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Abstract    

Oscillatory brain activity is a ubiquitous feature of neuronal dynamics and 

the synchronous discharge of neurons is believed to facilitate integration both 

within functionally segregated brain areas and between areas engaged by the same 

task. There is growing interest in investigating  the neural oscillatory  networks in 

vivo. The aims of this thesis are to (1) develop an advanced method, Dynamic 

Causal Modelling for Induced Responses (DCM for IR), for modelling the brain 

network functions and (2) apply it to exploit the nonlinear coupling in the motor 

system during hand grips and the functional asymmetries during face perception.   

    DCM for IR models the time-varying power over a range of 

frequencies of coupled electromagnetic sources. The model parameters encode 

coupling strength among areas and allows the differentiations between linear 

(within frequency) and nonlinear (between-frequency) coupling. I applied DCM 

for IR to show that, during hand grips, the nonlinear interactions among neuronal 

sources in motor system are essential while intrinsic coupling (within source) is 

very likely to be linear. Furthermore, the normal aging process alters both the 

network architecture and the frequency contents in the motor network.  

I then use  the bilinear form of  DCM for IR to model the experimental 

manipulations as the modulatory effects. I use MEG data to demonstrate 

functional asymmetries between forward and backward connections during face 

perception: Specifically, high (gamma) frequencies in higher cortical areas 

suppressed low (alpha) frequencies in lower areas. This finding provides direct 

evidence for functional asymmetries that is consistent with anatomical and 

physiological evidence from animal studies. Lastly, I generalize the bilinear form 
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of DCM for IR to dissociate the induced responses from evoked ones in terms of 

their functional role. The backward modulatory effect is expressed as induced, but 

not evoked responses. 
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CHAPTER 1 

 
INTRODUCTION 

 

 

1.1 Oscillatory activities in the brain 

Neurologists should take brain rhythms seriously.  

Simon F. Farmer, Brain (2002)  

 

Oscillatory activity in the brain is ubiquitous and a hallmark of many 

neuronal systems. Rhythmic neuronal oscillations were first observed in rabbit 

brains in 1890 by Beck (see Swartz B.E. and Goldensohn E.S., 1998 for a review 

of EEG-related history) (Swartz and Goldensohn, 1998). Since then oscillatory 

activity in human brains has been seen consistently across different spatial scales, 

from single unit recordings, through local field potential (LFPs) recordings, to 

macroscopic measures such as electroencephalogram (EEG) or 

magnetoencephalogram (MEG) (Crone et al., 1998a; Crone et al., 1998b; Kilner et 

al., 2003; Leocani et al., 1997). Furthermore, several different cortical regions 

have been shown to be involved, predominantly in the vicinity of the primary 

motor, sensory, visual and auditory cortices as well as subcortical structures such 

as the thalami and basal ganglia (BG) (Gray et al., 1989; Tiitinen et al 1993; Tass 

et al 1998; Singer, 1999; Tallon-Baudry and Bertrand, 1999; Varela et al, 2001; 
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Singh et al 2002, Brown, 2007; Priori et al., 2004). In addition, neurons can 

exhibit a broad range of oscillations from theta to gamma-band oscillations (~4-70 

Hz) as well as high gamma (~80-150 Hz). Brain rhythms are of interest in 

neuroscience because of the idea that oscillations might facilitate integration both 

within functionally segregated brain areas (i.e. small-scale circuits) and between 

areas engaged by the same task (large-scale networks) (Singer and Gray, 1995; 

Kahana et al., 1999; Rodriguez et al., 1999; Engel et al., 1991; Gray et al., 1992; 

Gray and Viana Di Prisco, 1997 ; Konig et al., 1995; Murthy and Fetz, 1992; 

Sanes and Donoghue, 1993; Singer, 1969; Steriade et al., 1996). In short, neuronal 

oscillations exhibit a variety of spatial distributions, frequencies and are 

associated with several brain network functions.  

 

Electromagnetic waves are defined by their frequency contents (i.e. spectrum) 

and this principle applies also to brain rhythms. In general, brain rhythms can be 

divided into theta (4-8 Hz), alpha (8-15 Hz), beta (15-30), gamma (30-80) and 

more recent, high gamma (80-150 Hz) bands according to their frequency span. 

Depending on the brain region or the underlying task they might have a different 

name or frequency content. For example, mu (10- and 20- Hz) rhythms are seen in 

sensori-motor regions during the resting condition and Piper (40- Hz) 

electromyogram (EMG) rhythms (Salmelin and Hari 1994; Brown et. al., 1998). 

In this thesis, I will focus on the oscillations between 4 and 48 Hz in the motor 

system (Murthy & Fetz, 1992, 1996a, b; Sanes & Donoghue, 1993; Baker, Olivier 

& Lemon, 1997) and in the "core system" for face processing identified by Haxby 
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and colleagues (Haxby et al., 2000). In the following section, the recognized 

functional roles of brain rhythms in terms of frequency and phase are reviewed. 

 

1.1.1 Frequency aspects of neuronal rhythms 

Dynamic modulation of oscillatory power at 10- , 20- and 30- Hz in primary 

motor cortex (M1), supplementary motor area (SMA) and premotor cortex (PM) 

has been examined intensively in numerous studies. In general, alpha and beta 

power in M1, SMA and PM are suppressed before movement emerges and 

rebound after the end of movement. These changes are  known as event-related 

desynchronization (ERD) and event-related synchronization (ERS) respectively, 

and are sometimes accompanied by transient gamma ERS (Andrew and 

Pfurtscheller, 1996; Crone et al., 1998a; Crone et al., 1998b; Leocani et al., 1997; 

Pfurtscheller and Lopes da Silva, 1999; Pfurtscheller et al., 1998; Toro et al., 1994; 

Wheaton et al., 2008). According to their topographical patterns, alpha, beta and 

gamma activities exhibit a somatotopic representation in M1 and are believed to 

be associated with the control of movement (Pfurtscheller, 2003; Salmelin and 

Hari, 1994). Studies of corticomuscular coherence and transcranial magnetic 

stimulation (TMS) further verify that beta and gamma range (15 - 40) oscillations 

originating from M1 contribute to motor control by driving the spinal 

motorneurons via the corticospinal tract (Darling et al., 2006; Mima and Hallett, 

1999; Thut and Miniussi, 2009; Grosse et al., 2002). In addition,  corticomuscular 

coherence and spectral densities can be modulated by movement kinematics, such 

as movement speed and movement type (Kilner et al., 2002; Kilner et al., 2003; 
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Leocani et al., 1997; Manganotti 1998; Muller-Putz et al., 2007; Muller et al., 

2003; Neuper and Pfurtscheller, 2001; Patino et al., 2008; Pfurtscheller, 1992; Rau 

et al., 2003; Omlor et al., 2007). In particular, mu (8-13) rhythm power fluctuation 

can also be seen during observing action execution and is believed to play a role 

in the ‘mirror neuron’ system (Oberman et al., 2005; Ulloa and Pineda, 2007). In 

relation to the time course of alpha, beta and gamma power dynamics, it was 

suggested that changes in these oscillations are also associated with motor 

preparation/planning in addition to motor execution (Ohara et al., 2000; Rektor et 

al., 2006). Sensory feedback is also clearly important for optimal motor control, 

and studies of deafferented subjects have shown that the power of 15-30 Hz 

neuronal oscillations and 15- to 30-Hz coherence between EMG activity in hand 

muscles significantly decrease compared to that of control subjects. This suggests 

that proprioceptive information contributes to the modulation of 15- to 30-Hz 

oscillations in the motor system (Kilner et al., 2004; Patino et al., 2008). In other 

pathological states, those oscillatory activities are especially interesting and can be 

used to address questions about the underlying mechanisms as an index of 

functional deficits (Czigler et al., 2007; Patino et al., 2006; Raethjen et al., 2007). 

For example, in Parkinson’s patients, the substantial synchronization at 4~6 Hz 

between the contralateral primary motor cortex and forearm muscles is thought to 

contribute to resting tremors, while the excessive synchrony at 10- to 35 Hz in 

basal ganglia (BG) and subthalamic nucleus is likely to contribute to bradykinesia 

(for review, Brown, 2007). 
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There is growing interest in the functional significance of oscillations in 

‘non-motor’ areas, e.g. face perception. Multiple oscillations are engaged in face 

processing, including delta (0.5-4 Hz), theta, alpha, beta, and gamma oscillations 

(see Basar et al., 2006 for review). Perception of faces can induce changes in the 

coherence of broadband (4-45 Hz) power between the fusiform gyrus and 

temporal, parietal, and frontal cortices (Klopp et al. 1999; Klopp et al. 2000). 

Specifically, the perception of a known picture (for instance, grandmother’s face) 

compared to unknown elderly faces induced greater theta oscillations in the 

frontal area (Basar et al., 2006). Moreover, the emotional facial expression 

induced greater theta oscillation in the right temporal-occipital locations than that 

in right central areas (Balconi and Pozzoli, 2008; Guntekin and Basar, 2007; 

Ozgoren et al., 2005). 

 

1.1.2 Evoked and induced activities 

Operationally speaking, cortical oscillatory activity can be divided into (i) 

ongoing (or spontaneous), (ii) evoked and (iii) induced components (Galambos, 

1992; Tallon-Baudry and Bertrand, 1999). Evoked and induced activities are 

event-related and elicited by the changes of the environment, either internally (e.g. 

a thought) or externally (e.g. electrical stimulus) or both, whereas ongoing 

components are not associated with the processing of a stimulus or the occurrence 

of specific events. The work in this thesis focuses on event-related evoked and 

induced responses. The difference between evoked and induced responses is their 

phase-relationship to the stimulus. Specifically, evoked components are phase-
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locked to the stimulus, whereas induced responses are not.  Conventionally, in 

order to extract the evoked activities from unwanted disturbance (mainly non-

phase locked signals including measurement noise and induced activities) an 

averaging technique is employed.  Averaging the E/MEG signals across trials 

eliminates the non-stationary components and yields the evoked potentials/fields 

with enhanced signal-to-noise ratio (proportional to N1/2 where N = the number of 

averaged trials). Evoked spectral properties can be obtained subsequently via 

Fourier or wavelet transform. In contrast, induced responses can only be derived 

in the time-frequency domain because the non-phase locked property will lead to 

their cancellation when averaging (Figure 1.1 left). The extraction of induced 

responses comprises two steps: In the first, each trial is projected into the time–

frequency domain to obtain the spectral densities without the cancellation effect. 

These are then averaged across trials to obtain the total power (Figure 1.1 right). 

In the second step, the power of evoked and background components are 

subtracted from this total power to obtain the induced power. In short, evoked 

responses are the power of the average; while induced responses are the average 

power without the power of the average.  The functional role of induced responses 

has been described as mediating ‘top-down’ modulation through backward 

connections in cognitive studies of attention, learning and face perception; as 

opposed to the bottom-up driving process that may be more manifest evoked 

components, which are considered to be mediated mainly via feed-forward 

projections (Tallon-Baudry and Bertrand, 1999). The implication is that the 

evoked and induced activities may reflect different neuronal processes and 

mechanisms.  
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However, a recent study using simulated data has reported that the evoked 

and induced responses may “share” common generating mechanisms up to certain 

level (David et.al, 2006). In the work of David and colleagues, the authors 

propose two generating mechanisms for neuronal processes: dynamic and 

structural; both dynamic and structural mechanisms can mediate induced 

responses (see David et.al, 2006 for details).  For example, if the transfer 

functions of the system change, reflecting changes in the systems coupling 

parameters, the input power will be expressed differently in the induced power. 

These are structural effects. On the other hand, if there are amplitude variations in 

stimulus-locked inputs, the evoked power will be recapitulated in the induced 

power as the variance of the amplitude increases, although the evoked responses 

in time domain remains the same. These are dynamic causes. One possible 

explanation of these amplitude variations (gain effects) is the effect of attention 

(McAdams and Maunsell, 1999; Treue and Martinez-Trujillo, 1999). In the work 

of David and colleagues’, the authors propose two generating mechanisms for 

neuronal processes: dynamic and structural; Dynamic mechanisms express the 

changes of the inputs as part of the perturbation to the system while structural 

mechanisms reflect the changes in the responses resulted from the perturbation. 

Both dynamic and structural mechanisms can mediate the induced responses (see 

David et.al, 2006 for details).  For example, if the transfer functions of the system 

change at time t, reflecting the changes of systems coupling parameters, the input 

power will be expressed as the induced power. This is the structural effects. On 

the other hand, if there are amplitude variations in stimulus-locked inputs, the 

evoked power will be recapitulated in the induced power as the variance of the 
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amplitude increases, although the evoked responses in time domain remains the 

same. This is the dynamic causes. One possible explanation of these amplitude 

variations (gain effects) is the effect of attention (McAdams and Maunsell, 1999; 

Treue and Martinez-Trujillo, 1999). Figure 1.2 (adapted from David et al. 2006) 

illustrates the concept of this many-to-many mapping between evoked and 

induced activities and the underlying mechanisms. Therefore, a generative model 

which can account for the ‘shared’ generating mechanisms is needed when 

studying the underlying neuronal processing. Indeed, the conventional way of 

separating evoked and induced responses posits an assumption that they are 

linearly related but this may not hold when modelling the oscillatory networks 

with respect to their generating mechanisms. In this thesis, I propose a generative 

model that models the average of total power, i.e. both the evoked and induced 

components, termed Dynamic Causal Modelling for induced responses (DCM for 

IR). Thus the term ‘induced responses’ in DCM for IR refers to both the evoked 

and induced responses which is different from the conventional definition of 

induced responses. In chapter 2, I will describe DCM for IR in detail, and in 

chapter 6, I will further exploit/disassociate the relationship of evoked and 

induced responses in terms of the generating mechanisms using a generative 

dynamic causal model. 
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Figure 1.1 Schematic illustration of obtaining evoked and induced responses 

(adapted  from Tallon-Baudry and Bertrand, 1999).  Left : the evoked components 

can be derived from the average of trials in time domain. Right : the induced 

responses are averaged in the time- frequency  domain, preserving non-phase 

locked components.   

 

 

 

 

 

 

 

 

Figure 1.2 Schematic illustration of the relations between dynamic v.s. structural 

causes and evoked and induced responses (from David et al, 2006) 
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1.2 Measuring the brainweb: methodological considerations 

No man is an island, entire of itself. 

John Donne (1572-1631) 

 

The human brain has more than one hundred billion neurons (of the order of 

1011) and those neurons work together in ‘distributed networks’ (Jacobs and 

Scheibel, 1993; Kandel, 2000). The concept of neural assemblies inspires the 

analysis of functional neuronal networks.  One of the first attempts was to use 

neuroanatomical maps of cytoarchiteacture that define the connection between 

brain regions to understand functional networks (Brodmann, 1909). The advent of 

modern brain mapping techniques has made it possible to investigate cerebral 

functions in the intact human brain, non-invasively. In particular, the rich and 

versatile information embedded in EEG/MEG signals together with high temporal 

resolution offers a good opportunity to understand the dynamics of complex brain 

functions.  However, given the fact that neuronal processing is complex and 

nonlinear in nature, it is difficult to decipher the neural code completely and the 

need for development of new modelling methods is growing. In the following 

section, several methodological issues in studying neural networks are briefly 

introduced, including linear and nonlinear methods, univariate and multivariate 

approaches, inferential and non-inferential modelling, and power modulation and 

phase-synchrony. More comprehensive discussion of the methodological and 

functional relevance to the specific aims of this thesis work will be provided in 

chapters 2 to 6.     
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1.2.1 Linear versus Nonlinear methods 

In mathematics, a function f of a set of independent variables 

n
n RxxxX ∈= },{ 21 K is linear if it can be written as BAXXf +=)(  whilst a 

nonlinear function is a function that cannot be written in that form, for instance  

CBXAXXf ++= 2)(  where the matrices A, B and C contain arbitrary 

constants.  The key feature of a linear function is that it satisfies the principle of 

superposition : )()()( 2121 XfXfXXf βαβα +=+ .  In the field of signal 

processing and control theory, the characteristics of a system can be described 

entirely by a fundamental function (Oppenheim, 1999; Stark H., 1994; Moon, 

2000). A system is a set of multiple interconnected functional components, 

comprising three elements: the input X(t), the output Y(t) and the system function 

f(t) (also called impulse response function in the time domain or transfer function 

in the frequency domain).  The system function provides a transformation from 

the input to the output. A system can be represented mathematically: 

Y(t)=f(t) ⊗ X(t)  ( ⊗ is the convolution operator) and is linear if and only if this 

system function f(t) is linear. This notation enables the effective estimation of 

neural systems (i.e. coupling) by characterizing the system function. Linear 

methods use a linear system function to measure dependencies between or among 

variables whereas nonlinear approaches have a nonlinear system function. In other 

words, linear analysis engages only the first-order transfer function, which is easy 

to solve while non-linear methods have the high-order, generalised transfer 

functions and are capable of catching subtle yet important brain dynamics; in 

addition to linear features (in some cases, without linear features, for example, 
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bispectral analysis; see Appendix B for mathematical description ). Specifically, 

in the frequency domain, this speaks to the fact that cross-frequency interactions 

must be nonlinear because different frequencies can only be coupled through 

high-order transfer functions (Friston et al 2001).  Linear methods can measure 

only the within frequency coupling using a first order transfer function. This 

notion is central to my thesis and I will elaborate this point in more detail in 

chapter 2, along with an exploratory simulation using a neural mass model.   

Linear approaches such as coherence and correlation have been used 

intensively to study oscillatory neuronal activity (Gerloff and Hallett, 1999, 

Gerloff et al., 1998 and Manganotti et al., 1998; Andrew and Pfurtscheller, 1996; 

Babiloni et al., 2004; Gross et al., 2001; Kilner et al., 2004; Serrien et al., 2005). 

Linear methods can extract the most significant features of the data and provide a 

means of summarizing the system characteristics. However, a linear 

approximation may not be able to represent all the properties of brain signals 

accurately (Micheloyannis et al., 2003) as evidence has emerged that nonlinearity 

is a crucial aspect of brain function (for review, see Stam, 2005). Importantly, 

nonlinear approaches have been applied widely to study inter-areal 

communication in the expression of cross-frequency coupling in spectral 

characterisations of the time-series (Breakspear, 2002; Chen et al., 2009; Jensen 

and Colgin, 2007; Tallon-Baudry and Bertrand, 1999; Varela et al., 2001; von 

Stein and Sarnthein, 2000). At the microscopic scale, nonlinear interactions at 

synaptic connections are believed to have a modulatory effect on generating the 

post-synaptic responses (Kandel, 2000; see also chapter 5 for examples). 

However, at the macroscopic scale, the functional role of nonlinear coupling is yet 
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to be determined (Breakspear, 2002; Robinson et al., 2003; Wright et al., 2001). In 

animal studies, it has been reported that hippocampal neurons in rats exhibit 

nested oscillations, where the phase of theta rhythms (~8 Hz) is coupled to the 

amplitude of a high rhythm at gamma (~40 Hz) frequencies during active 

exploration. The network of interneurons targeting fast and slow r-aminobutyric 

acid (GABA) type A receptors is thought to provide substrate for these rhythms 

and nonlinear coupling (nested oscillation) is believed to associate with 

declarative memory (White et al., 2000). Nevertheless, evidence is emerging to 

suggest that nonlinear coupling may mediate the modulatory effects reflecting top-

down processing (Friston 2003; von Stein and Sarnthein, 2000a; von Stein et al., 

2000b; Breakspear, 2002). This may be important as a behavioural goal can be 

achieved successfully when the higher areas of the cortical hierarchy predict 

incoming sensory information and can pass it to lower levels to explain away 

bottom-up inputs; This is known as predictive coding (Rao and Ballard 1999; 

Friston 2005). Moreover, nonlinear coupling mechanisms seem to play a critical 

role in pathological states. From work in patients with Parkinson’s disease it has 

been shown that in the absence of dopamine treatment, the low-beta rhythms (13-

20 Hz) in subthalamic nucleus are nonlinearly correlated with the high-beta 

rhythms (20-35 Hz), as revealed by bispectral analysis (Marceglia et al., 2006) 

and nonlinear properties of multichannel EEG are manifest (Pezard et al., 2001).  

In contrast, under the same pathological conditions (symptomatic), cortico-cortical 

coherence in the motor system is diminished (i.e. decreases of linear relationship) 

(Cassidy and Brown, 2001) despite the fact that oscillations tend to become 

synchronized (Brown, 2007). It seems that linear and nonlinear interactions are a 
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pair of complementary functions of neuronal networks that are dynamically 

engaged in different brain states and can be differentially modulated in health and 

disease. 

In short, linear measures of the statistical dependency between two time-

series are very useful for quantifying long-range interactions using EEG (Bressler, 

1995; Gross et al., 2001; Nunez et al., 1997) while nonlinear methods account for 

the additional coupling among different frequencies. As suggested by Pereda et al, 

linear and non-linear approaches may assess different parts of the interdependency 

between signals and one should not be biased by nonlinear methods when 

choosing analysis strategies (Pereda et al., 2005). 

 

1.2.2 Univariate versus Multivariate approaches 

In mathematics, the difference between univariate and multivariate 

approaches relates to the number of variables being studied.  Univariate methods 

characterize the features of only one variable, whereas multivariate methods deal 

with more than one variable. Univariate methods provide the estimates of 

parameters controlling the local fluctuations of neuronal activities at one point 

(e.g. one MEG channel), whilst multivariate approaches allow the assessment of 

dependence between signals taking into account the large-scale interactions 

among distributed network elements.  For example, the univariate analyses, such 

as task-related power (TRPow) or ERD/ERS (Andrew and Pfurtscheller, 1996; 

Babiloni et al., 2004; Gerloff et al., 1998; Klimesch et al., 1996; Leocani et al., 

1997; Manganotti et al., 1998; Oishi et al., 2007; Toro et al., 1994) or correlation 
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dimension (D2) (Grassberger and Procaccia, 1983; Pritchard and Duke, 1995; 

Molnár, 1999;Müller et al., 2001) are applied to single time-series and activity in 

relation to the task manipulation, such as task complexity (the higher the task 

loading, the greater the D2 value is). Conversely, multivariate methods like 

Coherence (Andrew and Pfurtscheller, 1996; Babiloni et al., 2004; Kilner et al., 

2004; Kilner et al., 2000), Granger Causality (GC) (Granger, 1969 and Granger 

1980; see Appendix A for mathematical description) and DCM (Chen et al., 2008; 

Chen et al., 2009; Friston et al., 2003; Garrido et al., 2007) analyze two or more 

time-series and provide an estimate of neuronal connectivity, which describes the 

underlying network functions.  Generally speaking, univariate methods are easy to 

implement and tractable, whereas multivariate approaches involve the estimation 

of covariance among random fluctuations in different time-series; which is often 

complicated and difficult without certain assumptions. For example, by assuming 

the observation errors are independent (or not correlated), the estimate of error 

covariance becomes simpler since the error covariance matrix becomes a diagonal 

matrix (Penny et. al. 2004). Perceptions, actions or thoughts, rely upon the 

integration of functionally specialized brain areas; therefore the multivariate 

methods seem to be a more appropriate approach when it comes to study brain 

function as a whole. Although univariate and multivariate analyses address 

distinct features of the neurophysiological systems, they are not mutually 

independent of each other. For example, the dimensional complexity of systems 

described by D2 values (a univariate measurement) decreases as the connectivity 

of neuronal networks (a multivariate characteristic) increases (Friston 1997b).   



 33 

1.2.3 Inferential versus Non-inferential modelling 

Neuroscience provides abundant data, which call for the development of 

inferential methods for studying the functional organization of brain. Inferential 

methods can incorporate prior knowledge into data analysis as deterministic or 

probabilistic models using Bayes’ theorem (Stark H., 1994).  Evaluating the 

posterior distribution on model parameters allows one to make inferences about 

the underlying model. Non-inferential (or model-free; data-driven) methods, such 

as independent component analysis (ICA), characterize sources of variation 

without an explicit model and can be useful in examining properties of dataset and 

in outlier detection (Jung et al., 2000a; Jung et al., 2000b). When measuring brain 

network function, non-inferential methods are closely related to descriptive 

approaches that detect functional connectivity (e.g., correlation or coherence), 

while inferential methods are required to estimate effective connectivity (see 

chapter 2 for the distinction between functional and effective connectivity).  

Importantly, inferential and non-inferential methods differ in the philosophy of 

analysis strategy: Inferential methods, such as the General linear model (GLM) 

and Dynamic causal modeling (DCM) (Chen et al., 2008; Chen et al., 2009; 

Friston et al., 2003), posit certain assumptions about the underlying model and 

formulate a framework. The analysis and inference that follows focuses on the 

parameters of the model being tested. In contrast, non-inferential modelling, such 

as principal component analysis (PCA) or ICA (Dien et al., 2007; Friston et al., 

1999; Friston et al., 2000; Jung et al., 2001; Makeig et al., 2004) explores the data 

and reveals the most likely structure or model suggested by the data. Since non-
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inferential modelling requires no priors or formal model specification, it is usually 

easy to apply but very often difficult to interpret the results. Figure 1.3 

summarizes the differences between inferential and non-inferential approaches. 

 

Figure 1.3 The flowchart of data analysis steps with respect to inferential and 

non-inferential approaches 

 

1.2.4 Power modulation versus Phase synchronization 

Oscillatory activity can be projected into two dimensional (time-frequency) 

space using Fourier or wavelet transforms. This is based on Fourier’s discovery 

200 years ago that time series (here, the oscillatory activity) are a weighted sum of 
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basis functions at different frequencies. If the basis functions are known, then the 

weighting at different frequencies w and time bin t of the time series, i.e. spectrum 

W(w,t),  can be estimated by a convolution procedure (a convolution of the time 

signal x(t) with a basis function )(tϕ ) : 
λλϕω dttxtW ∫ −⋅= )()(),(

. The basis 

functions are a sinusoidal and morlet wavelet for Fourier and morlet wavelet 

transforms, respectively. As the basis functions in both transforms are complex, so 

are the spectrum. Therefore, the spectrum comprises two components: the 

frequency-specific amplitudes (i.e. the power), the squared magnitude of the real 

part of complex numbers and the instantaneous phase ),( tωθ  , derived from the 

imaginary part of complex numbers using ))),(()),,((tan(),( twwretwwimat =ωθ . 

Neuroscience studies in animals suggest that the synchronous discharge of certain 

neuronal assemblies reflects an underlying interaction among neurons/areas 

mediating the functional organizations in the brain, i.e. the binding hypothesis 

(Singer and Gray 1995). ….For example, one functional role of neural synchrony 

is apparent in sensorimotor integration. Synchronization of neural responses is 

observed between visual and parietal areas; as well as between parietal and motor 

cortices, when awake behaving and well-trained cats process visual information 

attentively to direct motor responses. Synchrony patterns vary with behavioural 

situation. This suggests that synchronization may serve for the integration of 

sensory and motor aspects of behaviour (Roelfsema et al., 1996; Roelfsema et al. 

1996 1997). Similar results have been found in monkey studies (Murthy and Fetz, 

1992, 1996 a, b; see also the review paper by Engel et al, 1999). This 

synchronization of neuronal discharges results in the increase of signal power and 
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constant phase relation between neurons. This phenomenon can be modulated 

internally or externally before, during or after an event. In other words, “… this 

modulation is context dependent, occurs over different time scales and can be 

transient (e.g., changes of connectivity due to attention modulation) or enduring 

(e.g., somatotopic reorganisation due to limb amputation)” (David et al., 2004) 

and lead to the dynamic fluctuation of the spectral densities (Kilner et al., 2003; 

Pfurtscheller 1999) and partial phase resetting/shifting over multiple frequencies 

(Breakspear, 2002; Makeig et al., 2002; Penny et al., 2008; Penny et al., 2002). 

The dynamic spectral changes of neuronal activity can be considered as the 

changes of the parameters (for example, coupling strength) that control 

oscillations in neuronal networks (Pfurtscheller and Lopes da Silva, 1999) where 

high phase synchronization may reveal the intrinsic firing properties of neurons 

(Varela et al., 2001). Although phase and power appear to be two different 

phenomena, they must of course be related by some common generative model 

(see discussion in chapter 7). Indeed, they could serve as complementary 

characterizations. Studying the characteristics of oscillatory  activity in terms of 

power modulation and phase synchronization can be a tool to access the functional 

relations among cortical areas, such as resolving the ‘’binding problem’’ (Gray et 

al., 1989; Singer 1999; Engel et al., 2001).  

In summary, the complex nature of brain function makes it difficult to 

unravel the information processing in neuronal networks and leads to a debate on 

the best method to analyze neurobiological data (David et al., 2004). The choice 

of an appropriate method is dependent on the quality and characteristics of the 

data and the interpretation of the analytic results is restricted by the methods 
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employed. Table 1.1 summarizes the main characteristics of the methods 

discussed above. 

Table 1.1 Summary of the main characteristics of mentioned methods 

 

L
in

ea
r 

N
on

-l
in

ea
r 

U
ni

va
ri

at
e 

M
ul

tiv
ar

ia
te

 

In
fe

re
nt

ia
l 

N
on

-i
nf

er
en

tia
l 

Po
w

er
 

Ph
as

e 

Task-related Power 

(TRPow) 

v  v   v v  

Correlation Dimension (D2)  v v   v v  

Coherence v   v  v  v 

Granger Causality (GC) v v+  v  v v  

Principal Component 

Analysis (PCA) / 

Independent Component 

Analysis (ICA) 

 v  v  v v  

Phase synchrony  v  v  v  v 

General  Linear Model 

(GLM)  

v   v v  v  

Dynamic Causal Modelling 

for Induced responses  

(DCM for IR) 

v v*  v v  v  

 

 +      GC can be extended to measure the nonlinear coupling  

 * DCM for IR can measure the cross-frequency coupling, i.e. nonlinear 

interactions, though it uses only the linear/bilinear form to approximate the 

differential state equations (linearization of the state equations) (see chapter 2 for 

details).  
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1.3  Experimental techniques: MEG and EEG 

 

In this thesis, MEG and EEG will be used to measure oscillatory activity in 

the brain. According to Maxwell's equations, any changes of electrical field will 

induce an orthogonally oriented magnetic field and vice-versa. In neuronal 

systems, electric currents flow in the intra- and extracellular space to propagate 

messages among neurons and their compartments. MEG and EEG provide a 

measurement that is directly related to electric currents in neurons (Cohen, 1972; 

Hamalainen, 1992) (Figure 1.4 A). Both MEG and EEG have excellent temporal 

resolution on a millisecond scale and are particularly suitable for measuring 

dynamic neural activation. The important distinctions between MEG and EEG are 

summarized below: 

(1) First, the origins of EEG/ MEG signals are different. Signals in MEG 

and EEG derive from the net effect of ionic currents flowing in the dendrites of 

neurons during synaptic transmission. EEG is sensitive to extracellular volume 

currents produced by postsynaptic potentials, MEG primarily detects intracellular 

currents associated with these synaptic potentials because the field components 

generated by volume currents tend to cancel out in a spherical volume conductor 

(Hamalainen, 1992). Action potentials are not usually detectable, mainly because 

the currents associated with action potentials flow in opposite directions and yield 

zero net magnetic field and very transient time constant (~1ms).   

(2) Second, the detection sensitivity of signal direction. According to the 

right-hand rule in electromagnetic theory, the propagation direction of electric 
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waves is perpendicular to that of magnetic waves (Figure 1.4 B). Therefore, MEG 

is mainly sensitive to the activity arising from neurons in sulci, which generate 

currents tangentially with respect to the surface of the head (tangential dipoles) 

whereas EEG can detect primarily radial sources located in the cortical gyri and 

those tangential sources secondly (Figure 1.4 C). 

(3) Third, the volume conduction effect.  EEG signal is the result of 

distortion when electric currents pass through different tissues, as the resistivity is 

tissue-dependent (such as skull, scalp and cerebrospinal fluid), but not the 

permeability. So the brain is transparent to MEG resulting in a higher spatial 

resolution in MEG.  

(4) Finally, MEG needs no reference channel which contrasts with EEG, 

where an active reference can lead to difficulties in the interpretation of the data.   

In summary, both MEG and EEG have excellent temporal resolution and are 

able to follow neural dynamics on a millisecond scale.  Although the origins of 

EEG and MEG signals are different, they can be considered as the complementary 

device to each other. 
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Figure 1.4  The neuronal origins of EEG/MEG signals.  A) Pyramidal cells in the 

cortex . B) The directed electric field (E) and magnetic field (B). C) The 

difference of directional sensitivity in MEG and EEG. (adapted from a report of 

The EEG and MEG inverse problems: The adjoint state approach I: The 

continuous case 1) 

 

1.4 Aims of this thesis 

The work in this thesis aims to characterize spatiotemporal dynamics of 

neural and functional connectivity in human brains. It comprises four main 

components, covering the development of the methodology followed by scientific 

applications. Specifically, the aims of this thesis are to: 

I. Chapter 2 : Develop an advanced method, Dynamic Causal 

Modelling for Induced responses ; DCM for IR, for studying brain 

networks  

                                                           
1 This report can be found at 

http://hal.inria.fr/view_by_stamp.php?label=INRIARRRT&halsid=emgvuuhekiv9
8jn3b55511nk14&action_todo=view&id=inria-00077112&version=1 
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II. Chapter 3 and 4: Explore nonlinear coupling in the motor system 

(chapter 3) and address the age-dependent changes in the motor 

networks (chapter 4) using a simple linear form of DCM 

III. Chapter 5: Test whether there are functional asymmetries during 

face perception using a bilinear form of DCM  

IV. Chapter 6: Dissociate the evoked and induced responses in terms 

of their generating mechanisms.   
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CHAPTER 2 

 
 DYNAMIC CAUSAL MODELLING 

OF INDUCED RESPONSES :     
THE METHOD 

 

 

2.1 Introduction 

 

The aim of this chapter is to describe a dynamic causal model for induced or 

spectral responses (DCM for IR) measured with EEG and MEG. The importance 

and functional roles of induced oscillations have been described in chapter 1 and it 

is that which motivated this work. The purpose of this chapter is to establish a 

phenomenological model of how induced responses are caused, and how they 

evolve dynamically, in a distributed system of coupled electromagnetic sources. 

This work represents a further extension of dynamic causal modelling to cover 

spectral responses as measured by the EEG or MEG (David et al 2006a; Kiebel et 

al 2006, Moran et al., 2007). Inversion of this model, given empirical data, 

furnishes inferences about different models and the parameters of a particular 

model.  This allows one to disambiguate between different connectivity 

architectures that may underlie induced responses and to make quantitative 



 43 

inferences about the coupling among distributed cortical regions. Furthermore, 

one can assess changes in coupling that result from experimental manipulations or 

pathophysiology. Critically, this model allows one to distinguish between changes 

in linear and nonlinear coupling in the brain.  The machinery presented here 

contributes to this endeavour by allowing one to make inferences and quantify 

changes in either linear or nonlinear coupling, induced experimentally or 

associated with pathophysiology. I will demonstrate this in the next three chapters 

to ask whether there is a difference in the relative contribution of linear and 

nonlinear mechanisms between intrinsic (within-area) and extrinsic (between-area) 

coupling (chapter 3) and age-dependent changes in the motor networks (chapter 4) 

and whether backward connections exert greater nonlinear influences than 

forward connections in visual processing hierarchies (chapter 5).  These sorts of 

questions are central to understanding the nature of neuronal computations and 

how they are implemented in the brain. In a future work, I will apply this method 

to assess coupling in the motor system, during recovery from stroke.  

 

There are many approaches to detecting and estimating neuronal coupling 

using frequency-based analyses of electrophysiological recordings.  These can be 

divided into descriptive and mechanistic; a distinction that is closely related to the 

difference between functional and effective connectivity. In the following, I 

discuss various approaches to motivate the present model. In contrast to dynamic 

causal modelling, the majority of current approaches are descriptive in nature: 
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2.1.1 Descriptive approaches: detecting functional connectivity 

 

Functional connectivity has been defined as the statistical dependence 

among remote neurophysiological time-series.  To establish functional 

connectivity one has to show that the statistical dependencies are significant.  This 

entails, in its most general formulation, measuring the mutual information among 

two or more time-series (Roulston, 1999; Quian Quiroga et al., 2002).  There are 

several approaches to assessing mutual information, which divide broadly into 

linear and non-linear.  The most common approach uses linear systems theory and 

measures the correlation or coherence between two time-series. It has been shown 

repeatedly that these measures (the information in the cross-correlation function 

and coherence is identical) are very useful for quantifying long-range interactions 

using EEG (Bressler, 1995; Gross et al., 2001; Nunez et al., 1997).  Measures of 

linear dependencies can be generalised to multivariate time-series to furnish 

interesting formulations in terms of directed transfer functions and Granger 

causality (Brovelli et al., 2004; Bernasconi et al., 1999). 

 

Nonlinear methods 

 

In terms of non-linear approaches; the most general approach relies upon 

the notion of generalised synchrony (Rulkov et al., 1995; Schiff et al., 1996), 

which posits a mapping between the manifolds containing the state-space 

trajectories of two time-series.  These time series may not be correlated or indeed 

have any obvious formal similarity in their periodic structure.  These techniques 
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usually rely upon some form of temporal embedding or attractor reconstruction. 

An attractor is a set that describes how a dynamic system will evolve after a long 

period of time. An attractor could be a point, a torus or have a fractal structure 

(stranger attractor; examples of which can be found in chaotic dynamics theory). 

One benefit of reconstructing an attractor for a dynamic system is that one can 

reduce the dimensionality of a system. For example, for an oscillatory dynamic 

system, the state-space of the system may be high, but the system can be projected 

onto a lower dimension space, uniquely determined by its phase. Examples can be 

found in Penny et al, 2009 and Breakspear and Terry, 2002. Generalised 

synchronisation exists between two dynamical systems when the state of the 

response system is a function of the state of the driving system. If this function is 

continuous, two neighbouring points on the attractor of one system should 

correspond to two nearby points on the attractor of the other. This correspondence 

is used to see if the evolution of neighbouring trajectories in one attractor can be 

used to predict the evolution of a point on the other attractor (see Breakspear and 

Terry, 2002 for an example).  Usually, generalised synchrony is used to detect 

nonlinear coupling by comparing the mutual predictability (information) between 

time series before and after destroying their nonlinear dependencies (by 

randomising their phase relationships).  A special case of generalised synchrony is 

phase-synchrony.   

 

Phase-synchronisation, between two oscillators, is a ubiquitous 

phenomenon, which appears when they are coupled in a broad range of structures, 

including EEG sources (Pikovsky et al., 2001). Time-frequency analysis of phase-
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synchronisation is popular in current research on cortical networks (David et al., 

2003; Engel et al., 2001; Varela et al., 2001). Establishing phase-synchronisation 

proceeds in two steps; estimation of instantaneous phase and the quantification of 

the phase-locking.  This quantification uses the distribution of phase differences to 

establish significant mutual information between the two time-series.  Both 

generalised and phase-synchrony can be expressed between coupled systems that 

show autonomous or indeed chaotic dynamics.   

 

Another approach to detecting nonlinear coupling is based on nonlinear 

system identification theory for controllable systems.  This approach formulates 

dependencies in terms of generalised or nonlinear transfer functions that are 

estimated using generalised or poly-spectral analysis.  Bispectral measures such as 

bicoherence (Dumermuth et al., 1971) have been used to detect nonlinear coupling 

in human EEG (Jeffrey and Chamoun, 1994; Shils et al., 1996).  The key thing 

about nonlinear coupling is that it induces dependencies among different 

frequencies.  I will exploit this below (see also Friston 2000).  The same nonlinear 

cross-frequency coupling is seen in phase-synchrony; two principal forms of 

cross-frequency phase interactions are recognized (Palva et al, 2005): n:m phase-

synchrony, which indicates amplitude-independent phase locking of n cycles of 

one oscillation to m cycles of another (Tass et al., 1998), and nested oscillations, 

which reflect the locking of the amplitude fluctuations of faster oscillations to the 

phase of a slower oscillation (Vanhatalo et al., 2004). These forms of phase 

synchronisation can be used to disclose non-linear coupling, in which a slower 

frequency comes to entrain or be entrained by a faster frequency. 
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In summary, there are several ways to establish the statistical dependencies 

between two measured time-series (see David et al 2004 for a comparison of these 

approaches and Pereda et al 2005 for a comprehensive overview of nonlinear 

methods).  However, they are all concerned principally with detecting functional 

connectivity; they are not concerned with the mechanisms or causes that underlie 

these dependencies. 

 

2.1.2 Modelling approaches: estimation of effective connectivity 

 

Effective connectivity is defined as the influence that one neural system 

exerts over another.  Critically, this definition posits a causal mechanism for the 

dependencies described above.  In a time-series setting, these models are usually 

dynamic and rest on differential equations that are causal in a control theory sense.  

I refer to these models as Dynamic Causal Models (Friston 2003; David et al 

2006b).  The idea behind Dynamic Causal Modelling is to explain observed 

responses in terms of a dynamic system that is perturbed by exogenous inputs that 

are either known or unknown.  The model is defined by the form and parameters 

of differential equations that describe the evolution of the system states.  Inversion 

of these models allows one to make inferences about the models and their 

parameters.  Critically, this allows one to compare different models and quantify 

them in terms of the conditional density over both models and parameters. These 

models are based on specific hypotheses about putative sources and their assumed 

connectivity. This is a fundamental departure from descriptive approaches to 
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functional connectivity because it allows one to answer questions about the 

mechanisms and functional architectures that cause observed responses. These 

questions are posed in terms of competing models, which are evaluated in relation 

to each other; clearly, the answers that obtain are conditional on the models 

considered. 

 

In contrast to the descriptive approaches, there are relatively few causal 

models of spectral responses.  Those that do exist can, again, be divided into 

linear and non-linear.  Linear models are normally derived by linearising a 

neurobiologically informed nonlinear model of neuronal dynamics (e.g., a mean-

field or neural mass model) and evaluating the spectral response under some 

assumptions about the spectral composition of exogenous input (Wright and Liley 

1994).  Steady-state spectral measurements can then be used to invert the model 

and infer on important biophysical parameters such as rate constants or coupling 

parameters (Rowe et al, 2005; Moran et al 2007).  In the non-linear and dynamic 

domain there are even fewer models.  An important class are models that are 

based upon loosely coupled oscillators: 

 

Models of spectral dynamics 

 

The theory of coupled phase oscillators has found many applications to 

biological, chemical and physical phenomenon (Kuramoto, 1984; Kopell and 

Ermentrout, 1986). Under certain assumptions, the behaviour of networks of 

neurons with largely oscillatory output can be approximated by a system of 
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equations that govern the phases of each oscillator (Ermentrout and Kleinfeld 

2001) 

 

∑ −+=
j

jii f )( ψψωψ&        1 

Here iψ  is the instantaneous phase of the i-th unit or population; vπω 2= , 

where v  is the intrinsic frequency of the oscillators and )( jif ψψ − is the effective 

coupling, which is a non-linear [periodic] function of the phase-difference 

between two oscillators.  The sum runs over all units that are connected. In these 

models, it is assumed that the amplitude of the oscillations is unimportant and the 

key dynamics are narrow-band. This equation recently has been used recently as 

the basis of a dynamic causal model for phase coupling (Penny et al, 2009).  

The model above speaks to a specific class of DCMs:  DCMs can be 

phenomenological or biophysical.  Biophysical DCMs are constrained by the 

known physical or biological processes generating the observed signals.  In 

contrast, phenomenological DCMs describe the causal dynamics in a purely 

formal fashion.  Equation 1 is an example of this, where the form of the effective 

coupling can be motivated using neurobiological constraints (see Ermentrout and 

Kleinfeld 2001) but is not formulated explicitly in terms of neuronal processes.  

The DCM described in this chapter is phenomenological and complements models 

based on instantaneous phase by modelling the evolution of instantaneous power: 
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Here, ig )(ω  is the spectral density, over frequencyω , of the i-th unit.  In 

this model, temporal changes of power in a source are explained as a network 

function of power in all sources. This sort of model can deal with situations in 

which oscillations in one area become amplitude modulated by oscillations in 

another band in the same or another areas; e.g. theta-band modulation of gamma 

activity (e.g., Guderian and Düzel 2005). Here, high levels of theta activity would 

engender increases in gamma. 

 

This model is phenomenological in the sense I make no attempt to motivate 

the form of effective coupling, ),( ji ggf  but simply use the coefficients of its 

Taylor expansion as parameters (see below). Note that it is possible to model the 

nested rhythms (see chapter 1 for the definition and chapter 7 for examples), but it 

is beyond the scope of this thesis.  This is exactly the same device used in bilinear 

DCMs for functional magnetic resonance imaging (fMRI) time-series (Friston et 

al, 2003) and is recapitulated here for spectral responses as measured with EEG or 

MEG.  The ensuing simple form for the DCM is particularly useful because it 

allows us to partition the effective coupling between regions at the same 

frequency and between regions across frequencies.  This is important because, as 

noted above, within-frequency coupling is generally mediated by linear 

mechanisms, whereas cross-frequency coupling rests on non-linear mechanisms.  

This is pertinent to neuronal dynamics, where nonlinear mechanisms may 

predominate in functional integration.   
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In summary, the DCM elaborated below describes the phenomenological 

evolution of spectral densities in multivariate time-series; it is formulated to 

model coupling within and between frequencies that are associated with linear and 

non-linear mechanisms respectively.  This is similar to the bilinear form adopted 

for fMRI, which distinguishes between task or stimulus-invariant coupling (linear) 

and context-sensitive (nonlinear or bilinear) changes in that coupling. 

 

2.1.3 Overview 

 

This chapter comprises four sections.  In the first, I reprise, briefly, a 

generalised convolution model of neuronal coupling (Friston 2000) to demonstrate 

the link between cross-frequency coupling and nonlinear mechanisms.  I illustrate 

these phenomena using a neural-mass model that is the basis of biophysical DCMs 

for ERPs (David et al 2006b).  In the second section, I describe a DCM for 

induced responses and relate its parameterisation to the generalised convolution 

models of the first section.  The model provides the likelihood function of a 

generative model, which is inverted using standard variational techniques.  This 

inversion is summarized briefly in the last part of this section.  In the third section, 

I try to establish the face validity of the model using synthetic data, where the true 

inputs and architecture are known.  I generated synthetic data and compared linear 

and nonlinear models to identify the veridical model.  This enabled us to establish 

face validity and see how the inversion behaves under different noise levels.  The 

fourth section provides a demonstration of the model and its inversion using real 

EEG data acquired during face perception. 
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2.2 Nonlinear and cross-frequency coupling 

 

In this section, I show why nonlinear mechanisms are mandatory for 

coupling across frequencies.  I have dealt with this issue in a series of papers on 

the theoretical neurobiology of functional integration (e.g. Friston 2000; 2001) 

and summarize the main points here. The results in this section are not necessary 

to derive the DCM of the next section; they are used to highlight the sorts of 

behaviours that this model has to accommodate.  

 

 

2.2.1 Generalised convolution models 

 

In what follows, I treat any neuronal system or electromagnetic source as an 

input-state-output system. I will show that if this neuronal system is nonlinear, the 

energy at one frequency in the inputs (from other sources) manifests at different 

frequencies in the outputs. This induces cross-frequency coupling between any 

two sources, when the output of one serves as the input the other.  The Fliess 

fundamental formula (Fliess et al 1983) describes the causal relationship between 

system outputs and the history of its inputs.  This relationship conforms to a 

Volterra series, which expresses the output as a generalised convolution of the 

input, critically without reference to any hidden states.  This series is a functional 

Taylor expansion of the outputs, )(ty  with respect to the inputs )(tu  (Bendat 
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1990).  The reason it is a functional expansion is that the inputs are a function of 

time1.  
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where ),( 1 ii σσκ K  is the i-th order kernel.  The integrals are over the past 

or history of the inputs, which renders the system causal.  Introducing the spectral 

representation in terms of the unitary Fourier transform pair2 
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where, )(),()( ωωω −= uuu ssg  is spectral density; I can rewrite the 

Volterra expansion and it transform as 
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where the functions  
                                                 
1 For simplicity, I will deal with a single input and a single output 
2 Omitting constants of proportionality for clarity 
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are the Fourier transforms of the kernels.  These functions are called 

generalised transfer functions and mediate the expression of frequencies in the 

output given those in the input.  Critically, the influence of higher order kernels, 

or equivalently generalised transfer functions means that a given frequency in the 

input can induce a different frequency in the output.  A simple example of this 

would be squaring a sine wave input to produce an output of twice the frequency 

(Friston 2001).  Generalised transfer functions are usually estimated through 

estimates of polyspectra.  For example, the spectral form of Equation 5 and its 

high-order counterparts are3 
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Coherence (sometimes called coherency), )(ωuyg  is simply the second-

order cross-spectrum between the input and output and is related to first-order 

                                                 
3 These equalities hold only when the Volterra expansion contains just the n-th order term 
and are a generalisation of the classical results for the transfer function of a linear system.   



 55 

effects (i.e. the first-order kernel or transfer function).  Coherence is therefore a 

surrogate for first-order or linear connectivity.  Bicoherence or the cross-bi-

spectrum ),( 21 ωωuuyg  is the third-order cross-poly-spectrum and implies a non-

zero second-order kernel or transfer function.  See Friston (2000), Jeffrey and 

Chamoun (1994) and Shils et al (1996) for examples of detecting nonlinear 

coupling with bi-spectral analyses and Priestley (1988) for the mathematical 

background. 

 

In the present context, the thing I need to take from this formulation is that 

the only way one frequency in the input can modulate another frequency in the 

output is through second or higher-order kernels.  This means that dependencies 

between different frequencies are mediated by non-linear coupling. I can express 

this in terms of the changes in the spectral density of the response, induced by 

changes in the input; where, under linear coupling 

 







≠
=Γ=

∂

∂

21

21
2

11

2

1

0
)(

)(

)(

ωω
ωωω

ω

ω

u

y

g

g
      7 

 

2.2.2 An illustration using a nonlinear neural-mass model 

 

To illustrate the induction of responses across different frequency bands, I 

evaluated the time-frequency power of the input and response of a nonlinear 

neural-mass model of electromagnetic sources.  The neural mass model is the 
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same model used in David et al (2006b) and is used in DCM for event-related 

potentials.  

 

Briefly, the model is based on linear post-synaptic responses to pre-synaptic 

input.  Three different populations are coupled using their mean firing rates, which 

are a static nonlinear function of voltage as shown in Figure 2.1.  The dynamics of 

each neuronal subpopulation i are governed by second-order differential equations 

in voltage of the form 

 

∑=++
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The form of the implicit response kernel and nonlinear voltage-firing curve, 

)( jVS  are shown in Figure 2.2.  The three subpopulations correspond roughly to 

the supragranular, infragranular and granular layers of cortex and are 

interconnected (with coupling parameters, ijγ ) according to known connectivity 

rules. The nonlinearity in Equation 8 makes this a useful model of weak nonlinear 

coupling among neuronal sources.  Figures 2.3 and 2.4 such show the results of 

perturbing this model of neural masses; the time-frequency profile of the input and 

responses show how nonlinear transformations induce frequencies not present in 

the input: 

 

The top panels of Figure 2.3 show the input (left) and output (right) in the 

time-domain and the lower panels show the same data in time-frequency format.  
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The response at each time and frequency was estimated using a Fourier transform 

with a sliding Gaussian window  

222 |)2exp()(|),( dsestsytg sj
y ∫ −−−= ωσω      9 

where 256=σ ms specifies the width of the window.  The input was a four 

second box-car function plus random fluctuations, sampled from a Gaussian 

density with a standard deviation of one sixteenth of the box-cars amplitude.  It 

can be seen that the response has a very different spectral profile to the input, with 

marked power in the 10 – 20 Hz range.  However, this response could be 

meditated by linear effects and represent a filtering of the broad band input.  To 

illustrate nonlinearity, I repeated the simulation but using a four second pure sine-

wave input at 16Hz.  The left-hand panels of Figure 2.4 show clearly that this 

single frequency induces structured responses at much higher frequencies. To 

ensure this cross-frequency induction was mediated by nonlinear mechanisms, I 

repeated the simulation but scaled the input down by a factor of 128; this keeps 

neuronal states within the linear regime of the models depolarisation-firing curve 

and suppresses nonlinearity (see Figure 2.2, right).  Following this single change, 

the spectral output is now a quasi-copy of the input (see right-hand panels).  It is 

this sort of linear and nonlinear neuronal coupling, among neuronal populations, I 

want to model and make inferences about. 
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Figure 2.1 Nonlinear neural-mass model used to illustrate non-linear 

transformations (see David et al. 2003 for details). This model comprises three 

interconnected subpopulations. The model uses a transmembrane potential state-

space model at the synaptic level and a nonlinear sigmoid transformation )(VS at 

the soma of neurons to model spike rates.  

 

Figure 2.2 The implicit form of the linear impulse response function of 

transmembrane potential (left) and the sigmoid firing-input curve )(VS  (right).  
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Figure 2.3 The input-output relation of the neural mass model (Figure 2.1) in the 

time-frequency domain. Left:  deterministic input comprising a four second box-

car function plus random fluctuations (top) and its spectral profile (bottom). Right: 

response time course (top) and its spectral profile (bottom).     

 

 

In the next section, I describe DCM for induced responses, where the states 

of each neuronal source are summarised in terms of their spectral profiles.  I will 

see that a simple parameterisation of this model allows for a partitioning of within 

and between frequency coupling and, implicitly, a partitioning into dynamics that 

can be attributed to linear and nonlinear effects.   
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Figure 2.4 The time-frequency profiles of inputs and responses of the neural mass 

model in previous figures, showing nonlinear and linear effects. Upper panel: 

High input amplitude engages the nonlinear regime of the neuronal mass model, 

such that narrow-band input induces structured responses at higher frequencies. 

Lower panel: after scaling the input down by 128, the system operates in the linear 

regime and the spectral output is a simple copy of the input. 

 

 

2.3  Dynamic causal model 

 

This section describes the dynamic causal model, which I will invert in 

subsequent sections to make inferences about synthetic and real data.  

Probabilistic model inversion requires a generative model.  A probabilistic 

generative model requires the specification of a likelihood model and its priors.  

The likelihood model simply describes the probability of obtaining some data 

features (in this case spectra) given a model and its parameters, while the priors 

place constraints on the parameters.  

 

 

 

2.3.1 A model for spectral features 

 

The generalised convolution model of the previous section assumes 

neuronal dynamics are stationary; i.e., they express the same power over time. 

This model is fine for continuous steady-state electrophysiological recordings and 
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has been used as a DCM for steady-state local field potential recordings (Moran et 

al 2007). However, evoked brain dynamics are non-stationary and evolve over 

peristimulus time.  This means I need a DCM of time-dependent changes in 

spectral energy. The model described below assumes that the spectral energy at 

one frequency in a source causes changes in the same (linear coupling) or 

different (nonlinear coupling) frequencies, in other sources. It is fairly simple to 

show that, under a linear state-space model of these changes in spectral density, 

the coupling between changes in frequency determines the coupling between 

frequencies at steady-state. This means that between-frequency coupling in the 

DCM must be mediated by nonlinear mechanisms (by Equation 7 of the previous 

section). 

 

Consider J  sources in the brain, each described by a state vector, 

1),( ×ℜ∈ K
j tg ω  of spectral densities at K  frequencies 
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I will treat these spectral states as perturbations around their expected levels, 

in the absence of exogenous input.  I can model the dynamics of these spectral 

states using a first-order Taylor expansion of Eq. 2 to give 
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Where the matrices A  and C  contain coupling parameters that control 

changes in spectral activity induced by other sources and exogenous (e.g., 

stimulus) inputs, )(tu  
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Under this model, the scalar kl
ija  encodes how changes in the k-th frequency 

in the i-th source depend on the l-th frequency in the j-th source.  The leading 

diagonal elements are 1−=kk
iia ; this means that each frequency has an intrinsic 

tendency to decay or dissipate.  Similarly, k
ic  controls the frequency-specific 

influence of exogenous inputs on the k-th frequency in the i-th source.  This 

enables within and between-frequency coupling within and between sources.  In 

later work, I will generalise the above model, CuAgg +=&τ  to a bilinear 

approximation, in which experimental effects, v   (e.g., condition or trial-type 

under which the responses were elicited) can change the coupling.  This involves 

the inclusion of a bilinear term in Equation 11 to give 
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In this chapter I will focus on the modelling of induced responses for a 

single trial type and ignore trial-specific influences. 

 

Steady-states responses 

 

This simple first-order DCM can be related to the spectral representation of 

input-output systems of the preceding section by considering its equilibrium 

solution; in other words, the states to which the DCM converges. Under these 

steady-state conditions, 0=g&  and CuAg −= .  Recall that 1−=kk
iia ; this means 

that when the DCM is at equilibrium, the within-frequency coupling kk
ija  between 

sources plays the same role as the first-order transfer function of the previous 

section (c.f., Eq. 5).  
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Equation 14 says that if the inputs are changing slowly (and I can assume 

0≈g& ), I would see that long-term fluctuations in the k-th frequency in the i-th 

source scale with fluctuations in the l-th frequency of the j-th source in proportion 

to 
kl
ija . However, I know from the previous section that any dependencies among 

frequencies are mediated by nonlinear mechanisms. This means that, under linear 

coupling, all the cross-frequency coupling parameters must be zero; 

0: =≠∀ kl
ijaji .  If any are not; 0: ≠≠∃ kl

ijaji , I can infer a nonlinear coupling 

between sources i and j.  Clearly, I am not suggesting that steady-state is actually 

attained by the brain; but I can assume convergence, following perturbation, is fast 

relative to changes in exogenous input. In other words, I can integrate the 

differential state questions by linearising the dynamics with respect to their fixed 

points, under the assumption that the changes in spectral dynamics are sufficiently 

slow, with respect to the changes in exogenous input (i.e. steady state). The fixed 

points (or equilibrium points) can be found when the changes of spectral densities 

are close enough to zero and this is governed by the (unknown) convergence rate 

parameter τ  in Eq. 11, estimated from the data.  Tau can be regarded as a global 

(lumped) time-constant that reflects the characteristic time-constant of the 

underlying population dynamics. 

 

In summary, if I discount all the between-frequency couplings and consider 

the equilibrium solution of spectral dynamics (i.e., when the rate of change 

frequency is zero): the spectral power at a given frequency in one region is 

determined by the power at the same frequency in other regions.  This is the sort 
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of coupling that would be expected under linear mechanisms.  Conversely, 

between-frequency coupling can be attributed to nonlinear coupling.  

 

The spectral dynamics of sources 

 

Having established a model of spectral responses of the sources it is now 

necessary to specify how these responses are expressed in measurement space.  In 

some instances this would not be necessary; for example, in local field potential or 

intracranial recordings obtained directly from each source.  However, I will 

assume the measurements have been obtained non-invasively using EEG or MEG.  

Consider the conventional linear forward model for electromagnetic sources 

T
J txtxtx )](),([)( 1 K=  and the corresponding lead-field matrix L   for multi-

channel of data, )(td .  The observed response is a mixture of activity over all 

sources 
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This means spectral responses in channel space are a mixture of the inner 

product of Fourier coefficients.  Unfortunately, this DCM does not model these 

coefficients; this would require modelling both the power and phase of source 

activity, so that the coherence among sources Tss )()( ωω −  could be generated. 
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To circumnavigate this problem, I project the data from channel space to the 

sources and then compute the spectral density 
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where ),(~ tg ω  are the spectral responses modelled by the DCM and 
−L  is 

the generalised inverse of the lead-field matrix for the chosen sources.  Eq.16 is 

formally equivalent to a Morlet wavelet transform, where the window width scales 

inversely with the frequency.  In this work I use 
1−= ωσ k , which covers about k  

cycles. In theory, this k parameter allows a trade-off between time and frequency 

resolution. A larger parameter results in a smoother spectral density estimate and 

loss of temporal resolution. Usually, this parameter must be greater than 5 to give 

an efficient estimate of spectrum (Lachaux et al., 2002), because of spectral 

leakage (as the window becomes small, in relation to wavelength). In this thesis, 7 

was chosen based on prior knowledge (the characteristic time-constants of event-

related spectral responses).   

 

The inversion of the electromagnetic part here can be seen as feature 

selection, in the sense that Eq. 16 is a deterministic nonlinear function of channel 

data that returns spectral features associated with specific source locations.  The 

advantage is that there is a unique solution for the features because the prior 

specification of source locations means the inverse problem is not ill-posed; 
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provided the number of (equivalent current dipoles ; ECD) sources is small 

relative to the number of channels. Note that the generalised inverse of the lead-

field in Eq. 16 is one of many inversion schemes that one can use to project data 

from channel to source space (Darvas et al., 2004; Friston et al., 2008; Kiebel et 

al., 2007; Michel et al., 2004). The generalised inverse is an appropriate projector 

if one knows a priori where the sources are located. In other words, when there is 

no source localization problem. Once these locations have been established, the 

generalised inverse of the associated lead-field matrix furnishes a near-optimum 

ECD summary of activity that avoids suppression of local correlated activity. In 

this model, I assume the source locations are specified and leave optimization of 

these spatial parameters to another study.  

 

Note that the model generates time-varying power at each source, whereas 

the spectral features I extract in Eq.16 have three moments.  It would be simple to 

include free parameters that map the predicted source power to these three 

moments but these parameters are of no interest.  Therefore, I simply add the 

power over the moments and estimate a single free parameter, iG , which scales 

the power of underlying neuronal dynamics to give the observed mixture ),(~ tg i ω . 

 

 

2.3.2 The probabilistic model 
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I now have, under Gaussian assumptions about observation error, ε , a 

likelihood model for observed spectral activity in sources ),(~
kji tg ω  that can be 

expressed as a mixture of predicted activity ),( kji tg ω , baseline power and 

random fluctuations: 
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The predicted activity obtains by integrating Eq.11, given the parameters, 

GCA ,,,τθ ⊃  and input )(tu . The scalar  ijr  models baseline power over time at 

the i-th source and j-th frequency4 .  A likelihood model furnishes a way of 

measuring the likelihood of observed data; put simply, one generates a prediction 

using the model parameters and input.  The probability of getting the observed 

data-features is then specified by the amplitude of the prediction errors, relative to 

the precision (inverse variance) of the random fluctuations. λ  is the precision of 

this measurement noise in feature-space (power over sources and frequency) and 

is estimated as a free parameter. This scale parameter scales a temporal correlation 

matrix V  encoding serial correlations among the observation noise.  Because the 

time-frequency analysis necessarily smoothes random effects, I made V  a 

Gaussian autocorrelation matrix, with a standard deviation of 32ms. The standard 

deviation of the noise autocorrelation σσ >V  is bound by the window-width, σ  

in the time-frequency analysis in Eq.16. This window imposes serial correlations 

on spectral data-features and implicitly any random fluctuations. I chose a value 

                                                 
4 In practice, I estimate the baseline power as the frequency at the first time-bin. 
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that corresponds to the correlations induced by evaluating frequencies at 

301 ≈≈ −
Vf σ Hz. 

 

In this work, the priors )(θp  on the model parameters were Gaussian 

shrinkage priors. Table 2.1 lists their prior densities and Figure 2.5 provides a 

graphical summary of the ensuing model. Note that non-negative scale parameters 

have log-normal priors5.  

 

Table 2.1  Priors on model parameters 

 

Parameter θ  Description Prior density )(θp  
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5 I also used weakly informative log-normal hyperpriors on the precision hyperparameter. 
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Exogenous input 

 

The predicted power obtains by integrating Eq. 11.  This requires the 

stimulus input to be specified.  This exogenous input causes a burst of power in 

the network of sources. The frequency selectivity of this perturbation is encoded 

by the free parameters C above. This input models changes in source activity, 

caused by putative subcortical afferents whose activities are time-locked to stimuli. 

The frequencies induced depend on the model’s free parameters, which are 

optimised during inversion. From the point of view of each source, there is no real 

difference between the effects of exogenous input and input from other sources 

(see Eq. 11).Typically, only a few sources are allowed to receive exogenous input, 

which can have an arbitrary and source-specific frequency profile.  Sources that 

do not receive input have their input parameters ‘switched off’ by priors that are 

precisely zero.  The temporal form of the input is not known and has to be 

estimated.  In this study, I use a simple parameterisation, which assumes the 

spectral perturbation has the form of a gamma distribution. 
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where )(αΓ is the gamma function and priors on the input parameters, βα ,  

are chosen such that the peak of the input is at about 80ms, with a dispersion of 

about 32ms (see Table 2.1).  The free parameters now comprise, 
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GCA ,,,,, τβαθ ⊇ . Note that the C parameter encodes the frequency-selective 

responses to the exogenous input (see Figure 2.8 b for example); and will have 

zero mean and zero variance for areas that do not receive any exogenous inputs 

(see Table 2.1). Gi scales the output of the dynamic system (i.e. caused by 

exogenous input and input from other areas, through non-zero coupling) to give 

the observed spectrum. Gi is area-dependent but not frequency-dependent.   

 

The choice of 80ms as the prior latency of the input is motivated by known 

latencies from single-unit electrode recording studies of visual and inferotemporal 

cortex (e.g., Hirsch et al 2002). It takes this amount of time for visual input to 

reach secondary and higher visual areas. This is also the time when evoked 

sensory potentials start to express themselves in cortical sources (i.e., the N1 

component). Note that the latency is a free parameter, so that suboptimal priors 

(within some reasonable bound), will be corrected during model inversion.  In 

addition, relatively informative priors were placed on uninteresting free 

parameters to allow for small variations; these include the input parameter 

(gamma function), convergence time (tau), external coupling (C) and the power 

scaling (Gi). These weakly informative priors, come from an earlier study (Friston 

et al, 2003), while the internal coupling parameters (A and B) have essentially 

non-informative priors (variance of one) as we aim to infer on these.    

 

Frequency bands and modes 
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Hitherto, I have considered the states as spectral densities at a discrete 

number of frequencies or frequency bands.  These states can be regarded as the 

coefficients of narrow-band spectral basis functions or frequency-modes. In 

practice, I actually use the orthonormal principal modes of the source data, 

],,[ 1 KUUU K= , obtained by a singular value decomposition (SVD) of the 

spectral responses over time and sources, where TVUg Λ=~  and Λ  is a leading 

diagonal matrix of singular values. This means that instead of working with K ′  

frequencies, I can reduce the problem to modelling the coupling among KK ′<  

modes that cover all frequencies in different proportions.  

 

 

In this context, the states k
ig  represent the contribution of the k-th 

frequency-mode, )(ωkU   to the spectral dynamics of the i-th region.  I can project 

the predicted spectral dynamics in the state-space of frequency modes to 

frequency space using, ii Ugg =)(ω .  Similarly, one can characterise the coupling 

as functions of frequency; i.e., T
ijlkij UUAA =),( ωω  and ii UCC =)(ω .  These 

projections are possible because the frequency modes are orthonormal and I am 

using a linear DCM. I typically use between two and four modes, which account 

for about ninety percent of the observed variance in spectral responses. I have 

specified the likelihood and priors of this generative model and can now turn to 

model inversion and comparison. 
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2.3.3 Bayesian inversion of DCMs 

 

In this section, I review briefly model inversion and selection.  For a given 

DCM, say model m; parameter estimation corresponds to approximating the 

moments of the conditional or posterior distribution given by Bayes rule 
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The estimation procedure employed in DCM is described in Friston et al 

(2006). The posterior moments (conditional mean µ  and covariance Σ ) are 

updated iteratively using Variational Bayes under a fixed-form Laplace (i.e., 

Gaussian) approximation to the conditional density ),()( Σ= µθ Nq .   This is 

equivalent to Expectation-Maximization (EM) that employs a local linearization 

of the predicted responses about the current conditional expectation of the 

parameters.  The E-step conforms to a Fisher-scoring scheme that optimises the 

variational free energy ),,( mqF λ  with respect to the conditional moments. In the 

M-step, the precision parameters λ  are updated in exactly the same way to 

provide their maximum likelihood estimates.  The estimation scheme can be 

summarized as follows: 
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The free energy is simply a function of the log-likelihood and the log-prior 

and )(θq , which is an approximation to the posterior density ),,~|( mgp λθ  I 

require.  The last line of Equation 20 shows that the free energy is the log-

evidence or marginal likelihood minus the Kullback-Leibler divergence between 

the real and approximate conditional density.  This means that the variational 

parameters (conditional moments and precision) maximize the log-evidence, 

while minimising the discrepancy between the true and approximate conditional 

density.  This scheme is identical to that employed by DCM for fMRI and ERP. 

 

 

2.3.4 Model comparison and selection 

 

Inference on the parameters of a particular model uses the conditional 

density, )(θq .  Usually, this involves specifying a parameter or compound of 

parameters as a contrast, µTc .  Inferences about this contrast are made using its 

conditional covariance, ccT )(λΣ .  For example, one can compute the probability 

that a contrast is greater than zero.  This inference is conditioned on the particular 
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model specified. However, in many situations one wants to compare different 

models, for example models with and without particular connections.  This entails 

Bayesian model comparison.  Different models are compared using their evidence 

(Penny et al. 2004). The model evidence or marginal likelihood is 

 

θθθ dmpmgpmgp ∫= )|(),|~()|~( .      21 

 

This is the normalization term of equation (19). By using the Laplace 

approximation (see Penny et al., 2004 for the details of this Laplace 

approximation), the log model evidence can be expressed as  
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The evidence can be decomposed into two components: an accuracy term 

and a complexity term. The accuracy term is simply the log-likelihood of the data 

expected under the conditional density and the complexity term is the Kullback-

Leibler divergence between the approximating posterior and prior density. Clearly, 

for two models with identical accuracy, the model with the simpler network 

architecture will win; as the complexity term decreases the model evidence. A 

detailed description of the optimization procedure and Bayesian model selection 



 77 

employed in this thesis can be found in Friston, 2002, Friston et al., 2003 and 

Penny et al., 2004.  

In the following, I approximate the model evidence for model m, with its 

free energy bound. After convergence, the divergence above is minimized and this 

bound becomes tight such that 

 

)()|~(ln mFmgp ≈         23 

 

The most likely model is the one with the largest log-evidence.  This 

enables Bayesian model selection.  Model comparison rests on the likelihood ratio 

of the evidence for two models.  This ratio is the Bayes factor ijB .  For models i 

and j 
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Conventionally, strong evidence in favour of one model requires the 

difference in log-evidence to be about three or more (i.e. a relative probability of 

about twenty).  In what follows, I will use model comparison to compare models 

with and without various sorts of connections.  By assuming uniform priors on the 

models I can convert the model evidence into a conditional probability over 

models by normalising the evidences so that they sum to one.  Under this 

assumption, two models with a log-evidence of three imply that I can be 95% 

confident that the better model is more likely, given the data features.  
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2.3.5 Summary 

 

Figure 2.5 summarises DCM for induced responses, which entails two steps. 

The first is to specify the model; i.e. the source locations and the network, based 

on prior knowledge or beliefs about the functional anatomy of the paradigm.  For 

source locations, one can employ conventional source reconstruction methods; for 

example, source imaging (Mattout et al. 2006) or equivalent current dipoles (ECD) 

models (Kiebel et al., 2007; Kiebel et al., 2006). In terms of the network 

architecture, one needs to specify whether directed connections exist and whether 

they are linear or nonlinear (i.e., whether the cross-frequency terms in A  are, a 

priori precisely zero or not).   

  

Figure 2.5 Schematic illustration of the analysis procedure. Upper panel: The 

spectral dynamics in the sources, )(~ tg j , are first evaluated from observations in 
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sensor space; They are projected onto source space using the pseudo-inverse of 

the lead-field, 
−L . The spectral densities obtain by squaring the absolute values 

after Morlet wavelet transform. Lower panel: the linear form of state equations. At 

the neuronal level, the DCM comprises a vector of states for each electromagnetic 

source, allowing for linear and nonlinear coupling. 

 

The second step is to invert the model given some observed spectral 

features.  The source spectra obtain by projecting the channel data, )(td , to source 

space and evaluating the spectral density over K ′  frequency bins using Eq. 16.  

These spectral features are reduced in number, using orthonormal frequency 

modes ],,[ 1 KUUU K=  to encode spectral dynamics. These dynamics are 

modelled using linear state equations (Eq. 14), where the elements of the coupling 

matrix kl
ija   comprises the within  )( ji =  and between )( ji ≠  source coupling 

parameters, which can be either within )( lk =  or between )( lk ≠  frequencies. 

The coupling between two regions can then be characterised as a function of 

source and target frequencies;  T
ijlkij UUAA =),( ωω  and displayed as a matrix or 

image. Linear coupling matrices have strong coupling among the same 

frequencies so that large coupling values are deployed along the leading diagonal.  

Conversely, nonlinear coupling entails between frequency effects with large off-

diagonal terms (see Figure 2.6).  Because I use a small number of frequency 

modes, these coupling matrices encode broad-band coupling among the modes.  

This means that linear coupling can ‘diffuse’ away from the leading diagonal but 

retains its symmetrical form. 
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The above procedure can be repeated for several models or hypotheses 

about the underling architecture generating induced activity and the competing 

models compared using their differences in log-evidence. 

 

I have now covered the specification, estimation and comparison of DCMs 

for induced responses.  In the next section I try to establish their validity using 

synthetic data. 

 

2.4 Face validity: Simulations 

 

This section addresses the face validity of the DCM described in the 

previous section. First I generated synthetic data to show that, using model 

comparison, the scheme can disambiguate competing models correctly.  I use a 

very simple example to demonstrate the basic features of model selection.  In the 

second simulations I used a more realistic model (based on the analysis of real 

data in the next section) to establish the identifiability of various parameters and 

ensure they can be estimated accurately under typical levels of noise.  In all 

simulations, data were generated by integrating Eq.11 given known model 

parameters (which also specify exogenous input).  I then added noise to create 

synthetic data that were generated by a known architecture and known parameters. 

Critically, I used parameters that were based on the estimates from the analysis of 

real  EEG data.  This  ensured  that  the  simulations  were  biologically  plausible.  
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Observation noise was created by evaluating the time-frequency power of a white 

noise process, using the same wavelet-transform employed in the empirical 

analyses.  This ensured the serial correlations in the noise matched those observed 

empirically.  Simulated noise processes were scaled and mixed with synthetic 

signal to give the desired signal to noise ratio (SNR). 

 

2.4.1 Model selection: distinguishing between linear and nonlinear 

coupling 

 

In these simulations, I generated data using a very simple DCM under linear 

and nonlinear coupling, with a SNR of 19.46 dB. The model comprised two 

sources with two frequency modes in each source, where the first source projected 

to the second.  See Table 2 for of the values of the coupling parameters used 

(other parameters were set to their prior expectations in Table 1). The input to the 

system was a bump function that elicited responses in both modes in, and only in, 

the first region.  The first DCM modelled all the connections as linear. The second 

used the same coupling parameters but allowed for fairly weak nonlinear coupling 

from the second to the first frequency mode. I used two DCMs to invert these two 

data sets: The first modelled linear coupling only and the second allowed for 

nonlinear coupling between the two sources. The model parameters and results of 

Bayesian inversion of these two simulated datasets are summarized in Table 2. 

For nonlinear data, the nonlinear DCM had a greater model evidence than the 

linear DCM ( 126ln 21 =B ) and vice versa, for linear data, where the linear DCM 
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has the higher model evidence ( 66ln 12 =B ). When data are generated under a 

nonlinear model, the linear model simply cannot explain them, which is reflected 

in the relatively large difference in log-model evidences. For linear data, this 

difference is much smaller ( 66ln 12 =B ), because the nonlinear fit to the data is as 

good as the linear one. However, the nonlinear model has more parameters, which 

decrease the model evidence relative to the linear model, rendering it a less likely 

model.  The agreement between the true and conditional estimates of coupling is 

self-evident and, under this level of noise, I would be very confident that this 

coupling was not zero. 

 

2.4.2 Model inversion under different levels of noise 

 

In these simulations, I use the posterior expectations computed for real EEG data 

set as generating model parameters. The architecture was based on the model used 

to analyse the data in the next section obtained during a face-presentation 

paradigm.  This model comprised two pairs of homologous regions in the right 

and left hemispheres, corresponding to early visual and fusiform sources.  The 

sources within each hemisphere were connected reciprocally, whereas only the 

fusiform sources were connected between hemispheres. The spectral activity in 

each source was expressed in four frequency modes (identified by a singular value 

decomposition of the real EEG data; see Figure 2.7). The input enters bilaterally at 

the visual sources.  This exogenous input introduces a burst of power that perturbs 

the network at a time corresponding roughly to the arrival of subcortical input 
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conveying sensory information (about 60ms after stimulus onset). The responses 

were generated as described above by integrating Eq.11 to gives, for each source, 

dynamics in the state-space of frequency modes  

 

To produce observation noise at the source level I generated sensor level 

white noise at four different variances. I then projected these random effects to 

source space using the pseudo-inverse of the lead-field and finally transformed it 

into the time-frequency domain (c.f., Eq.16). After projection onto the frequency 

modes I added the resulting noise spectra to the simulated source spectra. I 

quantified the resulting noise levels, in source space, in terms of signal to noise 

ratio (SNR) at 20.38, 14.8, 10.83, and 4.54 dB; where I take 14.8 dB as 

representative of typical data. For example, real EEG data had an estimated SNR 

of 19.74 dB. Table 2.3 summarizes the results of model inversion in terms of (i) 

selected posterior expectations and (ii) average errors on the linear and nonlinear 

coupling parameters (i.e., differences between the true values and conditional 

expectations). These results suggest that, when the SNR is greater than 15 dB, the 

connection strengths are estimated with a high degree of accuracy. As anticipated, 

the errors increase with noise. When the SNR is too low, inference can change in 

a qualitative sense. For example, at 4.54 dB, I found that one non-linear coupling 

was a posteriori very likely to be present (p > 0.95), although the true parameter 

was zero. This may be because as the noise variance increases, the optimization 

scheme gets trapped in the local minimum; however, a more likely explanation is 

due to the conditional dependencies among the estimates, where one parameter is 

over-estimated at the expense of another being under-estimated: At high noise 
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levels in this simulation, there is an underestimate of one coupling parameter at 

10.83dB. This coupling parameter should be significant but Bayesian inversion 

fails to show this. Note that these dependencies are accommodated in Bayesian 

model selection (which integrates over the parameters). In conclusion, a typical 

SNR of 20 to 15dB gives veridical estimates, whereas higher noise levels (i.e., 

SNR of 10 to 5) can lead to inappropriate inferences (as indicated by the starred 

entries, with a posterior inference that the coupling parameter was greater or less 

than zero). 
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Table 2.2 First simulations: results of inverting a linear and nonlinear model 

using linear and nonlinear data (SNR = 19.46 dB).  p(A) indicates the 

conditional probability that the coupling parameter is greater than zero. F is the 

log-evidence of each model and data pair. The winning model for each data set is 

indicated by a grey box.  

 

 

True 

Parameter 

Nonlinear data 

  
1,1
1,2A

=   0.72  

2,2
1,2A  = - 0.45  

1,2
1,2A  =    0.24  

Linear data 

1,1
1,2A  =   0.72  

2,2
1,2A

= - 0.45  

 

Non-linear 

DCM 

 

1,1
1,2A  =   0.82     p = 0.99 

2,2
1,2A

= - 0.45     p = 0.99 

1,2
1,2A  =   0.32     p = 0.99 

 

F =    -2561 

1,1
1,2A  =   0.72      p = 0.99 

2,2
1,2A

= - 0.64      p = 0.99 

1,2
1,2A

=    0.03      p = 0.96 

 

F =   -4420 

Linear 

DCM 

 

1,1
1,2A  =   1.3       p =  0.79 

2,2
1,2A

= - 0.19     p =  0.99 

 

F  =   -2687 

 
1,1
1,2A

=   0.76      p =  1.00 

2,2
1,2A

= - 0.29      p =  0.99 

 

F  =   -4354 
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Table 2.3 Second simulations: The impact of noise level on estimation accuracy of the 

parameters. The first column displays the true parameters for a selected subset of linear 

and non-linear parameters. Each subsequent column shows their posterior mean for 

decreasing signal-to-noise ratios (SNR). The last three rows display the errors of the 

linear and non-linear parameters, averaged over connections and expressed as a percent.  

 

SNR (dB) Non-linear DCM 

20.38 14.80 10.83 4.54 
 

1,3
1,1A

= 1.89 
 

 
 
1.89    

 
 
1.89    

 
 
1.84  

 
 
1.75  

 

2,4
1,1A

= 2.05 

 
 
2.05    

 
 
2.05    

 
 
2.00  

 
 
1.94   

 

4,3
1,1A

= -1.05 

 
 
-1.05   

 
 
-1.05   

 
 
-1.03  

 
 
-1.19  

 

1,3
1,2A

= -1.62 

 
 
-1.62    

 
 
-1.62    

 
 
-1.60   

 
 
-1.49  

 

2,4
3,1A

= 0.10 

 
 
  0.10   

 
 
  0.10   

 
 
0.08    

 
 
0.09  

 

4,3
2,1A

= 0.65 

 
 
  0.62   

 
 
  0.65   

 
 
0.62    

 
 
0.64   

 

3,4
1,2A

= -1.75 

 
 
-1.75   

 
 
-1.75   

 
 
-1.76   

 
 
-1.70   

 

4,2
1,2A

= -0.97 

 
 
-0.97   

 
 
-0.97   

 
 
-0.88* 
p<0.95 

 
 
-0.94   

 

3,4
2,1A

= 0 

 
 
  0.00       

 
 
  0.00       

 
 
0 .00 

 
 
0.48*  
p >0.95 

Average error for 
linear coupling 
parameters (%) 

<0.1  % <0.1  % 2.33 % 8.60 % 

Average error for non-
linear coupling 
parameters (%) 

<0.1  % <0.1  % 25.3 % 20.9 % 

Average error for all 
parameters (%) 

<0.1  % <0.1  % 13.8% 14.8% 
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2.5 Analyses of real EEG data 

 

In this section, I demonstrate DCM for induced responses using EEG data. 

The data represents a single-subject data set from a study by Henson et al. (2003)6. 

The subject performed a judgement task on faces and scrambled faces. The data 

were sampled at 200 Hz using a whole-head, 128-channel ActiveTwo system. 

Bipolar horizontal and vertical electro-oculograms (EOG) were obtained using 

electrodes placed at the bilateral outer canthi and the left eye respectively to 

exclude trials with an EOG artefact.  The data used here comprise time-frequency 

responses averaged over 86 trials.  

 

The lead-field or gain matrix was computed for a canonical mesh (Mattout 

et al 2007) and co-registered channel locations, using a three-sphere head model 

as encoded in BrainStorm (http://neuroimage.usc.edu/brainstorm/).  The co-

registration and forward model was computed within SPM5 

(http://www.fil.ion.ucl.ac.uk/spm).  

 

2.5.1 Exemplar analysis using DCM 

 

Note that this single-subject analysis is used only to illustrate DCM for 

induced responses; I will not attempt a neurobiological interpretation of these 

results. Furthermore, face-perception is not necessarily the most interesting 

                                                 
6 These data are available from http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces.html 



 89 

paradigm, in terms of induced responses. I used these data because they are easily 

available (from http://www.fil.ion.ucl.ac.uk/spm), which means other people can 

reproduce the analysis reported below.   

 

The specification of a DCM, i.e., the network and source locations, is a 

critical step. I envisage that, for a given study, there would be several competing 

models that one might want to test. In the current framework, one does this by 

specifying models in terms of their connections and whether these connections are 

linear or nonlinear. Model comparison7 can then be used to select the best model 

and inferences about the parameters of the selected model can proceed using the 

conditional mean and covariance of the coupling parameters. Here, I will simply 

test two models to illustrate model specification, comparison, and inference. I 

used prior knowledge about sources in visual and fusiform cortices and employed 

source reconstruction implemented in SPM5 to localize four sources from a 

conventional ERP analysis of the data (Friston et al. in press). These source 

comprised the left and right visual cortex (LV and RV), and left and right 

fusiform area (LF and RF).  The locations of these sources are provided in Figure 

2.7a, in canonical space. For these sources, spectral changes, in several frequency 

bands, have been found during face processing (Klopp et al., 1999). Spectra were 

constructed from -100ms to 400ms.  I used a Morlet wavelet transform with a 

coefficient, 7=k , over 4 to 64 Hz.  The resulting spectra were de-trended and 

reduced using four principal modes as described above (see Figure 2.7b).  In the 

                                                 
7 Note that due to the feature selection (Eq. 16) one cannot compare models based on 
different lead-fields. In other words, models can only be compared if they include the 
same sources.  
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first (nonlinear) DCM, I allowed bi-directional cross-frequency coupling between 

source pairs LF-RF, LV-LF, and RV-RF. In the second (linear) model, I allowed 

only within-frequency interactions among these sources. I use two exogenous 

inputs to LV and RV. The (estimated) temporal dynamics and spectral effects of 

these inputs on both visual sources are shown in Fig.2.8. 

 

2.5.2 Results 

 

Figure 2.9 summarizes the results based on the nonlinear DCM. The arrows 

indicate directed connections. Coupling strengths are represented as functions of 

source and target frequency (c.f., Figure 2.6).  I only show coupling matrices for 

which one or more of the underlying coupling parameters was greater than zero, 

with 95% confidence or more. These matrices encode the coupling among 

frequencies; for example, there are several cross-frequency influences in the 

forward connection from RV to RF, in which alpha (8-12Hz) in the fusiform 

source is induced by alpha in the visual source.  However, the same alpha 

suppresses beta (16Hz), while increasing fusiform gamma power. These changes 

recapitulate the simulations in Figure 2.4, where low frequencies in the input 

produce high frequency responses. 

 

Figure 2.10 shows the equivalent results for the linear DCM.  In this case, 

only the forward connections and one transcallosal connection contained 

parameters that were greater then zero (at 95% confidence).  This model is largely 
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constrained to predicting the dynamics of alpha power and is unable to account for 

any cross-frequency effects. 

 

 

Bayesian model comparison clearly favoured the nonlinear model with a 

log-Bayes factor of 392. Figure 2.11 shows the observed and predicted spectral 

densities of the selected (nonlinear) model. Using these spectral densities, I 

estimated the SNR to be 19.74 dB.  Interestingly, the coupling strengths in the 

right hemisphere were stronger than those in the left. Previous studies have found 

a right lateralization for face processing (Kanwisher and Yovel, 2006). One can 

directly test this with DCM, using contrasts; for example, I found that the 

difference between the left and right (right minus left), averaged over all cross-

frequency coupling parameters, is greater than zero, with a posterior confidence of 

99%. In summary, using DCM and model comparison I find strong evidence for 

right-lateralised nonlinear coupling among early visual and fusiform sources. 
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Figure 2.7 Real EEG data analysis. Left (a): System or graph underlying the DCM 

(RV – right visual; RF – right fusiform; LV – left visual; RF - right fusiform). 

Right (b): the frequency modes, )(ωiU , identified using singular value 

decomposition of spectral dynamics in source space (over time and sources). 

 

 

 

 

Figure 2.8 Inputs to the DCM of real EEG data: (a): estimated time course of 

inputs to RV and LV based on the conditional means of the input function (Eq.18). 

(b). spectral response to input in the same areas.  These profiles correspond to 

iUC . 
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Figure 2.9 Results for non-linear DCM of real EEG data: The arrows show the 

directed connections from one source to another. The coupling strengths are 

represented as coupling functions of frequency, which show the effects the 

spectral density in one source has on the density in another. The source names are 

as in Figure 2.7. 
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Figure 2.10 Results for linear DCM of real EEG data: As for Figure 2.8 but for a 

reduced linear model.  The source names are as in Figure 2.7. 
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Figure 2.11 The observed and predicted spectral densities of the selected (nonlinear) 

model. Upper panels: Observed EEG time-frequency power data for all four sources. 

Lower Panels: Fitted data. It can be seen that the model captures the main spectral 

dynamics fairly well.  There is pronounced alpha activity around 140ms with a partial 

return to pre-stimulus levels by 260ms.  This corresponds largely to the evoked 

components. Although not very easy to see, there is also a late increase in gamma power 

that starts around 250ms (arrow).  The images correspond to the observed and predicted 

quantities )(~ tgU i  and )(tUg i  respectively.  
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2.6 Discussion 

 

Nonlinearities in neuronal activity are an important aspect of processing in 

large-scale neuronal networks and have led to many different proposals of how to 

best to characterise them given some data (e.g., David et al., 2004).  As I have 

illustrated above, linear coupling is mediated by first-order transfer functions that 

transfer energy in the source to the target, while non-linear mechanisms express 

themselves as cross-frequency interactions, through high-order, generalised 

transfer functions. A simple example of this is frequency doubling when one 

squares a sinusoid; i.e., )2exp()exp( 2 tjtj ωω =  (see Friston 2001). Biological 

evidence speaks to the prevalence of nonlinear interactions among cortical areas 

during cognitive tasks (e.g., Bullock et al., 1997; Schack et al., 2002).  I have 

shown that second-order features of the data (i.e., the spectrum) can be modelled 

by DCM for induced responses in a way that can disambiguate between linear and 

non-linear coupling. DCM is not for a surrogate for widely used linear models 

(e.g., coherence, correlations) but represents a complementary approach to 

disclose cross-frequency interactions among areas (see also Pereda et al. 2005). 

 

In this study, I have assumed that the locations of the sources are known.  

This means there is no source-reconstruction problem and no spatial parameters to 

optimise. The specification of source locations is itself a large area both in terms 

of evoked (Baillet and Garnero 1997) and induced responses (Singh et al 2003). In 

this work, the source locations were based on previous analyses of the data used 
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using multiple sparse priors on distributed forward models (Friston et al 2008). I 

would advocate that whatever source reconstruction technique is used, only the 

locations should be retained and used to re-estimate source-activity using the 

forward model provided by ensuing the ECD forward model. This is because the 

assumptions implicit in distributed forward models can introduce (e.g., though 

smoothness constraints) or remove (e.g. through beam-forming assumptions; 

Singh et al 2003) correlations among neighbouring sources. Inverting a simple 

ECD forward model also ensures the DCM is insensitive to the reconstruction 

scheme used to define the ECD locations. 

 

This model furnishes a framework within which one can make inferences 

about causal coupling. Note that model-free approaches cannot be used to make 

causal inferences in a control theory sense. For example, coherence and mutual 

information measure interdependency between time series obtained from two 

sources but provide no information about directionality. Despite their names, 

extensions of these methods, such as Granger causality and transfer entropy, do 

not provide evidence for causality in a formal sense because they are based on 

multivariate autoregressive models, which may be causal or acausal. However, an 

advantage of model-free approaches8 is that they can usually be applied in an 

exploratory fashion. Hypotheses about coupling, generated by these analyses, can 

then be tested formally using a DCM.    

  

                                                 
8 By model-free I mean any technique based on simply on probability distributions; noting 
that these distributions may be parameterised with a model (e.g., autoregressive models). 
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An important feature of DCM for induced responses is that it models the 

full time-frequency spectrum. This differs from typical approaches, which select 

a-priori a few specific frequency bands. I model spectral dynamics in terms of a 

mixture of frequency modes (obtained with singular value decomposition).  The 

dynamics of each mode are encoded by the evolution of a state. It is this multi-

state vector, for each source, that captures how the energy in different frequencies 

interacts, either linearly or nonlinearly, among sources. A critical issue is whether 

inferences differ with the number of frequency modes per source. In Fig. 2.12, I 

show that the exact number does not seem to have an effect on inference.  Using a 

synthetic dataset (the second set of simulations with an SNR of 15), generated 

with three modes, I find that the nonlinear DCM is always the best model for 

different numbers of modes. In principle, choosing too many modes should not 

affect inference (as shown above), because parameters that relate to superfluous 

states will not explain data but only decrease the evidence of the model. In 

practice, I suggest people use as many modes as necessary to represent 90 % of 

the data variance. The obvious minimum to model interesting dynamics is two 

modes. Note that one cannot compare models with different number of modes 

(because the log-evidence is a function of the data features, which are defined in 

terms of modes). 

 

2.7 Conclusion 

 

Nonlinear interactions are an important phenomenon in the brain and are 

expressed as cross-frequency coupling in spectral characterisations of EEG and 
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MEG time-series. Dynamic Causal Modelling for induced responses exploits this 

to model dynamic broad-band power changes as a consequence of linear and non-

linear coupling among brain sources. The ensuing scheme might be useful when 

trying to disambiguate linear and nonlinear contributions to distributed processing 

in a network of electromagnetic sources. In the next three chapters (chapter 3-5), I 

will apply this method to empirical datasets measured during motor tasks and face 

perceptions and in chapter 6, I will generalize this dynamic causal model to 

address the relation between evoked and induced activities in  terms of their 

generating mechanisms.  

 

 

Figure 2.12: Model comparison: The effect of using a different number of modes 

on the log-evidences for the linear and non-linear DCM. Importantly, the relative 

log-evidences remain stable when I change the number of modes. 
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CHAPTER 3 

 
NONLINEAR COUPLING IN THE 

HUMAN MOTOR SYSTEM  
 

 
 
 
3.1 Introduction and specific aims 

 

The aim of this chapter is to characterise the modulation of frequency-

dependent coupling among neuronal sources during action execution using MEG 

and a simple linear form of DCM for IR (see Chapter 2; Chen et al. 2008). Hand 

movements have been shown to modulate oscillatory power in motor system at 

different frequencies, such as alpha ERD and beta ERS in brain areas engaged by 

action execution; e.g., M1, SMA and PM (Pfurtscheller and Andrew, 1999). Given 

that oscillations facilitate integration both within functionally segregated brain 

areas and between areas engaged by the same task (Singer and Gray, 1995; 

Kahana et al., 1999; Rodriguez et al., 1999), many studies investigating oscillatory 

activity have focussed on (linear) coupling between nodes of a network at the 

same frequency (Andrew and Pfurtscheller, 1996; Gerloff et al., 1998; Gross et al., 

2001; Serrien et al., 2005). More recently, evidence has emerged that suggests 

(nonlinear) coupling among different frequencies may play an equally important 

role in inter-areal communication (Breakspear, 2002; Chen et al., 2009; Jensen and 
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Colgin, 2007; Tallon-Baudry and Bertrand, 1999; Varela et al., 2001; von Stein 

and Sarnthein, 2000). In view of the finding that action execution induces changes 

in different oscillatory frequencies within connected brain regions, in this chapter I 

wanted to model how these oscillations are orchestrated during motor control. It is 

important to consider the nature of this frequency-specific coupling given that 

excessive synchronization at distinct frequencies is seen in some pathological 

conditions. For example, in Parkinson’s patients, synchronization between the 

contralateral primary motor cortex and forearm muscles at 4~6 Hz is thought to 

contribute to resting tremors, while excessive synchrony in the basal ganglia and 

subthalamic nucleus at 10 to 35 Hz is associated with bradykinesia (for review, see 

Brown, 2007). The motivation for the work reported here was to establish a 

reference point for future clinical studies, using normal subjects and a simple 

established paradigm. This normative reference might help pinpoint where 

abnormal modulations of specific frequencies arise. 

The aim of this chapter was to model modulations of frequency-specific 

oscillations in the motor network induced by an established handgrip task (Ward et 

al., 2008). I modelled these modulations in terms of coupling between 

electromagnetic sources, where power in one source causes changes in the power 

expressed in others. Critically, I distinguished between within-frequency (linear 

coupling) and between-frequency (nonlinear) coupling. Specifically, I asked 

whether there is a difference in the relative contribution of linear and nonlinear 

mechanisms between intrinsic (within-area) and extrinsic (between-area) coupling. 

The results suggest that extrinsic connectivity is best characterised as nonlinear 
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(between-frequency) coupling, whereas intrinsic connections are best modelled 

with linear (within-frequency) coupling. 

 

3.2 Material and Methods 

 

3.2.1 Experimental design 

 

Nine healthy, right-handed subjects (20~32 years of age, 5 males and 4 

females) were recruited. Written consent was obtained from all subjects, in 

accordance with the Declaration of Helsinki. The study was approved by the Joint 

Ethics Committee of the Institute of Neurology, UCL and National Hospital for 

Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, London. 

Subjects were instructed to perform a visually cued ballistic isometric grip, 

using their dominant hand with an inter-trial interval of 7±2 secs. Prior to scanning, 

subjects were asked to grip the manipulandum to generate a maximum voluntary 

contraction (MVC). The target force was set at 45% of MVC. Subjects were 

trained to approximate the target force with visual feedback prior to scanning. 

However, no visual feedback was provided during scanning, in order to minimise 

activity in occipital and parietal sources. Force output was recorded using a MEG-

compatible gripper and used to identify the movement onset (i.e. the reaction time, 

from the onset of the visual cue until the onset of the ballistic grip), the grip 

duration and force level.  

MEG signals were measured continuously at 240 Hz during task 

performance using a whole-head CTF Omega 275 MEG system. At the beginning 
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and end of each measurement, the positions of three anatomical landmarks 

(bilateral pre-auricular points and nasion) were recorded to exclude excessive head 

movement (maximal translation < 1.3 cm ; 2.68~12.68 mm). 

The MEG data were pre-processed offline using SPM8 (SPM8, Wellcome 

Trust Centre for Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm/). The data were 

epoched from -500 to +1000 ms, where time zero indicates movement onset. 

Poorly performed (reaction times of more than one sec) and artefact contaminated 

(MEG amplitude > 500 fT) trials were excluded from further analysis; resulting in 

88-98 artefact-free epochs per subject (88 98 90 98 94 96 90 93 95) with 

642.66±54.92 ms mean reaction time and 639.45±54.48 ms grip duration. The 

mean force level was 45±25 % of subject-specific MVC. These artefact-free 

epochs were projected from channel space to the sources using the generalised 

inverse of the lead-field matrix for the chosen sources (see Model specification 

below). The spectral density from 4-48Hz at each source was computed over peri-

stimulus time using a time-frequency Morlet wavelet transform (wavelet number: 

7). The absolute value of the resulting time-frequency responses were averaged 

over trials and baseline-corrected by subtracting the frequency-specific power of 

the first time-bin. For computational expediency, I reduced the dimensionality of 

spectra into four principal frequency components derived from a SVD of the 

spectra (see chapter 2 for details). This preserved over 93 % of the spectral 

variance in all subjects (range 93% ~ 97%).  The resulting spectral dynamics enter 

DCM as the observations that the model attempts to explain. 
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3.2.2 DCM specification (sources and coupling) 

 

The source locations were taken from the group results of an fMRI study 

using the identical task (Figure 3.1), where five subjects performed 25 ballistic 

isometric hand grips to 45% of MVC. Imaging data were analysed using SPM5 as 

described elsewhere (Ward et al., 2008). The localisations were taken as the peak 

coordinate in Montreal Neurological Institute (MNI) space within each significant 

cluster (voxels significant at p < 0.05, corrected for multiple comparisons across 

the whole brain).  Peak increases in activity were seen in left M1, bilateral PM and 

SMA. In addition, right M1 was included because of significant task-related 

deactivation during hand grip secondary to transcallosal interhemispheric 

inhibition (Ward et al., 2008) (Figure 3.1).  

 

Figure 3.1  Location of the four sources extracted from a parallel fMRI study (left) 

and shown on a template MRI image (right). 

 

Using these five sources I then specified 12 different connectivity models as 

shown in Figure 3.2. This model space was constructed using three model 
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attributes. First, whether intrinsic (I) connections are linear (L) or non-linear (N) 

and second, whether extrinsic (E) connections are linear or non-linear. This results 

in four sorts of models. The third attribute was the lateralization of cross-

hemispheric coupling between PM and M1. I modelled three levels of this 

lateralisation: right PM to left M1 (r-), or left PM to right M1 (l-) or both (b-).   

This gave a total of 12 models, as shown in Figure 3.3. I use the designation r-

ILEL to mean a right-lateralised architecture, where Intrinsic connections are 

Linear and Extrinsic connections are Linear. The exogenous inputs go to the 

bilateral M1s and SMA. 

 

3.2.3 Inference on models: Bayesian Model Selection (BMS)  

At a single subject level, I compared the difference in log model evidence or 

marginal likelihoods between models, i.e. log Bayes factor (Penny et al. 2004) to 

identify the best among the models tested. To identify the model with the most 

evidence at the group level, I added the log-evidences from each subject, under the 

assumption that each subject’s data are conditionally independent of each other. In 

other words, the log-evidences from each subject were summed under a fixed-

effects assumption on model space (i.e., there is one model that is the best for all 

subjects). 
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to obtain the log-evidence for the i-th model across all n subjects. For any given 

pair of models, a Bayes factor of about twenty (i.e a difference of three or more in 

log space) is usually considered as "strong" evidence in favour of one model 



 107 

relative to another (Penny et al. 2004). To ensure differences in log-evidence were 

consistent across subjects, the log-evidences for each model, over the nine subjects, 

were entered into a repeated-measures analysis of variance (ANOVA) with two 

within subject factors (nonlinearity with four levels and laterality with three levels 

– corresponding to the columns and rows of Figure 3.2 respectively). 

 

Figure 3.2  The connectivity architecture for all the models considered. The upper 

panel shows the symmetric models differed according to whether the linear or 

nonlinear connections are intrinsic or extrinsic. The lower panel represents the 

asymmetric  DCMs. The solid and dashed lines indicate the effect of nonlinearity 
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and linearity, respectively.   N: nonlinear coupling; L: linear coupling; I: Intrinsic 

connection; E: Extrinsic connection. 

 

3.2.4 Model parameters: Visualization of coupling matrices 

To quantify the coupling under the best model, for each intrinsic or extrinsic 

connection the (frequency to frequency) matrices of subject-specific estimates 

were smoothed (to account for inter-subject variability in frequency-to-frequency 

coupling using a Gaussian kernel with FWHM 8 Hz). These were then averaged 

by entering them into a conventional SPM analysis to identify reliable frequency-

specific connectivity. I report the average coupling strengths in, and only in, non-

zero frequency bins (at p<0.005 uncorrected).   

 

3.3 Results 

 

3.3.1 Time-frequency responses at source level 

 
 

The estimated event-related spectral responses at the source level of a 

representative subject are shown in Figure 3.3 (upper panel), where the alpha1 

power decreases bilaterally in M1 from movement onset to 300 ms. This pattern 

was observed consistently across all subjects.  Transient beta power increases were 

seen in bilateral M1, SMA and left PM (6 out of 9 subjects), and enhanced gamma 

was seen in SMA and PM bilaterally (8 out of 9). I also observed transient 

                                                      
1 I refer to the conventional classification of frequency bands into theta (4-8 Hz), alpha (8-15 Hz), 
beta (15-30 Hz), and gamma (>30 Hz).   
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bilaterally M1 beta power decreases in some subjects (5 out of 9). Taken together, 

these time-frequency responses are in line with previous findings (Crone et al., 

1998a; Crone et al., 1998b; Kilner et al., 2003; Leocani et al., 1997). The lower 

panel in Figure 3.3 shows the predicted spectral responses, at the source level, by 

the best (l-ILEN) model (see ‘Inference on models’ for details). Note that the 

spectra are normalized individually with respect to their maximum. 

 

Figure 3.3 The observed (upper panel) and predicted (lower panel) spectral 

responses for a representative subject under the best mode (l-ILEN) from the 

Bayesian model comparison. 
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3.3.2 Inference on models: Nonlinear effect and motor networks 

 

Figure 3.4 summarizes the results of the model comparison. It is 

immediately obvious that the models which fit the data best are those with 

nonlinear extrinsic coupling (Figure. 3.4). Models with one or more nonlinear 

connection were consistently better than purely linear models in every subject 

(Figure. 3.4). An ILEN model was the best in six out of nine subjects and four out 

of those six subjects have the l-ILEN model as the best at the single subject level. 

At the group level, the l-ILEN model was the best model amongst those tested. 

Note that the BMS results are conditional on the assumption of fixed effects. The 

random effects assumption can be employed to account for the between subject 

variability in model space. (i.e. the group heterogeneity) or outliers in the model-

evidences (see Stephan et al, 2009 for details and chapter 6 for example). In 

addition, it is also important to note that the most complex model (b-INEN) is not 

necessarily the best (only one subject had this model as the best). This is because 

the log-evidence includes a penalty term for complexity.  The two-way ANOVA 

confirms the strong evidence for nonlinearity (levels: ILEL, INEL, ILEN, and 

INEN; F(1.70,13.63)=15.483, p<0.0001) in terms of its consistency over subjects. 

However, there was no effect of laterality (levels: right, bilateral and left 

lateralized models; F(1.03,8.27)=0.744, p=0.417) nor any interaction 

( F(1.34,10.70)=1.026, p=0.359).   
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Figure 3.4 Results of Bayesian Model Selection. (A) Pooled log-evidences of the 

twelve DCMs tested).  It can be seen that the best model is l-ILEN (log-evidence 

= -24297) and the next best is b-ILEN (log-evidence = -25880). (B): Comparison 

of the average log-evidences for the three purely linear (ILEL) models and the 

remaining nonlinear models; shown for each subject. The positive slopes over all 

subjects indicate that the nonlinear coupling is essential as the nonlinear models 

are always better than the linear ones.  
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In summary, in normal subjects, I found very strong evidence for nonlinear 

coupling between areas but no evidence for nonlinear interactions within areas. 

Furthermore, this evidence was expressed consistently in subject-specific 

responses. In addition, there is evidence for an asymmetry of interhemispheric 

interactions in the right hand movement task I used; although this was less 

consistent over subjects. 

 

3.3.3 Coupling parameters  

 

The coupling parameter matrices of all subjects under the l-ILEN model, 

where each matrix represents the frequency-to-frequency coupling of one 

connection enter the statistic test and  the corresponding SPMs of the T-statistic 

(thresholded at p<0.005 uncorrected) are shown for ‘excitatory’ (positive; Figure 

3.5A) and ‘inhibitory’ (negative; Figure 3.5B) effects respectively. As seen in 

Figure 3.5, I found several instances of consistent nonlinear (between-frequency) 

interactions. These seem to be more profound when the coupling is negative. For 

instance, several consistent regions of negative coupling are found far from the 

(within-frequency), leading diagonal compared to the positive coupling SPMs. 

When considering reciprocal connections, the frequencies entailed by nonlinear 

coupling appear asymmetric. For example, in Figure 4B (arrows), the negative 

coupling from LPM to RM1 involves alpha-gamma coupling, while the reciprocal 

RM1 to LPM connection shows significant gamma-theta coupling. In the same 

vein, theta oscillations in SMA suppress gamma oscillations in LM1 but, from 

LM1 to SMA, the negative coupling was between gamma and alpha.  A summary 
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of these T-test results is provided in Table 3.1. The more quantitative 

characterisations of the nonlinear coupling identified by Bayesian model 

comparison speak to the complicated nature of nonlinear interactions in the brain, 

even when modelled as simply as with DCM for induced responses. 

 
Table 3.1    Summary of the SPM analysis of the coupling parameters 
                 (+ denotes positive and -  denotes negative coupling)  
 
 LM1 RM1 SMA LPM RPM 
LM1  theta-theta (+) 

alpha/beta-beta 
(+) 

theta-theta(+) 
theta-gamma(-) 
alpha-alpha (-) 

beta-theta(+) 
alpha-alpha(-) 
 

 

RM1 beta-beta (+) 
gamma-gamma 
(+) 
 

 beta-beta(+) 
gamma-
gamma(+) 
 

gamma-alpha 
(-) 
 

gamma-beta(+) 
gamma-
theta(+) 
theta-alpha(-) 
alpha-gamma 
(-) 

SMA gamma-alpha 
(-) 

alpha- alpha(+) 
gamma- alpha 
(-) 

 alpha-alpha (+) 
beta-beta(+)  
gamma-gamma 
(+) 
alpha-alpha(-) 
 

theta-alpha(+) 
beta-beta(+) 
gamma-
gamma(+) 
beta-gamma(-) 
gamma-beta(-) 
  

LPM theta-alpha(-) 
alpha-theta(-) 
beta- alpha (-) 
 
 

beta-alpha(+) 
gamma-beta(+) 
theta-alpha(-) 
gamma-theta(-) 
 

beta-gamma(+) 
gamma-
gamma(+) 
theta-alpha(-) 
alpha-gamma 
(-) 
gamma-
theta/alpha (-) 
gamma-
gamma(-) 

 alpha-gamma 
(-) 
beta-alpha(-)  

RPM  gamma-gamma 
(+) 
beta-alpha(-)  
 

alpha-theta(+) 
alpha-beta(+) 
gamma-gamma 
(+) 
beta-gamma(-) 
 

alpha-alpha(+) 
alpha-beta(-) 
beta-gamma(-) 
gamma-alpha 
(-) 
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Figure 3.5 Statistical results of coupling parameters. (A) SPM of the positive 

coupling strengths (one-tailed), thresholded at p<0.005 uncorrected. This shows 

regions of frequency-frequency space, where the average coupling was great than 

zero. (B) SPM of negative coupling parameters. The arrows indicate functional 

asymmetries in terms of frequency-specific coupling. The significance of the 

linear (within-frequency) intrinsic coupling is partly due to prior constraints on the 

parameters that ensure the system is dissipative. 

 

 

3.4 Discussion 

 

In this work, I provide empirical evidence for nonlinear coupling among 

distributed neuronal sources in the motor system. Furthermore, these data support  

the idea that nonlinear coupling plays an important role in modulating spectral 

responses under normal conditions. Interestingly, I found no evidence for 

nonlinear or between-frequency coupling intrinsic to each source, suggesting that 

linear or driving mechanisms may provide a sufficient account of the interactions 

among local neuronal populations. In addition, I found evidence for an asymmetric 

inter-hemispheric interaction involving right PM in this right-hand movement task. 

A quantitative examination of the extrinsic or long-range coupling parameters, 

showed some interesting asymmetries in frequency space and that this coupling 

was predominantly negative or suppressive. 
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3.4.1 Intrinsic (local) linear and extrinsic (global) nonlinear effects 

 

A recent pharmacological study in rat brains has shown that co-application 

of kainic acid and carbachol to layer V in M1 can reliably induce synchronous 

oscillatory activity in the beta frequency band in layer II to VI (Yamawaki et al., 

2008). These results imply that inter-laminar influences may be mediated by 

driving or linear effects because they induce distributed oscillations at the same 

frequency. Furthermore, it has been shown that in pathological conditions such as 

Parkinsonism, abnormal oscillatory synchronization of neuronal populations in 

cortex, subthalamic nucleus and basal ganglia can lead to movement impairment 

(Brown, 2007; Levy et al., 2002; Marceglia et al., 2006; Priori et al., 2004). The 

findings suggest that the local interactions may be predominantly linear under 

normal conditions. Other studies have demonstrated nonlinear coupling in 

EEG/MEG signals in a variety of tasks, systems and pathological conditions 

(Breakspear, 2002;Antoniou et al., 2004; Breakspear, 2002; Chavez et al., 2003; 

Kotini and Anninos, 2002) leading to suggestions that nonlinear coupling is an 

important aspect of functional integration (Jensen and Colgin, 2007; Tallon-

Baudry and Bertrand, 1999; Varela et al., 2001). I have shown that during the 

performance of a simple motor task both linear and nonlinear coupling is likely to 

be present. Specifically, the results demonstrate that local interactions can be 

explained by linear coupling, but that coupling between regions is nonlinear in 

nature. 
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3.4.2 Asymmetry of inter-hemispheric connections 

 

Asymmetry in the human brain architectures has been shown in many 

studies, both functionally or anatomically (Amunts et al., 1996; Friston, 2005; 

Rockland and Pandya, 1979; Zeki and Shipp, 1988). In the motor system, 

handedness and experience-dependent plasticity are thought to be the main factors 

subtending these asymmetric properties (Haaland et al., 2000; Karni et al., 1995; 

Kloppel et al., 2007). Moreover, functional lateralization of motor control can be 

altered by pathological or traumatic changes (Ward et al., 2004). In this study, I 

was able to quantify task-dependent frequency-specific causal influences 

mediating the observed spectral responses and characterise functional asymmetry 

in terms of long-range coupling. Bayesian model comparison suggested that the 

left lateralised ILEN model was superior to the symmetric homologue. The left-

lateralised model conforms to the left hemisphere dominance, expressed for 

example in the asymmetric engagement of premotor cortex during skilled 

movement in right-handed adults (Pollok et al., 2006). 

 

3.4.3 Asymmetry of hierarchical connections 

 

In addition to hemispheric asymmetries, frequency-specific coupling was 

distinct in forward and backward connections, especially between the SMA and 

premotor sources. Furthermore, predominant positive and negative couplings are 

located in different frequency bands in most connections. For example, the gamma 
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rhythm in left M1 inhibits the alpha activity in SMA but no consistent positive 

connection was found.  

It is important to establish the normal pattern of the frequency-specific 

interactions in the motor system because several movement disorders show 

frequency-related abnormalities, such as resting tremors (4~6 Hz) and 

bradykinesia (10- to 35 Hz) (Brown, 2007). However, the details of the underlying 

mechanisms remain largely unknown. The study provides a qualitative and 

quantitative characterisation of frequency-specific effects under normal conditions, 

which I hope will be useful when studying induced responses in patients. To my 

knowledge, this is the first study of frequency-specific coupling in the motor 

network under normal conditions. Given that, in the motor system, induced 

responses depend on the task and show substantial between-subject variability 

(Aoki et al., 1999; Kilner et al., 2000; Kristeva et al., 2007; Omlor et al., 2007), I 

do not anticipate these results will generalize to other movement-related networks. 

Rather, I consider this study as a reference point for similar studies in patients 

using the same paradigm.  

In conclusion, I have established the prevalence of nonlinear or between-

frequency coupling among distributed components of the motor system during a 

simple motor task. These extrinsic nonlinear interactions appear to unfold in the 

context of local or intrinsic linear coupling within each area. The associated task-

dependent motor network has asymmetric features, as reflected in both the 

deployment of connections and the frequency specificity of reciprocal connections.  

In chapter 4, I will show how this motor network is affected by healthy aging. 
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CHAPTER 4 

 
AGE-DEPENDENT CHANGES IN 

THE MOTOR NETWORKS 
DURING HAND GRIPS 

 
 

 

4.1 Introduction and specific aim 

 

Age-associated changes in the central nervous system have been studied 

intensively, both functionally and anatomically. In healthy adults, recent 

neuroimaging studies suggest that changes in activation patterns result from 

neuro-anatomical and neurochemical abnormalities that occur with aging 

(Morrison and Hof, 2002; Page et al., 2002; Rowe et al., 2006b; Gruss and Braun, 

2004; Sarter and Bruno, 2004). In relation to cognitive deficits, Cabeza and 

colleagues reported that prefrontal activity is less lateralized in older adults than in 

younger adults during cognitive tasks; and proposed the HAROLD (hemispheric 

asymmetry reduction in older adults) model (Cabeza and Nyberg, 2000; Cabeza, 

2002a). These age-related hemispheric asymmetry reductions are thought to play a 

compensatory role in sustaining cognitive performance: the compensatory 

mechanism appearing only in high-performing but not low-performing old 
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subjects (Dolcos et al., 2002; Cabeza et al., 2002b). This is similar to observations 

in the motor system.  Loss of fine movement and slowing of movement speed are 

features of aging (Smith et al., 1999; Krampe, 2002) but compensatory processes 

in cortical and subcortical systems may allow the maintenance of performance 

(Ward, 2006). In general, task-related brain activity may be greater in MI, PM and 

SMA and other regions in older compared to younger subjects, although this 

depends on the task used (Ward and Frackowiak, 2003; Ward, 2006; Mattay et al., 

2002; Labyt et al., 2003; Labyt et al., 2006; Sterr and Dean, 2008). At the level of 

neuronal processing, these age-related changes may reflect network connectivity 

(Dolcos et al., 2002; Cabeza et al., 1997; Rowe et al., 2006a; Taniwaki et al., 2007; 

Gazzaley et al., 2008). However, how neural networks reorganize in response to 

age-related degenerative changes remains unclear.  

Furthermore, changes in oscillatory activity are seen during neuro-

development and aging. For example, the posterior 4 Hz rhythm in the first 3 

months after birth can be enhanced with eye-closure but fade between 3 and 10 

years of age; at this stage there is a maturation of alpha oscillations and the 

emergence of the typical blocking effect of eye opening. The delta (~4Hz) rhythm 

is believed to be the precursor of occipital alpha (Niedermeyer, 1999; Pilgreen, 

1995). In addition, it has been reported that oscillatory drive to motoneuron pools 

changes with development: the younger the subjects are, the lower the EMG and 

EEG-EMG coherence at ~ 20 Hz is (Farmer et al., 2007; James et al., 2008). 

Taken together, this suggests that the aging alters not only network architecture 

but also the frequency content of the ensuing dynamics. The aim of this chapter 
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was to examine age-related network changes in terms of coupling frequencies 

based on my previous findings in chapter 3.     

 

 
4.2 Results  

 

4.2.1 Subjects and Behaviour result 

 

Sixteen healthy, right-handed (eight young, mean age 26, range 20~32 years 

of age and eight old, mean age 66, range 47-76 years) subjects participated in this 

study. Part of the data (young group) has been reported in chapter 3. The task 

undertaken and the data analysis procedure are exactly the same as described in 

chapter 3. The performance of young and old subjects in terms of reaction time 

(RT) and grip duration (DU) is summarized in Fig 6.1A. There were no significant 

differences in reaction time (p=0.70; mean= 617.64 and 579.84 ms for young and 

old group, respectively) or duration (p=0.71; mean= 614.45 and 596.05 ms for 

young and old group, respectively) between young and old groups (one-tailed 

student t-test). This suggests that task performance was similar in both groups, 

although the variances of RT and DT were higher in the young group (Figure 

4.1B). In contrast to other studies (Mattay et al., 2002; Smith et al., 1999; Sterr 

and Dean, 2008), the mean RT of elder subjects was shorter than that of young 

subjects, although this did not survive our statistical criterion.   
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Figure 4.1 Summary of subject performance. A) The RT distribution (left) and the 

DU (right) data from both groups. B) P-values from a two sample t-test comparing 

old and young subjects. Y : young; O : old; RT: reaction time;  DU: grip duration. 
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4.2.2 Inference on model space 

 

Twelve DCMs were inverted for each subject, as shown in Figure 3.2 

(chapter 3). The data processing has been described in detail in chapter 3. Figure 

4.2 shows the result of Bayesian model selection (BMS) at the group level under 

fixed-effect assumptions (Penny et al., 2004; Stephan et al., 2009). It is evident 

that in the old group, the best model is the model with a symmetric connection 

pattern (sILEN). Critically, the difference between the best models for young and 

old subjects was the inclusion of RPM-LM1 coupling. This was evident in the old 

group but absent in the young group. In other words, the left hemispheric 

dominance in motor control during right hand grip diminished in old subjects. 

This is in line with Ward and colleagues report of fMRI data (Ward et al., 2008; 

Talelli et al., 2008a) and the HAROLD model prediction (Dolcos et al., 2002; 

Cabeza et al., 2002b). To ensure group differences in log-evidence were consistent 

in relation to inter-subject variability, the log-evidences for each model were 

entered into a repeated-measures analysis of variance (ANOVA) with 2 by 4 by 3 

factors. The ANOVA on log-evidences is effectively a test for differences in log-

evidence, which is the same as a test on the evidence ratios (i.e., Bayes-Factors). 

The advantage of the ANOVA is that one can say the differences are consistently 

large, in relation to inter-subject variability in log-evidence. This also protects 

against outlier effects. The group factor has two levels (young and old) and 

within-subject factors were nonlinearity (four levels) and laterality (three levels – 

corresponding to the columns and rows of Figure 3.2 respectively). Table 4.1 
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summarizes the results. These confirm the BMS finding that the two groups differ 

greatly in laterality (p=0.002); i.e., a group times model interaction. 

 

Table 4.1 Summary of statistical results    

 

Main effect 

 

 

Group  F(1.0, 7.0)=0.192, p=0.674 

Nonlinearity   F(2.36,16.54)=35.493, p<0.0005* 

Laterality F(1.10,7.70)=20.626, p=0.002* 

Interaction 

 

 

 

Group  X  Nonlinearity  F(1.62,11.32)=4.299, p=0.047* 

Group  X  Laterality F(1.73,12.12)=11.944,p=0.002* 

Nonlinearity X  Laterality F(2.83,19.83)=3.829, p=0.028* 

Group X  Nonlinearity  X  Laterality F(2.40,16.82)=3.179, p=0.060 
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Figure 4.2 BMS results at the group level, under fixed effect assumptions. Upper 

panel: Summed log-evidences for the twelve DCMs, pooled over young subjects 

(left) and the network architecture of the best model (right).  Lower panel: 

1 r-ILEL 
2 r-INEL   
3       r-ILEN  
4       r-INEN  
5       b-ILEL  
6 b-INEL  

7       b-ILEN   
8       b-INEN  
9  l-ILEL   
10     l-INEL   
11     l-ILEN   
12     l-INEN 

1 r-ILEL 
2 r-INEL   
3       r-ILEN  
4       r-INEN  
5       b-ILEL  
6 b-INEL  

7       b-ILEN   
8       b-INEN  
9  l-ILEL   
10     l-INEL   
11     l-ILEN   
12     l-INEN 
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Summed log-evidences for the twelve DCMs, pooled over old subjects (left) and 

the network architecture of the best model (right). 

 

4.2.3 Inference on coupling parameters 

 

The average of the coupling parameters from the group-specific best models, 

i.e. l-ILEN for young and s-ILEN for old participants are shown in Figure 4.3 

(positive) and 4.4, (negative). The coupling strength matrices (the conditional 

expectations of the coupling matrices) of all subjects were smoothed with a 

Gaussian Kernel (FWHM = [8 8]) and entered into a conventional SPM analysis 

to identify the within-group (first-level analysis) significant frequency-specific 

effective connectivity. Figure 4.5 and 4.6 show the significant ‘excitatory’ 

(positive) and ‘inhibitory’ (negative) effects respectively (shown thresholded at 

p<0.005 uncorrected). The most striking finding is that during right hand grip, the 

age-dependent RPM –LM1 coupling in old subjects has an inhibitory effect 

(Figure 4.6B). In addition, there is a tendency in old brains for LM1 to ‘talk to’ 

RM1, using higher frequencies compared to the young brains (Figure 4.5; alpha to 

beta ranges for young and beta to gamma ranges for old subjects). In general, the 

‘young’ motor networks employ more facilitated mechanisms (more distributed 

positive coupling) whereas the ‘old’ motor networks show more negative coupling.  

To examine the between-group differences, the coupling matrices where 

compared using a two sample t-test. Figure 4.7 shows the results of this analysis, 

thresholded at p<0.05, FWE corrected). I show the increases in positive coupling 
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and decreases in negative coupling separately. These can be seen in a variety of 

connections and frequencies. Table 4.2 and 4.3 summarized these significant age-

related differences. Interestingly, there was no significant strength decrease in 

positive coupling (i.e. reduction of excitation), nor a significant strength increase 

in negative coupling (i.e. reduction of inhibition; for example, the coupling 

strength rises from -5 to -3) when comparing the parameters of the old group to 

the young.  Note that because there are no RPM-LM1 connections in the motor 

network of young subjects, the statistical test on these coupling matrices are 

identical to those in Figure 4.5B and 4.6 B.   

 

 

4.3 Discussion  

 

In this chapter, I found that the motor network of older subjects has 

diminished left hemispheric dominance during right hand movement as the older 

subjects recruit right PM-left M1 connections. In addition, these age-dependent 

right PM-left M1 connections are inhibitory. Furthermore, the ‘old’ motor 

networks have more negative effects in relation to the ‘young’ motor networks 

that employ more positive coupling mechanisms.  

 

Inference on model space 
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Firstly, BMS suggests that there is significant difference in the best model 

for each group; the symmetric model (s-ILLEN) was the best model for older 

subjects, as opposed to the asymmetric model (l-ILEN) for younger subjects. This 

was reflected in a significant model by group interaction, when I performed an 

ANOVA on the log-evidences (Group x Laterality: p = 0.002). Interestingly, there 

was no main effect of group on the log-evidence, which means most models being 

tested were as good at explaining both group data.  

 

Possible functional role of inhibition in motor networks of old subjects 

 

A key finding in this chapter is that the older subjects use more inhibitory 

mechanisms, including the age-dependent right PM-left M1 connections. At a 

cellular level, inhibitory neurons play an important role in regulating excitatory 

activity in the cortex and contribute to the generation of gamma oscillations 

(Chance et al., 2002; Sohal and Huguenard, 2005). For example, in the auditory 

cortex, cortical inhibition in sound processing can increase its temporal precision 

(Wehr and Zador, 2003). In somatosensory cortex, inhibition controls the activity 

of receptive fields as well as their temporal precision (Bruno and Simons, 2002). 

Furthermore, excitatory and inhibitory neurons are synchronized, when generating 

sensory-evoked responses (Okun and Lampl, 2008). Moreover, inhibition may 

play an important role in activity-dependent synaptic plasticity (see Sun 2007 for a 

review). As the performance of old subjects was not significantly different to that 

of young subjects, one possible role of enhanced inhibitory coupling may be to 
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fine-tune the motor system in response to age-related changes; so that 

performance can be maintained.  

 

 

 

 

In relation to previous fMRI and TMS findings   

 

In fMRI studies of hand-grips, task-related activation is more diffuse and 

bilateral in older subjects as opposed to the more focused and lateralized 

responses in young subjects (Ward et al., 2007; Ward et al., 2008). Specifically,  

age-related signal increases have been seen in ipsilateral M1 and PM; i.e. in older 

subjects, activations in these areas are greater (Naccarato et al., 2006, Ward, 

2006a, Ward et al., 2007; Ward et al., 2008). It is reasonable to assume that 

neuronal engagement of ipsilateral PM in old subjects may explain the increase of 

activation in ipsilateral PM seen in fMRI studies; as when the neurons are firing, 

they consume energy and result in metabolic changes. Interestingly, as PM 

exhibits an inhibitory effect, our findings might imply that the MEG based 

characterization (i.e. positive (+) and negative (-) coupling) may not always be in 

accordance with fMRI (i.e. activation (+) and deactivation (-)). Such a dissociation 

has been seen in PET (Hershey et al., 2003; see also Buzsaki et al., 2007 for a 

review on inhibition and brain work) and in EEG-fMRI studies (David et al., 2008) 

where inhibitory activity was shown to increase the blood flow / BOLD signal.  
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In terms of the cause of the increased responses in ipsilateral M1, TMS and 

fMRI studies suggest that the reduction of interhemispheric inhibition (IHI) from 

left M1 to right M1 might be attributed to the increases of ipsilateral activation 

during right-hand movement (Talelli et al., 2008a; Talelli et al., 2008b; Ward et al., 

2008). This reduction of IHI in advancing age is highly task- and inter-stimulus 

interval-dependent. At first glance, this TMS result seems to contradict the 

findings in this chapter as I found no significant reduction of IHI. Instead, there is 

increase in IHI from left M1 to right M1 (Figure 4.7 lower panel; Table 4.3). 

However, the two measures are different in many ways. Firstly, the temporal 

resolution: the estimate of IHI was based on rather transient peripheral signals: a 

ratio of the conditioned / unconditioned motor evoked potential. This is different 

to DCM for IR, where the coupling parameters represent the estimated coupling 

strength over peristimulus time (in this study, -500 ~+1000 ms). Secondly, as IHI 

uses peripheral signals, it provides indirect and partial measurement of neuronal 

dynamics. In contrast, DCM for IR models the spectral densities of coupled 

neuronal sources directly. Further studies using TMS and DCM for IR may help to 

clarify the functional roles of inhibitory mechanisms in the motor system.   
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Figure 4.3 Average coupling parameters across young subjects (A) and old 

subjects (B). Positive are brighter 
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Figure 4.4 Average of coupling parameters across young subjects (A) and old 

subjects (B). Negative values are brighter. 
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Figure 4.5. SPMs testing for positive coupling parameters (first level analysis:  

one-tailed t-test thresholded at p<0.005 uncorrected). (A) SPM{t} of young 

subjects, (B) SPM{t} of old subjects. 
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Figure 4.6 SPMs testing for negative coupling parameters (first level analysis:  

one-tailed t-test, thresholded at p<0.005 uncorrected). (A) SPM{t} of young 

subjects, (B) SPM{t} of old subjects  
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Figure 4.7  Two sample t-test reveals the significant increases in positive coupling 

(upper panel) and decreases in negative coupling strength (lower panel) in old 

subjects compared to young subjects (p<0.05, FWE corrected).  
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Table 4.2 Summary of two sample t-test on coupling parameters (increases)  
                    

 LM1 RM1 SMA LPM RPM 
LM1  Alpha-alpha    

RM1 alpha-theta  
alpha –beta 
beta-alpha 
 

 Alpha-alpha  Theta-alpha 

SMA Alpha-alpha Alpha-alpha  Alph-alpha Alpha-
theta/alpha 

LPM Alpha-
theta/alpha 

   Beta-
alpha/beta 

RPM  Beta-alpha Alpha-alpha Gamma-alpha  

 

 
Table 4.3 Summary of two sample t-test on coupling parameters (decreases)  
                    

 LM1 RM1 SMA LPM RPM 
LM1  Alpha-alpha 

Gamma-alpha 
Alpha/beta-
theta/alpha 

Alpha-
beta/gamma 
Gamma-alpha 

Gamma-alpha 

RM1 alpha-gamma  
alpha/beta-
alpha 
 

 Alpha-
gamma 

Beta/gamma-
alpha 

Alpha-
gamma 
Beta-beta 
Gamma-alpha 

SMA Alpha-alpha 
Alpha-
gamma 

Theta-beta 
Beta-gamma 

 Alpha-alpha 
Gamma-alpha 

Beta-gamma 

LPM Alpha/beta-
gamma 

Alpha-
beta/gamma 
Beta-gamma 
Gamma-alpha 

Beta-
beta/gamma 
Gamma-alpha 

 Alpha-alpha 

RPM Gamma-alpha 
Beta-gamma 

Theta-
beta/gamma 
Beta-gamma 
Gamma-
theta/alpha 
Gamma-
gamma 

Beta-beta 
Gamma-
gamma 

Alpha-
alpha/beta 
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CHAPTER 5 

 
FUNCTIONAL ASYMMETRIES IN 

FORWARD AND BACKWARD 
CONNECTIONS IN FACE 

PROCESSING   
 

 

 

5.1 Introduction  
 

In previous two chapters, I have shown the DCM results in motor systems using a 

simple linear form DCM. In this chapter, I aim to show the use of bilinear form of DCM 

that allows the modelling of experimental manipulations. I tested whether there are 

functional asymmetries between forward and backward connections in the brain during 

face perception. The aim of this chapter is to ask if there is an asymmetry in nonlinear or 

modulatory influences among different levels of a cortical hierarchy. I addressed this 

asymmetry using MEG data obtained from human subjects during the processing of faces 

and tried to explain the observed responses using models that do and do not have 

nonlinear connections.  This enabled us to quantify the evidence for nonlinear coupling in 

qualitative terms, using model comparison.  I then compared forward and backward 

coupling strengths quantitatively, to test for any asymmetries, under the best model. 

 

5.1.1 Hierarchical connections and functional asymmetries 
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It is now generally accepted that, at least in the sensory cortex, the brain has a 

hierarchical organisation that is defined largely by asymmetries in extrinsic cortico-

cortical connections (Maunsell and van Essen 1983; Zeki and Shipp 1988; Felleman and 

Van Essen 1991; for motor systems this issue is more controversial, see Shipp 2005).  

These asymmetries classify a connection as being forward or backward (Rockland and 

Pandya 1979) and therefore define an implicit (although not necessarily unique; Hilgetag 

et al 2000) hierarchy of areas.  The laminar specificity of forward and backward 

projections is a key anatomical asymmetry, which may speak to ensuing functional 

asymmetries (Sandell and Schiller 1982; Murphy and Sillito 1987; Salin and Bullier 

1995; Lamme et al. 1998; Angelucci et al. 2002a,b). One of the important aspects of this 

anatomical asymmetry is that backward connections make synaptic connections 

predominantly in supra-granular layers, with en-passant connections in infra-granular 

layers.  This is relevant because voltage sensitive (i.e., nonlinear) receptors like NMDA 

receptors populate, largely, the supra-granular layers (Fox et al. 1989; Rosier et al. 1993), 

suggesting that backward connections may have preferential access to modulatory, 

voltage-dependent post-synaptic effects with long time-constants (c.f., Eaton and Salt 

1996; Gentet and Ulrich 2004).  Similarly, backward connections have also been found to 

target metabotropic glutamate receptors which, like NMDA receptors, have long time-

constants and are thus able to mediate context-sensitive effects (Rivadulla et al. 2002; Salt 

2002).  The notion that backward connections are more modulatory, in relation to the 

driving effects of forward connections (Salin and Bullier 1995; Sherman and Guillery 

1998), is further supported by the higher degree of divergence that backward connections 

display and by their ability to transcend more than one cortical level (Zeki and Shipp 

1988).  In short, most of the evidence from the anatomy of extrinsic (inter-regional) 

connections, from the spatial distribution of their synaptic connections across cortical 

layers and from their physiology, points to a functional asymmetry between forward and 
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backward connections.  This asymmetry is consistent with a role for backward 

connections in modulating, coordinating or providing contextual guidance to bottom-up 

processing that is driven by forward connections.  There are many examples of this 

ranging from the mediation of extra-classical receptive field effects (Angelucci and 

Bressloff 2006; Hupe et al. 1998; Lamme and Roelfsema 2000) to the implementation of 

gain mechanisms that may be involved in attention and biased competition (Larkum et al. 

2004). Indeed, direct evidence for the modulatory effect of backward connections has 

been obtained from reversible deactivation studies in monkeys (Sandell and Schiller 

1982; Girard and Bullier 1989; Hupe et al. 1998) and non-invasive fMRI studies of 

humans (Friston et al 1995; Büchel and Friston 1997; Stephan et al. 2008). However, 

there have been no direct comparisons of modulatory effects in forward and backward 

connections in man. 

 

5.1.2 Modulatory effects and nonlinear coupling 
 

The defining characteristics of modulatory pre-synaptic inputs are nonlinear 

interactions with other pre-synaptic inputs when generating post-synaptic responses.  

Examples here include the mechanisms of classical neuromodulatory neurotransmitters 

that, for example, change the conductance of slow potassium channels that mediate after 

hyper-polarisation (e.g., Metherate et al. 1992; Faber and Sah 2003).  These sorts of 

effects change the response profile of neurons, such that they respond differently to the 

same driving input.  Another key example is the voltage-dependence of NMDA receptor 

activation, which means that the effect of pre-synaptically released glutamate at these 

receptors is context-sensitive and nonlinear (e.g., Schiller and Schiller 2001).  A third 

important example of nonlinear interactions relates to action potentials that are back-

propagated by means of active conductances throughout the dendritic tree to elicit long-
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lasting calcium currents; this means that, depending on the relative timing of synaptic 

inputs, the propagation of postsynaptic potentials can be facilitated or blocked by 

preceding synaptic inputs (e.g., Larkum et al. 2004; London and Häusser 2005).  

The equivalence between modulatory effects of synaptic connections and 

nonlinearities in neuronal input-output relations is important because nonlinear effects 

can be characterised relatively easily using only the observable inputs and outputs of a 

system.  In brief, nonlinear effects induce high-order generalised convolution kernels, in 

the time domain, or generalised transfer functions in the spectral domain (Friston 2001).  

These high-order functions couple certain frequencies in the input to different frequencies 

in the output.  A simple example here would be the nonlinear squaring of a sinusoidal 

wave to double its frequency.  This means I can formulate questions about the modulatory 

effects in terms of coupling between frequencies in spectral responses that are observed in 

different parts of the brain.  This is the basis of a recently developed dynamic causal 

model (Friston et al. 2003) for EEG and  MEG (Chen et al. 2008) that allows one to test 

various models with and without nonlinear (between-frequency) coupling among 

specified regions or sources.  The study in this chapter is based on this approach. 

 

5.1.3 Nonlinear coupling and generative models in the brain 
 

There are many heuristics that have been used to frame the importance of nonlinear 

or modulatory coupling in the brain.  I focus on a specific but dominant account of 

functional anatomy, based on hierarchical inference and learning in the brain (Helmholtz 

1860; MacKay, 1956; Ballard et al. 1983; Mumford, 1992; Kawato et al. 1993; Dayan et 

al. 1995; Rao and Ballard 1999; Rao 1999; Friston 2003; Kersten et al. 2004; Friston 

2005; 2006).  This account suggests that the brain is an inference machine that uses 

generative models to predict incoming sensory information.  In this framework, also 
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referred to as predictive coding (Rao and Ballard 1999; Friston 2005), perceptual 

inference corresponds to optimising putative causes of sensory input by minimising 

prediction error (or, equivalently, variational free-energy).  Predictive coding states that 

brain actively predicts what the sensory input will be, rather than just passively 

registering it, when trying to represent the environment.  Predictive coding is a framework 

that is equivalent to empirical Bayesian inference in a hierarchical setting (Mumford 

1992; Friston et al., 2005; Friston and Kiebel, 2009; Kilner et al., 2007); where the brain 

tries to infer the causes sensory input. In a biological setting, the minimising of PE can be 

considered as suppressing the activity of error units using a gradient decent on the 

variational free-energy associated with the brains internal model of the work and the 

current sensory input. 

This can be achieved simply by generating predictions at higher levels of the 

cortical hierarchy, which are passed to lower levels to explain away bottom-up inputs.  

These predictions are updated by prediction errors, conveyed by the forward connections.  

This scheme entails forward and backward message passing and is formally identical to 

hierarchical or empirical Bayesian inference (Friston 2003).  Critically, because 

predictions are formed using a generative model of the world, this account predicts that 

the influence of backward connections is necessarily nonlinear (Friston 2003). A simple 

example of nonlinearity, in generative models of visual input, would be the occlusion of 

one object by another.  If higher level representations of an object and its occluder are 

used to provide a prediction of the sensory input, then these top-down effects must 

interact nonlinearly to encode the occlusion per se.  In short, under empirical Bayesian or 

predictive coding models of perceptual inference, backward connections that convey 

predictions should suppress activity in lower levels encoding prediction error. Critically, 

this explaining away of prediction error rests on nonlinear mechanisms. This is 



 

 142 

compatible with the physiological evidence, described above, that backward connections 

mediate modulatory effects. 

 

The functional properties of forward connections are predominantly, but not 

exclusively, linear; see Friston 2003 and Sherman & Guillery 1998 for a summary of the 

neurophysiological evidence. However, there is some empirical evidence that forward 

connections may also exhibit nonlinear properties.  For example, transmission of sensory 

information along forward connections can involve NMDA receptors (Fox et al. 1990; 

Kelly and Zhang 2002; Salt 2002).  According to predictive coding theories, forward 

connections mediate the influence of error units in lower levels on representational units 

in higher levels, and these bottom-up influences are linear in prediction error (Friston 

2003).  However, "... although the forward connections mediate linearly separable effects, 

these connections might be activity- and time-dependent because of their dependence on 

[higher representations]" Friston (2003). This means the strengths of forward connections 

may be activity-dependent and therefore appear nonlinear. 

 

In summary, on the basis of the above empirical and theoretical considerations I 

predicted that coupling between high and low areas would entail cross-frequency or 

nonlinear coupling. This is because there is substantial evidence that at least one arc 

(backward connections) of reciprocal self-organising exchanges between visual areas 

rests on nonlinear synaptic mechanisms.  Furthermore, I predicted that backward coupling 

would suppress neuronal activity in the lowers areas and that this suppression would; (i) 

be manifest as a significant cross-frequency (nonlinear) suppression (ii) be significantly 

greater than the equivalent coupling in the forward direction. To test these hypotheses, I 

used a recently validated dynamic causal model for induced responses measured with 

M/EEG (Chen et al. 2008) to implement different models with and without nonlinear 
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(between-frequency) coupling among regions involved in visual face processing. Using 

Bayesian model selection (Penny et al. 2004), I compared models in which forward and 

backward connections could either be linear or nonlinear.  I was hoping to show that, 

qualitatively, nonlinear models were significantly better than their linear homologues. I 

then examined the coupling estimates from the best model to test the quantitative 

hypotheses about the suppressive effects of backward connections. 

 

This work comprises three sections.  In the first, I briefly summarise dynamic 

causal modelling for induced responses.  This technique is then applied to an MEG study 

of face perception, as described in the second section.  This section describes the factorial 

construction of four DCMs that were inverted to provide the evidence for each model and 

subject (i.e., probability of the data given the model).  I then identified the best model 

using Bayesian model comparison and established the consistency of model selection at 

the between-subject level by analysing the model evidences.  In the final section, I present 

the quantitative characterization of coupling using the conditional parameters estimated of 

the best model to test for predicted top-down suppression and forward-backward 

asymmetries.  

 

5.2 Data Acquisition and Analysis 
 

5.2.1 Experimental design and data pre-processing  

 

I analysed spectral responses induced by face processing in ten normal subjects as 

measured with MEG (Henson et al. 2007). Here, I analyse data from a single, eleven 

minute session, in which subjects saw intact or scrambled faces, subtending visual angles 

of approximately four degrees. I chose these data because visual processing of face 
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stimuli vs. degraded face stimuli is an example of a perceptual process that has been 

investigated previously and interpreted in terms of predictive coding principles (c.f. 

Summerfield et al. 2006).  Scrambled versions of each face were created by phase-

shuffling in Fourier space and masking by the outline of the original image. The 

scrambled faces were therefore matched for spatial frequency power density and size. 

Subjects made left-right symmetry judgments about each stimulus by pressing one of two 

keys with either their left or right index finger (range of reaction times was 1031 to 1798 

ms). There were 86 intact and 86 scrambled face artefact-free trials as revealed by visual 

inspection. Ten subjects were tested, five female (young to middle-aged adults). The 

MEG data were sampled at 625 Hz on a 151-channel axial gradiometer CTF Omega 

system at the Wellcome Trust Laboratory for MEG Studies, Aston University, England. 

No subject moved more than 6 mm across the session (median = 1.1 mm, range = 0.2 - 

5.6 mm).  

 

The MEG data were pre-processed using SPM5 (Wellcome Trust Centre for 

Neuroimaging, London). The data were epoched from -600 to +1800 ms, and projected 

from channel space to source-space using the generalised inverse of the lead-field matrix 

for the chosen sources (see Model specification below for details). The lead-field (gain 

matrix) was computed using the coregistered channel locations and a single-sphere 

forward model computed by Fieldtrip (F.C. Donders Centre for Cognitive Neuroimaging, 

Nijmegen, as implemented in SPM5). The spectral densities from 4 to 48 Hz at each 

source were computed using a time-frequency Morlet wavelet transform (Equation 1; 

wavelet number: 7) between -100 and 600 ms of peristimulus time. The resulting time-

frequency responses were first converted to absolute values and averaged over 86 trials 

for each condition and then baseline-corrected by subtracting the frequency-specific 

power of the first time-bin. For computational expediency, I reduced the dimensionality 
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of spectra to four principal frequency components derived from a singular value 

decomposition (SVD) of the spectra (over conditions and peristimulus time, within 

subjects). This preserved over 93 % of the spectral variance in all subjects.   Note that the 

generalised inverse of the lead-field described here is one of many inversion schemes that 

one can use to project data from channel to source space (Darvas et al., 2004; Friston et 

al., 2008; Kiebel et al., 2007; Michel et al., 2004). The generalised inverse is an 

appropriate projector if one knows a priori where the sources are located. However, the 

results of any model inversion under these prior assumptions are conditional on the 

chosen sources being a reasonable summary of the real neuronal sources. If any sources 

are omitted and misplaced there will be a better model of the data and possibly a different 

conclusion from model comparison. If one did not know where the spectral signals were 

coming from, the beam-former method could be one useful strategy that allows one to 

localize the source positions and estimate spectral features empirically (Singh et al 2003). 

 

5.2.2 Model specification 

 

The anatomical source locations were the maxima of ventral temporal activations 

in a group SPM analysis of fMRI data from exactly the same paradigm though different 

subjects (Henson et al. 2003). Those sources have also been reported in MEG face studies 

(Henson et al. 2007; Itier et al, 2006). Figure 5.1 shows the location of these sources in 

Montreal Neurological Institute (MNI) coordinates and on a template MRI image in that 

space. These four sources correspond to the fusiform face area (FFA) and the occipital 

face area (OFA), bilaterally.  The central panel of Figure 5.1 shows the connectivity 

graph, which served as the basis for constructing alternative DCMs.  I assumed reciprocal 

intra-hemispheric connections between OFA and FFA and reciprocal inter-hemispheric 

connections between homotopic areas.  Additionally, I assumed cross-hemispheric 
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connections between OFA and contralateral FFA. This connection was added because a 

previous fMRI study of a prosopagnosic patient with lesions of left FFA and right OFA 

found normal activation in the right FFA for faces vs. non-faces (Rossion et al. 2003). 

One possible input to this patient's right FFA is from the intact contralateral OFA. I 

therefore included forward connections from OFA to contralateral FFA. The connectivity 

architecture for the models considered in this work is shown in Figure 5.2. All models 

included reciprocal connections between the visual and fusiform areas within and across 

the hemispheres. The intrinsic connections were set to be nonlinear because of the highly 

complex organization of the visual cortices. In mammals, neuroanatomical studies have 

identified more than 30 functionally distinct cortical areas in extrastriate cortex, for 

example, with colour- and spatial frequency-sensitive cells (Livingstone and Hubel, 1988; 

Zeki and Shipp, 1988; Felleman and Van Essen, 1991). Therefore, a specific yet flexible 

binding mechanism is required in the network that accounts for the integration of 

distributed activation patterns for information processing and selection in the visual 

system. In this study, I assumed this binding mechanism to be nonlinear and focussed on 

the functional asymmetries in forward and backward connections. It is possible that a 

model with intrinsic linear coupling is a better model and I will address this in future 

work. Stimuli entered the left and right OFA.  I used a factorial approach to specify the 

models, which systematically varied the form of the A and B matrices in Eq. 2:  These 

models differed according to whether the forward and backward connections, (and 

implicitly their modulation by face–selective processing) were linear or nonlinear (see 

upper left panel in Figure 5.2).  This resulted in four models (lower panel in Figure 5.2): 

 

- FLBL: linear forward connections and linear backward connections 

- FNBL: nonlinear forward connections and linear backward connections 

- FLBN: linear forward connections and nonlinear backward connections 
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- FNBN: nonlinear forward connections and nonlinear backward connections 

 

I restricted face-selective effects (encoded by the B matrix) to intra-hemispheric 

forward and backward connections. Clearly, these models are a highly simplified 

representation of the "core system" for face processing identified by Haxby and 

colleagues (Haxby et al., 2000; Fairhall and Ishai 2006).  However, they are sufficient to 

address the question, i.e. to distinguish between linear and nonlinear coupling in a 

hierarchical neuronal network. 

 

 

 

Figure 5.1  Location of the four sources (in MNI coordinates) shown on a 

template MRI image. The central panel shows the basic connectivity structure of 

the models, which are presented in more detail in Figure 5.2.  OFA: left and right 

occipital face area; FFA: left and right fusiform face area. 
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Figure 5.2  The upper panel shows the factorial structure of model space: models 

differed according to whether the forward and backward connections (and 

implicitly their modulation by face vs. scrambled face stimuli) were linear or 

nonlinear. The lower panel shows the connectivity architecture of the ensuing 

DCMs. The solid and dashed lines indicate nonlinear and linear connections, 

respectively.   N: nonlinear coupling; L: linear coupling; F: forward connection; 

B: backward connection. For simplicity, the intrinsic (self) connections are 

omitted. These were nonlinear (see previous figure). 

 

 

5.2.3 Statistical testing on coupling parameters 

 

To make inferences about the coupling parameters of the best model, the 

conditional expectations of the forward and backward coupling matrices were entered into 

a conventional between-subject SPM analysis to identify significant, frequency-specific, 

differences in effective connectivity. I tested for significant negative or suppressive 
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effects in backward connections, relative to forward connections for coupling under face 

processing (A plus B matrices, see chapter 2 for details). I then repeated this comparison 

for the face-selective component of coupling (B matrix). After performing these t-tests I 

computed an SPM of the F-statistic to ensure that the planned comparisons had not 

missed any other significant differences. The SPM were displayed at p<0.05 

(uncorrected) and I report maxima at a corrected p<0.05 level (Kilner et al. 2005). 

 

5.3 Results 

 

5.3.1 Inference on models 

 

Four DCMs were inverted for each subject as described above. The summed log-

evidences over subjects are shown in Figure 5.3 (left panel).  It can be seen that the best 

model is FNBN (log-evidence sum = -11895), followed by FLBN (-16306), FNBL (-16308) 

and FLBL (-59890).  In other words, the model with nonlinear forward and backward 

connections was vastly superior to all other models, whereas the model with linear 

forward and backward connections was clearly the worst. The two ‘mixed’ models were 

fairly similar in log-evidence (i.e., positive but not strong evidence for exclusive 

nonlinear coupling in backward connections relative to forward connections). A repeated-

measures ANOVA showed there was a significant interaction (F = 13.468; p = 0.005; df 

1,9); suggesting that when backward connections are linear, the log-evidence is greatly 

affected by whether forward connections are nonlinear; conversely, when backward 

connections are nonlinear, the log-evidence is much less influenced by the nature of 

forward connections (see Figure 5.3; right panel).  Post-hoc t-tests, confirmed that 
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nonlinear model was significantly better than all other models (FLBL: t = 4.473, p = 0.001; 

FNBL: t = 1.908, p = 0.044; FLBN: t = 2.306, p = 0.023; df = 9). 

To verify that my assumptions about the basic connectivity structure (c.f. Figure 

5.2) were sound, I created two variants of the FNBN model.  These included a simplified 

model (sFNBN) that contained no cross-hemispheric OFA-FFA connections and a more 

complex model (cFNBN) that contained reciprocal (as opposed to unidirectional) cross-

hemispheric OFA-FFA connections. Bayesian model comparison demonstrated that both 

were clearly inferior to the nonlinear model. Their summed log-evidences were -17243 

(sFNBN) and -15638 (cFNBN) and paired t-tests showed a significant difference in favour 

of the FNBN model (p<0.047 and p<0.008, respectively).  The lower log-evidence for the 

cFNBN model provides another interesting demonstration (c.f., Grol et al. 2007; Stephan et 

al. 2007a), that increasing the complexity of a model does not necessarily improve it. 

 

 

 

Figure 5.3 Left panel: Summed log-evidences for the four DCMs, pooled over subjects.  

It can be seen that the best model is FNBN, followed by FLBN, FNBL and FLBL.  Right 

panel: The averaged log-evidence for all four models with standard errors. 
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In conclusion, I found that the model with nonlinear forward and backward 

connections was the best model and that the model with nonlinear backward connections 

came second.  Figure 5.4 shows the predicted (under the nonlinear model) and observed 

spectral responses at the source level, for the two experimental conditions (faces vs. 

scrambled faces) in a representative subject. 

 

Figure 5.4  This figure shows predicted and observed spectral responses for a 

representative subject, at the source level, under the best model (FNBN), for the two 

experimental conditions (faces vs. scrambled faces).  The top two rows are the observed 

and predicted spectra for normal faces; the bottom two rows are the observed and 

predicted spectra for scrambled faces. 
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5.3.2 Inference on coupling parameters 
 

Figure 5.5 shows the coupling matrices during face processing for the forward and 

backward connections in the right and left hemispheres under the nonlinear model. These 

are the sum of the A and B matrices, averaged over all subjects).  Anecdotally, it can be 

seen that the forward (upper row) and backward (lower row) connections show profound 

nonlinear coupling with substantial off-diagonal structure. Furthermore, there are 

systematic differences between the forward and backward coupling; with the backward 

coupling showing negative or suppressive cross-frequency effects. Quantitatively, these 

are most marked in the right hemisphere for low (alpha) to high (gamma), and from 

gamma to alpha in both hemispheres (red arrows). I tested for these putative asymmetries 

with planned comparisons. 

 

The SPM testing for a significant suppression in backward, relative to forward 

connections is displayed by Figure 5.6 (thresholded at p<0.05 uncorrected).  These 

comparisons used a stimulus times hemisphere times forward vs. backward repeated 

measures ANOVA with restricted maximum likelihood estimates of non sphericity 

among the errors. The smoothness of the underlying residual fields was 7.8 x 6.5 Hz 

resulting in about 32 resolution elements (i.e., effective samples over the frequency x 

frequency search space of the SPM). This comparison was averaged over hemispheres 

because I failed to detect a hemisphere times connection interaction. The most (and only) 

significant difference (red arrow) was in the coupling from high (gamma) frequencies to 

low (alpha) frequencies. This difference was extremely significant (t = 4.72; p = 0.002, 

corrected; df =72).  The subject-specific estimates of coupling strength for this cross- 

frequency coupling are shown in the lower panels for both hemispheres. In the right 

hemisphere, this difference is due mainly to a suppressive effect of backward 
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connections; where, remarkably, every subject had a negative connection strength. In the 

left hemisphere, the difference appeared to be augmented by an activating effect of 

forward connections. 

 
Figure 5.5  Coupling matrices, averaged across subjects, for the coupling strengths of 

forward and backward connections in the right and left hemispheres of the FNBN model. 

 

I then repeated exactly the same analysis but testing for asymmetry in face-

selective changes in coupling (i.e., looking just at the B matrix). Although this 

comparison is not orthogonal to the previous comparison, it is reassuring to see exactly 

the same differences. The only significant difference was again between gamma and 

alpha frequencies and was even more significant (t = 5.09; p = 0.001 corrected; df  =72) 

than coupling under faces per se (Figure 5.7; left panel). Finally, the right panel of Figure 

5.7 shows the SPM of the F-statistic testing for any differences in coupling over stimuli, 

hemispheres or connections. There were only three peaks that survived a corrected p-
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value of 0.05 and only one of these related to nonlinear coupling (F = 5.78; p = 0.006, 

corrected; df = 8,72). This is exactly the same frequency-specific coupling identified by 

the planned comparisons.  This SPM is shown to illustrate that the planned comparisons 

did not miss any other significant differences and shows that cross-frequency suppression 

mediated by backward connections, relative to forward connections, was the most 

prominent among all differences. 

 

 

Figure 5.6  Upper panel: SPM of the t-statistic testing for a greater suppressive effect of 

backward connections, relative to forward connections. The SPM is thresholded at p<0.05 

(uncorrected).  Lower panels: Subject-specific estimates of the coupling strength at the 

maximum of the SPM (red arrow) presented for each hemisphere. 
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Figure 5.7  Left panel: SPM of the t-statistic testing for a greater suppressive effect of 

backward connections, relative to forward connections in the face-selective changes 

coupling.  Right panel: SPM of the F-statistic testing for any difference in frequency-

specific coupling over connections, conditions or hemispheres. Both SPMs are 

thresholded at p<0.05 (uncorrected). Significant (p<0.05 corrected) peaks are indicated by 

the red arrows). 

 

 

5.4 Discussion and conclusions 

 

Coupling between low and high frequency bands has been documented in both 

animal and human recordings (see Jensen and Colgin (2007) for a review). Canolty et al. 

(2006) demonstrated in humans that the power of high frequency gamma oscillations was 

modulated by the phase of the low-frequency theta rhythm. The implicit nonlinear 

coupling between oscillators at different frequencies builds upon previous studies that 

have identified similar phenomena in both anesthetised (Soltesz & Deschênes 1993) and 

behaving rats (Bragin et al. 1995). Here, I extend these observations by showing that 

nonlinear (between-frequency) interactions can be ascribed to specific intracerebral 

sources and used to disclose asymmetries in directed connections. 
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Intracranial EEG recordings have shown that faces elicit responses across a 

number of regions in the ventral temporal visual-processing pathway (Allison et al. 1994; 

Barbeau et al. 2008) and furthermore that faces can induce changes in the coherence of 

broadband (4-45 Hz) power between those regions (Klopp et al. 1999; Klopp et al. 2000). 

However, little is known about the functional relevance of this coherence or, in particular, 

the role of nonlinear (between-frequency) coupling. It has been suggested that nonlinear 

coupling is a key aspect of functional integration and is an essential aspect of network 

function (Friston 2001; Jensen and Colgin, 2007; Tallon-Baudry and Bertrand, 1999; 

Varela et al. 2001). To my knowledge, this is the first study to quantify and make 

inferences about directed nonlinear coupling.  

 

Model selection furnished strong evidence that nonlinear connections are 

important for explaining the current MEG data: indicating that the best model entailed 

nonlinearities in both forward and backward connections.  The most marked difference in 

nonlinear coupling between forward and backward connections under this model was an 

activating effect of high (gamma) frequencies on low (alpha) frequencies in the forward 

connections and a suppressive effect in backward connections. Not only are these findings 

consistent with empirical evidence from invasive studies but confirmed theoretical 

predictions based on Bayesian treatments of perceptual inference. These predictions 

suggest that backward connections suppress or explain away prediction error as lower 

levels in cortical hierarchies using nonlinear synaptic mechanisms. 

 

One functional role of backward connections is to mediate the top-down 

predictions during perceptual inference. In this study, we found that gamma frequencies 

in the higher level have a suppressive effect on alpha frequencies in the lower level. One 
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possible explanation is that suppressive backward connections may accelerate the decay 

of evoked responses in the lower level that encode prediction error (i.e., explain away 

prediction error). We do not motivate the exact form of the underlying mechanisms in the 

generative model; rather we model the neuronal dynamics in a phenomenal fashion. 

Therefore, there may be other explanations for this negative nonlinear backward coupling. 

However, the phenomenology we observed is consistent with the predictive coding 

architecture discussed above.  

 

I was a bit surprised to find that high-frequencies affected low-frequencies.  I had 

expected to see the converse given empirical results (e.g., Canolty et al. 2006) and the 

simulations reported in Friston (2001). However, on reflection, the current results are 

entirely sensible if one considers that high (gamma) frequencies reflect increased 

neuronal firing (Chawla et al 1999): Heuristically, this means that gamma activity in low-

level areas induces slower dynamics at higher cortical levels as prediction error is 

accumulated for perceptual synthesis. The concomitant high-level gamma activity (due to 

intrinsic nonlinear coupling) then accelerates the decay of evoked responses in the lower 

level that are manifest at, the population level, as damped alpha oscillations. However 

these mechanistic speculations will need a lot more work to confirm. 

 

 

In conclusion, using a model-based approach that allows for probabilistic estimates 

of brain connectivity and its modulation by experimental conditions, this work provides 

empirical evidence for a functional asymmetry between forward and backward 

connections in the human brain that is consistent with neuroanatomical and 

neurophysiological data from animal studies. First, qualitative Bayesian model 

comparison disclosed overwhelming evidence for nonlinear models, in relation to 
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formally equivalent models with linear coupling.  Secondly, I found a striking 

quantitative asymmetry between forward and backward connections with regard to 

stimulus-bound and stimulus-specific (faces relative to scrambled faces) nonlinear 

coupling. This asymmetry was extremely significant and reproducible over subjects, even 

under the very conservative SPM procedures for multiple comparisons. This work is a 

starting point for further investigations of functional asymmetry between forward and 

backward connections in the human brain. Here, I restricted the models to the bilateral 

OFA and FFA regions believed to form the core of the visual face-processing system 

(Haxby et al., 2000). Future modelling studies will include other regions, such as 

posterior STS, which may also show changes in nonlinear coupling under other stimulus 

manipulations (e.g., different facial expressions, Winston et al. 2004). 
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CHAPTER 6 

 
BACKWARD CONNECTIONS 

MEDIATE INDUCED RESPONSES  
 

 

 

6.1 Introduction and specific aim 

 

A central focus of the work in this thesis is evoked and induced task-related 

oscillatory responses. Evoked and induced power can be identified according to 

their phase relationship to the stimulus:  Evoked components are phase locked to 

the stimulus, whereas induced responses exhibit trial-to-trial jitter in latency. A 

growing number of studies have demonstrated that induced responses, especially 

in gamma-band range (30-70 Hz), increase with cognitive demand; such as 

attention, learning and face perception (Tallon-Baudry and Bertrand, 1999; see 

Kaiser and Lutzenberger, 2003  and  Lee et al., 2003 for comprehensive reviews). 

Cognitive processing rests on endogenous mechanisms whereby the brain exerts 

influences over afferent information through top-down effects. Some task-specific 

induced responses are thought to reflect this top-down effect; whereas evoked 

responses are thought to be mediated by forward projections (Tallon-Baudry and 
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Bertrand, 1999; see Kaiser and Lutzenberger, 2003  and  Lee et al., 2003 for 

comprehensive reviews).  However, the detection of induced responses relies upon 

comparisons between carefully matched experimental and control conditions 

(Kaiser and Lutzenberger, 2003) and the results may be misleading if there are 

factors that contribute to conditions. In this chapter, I generalize the use of DCM 

for IR to explain both evoked and induced responses in the same condition, in 

terms of differences in forward or backward connections. I do this by treating the 

time-frequency expression of evoked and induced responses as different 

conditions and comparing models of condition-specific changes in coupling that 

account for the extra power associated with induced responses. 

This approach allows the direct study of the relationship between the 

evoked and induced neural activity with respect to the underlying mechanisms. In 

particular, one can ask whether induced responses are mediated by ‘top-down’ or 

backward connections.  I will illustrate this using the dataset from the hand grip 

paradigm described in chapter 3. Specifically, I test three models which differ in 

the connections that change when modeling induced, relative to evoked spectral 

responses: forward (F), backward (B) and forward-backward (FB) model. In the 

next section, I briefly reprise the generative model used in this work. 

 

6.2 A generative model of evoked and induced responses 

 

This generative model is exactly the same as the DCM described in chapter 

2 (Equation 13) and used in chapter 5; but is recapitulated here to highlight how 
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we model the difference between evoked and induced responses in terms of their 

generating mechanisms. I start with the usual bilinear model: 

CugBvAg
l

l
l ++= ∑ )(&τ  

where the l indicates condition. The matrices A  and C  contain coupling 

parameters that control changes in spectral activity induced by other sources and 

exogenous (e.g., stimulus) inputs, )(tu . The matrices B are introduced to encode 

the coupling changes induced by the condition effects, v . The v inputs here serve 

as a contrast weight function that enables selective condition-specific changes in 

coupling. This selectivity is specified by the B matrix. Here, the first value is zero 

for the evoked responses and the second value is one for the induced responses. 

This means the B matrix mediates the changes in coupling for induced response 

components that are not evident in evoked components. In this application the 

condition effects represent whether the data features reflect evoked or induced 

responses, for any particular trial type. This also implies that the evoked and 

induced data are concatenated along the (area x frequency) dimension. Evoked 

and induced ‘conditions’ are created during preprocessing by performing the time-

frequency analysis after (evoked) and before (induced) trial averaging. As 

previously the coupling matrices decompose into: 

 

















=
















=
















=
K
i

i

i
KK
ij

K
ij

K
ijij

ij
KK
ij

K
ij

K
ijij

ij

c

c
C

bb

bb
B

aa

aa
A M

K
MOM

L

K
MOM

L 1

1

111

1

111

    

   

     



 162 

Under this model, the scalar 
kl
ija  encodes how changes in the k-th frequency 

in the i-th source depend on the l-th frequency in the j-th source.  The leading 

diagonal elements are 1−=kk
iia ; this means that each frequency has an intrinsic 

tendency to decay or dissipate.  Similarly, 
k
ic  controls the frequency-specific 

influence of exogenous inputs on the k-th frequency in the i-th source.  This 

enables within and between-frequency coupling within and between sources. This 

generative model uses the A matrices to model the ‘shared’ underlying 

mechanisms for both the evoked and induced activities and leaves what can not be 

explained by the shared mechanisms to be modeled by the B matrices.   

 

6.3 Data and Model specification 

 

Nine healthy, right-handed (mean age 26, range 20~32 years of age) 

subjects participated in this study. Part of the data has been reported in chapter 3. 

Based on the previous result of the best model (Figure 3.4A and summarized in 

Figure 6.1A), I further tested whether the induced responses are mainly mediated 

by backward (B) or forward (F) or both (FB) connections in the motor network. 

To this end, I compared three models that differed in where the modulatory effects 

take place as shown in Figure 6.1B. I focused on the modulation in the left 

hemisphere since this is a right hand movement task. In this model, the SMA is 

assumed to be in the higher level of motor hierarchy than PM and MI as suggested 

by studies in which the Bereitschaftspotential (BP; or readiness potential/ field) 

has been measured, and which suggest that SMA is involved in planning and 



 163 

LM1 RM1

LPM RPMSMA

(a)

(b)

LPM

RM1LM1

RPM

SMA

Linear  

Linear
+    

nonlinear

modulation  
effect

F model B model FB model

LPM

LM1

SMA

LPM

LM1

SMA

LPM

LM1

SMA

initiation of movement (Deecke, 1987; Deecke, 1990; Keller and Heckhausen, 

1990; Praamstra et al., 1995; Shibasaki and Hallett, 2006). 

 

 

 

 

 

Figure 6.1 Model specifications of Forward (F), Backward (B), and Forward-

Backward  (FB) models (b) based on the previous results (a).  The basic network 

configuration has the left hemispheric dominance (a; right; see also Figure 3.4A in  
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chapter 3 ) and the modulatory effects are allowed in only forward (F model), or 

backward (B model) or both forward and backward connections (FB model) (b).   

 

6.4 Results  

At the single subject level, the data from five out of nine subjects supports 

the B model while the other four have the F model as the best model. None has the 

FB model as the best model. This provides the evidence that a more complex 

model is not always a better model. At the group level, Bayesian Model Selection 

under both fixed (upper panel) and random effect (lower panel) assumption 

(Penny et al., 2004; Stephan et al., 2009) identifies the B model as a better model 

given the data (Figure 6.2). This result provides the direct empirical evidence that 

backward connections mediate the induced modulatory effects. This finding 

supports that the role of the induced components is associated with a modulatory 

effect that could reflect the top-down processing. 
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Figure 6.2  Group BMS results of  1st-  (upper) and 2nd  (lower)- level 

 

 

6.5 Discussion 

 
A wealth of neuroanatomical evidence suggests that backward connections 

are more modulatory in relation to the driving effects of forward connections 

(Sandell and Schiller 1982; Murphy and Sillito 1987; Salin and Bullier 1995; 

Lamme et al. 1998; Angelucci et al. 2002a,b). Furthermore, the underlying 

generating mechanisms are very likely to be nonlinear (Salin and Bullier 1995; 

Sherman and Guillery 1998). Combined with cognitive findings (Galambos, 1992; 

Tallon-Baudry and Bertrand, 1999), it has further been suggested that induced 
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responses play an important role in facilitating the top-down modulatory effects 

through the backward connections. The finding here supports this notion that 

backward connections from higher areas to lower areas mediated the induced 

modulatory effects and dissociates the induced activities from the evoked. The 

backward modulatory effect is expressed as induced activities, but not evoked 

ones. Importantly, as this task is pre-programmed in the brain through the training 

phase, this backward modulatory coupling is in agreement with the predictive 

coding (Rao and Ballard, 1999) that the planned movement representation in the 

higher level (i.e. SMA and/or PM) inferences the motor commands in the lower 

level of M1. 

 

The functional role of evoked activities remains ambiguous. The most 

accepted hypothesis is that evoked responses reflect the bottom-up driving 

processing mediated by the forward connections and employ mainly linear 

mechanisms. This had been seen at the mesoscopic scale that the propagation of 

signals through the cell layers of the cortex is a linear phenomenon (Yamawaki et 

al., 2008). However, the functional properties of forward connections are 

predominantly, but not exclusively, linear; see Friston 2003 and Sherman & 

Guillery 1998 for a summary of the neurophysiological evidence. In chapter 3, 4 

and 5, I have shown that nonlinear coupling in forward connections exists both in 

motor network and in the core system for face perception at the system level. In 

this chapter, I have found evidence that backward connections mediate the 

induced responses. In addition, recent studies of event-related potential (i.e. 

evoked) show evidence that backward connections are essential in explaining the 
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late ERP components in mismatch negativity studies (Garrido et al., 2007; Garrido 

et al., 2009).  Taken together, both empirical and simulation data (David et al., 

2006) suggest that the evoked and induced responses may use certain common 

mechanisms that generate both components to facilitate the functional integrations 

between areas. Therefore, evoked and induced components share certain 

characteristics, but only induced responses covey the backward modulation 

messages.  Further investigation of the frequency contents in forward and 

backward connections may help to differentiate the functional roles of evoked and 

induced responses.  
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CHAPTER 7 

 
CONCLUSIONS AND 

DISCUSSION 
 

 
… when you can measure what you are speaking about and 

 express it in numbers, you know something about it….. 

William Thompson, Lord Kelvin  

 

 

In chapter 2, I described DCM for induced responses, a framework for 

investigating neural connectivity. Subsequently I applied this approach to the 

analysis and interpretation of real electromagnetic data (chapters 3 to 6). In this 

chapter, I provide a summary of the work in this thesis, followed by a discussion 

and future directions. 

 

 

7.1 Summary and novel contributions of this thesis 

 

The overall goal of this thesis was to further the characterisation of neural 

network connectivity in human brains.  The novel contributions of this thesis can 

be summarized as follows: 
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I. Develop a casual modelling scheme for induced responses in 

electroencephalography and magneto-encephalography, i.e. DCM 

for IR (chapter 2) 

 

 DCM for IR models the time-varying power, over a range of frequencies, as 

the response of a distributed system of coupled electromagnetic sources to a 

spectral perturbation. This is an advanced extension of DCM to cover the 

modelling of components that are not phase-locked to a stimulus (i.e. induced 

responses). The model parameters encode the frequency response to exogenous 

input and coupling among sources and different frequencies. The Bayesian 

inversion of this model enables inferences about the parameters of a particular 

model and allows one to compare different models, or hypotheses. One key aspect 

of DCM for IR is that it differentiates between linear and nonlinear coupling; 

which correspond to within and between-frequency coupling respectively. 

Synthetic data were used to establish the face validity of this approach and 

demonstrate: (1) that nonlinear coupling is mediated by cross-frequency 

interactions; (2) that Bayesian model selection can distinguish between linear and 

nonlinear coupling and (3) the robustness of model parameter estimation against 

noise: i.e., a typical signal to noise ratio of 20 to 15dB gives veridical estimates. I 

then applied this model to EEG data from a face-perception experiment, to ask 

whether there is evidence for nonlinear coupling between early visual cortex and 

fusiform areas.  
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II. Establish nonlinear coupling and age-dependent changes in the 

motor system during hand grip (chapters 3 and 4) 

 

Having established the reliability of DCM for IR, I then applied it to look 

for evidence for additional nonlinear (between-frequency) coupling among 

neuronal sources during hand grip tasks as measured in normal subjects with 

MEG. I was specifically interested in whether nonlinearities would be found 

predominantly in connections within areas (intrinsic), between areas (extrinsic) or 

both. This entailed a comparison of models with and without nonlinear 

connections under conditions of symmetric and asymmetric interhemispheric 

connectivity. Bayesian model comparison revealed very strong evidence for 

nonlinear coupling between sources in this distributed network, but interactions 

among frequencies, within a source, appeared linear in nature and suggested that 

the task-dependent motor network was asymmetric during right hand movements. 

In addition, a quantitative examination of the extrinsic or long-range coupling 

parameters, showed some interesting asymmetries in frequency space and that this 

coupling was predominantly negative or suppressive. The results provide 

empirical evidence for nonlinear coupling among distributed neuronal sources in 

the motor system and that these play an important role in modulating spectral 

responses under normal conditions.  

In addition, I tested for age-dependent changes in motor networks during 

hand gripping tasks. I found that the normal aging process alters both the network 

architecture and cross-frequency coupling in the motor network. Specifically, in 
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old subjects, the right hemisphere is engaged more in right hand movements, 

relative to young subjects with the appearance of contralateral premotor to 

ipsilateral motor inhibitory and coupling, which was markedly nonlinear. In terms 

of frequency-specific coupling, in old brains, the communication between left and 

right M1 used higher frequencies compared to the young brains. These findings 

are important given the pathological modulation of specific frequencies in 

diseases affecting the motor system such as in Parkinson’s disease. These studies 

provide a qualitative and quantitative characterisation of frequency-specific 

changes under normal ageing, which I hope will be useful when studying induced 

responses in patients. 

 

 

III. Investigate the functional asymmetries in forward and 

backward connections during face perception (chapter 5)  

 

Furthermore, the bilinear approximation of the neuronal state equations in 

DCM for IR, like all the other DCMs, allows one to model the experimental 

manipulations in terms of coupling changes. I demonstrated this by analyzing 

MEG responses induced by visual processing of normal and scrambled faces and 

asked if there was evidence for functional asymmetries between forward and 

backward connections that define hierarchical architectures in the brain. I 

exploited the fact that modulatory or nonlinear influences (i.e., effective 

connectivity) entail coupling between different frequencies by comparing models 
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with and without nonlinear (between-frequency) coupling in both forward and 

backward connections.  A striking asymmetry was found between forward and 

backward connections; in which high (gamma) frequencies in higher cortical areas 

(FFAs) suppressed low (alpha) frequencies in lower areas (OFAs). This 

suppression was significantly greater than the homologous coupling in forward 

connections. Furthermore, exactly the same asymmetry was observed when we 

examined face-selective coupling (i.e., coupling under faces minus scrambled 

faces). These results highlight the importance of nonlinear coupling among brain 

regions and point to a functional asymmetry between forward and backward 

connections in the human brain that is consistent with anatomical and 

physiological evidence from animal studies.  This asymmetry is also consistent 

with functional architectures implied by theories of perceptual inference in the 

brain, based on hierarchical generative models. 

 

IV Backward connections mediate the induced responses: 

dissociation of evoked and induced responses in terms of 

generating mechanisms (chapter 6) 

 

Finally, I used the bilinear form of DCM to model evoked and induced 

responses and asked whether induced responses were mediated by backward 

connections.  I illustrated this novel application using a gripping task and 

compared three models which differed in where coupling changes could occur to 

explain the difference between the time-frequency expression of evoked and 
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induced responses (evaluated using the same data): Specifically, I looked at 

forward (F), backward (B)and forward-backward (FB) models. At the group level, 

Bayesian model selection identified the B model as a better model. This result 

provides direct empirical evidence that backward connections from higher areas to 

lower areas mediated induced responses. Importantly, this change in backward 

nonlinear coupling is in line with the fact that the planned movement 

representation in the higher level (i.e. SMA and/or PM) mediates motor 

commands in the lower level of M1. 

 

 

7.2 Discussion 

 

7.2.1 The question of inter-subject variability  

 

One of the most difficult challenges in studying oscillatory brain activity is 

how to determinate the frequency bands of interest, as inter-individual variability 

is large, particularly within the alpha band (Pfurtscheller and Lopes da Silva, 

1999). In other words, individuals might have their own preferred frequency band 

even in a very simple task (Omlor et al., 2007; Aoki et al., 1999; Kilner et al., 

2000; Kristeva et al., 2007). One possible solution is just to explore all frequencies, 

but this can be computational demanding and time consuming. In DCM for IR, 

SVD is applied to extract subject-specific frequencies of interest. One important 

benefit of this is data reduction (see chapter 2 for details). The estimated spectral 
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densities over (frequency x sources x conditions) and time are projected into 

orthonormal principal frequency modes. In this way, each mode still covers all the 

frequencies but is in different proportions. This means the subject-specific 

frequencies can be preserved without bias. I typically used between two and four 

modes, which account for the majority of the observed variance in spectral 

responses. The number of modes is usually selected automatically using a 

modified Kaiser criterion (i.e., the variance explained has to exceed ninety 

percent). 

 

 

7.2.2 The question of model specification 

 

Like all the other inferential methods, the analytic results of DCM for IR 

are conditional on the models considered. Specifically, as part of the DCM 

approach, the observed MEG data were mapped into the source space by 

multiplying the generalized inverse lead field matrix given the source locations (cf 

chapter 2). This generalised inverse of the lead-field is one of many inversion 

schemes that can be used to project data from channel to source space (Darvas et 

al., 2004; Friston et al., 2008; Kiebel et al., 2008; Michel et al., 2004). The 

advantage of this projection is that there is a unique solution for the data features, 

given the prior specification of source locations. On the other hand, this leads to a 

valid source spectrum as long as the brain regions considered are the reasonable 

summary of the real neuronal sources generating the data.  In the case that other 



 175 

sources (but not included in the network) contribute to the MEG field topography; 

the signals from these un-modeled sources could influence the sources under 

consideration. Therefore, if any sources are omitted or misplaced, there might be a 

better model of the data and possibly a different conclusion from model 

comparison. If one did not know where spectral signals were coming from, the 

beam-former method could be one useful strategy that allows one to localize the 

source positions and estimate spectral features empirically (Singh et al 2003). 

Once these locations have been established, the generalised inverse of the 

associated lead-field matrix furnishes a near-optimum Equivalent Current Dipoles 

(ECD) summary of activity that avoids suppression of local correlated activity.  

 

 

7.2.3 The relationship between power modulation and phase 

synchronisation 

 

Power and phase are two important data features in spectral analysis. 

Fluctuations in power and phase synchronization have been shown to be a key 

aspect of neuronal network dynamics. Mathematically, power and phase could be 

modulated independently as a spectra X(w,t) can be represented as  

))(exp()(),( ttitatwX ww ϕ=  where )(taw and )(twϕ  control the amplitude and 

phase modulation, respectively (Varela et al., 2001; Canolty et al. 2006). 

Importantly, )(taw and )(twϕ  could be either correlated or independent. These 

properties have been used in the telecommunication, for example AM (Amplitude 
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modulation) and FM (Frequency modulation) (Schwartz, 1995). However, in 

systems neuroscience, their relationship remains unclear. Changes in the 

synchronous discharge of neuronal assemblies contribute to the increase or 

decrease of regional power within task-related frequencies (ERS and ERD). 

Conceptually, increases in regional power (ERS) reflect either increases in 

population activity or and increase in the phase constancy; whereas decreases in 

regional power (ERD) may be due to suppression of neuronal activity or loss of 

phase constancy (reduce phase constancy); or the formation of more anti-phase 

pairs (induce phase constancy) (Varela et al, 2001). This means there may be a 

tight coupling between power and phase synchrony. When measured separately, it 

has been reported that coherence at alpha and beta frequency bands between 

bilateral primary motor cortex increases during movement preparation and 

execution; and is accompanied by ERD (Leocani et al., 1997). In addition, 

Babiloni et al report that significant beta and gamma ERS in the hippocampus and 

theta ERD in the inferior temporal cortex accompany gamma coherence between 

hippocampus and inferior-middle temporal cortex during repetitive visuomotor 

events (Babiloni et al., 2004). Direct detection of phase–power relation is used to 

address the idea of ‘nested rhythms’ (Penny et al., 2008; Palva and Palva, 2007). 

Nested oscillations occur when the phase of low rhythm is coupled with the 

amplitude of a high rhythm and are observed largely during memory tasks: (theta-

gamma) (Lisman and Idiart, 1995), (theta-beta and theta-gamma) (Mormann et al. 

2005), (theta-beta/gamma) (Schack et al. 2002) and during sleep (infra-slow 

oscillations’ (ISOs; 0.02 -0.2 Hz) – 1 Hz) (Vanhatalo et al. (2004) and even during 

the resting state (alpha-high gamma)(Osipova et al. 2007). Taken together, phase 
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and power are different, complementary phenomena and may share a common 

generative model. 

 

 

7.2.4 Measuring Causality  

 

Understanding causality has always been important. In 1620, Francis 

Bacon published his philosophical work, Novum Organum, in which he proposed 

to establish the progressive stages of certainty. In neuroscience, we are interested 

in two aspects of causality: temporal precedence and directional connection: 

Temporal precedence reflects importance of temporal order by saying the past is 

causing the present, but not vice versa;  Directional causality is ascribed to these 

connections where an arrow from A to B means that A causes B. The most 

common methods, other than DCM, in measuring temporal and spatial causal 

relationships are Granger Causality (GC) (see Appendix A for the mathematic 

description) and Structural Equation Modelling (SEMs; see Penny et. al. 2004a). 

In general, DCM and GC and SEMs share some common characteristics (see 

Friston, 2009 for a comparison of DCM and GC for fMRI studies and Penny et. al. 

2004a of a comparison of DCM and SEMs for fMRI studies): They (1) are 

multivariate analyses, (2) can measure the directed coupling, (3) allow one to 

make inference on models, and (4) rest on temporal causality. However, there are 

fundamental differences among these approaches. Firstly, in terms of determining 

coupling directions; GC tries to establish the existence of causal influences with 

respect to the temporal precedence; so the directed connections are thus inferred 
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from the data, while SEMs and DCMs (note that this applies to the entire DCM 

family) pre-specifies the directional relationships in the model a priori (Pearl, 

1998; Friston, 2003). DCMs and SEMs are therefore more for making inferences 

on the models and model parameters. Secondly, stationary assumptions:  In both 

GC and SEMs, it is assumed that when one measures the data, the systems have 

reached the equilibrium. But in DCMs, the model states evolve with time, so it 

does not require the underlying processes to be stationary. Note that the stationary 

assumption is required in one particular DCM: DCM for steady-state responses; 

see Moran et al., (2009). Thirdly, the nature of exogenous input: DCMs and SEMs 

have a deterministic and stochastic exogenous input, respectively but no input is 

considered in GC.  Including a deterministic input (for example, the stimulus 

onset) in a generative model is important because it allows one to model 

experimental manipulations (Penny et. al. 2004a). Finally, “...because DCM uses 

Bayesian model selection, one can compare non-nested network models...” (Penny 

et al., 2004a; Penny et al., 2004b).  As it is of interest and importance to evaluate 

the relative measurement efficacy of different approaches, in a future work, I will 

test the robustness of DCM for IR in terms of sensitivity and specificity against 

other approaches (see chapter 7.3). 

 

7.3 Future directions  

 

7.3.1 Construct validity of DCM for induced responses 
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In chapter 2, I exploited DCM for IR as a novel tool to investigate neural 

connectivity using electromagnetic signals. It is important that a new method is 

validated against other approaches. This can be done by evaluating a relative 

measure of efficacy that could serve as a guideline, when considering appropriate 

analytic methods for studying neural networks. In future work, I will illustrate the 

essential detection properties (characteristics) of DCM for IR, including sensitivity 

and specificity, which are important for addressing network connectivity (David et. 

al., 2004). I hope to evaluate the relative measure efficacy for detecting nonlinear 

neuronal coupling among different methods, including phase synchrony, 

bispectral analysis and Granger causality (see Appendix A and B for a 

mathematical descriptions of these methods) in addition to DCM for IR. Instead of 

performing the different interdependence measures in real data (in which ground 

truth is unknown), I will use synthetic data that, on the one hand, mimics 

electromagnetic dynamics in source space, and on the other hand, allows for the 

manipulation of key parameters, such as, coupling strength. Thus, the sensitivity 

measurement of every method can be quantified as a function of those parameters. 

In terms of specificity, surrogate testing could be performed to determine a 

significant threshold from null data, where the second order moment is preserved 

but all coupling is destroyed (cf, Theiler, 1994; Theiler et al., 1992). The surrogate 

data would be used to construct a null distribution of detection measures so that 

we can assess its statistical properties. The neural mass model could be used to 

generate neuronally plausible data; it has been shown that the neural mass model 

is capable of generating complicated activity when assigning different kinetics to 

different neuronal populations and, in particular, changing the nonlinear coupling 
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among neuronal populations (David et. al., 2004; Chen et al., 2008; Ursino et al., 

2007).  

 

7.3.2 Functional reorganization of motor system after stroke 

 

After focal damage, surviving stroke patients often show motor impairment, 

commonly hemiparesis.  However, after a certain period, some patients show a 

reduction in this impairment. The recovery processing is thought to be related to 

reorganization within the central nervous system.  But, how the reorganization 

alters the neural network remains largely unknown. In future studies, I will apply 

DCM for IR to assess network alternations in the motor system during recovery 

from stroke, based on my findings in chapter 3 and 4.  
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Appendix A. Granger Causality 
 
   
 

Granger causality measures the causal relation in time, i.e. the temporal 

order in the events. Granger causality is named after Clive Granger, Noble Prize 

winning economist, who gave a mathematical formulation to measure GC based 

on the linear stochastic modeling of time series analysis using autoregressive (AR) 

model : 
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 where p is the model order,    yxε   and yxε  are the residual noises 

associated with the model. It’s clear that the residual error depends on both the 

past of x and y. If y is influencing x, then adding past values of y to the regression 

of x will improve its prediction performance resulting in a higher value of the GC. 

A comprehensive description can be seen in Granger, 1969 and Granger 1980. 
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Appendix B. Phase synchrony and Bispectral analysis 

 

 

Phase synchrony measures the frequency-specific synchronization (i.e., 

transient phase-locking) between two oscillatory signals :  

 

)()()(, ttt yxyx φφϕ −=  

 

Where )(, tmnϕ  is the instantaneous phase difference between frequency x in 

area A and frequency y in area B. The phase locking value (PLV) at t is defined as 

the average value of the phase difference with a reasonable time-resolution (<100 

ms) over N trials: 
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Inference is made when that synchrony is above the statistical significance, 

derived from null distribution using surrogate data (see Lachaux, et. al., 1999 for 

details).   
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Bi-spectral analysis is the most common tool to investigate quadratic non-

linearities of phase coupling between different rhythms within or between 

different time series (Jeffrey and Chamoun, 1994; Shils et al., 1996). Bispectral 

analysis is dealing with a special case of phase synchrony where the frequency x 

is not equal to frequency y and the coupling between two oscillators are stationary. 

The cross-bicoherence is the normalized bispectrum, range from 0 to 1: 

2
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Where )()()(),( 212121 ffZfYfXffB +⋅⋅= ∗   is the bispectral density which is the 

third-order cumulate generating function of Fourier transform   
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Appendix C. Measuring the power modulation at sensor level 

based on mutual information 

 

The following document presents a relative method (my previous work) which 

can measure the nonlinear power modulation at the sensor level.  
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