but represents a complementary approach to

disclose cross-frequency interactions among areas (see also Pereda et al. 2005).

In this study, | have assumed that the locations of the sources are known.
This means there is no source-reconstruction problem and no spatial parameters to
optimise. The specification of source locations is itself a large area both in terms
of evoked (Baillet and Garnero 1997) and induced responses (Singh et al 2003). In

this work, the source locations were based on previous analyses of the data used
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using multiple sparse priors on distributed forward models (Friston et a 2008). |
would advocate that whatever source reconstruction technique is used, only the
locations should be retained and used to re-estimate source-activity using the
forward model provided by ensuing the ECD forward model. This is because the
assumptions implicit in distributed forward models can introduce (e.g., though
smoothness constraints) or remove (e.g. through beam-forming assumptions;
Singh et a 2003) correlations among neighbouring sources. Inverting a simple
ECD forward model also ensures the DCM is insensitive to the reconstruction

scheme used to define the ECD locations.

This model furnishes a framework within which one can make inferences
about causal coupling. Note that model-free approaches cannot be used to make
causal inferences in a control theory sense. For example, coherence and mutual
information measure interdependency between time series obtained from two
sources but provide no information about directionality. Despite their names,
extensions of these methods, such as Granger causality and transfer entropy, do
not provide evidence for causality in a formal sense because they are based on
multivariate autoregressive models, which may be causal or acausal. However, an
advantage of model-free approaches® is that they can usually be applied in an
exploratory fashion. Hypotheses about coupling, generated by these analyses, can

then be tested formally using a DCM.

8 By model-free | mean any technigue based on simply on probability distributions; noting
that these distributions may be parameterised with a model (e.g., autoregressive models).
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An important feature of DCM for induced responses is that it models the
full time-frequency spectrum. This differs from typical approaches, which select
apriori a few specific frequency bands. | model spectral dynamics in terms of a
mixture of frequency modes (obtained with singular value decomposition). The
dynamics of each mode are encoded by the evolution of a state. It is this multi-
state vector, for each source, that captures how the energy in different frequencies
interacts, either linearly or nonlinearly, among sources. A critical issue is whether
inferences differ with the number of frequency modes per source. In Fig. 2.12, |
show that the exact number does not seem to have an effect on inference. Using a
synthetic dataset (the second set of simulations with an SNR of 15), generated
with three modes, | find that the nonlinear DCM is aways the best model for
different numbers of modes. In principle, choosing too many modes should not
affect inference (as shown above), because parameters that relate to superfluous
states will not explain data but only decrease the evidence of the model. In
practice, | suggest people use as many modes as necessary to represent 90 % of
the data variance. The obvious minimum to model interesting dynamics is two
modes. Note that one cannot compare models with different number of modes
(because the log-evidence is a function of the data features, which are defined in

terms of modes).

2.7 Conclusion

Nonlinear interactions are an important phenomenon in the brain and are

expressed as cross-frequency coupling in spectral characterisations of EEG and
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MEG time-series. Dynamic Causal Modelling for induced responses exploits this
to model dynamic broad-band power changes as a consequence of linear and non-
linear coupling among brain sources. The ensuing scheme might be useful when
trying to disambiguate linear and nonlinear contributions to distributed processing
in a network of electromagnetic sources. In the next three chapters (chapter 3-5), |
will apply this method to empirical datasets measured during motor tasks and face
perceptions and in chapter 6, | will generalize this dynamic causal model to
address the relation between evoked and induced activities in  terms of their

generating mechanisms.

log4uiferica (redafhe)

F(m) ~1In p(g | m)

Figure 2.12: Model comparison: The effect of using a different number of modes
on the log-evidences for the linear and non-linear DCM. Importantly, the relative

log-evidences remain stable when | change the number of modes.
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CHAPTER 3

NONLINEAR COUPLING IN THE
HUMAN MOTOR SYSTEM

3.1 Introduction and specific aims

The aim of this chapter is to characterise the modulation of frequency-
dependent coupling among neuronal sources during action execution using MEG
and a simple linear form of DCM for IR (see Chapter 2; Chen et al. 2008). Hand
movements have been shown to modulate oscillatory power in motor system at
different frequencies, such as apha ERD and beta ERS in brain areas engaged by
action execution; e.g., M1, SMA and PM (Pfurtscheller and Andrew, 1999). Given
that oscillations facilitate integration both within functionaly segregated brain
areas and between areas engaged by the same task (Singer and Gray, 1995;
Kahana et al., 1999; Rodriguez et al., 1999), many studies investigating oscillatory
activity have focussed on (linear) coupling between nodes of a network at the
same frequency (Andrew and Pfurtscheller, 1996; Gerloff et al., 1998; Gross et al.,
2001; Serrien et al., 2005). More recently, evidence has emerged that suggests
(nonlinear) coupling among different frequencies may play an equally important

roleininter-areal communication (Breakspear, 2002; Chen et al., 2009; Jensen and
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Colgin, 2007; Talon-Baudry and Bertrand, 1999; Varela et al., 2001; von Stein
and Sarnthein, 2000). In view of the finding that action execution induces changes
in different oscillatory frequencies within connected brain regions, in this chapter |
wanted to model how these oscillations are orchestrated during motor control. It is
important to consider the nature of this frequency-specific coupling given that
excessive synchronization at distinct frequencies is seen in some pathological
conditions. For example, in Parkinson’'s patients, synchronization between the
contralateral primary motor cortex and forearm muscles at 4~6 Hz is thought to
contribute to resting tremors, while excessive synchrony in the basal ganglia and
subthalamic nucleus at 10 to 35 Hz is associated with bradykinesia (for review, see
Brown, 2007). The motivation for the work reported here was to establish a
reference point for future clinical studies, using normal subjects and a simple
established paradigm. This normative reference might help pinpoint where
abnormal modulations of specific frequencies arise.

The aim of this chapter was to model modulations of frequency-specific
oscillations in the motor network induced by an established handgrip task (Ward et
a., 2008). | modelled these modulations in terms of coupling between
electromagnetic sources, where power in one source causes changes in the power
expressed in others. Critically, | distinguished between within-frequency (linear
coupling) and between-frequency (nonlinear) coupling. Specificaly, | asked
whether there is a difference in the relative contribution of linear and nonlinear
mechanisms between intrinsic (within-area) and extrinsic (between-area) coupling.

The results suggest that extrinsic connectivity is best characterised as nonlinear
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(between-frequency) coupling, whereas intrinsic connections are best modelled

with linear (within-frequency) coupling.

3.2 Material and M ethods

3.2.1 Experimental design

Nine healthy, right-handed subjects (20~32 years of age, 5 males and 4
females) were recruited. Written consent was obtained from all subjects, in
accordance with the Declaration of Helsinki. The study was approved by the Joint
Ethics Committee of the Institute of Neurology, UCL and National Hospital for
Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, London.

Subjects were instructed to perform a visually cued ballistic isometric grip,
using their dominant hand with an inter-trial interval of 7+2 secs. Prior to scanning,
subjects were asked to grip the manipulandum to generate a maximum voluntary
contraction (MVC). The target force was set a 45% of MVC. Subjects were
trained to approximate the target force with visual feedback prior to scanning.
However, no visua feedback was provided during scanning, in order to minimise
activity in occipital and parietal sources. Force output was recorded using a MEG-
compatible gripper and used to identify the movement onset (i.e. the reaction time,
from the onset of the visual cue until the onset of the ballistic grip), the grip
duration and force level.

MEG signads were measured continuously at 240 Hz during task

performance using a whole-head CTF Omega 275 MEG system. At the beginning
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and end of each measurement, the positions of three anatomical landmarks
(bilateral pre-auricular points and nasion) were recorded to exclude excessive head
movement (maximal tranglation < 1.3 cm ; 2.68~12.68 mm).

The MEG data were pre-processed offline using SPM8 (SPM8, Wellcome

Trust Centre for Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm/). The data were

epoched from -500 to +1000 ms, where time zero indicates movement onset.
Poorly performed (reaction times of more than one sec) and artefact contaminated
(MEG amplitude > 500 fT) trials were excluded from further analysis; resulting in
88-98 artefact-free epochs per subject (88 98 90 98 94 96 90 93 95) with
642.66+54.92 ms mean reaction time and 639.45+54.48 ms grip duration. The
mean force level was 45+25 % of subject-specific MVC. These artefact-free
epochs were projected from channel space to the sources using the generalised
inverse of the lead-field matrix for the chosen sources (see Model specification
below). The spectral density from 4-48Hz at each source was computed over peri-
stimulus time using a time-frequency Morlet wavelet transform (wavelet number:
7). The absolute value of the resulting time-frequency responses were averaged
over trials and baseline-corrected by subtracting the frequency-specific power of
the first time-bin. For computational expediency, | reduced the dimensionality of
spectra into four principal frequency components derived from a SVD of the
spectra (see chapter 2 for details). This preserved over 93 % of the spectral
variance in all subjects (range 93% ~ 97%). The resulting spectral dynamics enter

DCM as the observations that the model attemptsto explain.
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3.2.2 DCM specification (sources and coupling)

The source locations were taken from the group results of an fMRI study
using the identical task (Figure 3.1), where five subjects performed 25 ballistic
isometric hand grips to 45% of MV C. Imaging data were analysed using SPM5 as
described elsewhere (Ward et al., 2008). The localisations were taken as the peak
coordinate in Montreal Neurological Institute (MNI) space within each significant
cluster (voxels significant at p < 0.05, corrected for multiple comparisons across
the whole brain). Peak increasesin activity were seenin left M1, bilateral PM and
SMA. In addition, right M1 was included because of significant task-related
deactivation during hand grip secondary to transcallosal interhemispheric

inhibition (Ward et al., 2008) (Figure 3.1).

Figure 3.1 Location of the four sources extracted from a paralel fMRI study (Ieft)

and shown on atemplate MRI image (right).

Using these five sources | then specified 12 different connectivity models as

shown in Figure 3.2. This model space was constructed using three model
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attributes. First, whether intrinsic (I) connections are linear (L) or non-linear (N)
and second, whether extrinsic (E) connections are linear or non-linear. This results
in four sorts of models. The third attribute was the lateralization of cross-
hemispheric coupling between PM and M1. | modelled three levels of this
lateralisation: right PM to left M1 (r-), or left PM to right M1 (I-) or both (b-).
This gave a total of 12 models, as shown in Figure 3.3. | use the designation r-
ILEL to mean a right-lateralised architecture, where Intrinsic connections are
Linear and Extrinsic connections are Linear. The exogenous inputs go to the

bilateral M1s and SMA.

3.2.3 Inference on models. Bayesian M odel Selection (BMS)

At asingle subject level, | compared the difference in log model evidence or
marginal likelihoods between models, i.e. log Bayes factor (Penny et a. 2004) to
identify the best among the models tested. To identify the model with the most
evidence at the group level, | added the log-evidences from each subject, under the
assumption that each subject’ s data are conditionally independent of each other. In
other words, the log-evidences from each subject were summed under a fixed-
effects assumption on model space (i.e., there is one model that is the best for all

subjects).

INP(Ys, YVzr¥o M) =N O ply; Im) =@ Inp(y; Im)

j=1
to obtain the log-evidence for the i-th model across all n subjects. For any given
pair of models, a Bayes factor of about twenty (i.e adifference of three or morein

log space) is usually considered as "strong" evidence in favour of one model
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relative to another (Penny et al. 2004). To ensure differences in log-evidence were
consistent across subjects, the log-evidences for each model, over the nine subjects,
were entered into a repeated-measures analysis of variance (ANOVA) with two
within subject factors (nonlinearity with four levels and laterality with three levels

— corresponding to the columns and rows of Figure 3.2 respectively).

rILEL r-INEL rILEN r-INEN

———

Linear
————————

Linear
+

nonlinear

Intrinsic
L NL

ILEL |INEL

|ILEN|INEN

Figure 3.2 The connectivity architecture for all the models considered. The upper
panel shows the symmetric models differed according to whether the linear or
nonlinear connections are intrinsic or extrinsic. The lower panel represents the

asymmetric DCMs. The solid and dashed lines indicate the effect of nonlinearity
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and linearity, respectively. N: nonlinear coupling; L: linear coupling; I: Intrinsic

connection; E: Extrinsic connection.

3.2.4 Model parameters: Visualization of coupling matrices

To quantify the coupling under the best model, for each intrinsic or extrinsic
connection the (frequency to frequency) matrices of subject-specific estimates
were smoothed (to account for inter-subject variability in frequency-to-frequency
coupling using a Gaussian kernel with FWHM 8 Hz). These were then averaged
by entering them into a conventional SPM analysis to identify reliable frequency-
specific connectivity. | report the average coupling strengths in, and only in, non-

zero frequency bins (at p<0.005 uncorrected).

3.3 Reaults

3.3.1 Time-frequency responses at sour ce level

The estimated event-related spectral responses at the source level of a
representative subject are shown in Figure 3.3 (upper panel), where the alpha’
power decreases bilaterally in M1 from movement onset to 300 ms. This pattern
was observed consistently across all subjects. Transient beta power increases were
seen in bilateral M1, SMA and left PM (6 out of 9 subjects), and enhanced gamma

was seen in SMA and PM bhilaterally (8 out of 9). | also observed transient

1| refer to the conventional classification of frequency bands into theta (4-8 Hz), alpha (8-15 Hz),
beta (15-30 Hz), and gamma (>30 Hz).
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bilaterally M1 beta power decreases in some subjects (5 out of 9). Taken together,
these time-frequency responses are in line with previous findings (Crone et d.,
1998a; Crone et al., 1998b; Kilner et a., 2003; Leocani et a., 1997). The lower
panel in Figure 3.3 shows the predicted spectral responses, at the source level, by
the best (I-ILEN) model (see ‘Inference on models for details). Note that the

spectraare normalized individually with respect to their maximum.

LM1 RN SMA LPM RPM
(observed) (observed) (observed) (observed) (observed)
e B ae b ' B 4 b g . - - ae w_ | 1
o - a.“]' el
.:-u-u o Gool I:'m e :r.-\.-.’. _.-".-*'.:'.;. 1000 & -::'.: ﬁ_ﬁ:ﬁm
LM1 RN SMA LPM RPM
(predicted) (predicted) (predicted) (predicted) (predicted)
Al ) ) Iﬂ-te- 45 o6 Al 3 ™ T_ .
bl el cm NE e bl ek
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Figure 3.3 The observed (upper panel) and predicted (lower panel) spectral

responses for a representative subject under the best mode (I-ILEN) from the

Bayesian model comparison.
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3.3.2 Inference on models; Nonlinear effect and motor networks

Figure 3.4 summarizes the results of the model comparison. It is
immediately obvious that the models which fit the data best are those with
nonlinear extrinsic coupling (Figure. 3.4). Models with one or more nonlinear
connection were consistently better than purely linear models in every subject
(Figure. 3.4). An ILEN model was the best in six out of nine subjects and four out
of those six subjects have the I-ILEN model as the best at the single subject level.
At the group level, the I-ILEN model was the best model amongst those tested.
Note that the BMS results are conditional on the assumption of fixed effects. The
random effects assumption can be employed to account for the between subject
variability in model space. (i.e. the group heterogeneity) or outliers in the model -
evidences (see Stephan et a, 2009 for detaills and chapter 6 for example). In
addition, it is a'so important to note that the most complex model (b-INEN) is not
necessarily the best (only one subject had this model as the best). This is because
the log-evidence includes a penalty term for complexity. The two-way ANOVA
confirms the strong evidence for nonlinearity (levels. ILEL, INEL, ILEN, and
INEN; F(1.70,13.63)=15.483, p<0.0001) in terms of its consistency over subjects.
However, there was no effect of laterality (levels: right, bilatera and left
lateralized models;, F(1.03,8.27)=0.744, p=0.417) nor any interaction

( F(1.34,10.70)=1.026, p=0.359).

110



Log-evidence
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Figure 3.4 Results of Bayesian Model Selection. (A) Pooled log-evidences of the
twelve DCMs tested). It can be seen that the best model is |-ILEN (log-evidence
= -24297) and the next best is b-ILEN (log-evidence = -25880). (B): Comparison
of the average log-evidences for the three purely linear (ILEL) models and the
remaining nonlinear models; shown for each subject. The positive slopes over al
subjects indicate that the nonlinear coupling is essential as the nonlinear models
are always better than the linear ones.
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In summary, in normal subjects, | found very strong evidence for nonlinear
coupling between areas but no evidence for nonlinear interactions within areas.
Furthermore, this evidence was expressed consistently in subject-specific
responses. In addition, there is evidence for an asymmetry of interhemispheric
interactions in the right hand movement task | used; although this was less

consistent over subjects.

3.3.3 Coupling parameters

The coupling parameter matrices of all subjects under the I-ILEN model,
where each matrix represents the frequency-to-frequency coupling of one
connection enter the statistic test and the corresponding SPMs of the T-statistic
(thresholded at p<0.005 uncorrected) are shown for ‘excitatory’ (positive; Figure
3.5A) and ‘inhibitory’ (negative; Figure 3.5B) effects respectively. As seen in
Figure 3.5, | found several instances of consistent nonlinear (between-frequency)
interactions. These seem to be more profound when the coupling is negative. For
instance, several consistent regions of negative coupling are found far from the
(within-frequency), leading diagonal compared to the positive coupling SPMs.
When considering reciprocal connections, the frequencies entailed by nonlinear
coupling appear asymmetric. For example, in Figure 4B (arrows), the negative
coupling from LPM to RM1 involves alpha-gamma coupling, while the reciprocal
RM1 to LPM connection shows significant gamma-theta coupling. In the same
vein, theta oscillations in SMA suppress gamma oscillations in LM1 but, from

LM1 to SMA, the negative coupling was between gamma and alpha. A summary
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of these T-test results is provided in Table 3.1. The more quantitative

characterisations of the nonlinear coupling identified by Bayesian model

comparison speak to the complicated nature of nonlinear interactions in the brain,

even when modelled as simply as with DCM for induced responses.

Table3.1 Summary of the SPM analysis of the coupling parameters
(+ denotes positive and - denotes negative coupling)

LM1 RM1 SMA LPM RPM
LM1 theta-theta (+) | theta-theta(+) beta-theta(+)
alphalbeta-beta | theta-gamma(-) | apha-alpha(-)
(+) alpha-alpha(-)
RM1 | beta-beta (+) beta-beta(+) gamma-alpha gamma-beta(+)
gamma-gamma gamma- O] gamma-

(+) gamma(+) theta(+)
theta-al pha(-)
alpha-gamma
()

SMA | gamma-apha alpha- alpha(+) alpha-apha(+) | theta-alpha(+)

O] gamma- apha beta-beta(+) beta-beta(+)

O] gamma-gamma | gamma-
(+) gamma(+)
apha-alpha(-) beta-gamma(-)
gamma-beta(-)
LPM | theta-apha(-) beta-alpha(+) beta-gamma(+) alpha-gamma
alpha-theta(-) gamma-beta(+) | gamma- )

beta- alpha (-) theta-al pha(-) gamma(+) beta-alpha(-)

gamma-theta(-) | theta-alpha(-)
alpha-gamma
)
gamma-
theta/alpha (-)
gamma-
gamma(-)

RPM gamma-gamma | alpha-theta(+) | alpha-alpha(+)
+) alpha-beta(+) alpha-beta(-)
beta-alpha(-) gamma-gamma | beta-gamma(-)

(+) gamma-alpha

beta-gamma(-)

¢
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Figure 3.5 Statistical results of coupling parameters. (A) SPM of the positive
coupling strengths (one-tailed), thresholded at p<0.005 uncorrected. This shows
regions of frequency-frequency space, where the average coupling was great than
zero. (B) SPM of negative coupling parameters. The arrows indicate functional
asymmetries in terms of frequency-specific coupling. The significance of the
linear (within-frequency) intrinsic coupling is partly due to prior constraints on the

parameters that ensure the system is dissipative.

3.4 Discussion

In this work, | provide empirical evidence for nonlinear coupling among
distributed neuronal sources in the motor system. Furthermore, these data support
the idea that nonlinear coupling plays an important role in modulating spectral
responses under normal conditions. Interestingly, | found no evidence for
nonlinear or between-frequency coupling intrinsic to each source, suggesting that
linear or driving mechanisms may provide a sufficient account of the interactions
among local neuronal populations. In addition, | found evidence for an asymmetric
inter-hemispheric interaction involving right PM in this right-hand movement task.
A quantitative examination of the extrinsic or long-range coupling parameters,
showed some interesting asymmetries in frequency space and that this coupling

was predominantly negative or suppressive.

115



3.4.1Intrinsic (local) linear and extrinsic (global) nonlinear effects

A recent pharmacological study in rat brains has shown that co-application
of kainic acid and carbachol to layer V in M1 can reliably induce synchronous
oscillatory activity in the beta frequency band in layer 11 to VI (Yamawaki et d.,
2008). These results imply that inter-laminar influences may be mediated by
driving or linear effects because they induce distributed oscillations at the same
frequency. Furthermore, it has been shown that in pathological conditions such as
Parkinsonism, abnormal oscillatory synchronization of neuronal populations in
cortex, subthalamic nucleus and basal ganglia can lead to movement impairment
(Brown, 2007; Levy et a., 2002; Marceglia et a., 2006; Priori et a., 2004). The
findings suggest that the local interactions may be predominantly linear under
norma conditions. Other studies have demonstrated nonlinear coupling in
EEG/MEG signals in a variety of tasks, systems and pathological conditions
(Breakspear, 2002;Antoniou et a., 2004; Breakspear, 2002; Chavez et al., 2003;
Kotini and Anninos, 2002) leading to suggestions that nonlinear coupling is an
important aspect of functiona integration (Jensen and Colgin, 2007; Tallon-
Baudry and Bertrand, 1999; Varela et a., 2001). | have shown that during the
performance of a simple motor task both linear and nonlinear coupling is likely to
be present. Specificaly, the results demonstrate that local interactions can be
explained by linear coupling, but that coupling between regions is nonlinear in

nature.

116



3.4.2 Asymmetry of inter-hemispheric connections

Asymmetry in the human brain architectures has been shown in many
studies, both functionaly or anatomicaly (Amunts et a., 1996; Friston, 2005;
Rockland and Pandya, 1979; Zeki and Shipp, 1988). In the motor system,
handedness and experience-dependent plasticity are thought to be the main factors
subtending these asymmetric properties (Haaland et al., 2000; Karni et al., 1995;
Kloppel et al., 2007). Moreover, functiona lateralization of motor control can be
atered by pathological or traumatic changes (Ward et al., 2004). In this study, |
was able to quantify task-dependent frequency-specific causal influences
mediating the observed spectral responses and characterise functional asymmetry
in terms of long-range coupling. Bayesian model comparison suggested that the
left lateralised ILEN model was superior to the symmetric homologue. The left-
lateralised model conforms to the left hemisphere dominance, expressed for
example in the asymmetric engagement of premotor cortex during skilled

movement in right-handed adults (Pollok et al., 2006).

3.4.3 Asymmetry of hierarchical connections

In addition to hemispheric asymmetries, frequency-specific coupling was

distinct in forward and backward connections, especialy between the SMA and

premotor sources. Furthermore, predominant positive and negative couplings are

located in different frequency bands in most connections. For example, the gamma
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rhythm in left M1 inhibits the alpha activity in SMA but no consistent positive
connection was found.

It is important to establish the normal pattern of the frequency-specific
interactions in the motor system because severa movement disorders show
frequency-related abnormalities, such as resting tremors (4~6 Hz) and
bradykinesia (10- to 35 Hz) (Brown, 2007). However, the details of the underlying
mechanisms remain largely unknown. The study provides a qualitative and
guantitative characterisation of frequency-specific effects under normal conditions,
which | hope will be useful when studying induced responses in patients. To my
knowledge, this is the first study of frequency-specific coupling in the motor
network under normal conditions. Given that, in the motor system, induced
responses depend on the task and show substantial between-subject variability
(Aoki et al., 1999; Kilner et al., 2000; Kristeva et al., 2007; Omlor et al., 2007), |
do not anticipate these results will generalize to other movement-related networks.
Rather, | consider this study as a reference point for similar studies in patients
using the same paradigm.

In conclusion, | have established the prevalence of nonlinear or between-
frequency coupling among distributed components of the motor system during a
simple motor task. These extrinsic nonlinear interactions appear to unfold in the
context of local or intrinsic linear coupling within each area. The associated task-
dependent motor network has asymmetric features, as reflected in both the
deployment of connections and the frequency specificity of reciprocal connections.

In chapter 4, | will show how this motor network is affected by healthy aging.

118



CHAPTER 4

AGE-DEPENDENT CHANGESIN
THE MOTOR NETWORKS
DURING HAND GRIPS

4.1 I ntroduction and specific aim

Age-associated changes in the central nervous system have been studied
intensively, both functionally and anatomicaly. In healthy adults, recent
neuroimaging studies suggest that changes in activation patterns result from
neuro-anatomical and neurochemical abnormalities that occur with aging
(Morrison and Hof, 2002; Page et al., 2002; Rowe et al., 2006b; Gruss and Braun,
2004; Sarter and Bruno, 2004). In relation to cognitive deficits, Cabeza and
colleagues reported that prefrontal activity isless lateralized in older adults than in
younger adults during cognitive tasks; and proposed the HAROLD (hemispheric
asymmetry reduction in older adults) model (Cabeza and Nyberg, 2000; Cabeza,
2002d). These age-related hemispheric asymmetry reductions are thought to play a
compensatory role in sustaining cognitive performance: the compensatory

mechanism appearing only in high-performing but not low-performing old
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subjects (Dolcos et a., 2002; Cabeza et a., 2002b). Thisis similar to observations
in the motor system. Loss of fine movement and slowing of movement speed are
features of aging (Smith et al., 1999; Krampe, 2002) but compensatory processes
in cortical and subcortical systems may allow the maintenance of performance
(Ward, 2006). In general, task-related brain activity may be greater in M, PM and
SMA and other regions in older compared to younger subjects, although this
depends on the task used (Ward and Frackowiak, 2003; Ward, 2006; Mattay et a.,
2002; Labyt et al., 2003; Labyt et a., 2006; Sterr and Dean, 2008). At the level of
neuronal processing, these age-related changes may reflect network connectivity
(Dolcos et a., 2002; Cabezaet a., 1997; Rowe et al., 2006a; Taniwaki et al., 2007;
Gazzaley et al., 2008). However, how neural networks reorganize in response to
age-related degenerative changes remains unclear.

Furthermore, changes in oscillatory activity are seen during neuro-
development and aging. For example, the posterior 4 Hz rhythm in the first 3
months after birth can be enhanced with eye-closure but fade between 3 and 10
years of age; at this stage there is a maturation of apha oscillations and the
emergence of the typical blocking effect of eye opening. The delta (~4Hz) rhythm
is believed to be the precursor of occipital apha (Niedermeyer, 1999; Pilgreen,
1995). In addition, it has been reported that oscillatory drive to motoneuron pools
changes with development: the younger the subjects are, the lower the EMG and
EEG-EMG coherence at ~ 20 Hz is (Farmer et al., 2007; James et a., 2008).
Taken together, this suggests that the aging alters not only network architecture

but also the frequency content of the ensuing dynamics. The aim of this chapter
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was to examine age-related network changes in terms of coupling frequencies

based on my previous findings in chapter 3.

4.2 Results

4.2.1 Subjects and Behaviour result

Sixteen healthy, right-handed (eight young, mean age 26, range 20~32 years
of age and eight old, mean age 66, range 47-76 years) subjects participated in this
study. Part of the data (young group) has been reported in chapter 3. The task
undertaken and the data analysis procedure are exactly the same as described in
chapter 3. The performance of young and old subjects in terms of reaction time
(RT) and grip duration (DU) is summarized in Fig 6.1A. There were no significant
differences in reaction time (p=0.70; mean= 617.64 and 579.84 ms for young and
old group, respectively) or duration (p=0.71; mean= 614.45 and 596.05 ms for
young and old group, respectively) between young and old groups (one-tailed
student t-test). This suggests that task performance was similar in both groups,
although the variances of RT and DT were higher in the young group (Figure
4.1B). In contrast to other studies (Mattay et al., 2002; Smith et al., 1999; Sterr
and Dean, 2008), the mean RT of elder subjects was shorter than that of young

subjects, athough this did not survive our statistical criterion.
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Figure 4.1 Summary of subject performance. A) The RT distribution (left) and the
DU (right) data from both groups. B) P-values from atwo sample t-test comparing
old and young subjects. Y : young; O : old; RT: reaction time; DU: grip duration.
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4.2.2 Inference on model space

Twelve DCMs were inverted for each subject, as shown in Figure 3.2
(chapter 3). The data processing has been described in detail in chapter 3. Figure
4.2 shows the result of Bayesian model selection (BMS) at the group level under
fixed-effect assumptions (Penny et al., 2004; Stephan et al., 2009). It is evident
that in the old group, the best model is the model with a symmetric connection
pattern (SILEN). Critically, the difference between the best models for young and
old subjects was the inclusion of RPM-LM1 coupling. This was evident in the old
group but absent in the young group. In other words, the left hemispheric
dominance in motor control during right hand grip diminished in old subjects.
Thisisin line with Ward and colleagues report of fMRI data (Ward et a., 2008;
Talelli et a., 2008a) and the HAROLD model prediction (Dolcos et a., 2002;
Cabeza et al., 2002b). To ensure group differences in log-evidence were consistent
in relation to inter-subject variability, the log-evidences for each model were
entered into a repeated-measures analysis of variance (ANOVA) with 2 by 4 by 3
factors. The ANOVA on log-evidences is effectively atest for differences in log-
evidence, which is the same as a test on the evidence ratios (i.e., Bayes-Factors).
The advantage of the ANOVA is that one can say the differences are consistently
large, in relation to inter-subject variability in log-evidence. This also protects
against outlier effects. The group factor has two levels (young and old) and
within-subject factors were nonlinearity (four levels) and laterality (three levels —

corresponding to the columns and rows of Figure 3.2 respectively). Table 4.1
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summarizes the results. These confirm the BMS finding that the two groups differ

greatly in laterality (p=0.002); i.e., agroup times model interaction.

Table 4.1 Summary of statistical results

Main effect

Group F(1.0, 7.0)=0.192, p=0.674
Nonlinearity F(2.36,16.54)=35.493, p<0.0005*
Laterality F(1.10,7.70)=20.626, p=0.002*

I nteraction

Group X Nonlinearity

Group X Laterality

Nonlinearity X Laterality

Group X Nonlinearity X Laterality

F(1.62,11.32)=4.299, p=0.047*

F(1.73,12.12)=11.944,p=0.002*

F(2.83,19.83)=3.829, p=0.028*

F(2.40,16.82)=3.179, p=0.060
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Figure 4.2 BMS results at the group level, under fixed effect assumptions. Upper
panel: Summed log-evidences for the twelve DCMs, pooled over young subjects

(left) and the network architecture of the best model (right). Lower panel:
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Summed log-evidences for the twelve DCMs, pooled over old subjects (left) and

the network architecture of the best model (right).

4.2.3 Inference on coupling parameters

The average of the coupling parameters from the group-specific best models,
i.e. I-ILEN for young and s-ILEN for old participants are shown in Figure 4.3
(positive) and 4.4, (negative). The coupling strength matrices (the conditional
expectations of the coupling matrices) of all subjects were smoothed with a
Gaussian Kernel (FWHM = [8 8]) and entered into a conventional SPM analysis
to identify the within-group (first-level analysis) significant frequency-specific
effective connectivity. Figure 4.5 and 4.6 show the significant ‘excitatory’
(positive) and ‘inhibitory’ (negative) effects respectively (shown thresholded at
p<0.005 uncorrected). The most striking finding is that during right hand grip, the
age-dependent RPM —LM1 coupling in old subjects has an inhibitory effect
(Figure 4.6B). In addition, there is a tendency in old brains for LM1 to ‘talk to’
RM 1, using higher frequencies compared to the young brains (Figure 4.5; alphato
beta ranges for young and beta to gamma ranges for old subjects). In general, the
‘young’ motor networks employ more facilitated mechanisms (more distributed
positive coupling) whereas the ‘old’ motor networks show more negative coupling.

To examine the between-group differences, the coupling matrices where
compared using a two sample t-test. Figure 4.7 shows the results of this analysis,

thresholded at p<0.05, FWE corrected). | show the increases in positive coupling
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and decreases in negative coupling separately. These can be seen in a variety of
connections and frequencies. Table 4.2 and 4.3 summarized these significant age-
related differences. Interestingly, there was no significant strength decrease in
positive coupling (i.e. reduction of excitation), nor a significant strength increase
in negative coupling (i.e. reduction of inhibition; for example, the coupling
strength rises from -5 to -3) when comparing the parameters of the old group to
the young. Note that because there are no RPM-LM1 connections in the motor
network of young subjects, the statistical test on these coupling matrices are

identical to those in Figure 4.5B and 4.6 B.

4.3 Discussion

In this chapter, |1 found that the motor network of older subjects has
diminished left hemispheric dominance during right hand movement as the older
subjects recruit right PM-left M1 connections. In addition, these age-dependent
right PM-left M1 connections are inhibitory. Furthermore, the ‘old’ motor
networks have more negative effects in relation to the ‘young’ motor networks

that employ more positive coupling mechanisms.

I nference on model space
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Firstly, BMS suggests that there is significant difference in the best model
for each group; the symmetric model (s-ILLEN) was the best model for older
subjects, as opposed to the asymmetric model (I-ILEN) for younger subjects. This
was reflected in a significant model by group interaction, when | performed an
ANOVA on the log-evidences (Group x Laterality: p = 0.002). Interestingly, there
was no main effect of group on the log-evidence, which means most models being

tested were as good at explaining both group data.

Possible functional role of inhibition in motor networks of old subjects

A key finding in this chapter is that the older subjects use more inhibitory
mechanisms, including the age-dependent right PM-left M1 connections. At a
cellular level, inhibitory neurons play an important role in regulating excitatory
activity in the cortex and contribute to the generation of gamma oscillations
(Chance et a., 2002; Sohal and Huguenard, 2005). For example, in the auditory
cortex, cortical inhibition in sound processing can increase its temporal precision
(Wehr and Zador, 2003). In somatosensory cortex, inhibition controls the activity
of receptive fields as well as their temporal precision (Bruno and Simons, 2002).
Furthermore, excitatory and inhibitory neurons are synchronized, when generating
sensory-evoked responses (Okun and Lampl, 2008). Moreover, inhibition may
play an important role in activity-dependent synaptic plasticity (see Sun 2007 for a
review). As the performance of old subjects was not significantly different to that

of young subjects, one possible role of enhanced inhibitory coupling may be to
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fine-tune the motor system in response to age-related changes, so that

performance can be maintained.

In relation to previousfMRI and TM Sfindings

In fMRI studies of hand-grips, task-related activation is more diffuse and
bilateral in older subjects as opposed to the more focused and lateralized
responses in young subjects (Ward et a., 2007; Ward et a., 2008). Specificaly,
age-related signal increases have been seen in ipsilateral M1 and PM; i.e. in older
subjects, activations in these areas are greater (Naccarato et al., 2006, Ward,
2006a, Ward et a., 2007, Ward et al., 2008). It is reasonable to assume that
neuronal engagement of ipsilateral PM in old subjects may explain the increase of
activation in ipsilateral PM seen in fMRI studies; as when the neurons are firing,
they consume energy and result in metabolic changes. Interestingly, as PM
exhibits an inhibitory effect, our findings might imply that the MEG based
characterization (i.e. positive (+) and negative (-) coupling) may not always be in
accordance with fMRI (i.e. activation (+) and deactivation (-)). Such a dissociation
has been seen in PET (Hershey et a., 2003; see also Buzsaki et al., 2007 for a
review on inhibition and brain work) and in EEG-fMRI studies (David et al., 2008)

where inhibitory activity was shown to increase the blood flow / BOLD signal.
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In terms of the cause of the increased responsesin ipsilateral M1, TMS and
fMRI studies suggest that the reduction of interhemispheric inhibition (IHI) from
left M1 to right M1 might be attributed to the increases of ipsilateral activation
during right-hand movement (Talelli et a., 2008a; Talelli et a., 2008b; Ward et al.,
2008). This reduction of IHI in advancing age is highly task- and inter-stimulus
interval-dependent. At first glance, this TMS result seems to contradict the
findings in this chapter as | found no significant reduction of IHI. Instead, thereis
increase in IHI from left M1 to right M1 (Figure 4.7 lower panel; Table 4.3).
However, the two measures are different in many ways. Firstly, the temporal
resolution: the estimate of IHI was based on rather transient peripheral signals: a
ratio of the conditioned / unconditioned motor evoked potential. This is different
to DCM for IR, where the coupling parameters represent the estimated coupling
strength over peristimulus time (in this study, -500 ~+1000 ms). Secondly, as IHI
uses peripheral signals, it provides indirect and partial measurement of neuronal
dynamics. In contrast, DCM for IR models the spectral densities of coupled
neuronal sources directly. Further studies using TMS and DCM for IR may help to

clarify the functional roles of inhibitory mechanisms in the motor system.
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Table 4.2 Summary of two sample t-test on coupling parameters (increases)

LM1 RM1 SMA LPM RPM
LM1 Alpha-apha
RM1 alpha-theta Alpha-alpha Theta-alpha
alpha—beta
beta-alpha
SMA Alpha-alpha | Alpha-alpha Alph-alpha Alpha
theta/alpha
LPM Alpha Beta-
theta/alpha alpha/beta
RPM Beta-apha Alpha-alpha | Gamma-alpha

Table 4.3 Summary of two sample t-test on coupling parameters (decreases)

LM1 RM1 SMA LPM RPM
LM1 Alpha-alpha | Alpha/beta- Alpha- Gamma-alpha
Gamma-alpha | theta/alpha beta/gamma
Gamma-alpha
RM1 apha-gamma Alpha- Beta/lgamma- | Alpha-
apha/beta- gamma apha gamma
alpha Beta-beta
Gamma-alpha
SMA Alpha-adlpha | Theta-beta Alpha-adpha | Betagamma
Alpha- Beta-gamma Gamma-alpha
gamma
LPM Alpha/beta- Alpha Beta- Alpha-apha
gamma beta/gamma beta/gamma
Beta-gamma | Gamma-apha
Gamma-alpha
RPM Gamma-alpha | Theta- Beta-beta Alpha-
Betagamma | beta/lgamma Gamma- alpha/beta
Beta-gamma | gamma
Gamma-
theta/alpha
Gamma-
gamma
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CHAPTER 5

FUNCTIONAL ASYMMETRIESIN
FORWARD AND BACKWARD
CONNECTIONSIN FACE
PROCESSING

5.1 Introduction

In previous two chapters, | have shown the DCM results in motor systems using a
simple linear form DCM. In this chapter, | aim to show the use of bilinear form of DCM
that allows the modelling of experimental manipulations. | tested whether there are
functional asymmetries between forward and backward connections in the brain during
face perception. The aim of this chapter isto ask if there is an asymmetry in nonlinear or
modulatory influences among different levels of a cortical hierarchy. | addressed this
asymmetry using MEG data obtained from human subjects during the processing of faces
and tried to explain the observed responses using models that do and do not have
nonlinear connections. This enabled us to quantify the evidence for nonlinear coupling in
qualitative terms, using model comparison. | then compared forward and backward

coupling strengths quantitatively, to test for any asymmetries, under the best model.

5.1.1 Hierarchical connectionsand functional asymmetries
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It is now generally accepted that, at least in the sensory cortex, the brain has a
hierarchical organisation that is defined largely by asymmetries in extrinsic cortico-
cortical connections (Maunsell and van Essen 1983; Zeki and Shipp 1988; Felleman and
Van Essen 1991; for motor systems this issue is more controversial, see Shipp 2005).
These asymmetries classify a connection as being forward or backward (Rockland and
Pandya 1979) and therefore define an implicit (although not necessarily unique; Hilgetag
et a 2000) hierarchy of areas. The laminar specificity of forward and backward
projections is a key anatomical asymmetry, which may speak to ensuing functional
asymmetries (Sandell and Schiller 1982; Murphy and Sillito 1987; Salin and Bullier
1995; Lamme et al. 1998; Angelucci et al. 2002a,b). One of the important aspects of this
anatomical asymmetry is that backward connections make synaptic connections
predominantly in supra-granular layers, with en-passant connections in infra-granular
layers. This is relevant because voltage sensitive (i.e., nonlinear) receptors like NMDA
receptors populate, largely, the supra-granular layers (Fox et al. 1989; Rosier et al. 1993),
suggesting that backward connections may have preferential access to modulatory,
voltage-dependent post-synaptic effects with long time-constants (c.f., Eaton and Salt
1996; Gentet and Ulrich 2004). Similarly, backward connections have also been found to
target metabotropic glutamate receptors which, like NMDA receptors, have long time-
constants and are thus able to mediate context-sensitive effects (Rivadullaet a. 2002; Salt
2002). The notion that backward connections are more modulatory, in relation to the
driving effects of forward connections (Salin and Bullier 1995; Sherman and Guillery
1998), is further supported by the higher degree of divergence that backward connections
display and by their ability to transcend more than one cortical level (Zeki and Shipp
1988). In short, most of the evidence from the anatomy of extrinsic (inter-regional)
connections, from the spatial distribution of their synaptic connections across cortical

layers and from their physiology, points to a functional asymmetry between forward and
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backward connections. This asymmetry is consistent with a role for backward
connections in modulating, coordinating or providing contextual guidance to bottom-up
processing that is driven by forward connections. There are many examples of this
ranging from the mediation of extra-classical receptive field effects (Angelucci and
Bressloff 2006; Hupe et a. 1998; Lamme and Roelfsema 2000) to the implementation of
gain mechanisms that may be involved in attention and biased competition (Larkum et al.
2004). Indeed, direct evidence for the modulatory effect of backward connections has
been obtained from reversible deactivation studies in monkeys (Sandell and Schiller
1982; Girard and Bullier 1989; Hupe et al. 1998) and non-invasive fMRI studies of
humans (Friston et a 1995; Blchel and Friston 1997; Stephan et al. 2008). However,
there have been no direct comparisons of modulatory effects in forward and backward

connectionsin man.

5.1.2 Modulatory effects and nonlinear coupling

The defining characteristics of modulatory pre-synaptic inputs are nonlinear
interactions with other pre-synaptic inputs when generating post-synaptic responses.
Examples here include the mechanisms of classical neuromodulatory neurotransmitters
that, for example, change the conductance of slow potassium channels that mediate after
hyper-polarisation (e.g., Metherate et al. 1992; Faber and Sah 2003). These sorts of
effects change the response profile of neurons, such that they respond differently to the
same driving input. Another key example is the voltage-dependence of NMDA receptor
activation, which means that the effect of pre-synapticaly released glutamate at these
receptors is context-sensitive and nonlinear (e.g., Schiller and Schiller 2001). A third
important example of nonlinear interactions relates to action potentials that are back-

propagated by means of active conductances throughout the dendritic tree to €elicit long-
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lasting calcium currents; this means that, depending on the relative timing of synaptic
inputs, the propagation of postsynaptic potentials can be facilitated or blocked by
preceding synaptic inputs (e.g., Larkum et al. 2004; London and Hausser 2005).

The equivalence between modulatory effects of synaptic connections and
nonlinearities in neuronal input-output relations is important because nonlinear effects
can be characterised relatively easily using only the observable inputs and outputs of a
system. In brief, nonlinear effects induce high-order generalised convolution kernels, in
the time domain, or generalised transfer functions in the spectral domain (Friston 2001).
These high-order functions couple certain frequencies in the input to different frequencies
in the output. A simple example here would be the nonlinear squaring of a sinusoidal
wave to doubleits frequency. This means| can formulate questions about the modulatory
effectsin terms of coupling between frequencies in spectral responses that are observed in
different parts of the brain. This is the basis of a recently developed dynamic causal
model (Friston et a. 2003) for EEG and MEG (Chen et al. 2008) that allows one to test
various models with and without nonlinear (between-frequency) coupling among

specified regions or sources. The study in this chapter is based on this approach.

5.1.3 Nonlinear coupling and generative modelsin the brain

There are many heuristics that have been used to frame the importance of nonlinear
or modulatory coupling in the brain. | focus on a specific but dominant account of
functional anatomy, based on hierarchical inference and learning in the brain (Helmholtz
1860; MacKay, 1956; Ballard et al. 1983; Mumford, 1992; Kawato et a. 1993; Dayan et
al. 1995; Rap and Ballard 1999; Rao 1999; Friston 2003; Kersten et a. 2004; Friston
2005; 2006). This account suggests that the brain is an inference machine that uses

generative models to predict incoming sensory information. In this framework, aso
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referred to as predictive coding (Rao and Ballard 1999; Friston 2005), perceptual
inference corresponds to optimising putative causes of sensory input by minimising
prediction error (or, equivalently, variationa free-energy). Predictive coding states that
brain actively predicts what the sensory input will be, rather than just passively
registering it, when trying to represent the environment. Predictive coding is aframework
that is equivalent to empirical Bayesian inference in a hierarchical setting (Mumford
1992; Friston et al., 2005; Friston and Kiebel, 2009; Kilner et al., 2007); where the brain
triesto infer the causes sensory input. In abiological setting, the minimising of PE can be
considered as suppressing the activity of error units using a gradient decent on the
variational free-energy associated with the brains internal model of the work and the
current sensory input.

This can be achieved simply by generating predictions at higher levels of the
cortical hierarchy, which are passed to lower levels to explain away bottom-up inputs.
These predictions are updated by prediction errors, conveyed by the forward connections.
This scheme entails forward and backward message passing and is formally identical to
hierarchical or empirical Bayesian inference (Friston 2003). Criticaly, because
predictions are formed using a generative model of the world, this account predicts that
the influence of backward connections is necessarily nonlinear (Friston 2003). A simple
example of nonlinearity, in generative models of visual input, would be the occlusion of
one object by another. If higher level representations of an object and its occluder are
used to provide a prediction of the sensory input, then these top-down effects must
interact nonlinearly to encode the occlusion per se. In short, under empirical Bayesian or
predictive coding models of perceptual inference, backward connections that convey
predictions should suppress activity in lower levels encoding prediction error. Critically,

this explaining away of prediction error rests on nonlinear mechanisms. This is
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compatible with the physiological evidence, described above, that backward connections

mediate modulatory effects.

The functional properties of forward connections are predominantly, but not
exclusively, linear; see Friston 2003 and Sherman & Guillery 1998 for a summary of the
neurophysiological evidence. However, there is some empirical evidence that forward
connections may aso exhibit nonlinear properties. For example, transmission of sensory
information along forward connections can involve NMDA receptors (Fox et al. 1990;
Kely and Zhang 2002; Salt 2002). According to predictive coding theories, forward
connections mediate the influence of error units in lower levels on representational units
in higher levels, and these bottom-up influences are linear in prediction error (Friston
2003). However, "... although the forward connections mediate linearly separable effects,
these connections might be activity- and time-dependent because of their dependence on
[higher representations]” Friston (2003). This means the strengths of forward connections

may be activity-dependent and therefore appear nonlinear.

In summary, on the basis of the above empirical and theoretical considerations |
predicted that coupling between high and low areas would entail cross-frequency or
nonlinear coupling. This is because there is substantial evidence that at least one arc
(backward connections) of reciprocal self-organising exchanges between visual areas
rests on nonlinear synaptic mechanisms. Furthermore, | predicted that backward coupling
would suppress neuronal activity in the lowers areas and that this suppression would; (i)
be manifest as a significant cross-frequency (nonlinear) suppression (ii) be significantly
greater than the equivalent coupling in the forward direction. To test these hypotheses, |
used a recently validated dynamic causal model for induced responses measured with

M/EEG (Chen et al. 2008) to implement different models with and without nonlinear
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(between-frequency) coupling among regions involved in visual face processing. Using
Bayesian model selection (Penny et al. 2004), | compared models in which forward and
backward connections could either be linear or nonlinear. | was hoping to show that,
qualitatively, nonlinear models were significantly better than their linear homologues. |
then examined the coupling estimates from the best model to test the quantitative

hypotheses about the suppressive effects of backward connections.

This work comprises three sections. In the first, | briefly summarise dynamic
causal modelling for induced responses. This technique is then applied to an MEG study
of face perception, as described in the second section. This section describes the factorial
construction of four DCMs that were inverted to provide the evidence for each model and
subject (i.e., probability of the data given the model). | then identified the best model
using Bayesian model comparison and established the consistency of model selection at
the between-subject level by analysing the model evidences. In thefinal section, | present
the quantitative characterization of coupling using the conditional parameters estimated of
the best model to test for predicted top-down suppression and forward-backward

asymmetries.

5.2 Data Acquisition and Analysis

5.2.1 Experimental design and data pre-processing

| analysed spectral responses induced by face processing in ten normal subjects as
measured with MEG (Henson et al. 2007). Here, | analyse data from a single, eleven
minute session, in which subjects saw intact or scrambled faces, subtending visual angles

of approximately four degrees. | chose these data because visual processing of face
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stimuli vs. degraded face stimuli is an example of a perceptual process that has been
investigated previousy and interpreted in terms of predictive coding principles (c.f.
Summerfield et al. 2006). Scrambled versions of each face were created by phase-
shuffling in Fourier space and masking by the outline of the original image. The
scrambled faces were therefore matched for spatial frequency power density and size.
Subjects made left-right symmetry judgments about each stimulus by pressing one of two
keys with either their left or right index finger (range of reaction times was 1031 to 1798
ms). There were 86 intact and 86 scrambled face artefact-free trials as revealed by visual
inspection. Ten subjects were tested, five female (young to middie-aged adults). The
MEG data were sampled at 625 Hz on a 151-channel axial gradiometer CTF Omega
system at the Wellcome Trust Laboratory for MEG Studies, Aston University, England.
No subject moved more than 6 mm across the session (median = 1.1 mm, range = 0.2 -

5.6 mm).

The MEG data were pre-processed using SPM5 (Wellcome Trust Centre for
Neuroimaging, London). The data were epoched from -600 to +1800 ms, and projected
from channel space to source-space using the generaised inverse of the lead-field matrix
for the chosen sources (see Modd specification below for details). The lead-field (gain
matrix) was computed using the coregistered channel locations and a single-sphere
forward model computed by Fieldtrip (F.C. Donders Centre for Cognitive Neuroimaging,
Nijmegen, as implemented in SPM5). The spectral densities from 4 to 48 Hz at each
source were computed using a time-frequency Morlet wavelet transform (Equation 1,
wavelet number: 7) between -100 and 600 ms of peristimulus time. The resulting time-
frequency responses were first converted to absolute values and averaged over 86 trias
for each condition and then baseline-corrected by subtracting the frequency-specific

power of the first time-bin. For computational expediency, | reduced the dimensionality
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of spectra to four principal frequency components derived from a singular value
decomposition (SVD) of the spectra (over conditions and peristimulus time, within
subjects). This preserved over 93 % of the spectral variance in all subjects. Note that the
generalised inverse of the lead-field described here is one of many inversion schemes that
one can use to project data from channel to source space (Darvas et a., 2004; Friston et
a., 2008; Kiebel et a., 2007; Michel et a., 2004). The generdised inverse is an
appropriate projector if one knows a priori where the sources are located. However, the
results of any model inversion under these prior assumptions are conditional on the
chosen sources being a reasonable summary of the real neuronal sources. If any sources
are omitted and misplaced there will be a better model of the data and possibly a different
conclusion from model comparison. If one did not know where the spectral signals were
coming from, the beam-former method could be one useful strategy that allows one to

localize the source positions and estimate spectral features empirically (Singh et al 2003).

5.2.2 M odel specification

The anatomical source locations were the maxima of ventral temporal activations
in agroup SPM analysis of fMRI data from exactly the same paradigm though different
subjects (Henson et a. 2003). Those sources have also been reported in MEG face studies
(Henson et a. 2007; Itier et al, 2006). Figure 5.1 shows the location of these sources in
Montreal Neurological Ingtitute (MNI) coordinates and on a template MRI image in that
space. These four sources correspond to the fusiform face area (FFA) and the occipital
face area (OFA), bilaterally. The central panel of Figure 5.1 shows the connectivity
graph, which served as the basis for constructing alternative DCMs. | assumed reciprocal
intra-hemispheric connections between OFA and FFA and reciprocal inter-hemispheric

connections between homotopic areas. Additionally, | assumed cross-hemispheric
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connections between OFA and contralateral FFA. This connection was added because a
previous fMRI study of a prosopagnosic patient with lesions of left FFA and right OFA
found normal activation in the right FFA for faces vs. non-faces (Rossion et a. 2003).
One possible input to this patient's right FFA is from the intact contralateral OFA. |
therefore included forward connections from OFA to contralateral FFA. The connectivity
architecture for the models considered in this work is shown in Figure 5.2. All models
included reciprocal connections between the visual and fusiform areas within and across
the hemispheres. The intrinsic connections were set to be nonlinear because of the highly
complex organization of the visual cortices. In mammals, neuroanatomica studies have
identified more than 30 functionally distinct cortical areas in extrastriate cortex, for
example, with colour- and spatial frequency-sensitive cells (Livingstone and Hubel, 1988;
Zeki and Shipp, 1988; Felleman and Van Essen, 1991). Therefore, a specific yet flexible
binding mechanism is required in the network that accounts for the integration of
distributed activation patterns for information processing and selection in the visua
system. In this study, | assumed this binding mechanism to be nonlinear and focussed on
the functional asymmetries in forward and backward connections. It is possible that a
model with intrinsic linear coupling is a better model and | will address this in future
work. Stimuli entered the left and right OFA. | used a factorial approach to specify the
models, which systematically varied the form of the A and B matrices in Eq. 2: These
models differed according to whether the forward and backward connections, (and
implicitly their modulation by face-selective processing) were linear or nonlinear (see

upper left panel in Figure 5.2). Thisresulted in four models (lower panel in Figure 5.2):

- F.B.: linear forward connections and linear backward connections

- FRuB.: nonlinear forward connections and linear backward connections

- F.By: linear forward connections and nonlinear backward connections
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- FyBn: nonlinear forward connections and nonlinear backward connections

| restricted face-selective effects (encoded by the B matrix) to intra-hemispheric
forward and backward connections. Clearly, these models are a highly simplified
representation of the "core system" for face processing identified by Haxby and
colleagues (Haxby et a., 2000; Fairhall and Ishai 2006). However, they are sufficient to
address the question, i.e. to distinguish between linear and nonlinear coupling in a

hierarchical neurona network.

x=-39
y=-81
z=-15

Figure 5.1 Location of the four sources (in MNI coordinates) shown on a
template MRI image. The central panel shows the basic connectivity structure of
the models, which are presented in more detail in Figure 5.2. OFA: left and right

occipital face area; FFA: left and right fusiform face area.
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Figure 5.2 The upper panel shows the factorial structure of model space: models
differed according to whether the forward and backward connections (and
implicitly their modulation by face vs. scrambled face stimuli) were linear or
nonlinear. The lower panel shows the connectivity architecture of the ensuing
DCMs. The solid and dashed lines indicate nonlinear and linear connections,
respectively. N: nonlinear coupling; L: linear coupling; F: forward connection;
B: backward connection. For simplicity, the intrinsic (self) connections are

omitted. These were nonlinear (see previous figure).

5.2.3 Statistical testing on coupling parameters

To make inferences about the coupling parameters of the best model, the
conditional expectations of the forward and backward coupling matrices were entered into
a conventional between-subject SPM analysis to identify significant, frequency-specific,

differences in effective connectivity. | tested for significant negative or suppressive
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effects in backward connections, relative to forward connections for coupling under face
processing (A plus B matrices, see chapter 2 for details). | then repeated this comparison
for the face-selective component of coupling (B matrix). After performing these t-tests |
computed an SPM of the F-dtatistic to ensure that the planned comparisons had not
missed any other significant differences. The SPM were displayed at p<0.05

(uncorrected) and | report maxima at a corrected p<0.05 level (Kilner et al. 2005).

5.3 Reaults

5.3.1 Inference on models

Four DCMs were inverted for each subject as described above. The summed log-
evidences over subjects are shown in Figure 5.3 (left panel). It can be seen that the best
model is FyBy (log-evidence sum = -11895), followed by F By (-16306), FyB. (-16308)
and F B, (-59890). In other words, the model with nonlinear forward and backward
connections was vastly superior to al other models, whereas the model with linear
forward and backward connections was clearly the worst. The two ‘mixed” models were
fairly similar in log-evidence (i.e., positive but not strong evidence for exclusive
nonlinear coupling in backward connections relative to forward connections). A repeated-
measures ANOV A showed there was a significant interaction (F = 13.468; p = 0.005; df
1,9); suggesting that when backward connections are linear, the log-evidence is greatly
affected by whether forward connections are nonlinear; conversely, when backward
connections are nonlinear, the log-evidence is much less influenced by the nature of

forward connections (see Figure 5.3; right panel). Post-hoc t-tests, confirmed that
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nonlinear model was significantly better than al other models (F.B.: t = 4.473, p = 0.001;
FuBL: t=1.908, p=0.044; F.By: t = 2.306, p = 0.023; df = 9).

To verify that my assumptions about the basic connectivity structure (c.f. Figure
5.2) were sound, | created two variants of the FyBy model. These included a simplified
model (sFyBy) that contained no cross-hemispheric OFA-FFA connections and a more
complex model (cFyBy) that contained reciproca (as opposed to unidirectional) cross-
hemispheric OFA-FFA connections. Bayesian model comparison demonstrated that both
were clearly inferior to the nonlinear model. Their summed log-evidences were -17243
(sFnyBn) and -15638 (cFyBy) and paired t-tests showed a significant difference in favour
of the FyBy model (p<0.047 and p<0.008, respectively). The lower log-evidence for the
cFyBn model provides another interesting demonstration (c.f., Grol et al. 2007; Stephan et

al. 20074), that increasing the complexity of amodel does not necessarily improveit.

FB FB FB, *FB .
1000
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Figure 5.3 Left pand: Summed log-evidences for the four DCMs, pooled over subjects.
It can be seen that the best model is FyBy, followed by F By, FyBL and F.B,. Right
panel: The averaged log-evidence for all four models with standard errors.
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In conclusion, | found that the model with nonlinear forward and backward
connections was the best model and that the model with nonlinear backward connections
came second. Figure 5.4 shows the predicted (under the nonlinear model) and observed
spectral responses at the source level, for the two experimental conditions (faces vs.

scrambled faces) in a representative subject.
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Figure 54 This figure shows predicted and observed spectral responses for a
representative subject, at the source level, under the best model (FyBy), for the two
experimental conditions (faces vs. scrambled faces). The top two rows are the observed
and predicted spectra for normal faces, the bottom two rows are the observed and

predicted spectra for scrambled faces.
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5.3.2 Inference on coupling parameters

Figure 5.5 shows the coupling matrices during face processing for the forward and
backward connections in the right and left hemispheres under the nonlinear model. These
are the sum of the A and B matrices, averaged over all subjects). Anecdotaly, it can be
seen that the forward (upper row) and backward (lower row) connections show profound
nonlinear coupling with substantial off-diagonal structure. Furthermore, there are
systematic differences between the forward and backward coupling; with the backward
coupling showing negative or suppressive cross-frequency effects. Quantitatively, these
are most marked in the right hemisphere for low (alpha) to high (gamma), and from
gammato alphain both hemispheres (red arrows). | tested for these putative asymmetries

with planned comparisons.

The SPM testing for a significant suppression in backward, relative to forward
connections is displayed by Figure 5.6 (thresholded at p<0.05 uncorrected). These
comparisons used a stimulus times hemisphere times forward vs. backward repeated
measures ANOVA with restricted maximum likelihood estimates of non sphericity
among the errors. The smoothness of the underlying residual fields was 7.8 x 6.5 Hz
resulting in about 32 resolution elements (i.e., effective samples over the frequency x
frequency search space of the SPM). This comparison was averaged over hemispheres
because | failed to detect a hemisphere times connection interaction. The most (and only)
significant difference (red arrow) was in the coupling from high (gamma) frequencies to
low (apha) frequencies. This difference was extremely significant (t = 4.72; p = 0.002,
corrected; df =72). The subject-specific estimates of coupling strength for this cross-
frequency coupling are shown in the lower panels for both hemispheres. In the right

hemisphere, this difference is due mainly to a suppressive effect of backward
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connections; where, remarkably, every subject had a negative connection strength. In the
left hemisphere, the difference appeared to be augmented by an activating effect of

forward connections.
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Figure 5.5 Coupling matrices, averaged across subjects, for the coupling strengths of
forward and backward connectionsin the right and left hemispheres of the FyBy model.

| then repeated exactly the same analysis but testing for asymmetry in face-
selective changes in coupling (i.e., looking just at the B matrix). Although this
comparison is not orthogonal to the previous comparison, it is reassuring to see exactly
the same differences. The only significant difference was again between gamma and
alpha frequencies and was even more significant (t = 5.09; p = 0.001 corrected; df =72)
than coupling under faces per se (Figure 5.7; left panel). Finally, the right panel of Figure
5.7 shows the SPM of the F-statistic testing for any differences in coupling over stimuli,

hemispheres or connections. There were only three peaks that survived a corrected p-
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value of 0.05 and only one of these related to nonlinear coupling (F = 5.78; p = 0.006,
corrected; df = 8,72). This is exactly the same frequency-specific coupling identified by
the planned comparisons. This SPM is shown to illustrate that the planned comparisons
did not miss any other significant differences and shows that cross-frequency suppression
mediated by backward connections, relative to forward connections, was the most

prominent among all differences.

SPM ¢ df 72; FWHM 7.8 x6.5 Hz
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Figure 5.6 Upper panel: SPM of the t-statistic testing for a greater suppressive effect of
backward connections, relative to forward connections. The SPM isthresholded at p<0.05
(uncorrected). Lower panels: Subject-specific estimates of the coupling strength at the

maximum of the SPM (red arrow) presented for each hemisphere.
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SPM ¢ ar72 SPM F drg, 72
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Figure 5.7 Left panel: SPM of the t-statistic testing for a greater suppressive effect of
backward connections, relative to forward connections in the face-selective changes
coupling. Right panel: SPM of the F-statistic testing for any difference in frequency-
specific coupling over connections, conditions or hemispheres. Both SPMs are
thresholded at p<0.05 (uncorrected). Significant (p<0.05 corrected) peaks are indicated by

thered arrows).

5.4 Discussion and conclusions

Coupling between low and high frequency bands has been documented in both
animal and human recordings (see Jensen and Colgin (2007) for areview). Canolty et al.
(2006) demonstrated in humans that the power of high frequency gamma oscillations was
modulated by the phase of the low-frequency theta rhythm. The implicit nonlinear
coupling between oscillators at different frequencies builds upon previous studies that
have identified similar phenomena in both anesthetised (Soltesz & Deschénes 1993) and
behaving rats (Bragin et al. 1995). Here, | extend these observations by showing that
nonlinear (between-frequency) interactions can be ascribed to specific intracerebral

sources and used to disclose asymmetries in directed connections.
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Intracranial EEG recordings have shown that faces elicit responses across a
number of regions in the ventral temporal visual-processing pathway (Allison et al. 1994;
Barbeau et al. 2008) and furthermore that faces can induce changes in the coherence of
broadband (4-45 Hz) power between those regions (Klopp et al. 1999; Klopp et al. 2000).
However, little is known about the functional relevance of this coherence or, in particular,
the role of nonlinear (between-frequency) coupling. It has been suggested that nonlinear
coupling is a key aspect of functional integration and is an essential aspect of network
function (Friston 2001; Jensen and Colgin, 2007; Tallon-Baudry and Bertrand, 1999;
Varela et al. 2001). To my knowledge, this is the first study to quantify and make

inferences about directed nonlinear coupling.

Modd selection furnished strong evidence that nonlinear connections are
important for explaining the current MEG data indicating that the best model entailed
nonlinearities in both forward and backward connections. The most marked difference in
nonlinear coupling between forward and backward connections under this model was an
activating effect of high (gamma) frequencies on low (alpha) frequencies in the forward
connections and a suppressive effect in backward connections. Not only are these findings
consistent with empirical evidence from invasive studies but confirmed theoretical
predictions based on Bayesian treatments of perceptual inference. These predictions
suggest that backward connections suppress or explain away prediction error as lower

levelsin cortical hierarchies using nonlinear synaptic mechanisms.

One functional role of backward connections is to mediate the top-down

predictions during perceptual inference. In this study, we found that gamma frequencies

in the higher level have a suppressive effect on alpha frequencies in the lower level. One
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possible explanation is that suppressive backward connections may accelerate the decay
of evoked responses in the lower level that encode prediction error (i.e., explain away
prediction error). We do not motivate the exact form of the underlying mechanismsin the
generative model; rather we model the neuronal dynamics in a phenomena fashion.
Therefore, there may be other explanations for this negative nonlinear backward coupling.
However, the phenomenology we observed is consistent with the predictive coding

architecture discussed above.

| was a bit surprised to find that high-frequencies affected low-frequencies. | had
expected to see the converse given empirical results (e.g., Canolty et al. 2006) and the
simulations reported in Friston (2001). However, on reflection, the current results are
entirely sensible if one considers that high (gamma) frequencies reflect increased
neuronal firing (Chawla et al 1999): Heuristically, this means that gamma activity in low-
level areas induces slower dynamics at higher cortical levels as prediction error is
accumulated for perceptual synthesis. The concomitant high-level gamma activity (due to
intrinsic nonlinear coupling) then accelerates the decay of evoked responses in the lower
level that are manifest at, the population level, as damped alpha oscillations. However

these mechanistic speculations will need alot more work to confirm.

In conclusion, using a model-based approach that allows for probabilistic estimates
of brain connectivity and its modulation by experimental conditions, this work provides
empirical evidence for a functional asymmetry between forward and backward
connections in the human brain that is consistent with neuroanatomical and
neurophysiological data from animal studies. First, qualitative Bayesian model

comparison disclosed overwhelming evidence for nonlinear models, in relation to
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formally equivalent models with linear coupling. Secondly, | found a striking
quantitative asymmetry between forward and backward connections with regard to
stimulus-bound and stimulus-specific (faces relative to scrambled faces) nonlinear
coupling. This asymmetry was extremely significant and reproducible over subjects, even
under the very conservative SPM procedures for multiple comparisons. This work is a
starting point for further investigations of functional asymmetry between forward and
backward connections in the human brain. Here, | restricted the models to the bilateral
OFA and FFA regions believed to form the core of the visua face-processing system
(Haxby et al., 2000). Future modelling studies will include other regions, such as
posterior STS, which may also show changes in nonlinear coupling under other stimulus

manipulations (e.g., different facial expressions, Winston et al. 2004).
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CHAPTERG

BACKWARD CONNECTIONS
MEDIATE INDUCED RESPONSES

6.1 I ntroduction and specific aim

A central focus of the work in this thesisis evoked and induced task-related
oscillatory responses. Evoked and induced power can be identified according to
their phase relationship to the stimulus: Evoked components are phase locked to
the stimulus, whereas induced responses exhibit trial-to-trial jitter in latency. A
growing number of studies have demonstrated that induced responses, especially
in gammaband range (30-70 Hz), increase with cognitive demand; such as
attention, learning and face perception (Tallon-Baudry and Bertrand, 1999; see
Kaiser and Lutzenberger, 2003 and Lee et al., 2003 for comprehensive reviews).
Cognitive processing rests on endogenous mechanisms whereby the brain exerts
influences over afferent information through top-down effects. Some task-specific
induced responses are thought to reflect this top-down effect; whereas evoked

responses are thought to be mediated by forward projections (Tallon-Baudry and
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Bertrand, 1999; see Kaiser and Lutzenberger, 2003 and Lee et a., 2003 for
comprehensive reviews). However, the detection of induced responses relies upon
comparisons between carefully matched experimental and control conditions
(Kaiser and Lutzenberger, 2003) and the results may be misleading if there are
factors that contribute to conditions. In this chapter, | generalize the use of DCM
for IR to explain both evoked and induced responses in the same condition, in
terms of differences in forward or backward connections. | do this by treating the
time-frequency expression of evoked and induced responses as different
conditions and comparing models of condition-specific changes in coupling that

account for the extra power associated with induced responses.

This approach alows the direct study of the relationship between the
evoked and induced neural activity with respect to the underlying mechanisms. In
particular, one can ask whether induced responses are mediated by ‘top-down’ or
backward connections. | will illustrate this using the dataset from the hand grip
paradigm described in chapter 3. Specifically, | test three models which differ in
the connections that change when modeling induced, relative to evoked spectral
responses. forward (F), backward (B) and forward-backward (FB) model. In the

next section, | briefly reprise the generative model used in this work.

6.2 A generative model of evoked and induced responses

This generative model is exactly the same as the DCM described in chapter

2 (Equation 13) and used in chapter 5; but is recapitulated here to highlight how
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we model the difference between evoked and induced responses in terms of their

generating mechanisms. | start with the usual bilinear model:

tg=(A+Qa vB')g+Cu
|

where the | indicates condition. The matrices A and C contain coupling

parameters that control changes in spectral activity induced by other sources and

exogenous (e.g., stimulus) inputs, U(t)  The matrices B are introduced to encode
the coupling changes induced by the condition effects, V. The v inputs here serve
as a contrast weight function that enables selective condition-specific changes in
coupling. This selectivity is specified by the B matrix. Here, the first value is zero
for the evoked responses and the second value is one for the induced responses.
This means the B matrix mediates the changes in coupling for induced response
components that are not evident in evoked components. In this application the
condition effects represent whether the data features reflect evoked or induced
responses, for any particular trial type. This aso implies that the evoked and
induced data are concatenated along the (area x frequency) dimension. Evoked
and induced ‘ conditions’ are created during preprocessing by performing the time-
frequency analysis after (evoked) and before (induced) trial averaging. As

previously the coupling matrices decompose into:
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K
Under this model, the scalar i encodes how changes in the k-th frequency

in the i-th source depend on the I-th frequency in the j-th source. The leading

Kk _
a; =

diagona elements are i l; this means that each frequency has an intrinsic

k
tendency to decay or dissipate. Similarly, S controls the frequency-specific

influence of exogenous inputs on the k-th frequency in the i-th source. This
enables within and between-frequency coupling within and between sources. This
generative model uses the A matrices to model the ‘shared’” underlying
mechanisms for both the evoked and induced activities and leaves what can not be

explained by the shared mechanisms to be modeled by the B matrices.

6.3 Data and M oddl specification

Nine healthy, right-handed (mean age 26, range 20~32 years of age)
subjects participated in this study. Part of the data has been reported in chapter 3.
Based on the previous result of the best model (Figure 3.4A and summarized in
Figure 6.1A), | further tested whether the induced responses are mainly mediated
by backward (B) or forward (F) or both (FB) connections in the motor network.
To thisend, | compared three models that differed in where the modulatory effects
take place as shown in Figure 6.1B. | focused on the modulation in the left
hemisphere since this is a right hand movement task. In this model, the SMA is
assumed to be in the higher level of motor hierarchy than PM and M| as suggested
by studies in which the Bereitschaftspotential (BP; or readiness potential/ field)

has been measured, and which suggest that SMA is involved in planning and
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initiation of movement (Deecke, 1987; Deecke, 1990; Keller and Heckhausen,

1990; Praamstra et al., 1995; Shibasaki and Hallett, 2006).
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Figure 6.1 Model specifications of Forward (F), Backward (B), and Forward-
Backward (FB) models (b) based on the previous results (a). The basic network

configuration has the left hemispheric dominance (a; right; see also Figure 3.4A in
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chapter 3 ) and the modulatory effects are allowed in only forward (F model), or

backward (B model) or both forward and backward connections (FB model) (b).

6.4 Results

At the single subject level, the data from five out of nine subjects supports
the B model while the other four have the F model as the best model. None has the
FB model as the best model. This provides the evidence that a more complex
model is not always a better model. At the group level, Bayesian Model Selection
under both fixed (upper panel) and random effect (lower panel) assumption
(Penny et al., 2004; Stephan et a., 2009) identifies the B model as a better model
given the data (Figure 6.2). This result provides the direct empirical evidence that
backward connections mediate the induced modulatory effects. This finding
supports that the role of the induced components is associated with a modulatory

effect that could reflect the top-down processing.
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6.5 Discussion

A wealth of neuroanatomical evidence suggests that backward connections
are more modulatory in relation to the driving effects of forward connections
(Sandell and Schiller 1982; Murphy and Sillito 1987; Salin and Bullier 1995;
Lamme et al. 1998; Angelucci et a. 2002ab). Furthermore, the underlying
generating mechanisms are very likely to be nonlinear (Salin and Bullier 1995;
Sherman and Guillery 1998). Combined with cognitive findings (Galambos, 1992;

Tallon-Baudry and Bertrand, 1999), it has further been suggested that induced
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responses play an important role in facilitating the top-down modulatory effects
through the backward connections. The finding here supports this notion that
backward connections from higher areas to lower areas mediated the induced
modulatory effects and dissociates the induced activities from the evoked. The
backward modulatory effect is expressed as induced activities, but not evoked
ones. Importantly, as this task is pre-programmed in the brain through the training
phase, this backward modulatory coupling is in agreement with the predictive
coding (Rao and Ballard, 1999) that the planned movement representation in the
higher level (i.e. SMA and/or PM) inferences the motor commands in the lower

level of M1.

The functional role of evoked activities remains ambiguous. The most
accepted hypothesis is that evoked responses reflect the bottom-up driving
processing mediated by the forward connections and employ mainly linear
mechanisms. This had been seen at the mesoscopic scale that the propagation of
signals through the cell layers of the cortex is alinear phenomenon (Y amawaki et
al., 2008). However, the functional properties of forward connections are
predominantly, but not exclusively, linear; see Friston 2003 and Sherman &
Guillery 1998 for a summary of the neurophysiological evidence. In chapter 3, 4
and 5, | have shown that nonlinear coupling in forward connections exists both in
motor network and in the core system for face perception at the system level. In
this chapter, | have found evidence that backward connections mediate the
induced responses. In addition, recent studies of event-related potential (i.e.

evoked) show evidence that backward connections are essential in explaining the
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late ERP components in mismatch negativity studies (Garrido et a., 2007; Garrido
et a., 2009). Taken together, both empirical and simulation data (David et al.,
2006) suggest that the evoked and induced responses may use certain common
mechanisms that generate both components to facilitate the functional integrations
between areas. Therefore, evoked and induced components share certain
characteristics, but only induced responses covey the backward modulation
messages.  Further investigation of the frequency contents in forward and
backward connections may help to differentiate the functional roles of evoked and

induced responses.
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CHAPTER 7

CONCLUSIONS AND
DISCUSSION

... When you can measure what you are speaking about and
expressit in numbers, you know something about it.....

William Thompson, Lord Kelvin

In chapter 2, | described DCM for induced responses, a framework for
investigating neural connectivity. Subsequently | applied this approach to the
analysis and interpretation of real electromagnetic data (chapters 3 to 6). In this
chapter, | provide a summary of the work in this thesis, followed by a discussion

and future directions.

7.1 Summary and novel contributions of thisthesis

The overall goa of this thesis was to further the characterisation of neural
network connectivity in human brains. The novel contributions of this thesis can

be summarized as follows;
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|. Develop a casual modelling scheme for induced responses in
electr oencephalography and magneto-encephalography, i.e. DCM

for IR (chapter 2)

DCM for IR models the time-varying power, over arange of frequencies, as
the response of a distributed system of coupled electromagnetic sources to a
spectral perturbation. This is an advanced extension of DCM to cover the
modelling of components that are not phase-locked to a stimulus (i.e. induced
responses). The model parameters encode the frequency response to exogenous
input and coupling among sources and different frequencies. The Bayesian
inversion of this model enables inferences about the parameters of a particular
model and allows one to compare different models, or hypotheses. One key aspect
of DCM for IR is that it differentiates between linear and nonlinear coupling;
which correspond to within and between-frequency coupling respectively.
Synthetic data were used to establish the face validity of this approach and
demonstrate: (1) that nonlinear coupling is mediated by cross-frequency
interactions; (2) that Bayesian model selection can distinguish between linear and
nonlinear coupling and (3) the robustness of model parameter estimation against
noise: i.e., atypical signal to noise ratio of 20 to 15dB gives veridical estimates. |
then applied this model to EEG data from a face-perception experiment, to ask
whether there is evidence for nonlinear coupling between early visual cortex and

fusiform areas.
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|1. Establish nonlinear coupling and age-dependent changesin the

motor system during hand grip (chapters3 and 4)

Having established the reliability of DCM for IR, | then applied it to look
for evidence for additiona nonlinear (between-frequency) coupling among
neurona sources during hand grip tasks as measured in normal subjects with
MEG. | was specifically interested in whether nonlinearities would be found
predominantly in connections within areas (intrinsic), between areas (extrinsic) or
both. This entailled a comparison of models with and without nonlinear
connections under conditions of symmetric and asymmetric interhemispheric
connectivity. Bayesian model comparison revealed very strong evidence for
nonlinear coupling between sources in this distributed network, but interactions
among frequencies, within a source, appeared linear in nature and suggested that
the task-dependent motor network was asymmetric during right hand movements.
In addition, a quantitative examination of the extrinsic or long-range coupling
parameters, showed some interesting asymmetries in frequency space and that this
coupling was predominantly negative or suppressive. The results provide
empirical evidence for nonlinear coupling among distributed neuronal sources in
the motor system and that these play an important role in modulating spectral
responses under normal conditions.

In addition, | tested for age-dependent changes in motor networks during
hand gripping tasks. | found that the normal aging process alters both the network

architecture and cross-frequency coupling in the motor network. Specificaly, in
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old subjects, the right hemisphere is engaged more in right hand movements,
relative to young subjects with the appearance of contralateral premotor to
ipsilateral motor inhibitory and coupling, which was markedly nonlinear. In terms
of frequency-specific coupling, in old brains, the communication between left and
right M1 used higher frequencies compared to the young brains. These findings
are important given the pathological modulation of specific frequencies in
diseases affecting the motor system such as in Parkinson’s disease. These studies
provide a qualitative and quantitative characterisation of frequency-specific
changes under normal ageing, which | hope will be useful when studying induced

responses in patients.

II1. Investigate the functional asymmetries in forward and

backwar d connections during face per ception (chapter 5)

Furthermore, the bilinear approximation of the neuronal state equations in
DCM for IR, like al the other DCMs, alows one to model the experimental
manipulations in terms of coupling changes. | demonstrated this by analyzing
MEG responses induced by visual processing of normal and scrambled faces and
asked if there was evidence for functiona asymmetries between forward and
backward connections that define hierarchical architectures in the brain. |
exploited the fact that modulatory or nonlinear influences (i.e., effective

connectivity) entail coupling between different frequencies by comparing models

171



with and without nonlinear (between-frequency) coupling in both forward and
backward connections. A striking asymmetry was found between forward and
backward connections; in which high (gamma) frequencies in higher cortical areas
(FFAs) suppressed low (apha) frequencies in lower areas (OFAs). This
suppression was significantly greater than the homologous coupling in forward
connections. Furthermore, exactly the same asymmetry was observed when we
examined face-selective coupling (i.e.,, coupling under faces minus scrambled
faces). These results highlight the importance of nonlinear coupling among brain
regions and point to a functional asymmetry between forward and backward
connections in the human brain that is consistent with anatomical and
physiological evidence from animal studies. This asymmetry is also consistent
with functional architectures implied by theories of perceptual inference in the

brain, based on hierarchical generative models.

IV Backward connections mediate the induced responses.
dissociation of evoked and induced responses in terms of

gener ating mechanisms (chapter 6)

Finaly, | used the bilinear form of DCM to model evoked and induced
responses and asked whether induced responses were mediated by backward
connections. | illustrated this novel application using a gripping task and
compared three models which differed in where coupling changes could occur to

explain the difference between the time-frequency expression of evoked and
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induced responses (evaluated using the same data): Specifically, | looked at
forward (F), backward (B)and forward-backward (FB) models. At the group level,
Bayesian model selection identified the B model as a better model. This result
provides direct empirical evidence that backward connections from higher areas to
lower areas mediated induced responses. Importantly, this change in backward
nonlinear coupling is in line with the fact that the planned movement
representation in the higher level (i.e. SMA and/or PM) mediates motor

commandsin the lower level of M1.

7.2 Discussion

7.2.1 The question of inter-subject variability

One of the most difficult challenges in studying oscillatory brain activity is
how to determinate the frequency bands of interest, as inter-individual variability
is large, particularly within the alpha band (Pfurtscheller and Lopes da Silva,
1999). In other words, individuals might have their own preferred frequency band
even in a very simple task (Omlor et a., 2007; Aoki et a., 1999; Kilner et al.,
2000; Kristeva et al., 2007). One possible solution isjust to explore all frequencies,
but this can be computational demanding and time consuming. In DCM for IR,
SVD is applied to extract subject-specific frequencies of interest. One important

benefit of this is data reduction (see chapter 2 for details). The estimated spectral
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densities over (frequency X sources x conditions) and time are projected into
orthonormal principal frequency modes. In this way, each mode still covers al the
frequencies but is in different proportions. This means the subject-specific
frequencies can be preserved without bias. | typically used between two and four
modes, which account for the magority of the observed variance in spectral
responses. The number of modes is usualy selected automatically using a
modified Kaiser criterion (i.e., the variance explained has to exceed ninety

percent).

7.2.2 The question of model specification

Like al the other inferential methods, the analytic results of DCM for IR
are conditional on the models considered. Specifically, as part of the DCM
approach, the observed MEG data were mapped into the source space by
multiplying the generalized inverse lead field matrix given the source locations (cf
chapter 2). This generalised inverse of the lead-field is one of many inversion
schemes that can be used to project data from channel to source space (Darvas et
a., 2004; Friston et al., 2008; Kiebel et al., 2008; Michel et a., 2004). The
advantage of this projection is that there is a unique solution for the data features,
given the prior specification of source locations. On the other hand, thisleadsto a
valid source spectrum as long as the brain regions considered are the reasonable

summary of the real neurona sources generating the data. In the case that other
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sources (but not included in the network) contribute to the MEG field topography;
the signals from these un-modeled sources could influence the sources under
consideration. Therefore, if any sources are omitted or misplaced, there might be a
better model of the data and possibly a different conclusion from model
comparison. If one did not know where spectral signals were coming from, the
beam-former method could be one useful strategy that allows one to localize the
source positions and estimate spectral features empirically (Singh et a 2003).
Once these locations have been established, the generalised inverse of the
associated lead-field matrix furnishes a near-optimum Equivaent Current Dipoles

(ECD) summary of activity that avoids suppression of local correlated activity.

7.2.3 The relationship between power modulation and phase

synchronisation

Power and phase are two important data features in spectral analysis.
Fluctuations in power and phase synchronization have been shown to be a key
aspect of neuronal network dynamics. Mathematically, power and phase could be
modulated independently as a spectra X(w,t) can be represented as
X(wt) =a,(t)exp(] ,(0)1) where a,(t) and I w(®) control the amplitude and

phase modulation, respectively (Varela et al., 2001; Canolty et a. 2006).

Importantly, a,(t) andj w(®) could be ether correlated or independent. These

properties have been used in the telecommunication, for example AM (Amplitude
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modulation) and FM (Frequency modulation) (Schwartz, 1995). However, in
systems neuroscience, their relationship remains unclear. Changes in the
synchronous discharge of neuronal assemblies contribute to the increase or
decrease of regional power within task-related frequencies (ERS and ERD).
Conceptually, increases in regional power (ERS) reflect either increases in
population activity or and increase in the phase constancy; whereas decreases in
regional power (ERD) may be due to suppression of neuronal activity or loss of
phase constancy (reduce phase constancy); or the formation of more anti-phase
pairs (induce phase constancy) (Varela et a, 2001). This means there may be a
tight coupling between power and phase synchrony. When measured separately, it
has been reported that coherence at apha and beta frequency bands between
bilateral primary motor cortex increases during movement preparation and
execution; and is accompanied by ERD (Leocani et al., 1997). In addition,
Babiloni et a report that significant beta and gamma ERS in the hippocampus and
theta ERD in the inferior temporal cortex accompany gamma coherence between
hippocampus and inferior-middle temporal cortex during repetitive visuomotor
events (Babiloni et al., 2004). Direct detection of phase—power relation is used to
address the idea of ‘nested rhythms' (Penny et al., 2008; Palva and Palva, 2007).
Nested oscillations occur when the phase of low rhythm is coupled with the
amplitude of a high rhythm and are observed largely during memory tasks: (theta-
gamma) (Lisman and Idiart, 1995), (theta-beta and theta-gamma) (Mormann et al.
2005), (theta-beta/lgamma) (Schack et al. 2002) and during sleep (infra-slow
oscillations (I1SOs; 0.02 -0.2 Hz) — 1 Hz) (Vanhatalo et al. (2004) and even during

the resting state (alpha-high gamma)(Osipova et a. 2007). Taken together, phase
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and power are different, complementary phenomena and may share a common

generative model.

7.2.4 Measuring Causality

Understanding causality has always been important. In 1620, Francis
Bacon published his philosophical work, Novum Organum, in which he proposed
to establish the progressive stages of certainty. In neuroscience, we are interested
in two aspects of causality: temporal precedence and directional connection:
Tempora precedence reflects importance of temporal order by saying the past is
causing the present, but not vice versa; Directional causality is ascribed to these
connections where an arrow from A to B means that A causes B. The most
common methods, other than DCM, in measuring tempora and spatial causal
relationships are Granger Causality (GC) (see Appendix A for the mathematic
description) and Structural Equation Modelling (SEMs; see Penny et. al. 20043a).
In general, DCM and GC and SEMs share some common characteristics (see
Friston, 2009 for a comparison of DCM and GC for fMRI studies and Penny et. al.
2004a of a comparison of DCM and SEMs for fMRI studies): They (1) are
multivariate analyses, (2) can measure the directed coupling, (3) alow one to
make inference on models, and (4) rest on temporal causality. However, there are
fundamental differences among these approaches. Firstly, in terms of determining
coupling directions, GC tries to establish the existence of causal influences with

respect to the temporal precedence; so the directed connections are thus inferred
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from the data, while SEMs and DCMs (note that this applies to the entire DCM
family) pre-specifies the directional relationships in the model a priori (Pearl,
1998; Friston, 2003). DCMs and SEMs are therefore more for making inferences
on the models and model parameters. Secondly, stationary assumptions. In both
GC and SEMs, it is assumed that when one measures the data, the systems have
reached the equilibrium. But in DCMs, the model states evolve with time, so it
does not require the underlying processes to be stationary. Note that the stationary
assumption is required in one particular DCM: DCM for steady-state responses;
see Moran et a., (2009). Thirdly, the nature of exogenous input: DCMs and SEMs
have a deterministic and stochastic exogenous input, respectively but no input is
considered in GC. Including a deterministic input (for example, the stimulus
onset) in a generative model is important because it allows one to model
experimental manipulations (Penny et. a. 2004a). Finally, “...because DCM uses
Bayesian model selection, one can compare non-nested network models...” (Penny
et al., 2004a; Penny et al., 2004b). Asit is of interest and importance to evaluate
the relative measurement efficacy of different approaches, in a future work, | will
test the robustness of DCM for IR in terms of sensitivity and specificity against

other approaches (see chapter 7.3).

7.3 Futuredirections

7.3.1 Construct validity of DCM for induced responses
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In chapter 2, | exploited DCM for IR as a novel tool to investigate neural
connectivity using electromagnetic signals. It is important that a new method is
validated against other approaches. This can be done by evaluating a relative
measure of efficacy that could serve as a guideline, when considering appropriate
analytic methods for studying neural networks. In future work, | will illustrate the
essential detection properties (characteristics) of DCM for IR, including sensitivity
and specificity, which are important for addressing network connectivity (David et.
al., 2004). | hope to evaluate the relative measure efficacy for detecting nonlinear
neuronal coupling among different methods, including phase synchrony,
bispectral analysis and Granger causality (see Appendix A and B for a
mathematical descriptions of these methods) in addition to DCM for IR. Instead of
performing the different interdependence measures in real data (in which ground
truth is unknown), | will use synthetic data that, on the one hand, mimics
electromagnetic dynamics in source space, and on the other hand, allows for the
manipulation of key parameters, such as, coupling strength. Thus, the sensitivity
measurement of every method can be quantified as a function of those parameters.
In terms of specificity, surrogate testing could be performed to determine a
significant threshold from null data, where the second order moment is preserved
but all coupling is destroyed (cf, Theiler, 1994; Theiler et a., 1992). The surrogate
data would be used to construct a null distribution of detection measures so that
we can assess its statistical properties. The neural mass model could be used to
generate neuronally plausible data; it has been shown that the neural mass model
IS capable of generating complicated activity when assigning different kinetics to

different neuronal populations and, in particular, changing the nonlinear coupling
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among neuronal populations (David et. a., 2004; Chen et a., 2008; Ursino et al.,

2007).

7.3.2 Functional reor ganization of motor system after stroke

After focal damage, surviving stroke patients often show motor impairment,
commonly hemiparesis. However, after a certain period, some patients show a
reduction in this impairment. The recovery processing is thought to be related to
reorganization within the central nervous system. But, how the reorganization
aters the neural network remains largely unknown. In future studies, | will apply
DCM for IR to assess network aternations in the motor system during recovery

from stroke, based on my findingsin chapter 3 and 4.
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Appendix A. Granger Causality

Granger causality measures the causal relation in time, i.e. the temporal
order in the events. Granger causality is named after Clive Granger, Noble Prize
winning economist, who gave a mathematical formulation to measure GC based
on the linear stochastic modeling of time series analysis using autoregressive (AR)

model :

where V,,and V,,  are the variances of the prediction errors, e, and e, ,

X%,y

estimated from

X(t) = 8 a,x(t- K)+e, (1)

k=1

X(t) =§ a,X(t- k) +§ b, y(t- k) +e,,(t)

k=1 =1

Y(t) = & a,y(t- k) +& bx(t- k) +e,(t)

k=1 =1

where p is the model order, €« and ®* are the residua noises

associated with the model. It’s clear that the residua error depends on both the
past of x and y. If y isinfluencing X, then adding past values of y to the regression
of x will improve its prediction performance resulting in a higher value of the GC.

A comprehensive description can be seen in Granger, 1969 and Granger 1980.
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Appendix B. Phase synchrony and Bispectral analysis

Phase synchrony measures the frequency-specific synchronization (i.e.,

transient phase-locking) between two oscillatory signals:

iy ® = 0)-f,0)

Where | . (t) istheinstantaneous phase difference between frequency x in

area A and frequency y in area B. The phase locking value (PLV) at t is defined as
the average value of the phase difference with a reasonable time-resolution (<100

ms) over N trials:

PLV(t) =

L2 wn

Inference is made when that synchrony is above the statistical significance,
derived from null distribution using surrogate data (see Lachaux, et. a., 1999 for

details).
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Bi-spectral analysis is the most common tool to investigate quadratic non-
linearities of phase coupling between different rhythms within or between
different time series (Jeffrey and Chamoun, 1994; Shils et a., 1996). Bispectral
analysis is dealing with a special case of phase synchrony where the frequency x
is not equal to frequency y and the coupling between two oscillators are stationary.

The cross-bicoherence is the normalized bispectrum, range from O to 1:

[B(f,, ,)]

f,, f,) =
LX) (L))o o+ )

Where B(f,, ,) =[X(f,) % (f,) 2" (f,+ f,)| is the bispectral density which is the
third-order cumulate generating function of Fourier transform
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Appendix C. Measuring the power modulation at sensor level

based on mutual information

The following document presents a relative method (my previous work) which

can measure the nonlinear power modulation at the sensor level.
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INTRODUCTION

Several populations of human cortical neurons exhibit
intrinsic properties of oscillation (~10 and ~20 Hz) i a
resting state, predominantly in the vicinity of the primary
sensorimotor and visual and auditory cortices, as recorded
non-invasively using electroencephalography (EEG) or
magnetoencephalography  (MEG) [Jasper and Penfleld,
1949; Salmelin and Hari, 1994]. The power of oscillation
can be modulated dynamically with respect to event occur-
rence, efther decreasing or increasing, a phenomencn
termed eventrelated desynchronization (ERD) or synchre-
nization (ERS) [Andrew and Pfurtscheller 1999]. In the
context of movement, it has been suggested that the dy-
namics of ERD may reflect action planning and execution,
while the dynamics of ERS may connote deactivation or
inhibition of neural networks during the recovery phase
[Lee et al., 2003b; Plurtscheller et al,, 1996]. According to
principles of brain organization, the functonal integration
describes the global influence, which requires the interac-
toms, such as functonal connectivity, between large sub-
sets in the nerve system to be coherent; these frequency-
dependent regulations make the brain a complex system
[Fristem, 1997; Tononi et al., 1994]. Several analysis meth-
ods have been developed to characterize neuronal cou-
plings, including ERD/ERS quantifying small scale interac-
tons, the coherence method measuring functional connec-
tvity, and the cross mutual information (CMI) method
estimating the statistic dependency between spatially sepa-
rated areas or large scale interacHons [Andrew and
Pturtscheller, 1999; David et al,, 2004; Grosse et al., 2002].

CQuantitative analysis of ERD and ERS around rolandic
areas, typically segregated arcund 10 and 20 Hz, provides
a means to understand the dynamics of neurenal popula-
tons and can be applied to address questions in physiol-
ogy and pathophysiclogy of the human sensorimotor sys-
tem [Aokd et al, 2001; Crome et al, 1998, Plurtscheller
et al., 1998]. For example, Magnani et al. [2002] evaluated
mu ERD onset ime in patients with idiepathic Parkinsen’s
disease before and after 1-dopa treatment [Magnani et al,
2002]. They concluded that dispersible 1-dopa has acute
positive effects to improve motor performance and
advance the latency of cortical activation during motor
programming. The basis of the ERD analysis employed,
however, mainly rests on phenomenological description
and does not provide insightful mechanisms in the context
of functional connectivity.

The coherence methed, an approach commonly used to
study oscillatory activity, has been exploited to address
functional coupling or interaction, information exchange,
and temporal coordination between cortical regions
[Gerloff et al,, 1998; Leocani et al,, 1997; Nagamine et al,
1996]. High coherence indicates potentally neurcanatomic
or functonal connecons between cortical areas underly-
ing the sensors, while decreased coherence may denote the
disruption of functenal couplings [Fein et al, 1985; Lec-
cani and Comi, 1999]. For example, patients with Alzhei-

mer's disease showed significant decrease of a-activity co-
herence in emporo-parieto-occipital areas [Locatelli et al,
1998]. Patients with severe cognitive impairments display
further decreases in ceherence. In additien, the ceherence
method has been adopted to elucidate the oscillatory com-
munication at around 20 Hz between somatomotor cortices
and muscles in surface electromyogram-magnetoencepha-
lography (sEMG-MEG) studies [Salenius et al, 19971 In
sEMG-MEG coherence studies, it has been suggested that
the transient synchronization of rhythmic activiies be-
tween sensorimotor areas and muscles can be crucial for
motor command [Kilner et al,, 1999]. Timmermann et al.
[2003] reported that abnermal synchronizaton at 4-6 Hz
between the contralateral primary motor cortex and fore-
arm muscles in Parkinsonian patients may contribute to
resting tremors [Timmermann et al, 2003]. The mvestiga-
ton of funcHonal conmectivity promises the potential te
assess functional derangement within or between modal-
ities [Schnitzler et al., 20001

The coherence method, however, can be problematic if
the signals are contaminated by noise, or the oscillatory fre-
quency band is not carefully defined [Andrew and
Plurtscheller, 1995; Nunez et al., 1997] despite the newly
developed ime-demain [Jung et al,, 2000; Lins et al., 1993;
Vorobyov and Cichocki, 2002] or frequency-domain ap-
proaches [Mima et al., 2000a; Whitton et al., 1978; Woesten-
burg et al, 1983]. Theoretically speaking, the coherence
method mainly measures linear dependency and is insuffi
clent for the study of complex and nenlinear brain dynam-
ics [Lopes da Silva, 1991; Popivanov and Dushanova, 1999].

Mutual information (M), which employs the entropy of
high-order statistics to estimate uncertainty, is a statistical
measure of both linear and nonlinear dependencies
between two time sequences [Shannen, 1948]. The cross
mutual mformation (CMI) method n a dme-domain has
been developed to quantify and assess the functional
impairment of information transmission from one area to
another in Alzheimer patents [Jeong et al, 2001]. David
et al. [2004] used the neural mass model to evaluate the
profiles of different dependency measurements in the anal-
ysis of functional comnectivity [David et al, 2004]. They
pointed out that the dme-domain CMI method {5 not reli-
able enough in broadband analysis, especially when the
coupling between the modeled cortical areas iz weak.
Moreover, the CMI method only analyzes overall signal
changes in time domain. The subtle temporal scenarie of
power changes within a defined frequency band is unfortu-
nately lost; yet this information can be critical for the
understanding of pathophysiology of disease condition.

The present study seeks to develop a conjoined time-fre-
quency analytical methed for MEG-MEG and sEMG-MEG
measurements based on mutual information [Shannen,
1948] for the investigation of functional connectivity. Each
single trial of MEG across charmels and sEMG signals was
transformed into tme-frequency domain using the Morlet
wavelet to obtain better temporal spectral (pewer) informa-
tion [Gressmann and Morlet, 1984]. Time-frequency maps
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were averaged across frials and the resulting maps were
subsequently averaged over specific frequency bands to
yield temporal profiles of power with improved signal-to-
neise rate (SNR). The averages of fime series of power
were used to compute the CMI across channels. Since M1 is
computed-based on any two temporal power sequences
within a task-specific frequency band, the proposed methed
can be termed time-frequency cross mutual information
(TFCMI) method. This TECMI method is then applied to
within (MEG-MEG) and between (3EMG-MEG) modalites
in a self-paced finger lifting task and the results are dis-
cussed based on the simulation and the experimental data.

MATERIALS AND METHODS
Subjects and Task

Eight healthy, right-handed subjects (24-32 years of age,
gender balanced) were recruited for this study. All subjects
gave written informed consent for the experiment with a
protocol approved by the institutional review board. They
sat comfortably in a magnetically shielded room with fore-
arms relaxed. Subjects were asked to lift their right index
fingers once every 8 s (3540" extension angle) in a self-
pacing manner. The protocol in this study is the standard
procedure for the Bereitschafts-potential (BF; in EEG) or
readiness fleld (RF; in MEG), as first reported by Kom-
huber and Deecke [1965]. Subjects” left hands rested on a
pillow in order to avoid contamination of movement-
related vibrations in the MEG measurements [Harl and
Imada, 1999]. Movement onset was registered using an
eptical pad (4D Neumimaging®, Helsinki, Finland). A
trigger pulse was generated at the beginning of each
movement taking the interdiction of the laser light from
the optical pad as the index of movement cnset (zerc
time). Te prevent blinking, subjects were requested to keep
their eyes fixed on a cress mark on the center of a back-
projection screen 1 m i front of them.

Data Acquisition and Preprocessing

MEG signals were continuously measured at a 1,000-Hz
sampling rate during task performance using a whole-
head, 204 planar gradiometers {(Vectorview®, Neuromag,
Helsinki, Finland). This planar type of gradiometer has the
advantage of sensitivity of superficial sources, and is par-
ticularly suitable for the sensor level analyzing. The sEMG
was simultaneously recorded at a 1,000-Hz sampling rate
from the extensor digitorum communis to verify move-
ment. The total number of finger movements was about
100 for all subjects. Some of the data had been published
to address the issue about cognitive demands on motor
tasks [Wu et al., 2006]. All the sEMG data were rectified
before subsequent calculation of TECMI and coherence
analysis, Bipolar horizontal and vertcal electro-oculograms
(EOG) were obtained using electrodes placed at the bilat-
eral cuter canthi and the left eye respectively. At the be-

ginning of each measurement, the pesitions of three ana-
tomical landmarks (bilateral pre-zuricular peints and
nasion) were measured using a 3D magnetic digitizer (Ise-
trak 381002, Polhemus Navigation Science, Colchester, VT)
to define a head coordinate system. Four head position
indicators (HPIs) were subsequently defined and tracked
by the MEG system to ensure no head movement during
each measurement (maximal translation <1.5 em). Individ-
ual MRI (Tl-weighted, 3D gradient-echo pulse sequence,
TR/TE/TLE8.1/4.12/650 (all ms), 128 x 128 x 128 matrix,
FOV = 250 mm) were chtaed with a 3.0-T Bruker Med-
Spec 5300 system (Bruker, Kalsrube, Germany).

MEG measurements of 204 channels were recorded con-
tinuously and termed as a Total Set. Among them, BOG-
free measurements (EOG <600 uV) were extracted as an
Accepted Set (approximately at least 100 wials should be
collected on-line). All MEG measurements in the Total Set
were used to evaluate the robustness of the TFCMI
method against physiological noise.

Computation of Time-Frequency Maps Using
Morlet Wavelet Transformation

Each trial of MEG and sEMG raw data with 4,000 sam-
ples (from -2 to +2 s relative to the movement onset time)
was processed using the Morlet wavelet transformation to
generate the tme-frequency representation of signals (Fig.
la,b). The time window was defined during this period
based on the prominent spectral changes of movement
related activities (Fig. 1d), which {5 In line with previous
study of a self-paced finger flexion task [Feige et al,, 1996],
where the 20-Hz spectral power depress started at about
-2.55 and a power elevation in {5 frequency range started
at about +0.5 s, with fading cut at about +2 s Let x;;(f)
denote the data from the kth tial of ith chamnel at Hme
instant ¢, its Morlet wavelet transformation is given by:

W (0f] — f a0 - g lF - N dh

where W, (t,f] represents the energy density in fre-
quency f of the kth trial of f_l[}g)jiﬁ channel at time in-
stant £ ¢yp(h) — A 0057 are the Morlet wave-
lets; their time spread is defined by o *Z—flj.;
A— (Uﬂ)_m is the normalization factor and Ber(\]
are the complex conjugates of dyz(A). !
Time-frequency maps encompassing the o (8-13 Hz)
and f (16-25 Hz) activites were created separately by
averaging across trials within each subject (Fig. 1c). (Note
that enly twe channels with b activity are shown en the
map). They were displayed topographically with colors
representing power (see Fig. 2). In the sEMG-MEG study
of corticomuscular coupling, enly the time-frequency map
of the B activities underwent further analysis. Frequency
compaonents from 16 to 25 Hz were chosen, based on pre-
vious electromangentophysiological studies of weak and
moderate tonic contractions [Baker et al, 1997, Conway
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Schematic diagram of TFCMI computation. Raw MEG measure-
ments from any two planar gradiemeters of each trial (a} were
processed using the Morlet wavelet transformation to obtain
time-frequency maps (b}. Colors indicate power amplitude in an
arbitrary unit (2.u). The mean time-frequency map (c} for each
channel was created by averaging the individual time-frequency
maps across trials. The red reciangle represents the prespecified

et al,, 1995; Halliday et al., 1998; Kilner et al.,, 1999; Mima
and Hallett, 1999; Mima et al.,, 2000b; Salenius et al., 1997].

Detection of Neural Connectivity Using TFCMI

Power from two averaged tme-frequency maps was
subsequently separately averaged over selected frequency
bands to preduce twe temporal curves (Fig. 1d). Each
curve represents 4,000 samples of a random variable, F;, at
the ith MEG channel. These samples of F; were used to
construct the probability density function (pdf), piFis),
(Fig. le) for the computation of entropy, H(F)):

£

H{F) = =) p(Ry) Inp(Fyy)
=i

where the b — 1, 2,.. .64 was the index of sampling bins
for the construction of approximated pdf. It is notewarthy
that the estimation of pdf and joint pdf from the data his-
togram is crucial for the computation of mutual informa-
tion. In arder o estimate pdf and jeint pdf stably, that is,
neither underestimation nor overestimation [Fraser and
Swinney, 1986], 64 bins were adopted for 4000 samples
as suggested by Jeong et al. [Jeong et al., 2001].

Entrepy is the average amount of information reflecting
the measure of uncertainty. Similarly, the jeint probability
density fumction (jpdf) between the ith and jth MEG chan-
nels can be computed ag p(Fyp, £y} for the estimation of
joint entropy, H(F;, F; ) (Fig. 1f).

5
H(F, F) — - gp(Pz,b;Pj,b) Inp(Fip, Fiz)

bandwidth in § band {1625 Hz}. The temporal curves of power
changes for each channel (d} were created by averaging cver the §
band {or a band} in the mean time-frequency map and were used
to estimate the probatility density function (g} and the joint prob-
ability density function {f}. [Color figure can be viewed in the
conline issue, which is available at www.intersciencewiley.com.]

Then the TFCMI between two random veariables F; and F;
was calculated as follows:
TFCMI(F;

i) — H(F) + HiE;) - HiFL 5

5
p(Ep Fis)

— F.y F: n—
N

The TFCMI value is used as an index of functional con-
nectivity. Figure 1 shows the schemafic diagram for
TECMI computation.

Determination of the COI

The channel located in the vicinity of the sensorimotor
area exhibiting the most prominent § ERD was chosen as
the chammel of interest (COI) [Plurtscheller and da Silva,
1999 for the details of § ERD computation; Andrew and
Plurtscheller, 1999, Plurtscheller and Aramibar, 1979;
Pfurtscheller and da Silva, 1999]. TFCMI and coherence
were computed between the COl and any other channels.
In addition, the COT was replaced by an arbitrary channel
(A-COT) unrelated to the motor task to investigate the
specificity for regional detection. For the between-modality
study, that is, the sEMGMEG study, the sEMG was used
as the COL

Statistical Threshold

The 95% confidence limit of t-distribution was used as a
thresheld to determine the regions of significant likelthood
associated with the COI in TFCMI and ccherence analysis,
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Figure 2.

Mean time-frequency maps of « and f oscillatory activities. The red
circle indicates the channekof-interest (CCI} with the strongest 5
oscillacory activity (lower panely; the chosen COI was also used for
analysis of o oscillation. Green cirdes dencte arbitrary COls (A-
COls}, irrelevant to the motor task. Both COl and A-COls were
employed as reference channels in the subsequent analyses (see
Figs. 4, 5). Color indicates power amplitude. The maps are shown
in top view. F, front; R, right. [Color figure can be viewed in the
online issue, which is available at wwwi.interscience.wiley.com.]

respectively. The confidence levels for TRCMI and coher-
ence were computed in different ways fiimdamentally. For
TFCMI method, value of TRCMI between the COI and any
other channels was pre-normalized with respect to the
maximal value of TFCMI obtained at the COL Normalized
values were between 0 and 1 and were used to construct
the t-distribution. The degree of freedem is 1 since we
have averaged across trials before TFCMI calculating. In
other werds, the TFCMI was computed from only one

averaged power spectrum. The 95% confidence level was
then set at mean +6.314 standard deviation (SD; df = 1,
one tailed) to eliminate the bias due te large varfation. The
conventional coherence method {or magnitude squared co-
herence) [Zaveri et al., 1999] was also applied to the same
data set based on the same COI by using an fast Fourler
transform window of 512 peints with 256 points overlap-
ping, trial by trial. This allows no overlapping of each
epoch signals and makes the spectral resolution (AF) of
this coherence estimate to be (.25 Hz, the nverse of the
epoch length, 1/4 sec ! [Zaveri et al., 1999]. Before averag-
Ing across trials, an arc-hyperbolic tangent transform are
applied to the coherence values, as described by Rosen-
berg et al. [1989], so that the coherence values have a nor-
mal distribution [Rosenberg et al, 1989]. The significant
thresheld of 95% confidence limit was then given by mean
+1.655D (df = 100, one tailed) [Halliday et al., 1995]. For
the purpese of presentation, coherence values between 0
and 1 were rescaled to the maximal coherence value. Cnly
values of TFCMI and coherence zbove the significant
threshelds were cataloged as significant interactions and
were represented topographically as maps with celors
indicating the relative coupling level above significance.

Visualization of TFCMI maps

To better visnalize the resolved coupled areas of each
subject, the TFCMI maps were superimpesed on top of
each individual cortical surface. The procedure was
described in following steps. First, the positions of four
HPIs were used to caleulate the relative rotaion and trans-
lation between the senser coordinate system and the head
coordinate system. This allowed the sensor array positions
to be ransformed into the head ccordinate system. Second,
three anatomical landmarks (bilateral pre-auricular points
and nasion) en individual MRI were identified and aligned
with head coerdinate. The sensor array pesitions were sub-
sequently transformed inte the MEI coordinate system.
Third, the cortex was segmented frem each individual
MRI and reconstructed using ASA® (ANT. software BY,
The Netherlands). Fourth, a sphere was fitted to the trans-
formed sensor array positions using the least squares tech-
nique and rescaled to make the sensors abut to the recon-
structed cortical surface. Finally, the TFCMI results in the
form of contour maps were projected onto the transformed
sensor arrays overlaid on top of cortical surface.

It should be noted that the correspondence between the
posiion of the MEG gradiometers and the underlying
sources cannot be precisely determined without a proper
source analysis. Nevertheless, the MEG gradiometer is
designed to detect the largest signal right above the cur-
rent scurce and suppressing ambient neise, suggesting
that the gradiometer with the maximum current flux may
ascribe to currents mainly from the directly beneath corti-
cal area and partly from several surrounding cortical
regions. In this article, the word “regions,” referring to
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“regions directly beneath MEC sensors and possibly sur-
rounding regions,” is used loosely henceforth for the pur-
pose of simplicity, Though the minor contribution from
surrounding regions was not taken inte account in this
study, it will be exploited on the scurce space in future
work.

Simulation of Coupling Between Two Regions

Two simulations (Simulation, Neuromag® system soft-
ware) were conducted to establish the face validation of the
TECWI method in terms of the detection efficacy. Simulation
1 examined the ability of TFCMI to reject false coupling
caused by noise when there were no actual coupled scurces.
Simulation 2 attempted to clarify the detection efficacy of
TECMI with regards to low SNR under the circumstance
that the neuromagnetic signals received by planar MEG
from the bilateral SMAs can be drastically attenuated due to
anatomical architecture [Joliot et al,, 1998; Lang etal., 1991].

In Simulation 1, ome oscillatory dipole (23 Hz) was
placed in the left SM1 (SMl-dipole) of a chesen subject to
synthesize magnetic fields on the sensor array. Positon
and mement of the SM1-dipole were taken from the equiv-
alent current dipele (ECD) fit [Hamalainen et al., 1993] to
the movement evoked field I (MEFL) of the specific subject
(Fig. 3a). The tme point of the fit was 14 ms post move-
ment. In Simulation 2, an additional dipole (23 Hz) (SMA-
dipole) was placed at a mesial region in the vicinity of
SMA and pointed anteriorly based on the literature [Erdler
et al, 2000; Lang et al, 1991]. The anatemical seeding of
the SMA-dipole was adopted from the same subject’s
results in a parallel functional MRI {(fMRI) experiment
using similar task (repetiive index finger movement;
T>-weighted gradient-echo echo planar imaging sequence,
TR/TE/flip angle = 2000/50 ms/90°, 64 % 64 x 20 matix,
FOV = 192 mm) (Fig. 3b). The distance between the SM1-
and SMA-dipole was 55.07 mm (Fig. 3c). The cscillating
source of the SMA-dipole preceded that of the SM1-dipele
by 600 msec (Fig. 3d) [Erdler et al., 2000; Lang et al,, 1991].
It is noteworthy that this design aims to emulate the spa-

Figure 3.

SMI- and SMA-dipole allocation in simulation studies. (2} SMI-
dipele pesition and moment. The SM|-dipcle placement in the left
SMI was based on the equivalent current dipole (ECD} fit to
movement evoked field |. Upper panel displays the isocontour
maps of the recorded neuromagnetic signals and the dipole (in
green). The SMi-dipole was rendered onto the subject’s cwn
MRls in axial view (lower panel; subject’s right hemisphere to the
right of the image). Anatomically, this SMI-dipole was located
slightly posterior to the contralateral central sulcus. (b} SMA-
dipele position and mement. The SMA-dipole was seeded in the
left SMA (right panel} close to the midline with ccordinates
adopted from a parallel MRI experiment conducted by the same
subject (left panel). (¢} Spatial relationship between SMI- and
SMA-dipoles. Left, axial view; right, sagittal view. (d) Time courses
of SM|-dipcle {upper panel} and SMA-dipole (lower panel}. In this
simulation, the time course of the SMA-dipole preceded that of
SMI-dipole by 600 m (Erdler et al, 2000; Lang et al., 1991}. The
blue line denctes the time-point for the ECD fitin the subsequent
analysis (see Fig. 7a}. [Celor figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]
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tally distributed cormections i low SNR circumstance,
rather than to link this simulation to the underlying func-
tonal comnections during movements. Accordingly, the
strength of the SMA-dipole activity used i Simulation 2
was manipulated with a range of 05 to 1 times of M1
dipole to modulate SNR [Chen et al., 1991; Erdler et al,
2000; Joliot et al., 1998]. Randem noise was added onto
each sensor measurement. Beth TECMI and coherence
analysis were performed on the synthetic data. Moreover,
conventional ECDs were fitted on the synthetic data to
estimate the locations of neural generators, which were
used as comparisons to TECMI results.

RESULTS
Motor Task Performance

All subjects followed the mstructions and performed the
task well. The average number of trials in Accepted Sets
among subjects was 98 epochs. Intervals between succes-
sive movements (Intermovement terval, IMI) of Accepted
Sets among subjects were between 7968 and 15.162 sec-
onds (mean, 13.124 ) and there was no feedback to cue
subjects” movements, EOC ratio (the ratio of EOG sets to
Total Sets) varied from 1.5% to 35.25%. Table I shows task
performance and composiions of MEC test dam for
Accepted Set, IMI, EOG trials, Total Set and EOG ratio.

Neural Correlates of Event-Related % and J
Oscillatory Activities: Within Modality

The resultant spatial distibutions of neural conmectivity
for @ and B activities, respectively, were represented by
maps with colors representing the values, that is, the
strengths of neural cormectivity of o and  activites (Fig.
4a). TFCMI maps, both show strong connectivity within
the contralateral sensorimotor region. The strengths of con-
nectivity zbove thresheld (95% confidence limit) can be
alternatively displayed using colored lines, linking signifi-
cant regions and the COL (Fig. 4b). Under the assumption
that the gradiemeter MEG sensors represent the major

corical oscllatory activity of underlying cortical tissues,
contour maps projected on the reconstructed cortical sur-
face reveal the regions coupled with the COl, including
the mesial frontocentral cortex (termed the supplementary
motor area, SMA, due to the anatomical correspondence;
see simulation and discussion), bilateral primary sensori-
motor areas (SM1), and contralateral premetor area (FM)
(Fig. 4c). Table I lists neural correlates revealed by TECMI
and coherence methods. In MEG-MEG studies, TFCMI
results for all subjects (n = 8) show encompassing of bilat-
eral SM1s, SMA, and centralateral PM in both « and f
activities. The coherence results for f activity show encom-
passing of bilateral SMls (n = 2), SMA (1 = 3), and contra-
lateral PM (r = 6) in some subjects. For @ activity, contra-
lateral SM1 was engaged in all subjects (z = 8). Two of the
subjects had additional SMA encompassing, and four
showed contralateral PM encompassing.

Impact of COl on TFCMI and Coherence Analysis

Figure 5 shows the COl-specific results obtained from
TECMI method and coherence method. The TFCMI
methed resolved more neural connections than ceherence
method, such as ipsilateral SM1, when task-related COI
was chosen (Fig. 5, upper panel; Table II). When the task-
related COl was replaced by an A-COI frrelevant to the
motor task, the A-COI TECMI result demonstrated =
highly focal encompassing centered at A-COl area {exclu-
sively within), while the A-COI coherence result showed a
rather dispersed neural connection with A<COL, incongru-
ent with the known anatomy (Fig. 5, lower panel).

Between- and Within-Modality Analysis:
sEMG-MEG and MEG-MEG

Figure 6 gives analytical results for TFCMI and coher-
ence around beta band (16-25 Hz) for between- and
within-modality  signals, (SEMG-MEG and MEG-MEG
studies) for subject 8 Simultaneous recording of sEMG for
both right and left hands precluded mirror movement in
the left hand (Fig. 6a). Both TECMI and coherence results
exhibited remarkable corticomuscular coupling over con-

TABLE I. Motor task performance and MEG test data

Subject index  Accepted set  IMI {mean * SD; ms)

EOG Set  Total set  BOG ratio (%)

1 105 15152 + 6,958 27 132 2045
2 93 14571 + 3,812 38 131 2.0
3 104 14,476 + 3,774 4H 145 2827
4 91 13,867 + 3,891 16 107 14.95
5 88 13,760 + 7,589 48 136 3529
6 103 14,302 + 7,237 2 105 190
7 100 7968 + 1,573 8 108 740
8 %8 14,958 + 3,807 3 101 2.97
Average 9B 22 120

VL, inter-movement interval; 5D, standard desdation; EOG, electro-oculogram.
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Figure 4.
Event-related o and [ oscillatory
activities networks (TFCMI}. Indi-
vidual data set. (a} Topographic
maps of the spatial distribution of
significant TFCMI values between
CQl and other MEG channels for
a and [ oscilhtory activities.
Color indicates the strength of
connectivity. The arrows besides
the color bar indicate the signifi-
cant threshold. (&} An alternative
display of the strengths of con-
nectivity above the significant
thresheld. Regions of significant
communications with the chosen
COl were marked by links ema-
nating from the COL. (c} TFCMI
values in contour maps. The
maps were projected  onto
the rescaled sensor array and the
individual MRl to better the
anatomical visualization of the
coupled regions. Areas engaged
included SMAs, bilateral SMls,
and contralateral PM. Yellow
curves are the central sulcus;
blue arrows indicate the location
of COI. Left panel, view of top of
the head; right panel, lateral view
of the head from the left side.
[Coler figure can be viewed in
the online issue, which is avail-
able at www.interscience.wiley.
com.]

tralateral SM1 for all subjects (1 = & Table II). The sEMG-  ipsilateral SM1 and sEMG was consistently resclved by
MEG maps resembled the MEG-MEG maps, but there the TFCMI method. Such coupling could not be detected
were subtle differences (Fig. 6bg). The coupling between by the coherence approach (Table II).
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TABLE Il. Neural correlates reflected in TFCMI
and coherence methods

MEG-MEG study SEMG-MEG study
¢SM1 iSM1 SMA PM oSKI1 iSM1 SMA P
TFCWI « 8/8% B/8 B/8 8/8
B 8/8 B/8 B/8 B/8 B/8 B/8 7/B B/B
Coherence o B/8 2/8 4/8
B 8/8 2/8 3/8 #/8 B8/8 2/8 4/8

*The results are given in a ratio of detection, which indicates the
number of subjects against ell eight subjects.

<SM1, contralateral primary sensorimotor area; iSMI, ipsilateral
primary sensorimotor area; SMA, supplementary motor atea; PM,
premotor area; contralateral

Simulation results

Figure 7 shows the simulation result when the SMA-
dipele strength is equal to that of the SMl-dipcle. The
simulated cutput on SM1 sensor which exhibits the strong-
est power is shown in Figure 7a. Conventional ECDs, serv-
ing as a comparison to TFCML, were fitted on the synthetic
data to estimate the locations of neural generators. The
time-point for the ECD fit was chosen at maximal cscilla-
tory amplitude (Fig. 7a; blue line) from which the corre-
sponding simulated topegraphic pattern is displayed in
Figure 7b. Spatial congruence of the simulated SM1-dipole
(rad) and the estimated SMi1-dipole (blue) is displayed in
Figure 7c. In Figure 7d, isocontour maps of the synthetic
signals at the time peint of max SMA-dipole strength are
shown in the right column. The synthetic signals from the
charmel over left SMA are shown In left upper panel, and
the left middle and lewer panels are the source activity
from SMl-dipole and SMA-dipele, respectively. The good-
ness-of-fit (Gof) for the estimated left-SMI1 dipole was
97.2% for Simulation 1 (Table I). In Simulation 2, when
beth SMA dipele and SM1 dipole have the same strength,
the Gof for SMl-dipole and for SMA-dipole were 96.2%
and 42.3%, respectively. When the source strength of
SMA dipole was half of SM1 dipole, the Gof of SM1 and
SMA dipoles decreased to 88.6% and 40%, respectvely
(Table IV).

Both TFCMI and coherence analysis were performed on
the synthetic data (see Fig. 8). In simulation 1 SM1-dipole
onlyj, beth TECMI and coherence maps showed a focal
encompassing of SM1, that is, exclusive connectivity to itself
only (g, 8 upper panel). In simulation 2 (SM1-dipole and
SMA-dipole), the time courses of the two dipoles were
coherent and had a significant transformed coherence value
of 0.957 after averaging 100 simulation trials in source space
since they are with similar temporal profile (Fig. 3d) and are
stationary across trials. However, after forward modeling,
only TECMI reselved more spatially distributed cormections
in sensor space, anatomically encompassing the SM1 and
SMA, respectively, where the two dipoles were seated
whereas the coherence method cannot discern the coupling

(coherence = 0.0023) and solely showed connectivity within
SM1 (Fig. 8; lower panel).

In addition, we have computed the SNR (=10 log(signal
power/noise power)) of the experimental data measured
from the sensor above left SM1 for the comparison with
the SNR in simulation. The segment of averaged data from
—4 to —3.5 s was considered as the noise and that frem -2
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Figure 5.

Influence of reference chosen on TFCMI and coherence analysis
with respect to o and B activities. Yhen the task-related COI
was properly chosen (upper panel), TFCMI results consistently
showed more neural connections involving bilateral sensorimor-
tor areas and the SMA for both a and [ activities than coherence
analysis. Ywhen the A-COCls were chosen as reference (lower
panel}, the A-COl TFCMI result demonstrated a highly focal
encompassing centered at A-COl area (connectivity exclusively
to itself), while the A-COI coherence result showed rather dis-
persed neural cennections with A-COI, incongruent with the
knewn anatomy. [Color figure can be viewed in the online issue,
which is available at wwwinterscience.wileycom.]
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te +2 s was the signal of activity. The averaged SNR in
averaged data from 8 subjects was 26.57 + 2.9 dB. In Sim-
ulation 2, the minimum SNR for TECMI method to detect
the connection between SM1 and SMA (Table IV) is 21.8
dB, where the simulated signal was a compoesiion gener-
ated from hypothetical SM1- and SMA-dipeles with the
same dipole strength. In summary, cur simulations indi-
cate that the TECMI method has superior detection speci-
ficity compared to the coherence method in low SNR situa-
ton.

DISCUSSION

Detection Specificity in Low SNR Data:
Computational Simulation

A question central to the discussion of TECMI approach
i the current study is whether TECMI could detect and
resolve spatally distributed comnections in low SNR cir-
cumstance. In this study, twe simulatons were conducted
to provide the face validation of the TFCMI method in this
regard. As a result, the Simulation 1 (SM1 dipole only)
shows a focal encompassing of SM1, that is, exclusive con-
nectivity to itself only (Fig. & upper panel) and the Simu-
lation 2 demonstrates that TECMI can decipher spatially
distributed connections in low SNR circumstance. It is
notewerthy that, though the simulation results show that
TFCMI method can resolve the spatially distributed con-
nections in low SNR circumstance, we have not presented
an exhaustive simulation to emulate the underlying func-
tonal connections during movements. Since the TECMI
method is a pair-wise analysis and the TECMI results from
experimental data may be mfluenced by some distant but
coupled sources fed into the COI and other channels, the
interpretation of the TFCMI results should be restricted.
Further validation is needed for the TFCMI method to pre-
cess and represent on the source level instead of the sensor
level. Nevertheless, the simulation results demonstrate that
TECMI was capable of discerning neise and showing the
neural connectivity between distinct areas, in this case,
between SM1 and SMA, with low SNR whereas hoth the
ECD fit and the coherence method were not able to detect
(Figs. 7, 8; Table IV).

Robustness of TFCMI Method

TFCMI analysis is resistant to reference selection and
efficient in deciphering task-related connections from the
irrelevant ones. Proper selection of COI is critical for the
study of functional coupling using the coherence method
[Gerloff et al,, 1998]. Such a prerequisite is also seen in Hg-
ure 5 when A-COI was chosen as reference, despite which
the coherence method is robust when the reference elec-
trode is correct and the interaction is statonary across tri-
als [David et al., 2004]. On the contrary, the A-COL TFCMIL
result demoenstrated a highly focal encompassing centering
at the A-COl area (exclusive connectivity to itself) which
was validated by Simulztion 1 (Fig. & upper panel) where
the unconnected-solitary source (chosen as CO showed
no factiious coupling. In addition, when sEMG was used
as COL in the between-modality study, the TFCMI showed
neurophysiologically and nevoranatomically sEMG-MEG
topographies (Fig. 6b, Table II). Moreover, the TFCMI
method in broadband analysis performs relizbly compared
with the cenventional mutual information method whose
sensitivity is less reliable in broadband and weak coupling
signals [David et al, 2004]. Cellectively, the data imply
that TFCMI can better resolve task-related connections.

Resolving Power Under Nonlinear Interactions

It is well known that the planning and execution of vol-
untary movement relies upen the integration of premoter
and primary motor areas operating in conjuncton with
sensory and association areas, including SMA and cerebel-
lum. The functional relevance between left and right
SM1 in MEGMEG eventrelated experiments as disclosed
by the TECMI is congruent with previous imaging studies
showing bihemispheric engagement for motoric movement
(Table M). [Gerloff et al, 1998; Hsieh et al., 2002; Jeliot
et al., 1998 Stippich et al, 1998]. The TECMI alse shows
consistent engagement of ipsilatersl SM1 in the sEMG-
MEG eventrelated experiment (Table II; Fig. 6b). The
Inconsistent interhemispheric interaction in existing studies
using the coherence or partial coherence approach has
lead to a debate on bilateral invelvement of SM1 for uni-
lateral finger movement control [Andres et al, 1969;

Figure 6.

Ipsilateral SMI in between- and within-modality TFCMI studies.
Individual datz set. (=} Right (upper trace} and lefc (lower trace}
hand sEMGs during right finger movement (blue arrows). The left
sEMG precluded mirror movement of the left hand during the
experiment. (B¢} Results of 5 activity from TFCMI and coherence,
respectively, for between- (SEMG-MEG; left panel} and within-mo-
dality (MEG-MEG; right panel} studies. The sEMG-MEG maps (first
row) exhibit prominent corticomuscular coupling at contrakteral
SMI in both TFCMI and coherence analyses, and resemble MEG-
MEG maps. Yellow arrows indicate ipsilateral SM| encompassing by
TFCMI. Mo such coupling was detected using the ccherence

method. Second row presents couplings in an alternative manner,
with blue circles representing MEG sensor sites. Blue arrows
anchor the COI for MEG-MEG analysis, which is also indicated in
sEMG-MEG maps only. Coupling strengths are coded in different
colors either in the form of solid dots in the sSEMG-MEG maps or
line links in the MEG-MEG maps. The third (view of the top of the
head) and fourth (left lateral view of the head) rows display the iso-
contour maps for a better appreciation of neuroanatomical corre-
spondence. Yellow curves are the central sulci. [Color figure can be
viewed in the online issue, which is awailable at wwwinterscience.
wiley.com.]

195



+ Chen et al. +

(a)

(d)

L

Ll .

Andrew and Phurtscheller, 1996, 1999; Gerloff et al., 199%;
Manganott et al., 1998; Mima et al,, 2000a]. This mconsis-
tency could also been seen in our coherence results (Table
II). However, transcranial magnetic stimulation (TMS) stud-
ies have confirmed the role of ipsflateral SM1 in self-pacad
fingar movement tasks [Chen et al., 1997; Rau et al., 2003].
Studies on patients with motor disorders have shown a sig-
nificant activation of ipsilateral SM1/corticospinal tract as
compensatory mechanisms [Caramia et al., 2000; Cuadrado
etal., 1999; Jones et al., 1989; Marshall et al., 2000; Ward and
Cohen, 2004]. Our TRCMI analytical results are consistent
with the known anatemy since 10% of corticospinal fibers
have ipsilateral projections [for a review, see Kuypers, 1981]
and the ipsilateral influence is integrated with the prevailing
contralateral one (alse evinced by the prependerant contra-
lateral expression of TFCMI values) for the overall control of
movement [de Oliveira, 2002]. Accordingly, it {s plausible
that the coupling between contra- and ipsi-lateral SMI may
be through a nonlinear or nenstaticnary interaction and
could be better unraveled by TFCML

Fundamental Differences Between the TFCMI
Method and Coherence Method

In this study, the functonal cormectivity during a self-
paced brisk finger movement task was studied. Such a dis-
crete movement paradigm may mandate more cognitive
processing than automatic movement paradigm within
sub-second inter-movement interval [Lewis and Miall,
2003]. Moreover, the latency of maximal pestmovement &
rebound exhibits trial-to-trial varizbility [Lee et al., 2003b].
These suggest that there is inherent nonstationarity in the
neural processing. Under the assumption that neural proc-
esses are stationary across frals [Lachaux et al, 2002;
Nunez et al, 1997], the coherence methed measures the
linear dependency between signals via normalized spectral

Figure 7.

Poor detection of SMA-dipole by simulation. &) Synthetic signals
from the channel over SM1 as produced by SMI- and SMA-dipoles.
(b} Isocontour maps of the synthetic signals and the ECD result of
SMI-dipele. The blue bar in (3) indicates snap time for the contour
maps. {c} Spatial congruence of the simulated SM|-dipcle and the
estimated SM|-dipole. The estimated SM|-dipcle (in blue, with a very
high gocdness-of-fit, about 96%) almost coincides with the simulated
(in red). (d} Isccentour maps of the synthetic signals at the time point
of max SMA-dipole strength {right column). The synthetic signals
from the channel over left SMA are shown in left upper panel, and
the left middle and lower panels are the source activity from SM| -
dipole and SMA-dipole, respectively. The goodness-cf-fit for the
SMA-dipole was 42.3% (Table V). The poor Gef for the SMA-dipole
was in line with the consensus that the MEG dipole fit for SMA
source can be ambiguous due to insufficient SNR. [Color figure can
be viewed in the online issug, which is available at www.interscience.
wiley.com.]
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TABLE . Simulated-dipole parameters and ECD results for source estimation: Simulation |

Simulated-dipole parameters

ECD results; SNR = 21.8 dB

Index Location Moment Location Moment TDhstance® {mm) Gof {%)
SM1-dipcle ¥ 3h.2 .42 353 0.43
y 7.2 .80 7.2 0.79 103 a7k
z 88.9 .41 88.3 0.41

*Between the smulated and the estimated location,
" 85% Gof.

ECD, equivalent current dipole; SNR, signal-to-noise ratio in source space; Gof, goodness of fit.

covariances, that is, second-order statistics. This second-
order method works well for Gaussianly distributed sig-
nals but may not for the non-Gaussian enes, as shown in
the upper panel of Fig. 1(e). The TECMI methed, on the
contrary, utlizes the wavelet ransform as the preprocess-
Ing procedure to bandpass the signals with better temporal
resolution than Fourier transform such that the subtle tem-
poral scenarios within pre-specitifc frequency bands can
be properly reserved. Then, based en the joint probability
of coincidence ocourrence of oscillatory signal power with
more accurate temporal resolution, TECMI computation is
not limited to the linearity of spectral modulation across
trials. In fact, the use of pdf and joint pdf takes the advant-
age of highorder statistcs to extract the nenlinear cou-
pling that may not be correctly identfied using the sec-
end-order techniques. Therefore, the combination of wave-
let and mutual information substantiate a significant
contribution for nonlinear analysis and is a salient feature
of the TECMI method. Such fimdamental differences make
the TECMI methed moere adaptive than coherence method
In analyzing complex dynamic data.

The Limitations of and Prospects
for the TFCMI Method

Since the cortical oscillatory activity acquired from a
MEG senser cannot be fully attributed to the underlying
cortical region, the interpretation of TRFCMI results is lim-
Ited to the sensor space in current study. Further valida-

ton, such as simultaneous recording of EEG and fMRI,
may serve a a complementary to the TFCMI method.
Alternatively, the recording signals from MEG sensors can
be the inversely mapped into the seurce space by using a
spatial fillter as developed in the dynamic imaging of
coherent sources (DICS) method [Gross et al., 2001, 2002,
2003; Ishil et al., 2002]. This will allow the calculaton of
TFCMI on the source space and subsequently analyze the
functional coupling within the brain. Another drawback of
the TFCMI method is the low temporal resolution (4 s),
since the estimation of probability density functon and
joint probability density function was based on the histo-
grams of signal amplitudes over a 4-s time window. Vari-
ous lengths of ime window will be used to assess the per-
formance of TECMI in the future work. Besides, the TFCMI
method was not designed to unravel the propagation direc-
tion of the electrical activity among brain structures, Once
the evident functional coupling on the sensor space was
resolved using the TECMI method, other approaches, such
a5 the direct transfer function (DTF) method, phase syn-
chronization, or the directional index can be employed for
the quantification of coupling direction.

CONCLUSIONS

We present a novel methed, TECML, for the expleration
of the neural communication and interaction among dis-
tinct brain regions or regions of different nenrophysiologi-
cal modaliies. When compared with the coherence

TABLE IV. Simulated-dipole parameters and ECD results for source estimation: Simulation 2

ECD results: SNR = 19.1 (dBSM1-dipcle
strength:SMA-dipcle strength = 1:0.5)

Simulated-dipole parameters

ECD mesulte: SNR = 21.8 (dBSM1-dipole
strength:SMA-dipele strength = 1:1)

Index Location Moment Locefion Moment Distance® fmm] Gof{%) Locefion Moment Distance® {mm) Gof {%)
SMl-dipcle x 3.2 .42 36.8 0.2809 343 042 1.15
¥ 7.8 0.80 7.8 0.8827 487 B88.6* 7.2 0.79 96,2
¥ 889 041 84.3 0.3796 8.3 142
SMA-dipole ¥ 34 0.54 10 0.68 10.71
¥ 2.4 .68 below 40 108 471 42.3
¥z 879 .60 9.5 0.14

*Between the simulated and the estmated location.
*85% Gof.

ECD, equivalent current dipole; SNR, signal-to-noise ratio in source space; Gof, goodness of fit.
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TFCMI

Coherence

SM1-
dipole

SM1-
i

SMA-

dipoles

Figure 8.
Detection specificity of TFCMI in low SNR. data. Both TFCMI and
the coherence methed yielded one unambiguous focus in the first
simulation (only SM1 dipole, upper panel). In the second simula-
tion (SM| -dipcle and SMA-dipole}, cnly the TFCMI resolved more
spatially distributed connections in low SNR. data, anatomically
encempassing the SMI| and SMA, respectively, where the two
dipoles were seated (lower panel}. The white circle in the lower
panel highlights the difference between the TFCMI and coherence
results which is the supposed SMA area. The white circle in the
upper panel indicates the same SMA area only for comparison
with the result in the lower panel. [Color figure can be viewed in
the cnline issue, which is available at www.interscience.wileycom)

approach (linear dependency only), the TECMI method
showed better specificity on dependency measurement in
broadband analysis, clearer demarcation of event-related
regions from nonrelated, and more rebusmess for between-
modality study. Although TECMI is not a stingently com-
plete “data-driven” approach, it can be considered as a
“model-free” approach [Lee et al., 2008a]: a priori knowledge
of neuronal architecture at the anatomical level can be heu-
ristic for the analytical penetration of functional organiza-
ton. The TFCMI method promises a possibility to better
urravel the nfricate brain hunctional organizations in the
context of oscillation-coded communication. Further work is
currently in progress to allow the TECMI processing and
representation on the source level instead of the sensor level.
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anisms of functional organization in the context of neural connectivity. We present a conjeined time-
frequency cross mutual information (TFCMI) methed to explere the subtle brain neural conmectivity by
magnetoencephalography (MEG) during a self-paced finger lifting task. Surface electromyogram
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INTRODUCTION

Several populations of human cortical neurons exhibit
intrinsic properties of oscillation (~10 and ~20 Hz) i a
resting state, predominantly in the vicinity of the primary
sensorimotor and visual and auditory cortices, as recorded
non-invasively using electroencephalography (EEG) or
magnetoencephalography  (MEG) [Jasper and Penfleld,
1949; Salmelin and Hari, 1994]. The power of oscillation
can be modulated dynamically with respect to event occur-
rence, efther decreasing or increasing, a phenomencn
termed eventrelated desynchronization (ERD) or synchre-
nization (ERS) [Andrew and Pfurtscheller 1999]. In the
context of movement, it has been suggested that the dy-
namics of ERD may reflect action planning and execution,
while the dynamics of ERS may connote deactivation or
inhibition of neural networks during the recovery phase
[Lee et al., 2003b; Plurtscheller et al,, 1996]. According to
principles of brain organization, the functonal integration
describes the global influence, which requires the interac-
toms, such as functonal connectivity, between large sub-
sets in the nerve system to be coherent; these frequency-
dependent regulations make the brain a complex system
[Fristem, 1997; Tononi et al., 1994]. Several analysis meth-
ods have been developed to characterize neuronal cou-
plings, including ERD/ERS quantifying small scale interac-
tons, the coherence method measuring functional connec-
tvity, and the cross mutual information (CMI) method
estimating the statistic dependency between spatially sepa-
rated areas or large scale interacHons [Andrew and
Pturtscheller, 1999; David et al,, 2004; Grosse et al., 2002].

CQuantitative analysis of ERD and ERS around rolandic
areas, typically segregated arcund 10 and 20 Hz, provides
a means to understand the dynamics of neurenal popula-
tons and can be applied to address questions in physiol-
ogy and pathophysiclogy of the human sensorimotor sys-
tem [Aokd et al, 2001; Crome et al, 1998, Plurtscheller
et al., 1998]. For example, Magnani et al. [2002] evaluated
mu ERD onset ime in patients with idiepathic Parkinsen’s
disease before and after 1-dopa treatment [Magnani et al,
2002]. They concluded that dispersible 1-dopa has acute
positive effects to improve motor performance and
advance the latency of cortical activation during motor
programming. The basis of the ERD analysis employed,
however, mainly rests on phenomenological description
and does not provide insightful mechanisms in the context
of functional connectivity.

The coherence methed, an approach commonly used to
study oscillatory activity, has been exploited to address
functional coupling or interaction, information exchange,
and temporal coordination between cortical regions
[Gerloff et al,, 1998; Leocani et al,, 1997; Nagamine et al,
1996]. High coherence indicates potentally neurcanatomic
or functonal connecons between cortical areas underly-
ing the sensors, while decreased coherence may denote the
disruption of functenal couplings [Fein et al, 1985; Lec-
cani and Comi, 1999]. For example, patients with Alzhei-

mer's disease showed significant decrease of a-activity co-
herence in emporo-parieto-occipital areas [Locatelli et al,
1998]. Patients with severe cognitive impairments display
further decreases in ceherence. In additien, the ceherence
method has been adopted to elucidate the oscillatory com-
munication at around 20 Hz between somatomotor cortices
and muscles in surface electromyogram-magnetoencepha-
lography (sEMG-MEG) studies [Salenius et al, 19971 In
sEMG-MEG coherence studies, it has been suggested that
the transient synchronization of rhythmic activiies be-
tween sensorimotor areas and muscles can be crucial for
motor command [Kilner et al,, 1999]. Timmermann et al.
[2003] reported that abnermal synchronizaton at 4-6 Hz
between the contralateral primary motor cortex and fore-
arm muscles in Parkinsonian patients may contribute to
resting tremors [Timmermann et al, 2003]. The mvestiga-
ton of funcHonal conmectivity promises the potential te
assess functional derangement within or between modal-
ities [Schnitzler et al., 20001

The coherence method, however, can be problematic if
the signals are contaminated by noise, or the oscillatory fre-
quency band is not carefully defined [Andrew and
Plurtscheller, 1995; Nunez et al., 1997] despite the newly
developed ime-demain [Jung et al,, 2000; Lins et al., 1993;
Vorobyov and Cichocki, 2002] or frequency-domain ap-
proaches [Mima et al., 2000a; Whitton et al., 1978; Woesten-
burg et al, 1983]. Theoretically speaking, the coherence
method mainly measures linear dependency and is insuffi
clent for the study of complex and nenlinear brain dynam-
ics [Lopes da Silva, 1991; Popivanov and Dushanova, 1999].

Mutual information (M), which employs the entropy of
high-order statistics to estimate uncertainty, is a statistical
measure of both linear and nonlinear dependencies
between two time sequences [Shannen, 1948]. The cross
mutual mformation (CMI) method n a dme-domain has
been developed to quantify and assess the functional
impairment of information transmission from one area to
another in Alzheimer patents [Jeong et al, 2001]. David
et al. [2004] used the neural mass model to evaluate the
profiles of different dependency measurements in the anal-
ysis of functional comnectivity [David et al, 2004]. They
pointed out that the dme-domain CMI method {5 not reli-
able enough in broadband analysis, especially when the
coupling between the modeled cortical areas iz weak.
Moreover, the CMI method only analyzes overall signal
changes in time domain. The subtle temporal scenarie of
power changes within a defined frequency band is unfortu-
nately lost; yet this information can be critical for the
understanding of pathophysiology of disease condition.

The present study seeks to develop a conjoined time-fre-
quency analytical methed for MEG-MEG and sEMG-MEG
measurements based on mutual information [Shannen,
1948] for the investigation of functional connectivity. Each
single trial of MEG across charmels and sEMG signals was
transformed into tme-frequency domain using the Morlet
wavelet to obtain better temporal spectral (pewer) informa-
tion [Gressmann and Morlet, 1984]. Time-frequency maps
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were averaged across frials and the resulting maps were
subsequently averaged over specific frequency bands to
yield temporal profiles of power with improved signal-to-
neise rate (SNR). The averages of fime series of power
were used to compute the CMI across channels. Since M1 is
computed-based on any two temporal power sequences
within a task-specific frequency band, the proposed methed
can be termed time-frequency cross mutual information
(TFCMI) method. This TECMI method is then applied to
within (MEG-MEG) and between (3EMG-MEG) modalites
in a self-paced finger lifting task and the results are dis-
cussed based on the simulation and the experimental data.

MATERIALS AND METHODS
Subjects and Task

Eight healthy, right-handed subjects (24-32 years of age,
gender balanced) were recruited for this study. All subjects
gave written informed consent for the experiment with a
protocol approved by the institutional review board. They
sat comfortably in a magnetically shielded room with fore-
arms relaxed. Subjects were asked to lift their right index
fingers once every 8 s (3540" extension angle) in a self-
pacing manner. The protocol in this study is the standard
procedure for the Bereitschafts-potential (BF; in EEG) or
readiness fleld (RF; in MEG), as first reported by Kom-
huber and Deecke [1965]. Subjects” left hands rested on a
pillow in order to avoid contamination of movement-
related vibrations in the MEG measurements [Harl and
Imada, 1999]. Movement onset was registered using an
eptical pad (4D Neumimaging®, Helsinki, Finland). A
trigger pulse was generated at the beginning of each
movement taking the interdiction of the laser light from
the optical pad as the index of movement cnset (zerc
time). Te prevent blinking, subjects were requested to keep
their eyes fixed on a cress mark on the center of a back-
projection screen 1 m i front of them.

Data Acquisition and Preprocessing

MEG signals were continuously measured at a 1,000-Hz
sampling rate during task performance using a whole-
head, 204 planar gradiometers {(Vectorview®, Neuromag,
Helsinki, Finland). This planar type of gradiometer has the
advantage of sensitivity of superficial sources, and is par-
ticularly suitable for the sensor level analyzing. The sEMG
was simultaneously recorded at a 1,000-Hz sampling rate
from the extensor digitorum communis to verify move-
ment. The total number of finger movements was about
100 for all subjects. Some of the data had been published
to address the issue about cognitive demands on motor
tasks [Wu et al., 2006]. All the sEMG data were rectified
before subsequent calculation of TECMI and coherence
analysis, Bipolar horizontal and vertcal electro-oculograms
(EOG) were obtained using electrodes placed at the bilat-
eral cuter canthi and the left eye respectively. At the be-

ginning of each measurement, the pesitions of three ana-
tomical landmarks (bilateral pre-zuricular peints and
nasion) were measured using a 3D magnetic digitizer (Ise-
trak 381002, Polhemus Navigation Science, Colchester, VT)
to define a head coordinate system. Four head position
indicators (HPIs) were subsequently defined and tracked
by the MEG system to ensure no head movement during
each measurement (maximal translation <1.5 em). Individ-
ual MRI (Tl-weighted, 3D gradient-echo pulse sequence,
TR/TE/TLE8.1/4.12/650 (all ms), 128 x 128 x 128 matrix,
FOV = 250 mm) were chtaed with a 3.0-T Bruker Med-
Spec 5300 system (Bruker, Kalsrube, Germany).

MEG measurements of 204 channels were recorded con-
tinuously and termed as a Total Set. Among them, BOG-
free measurements (EOG <600 uV) were extracted as an
Accepted Set (approximately at least 100 wials should be
collected on-line). All MEG measurements in the Total Set
were used to evaluate the robustness of the TFCMI
method against physiological noise.

Computation of Time-Frequency Maps Using
Morlet Wavelet Transformation

Each trial of MEG and sEMG raw data with 4,000 sam-
ples (from -2 to +2 s relative to the movement onset time)
was processed using the Morlet wavelet transformation to
generate the tme-frequency representation of signals (Fig.
la,b). The time window was defined during this period
based on the prominent spectral changes of movement
related activities (Fig. 1d), which {5 In line with previous
study of a self-paced finger flexion task [Feige et al,, 1996],
where the 20-Hz spectral power depress started at about
-2.55 and a power elevation in {5 frequency range started
at about +0.5 s, with fading cut at about +2 s Let x;;(f)
denote the data from the kth tial of ith chamnel at Hme
instant ¢, its Morlet wavelet transformation is given by:

W (0f] — f a0 - g lF - N dh

where W, (t,f] represents the energy density in fre-
quency f of the kth trial of f_l[}g)jiﬁ channel at time in-
stant £ ¢yp(h) — A 0057 are the Morlet wave-
lets; their time spread is defined by o *Z—flj.;
A— (Uﬂ)_m is the normalization factor and Ber(\]
are the complex conjugates of dyz(A). !
Time-frequency maps encompassing the o (8-13 Hz)
and f (16-25 Hz) activites were created separately by
averaging across trials within each subject (Fig. 1c). (Note
that enly twe channels with b activity are shown en the
map). They were displayed topographically with colors
representing power (see Fig. 2). In the sEMG-MEG study
of corticomuscular coupling, enly the time-frequency map
of the B activities underwent further analysis. Frequency
compaonents from 16 to 25 Hz were chosen, based on pre-
vious electromangentophysiological studies of weak and
moderate tonic contractions [Baker et al, 1997, Conway
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Schematic diagram of TFCMI computation. Raw MEG measure-
ments from any two planar gradiemeters of each trial (a} were
processed using the Morlet wavelet transformation to obtain
time-frequency maps (b}. Colors indicate power amplitude in an
arbitrary unit (2.u). The mean time-frequency map (c} for each
channel was created by averaging the individual time-frequency
maps across trials. The red reciangle represents the prespecified

et al,, 1995; Halliday et al., 1998; Kilner et al.,, 1999; Mima
and Hallett, 1999; Mima et al.,, 2000b; Salenius et al., 1997].

Detection of Neural Connectivity Using TFCMI

Power from two averaged tme-frequency maps was
subsequently separately averaged over selected frequency
bands to preduce twe temporal curves (Fig. 1d). Each
curve represents 4,000 samples of a random variable, F;, at
the ith MEG channel. These samples of F; were used to
construct the probability density function (pdf), piFis),
(Fig. le) for the computation of entropy, H(F)):

£

H{F) = =) p(Ry) Inp(Fyy)
=i

where the b — 1, 2,.. .64 was the index of sampling bins
for the construction of approximated pdf. It is notewarthy
that the estimation of pdf and joint pdf from the data his-
togram is crucial for the computation of mutual informa-
tion. In arder o estimate pdf and jeint pdf stably, that is,
neither underestimation nor overestimation [Fraser and
Swinney, 1986], 64 bins were adopted for 4000 samples
as suggested by Jeong et al. [Jeong et al., 2001].

Entrepy is the average amount of information reflecting
the measure of uncertainty. Similarly, the jeint probability
density fumction (jpdf) between the ith and jth MEG chan-
nels can be computed ag p(Fyp, £y} for the estimation of
joint entropy, H(F;, F; ) (Fig. 1f).

5
H(F, F) — - gp(Pz,b;Pj,b) Inp(Fip, Fiz)

bandwidth in § band {1625 Hz}. The temporal curves of power
changes for each channel (d} were created by averaging cver the §
band {or a band} in the mean time-frequency map and were used
to estimate the probatility density function (g} and the joint prob-
ability density function {f}. [Color figure can be viewed in the
conline issue, which is available at www.intersciencewiley.com.]

Then the TFCMI between two random veariables F; and F;
was calculated as follows:
TFCMI(F;

i) — H(F) + HiE;) - HiFL 5

5
p(Ep Fis)

— F.y F: n—
N

The TFCMI value is used as an index of functional con-
nectivity. Figure 1 shows the schemafic diagram for
TECMI computation.

Determination of the COI

The channel located in the vicinity of the sensorimotor
area exhibiting the most prominent § ERD was chosen as
the chammel of interest (COI) [Plurtscheller and da Silva,
1999 for the details of § ERD computation; Andrew and
Plurtscheller, 1999, Plurtscheller and Aramibar, 1979;
Pfurtscheller and da Silva, 1999]. TFCMI and coherence
were computed between the COl and any other channels.
In addition, the COT was replaced by an arbitrary channel
(A-COT) unrelated to the motor task to investigate the
specificity for regional detection. For the between-modality
study, that is, the sEMGMEG study, the sEMG was used
as the COL

Statistical Threshold

The 95% confidence limit of t-distribution was used as a
thresheld to determine the regions of significant likelthood
associated with the COI in TFCMI and ccherence analysis,
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Figure 2.

Mean time-frequency maps of « and f oscillatory activities. The red
circle indicates the channekof-interest (CCI} with the strongest 5
oscillacory activity (lower panely; the chosen COI was also used for
analysis of o oscillation. Green cirdes dencte arbitrary COls (A-
COls}, irrelevant to the motor task. Both COl and A-COls were
employed as reference channels in the subsequent analyses (see
Figs. 4, 5). Color indicates power amplitude. The maps are shown
in top view. F, front; R, right. [Color figure can be viewed in the
online issue, which is available at wwwi.interscience.wiley.com.]

respectively. The confidence levels for TRCMI and coher-
ence were computed in different ways fiimdamentally. For
TFCMI method, value of TRCMI between the COI and any
other channels was pre-normalized with respect to the
maximal value of TFCMI obtained at the COL Normalized
values were between 0 and 1 and were used to construct
the t-distribution. The degree of freedem is 1 since we
have averaged across trials before TFCMI calculating. In
other werds, the TFCMI was computed from only one

averaged power spectrum. The 95% confidence level was
then set at mean +6.314 standard deviation (SD; df = 1,
one tailed) to eliminate the bias due te large varfation. The
conventional coherence method {or magnitude squared co-
herence) [Zaveri et al., 1999] was also applied to the same
data set based on the same COI by using an fast Fourler
transform window of 512 peints with 256 points overlap-
ping, trial by trial. This allows no overlapping of each
epoch signals and makes the spectral resolution (AF) of
this coherence estimate to be (.25 Hz, the nverse of the
epoch length, 1/4 sec ! [Zaveri et al., 1999]. Before averag-
Ing across trials, an arc-hyperbolic tangent transform are
applied to the coherence values, as described by Rosen-
berg et al. [1989], so that the coherence values have a nor-
mal distribution [Rosenberg et al, 1989]. The significant
thresheld of 95% confidence limit was then given by mean
+1.655D (df = 100, one tailed) [Halliday et al., 1995]. For
the purpese of presentation, coherence values between 0
and 1 were rescaled to the maximal coherence value. Cnly
values of TFCMI and coherence zbove the significant
threshelds were cataloged as significant interactions and
were represented topographically as maps with celors
indicating the relative coupling level above significance.

Visualization of TFCMI maps

To better visnalize the resolved coupled areas of each
subject, the TFCMI maps were superimpesed on top of
each individual cortical surface. The procedure was
described in following steps. First, the positions of four
HPIs were used to caleulate the relative rotaion and trans-
lation between the senser coordinate system and the head
coordinate system. This allowed the sensor array positions
to be ransformed into the head ccordinate system. Second,
three anatomical landmarks (bilateral pre-auricular points
and nasion) en individual MRI were identified and aligned
with head coerdinate. The sensor array pesitions were sub-
sequently transformed inte the MEI coordinate system.
Third, the cortex was segmented frem each individual
MRI and reconstructed using ASA® (ANT. software BY,
The Netherlands). Fourth, a sphere was fitted to the trans-
formed sensor array positions using the least squares tech-
nique and rescaled to make the sensors abut to the recon-
structed cortical surface. Finally, the TFCMI results in the
form of contour maps were projected onto the transformed
sensor arrays overlaid on top of cortical surface.

It should be noted that the correspondence between the
posiion of the MEG gradiometers and the underlying
sources cannot be precisely determined without a proper
source analysis. Nevertheless, the MEG gradiometer is
designed to detect the largest signal right above the cur-
rent scurce and suppressing ambient neise, suggesting
that the gradiometer with the maximum current flux may
ascribe to currents mainly from the directly beneath corti-
cal area and partly from several surrounding cortical
regions. In this article, the word “regions,” referring to
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“regions directly beneath MEC sensors and possibly sur-
rounding regions,” is used loosely henceforth for the pur-
pose of simplicity, Though the minor contribution from
surrounding regions was not taken inte account in this
study, it will be exploited on the scurce space in future
work.

Simulation of Coupling Between Two Regions

Two simulations (Simulation, Neuromag® system soft-
ware) were conducted to establish the face validation of the
TECWI method in terms of the detection efficacy. Simulation
1 examined the ability of TFCMI to reject false coupling
caused by noise when there were no actual coupled scurces.
Simulation 2 attempted to clarify the detection efficacy of
TECMI with regards to low SNR under the circumstance
that the neuromagnetic signals received by planar MEG
from the bilateral SMAs can be drastically attenuated due to
anatomical architecture [Joliot et al,, 1998; Lang etal., 1991].

In Simulation 1, ome oscillatory dipole (23 Hz) was
placed in the left SM1 (SMl-dipole) of a chesen subject to
synthesize magnetic fields on the sensor array. Positon
and mement of the SM1-dipole were taken from the equiv-
alent current dipele (ECD) fit [Hamalainen et al., 1993] to
the movement evoked field I (MEFL) of the specific subject
(Fig. 3a). The tme point of the fit was 14 ms post move-
ment. In Simulation 2, an additional dipole (23 Hz) (SMA-
dipole) was placed at a mesial region in the vicinity of
SMA and pointed anteriorly based on the literature [Erdler
et al, 2000; Lang et al, 1991]. The anatemical seeding of
the SMA-dipole was adopted from the same subject’s
results in a parallel functional MRI {(fMRI) experiment
using similar task (repetiive index finger movement;
T>-weighted gradient-echo echo planar imaging sequence,
TR/TE/flip angle = 2000/50 ms/90°, 64 % 64 x 20 matix,
FOV = 192 mm) (Fig. 3b). The distance between the SM1-
and SMA-dipole was 55.07 mm (Fig. 3c). The cscillating
source of the SMA-dipole preceded that of the SM1-dipele
by 600 msec (Fig. 3d) [Erdler et al., 2000; Lang et al,, 1991].
It is noteworthy that this design aims to emulate the spa-

Figure 3.

SMI- and SMA-dipole allocation in simulation studies. (2} SMI-
dipele pesition and moment. The SM|-dipcle placement in the left
SMI was based on the equivalent current dipole (ECD} fit to
movement evoked field |. Upper panel displays the isocontour
maps of the recorded neuromagnetic signals and the dipole (in
green). The SMi-dipole was rendered onto the subject’s cwn
MRls in axial view (lower panel; subject’s right hemisphere to the
right of the image). Anatomically, this SMI-dipole was located
slightly posterior to the contralateral central sulcus. (b} SMA-
dipele position and mement. The SMA-dipole was seeded in the
left SMA (right panel} close to the midline with ccordinates
adopted from a parallel MRI experiment conducted by the same
subject (left panel). (¢} Spatial relationship between SMI- and
SMA-dipoles. Left, axial view; right, sagittal view. (d) Time courses
of SM|-dipcle {upper panel} and SMA-dipole (lower panel}. In this
simulation, the time course of the SMA-dipole preceded that of
SMI-dipole by 600 m (Erdler et al, 2000; Lang et al., 1991}. The
blue line denctes the time-point for the ECD fitin the subsequent
analysis (see Fig. 7a}. [Celor figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]
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tally distributed cormections i low SNR circumstance,
rather than to link this simulation to the underlying func-
tonal comnections during movements. Accordingly, the
strength of the SMA-dipole activity used i Simulation 2
was manipulated with a range of 05 to 1 times of M1
dipole to modulate SNR [Chen et al., 1991; Erdler et al,
2000; Joliot et al., 1998]. Randem noise was added onto
each sensor measurement. Beth TECMI and coherence
analysis were performed on the synthetic data. Moreover,
conventional ECDs were fitted on the synthetic data to
estimate the locations of neural generators, which were
used as comparisons to TECMI results.

RESULTS
Motor Task Performance

All subjects followed the mstructions and performed the
task well. The average number of trials in Accepted Sets
among subjects was 98 epochs. Intervals between succes-
sive movements (Intermovement terval, IMI) of Accepted
Sets among subjects were between 7968 and 15.162 sec-
onds (mean, 13.124 ) and there was no feedback to cue
subjects” movements, EOC ratio (the ratio of EOG sets to
Total Sets) varied from 1.5% to 35.25%. Table I shows task
performance and composiions of MEC test dam for
Accepted Set, IMI, EOG trials, Total Set and EOG ratio.

Neural Correlates of Event-Related % and J
Oscillatory Activities: Within Modality

The resultant spatial distibutions of neural conmectivity
for @ and B activities, respectively, were represented by
maps with colors representing the values, that is, the
strengths of neural cormectivity of o and  activites (Fig.
4a). TFCMI maps, both show strong connectivity within
the contralateral sensorimotor region. The strengths of con-
nectivity zbove thresheld (95% confidence limit) can be
alternatively displayed using colored lines, linking signifi-
cant regions and the COL (Fig. 4b). Under the assumption
that the gradiemeter MEG sensors represent the major

corical oscllatory activity of underlying cortical tissues,
contour maps projected on the reconstructed cortical sur-
face reveal the regions coupled with the COl, including
the mesial frontocentral cortex (termed the supplementary
motor area, SMA, due to the anatomical correspondence;
see simulation and discussion), bilateral primary sensori-
motor areas (SM1), and contralateral premetor area (FM)
(Fig. 4c). Table I lists neural correlates revealed by TECMI
and coherence methods. In MEG-MEG studies, TFCMI
results for all subjects (n = 8) show encompassing of bilat-
eral SM1s, SMA, and centralateral PM in both « and f
activities. The coherence results for f activity show encom-
passing of bilateral SMls (n = 2), SMA (1 = 3), and contra-
lateral PM (r = 6) in some subjects. For @ activity, contra-
lateral SM1 was engaged in all subjects (z = 8). Two of the
subjects had additional SMA encompassing, and four
showed contralateral PM encompassing.

Impact of COl on TFCMI and Coherence Analysis

Figure 5 shows the COl-specific results obtained from
TECMI method and coherence method. The TFCMI
methed resolved more neural connections than ceherence
method, such as ipsilateral SM1, when task-related COI
was chosen (Fig. 5, upper panel; Table II). When the task-
related COl was replaced by an A-COI frrelevant to the
motor task, the A-COI TECMI result demonstrated =
highly focal encompassing centered at A-COl area {exclu-
sively within), while the A-COI coherence result showed a
rather dispersed neural connection with A<COL, incongru-
ent with the known anatomy (Fig. 5, lower panel).

Between- and Within-Modality Analysis:
sEMG-MEG and MEG-MEG

Figure 6 gives analytical results for TFCMI and coher-
ence around beta band (16-25 Hz) for between- and
within-modality  signals, (SEMG-MEG and MEG-MEG
studies) for subject 8 Simultaneous recording of sEMG for
both right and left hands precluded mirror movement in
the left hand (Fig. 6a). Both TECMI and coherence results
exhibited remarkable corticomuscular coupling over con-

TABLE I. Motor task performance and MEG test data

Subject index  Accepted set  IMI {mean * SD; ms)

EOG Set  Total set  BOG ratio (%)

1 105 15152 + 6,958 27 132 2045
2 93 14571 + 3,812 38 131 2.0
3 104 14,476 + 3,774 4H 145 2827
4 91 13,867 + 3,891 16 107 14.95
5 88 13,760 + 7,589 48 136 3529
6 103 14,302 + 7,237 2 105 190
7 100 7968 + 1,573 8 108 740
8 %8 14,958 + 3,807 3 101 2.97
Average 9B 22 120

VL, inter-movement interval; 5D, standard desdation; EOG, electro-oculogram.
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Figure 4.
Event-related o and [ oscillatory
activities networks (TFCMI}. Indi-
vidual data set. (a} Topographic
maps of the spatial distribution of
significant TFCMI values between
CQl and other MEG channels for
a and [ oscilhtory activities.
Color indicates the strength of
connectivity. The arrows besides
the color bar indicate the signifi-
cant threshold. (&} An alternative
display of the strengths of con-
nectivity above the significant
thresheld. Regions of significant
communications with the chosen
COl were marked by links ema-
nating from the COL. (c} TFCMI
values in contour maps. The
maps were projected  onto
the rescaled sensor array and the
individual MRl to better the
anatomical visualization of the
coupled regions. Areas engaged
included SMAs, bilateral SMls,
and contralateral PM. Yellow
curves are the central sulcus;
blue arrows indicate the location
of COI. Left panel, view of top of
the head; right panel, lateral view
of the head from the left side.
[Coler figure can be viewed in
the online issue, which is avail-
able at www.interscience.wiley.
com.]

tralateral SM1 for all subjects (1 = & Table II). The sEMG-  ipsilateral SM1 and sEMG was consistently resclved by
MEG maps resembled the MEG-MEG maps, but there the TFCMI method. Such coupling could not be detected
were subtle differences (Fig. 6bg). The coupling between by the coherence approach (Table II).
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TABLE Il. Neural correlates reflected in TFCMI
and coherence methods

MEG-MEG study SEMG-MEG study
¢SM1 iSM1 SMA PM oSKI1 iSM1 SMA P
TFCWI « 8/8% B/8 B/8 8/8
B 8/8 B/8 B/8 B/8 B/8 B/8 7/B B/B
Coherence o B/8 2/8 4/8
B 8/8 2/8 3/8 #/8 B8/8 2/8 4/8

*The results are given in a ratio of detection, which indicates the
number of subjects against ell eight subjects.

<SM1, contralateral primary sensorimotor area; iSMI, ipsilateral
primary sensorimotor area; SMA, supplementary motor atea; PM,
premotor area; contralateral

Simulation results

Figure 7 shows the simulation result when the SMA-
dipele strength is equal to that of the SMl-dipcle. The
simulated cutput on SM1 sensor which exhibits the strong-
est power is shown in Figure 7a. Conventional ECDs, serv-
ing as a comparison to TFCML, were fitted on the synthetic
data to estimate the locations of neural generators. The
time-point for the ECD fit was chosen at maximal cscilla-
tory amplitude (Fig. 7a; blue line) from which the corre-
sponding simulated topegraphic pattern is displayed in
Figure 7b. Spatial congruence of the simulated SM1-dipole
(rad) and the estimated SMi1-dipole (blue) is displayed in
Figure 7c. In Figure 7d, isocontour maps of the synthetic
signals at the time peint of max SMA-dipole strength are
shown in the right column. The synthetic signals from the
charmel over left SMA are shown In left upper panel, and
the left middle and lewer panels are the source activity
from SMl-dipole and SMA-dipele, respectively. The good-
ness-of-fit (Gof) for the estimated left-SMI1 dipole was
97.2% for Simulation 1 (Table I). In Simulation 2, when
beth SMA dipele and SM1 dipole have the same strength,
the Gof for SMl-dipole and for SMA-dipole were 96.2%
and 42.3%, respectively. When the source strength of
SMA dipole was half of SM1 dipole, the Gof of SM1 and
SMA dipoles decreased to 88.6% and 40%, respectvely
(Table IV).

Both TFCMI and coherence analysis were performed on
the synthetic data (see Fig. 8). In simulation 1 SM1-dipole
onlyj, beth TECMI and coherence maps showed a focal
encompassing of SM1, that is, exclusive connectivity to itself
only (g, 8 upper panel). In simulation 2 (SM1-dipole and
SMA-dipole), the time courses of the two dipoles were
coherent and had a significant transformed coherence value
of 0.957 after averaging 100 simulation trials in source space
since they are with similar temporal profile (Fig. 3d) and are
stationary across trials. However, after forward modeling,
only TECMI reselved more spatially distributed cormections
in sensor space, anatomically encompassing the SM1 and
SMA, respectively, where the two dipoles were seated
whereas the coherence method cannot discern the coupling

(coherence = 0.0023) and solely showed connectivity within
SM1 (Fig. 8; lower panel).

In addition, we have computed the SNR (=10 log(signal
power/noise power)) of the experimental data measured
from the sensor above left SM1 for the comparison with
the SNR in simulation. The segment of averaged data from
—4 to —3.5 s was considered as the noise and that frem -2
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Figure 5.

Influence of reference chosen on TFCMI and coherence analysis
with respect to o and B activities. Yhen the task-related COI
was properly chosen (upper panel), TFCMI results consistently
showed more neural connections involving bilateral sensorimor-
tor areas and the SMA for both a and [ activities than coherence
analysis. Ywhen the A-COCls were chosen as reference (lower
panel}, the A-COl TFCMI result demonstrated a highly focal
encompassing centered at A-COl area (connectivity exclusively
to itself), while the A-COI coherence result showed rather dis-
persed neural cennections with A-COI, incongruent with the
knewn anatomy. [Color figure can be viewed in the online issue,
which is available at wwwinterscience.wileycom.]
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te +2 s was the signal of activity. The averaged SNR in
averaged data from 8 subjects was 26.57 + 2.9 dB. In Sim-
ulation 2, the minimum SNR for TECMI method to detect
the connection between SM1 and SMA (Table IV) is 21.8
dB, where the simulated signal was a compoesiion gener-
ated from hypothetical SM1- and SMA-dipeles with the
same dipole strength. In summary, cur simulations indi-
cate that the TECMI method has superior detection speci-
ficity compared to the coherence method in low SNR situa-
ton.

DISCUSSION

Detection Specificity in Low SNR Data:
Computational Simulation

A question central to the discussion of TECMI approach
i the current study is whether TECMI could detect and
resolve spatally distributed comnections in low SNR cir-
cumstance. In this study, twe simulatons were conducted
to provide the face validation of the TFCMI method in this
regard. As a result, the Simulation 1 (SM1 dipole only)
shows a focal encompassing of SM1, that is, exclusive con-
nectivity to itself only (Fig. & upper panel) and the Simu-
lation 2 demonstrates that TECMI can decipher spatially
distributed connections in low SNR circumstance. It is
notewerthy that, though the simulation results show that
TFCMI method can resolve the spatially distributed con-
nections in low SNR circumstance, we have not presented
an exhaustive simulation to emulate the underlying func-
tonal connections during movements. Since the TECMI
method is a pair-wise analysis and the TECMI results from
experimental data may be mfluenced by some distant but
coupled sources fed into the COI and other channels, the
interpretation of the TFCMI results should be restricted.
Further validation is needed for the TFCMI method to pre-
cess and represent on the source level instead of the sensor
level. Nevertheless, the simulation results demonstrate that
TECMI was capable of discerning neise and showing the
neural connectivity between distinct areas, in this case,
between SM1 and SMA, with low SNR whereas hoth the
ECD fit and the coherence method were not able to detect
(Figs. 7, 8; Table IV).

Robustness of TFCMI Method

TFCMI analysis is resistant to reference selection and
efficient in deciphering task-related connections from the
irrelevant ones. Proper selection of COI is critical for the
study of functional coupling using the coherence method
[Gerloff et al,, 1998]. Such a prerequisite is also seen in Hg-
ure 5 when A-COI was chosen as reference, despite which
the coherence method is robust when the reference elec-
trode is correct and the interaction is statonary across tri-
als [David et al., 2004]. On the contrary, the A-COL TFCMIL
result demoenstrated a highly focal encompassing centering
at the A-COl area (exclusive connectivity to itself) which
was validated by Simulztion 1 (Fig. & upper panel) where
the unconnected-solitary source (chosen as CO showed
no factiious coupling. In addition, when sEMG was used
as COL in the between-modality study, the TFCMI showed
neurophysiologically and nevoranatomically sEMG-MEG
topographies (Fig. 6b, Table II). Moreover, the TFCMI
method in broadband analysis performs relizbly compared
with the cenventional mutual information method whose
sensitivity is less reliable in broadband and weak coupling
signals [David et al, 2004]. Cellectively, the data imply
that TFCMI can better resolve task-related connections.

Resolving Power Under Nonlinear Interactions

It is well known that the planning and execution of vol-
untary movement relies upen the integration of premoter
and primary motor areas operating in conjuncton with
sensory and association areas, including SMA and cerebel-
lum. The functional relevance between left and right
SM1 in MEGMEG eventrelated experiments as disclosed
by the TECMI is congruent with previous imaging studies
showing bihemispheric engagement for motoric movement
(Table M). [Gerloff et al, 1998; Hsieh et al., 2002; Jeliot
et al., 1998 Stippich et al, 1998]. The TECMI alse shows
consistent engagement of ipsilatersl SM1 in the sEMG-
MEG eventrelated experiment (Table II; Fig. 6b). The
Inconsistent interhemispheric interaction in existing studies
using the coherence or partial coherence approach has
lead to a debate on bilateral invelvement of SM1 for uni-
lateral finger movement control [Andres et al, 1969;

Figure 6.

Ipsilateral SMI in between- and within-modality TFCMI studies.
Individual datz set. (=} Right (upper trace} and lefc (lower trace}
hand sEMGs during right finger movement (blue arrows). The left
sEMG precluded mirror movement of the left hand during the
experiment. (B¢} Results of 5 activity from TFCMI and coherence,
respectively, for between- (SEMG-MEG; left panel} and within-mo-
dality (MEG-MEG; right panel} studies. The sEMG-MEG maps (first
row) exhibit prominent corticomuscular coupling at contrakteral
SMI in both TFCMI and coherence analyses, and resemble MEG-
MEG maps. Yellow arrows indicate ipsilateral SM| encompassing by
TFCMI. Mo such coupling was detected using the ccherence

method. Second row presents couplings in an alternative manner,
with blue circles representing MEG sensor sites. Blue arrows
anchor the COI for MEG-MEG analysis, which is also indicated in
sEMG-MEG maps only. Coupling strengths are coded in different
colors either in the form of solid dots in the sSEMG-MEG maps or
line links in the MEG-MEG maps. The third (view of the top of the
head) and fourth (left lateral view of the head) rows display the iso-
contour maps for a better appreciation of neuroanatomical corre-
spondence. Yellow curves are the central sulci. [Color figure can be
viewed in the online issue, which is awailable at wwwinterscience.
wiley.com.]
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(a)

(d)

L

Ll .

Andrew and Phurtscheller, 1996, 1999; Gerloff et al., 199%;
Manganott et al., 1998; Mima et al,, 2000a]. This mconsis-
tency could also been seen in our coherence results (Table
II). However, transcranial magnetic stimulation (TMS) stud-
ies have confirmed the role of ipsflateral SM1 in self-pacad
fingar movement tasks [Chen et al., 1997; Rau et al., 2003].
Studies on patients with motor disorders have shown a sig-
nificant activation of ipsilateral SM1/corticospinal tract as
compensatory mechanisms [Caramia et al., 2000; Cuadrado
etal., 1999; Jones et al., 1989; Marshall et al., 2000; Ward and
Cohen, 2004]. Our TRCMI analytical results are consistent
with the known anatemy since 10% of corticospinal fibers
have ipsilateral projections [for a review, see Kuypers, 1981]
and the ipsilateral influence is integrated with the prevailing
contralateral one (alse evinced by the prependerant contra-
lateral expression of TFCMI values) for the overall control of
movement [de Oliveira, 2002]. Accordingly, it {s plausible
that the coupling between contra- and ipsi-lateral SMI may
be through a nonlinear or nenstaticnary interaction and
could be better unraveled by TFCML

Fundamental Differences Between the TFCMI
Method and Coherence Method

In this study, the functonal cormectivity during a self-
paced brisk finger movement task was studied. Such a dis-
crete movement paradigm may mandate more cognitive
processing than automatic movement paradigm within
sub-second inter-movement interval [Lewis and Miall,
2003]. Moreover, the latency of maximal pestmovement &
rebound exhibits trial-to-trial varizbility [Lee et al., 2003b].
These suggest that there is inherent nonstationarity in the
neural processing. Under the assumption that neural proc-
esses are stationary across frals [Lachaux et al, 2002;
Nunez et al, 1997], the coherence methed measures the
linear dependency between signals via normalized spectral

Figure 7.

Poor detection of SMA-dipole by simulation. &) Synthetic signals
from the channel over SM1 as produced by SMI- and SMA-dipoles.
(b} Isocontour maps of the synthetic signals and the ECD result of
SMI-dipele. The blue bar in (3) indicates snap time for the contour
maps. {c} Spatial congruence of the simulated SM|-dipcle and the
estimated SM|-dipole. The estimated SM|-dipcle (in blue, with a very
high gocdness-of-fit, about 96%) almost coincides with the simulated
(in red). (d} Isccentour maps of the synthetic signals at the time point
of max SMA-dipole strength {right column). The synthetic signals
from the channel over left SMA are shown in left upper panel, and
the left middle and lower panels are the source activity from SM| -
dipole and SMA-dipole, respectively. The goodness-cf-fit for the
SMA-dipole was 42.3% (Table V). The poor Gef for the SMA-dipole
was in line with the consensus that the MEG dipole fit for SMA
source can be ambiguous due to insufficient SNR. [Color figure can
be viewed in the online issug, which is available at www.interscience.
wiley.com.]
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TABLE . Simulated-dipole parameters and ECD results for source estimation: Simulation |

Simulated-dipole parameters

ECD results; SNR = 21.8 dB

Index Location Moment Location Moment TDhstance® {mm) Gof {%)
SM1-dipcle ¥ 3h.2 .42 353 0.43
y 7.2 .80 7.2 0.79 103 a7k
z 88.9 .41 88.3 0.41

*Between the smulated and the estimated location,
" 85% Gof.

ECD, equivalent current dipole; SNR, signal-to-noise ratio in source space; Gof, goodness of fit.

covariances, that is, second-order statistics. This second-
order method works well for Gaussianly distributed sig-
nals but may not for the non-Gaussian enes, as shown in
the upper panel of Fig. 1(e). The TECMI methed, on the
contrary, utlizes the wavelet ransform as the preprocess-
Ing procedure to bandpass the signals with better temporal
resolution than Fourier transform such that the subtle tem-
poral scenarios within pre-specitifc frequency bands can
be properly reserved. Then, based en the joint probability
of coincidence ocourrence of oscillatory signal power with
more accurate temporal resolution, TECMI computation is
not limited to the linearity of spectral modulation across
trials. In fact, the use of pdf and joint pdf takes the advant-
age of highorder statistcs to extract the nenlinear cou-
pling that may not be correctly identfied using the sec-
end-order techniques. Therefore, the combination of wave-
let and mutual information substantiate a significant
contribution for nonlinear analysis and is a salient feature
of the TECMI method. Such fimdamental differences make
the TECMI methed moere adaptive than coherence method
In analyzing complex dynamic data.

The Limitations of and Prospects
for the TFCMI Method

Since the cortical oscillatory activity acquired from a
MEG senser cannot be fully attributed to the underlying
cortical region, the interpretation of TRFCMI results is lim-
Ited to the sensor space in current study. Further valida-

ton, such as simultaneous recording of EEG and fMRI,
may serve a a complementary to the TFCMI method.
Alternatively, the recording signals from MEG sensors can
be the inversely mapped into the seurce space by using a
spatial fillter as developed in the dynamic imaging of
coherent sources (DICS) method [Gross et al., 2001, 2002,
2003; Ishil et al., 2002]. This will allow the calculaton of
TFCMI on the source space and subsequently analyze the
functional coupling within the brain. Another drawback of
the TFCMI method is the low temporal resolution (4 s),
since the estimation of probability density functon and
joint probability density function was based on the histo-
grams of signal amplitudes over a 4-s time window. Vari-
ous lengths of ime window will be used to assess the per-
formance of TECMI in the future work. Besides, the TFCMI
method was not designed to unravel the propagation direc-
tion of the electrical activity among brain structures, Once
the evident functional coupling on the sensor space was
resolved using the TECMI method, other approaches, such
a5 the direct transfer function (DTF) method, phase syn-
chronization, or the directional index can be employed for
the quantification of coupling direction.

CONCLUSIONS

We present a novel methed, TECML, for the expleration
of the neural communication and interaction among dis-
tinct brain regions or regions of different nenrophysiologi-
cal modaliies. When compared with the coherence

TABLE IV. Simulated-dipole parameters and ECD results for source estimation: Simulation 2

ECD results: SNR = 19.1 (dBSM1-dipcle
strength:SMA-dipcle strength = 1:0.5)

Simulated-dipole parameters

ECD mesulte: SNR = 21.8 (dBSM1-dipole
strength:SMA-dipele strength = 1:1)

Index Location Moment Locefion Moment Distance® fmm] Gof{%) Locefion Moment Distance® {mm) Gof {%)
SMl-dipcle x 3.2 .42 36.8 0.2809 343 042 1.15
¥ 7.8 0.80 7.8 0.8827 487 B88.6* 7.2 0.79 96,2
¥ 889 041 84.3 0.3796 8.3 142
SMA-dipole ¥ 34 0.54 10 0.68 10.71
¥ 2.4 .68 below 40 108 471 42.3
¥z 879 .60 9.5 0.14

*Between the simulated and the estmated location.
*85% Gof.

ECD, equivalent current dipole; SNR, signal-to-noise ratio in source space; Gof, goodness of fit.
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TFCMI

Coherence

SM1-
dipole

SM1-
i

SMA-

dipoles

Figure 8.
Detection specificity of TFCMI in low SNR. data. Both TFCMI and
the coherence methed yielded one unambiguous focus in the first
simulation (only SM1 dipole, upper panel). In the second simula-
tion (SM| -dipcle and SMA-dipole}, cnly the TFCMI resolved more
spatially distributed connections in low SNR. data, anatomically
encempassing the SMI| and SMA, respectively, where the two
dipoles were seated (lower panel}. The white circle in the lower
panel highlights the difference between the TFCMI and coherence
results which is the supposed SMA area. The white circle in the
upper panel indicates the same SMA area only for comparison
with the result in the lower panel. [Color figure can be viewed in
the cnline issue, which is available at www.interscience.wileycom)

approach (linear dependency only), the TECMI method
showed better specificity on dependency measurement in
broadband analysis, clearer demarcation of event-related
regions from nonrelated, and more rebusmess for between-
modality study. Although TECMI is not a stingently com-
plete “data-driven” approach, it can be considered as a
“model-free” approach [Lee et al., 2008a]: a priori knowledge
of neuronal architecture at the anatomical level can be heu-
ristic for the analytical penetration of functional organiza-
ton. The TFCMI method promises a possibility to better
urravel the nfricate brain hunctional organizations in the
context of oscillation-coded communication. Further work is
currently in progress to allow the TECMI processing and
representation on the source level instead of the sensor level.
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