101 research outputs found

    Wavelet/shearlet hybridized neural networks for biomedical image restoration

    Get PDF
    Recently, new programming paradigms have emerged that combine parallelism and numerical computations with algorithmic differentiation. This approach allows for the hybridization of neural network techniques for inverse imaging problems with more traditional methods such as wavelet-based sparsity modelling techniques. The benefits are twofold: on the one hand traditional methods with well-known properties can be integrated in neural networks, either as separate layers or tightly integrated in the network, on the other hand, parameters in traditional methods can be trained end-to-end from datasets in a neural network "fashion" (e.g., using Adagrad or Adam optimizers). In this paper, we explore these hybrid neural networks in the context of shearlet-based regularization for the purpose of biomedical image restoration. Due to the reduced number of parameters, this approach seems a promising strategy especially when dealing with small training data sets

    An Image Filter Based on Shearlet Transformation and Particle Swarm Optimization Algorithm

    Get PDF
    Digital image is always polluted by noise and made data postprocessing difficult. To remove noise and preserve detail of image as much as possible, this paper proposed image filter algorithm which combined the merits of Shearlet transformation and particle swarm optimization (PSO) algorithm. Firstly, we use classical Shearlet transform to decompose noised image into many subwavelets under multiscale and multiorientation. Secondly, we gave weighted factor to those subwavelets obtained. Then, using classical Shearlet inverse transform, we obtained a composite image which is composed of those weighted subwavelets. After that, we designed fast and rough evaluation method to evaluate noise level of the new image; by using this method as fitness, we adopted PSO to find the optimal weighted factor we added; after lots of iterations, by the optimal factors and Shearlet inverse transform, we got the best denoised image. Experimental results have shown that proposed algorithm eliminates noise effectively and yields good peak signal noise ratio (PSNR)

    Shearlet-based vs. Photometric-based Visual Servoing for Robot-assisted Medical Applications

    Get PDF
    International audience— This paper deals with the development of a vision-based controller for robot-assisted medical applications. It concerns the use of shearlet coefficients in case of ultrasounds (US) images as visual signal inputs and the design of the associated interaction matrix. The proposed controller was validated in both simulation and on an experimental test bench which consists of a robotic arm holding an US probe in contact with a realistic abdominal phantom. Also, the proposed control scheme was compared to the photometry-based visual servoing approach in order to evaluate its efficiency in different conditions of use (nominal and unfavorable conditions)

    Sparse MRI and CT Reconstruction

    Full text link
    Sparse signal reconstruction is of the utmost importance for efficient medical imaging, conducting accurate screening for security and inspection, and for non-destructive testing. The sparsity of the signal is dictated by either feasibility, or the cost and the screening time constraints of the system. In this work, two major sparse signal reconstruction systems such as compressed sensing magnetic resonance imaging (MRI) and sparse-view computed tomography (CT) are investigated. For medical CT, a limited number of views (sparse-view) is an option for whether reducing the amount of ionizing radiation or the screening time and the cost of the procedure. In applications such as non-destructive testing or inspection of large objects, like a cargo container, one angular view can take up to a few minutes for only one slice. On the other hand, some views can be unavailable due to the configuration of the system. A problem of data sufficiency and on how to estimate a tomographic image when the projection data are not ideally sufficient for precise reconstruction is one of two major objectives of this work. Three CT reconstruction methods are proposed: algebraic iterative reconstruction-reprojection (AIRR), sparse-view CT reconstruction based on curvelet and total variation regularization (CTV), and sparse-view CT reconstruction based on nonconvex L1-L2 regularization. The experimental results confirm a high performance based on subjective and objective quality metrics. Additionally, sparse-view neutron-photon tomography is studied based on Monte-Carlo modelling to demonstrate shape reconstruction, material discrimination and visualization based on the proposed 3D object reconstruction method and material discrimination signatures. One of the methods for efficient acquisition of multidimensional signals is the compressed sensing (CS). A significantly low number of measurements can be obtained in different ways, and one is undersampling, that is sampling below the Shannon-Nyquist limit. Magnetic resonance imaging (MRI) suffers inherently from its slow data acquisition. The compressed sensing MRI (CSMRI) offers significant scan time reduction with advantages for patients and health care economics. In this work, three frameworks are proposed and evaluated, i.e., CSMRI based on curvelet transform and total generalized variation (CT-TGV), CSMRI using curvelet sparsity and nonlocal total variation: CS-NLTV, CSMRI that explores shearlet sparsity and nonlocal total variation: SS-NLTV. The proposed methods are evaluated experimentally and compared to the previously reported state-of-the-art methods. Results demonstrate a significant improvement of image reconstruction quality on different medical MRI datasets

    Pedestrian Detection Algorithms using Shearlets

    Get PDF
    In this thesis, we investigate the applicability of the shearlet transform for the task of pedestrian detection. Due to the usage of in several emerging technologies, such as automated or autonomous vehicles, pedestrian detection has evolved into a key topic of research in the last decade. In this time period, a wealth of different algorithms has been developed. According to the current results on the Caltech Pedestrian Detection Benchmark the algorithms can be divided into two categories. First, application of hand-crafted image features and of a classifier trained on these features. Second, methods using Convolutional Neural Networks in which features are learned during the training phase. It is studied how both of these types of procedures can be further improved by the incorporation of shearlets, a framework for image analysis which has a comprehensive theoretical basis

    Applied microlocal analysis of deep neural networks for inverse problems

    Get PDF
    Deep neural networks have recently shown state-of-the-art performance in different imaging tasks. As an example, EfficientNet is today the best image classifier on the ImageNet challenge. They are also very powerful for image reconstruction, for example, deep learning currently yields the best methods for CT reconstruction. Most imaging problems, such as CT reconstruction, are ill-posed inverse problems, which hence require regularization techniques typically based on a-priori information. Also, due to the human visual system, singularities such as edge-like features are the governing structures of images. This leads to the question of how to incorporate such information into a solver of an inverse problem in imaging and how deep neural networks operate on singularities. The main research theme of this thesis is to introduce theoretically founded approaches to use deep neural networks in combination with model-based methods to solve inverse problems from imaging science. We do this by heavily exploring the singularity structure of images as a-priori information. We then develop a comprehensive analysis of how neural networks act on singularities using predominantly methods from the microlocal analysis. For analyzing the interaction of deep neural networks with singularities, we introduce a novel technique to compute the propagation of wavefront sets through convolutional residual neural networks (conv-ResNet). This is achieved in a two-fold manner: We first study the continuous case where the neural network is defined in an infinite-dimensional continuous space. This problem is tackled by using the structure of these networks as a sequential application of continuous convolutional operators and ReLU non-linearities and applying microlocal analysis techniques to track the propagation of the wavefront set through the layers. This then leads to the so-called \emph{microcanonical relation} that describes the propagation of the wavefront set under the action of such a neural network. Secondly, for studying real-world discrete problems, we digitize the necessary microlocal analysis methods via the digital shearlet transform. The key idea is the fact that the shearlet transform optimally represents Fourier integral operators hence such a discretization decays rapidly, allowing a finite approximation. Fourier integral operators play an important role in microlocal analysis, since it is well known that they preserve singularities on functions, and, in addition, they have a closed form microcanonical relation. Also, based on the newly developed theoretical analysis, we introduce a method that uses digital shearlet coefficients to compute the digital wavefront set of images by a convolutional neural network. Our approach is then used for a similar analysis of the microlocal behavior of the learned-primal dual architecture, which is formed by a sequence of conv-ResNet blocks. This architecture has shown state-of-the-art performance in inverse problem regularization, in particular, computed tomography reconstruction related to the Radon transform. Since the Radon operator is a Fourier integral operator, our microlocal techniques can be applied. Therefore, we can study with high precision the singularities propagation of this architecture. Aiming to empirically analyze our theoretical approach, we focus on the reconstruction of X-ray tomographic data. We approach this problem by using a task-adapted reconstruction framework, in which we combine the task of reconstruction with the task of computing the wavefront set of the original image as a-priori information. Our numerical results show superior performance with respect to current state-of-the-art tomographic reconstruction methods; hence we anticipate our work to also be a significant contribution to the biomedical imaging community.Tiefe neuronale Netze haben in letzter Zeit bei verschiedenen Bildverarbeitungsaufgaben Spitzenleistungen gezeigt. Zum Beispiel ist AlexNet heute der beste Bildklassifikator bei der ImageNet-Challenge. Sie sind auch sehr leistungsfaehig fue die Bildrekonstruktion, zum Beispiel liefert Deep Learning derzeit die besten Methoden fuer die CT-Rekonstruktion. Die meisten Bildgebungsprobleme wie die CT-Rekonstruktion sind schlecht gestellte inverse Probleme, die daher Regularisierungstechniken erfordern, die typischerweise auf vorherigen Informationen basieren. Auch aufgrund des menschlichen visuellen Systems sind Singularitaeten wie kantenartige Merkmale die bestimmenden Strukturen von Bildern. Dies fuehrt zu der Frage, wie man solche Informationen in einen Loeser eines inversen Problems in der Bildverarbeitung einbeziehen kann und wie tiefe neuronale Netze mit Singularitaeten arbeiten. Das Hauptforschungsthema dieser Arbeit ist die Einfuehrung theoretisch fundierter konzeptioneller Ansaetze zur Verwendung von tiefen neuronalen Netzen in Kombination mit modellbasierten Methoden zur Loesung inverser Probleme aus der Bildwissenschaft. Wir tun dies, indem wir die Singularitaetsstruktur von Bildern als Vorinformation intensiv erforschen. Dazu entwickeln wir eine umfassende Analyse, wie neuronale Netze auf Singularitaeten wirken, indem wir vorwiegend Methoden aus der mikrolokalen Analyse verwenden. Um die Interaktion von tiefen neuronalen Netzen mit Singularitaeten zu analysieren, fuehren wir eine neuartige Technik ein, um die Ausbreitung von Wellenfrontsaetzen mit Hilfe von Convolutional Residual neuronalen Netzen (Conv-ResNet) zu berechnen. Dies wird auf zweierlei Weise erreicht: Zunaechst untersuchen wir den kontinuierlichen Fall, bei dem das neuronale Netz in einem unendlich dimensionalen kontinuierlichen Raum definiert ist. Dieses Problem wird angegangen, indem wir die besondere Struktur dieser Netze als sequentielle Anwendung von kontinuierlichen Faltungsoperatoren und ReLU-Nichtlinearitaeten nutzen und mikrolokale Analyseverfahren anwenden, um die Ausbreitung einer Wellenfrontmenge durch die Schichten zu verfolgen. Dies fuehrt dann zu einer mikrokanonischen Beziehung, die die Ausbreitung der Wellenfrontmenge unter ihrer Wirkung beschreibt. Zweitens digitalisieren wir die notwendigen mikrolokalen Analysemethoden ueber die digitale Shearlet-Transformation, wobei die Digitalisierung fuer die Untersuchung realer Probleme notwendig ist. Die Schluesselidee ist die Tatsache, dass die Shearlet-Transformation Fourier-Integraloperatoren optimal repraesentiert, so dass eine solche Diskretisierung schnell abklingt und eine endliche Approximation ermoeglicht. Nebenbei stellen wir auch eine Methode vor, die digitale Shearlet-Koeffizienten verwendet, um den digitalen Wellenfrontsatz von Bildern durch ein Faltungsneuronales Netzwerk zu berechnen. Unser Ansatz wird dann fuer eine aehnliche Analyse fuer die gelernte primale-duale Architektur verwendet, die durch eine Sequenz von conv-ResNet-Bloecken gebildet wird. Diese Architektur hat bei der Rekonstruktion inverser Probleme, insbesondere bei der Rekonstruktion der Computertomographie im Zusammenhang mit der Radon-Transformation, Spitzenleistungen gezeigt. Da der Radon-Operator ein Fourier-Integraloperator ist, koennen unsere mikrolokalen Techniken angewendet werden. Um unseren theoretischen Ansatz numerisch zu analysieren, konzentrieren wir uns auf die Rekonstruktion von Roentgentomographiedaten. Wir naehern uns diesem Problem mit Hilfe eines aufgabenangepassten Rekonstruktionsrahmens, in dem wir die Aufgabe der Rekonstruktion mit der Aufgabe der Berechnung der Wellenfrontmenge des Originalbildes als Vorinformation kombinieren. Unsere numerischen Ergebnisse zeigen eine ueberragende Leistung, daher erwarten wir, dass dies auch ein interessanter Beitrag fuer die biomedizinische Bildgebung sein wird

    Multiresolution models in image restoration and reconstruction with medical and other applications

    Get PDF
    • …
    corecore