202 research outputs found

    DVB-S based passive polarimetric ISAR โ€“ methods and experimental validation

    Get PDF
    In this work, we focus on passive polarimetric ISAR for ship target imaging using DVB-S signals of opportunity. A first goal of the research is to investigate if, within the challenging passive environment, different scattering mechanisms, belonging to distinct parts of the imaged target, can be separated in the polarimetric domain. Furthermore, a second goal is at verifying if polarimetric diversity could enable the formation of ISAR products with enhanced quality with respect to the single channel case, particularly in terms of better reconstruction of the target shape. To this purpose, a dedicated trial has been conducted along the river Rhine in Germany by means of an experimental DVB-S based system developed at Fraunhofer FHR and considering a ferry as cooperative target. To avoid inaccuracies due to data-driven motion compensation procedures and to fairly interpret the polarimetric results, we processed the data by means of a known-motion back-projection algorithm obtaining ISAR images at each polarimetric channel. Then, different approaches in the polarimetric domain have been introduced. The first one is based on the well-known Pauli Decomposition. The others can be divided in two main groups: (i) techniques aimed at separating the different backscattering mechanisms, and (ii) image domain techniques to fuse the polarimetric information in a single ISAR image with enhanced quality. The different considered techniques have been applied to several data sets with distinct bistatic geometries. The obtained results clearly demonstrate the potentialities of polarimetric diversity that could be fruitfully exploited for classification purposes

    ํ›ˆ๋ จ ์ž๋ฃŒ ์ž๋™ ์ถ”์ถœ ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ๊ธฐ๊ณ„ ํ•™์Šต์„ ํ†ตํ•œ SAR ์˜์ƒ ๊ธฐ๋ฐ˜์˜ ์„ ๋ฐ• ํƒ์ง€

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ์ง€๊ตฌํ™˜๊ฒฝ๊ณผํ•™๋ถ€, 2021. 2. ๊น€๋•์ง„.Detection and surveillance of vessels are regarded as a crucial application of SAR for their contribution to the preservation of marine resources and the assurance on maritime safety. Introduction of machine learning to vessel detection significantly enhanced the performance and efficiency of the detection, but a substantial majority of studies focused on modifying the object detector algorithm. As the fundamental enhancement of the detection performance would be nearly impossible without accurate training data of vessels, this study implemented AIS information containing real-time information of vesselโ€™s movement in order to propose a robust algorithm which acquires the training data of vessels in an automated manner. As AIS information was irregularly and discretely obtained, the exact target interpolation time for each vessel was precisely determined, followed by the implementation of Kalman filter, which mitigates the measurement error of AIS sensor. In addition, as the velocity of each vessel renders an imprint inside the SAR image named as Doppler frequency shift, it was calibrated by restoring the elliptic satellite orbit from the satellite state vector and estimating the distance between the satellite and the target vessel. From the calibrated position of the AIS sensor inside the corresponding SAR image, training data was directly obtained via internal allocation of the AIS sensor in each vessel. For fishing boats, separate information system named as VPASS was applied for the identical procedure of training data retrieval. Training data of vessels obtained via the automated training data procurement algorithm was evaluated by a conventional object detector, for three detection evaluating parameters: precision, recall and F1 score. All three evaluation parameters from the proposed training data acquisition significantly exceeded that from the manual acquisition. The major difference between two training datasets was demonstrated in the inshore regions and in the vicinity of strong scattering vessels in which land artifacts, ships and the ghost signals derived from them were indiscernible by visual inspection. This study additionally introduced a possibility of resolving the unclassified usage of each vessel by comparing AIS information with the accurate vessel detection results.์ „์ฒœํ›„ ์ง€๊ตฌ ๊ด€์ธก ์œ„์„ฑ์ธ SAR๋ฅผ ํ†ตํ•œ ์„ ๋ฐ• ํƒ์ง€๋Š” ํ•ด์–‘ ์ž์›์˜ ํ™•๋ณด์™€ ํ•ด์ƒ ์•ˆ์ „ ๋ณด์žฅ์— ๋งค์šฐ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•œ๋‹ค. ๊ธฐ๊ณ„ ํ•™์Šต ๊ธฐ๋ฒ•์˜ ๋„์ž…์œผ๋กœ ์ธํ•ด ์„ ๋ฐ•์„ ๋น„๋กฏํ•œ ์‚ฌ๋ฌผ ํƒ์ง€์˜ ์ •ํ™•๋„ ๋ฐ ํšจ์œจ์„ฑ์ด ํ–ฅ์ƒ๋˜์—ˆ์œผ๋‚˜, ์ด์™€ ๊ด€๋ จ๋œ ๋‹ค์ˆ˜์˜ ์—ฐ๊ตฌ๋Š” ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๊ฐœ๋Ÿ‰์— ์ง‘์ค‘๋˜์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ํƒ์ง€ ์ •ํ™•๋„์˜ ๊ทผ๋ณธ์ ์ธ ํ–ฅ์ƒ์€ ์ •๋ฐ€ํ•˜๊ฒŒ ์ทจ๋“๋œ ๋Œ€๋Ÿ‰์˜ ํ›ˆ๋ จ์ž๋ฃŒ ์—†์ด๋Š” ๋ถˆ๊ฐ€๋Šฅํ•˜๊ธฐ์—, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์„ ๋ฐ•์˜ ์‹ค์‹œ๊ฐ„ ์œ„์น˜, ์†๋„ ์ •๋ณด์ธ AIS ์ž๋ฃŒ๋ฅผ ์ด์šฉํ•˜์—ฌ ์ธ๊ณต ์ง€๋Šฅ ๊ธฐ๋ฐ˜์˜ ์„ ๋ฐ• ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ์‚ฌ์šฉ๋  ํ›ˆ๋ จ์ž๋ฃŒ๋ฅผ ์ž๋™์ ์œผ๋กœ ์ทจ๋“ํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์ด์‚ฐ์ ์ธ AIS ์ž๋ฃŒ๋ฅผ SAR ์˜์ƒ์˜ ์ทจ๋“์‹œ๊ฐ์— ๋งž์ถ”์–ด ์ •ํ™•ํ•˜๊ฒŒ ๋ณด๊ฐ„ํ•˜๊ณ , AIS ์„ผ์„œ ์ž์ฒด๊ฐ€ ๊ฐ€์ง€๋Š” ์˜ค์ฐจ๋ฅผ ์ตœ์†Œํ™”ํ•˜์˜€๋‹ค. ๋˜ํ•œ, ์ด๋™ํ•˜๋Š” ์‚ฐ๋ž€์ฒด์˜ ์‹œ์„  ์†๋„๋กœ ์ธํ•ด ๋ฐœ์ƒํ•˜๋Š” ๋„ํ”Œ๋Ÿฌ ํŽธ์ด ํšจ๊ณผ๋ฅผ ๋ณด์ •ํ•˜๊ธฐ ์œ„ํ•ด SAR ์œ„์„ฑ์˜ ์ƒํƒœ ๋ฒกํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ์œ„์„ฑ๊ณผ ์‚ฐ๋ž€์ฒด ์‚ฌ์ด์˜ ๊ฑฐ๋ฆฌ๋ฅผ ์ •๋ฐ€ํ•˜๊ฒŒ ๊ณ„์‚ฐํ•˜์˜€๋‹ค. ์ด๋ ‡๊ฒŒ ๊ณ„์‚ฐ๋œ AIS ์„ผ์„œ์˜ ์˜์ƒ ๋‚ด์˜ ์œ„์น˜๋กœ๋ถ€ํ„ฐ ์„ ๋ฐ• ๋‚ด AIS ์„ผ์„œ์˜ ๋ฐฐ์น˜๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ์„ ๋ฐ• ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํ›ˆ๋ จ์ž๋ฃŒ ํ˜•์‹์— ๋งž์ถ”์–ด ํ›ˆ๋ จ์ž๋ฃŒ๋ฅผ ์ทจ๋“ํ•˜๊ณ , ์–ด์„ ์— ๋Œ€ํ•œ ์œ„์น˜, ์†๋„ ์ •๋ณด์ธ VPASS ์ž๋ฃŒ ์—ญ์‹œ ์œ ์‚ฌํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ ๊ฐ€๊ณตํ•˜์—ฌ ํ›ˆ๋ จ์ž๋ฃŒ๋ฅผ ์ทจ๋“ํ•˜์˜€๋‹ค. AIS ์ž๋ฃŒ๋กœ๋ถ€ํ„ฐ ์ทจ๋“ํ•œ ํ›ˆ๋ จ์ž๋ฃŒ๋Š” ๊ธฐ์กด ๋ฐฉ๋ฒ•๋Œ€๋กœ ์ˆ˜๋™ ์ทจ๋“ํ•œ ํ›ˆ๋ จ์ž๋ฃŒ์™€ ํ•จ๊ป˜ ์ธ๊ณต ์ง€๋Šฅ ๊ธฐ๋ฐ˜ ์‚ฌ๋ฌผ ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ†ตํ•ด ์ •ํ™•๋„๋ฅผ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์ œ์‹œ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ ์ทจ๋“ํ•œ ํ›ˆ๋ จ ์ž๋ฃŒ๋Š” ์ˆ˜๋™ ์ทจ๋“ํ•œ ํ›ˆ๋ จ ์ž๋ฃŒ ๋Œ€๋น„ ๋” ๋†’์€ ํƒ์ง€ ์ •ํ™•๋„๋ฅผ ๋ณด์˜€์œผ๋ฉฐ, ์ด๋Š” ๊ธฐ์กด์˜ ์‚ฌ๋ฌผ ํƒ์ง€ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํ‰๊ฐ€ ์ง€ํ‘œ์ธ ์ •๋ฐ€๋„, ์žฌํ˜„์œจ๊ณผ F1 score๋ฅผ ํ†ตํ•ด ์ง„ํ–‰๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆํ•œ ํ›ˆ๋ จ์ž๋ฃŒ ์ž๋™ ์ทจ๋“ ๊ธฐ๋ฒ•์œผ๋กœ ์–ป์€ ์„ ๋ฐ•์— ๋Œ€ํ•œ ํ›ˆ๋ จ์ž๋ฃŒ๋Š” ํŠนํžˆ ๊ธฐ์กด์˜ ์„ ๋ฐ• ํƒ์ง€ ๊ธฐ๋ฒ•์œผ๋กœ๋Š” ๋ถ„๋ณ„์ด ์–ด๋ ค์› ๋˜ ํ•ญ๋งŒ์— ์ธ์ ‘ํ•œ ์„ ๋ฐ•๊ณผ ์‚ฐ๋ž€์ฒด ์ฃผ๋ณ€์˜ ์‹ ํ˜ธ์— ๋Œ€ํ•œ ์ •ํ™•ํ•œ ๋ถ„๋ณ„ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด์™€ ํ•จ๊ป˜, ์„ ๋ฐ• ํƒ์ง€ ๊ฒฐ๊ณผ์™€ ํ•ด๋‹น ์ง€์—ญ์— ๋Œ€ํ•œ AIS ๋ฐ VPASS ์ž๋ฃŒ๋ฅผ ์ด์šฉํ•˜์—ฌ ์„ ๋ฐ•์˜ ๋ฏธ์‹๋ณ„์„ฑ์„ ํŒ์ •ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ ๋˜ํ•œ ์ œ์‹œํ•˜์˜€๋‹ค.Chapter 1. Introduction - 1 - 1.1 Research Background - 1 - 1.2 Research Objective - 8 - Chapter 2. Data Acquisition - 10 - 2.1 Acquisition of SAR Image Data - 10 - 2.2 Acquisition of AIS and VPASS Information - 20 - Chapter 3. Methodology on Training Data Procurement - 26 - 3.1 Interpolation of Discrete AIS Data - 29 - 3.1.1 Estimation of Target Interpolation Time for Vessels - 29 - 3.1.2 Application of Kalman Filter to AIS Data - 34 - 3.2 Doppler Frequency Shift Correction - 40 - 3.2.1 Theoretical Basis of Doppler Frequency Shift - 40 - 3.2.2 Mitigation of Doppler Frequency Shift - 48 - 3.3 Retrieval of Training Data of Vessels - 53 - 3.4 Algorithm on Vessel Training Data Acquisition from VPASS Information - 61 - Chapter 4. Methodology on Object Detection Architecture - 66 - Chapter 5. Results - 74 - 5.1 Assessment on Training Data - 74 - 5.2 Assessment on AIS-based Ship Detection - 79 - 5.3 Assessment on VPASS-based Fishing Boat Detection - 91 - Chapter 6. Discussions - 110 - 6.1 Discussion on AIS-Based Ship Detection - 110 - 6.2 Application on Determining Unclassified Vessels - 116 - Chapter 7. Conclusion - 125 - ๊ตญ๋ฌธ ์š”์•ฝ๋ฌธ - 128 - Bibliography - 130 -Maste

    The InflateSAR Campaign: Evaluating SAR Identification Capabilities of Distressed Refugee Boats

    Get PDF
    Most of the recent research in the field of marine target detection has been concentrating on ships with large metallic parts. The focus of this work is on much more challenging targets represented by small rubber inflatables. They are of importance, since in recent years they have largely been used by migrants to cross the Mediterranean Sea between Libya and Europe. The motivation of this research is to mitigate the ongoing humanitarian crisis at Europeโ€™s southern borders. These boats, packed with up to 200 people, are in no way suitable to cross the Mediterranean Sea or any other big water body and are in distress from the moment of departure. The establishment of a satellite-based surveillance infrastructure could considerably support search and rescue missions in the Mediterranean Sea, reduce the number of such boats being missed and mitigate the ongoing death in the open ocean. In this work we describe and analyze data from the InflateSAR acquisition campaign, wherein we gathered multiple-platform SAR imagery of an original refugee inflatable. The test site for this campaign is a lake which provides background clutter that is more predictable. The analysis considered a sum of experiments, enabling investigations of a broad range of scene settings, such as the vesselโ€™s orientation, superstructures and speed. We assess their impact on the detectability of the chosen target under different sensor parameters, such as polarimetry, resolution and incidence angle. Results show that TerraSAR-X Spotlight and Stripmap modes offer good capabilities to potentially detect those types of boats in distress. Low incidence angles and cross-polarization decrease the chance of a successful identification, whereas a fully occupied inflatable, orthogonally oriented to the line of sight, seems to be better visible than an empty one. The polarimetric analyses prove the vesselโ€™s different polarimetric behavior in comparison with the water surface, especially when it comes to entropy. The analysis considered state-of-the-art methodologies with single polarization and dual polarization channels. Finally, different metrics are used to discuss whether and to which extent the results are applicable to other open ocean datasets. This paper does not introduce any vessel detection or classification algorithm from SAR images. Rather, its results aim at paving the way to the design and the development of a specially tailored detection algorithm for small rubber inflatables

    Research on Ship Classification using Faster Region Convolutional Neural Network for Port Security

    Get PDF
    Huvudsyftet med studien var att se i vilken grad det gรฅr att finna samarbeten genom material- och/eller energiutbyten mellan nรคrliggande anlรคggningar inom skogsindustrin i Sverige. Genom att gรถra en inventering av vilka anlรคggningar som finns inom skogsindustrin och sedan kontakta dessa, sammanstรคlldes en lista รถver de olika anlรคggningarna och deras olika samarbeten. Inventeringen gjordes med hjรคlp av olika branschorganisationer samt sรถkmotorer pรฅ Internet. Utรถver detta besรถktes ocksรฅ fyra intressanta fall fรถr att ge en inblick i hur dessa samarbeten kan se ut. Studien visar pรฅ att den hรคr typen av samarbeten existerar inom skogsindustrin och att drygt en tredjedel av de studerade anlรคggningarna har nรฅgon form av samarbeten rรถrande dessa frรฅgor. Detta pekar pรฅ att man inom skogsindustrin รคr lรฅngt framme nรคr det gรคller resursutnyttjande och att mรถjligheten att minimera sin energi- och materialanvรคndning hela tiden รคr en relevant frรฅga. Det finns med stor sannolikhet รคnnu fler sรฅdana samarbeten som inte framkommit vid undersรถkningen och en intressant aspekt รคr att vid de besรถk som gjordes upptรคcktes samarbeten som inte uppmรคrksammats vid tidigare kontakter. Av de 152 tillfrรฅgade anlรคggningarna i inventeringen erhรถlls svar frรฅn 117 stycken vilket tyder pรฅ att det finns ett stort intresse fรถr dessa frรฅgor inom skogsindustrin. Flera av de anlรคggningar som inte hade nรฅgra samarbeten kring dessa frรฅgor svarade ocksรฅ att de hela tiden undersรถker mรถjligheten till att inleda sรฅdana. Mรฅnga av samarbetena rรถrande dessa frรฅgor kretsar kring leveranser av el och รฅnga samt spรฅn och flis men en del andra intressanta samarbeten har ocksรฅ framkommit. Exempelvis anvรคnds slam frรฅn bioreningsdammar till brรคnsle, jordfรถrbรคttringsmedel och som tรคckmaterial vid deponier. Sammanfattningsvis tyder detta pรฅ att skogsindustrin ligger lรฅngt framme gรคllande dessa frรฅgor men att det fortfarande finns mer att gรถra om energi- och materialanvรคndningen och dรคrigenom den negativa miljรถpรฅverkan ska minimeras.The aim and objective with this study was to investigate to what extent co-operation through material and energy exchange between adjacent industries among the forest industry in Sweden could be found. First, an inventory of the industries in the forest industry was conducted. Secondly, each company was contacted with questions concerning this issue. Complementary field studies of four specific cases were conducted in order to give an insight to how these co-operations may function in reality. The result of this study illustrates that co-operations among the industries exist in the forest industry sector as more than a third of the investigated industries has some kind of co-operation regarding material and energy exchange with adjacent industries. A total number of 152 industries were identified during the inventory phase and 117 of those industries participated in the study with their own answers. This high participation rate enhances the impression that these are important questions to the forest industry sector. Numerous of the co-operations mentioned revolve around electricity, steam, and by products from sawmills, like woodchips and sawdust. Nevertheless, a few other interesting co-operations have also been revealed during the study, for example; sludge from some of the pulp mills are used as fuel, soil fertilizer and as covering material at landfills. An interesting point is that co-operations, which not were discovered during the earlier correspondence with the industries, in fact were revealed during the field studies. Therefore, the probability that there are more existing co-operations between adjacent industries than the findings in the study reveals, are high. To sum up, this shows that the forest industry is well in advance regarding co-operation through material and energy exchange between adjacent industries. However, there is still a lot to be done if the negative effect on the environment from the forest industry should be minimised

    Space Remote Sensing and Detecting Systems of Oceangoing Ships

    Get PDF
    This paper introduces the implementation of space remote sensing and detecting systems of oceangoing ships as an alternative to the Radio โ€“ Automatic Identification System (R-AIS), Satellite โ€“ Automatic Identification System (S-AIS), Long Range Identification and Tracking (LRIT), and other current vessel tracking systems. In this paper will be not includedย  a new project known as a Global Ship Tracking (GST) as an autonomous and discrete satellite network designed by the Space Science Centre (SSC) for research and postgraduate studies in Satellite Communication, Navigation and Surveillance (CNS) at Durban University of Technology (DUT). The ship detection from satellite remote sensing imagery system is a crucial application for maritime safety and security, which includes among others ship tracking, detecting and traffic surveillance, oil spill detection service, and discharge control, sea pollution monitoring, sea ice monitoring service, and protection against illegal fisheries activities. The establishment of a modern sea surface and ships monitoring system needs enhancement of the Satellite Synthetic Aperture Radar (SSAR) that is here discussed as a modern observation infrastructure integrated with Ships Surveillance and Detecting via SSAR TerraSAR-X Spacecraft, Ships Surveillance and Detecting via SSAR Radarsat Spacecraft and Vessels Detecting System (VDS) via SSAR

    Ellipse Encoding for Arbitrary-Oriented SAR Ship Detection Based on Dynamic Key Points

    Get PDF
    In recent years, there has been growing interest in developing oriented bounding box (OBB)-based deep learning approaches to detect arbitrary-oriented ship targets in synthetic aperture radar (SAR) images. However, most existing OBB-based detection methods suffer from boundary discontinuity problems for bounding box angle prediction and key point regression challenges. In this article, we present a novel OBB-based detection algorithm that utilizes ellipse encoding to effectively exploit the geometric and scattering properties of ship targets. Specifically, the ship contour is fit by an OBB inscribed ellipse that is encoded as a set of distances between dynamic key points on the bow and target center. By combining the bow angle interval and the decoding process, the negative impact of the boundary discontinuity problem is avoided. In addition, we propose an elliptical Gaussian distribution heatmap and a pooling strategy termed double-peak max-pooling (DPM) to deal with the challenge of separating densely distributed ships in inshore scenes. The former can enhance the heatmapโ€™s ship-side score gap between neighboring ship targets, while the latter can solve the problem of target center responses being suppressed after max-pooling. Simulation experiments conducted on the benchmark Rotating SAR Ship Detection Dataset (RSSDD) and Rotated Ship Detection Dataset in SAR Images (RSDD-SAR) demonstrate the superior performance of our method for ship target detection compared to several state-of-the-art OBB-based algorithms. Ablation experiments show that elliptical Gaussian distribution heatmap and DPM can further improve the inshore detection performance

    Ellipse Encoding for Arbitrary-Oriented SAR Ship Detection Based on Dynamic Key Points

    Get PDF
    In recent years, there has been growing interest in developing oriented bounding box (OBB)-based deep learning approaches to detect arbitrary-oriented ship targets in synthetic aperture radar (SAR) images. However, most existing OBB-based detection methods suffer from boundary discontinuity problems for bounding box angle prediction and key point regression challenges. In this article, we present a novel OBB-based detection algorithm that utilizes ellipse encoding to effectively exploit the geometric and scattering properties of ship targets. Specifically, the ship contour is fit by an OBB inscribed ellipse that is encoded as a set of distances between dynamic key points on the bow and target center. By combining the bow angle interval and the decoding process, the negative impact of the boundary discontinuity problem is avoided. In addition, we propose an elliptical Gaussian distribution heatmap and a pooling strategy termed double-peak max-pooling (DPM) to deal with the challenge of separating densely distributed ships in inshore scenes. The former can enhance the heatmapโ€™s ship-side score gap between neighboring ship targets, while the latter can solve the problem of target center responses being suppressed after max-pooling. Simulation experiments conducted on the benchmark Rotating SAR Ship Detection Dataset (RSSDD) and Rotated Ship Detection Dataset in SAR Images (RSDD-SAR) demonstrate the superior performance of our method for ship target detection compared to several state-of-the-art OBB-based algorithms. Ablation experiments show that elliptical Gaussian distribution heatmap and DPM can further improve the inshore detection performance

    The InflateSAR Campaign: Testing SAR Vessel Detection Systems for Refugee Rubber Inflatables

    Get PDF
    Countless numbers of people lost their lives at Europeโ€™s southern borders in recent years in the attempt to cross to Europe in small rubber inflatables. This work examines satellite-based approaches to build up future systems that can automatically detect those boats. We compare the performance of several automatic vessel detectors using real synthetic aperture radar (SAR) data from X-band and C-band sensors on TerraSAR-X and Sentinel-1. The data was collected in an experimental campaign where an empty boat lies on a lakeโ€™s surface to analyse the influence of main sensor parameters (incidence angle, polarization mode, spatial resolution) on the detectability of our inflatable. All detectors are implemented with a moving window and use local clutter statistics from the adjacent water surface. Among tested detectors are well-known intensity-based (CA-CFAR), sublook-based (sublook correlation) and polarimetric-based (PWF, PMF, PNF, entropy, symmetry and iDPolRAD) approaches. Additionally, we introduced a new version of the volume detecting iDPolRAD aimed at detecting surface anomalies and compare two approaches to combine the volume and the surface in one algorithm, producing two new highly performing detectors. The results are compared with receiver operating characteristic (ROC) curves, enabling us to compare detectors independently of threshold selection
    • โ€ฆ
    corecore