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“Class-type” Identification-Based Internal Models
in Multivariable Nonlinear Output Regulation

Michelangelo Bin and Lorenzo Marconi, Fellow, IEEE

Abstract— The paper deals with the problem of output regulation
in a “non-equilibrium” context for a special class of multivariable
nonlinear systems stabilizable by high-gain feedback. A post-
processing internal model design suitable for the multivariable na-
ture of the system, which might have more inputs than regulation
errors, is proposed. Uncertainties in the system and exosystem are
dealt with by assuming that the ideal steady state input belongs
to a certain “class of signals” by which an appropriate model set
for the internal model can be derived. The adaptation mechanism
for the internal model is then cast as an identification problem
and a least square solution is specifically developed. In line with
recent developments in the field, the vision that emerges from
the paper is that approximate, possibly asymptotic, regulation is
the appropriate way of approaching the problem in a multivariable
and uncertain context. New insights about the use of identification
tools in the design of adaptive internal models are also presented.

Index Terms— Output Regulation, Internal Model, Adap-
tive Systems, Identification for Control

I. INTRODUCTION

We consider nonlinear systems of the form

ẋ = f(w, x, u), y = h(w, x), e = he(w, x) (1)

with state x ∈ Rnx , control input u ∈ Rnu , measured outputs y ∈
Rny , “regulation error” e ∈ Rne , and with w ∈ Rnw an exogenous
signal generated by the “exosystem”

ẇ = s(w) . (2)

The problem of approximate output regulation pertains the design of
an output feedback regulator of the form

ẋc = fc(xc, y) , u = kc(xc, y)

achieving the regulation objective lim supt→∞ |e(t)| ≤ ε, with ε ≥ 0
possibly a “small” number measuring the regulator’s asymptotic
performance. If ε = 0, then the regulator is said to achieve asymptotic
regulation. If ε can be reduced arbitrarily by opportunely tuning
the regulator parameters, the regulator is said to achieve practical
regulation. If the regulation properties are obtained in spite of
possible uncertainties in the system (1), the problem is referred
to as robust output regulation [1], while the terminology adaptive
output regulation is typically used in presence of uncertainties in the
exosystem (2). An anchor point in the solution of the problem is
represented by the steady-state trajectories (x?(t), u?(t)) solution of
the so-called regulator equations

ẇ = s(w) , ẋ? = f(w, x?, u?) , 0 = he(w, x
?) , (3)

with x? representing the ideal state trajectory associated with a zero
regulation error and u? the associated input (often referred to as
“the friend” of x?). As shown in [2], indeed, solvability of (3) is a
necessary condition for the problem at hand.
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Regulator structures proposed in the nonlinear context are typically
composed by two units, an internal model unit and a stabilising unit,
with a neat, albeit limiting in many contexts, “role” conferred on
the two at the design stage: the former is designed to generate the
steady state input u?(t) required to keep the error at zero in steady
state, while the latter is designed to steer the closed-loop trajectories
of the system to x?(t). What makes the design problem particularly
challenging is, of course, the fact that (x?, u?) are unknown as the
initial conditions of (3) and (2) are such and, in the robust/adaptive
case, uncertainties in (1) and/or (2) strongly affect the solution
of (3). The majority of the current literature on the subject have
some limiting aspects that is worth pointing out to better frame the
contribution of this paper.

Non-equilibrium context. Current frameworks typically assume that
the solutions of (3) depend on time through w(t), namely (x?, u?) =
(π(w), c(w)) for some π and c. Moreover, further restrictions are
usually imposed limiting the class of friends that can be dealt with,
as for instance the so-called “immersion assumption” (the latter
even more weakened over the years, see [3], [4], [5], [6]). This
assumption, far to be necessary, leads to design principles of the
internal model unit just driven by the exosystem dynamics and some
appropriate “distortions” that, however, do not completely capture
the full nonlinear context. A formal framework to overcome this
limitation was given in [2], where a “non-equilibrium theory” for
nonlinear output regulation was laid, by asserting that the internal
model is in general required to incorporate a mixture of the residual
plant’s and exosystem’s dynamics, in this way making meaningless
the distinction between the plant and the exosystem from a design
viewpoint (and thus between robust and adaptive output regulation).

“Friend-centric” internal models. Many of the existing regulators
are strongly “friend-centric”, namely the design of the internal model
unit is definitely tailored around the specific u? resulting from the
regulator equations. This, in turn, leads to fragile designs in which un-
expected variations of the system/exosystem easily lead to ineffective
regulators with unpredictable asymptotic properties. Uncertainties in
the system/exosystem are typically handled by parametrising the
internal model in terms of uncertain parameters and by looking for
“adaptive” mechanisms according to the actual regulation error (see
e.g. [5,7]). This way of proceeding, however, involves a “quantitative”
information about how the uncertainties reflect on the friend that are
hard to assume, unless substantially limiting the topology describing
system/exosystem variations. These difficulties pushed the authors of
[1] to conjecture that asymptotic regulation in a general nonlinear and
uncertain context is unachievable with finite dimensional regulators
and to promote approaches looking for approximate regulators, which
possibly become asymptotic if certain fortunate conditions happen.
In general, how a “qualitative” information about the friend can be
transferred into the design of an internal model that behaves “well”
for a “wide” range of system/exosystem variations is still an open
point in literature.

Pre- versus post-processing schemes. A taxonomy recently intro-
duced in the literature regards the distinction between pre-processing
and post-processing internal models [8,9]. In the latter, the internal
model unit directly processes the regulation error, while the stabilising
unit stabilises the cascade of the system driving the internal model
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unit. In the former, conversely, the two units are somehow “swapped”,
with the internal model directly generating the feedforward input and
the stabiliser stabilising the cascade of the internal model unit driving
the system. The regulator structures proposed so far are definitely
biased on pre-processing solutions and, as such, limited to deal with
single input-single error systems (i.e. nu = ne = 1) or some
“square” extensions with nu = ne (see, e.g., [10]). As observed in
[8,9], post-processing solutions seem more suited to handling general
multivariable contexts with possibly nu > ne. The latter, in turn,
are also more promising to handle contexts in which, besides the
regulation errors, also extra measurements are available that do not
necessarily vanish at the steady state. Not surprisingly, the general
regulator structure for linear systems is post-processing [11]. The drift
towards post-processing solutions for nonlinear systems, however,
substantially complicates the design of the nonlinear regulator by
raising an intertwining in the design of the internal model and
stabiliser (referred to as chicken-egg dilemma in [12]) not present
in pre-processing approaches. To the best knowledge of the authors,
a general post-processing nonlinear framework is still unavailable in
literature with just some attempts done in [13] and [14] for simplified
exosystems.

In this paper we propose a design technique based on the afore-
mentioned non-equilibrium context, in which the effects of the system
and exosystem dynamics on the steady state are jointly considered in
the design of the internal model. The proposed regulator embeds a
“post-processing” internal model that applies to multivariable systems
not necessarily square, and whose construction is not “friend-centric”
but rather it is based on a “qualitative” information on the ideal error-
zeroing steady state.

II. MAIN RESULT

A. The class of systems

We consider a subclass of systems (1) with state x =
col(x0, χ, ζ) ∈ Rnx satisfying the following equations

ẋ0 = f0(w, x) + b(w, x)u (4a)

χ̇ = Fχ+Hζ (4b)

ζ̇ = q(w, x) + Ω(w, x)u (4c)

e = Cχ , y = col(χ, ζ), (4d)

in which x0 ∈ Rn0 , y ∈ Rny , e ∈ Rne , ζ ∈ Rne , u ∈ Rnu ,
with nu ≥ ne, χ = col(χ1, . . . , χne), with χi ∈ Rn

i
χ , i =

1, . . . , ne, and n1χ+ · · ·+nneχ =: nχ, C := blkdiag(C1, . . . , Cne),
F := blkdiag(F1, . . . , Fne) and H := blkdiag(H1, . . . , Hne),
with Ci :=

(
1 01×(niχ−1)

)
and

Fi :=

(
0(niχ−1)×1

Iniχ−1
0 01×(niχ−1)

)
, Hi :=

(
0(niχ−1)×1

1

)
.

The χ subsystem, in particular, is described by ne chains of in-
tegrators with ζ entering at the bottom and the regulation error
given by the first components χi1 of each chain χi. Hence, χ and ζ
are linear combinations of the error and its time derivatives. The
functions f0, b, q and Ω are sufficiently smooth functions, with
Ω(w, x) ∈ Rne×nu denoting the so-called “high-frequency matrix”.
The form (4) is representative of different frameworks addressed in
literature. For instance, systems having a well-defined vector relative
degree with respect to the input-output pair (u, e) and admitting a
canonical normal form fit in the proposed framework. In this case the
x0 dynamics in (4) does not depend on u and it represents the zero
dynamics of the system relative to the indicated input-output pair. On
the other hand (4), with a slightly different structure of χ and of the
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Fig. 1. Block-diagram of the regulator.

matrices F and H , is also representative of systems that are “just”
(globally) strongly invertible in the sense of [15,16] and feedback
linearisable with respect to the input-output pair (u, e) and, as such,
can be transformed in partial normal form, see [17]. In this case the
dynamics (4b)-(4c) are the partial normal form of the system and the
subsystem (4a) is indeed the whole plant (i.e. x = x0).

We observe that the measurable outputs y are assumed to be linear
combinations of the error and its time derivatives, namely we look for
a partial state feedback solution. A pure error feedback regulator only
processing e can be obtained by replacing the time derivatives with
appropriate estimates via standard high-gain techniques (see [18])
whose details are not presented here.

In the rest of the paper we assume the following.

A1) There exist β0 ∈ KL, α0 > 0 and, for each solution w of (2),
each input u, and each solution x of (4) corresponding to (w, u),
there exist x?0 : R≥0 → Rn0 and u? : R≥0 → Rnu fulfilling

ẋ?0 = f0(w, x?) + b(w, x?)u?

0 = q(w, x?) + Ω(w, x?)u?
(5)

in which x? := (x?0, 0, 0), and

|x0(t)− x?0(t)| ≤ β0
(
|x0(0)− x?0(0)|, t

)
+ α0|(χ, ζ)|[0,t)

for all t ≥ 0.

A2) There exists a full-rank matrix L ∈ Rnu×ne such that the
(square) matrix Ω(w, x)L is bounded, it satisfies

L>Ω(w, x)> + Ω(w, x)L ≥ Ine

for all (w, x) ∈ Rnw×Rnx , and the map (Ω(·)L)−1q(·) is Lipschitz.

Equations (5) are the specialisation of the regulator equations (3)
in this non-equilibrium context. The steady state (x?, u?) might be
dependent on the initial conditions of the system coherently with [2].
Condition A1 asks for uniform (in u) detectability of the ideal steady
state x? (see [19]). In case of systems with canonical normal form
in which (4a) does not depend on u, this assumption boils down
to a conventional minimum-phase requirement, far to be necessary
although typically assumed in the pertinent literature. A2, instead,
is a robust stabilisability requirement and it implies that Ω(w, x) is
everywhere full rank. As a consequence, u? in (5) is given by

u? = −Ω(w, x?)>
(
Ω(w, x?)Ω(w, x?)>

)−1
q(w, x?) .

As clear from A1 and A2, we deal with a simplified case in which
a global result is sought under quite restrictive global Lipschitz and
boundedness conditions. Nevertheless, we remark that the proposed
result can be extended to a semiglobal setting by asking w to evolve
in a compact space and A1 and A2 to hold only locally (namely
on each compact subset of Rnx ). For reason of space and since the
extension follows by well-known arguments (see e.g. [18,20]) we
omit this extension and we focus on the new adaptive framework.
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B. The regulator structure
The proposed regulator structure is depicted in Figure 1. The post-

processing internal model unit has the form

η̇ = Φ(η, θ) +Ge, η ∈ Rdne (6)

with d ∈ N, η = (η1, . . . , ηd), ηi ∈ Rne , and

Φ(η, θ) =


η2
· · ·
ηd

ψ(η, θ)

 , G =


gh1Ine
g2h2Ine
· · ·

gdhdIne

 ,

in which hi, i = 1, . . . , d, are fixed so that the polynomial sd +
h1s

d−1 + · · · + hd−1s + hd is Hurwitz, g > 0 is a parameter to
be designed, ψ : Rdne × Rnθ → Rne is a function to be fixed,
and θ ∈ Rnθ , nθ ∈ N, is an “adaptive” parameter generated by the
identifier subsystem, whose dynamics is described by

ż = µ(z, η, e), θ = ω(z), (7)

in which µ : Z × Rdne × Rne → Z and ω : Z → Rnθ , with Z a
normed vector space of finite dimension, have to be fixed. Finally,
the (static) stabiliser is taken as

u = L
(
Kχχ+Kζζ +Kηη1 +Kwν(x?, w)

)
, (8)

in which the matrices Kχ, Kζ and Kη are chosen as follows

Kχ(`, κ) = `K(κ), Kζ(`) = −`Ine , Kη(`, κ) = `K(κ)C>

with K(κ) = blkdiag(K1(κ), . . . ,Kne(κ)), where

Ki(κ) = −
(
ci1 κ

niχ ci2 κ
niχ−1 . . . ci

niχ
κ
)

(9)

for i = 1, . . . , ne, in which the coefficients cij are chosen so that

the polynomials sn
i
χ + ci

niχ
sn
i
χ−1 + · · ·+ ci2s+ ci1, i = 1, . . . , ne,

are Hurwitz, and `, κ > 0 are design parameters to be fixed. The
matrix Kw and the function ν are introduced for sake of generality
and are possibly zero. These terms could represent a “feedforward”
contribution added by the designer by employing possible knowledge
of w and x?. Likewise, it could represent a term showing up
in the normal form (4) after a preliminary feedback of available
measurements that do not vanish in steady state. Similarly to the
other matrices in (8), the gain matrix Kw can depend on κ and `.
The degrees of freedom left to be fixed at this stage are the dimension
d and function ψ of the internal model unit (6), the data (Z, nθ, µ, ω)
of the identifier (7), and the control parameters g, ` and κ.

C. Design of the internal model as prediction model
A key step in the regulator synthesis is the choice of the internal

model (6) and of its adaptation through the design of the identifier
(7). Consistently with the discussion in Section I, this must be done to
achieve a small, possibly zero, asymptotic regulation error in spite of
uncertainties involving (x?, u?) and the underlying dynamics. With
an eye to the last equation of (6), we can write

e(t) = c̄(g)
(
η̇d(t)− ψ(η(t), θ(t))

)
(10)

in which c̄(g) := (hdg
d)−1. Our design strategy to choose (d, ψ)

in (6) and the identifier (7) pivots around the idea that η̇d(t) −
ψ(η(t), θ(t)) can be interpreted as a “prediction error” attained
by the “model” ψ in relating the “next derivative” η̇d(t) to the
“previous derivatives” η(t), and that, by minimising this prediction
error, the actual regulation error is also minimised due to (10). This
clearly suggests to look at the problem of choosing d and ψ as
an identification problem and, by borrowing the notation typically

adopted in that literature [21], to refer to the map ψ(·, θ) as the
prediction model relating the “input data” η to the “output” η̇d,
and to the set M := {ψ(·, θ) : θ ∈ Rnθ} of all the possible
candidate models as the corresponding model set. The choice of
d and of ψ thus must be done in such a way that the attainable
prediction error is minimised. Unless relying on “universal” infinite-
dimensional models, however, this selection must be grounded on
some preliminary knowledge about the class of signals to which η̇d
and η are expected to belong. In this context, the steady-state signals
(x?, u?) resulting from the regulator equations (5) are the anchor
point on which that knowledge can be drawn. In particular, let

η?1 := Υ(`,κ)(w, x
?),

in which

Υ(`,κ)(w, x
?) :=

−
(
Ω(w, x?)LKη

)−1(
q(w, x?) + Ω(w, x?)LKων(w, x?)

)
,

and define recursively η?i , i = 2, . . . , d+ 1, as1

η?i := Li−1s(w)Υ(`,κ)(w, x
?) + Li−1f0(w,x)+b(w,x)u?

Υ(`,κ)(w, x
?).

Finally let
η̇?d := η?d+1.

In view of A2 and the definition of Kη , the matrix Ω(w, x)LKη is
everywhere invertible and, thus, all the previous quantities are well-
defined. Moreover, we observe that the quantities η?i , i = 1, . . . , d+
1, depend on the design parameters κ and ` yet to be fixed. The
dimension d and the function ψ should be then ideally chosen so
that, with η? = col(η?1 , . . . , η

?
d), the following holds

η̇?d(t) = ψ(η?(t), θ?(t)), (11)

for some “ideal” θ?(t) ∈ Rnθ . This, in fact, would make (x?, η?) a
trajectory of the closed-loop system in which the associated regulation
error is identically zero. The design of the pair (d, ψ) so that (11) is
fulfilled for all possible steady-state trajectories (η̇?d, η

?), however,
is not realistic unless limiting even further the class of treatable
nonlinear systems and of manageable uncertainties on the solution
of (5). Furthermore, even in the fortunate case in which the ideal
relation (11) could be fulfilled with a perfect parametrisation (maybe
playing with large values of d), this might require an unacceptable
complexity of the internal model, and an approximated model with
a possibly lower d would be preferable. Along this direction, we
rather assume that the designer has a qualitative knowledge about
a “class” H? of signals2 to which (η̇?d, η

?) belongs in order to
fix a model set M necessarily approximated but optimised for the
specific class. This is the “modelling part”, in which the “touch”
of the designer and the knowledge on the steady-state trajectories
come into play. The class H?, in turn, is fixed on the basis of
the knowledge on the nominal solution (x?, u?) to (5), and after
considering all the expected system/exosystem uncertainties that may
affect it. The problem of handling the overall uncertainty on (x?, u?)
is thus transferred to the adaptation side, and the idea of relying on
system identification techniques for it is further motivated by the
fact that, typically, identification methods structurally manage large
classes of signals [21]. From now on we suppose that the designer
has fixed a class H? and, accordingly, a model set M, so that the
following assumption holds.

A3) The map ψ is Lipschitz and differentiable with a locally Lipschitz
derivative, and the Lipschitz constants do not dependent on κ and `.

1We denote by Lgf the Lie derivative of f along g.
2Formally, H? is a subset of the space of functions R≥0 → Rne ×Rdne .



4 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

Moreover, there exists a compact set H? ⊂ Rne×Rdne , independent
on κ and `, such that every (η̇?d, η

?) ∈ H? satisfies (η̇?d(t), η?(t)) ∈
H? for all t ∈ R≥0.

The previous assumption formalizes the “quantitative” properties
required to the members of the class H? on which the design of the
internal model and the identifier is grounded. In particular, it is asked
that the elements of H? stay in a known compact set H?, and that
the inferred prediction model ψ has some strong regularity properties
uniform in the control gains (κ, `). These requirements, in principle
not needed in the design of the identifier and internal model, are
rather needed for the successive embedding of the two units in the
overall regulator, as they permit to break the “chicken-egg dilemma”
and sequence the design of the remaining degrees of freedom.

We remark, moreover, that in the “square” case, namely when
nu = ne in (4), the matrix Ω(w, x) is square and κ and ` do no
mix-up with Ω(w, x), q(w, x) and ν(w, x) in the definition of η̇?d
and η?. Therefore (η̇?d, η

?) can be always bounded uniformly in κ
and ` whenever they are taken larger than 1 and Kω/(κ`) can be
bounded uniformly in κ and `.

D. The design of the identifier
With d and ψ fixed, we shift our attention to the design of the

identifier. The fact that (11) is not attainable exactly suggests to define
a steady state prediction error as

ε?(t, θ) := η̇?d(t)− ψ(η?(t), θ) (12)

and to look for a dynamical system which is able to select the best
parameter, say θ?, whose corresponding model ψ(·, θ?(t)) is, at each
t, the “best” model in M relating η̇?(t) and η?(t), minimising in
some sense ε?. As customary in system identification, the meaning
of “best” in the model selection is based on the definition of a
fitness criteria assigning to each model ψ(·, θ) ∈ M a suitable and
comparable value. In particular, with C0(Rnθ ,R≥0) the space of
continuous functions Rnθ → R≥0, with each pair (η̇?d, η

?) ∈ H?
we associate the map J(η̇?

d
,η?) : R≥0 → C0(Rnθ ,R≥0) given by

J(η̇?
d
,η?)(t)(θ) :=

∫ t

0
cε
(
t, s, |ε?(s, θ)|

)
ds+ cr(θ), (13)

with cε : R≥0 × R≥0 × R≥0 → R≥0 and cr : Rnθ → R≥0
some user-defined positive functions characterising the particular
underlying identification problem. More precisely, the integral term
of (13) measures how well a given choice of θ fits the historical data,
while cr(θ) plays the role of a regularisation factor. With J(η̇?

d
,η?)

we associate the set-valued map ϑ◦(η̇?
d
,η?) : R≥0 ⇒ Rnθ defined as

ϑ◦(η̇?
d
,η?)(t) := argmin

θ∈Rnθ
J(η̇?

d
,η?)(t)(θ) .

Once a cost functional of the form (13) is defined, the identifier sub-
system (7) is constructed to guarantee the existence of an “optimal”
steady state z?, which is robustly asymptotically stable for (7), and
whose corresponding output θ? = ω(z?) is a pointwise minimiser
of J(η̇?

d
,η?)(t), i.e. satisfies θ?(t) ∈ ϑ◦(η̇?

d
,η?)(t) for all t ≥ 0. In

particular, the identifier (7) is chosen as a system with state

z = col(ξ, ς), ξ ∈ R2ne , ς ∈ Zς ,

in which Zς is a finite-dimensional normed vector space, Z =
R2ne ×Zς , and the pair (µ, ω) is chosen so that, with ξ1, ξ2 ∈ Rne
such that ξ = col(ξ1, ξ2), the equations (7) read as

ξ̇1 = ξ2 −m1 ρ (ξ1 − ηd)

ξ̇2 = ψ̇(ξ2, η, ς)−m2 ρ
2 (ξ1 − ηd)

ς̇ = ϕ(ς, ξ2, η)
θ = γ(ς)

(14)

where m1, m2 > 0 are arbitrary, ρ > 0 is a design parameter,
ψ̇ : Rne ×Rdne ×Zς → Rne is a function fixed below, and (ϕ, γ)
is chosen to satisfy the following requirement.

Requirement 1 (Identifier Requirement) The pair (ϕ, γ) is said
to satisfy the identifier requirement relative to a class H? and a
cost functional (13), if ϕ is locally Lipschitz, γ is Lipschitz and
differentiable with locally Lipschitz derivative, and there exist βς ∈
KL, a compact set S? ⊂ Zς , ας > 0 and, for each (η̇?d, η

?) ∈ H?,
a unique ς? : R≥0 → S?, such that:
• for every locally integrable δ′ : R→ Rne and δ′′ : R→ Rdne ,

all the maximal solutions to the system ς̇ = ϕ(ς, η̇?d+δ′, η?+δ′′)
are complete and satisfy

|ς(t)− ς?(t)| ≤ βς(|ς(0)− ς?(0)|, t) + ας |(δ′, δ′′)|[0,t)
for all t ∈ R≥0;

• the signal θ?(t) := γ(ς?(t)) satisfies θ?(t) ∈ ϑ◦(η̇?
d
,η?)(t) for

all t ∈ R≥0.

With H? and S? the compact sets introduced, respectively, in A3
and in the identifier requirement, and with Dψ and Dγ denoting
the Jacobian of ψ and γ respectively, we define ψ̇ as any bounded
function satisfying

ψ̇(ξ2, η, ς) = Dψ(η, θ) col
(
Φ(η, γ(ς)), Dγ(ς)ϕ(ς, ξ2, η)

)
(15)

for all (ξ2, η, ς) ∈ H? × S?. With this construction, since under
A3 and the identifier requirement, ψ, Dψ, ϕ, γ and Dγ are locally
Lipschitz, there exists lψ > 0 such that

|ψ̇(ξ2, η, ς)− ψ̇(η̇?d, η
?, ς?)| ≤ lψ|(ξ2 − η̇?d, η − η

?, ς − ς?)| (16)

for all (ξ2, η, ς) ∈ Rne × Rdne ×Zς and (η̇?d, η
?, ς?) ∈ H? × S?.

The identifier (14) is thus composed of the two subsystems ξ and ς .
The dynamics and output maps (ϕ, γ) of ς are designed to fulfil the
identifier requirement. When driven by the “ideal” input pair (η̇?d, η

?),
the subsystem ς is supposed to have an attractive steady-state solution
ς? along which its output θ? leads to the best model in the model
set M according to (13). In addition, a robustness property, given
in terms of input-to-state stability with respect to the additive inputs
(δ′, δ′′), is required. This additional property is needed since (η̇?d, η

?)
is not available for feedback and in (14) the system ς is instead
driven by the input (ξ2, η), the latter playing the role of a “proxy”
for (η̇?d, η

?). While it is clear that η carries some information on η?,
the fact that ξ2 acts as a proxy of η̇?d follows by the definition of ξ,
which is indeed designed as a derivative observer of the derivative
η̇d of ηd, providing the missing information on η̇?d .

We stress that the ability to construct an identifier satisfying the
requirement as indicated above hides the need of qualitative and
quantitative knowledge on the ideal steady-state signals η̇?d , η? and
ς?, as evident for instance in the definition of S? and H?. We remark,
however, that this information concerns high-level properties of the
class H?, such as a uniform bound on its elements, and not the
precise knowledge of the actual (η̇?d, η

?). In Section III, pair (ϕ, γ)
fulfilling the identifier requirement when the model ψ(·, θ) is linearly
parametrised and (13) is a least square functional is presented.

E. The asymptotic stability result
The overall regulator reads as follows

η̇ = Φ(η, γ(ς)) +Ge
ς̇ = ϕ(ς, ξ2, η)

ξ̇1 = ξ2 −m1ρ(ξ1 − ηd)

ξ̇2 = ψ̇(ξ2, η, ς)−m2ρ
2(ξ1 − ηd)

u = L
(
Kχχ+Kζζ +Kηη1 +Kwν(x?, w)

) (17)
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We finally show that the design parameters (g, `, κ, ρ) can be
chosen so that the closed-loop system has an asymptotic regulation
error that is bounded by a function of the best attainable prediction
error. The result is precisely formulated in the following theorem.

Theorem 1 Suppose that A1 and A2 hold, and consider the regulator
(17) constructed in the previous sections with H? and ψ satisfying
A3 and (ϕ, γ) fulfilling the identifier requirement relative to H? and
a cost functional (13). Suppose moreover that (η̇?d, η

?) ∈ H? for all
κ > 1 and ` > 1. Then there exist c, ρ?, g?(ρ), κ?(g), `?(g, κ) > 0
such that, for all ρ ≥ ρ?, g ≥ g?(ρ), κ ≥ κ?(g) and ` ≥ `?(g, κ),
every solution of the closed-loop system (4), (17) satisfies

lim sup
t→∞

|e(t)| ≤ c

gd
lim sup
t→∞

|ε?(t, θ?(t))|,

with c not dependent on the control parameters.

Theorem 1 is proved in the Appendix. Its claim is an approximate
regulation result, which becomes asymptotic whenever ε?(t, θ?(t)) =
0. This, in turn, happens when a “real” model exists and belongs
to the chosen model set M. As Assumption A3 and the identifier
requirement imply that ε? can be bounded uniformly in the control
parameters, the claim of the theorem is also a practical regulation
result, with the bound on the regulation error that can be reduced
arbitrarily by increasing g. Finally, we remark that, if a “saturated
version” of ψ is implemented in the internal model unit (6) in place
of ψ (for instance by saturating ψ on H? × γ(S?) in the same way
as it is done in (15) for ψ̇), and if (η̇?d, η

?) is bounded uniformly in
the control parameters (which is always true in the square case as
remarked in Section II-C), then a practical regulation result is still
preserved3 also in the case in which (η̇?d, η

?) /∈ H?, thus paralleling
the “canonical” pre-processing results (see e.g. [4,22]). In this case,
however, the asymptotic bound on e(t) cannot be related to ε? any
more.

III. CONTINUOUS-TIME LEAST SQUARES IDENTIFIERS

We develop here an example of a pair (ϕ, γ) that fulfils the
identifier requirement when the model ψ(·, θ) is a finite linear
combination of known functions of the form4

ψ(·, θ) =

nθ∑
i=1

θiσi(·) , (18)

in which nθ ∈ N is arbitrary and σi : Rd → R are known
Lipschitz and bounded functions. In this case the model set M is
the family of functions of the form σ(·)>θ, having defined σ(·) :=
col(σ1(·), . . . , σnθ (·)) and θ := col(θ1, . . . , θnθ ). We associate
with M the following cost functional, obtained by letting in (13)
cε(t, s, ·) := exp(−λ(t− s))| · |2 and cr(θ) := θ>Γθ, with λ > 0
and Γ ∈ Rnθ×nθ symmetric and positive semi-definite

J(η̇?
d
,η?)(t)(θ) = λ

∫ t

0
e−λ(t−s)

∣∣ε?(s, θ)
∣∣2ds+ θ>Γθ (19)

in which the prediction error (12) at time s reads as

ε?(s, θ) := η̇?d(s)− σ(η?(s))>θ .

The optimisation problem associated with (19) is recognised to be
a (weighted) least squares problem with regularisation, in which

3This can be deduced by the proof of Theorem 1 by neglecting the
identifier’s dynamics and by noticing that, in (21), ψ̃(η̃, ς̃, η?, ς?) − ε? =
ψ(η, γ(ς))− η̇?d can be bounded uniformly in ς .

4For ease of exposition we present here the case in which ne = 1, with the
remark that an identifier of the same kind for ne > 1 can be always obtained
as the composition of ne single-variable identifiers.

λ and Γ play the role of the forgetting factor and the regulariser
respectively. Namely, except for the regularisation term, minimising
(19) means minimising a weighted squared “norm” of the prediction
errors associated with all the past data.

With SPnθ the space of symmetric positive semi-definite matrices
in Rnθ×nθ , we let Zς := SPnθ ×Rnθ and, by partitioning the state
as ς = (ς1, ς2), with ς1 ∈ SPnθ and ς2 ∈ Rnθ , we equip Zς with
the norm |ς| := |ς1|+ |ς2|. We thus construct a pair (ϕ, γ) satisfying
the identifier requirement relative to (19) as follows

ς̇1 = −λς1 + λσ(η)σ(η)>

ς̇2 = −λς2 + λσ(η)ξ2
θ = (ς1 + Γ)−1ς2,

ς ∈ Zς (20)

The claim is formalized by the following proposition.

Proposition 1 With c > 0 arbitrary, let H? be a class of lo-
cally integrable functions (η̇?d, η

?) : R≥0 → R × Rd satisfying
|(η̇?d, η

?)|∞ ≤ c. Then, if Γ > 0, the pair (ϕ, γ) constructed in
(20) satisfies the identifier requirement relative to H? and the least-
squares functional (18) with βς(s, t) = s exp(−λt).

Proof: As σ is Lipschitz and bounded, then ϕ(ς, ξ2, η) :=
(−λς1 + λσ(η)σ(η)>, −λς2 + λσ(η)ξ2) is locally Lipschitz. Pick
an eigenvalue ε(t) of ς1(t) + Γ, and let v(t) 6= 0 be a corresponding
eigenvector. Then v(t)>(ς1(t) + Γ)v(t) = ε(t)|v(t)|2, and since
Γ > 0 and ς1(t) ∈ SPnθ , this implies ε(t) ≥ p, with p > 0 the
smallest eigenvalue of Γ. Thus ς1 + Γ is invertible and the singular
values of (ς1+Γ)−1 are bounded by p−1, which implies that γ(ς) :=
(ς1 + Γ)−1ς2 is Lipschitz, smooth in ς and, as a consequence, its
derivative is locally Lipschitz.

Pick now ξ2 = η̇?d + δ′ and η = η?+ δ′′, with (η̇?d, η
?) ∈ H? and

(δ′, δ′′) locally integrable. Forward completeness follows by noticing
that (20) is a stable linear system driven by the locally integrable input
(σ(η)σ(η)>, σ(η)ξ2) and that, as σ(η)σ(η)> ∈ SPnθ , then SPnθ
is forward invariant for ς1. With Σ(η?, δ′′) := σ(η? + δ′′)σ(η? +
δ′′)> and π(η?, η̇?d, δ

′, δ′′) := σ(η? + δ′′)(η̇?d + δ′), define

ς?1 (t) := λ

∫ t

0
e−λ(t−s)Σ(η?(s), 0)ds

ς?2 (t) := λ

∫ t

0
e−λ(t−s)π(η?(s), η̇?d(s), 0, 0)ds,

and let ς? = (ς?1 , ς
?
2 ). If |(η̇?d, η

?)| ≤ c for some c > 0, then clearly
there exists c′ > 0 such that ς?(t) ∈ S? := {ς ∈ Zς : |ς| ≤ c′}.
Furthermore, since σ is Lipschitz and bounded, there exists lσ >
0 (possibly depending on c) such that |Σ(η?, δ′′) − Σ(η?, 0)| ≤
lσ|δ′′| and |π(η?, η̇?d, δ

′, δ′′)− π(η?, η̇?d, 0, 0)| ≤ lσ|(δ′, δ′′)| for all
(δ′, δ′′) ∈ R×Rd. Hence, by integration of (20), and using ς?1 (0) =
0, we obtain

|ς1(t)− ς?1 (t)| ≤ e−λt|ς1(0)− ς?1 (0)|+ lσ|(δ′, δ′′)|[0,t),

and a similar bound holds for |ς2(t)− ς?2 (t)|, thus implying the first
item of the identifier requirement with βς(s, t) = s exp(−λt) and
with ας = 2lσ . For fixed t ∈ R≥0, differentiating (19) with respect
to θ yields DθJ(η̇?

d
,η?)(t)(θ) = 2((ς?1 (t) + Γ)θ − ς?2 (t)). Since,

ϑ◦(η̇?
d
,η?)(t) := {θ ∈ Rnθ : DθJ(η̇?

d
,η?)(t)(θ) = 0}, then θ?(t) =

(ς?1 (t) + Γ)−1ς?2 (t) ∈ ϑ◦(η̇?
d
,η?)(t), which is the second item of the

requirement, thus concluding the proof.
We observe that the regularisation matrix Γ > 0 plays a funda-

mental role in Proposition 1, as it ensures that ς1 + Γ is uniformly
nonsingular. However, its presence frustrates the possibility of having
asymptotic regulation also when the “right” internal model belongs
to the model set (18). As evident in (19), indeed, having Γ ≥ 0
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means that, even if θ annihilates the prediction error ε?, and thus the
integral term of (19), it also produces a positive addend θ>Γθ, thus
possibly making such θ a non-stationary point of J(η̇?

d
,η?)(t). In this

case, θ approaches a neighbourhood of θ?(t) of a size that depends
on the maximum eigenvalue of Γ that, however, can be taken as small
as desired. Nevertheless, Γ can be chosen positive semi-definite (and
possibly zero). In this case, (7) can still be used by substituting the
inverse operator with a pseudo-inverse (indeed σ1 + Γ needs not be
invertible in this case), and the claim of Proposition 1 applies only if
the minimum non-zero singular value of ς1+Γ is bounded away from
zero uniformly in t, which can be seen as a persistence of excitation
condition. We also remark that, in this case, the Lipschitz constant of
γ and its derivative becomes dependent on how large is the minimum
non-zero singular value of ς1 +Γ, thus making the result of Theorem
1 obtained for a certain value of the gains ρ, g, κ and `, applicable
only to the solutions carrying sufficient excitation.

IV. EXAMPLE: CONTROL OF THE VTOL
Consider the lateral (p1, p2) and angular (p3,p4) dynamics of a

VTOL aircraft described by [23]

ṗ1 = p2

ṗ2 = d(w)− % tan p3 + v
ṗ3 = p4

ṗ4 = Bu

with M > 0 the VTOL mass, % > 0 the gravitational constant and
B = 2LJ−1 > 0, with L > 0 the length of the wings and J the
moment of inertia (typically uncertain). The input u is the force on the
wingtips, v is a vanishing input taking into account the (controlled)
vertical dynamics (not considered here) and d(w) := M−1d0(w),
with d0(w) that is the lateral wind force disturbance. The control goal
is to eliminate the wind action from the lateral position dynamics,
i.e. the regulation error is defined as e(t) = p1(t). We also suppose
to have available for feedback the entire state, namely y = p. Let w
be generated by an exosystem of the form (2) and change variables
as p 7→ x := (χ, ζ), with χ := (p1, p2, −% tan p3 + d(w)) and
ζ := Lsd(w)−%p4/(cos p3)2. In the new coordinates the following
equations hold

χ̇1 = χ2
χ̇2 = χ3

χ̇3 = ζ

ζ̇ = q(w, x) + Ω(w, x)u,

in which5 Ω(w, x) := −%B/(cos(tan−1(d(w) − χ3)/%)))2 and
q(w, x) properly defined. This system is in the form (4), with
A1 trivially fulfilled (x0 being absent) by x? = 0 and u? =
%B−1(L2

sd(w) − 2d(w)2Lsd(w))/(d(w)2 + %2), and A2 fulfilled
on each compact set with L a negative number6. With (c1, c2, c3) the
coefficients of a Hurwitz polynomial and κ, ` > 0 design parameters,
we fix the control law as

u = −L
(
c1`κ

3(p1 + η1) + c2`κ
2p2 + c3`κ(−% tan p3)

+ `(−%p4/ cos2 p3)
)
,

with η1 the first state of the internal model fixed later. In the new
coordinates (χ, ζ), this control law is of the form (8), with Kw =
`(c3κ 1) and ν(x?, w) = col(d(w), Lsd(w)).

Regarding the design of the internal model unit, we observe
that, by following Section II-C, Υ(`,κ)(w) = Q(`, κ)D(w),
in which Q(`, κ) := (c3/(c1κ

2) 1/(c1κ
3) 1/(c1`Lκ3)) and

D(w) = col(d(w), Lsd(w), −Ω(w, 0)−1q(w, 0)). Thus, η?i =
Q(`, κ)Li−1s D(w), i = 1, . . . , d, and η̇?d = Q(`, κ)LdsD(w). The

5Recall that cos(tan−1(s)) = 1/
√
s2 + 1.

6In this respect, we observe that the ideal steady-state
value of the measurements (p3, p4) is given by (p?3, p

?
4) :=

(tan−1(d(w)/%), %Lsd(w)/(d(w)2 + 1)), and thus y is not in general
vanishing at the steady state.

form of Q and the fact κ and ` have large values show that
the dominant elements in η?i and η̇?d are Li−1s d(w) and Ldsd(w),
regardless the value of the dimension d of η. Now, suppose that
d(w) consists of a single harmonic at an unknown frequency. The
design of (d, ψ) and the identifier to reject d(w) is then carried out by
considering a single oscillator as the model set, obtained with d = 2,
nθ = 2, and ψ(η, θ) := θ>η. The adaptation phase, in turn, can be
set up by using the least-squares identifier presented in Section III
with nθ = 2 and σ any bounded function satisfying σ(η) = η in the
region where col(d(w), Lsd(w)) · c3/c1κ2 is supposed to range.

V. CONCLUSIONS

The paper presented a post-processing design procedure for a class
of multivariable nonlinear systems stabilisable by high-gain feedback
hinging on a “non-equilibrium” framework. The internal model is
adaptive with the adaptation mechanisms cast as an identification
problem and with the asymptotic regulation error that is directly
related to the identification error. The framework does not rely on
an exact knowledge of the steady state friend, nor on an exact
parametrisation of it. Rather, it assumes the knowledge of some
qualitative\quantitative information about the class of steady state
signals used to choose the model set of the underlying identification
problem. The paper fits in the research direction of [1,14] in which
approximate, rather than asymptotic, regulation is envisioned as the
right perspective in presence of general uncertainties.

APPENDIX I
PROOF OF THEOREM 1

With κ > 1 and ` > 1, pick a solution (x, χ, ζ, η, ς, ξ) to the
closed-loop system (4), (17) and let (x?, u?, η?, η̇?d) be given by
A1 and Section II-C. Assume that (η̇?d, η

?) ∈ H?, and let (ς?, θ?)
be produced by the identifier requirement. Consider the following
change of variables

η 7→ η̃ := η − η? ς 7→ ς̃ := ς − ς?

χ 7→ χ̃ := χ+ C>η̃1 ζ 7→ ζ̃ := ζ −K(κ)χ̃

ξ 7→ ξ̃ := ξ −
(

η?d
ψ(η?, θ?)

)
e 7→ ẽ := e+ η̃1,

where we recall that K(κ) is defined in (8) and η̃1 ∈ Rne represents
the first ne components of η̃. By definition of η?, η̇?i = η?i+1, and
in the new coordinates we obtain

˙̃ηi = η̃i+1 − higiη̃1 + gihiẽ, i = 1, . . . , d− 1
˙̃ηd = −hdgdη̃1 + ψ̃(η̃, ς̃ , η?, ς?) + hdg

dẽ− ε?.
(21)

with ε? = ε?(t, θ?) given by (12) and with ψ̃(η̃, ς̃ , η?, ς?) :=
ψ(η̃ + η?, γ(ς̃ + ς?)) − ψ(η?, γ(ς?)) that, since A3 and the
identifier requirement imply that ψ and γ are Lipschitz, fulfils
|ψ̃(η̃, ς̃ , η?, ς?)| ≤ cψ,γ |(η̃, ς̃)| for some cψ,γ > 0 independent on
the control parameters. Thus, standard high-gain arguments (see e.g.
[24]) show that there exist a0, a1, a2, a3 > 0 and g?0 > 0 such that
for all g ≥ g?0 the following bound holds

|η̃i(t)| ≤ a0gi−1|η̃(0)|e−a1gt + a2g
i−d−1|(ς̃ , ε?)|[0,t)

+ a3g
i−1|ẽ|[0,t)

(22)

for all t ∈ R≥0 and each i = 1, . . . , d. Moreover, ξ̃ satisfies

˙̃
ξ1 = ξ̃2 −m1ρξ̃1 +m1ρη̃d − ε?
˙̃
ξ2 = −m2ρ

2ξ̃1 + µ̃(η̃, ς̃ , ξ̃2, η
?, ς?) +m2ρ

2η̃d,

in which, since by A3 (η̇?d, η
?) ∈ H? implies (η̇?d(t), η?(t)) ∈ H?,

and by the identifier requirement we have ς?(t) ∈ S?, in view of (15)
µ̃ reads as µ̃(η̃, ς̃ , ξ̃2, η

?, ς?) := ψ̇(ξ̃2 +ψ(η?, θ?), η̃+η?, ς̃+ ς?)−
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ψ̇(η̇?d, η
?, ς?). Moreover, in view of (16), there exists lψ > 0 such

that |µ̃(η̃, ς̃ , ξ̃2, η
?, ς?)| ≤ lψ

(
|(η̃, ς̃ , ξ̃2)|+ |ε?|

)
. Hence, customary

high-gain arguments show that there exist ρ?0 > 1 and a4, a5, a6 > 0
such that, for all ρ ≥ ρ?0, the following holds

|ξ̃(t)| ≤ a4ρ|ξ̃(0)|e−a5ρt + a6

(
ρ|η̃|[0,t) + ρ−1|ς̃|[0,t) + |ε?|[0,t)

)
.

(23)
We can write ξ2 = η̇?d + δ′ and η = η? + δ′′, with δ′ := ξ̃2 − ε?

and δ′′ := η̃, so that the identifier requirement yields

|ς̃(t)| ≤ βς(|ς̃(0)|, t) + ας |(η̃, ξ̃, ε?)|[0,t). (24)

In view of standard small-gain arguments (see e.g. [25]), the bounds
(22), (23), (24) yield the existence of β1 ∈ KL, a7 > 0, ρ? ≥ ρ?0
and g?(ρ) ≥ g?0 such that, for all ρ > ρ? and g ≥ g?(ρ), we have

|(η̃(t), ς̃(t), ξ̃(t))| ≤ β1(|(η̃(0), ς̃(0), ξ̃(0))|, t)
+ a7

(
gd−1|ẽ|[0,t) + |ε?|[0,t)

)
|η̃i(t)| ≤ β1(|(η̃(0), ς̃(0), ξ̃(0))|, t)

+ a7
(
gi−1|ẽ|[0,t) + gi−1−d|ε?|[0,t)

)
.

(25)

By noticing that ẽ = Cχ̃, differentiating χ̃ yields

˙̃χ = (F +HK(κ) + gh1C
>C)χ̃+Hζ̃ + C>(η̃2 − gh1η̃1),

so that, in view of (9), quite standard high-gain arguments (see e.g.
[20]) show that there exists κ?0(g) > 1 such that, for all κ > κ?0(g)
the following hold

|χ̃(t)| ≤ a9(κ)|χ̃(0)|e−a10κt +
a11
κ
|ζ̃|[0,t)

+ a12(κ)
(
g|η̃1|[0,t) + |η̃2|[0,t)

)
|ẽ(t)| ≤ a9(κ)|χ̃(0)|e−a10κt +

a11
κ
|ζ̃|[0,t)

+
a13
κ

(
g|η̃1|[0,t) + |η̃2|[0,t)

)
(26)

for some a9(κ), a10, a11, a12(κ), a13 > 0. Furthermore, in the
new coordinates, the control law (8) becomes u = −`Lζ̃ −
L
(
Ω(w, x?)L

)−1
q(w, x?), and differentiating ζ̃ yields

˙̃
ζ = δ(η̃, χ̃, ζ̃) + φ̃(w, x, x?)− `Ω(w, x)Lζ̃ (27)

with δ(η̃, χ̃, ζ̃) := −K(κ)((F + HK(κ) + gh1C
>C)χ̃ + Hζ̃ +

C>(η̃2 − h1gη̃1)) that satisfies |δ(η̃, χ̃, ζ̃)| ≤ a14(κ, g)|(η̃, χ̃, ζ̃)|,
for some a14(g, κ) > 0, and with φ̃(w, x, x?) :=
Ω(w, x)L((Ω(w, x)L)−1q(w, x) − (Ω(w, x?)L)−1q(w, x?)) that,
in view of A2 and since |χ| ≤ |χ̃|+ |η̃1| and |ζ| ≤ |ζ̃|+ |K(κ)χ̃|,
satisfies |φ̃(w, x, x?)| ≤ a15(κ)|(x̃0, χ̃, ζ̃, η̃1)|, for some a15(κ) > 0
and with x̃0 := x0 − x?0. Hence, usual high-gain arguments show
that, under A2, there exists an `?0(κ, g) > 0 such that, for all
` > `?0(κ, g) the following bound holds

|ζ̃(t)| ≤a16|ζ̃(0)|e−a17`t +
a18(κ)

`
|χ̃|[0,t)

+
a19
`
|x̃0|[0,t) +

a20(κ)

`

(
g|η̃1|[0,t) + |η̃2|[0,t)

) (28)

for some a16, a17, a18(κ), a19, a20(κ) > 0. Furthermore, by notic-
ing that |χ| ≤ |χ̃| + |η̃1| and |ζ| ≤ |ζ̃| + |K(κ)χ̃|, A1 yields the
existence of b2, b3(κ) > 0 such that

|x̃0(t)| ≤ β0(|x̃0(0)|, t) + b2|(η̃1, ζ̃)|[0,t) + b3(κ)|χ̃|[0,t). (29)

Therefore, in view of (25), (26), (28) and (29), repeating the small-
gain arguments of [25] yields the existence of a κ?(g) ≥ κ?0(g) and
of an `?(κ, g) ≥ `?0(κ, g) such that, for each ρ > ρ?, g ≥ g?(ρ),
κ ≥ κ?(g), and ` ≥ `?(g, κ), it holds that

|(x̃(t), η̃(t), ς̃(t), ξ̃(t))| ≤ β(|(x̃(0), η̃(0), ς̃(0), ξ̃(0))|, t)

+ p1(κ, g)|ε?|[0,t)
and

lim sup
t→∞

|ẽ(t)| ≤ p2κ−1g1−d lim sup
t→∞

|ε?(t)|

lim sup
t→∞

|η̃1(t)| ≤ p3g−d lim sup
t→∞

|ε?(t)|

for some β ∈ KL and p1(κ, g), p2, p3 > 0, and the result follows
with c = p2 + p3 by noticing that |e| ≤ |ẽ| + |η̃1| and that, since
κ?(g) can be taken to be larger than g, then κ−1 ≤ g−1.
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