18,299 research outputs found

    Metabolic Futile Cycles and Their Functions: A Systems Analysis of Energy and Control

    Full text link
    It has long been hypothesized that futile cycles in cellular metabolism are involved in the regulation of biochemical pathways. Following the work of Newsholme and Crabtree, we develop a quantitative theory for this idea based on open-system thermodynamics and metabolic control analysis. It is shown that the {\it stoichiometric sensitivity} of an intermediary metabolite concentration with respect to changes in steady-state flux is governed by the effective equilibrium constant of the intermediate formation, and the equilibrium can be regulated by a futile cycle. The direction of the shift in the effective equilibrium constant depends on the direction of operation of the futile cycle. High stoichiometric sensitivity corresponds to ultrasensitivity of an intermediate concentration to net flow through a pathway; low stoichiometric sensitivity corresponds to super-robustness of concentration with respect to changes in flux. Both cases potentially play important roles in metabolic regulation. Futile cycles actively shift the effective equilibrium by expending energy; the magnitude of changes in effective equilibria and sensitivities is a function of the amount of energy used by a futile cycle. This proposed mechanism for control by futile cycles works remarkably similarly to kinetic proofreading in biosynthesis. The sensitivity of the system is also intimately related to the rate of concentration fluctuations of intermediate metabolites. The possibly different roles of the two major mechanisms for cellular biochemical regulation, namely reversible chemical modifications via futile cycles and shifting equilibrium by macromolecular binding, are discussed.Comment: 11 pages, 5 figure

    Grey-box Modelling of a Household Refrigeration Unit Using Time Series Data in Application to Demand Side Management

    Get PDF
    This paper describes the application of stochastic grey-box modeling to identify electrical power consumption-to-temperature models of a domestic freezer using experimental measurements. The models are formulated using stochastic differential equations (SDEs), estimated by maximum likelihood estimation (MLE), validated through the model residuals analysis and cross-validated to detect model over-fitting. A nonlinear model based on the reversed Carnot cycle is also presented and included in the modeling performance analysis. As an application of the models, we apply model predictive control (MPC) to shift the electricity consumption of a freezer in demand response experiments, thereby addressing the model selection problem also from the application point of view and showing in an experimental context the ability of MPC to exploit the freezer as a demand side resource (DSR).Comment: Submitted to Sustainable Energy Grids and Networks (SEGAN). Accepted for publicatio

    Digital Pulse Width Modulator Techniques For Dc - Dc Converters

    Get PDF
    Recent research activities focused on improving the steady-state as well as the dynamic behavior of DC-DC converters for proper system performance, by proposing different design methods and control approaches with growing tendency to using digital implementation over analog practices. Because of the rapid advancement in semiconductors and microprocessor industry, digital control grew in popularity among PWM converters and is taking over analog techniques due to availability of fast speed microprocessors, flexibility and immunity to noise and environmental variations. Furthermore, increased interest in Field Programmable Gate Arrays (FPGA) makes it a convenient design platform for digitally controlled converters. The objective of this research is to propose new digital control schemes, aiming to improve the steady-state and transient responses of a high switching frequency FPGA-based digitally controlled DC-DC converters. The target is to achieve enhanced performance in terms of tight regulation with minimum power consumption and high efficiency at steady-state, as well as shorter settling time with optimal over- and undershoots during transients. The main task is to develop new and innovative digital PWM techniques in order to achieve: 1. Tight regulation at steady-state: by proposing high resolution DPWM architecture, based on Digital Clock Management (DCM) resources available on FPGA boards. The proposed architecture Window-Masked Segmented Digital Clock Manager-FPGA based Digital Pulse Width Modulator Technique, is designed to achieve high resolution operating at high switching frequencies with minimum power consumption. 2. Enhanced dynamic response: by applying a shift to the basic saw-tooth DPWM signal, in order to benefit from the best linearity and simplest architecture offered by the conventional counter-comparator DPWM. This proposed control scheme will help the compensator reach the steady-state value faster. Dynamically Shifted Ramp Digital Control Technique for Improved Transient Response in DC-DC Converters, is projected to enhance the transient response by dynamically controlling the ramp signal of the DPWM unit

    Microcomputer based controller for the Langley 0.3-meter Transonic Cryogenic Tunnel

    Get PDF
    Flow control of the Langley 0.3-meter Transonic Cryogenic Tunnel (TCT) is a multivariable nonlinear control problem. Globally stable control laws were generated to hold tunnel conditions in the presence of geometrical disturbances in the test section and precisely control the tunnel states for small and large set point changes. The control laws are mechanized as four inner control loops for tunnel pressure, temperature, fan speed, and liquid nitrogen supply pressure, and two outer loops for Mach number and Reynolds number. These integrated control laws have been mechanized on a 16-bit microcomputer working on DOS. This document details the model of the 0.3-m TCT, control laws, microcomputer realization, and its performance. The tunnel closed loop responses to small and large set point changes were presented. The controller incorporates safe thermal management of the tunnel cooldown based on thermal restrictions. The controller was shown to provide control of temperature to + or - 0.2K, pressure to + or - 0.07 psia, and Mach number to + or - 0.002 of a given set point during aerodynamic data acquisition in the presence of intrusive geometrical changes like flexwall movement, angle-of-attack changes, and drag rake traverse. The controller also provides a new feature of Reynolds number control. The controller provides a safe, reliable, and economical control of the 0.3-m TCT

    Optimal control for efficient electric heating

    Get PDF
    The purpose of this study is to investigate methods of reducing the cost of electricity consumption. Utility companies must forecast and adjust for power demand. Utilities desire a 1:1 load factor ratio between peak energy usage and average usage. During peak hours, electricity production is most expensive. There are two major methods for reducing the peak power for Thermostatically Controlled Loads (TCL), such as electric water heaters, air conditioners, or heat pumps: a) Classic Demand Side Management (DSM) methods such as demand shifting and electricity pricing tariffs, and b) Advanced DSM load control methods. This thesis will focus on analyzing the advanced control methods to reduce peak power and to save energy. The use of space heating and TCL loads for reducing electricity consumption and peak demand production is an important research area, considering that the energy consumption of most of US single-family residential homes is from controllable appliances. An experimental thermal identification system utilizing first and second order mathematical models has been developed at WCU.Using these models, a new proportional (P-Only) and proportional integral (PI) controller are investigated and assessed for improvements of reduction of peak power and energy savings for a TCL compared to the traditional Bang-Bang Controller in a resistive space heating prototype. Comparative results between simulation and experimental work validated the linearity of power electronics controller. Linearization was achieved by identifying a mathematical relationship that eliminates quadratic power function as well as Buck converter’s nonlinearity. Temperature disparity and input power characteristics were improved using this new converter for controlling the space heater. The system developed is an important step toward energy savings, temperature improvements and demand side management for reducing peak demand

    "Class-Type" identification-based internal models in multivariable nonlinear output regulation

    Get PDF
    The paper deals with the problem of output regulation in a “non-equilibrium” context for a special class of multivariable nonlinear systems stabilizable by high-gain feedback. A post-processing internal model design suitable for the multivariable nature of the system, which might have more inputs than regulation errors, is proposed. Uncertainties in the system and exosystem are dealt with by assuming that the ideal steady state input belongs to a certain “class of signals" by which an appropriate model set for the internal model can be derived. The adaptation mechanism for the internal model is then cast as an identification problem and a least square solution is specifically developed. In line with recent developments in the field, the vision that emerges from the paper is that approximate, possibly asymptotic, regulation is the appropriate way of approaching the problem in a multivariable and uncertain context. New insights about the use of identification tools in the design of adaptive internal models are also presented
    corecore