
Dissertation

Pedestrian Detection Algorithms
using Shearlets

Lienhard Pfeifer

2018





Pedestrian Detection Algorithms
using Shearlets

Dissertation

zur
Erlangung des akademischen Grades

Doktor der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt
dem Fachbereich Mathematik und Informatik

der
Philipps–Universität Marburg
(Hochschulkennziffer: 1180)

von
Lienhard Pfeifer

geboren am 20. August 1985

in Gladenbach



Erstgutachter: Prof. Dr. Stephan Dahlke, Philipps-Universität Marburg

Zweitgutachter: Prof. Dr. Bernd Freisleben, Philipps-Universität Marburg

Tag der Einreichung: 11.9.2018

Tag der mündlichen Prüfung: 9.11.2018
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Abstract

In this thesis, we investigate the applicability of the shearlet transform for the task of pedestrian
detection. Due to the usage of in several emerging technologies, such as automated or autonomous
vehicles, pedestrian detection has evolved into a key topic of research in the last decade. In this
time period, a wealth of different algorithms has been developed. According to the current results
on the Caltech Pedestrian Detection Benchmark [31], the algorithms can be divided into two
categories. First, application of hand-crafted image features and of a classifier trained on these
features [28, 99, 130]. Second, methods using Convolutional Neural Networks in which features
are learned during the training phase [9, 32, 127]. Our aim is to study how both of these types
of procedures can be further improved by the incorporation of a framework for image analysis
which has a comprehensive theoretical basis.

We choose the multi-scale framework of shearlets since it guarantees a unified treatment of the
continuum and the digital world [74]. In theory, shearlets provide optimally sparse approxima-
tions of certain image models [52, 76] and the ability to characterize edges in images [53, 78].
Moreover, they have been successfully applied practically in several image processing tasks, for
example denoising [35, 86] and edge detection [125].

We adapt the shearlet framework according to the requirements of the practical application of
a pedestrian detection algorithm. The particular shearlet design consists of two parts. First,
the usage of a specific mother shearlet that can precisely locate structures in images. Second,
the setup of a shearlet system allowing a uniformly distributed directional analysis and flexible
adjustment of the shearlets used per scale. The last point is useful to gain control over the space
size of the image features used for pedestrian detection. We show that our shearlet system forms
a frame for L2(R2) and provide the conditions required for it.

Next, we examine the capability of our shearlet design for edge detection from a theoretical
point of view. We show that the designed shearlets can characterize edge points in R2 and their
type by the decay rates and the limits of the shearlet transform for decreasing scales. In contrast
to the existing literature, we derive decay rates depending on the degree of anisotropy α. For
the special case of α = 1/2, we find explicit limits of the shearlet transform which has not been
achieved with recently used shearlets. Furthermore, we show that a shearlet mother function
with just one vanishing moment is required for our theoretical results. Finally, we illustrate that
this requirement is in harmony with the observations made in the practical application of an
edge detection algorithm with shearlets.

Given our specialized shearlet design, we define meaningful, hand-crafted image features based
on the shearlet transform. Meaningful in a sense that the features provide rich information about
an object’s structure. The consideration of shearlets has several advantages compared to other
image features. At first, they provide a sparse representation of the image, i.e. the result of
the shearlet transform only has magnitude with considerably high absolute value at pixels that
correspond to edge points. Second, due to the multi-scale framework of shearlets, the structure
of objects can directly be investigated at different scales. We show that our shearlet features
provide the best results of hand-crafted image features in the Caltech benchmark.
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Currently, all best performing algorithms in the Caltech benchmark are using CNN models.
Therefore, we analyze the capability of shearlets to further improve CNNs. We integrate shearlet
filters in the first layer of a CNN, since several learned filters of this layer show a similarity
to orientation-selective edge detection filters [72]. We show that we can improve classification
and detection results with the integration of shearlets compared to the original networks when
trained on the same data. Furthermore, we find that a training on comprehensive data sets such
as ImageNet [24] is required in order to achieve the detection results of the leading algorithms.
We consider this finding as indication for the immense power of data for deep learning algorithms.

One main application area of pedestrian detection is located in the automotive domain. The
usage in current collision warning and intervention systems [40] as well as in future systems of
autonomous driving requires algorithms to be runable on embedded devices. Therefore, we port
our base pedestrian detection algorithm to a marketably priced embedded target. By a careful
software design and runtime optimization we are able to run our algorithm with a useful frame
rate of 10 fps.
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Zusammenfassung

Die vorliegende Arbeit untersucht die Eignung von Shearlets für die Aufgabe der
Fußgängererkennung. Durch die mögliche Anwendung der Fußgängererkennung in diversen neu-
en Technologien, wie beispielsweise dem automatisierten oder autonomen Fahren, hat sich das
Thema im letzten Jahrzehnt zu einem Schlüsselthema der Forschung entwickelt. In dieser Zeitpe-
riode wurde eine Vielzahl verschiedener Algorithmen entwickelt. Nach den aktuellen Resultaten
des Caltech Pedestrian Detection Benchmarks [31] können die Algorithmen in zwei Kategori-
en unterteilt werden. Zum einen, die Anwendung von handgefertigten Bildmerkmalen und eines
Klassifikators, welcher auf diese Bildmerkmale trainiert ist [28, 99, 130]. Zum anderen, Methoden
mit Anwendung von Convolutional Neural Networks (CNNs), in denen Bildmerkmale während
der Trainingsphase gelernt werden [9, 32, 127]. Unser Ziel ist es zu untersuchen, in welcher Wei-
se beide Typen von Algorithmen durch die Einarbeitung eines Frameworks mit umfassender
theoretischer Grundlage verbessert werden können.

Wir wählen hierzu das Multiskalen-Framework der Shearlets, da es eine einheitliche Behandlung
der kontinuierlichen als auch der digitalen Welt garantiert [74]. In der Theorie haben Shearlets
optimal sparse Approximationen bestimmter Bildmodelle [52, 76] ermöglicht und haben die
Fähigkeit Kanten in Bildern zu charakterisieren [53, 78]. Des Weiteren wurden Shearlets erfolg-
reich für diverse Bildverarbeitungsaufgaben, wie z.B. Denoising [35, 86] oder Kantendetektion
[125], eingesetzt.

Wir passen das Shearlet Framework entsprechend der Anforderungen der praktischen Anwen-
dung einer Fußgängererkennung an. Das entsprechende Shearlet Design besteht aus zwei Teilen.
Zum einen, die Verwendung spezieller Shearlet Mutterfunktionen, welche Bildstrukturen präzise
lokalisieren können. Zum anderen, das Setup eines Shearlet Systems welches eine gleichmäßig
verteilte, gerichtete Analyse und eine flexible Anpassung der Shearlets pro Skala zulässt. Der
letzte Punkt ist nützlich um eine bessere Kontrolle über die Raumgröße der Bildmerkmale zu
erhalten. Wir zeigen, dass unser Shearlet System einen Frame für L2(R2) bildet und liefern die
dafür benötigten Bedingungen.

Im Folgenden untersuchen wir die Fähigkeit unseres Shearlet Designs zur Kantendetektion aus
theoretischer Sicht. Wir zeigen, dass mit unseren Shearlets Kantenpunkte in R2 und deren Typ
durch Abfallraten und Grenzwerte der Shearlet Transformation für abnehmende Skalen charak-
terisiert werden können. Im Gegensatz zur aktuellen Literatur erhalten wir Abfallraten abhängig
von dem Grad der Anisotropie α. Für den Spezialfall α = 1/2 ermitteln wir explizite Grenzwerte
der Shearlet Transformation welches mit bisher verwendeten Shearlets nicht erreicht wurde. Zu-
dem zeigen wir auf, dass wir eine Shearlet Mutterfunktion mit lediglich einem verschwindenden
Moment benötigen um unsere theoretischen Resultate zu erhalten. Schließlich stellen wir dar,
dass diese Anforderung in Einklang mit den Beobachtungen bei der praktischen Anwendung
eines Kantendetektionsalgorithmus mit Shearlets steht.

Basierend auf unserem speziellen Shearlet Design definieren wir aussagekräftige, handgefertigte
Bildmerkmale. Aussagekräftig in dem Sinne, dass die Bildmerkmale reichhaltige Informationen
über Objektstrukturen liefern. Die Betrachtung von Shearlets hat mehrere Vorteile im Vergleich
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zu anderen Bildmerkmalen. Zum einen liefern sie eine sparse Repräsentation von Bildern, d.h.
das Resultat der Shearlet Transformation hat nur an Pixeln, die einem Kantenpunkt entsprechen,
einen deutlichen Betrag. Zum anderen können durch das Multiskalen-Framework der Shearlets
Objektstrukturen direkt auf verschiedenen Skalen untersucht werden. Wir zeigen, dass unsere
Shearlet Bildmerkmale die besten Ergebnisse mit handgefertigten Bildmerkmalen im Caltech
Benchmark liefern.

Aktuell verwenden die besten Verfahren im Caltech Benchmark CNN Modelle. Daher analysieren
wir die Fähigkeit von Shearlets, CNNs weiter zu verbessern. Wir integrieren Shearlet Filter
in dem ersten Layer eines CNN, da einige gelernte Filter dieses Layers eine Ähnlichkeit zu
gerichteten Filtern zur Kantendetektion aufweisen [72]. Wir zeigen, dass wir mit der Shearlet
Integration die Klassifikations- und Detektionsergebnisse verbessern können im Vergleich zu
den originalen Netzen, wenn wir diese auf denselben Daten trainieren. Wir stellen zudem fest,
dass ein Training auf umfangreichen Datensätzen, wie z.B. ImageNet [24], benötigt wird um die
Detektionsergebnisse von führenden Algorithmen zu erreichen. Wir erachten diese Feststellung
als Indiz für die enorme Macht von Daten für Deep Learning Algorithmen.

Eine der Hauptanwendungen der Fußgängererkennung liegt im Automotive Bereich. Die Verwen-
dung in aktuellen Kollisionswarn- und Eingriffsystemen [40] als auch in zukünftigen Systemen
autonomen Fahrens benötigt Algorithmen, welche auf eingebetteten Systemen lauffähig sind.
Aus diesem Grund portieren wir unseren grundlegenden Algorithmus auf ein eingebettetes Sys-
tem mit marktfähigem Preis. Durch ein sorgsames Software Design und Laufzeitoptimierung
sind wir in der Lage unseren Algorithmus mit einer praktisch sinnvollen Frame Rate von 10 fps
zu betreiben.
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1

“The secret of getting ahead is getting started.”
Mark Twain

1
Introduction

The detection of pedestrians is currently a key problem in the area of computer vision. One main
reason for it is the diversity of practical applications using pedestrian detection. For example,
it is used in Advanced Driver Assistance Systems (ADAS) to prevent an imminent collision of
the car with a pedestrian by initiating emergency braking. In 2016 the committee of the Euro
NCAP introduced an evaluation of AEB Pedestrian systems (AEB = Autonomous Emergency
Braking) for the safety assessment of passenger cars. According to the Euro NCAP 2020 road
map [37], the importance of AEB systems preventing accidents with vulnerable road users such
as pedestrians will be further increased in the overall assessment. According to the German
Federal Statistical Office [114], pedestrians are the weakest road users. As shown in Figure 1.1,
they make up 7.9% of injured in total and 15.5% of fatally injured persons for road accidents in
Germany, 2015.

In addition to AEB systems, which are already included in modern road legal cars, the develop-
ment of autonomous driving vehicles strengthens the need of efficient and powerful algorithms
for pedestrian detection. Figure 1.2 shows the analysis of emerging technologies according to
Gartner [39] in 2017. The expectation concerning autonomous driving is currently located at a
peak point. Since autonomous vehicles are enabled by Machine Learning and Deep Learning,
these concepts are rated similarly.

The popularity of autonomous driving, Machine Learning and Deep Learning enabled the de-
velopment of a huge amount of pedestrian detection algorithms in the recent years. In classical
pedestrian detection algorithms, a machine learning method, also called classifier, decides if an
image contains a pedestrian or not based on the measured feature values. According to Benenson
et al. [8], different types of classifiers are commonly used, e.g. Support Vector Machines (SVM)
and AdaBoost, whereas no classifier type has shown to be better suited for pedestrian detection
than another. Therefore, a main focus is on the informative content of the image features. The
more meaningful the features, the higher is the quality of the detection algorithm.

In the past, many different kinds of features have been proposed for pedestrian detection. For
an overview, see [8, 31, 129]. As a major breakthrough, Dalal and Triggs [22] established the
so-called Histogram of Oriented Gradients (HOG) features. Here, the image is first divided into
spatial cells and a histogram of gradient directions is built over the pixels of the corresponding
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Figure 1.1: Proportion of pedestrians for road accidents in Germany, 2015 [114].

cell. Finally, the local histograms are accumulated and normalized over a block scheme. The
Aggregated Channel Features (ACF) detector by Dollár et al. [27, 28] also uses gradient his-
tograms with a different computation method and in addition gradient magnitude as features,
yielding better evaluation results than the original HOG. The source code of the ACF detector
is available as part of the PMT toolbox [26]. As shown by Benenson et al. [8] in 2014, all best
performing pedestrian detection algorithms to that time used hand-crafted features based on
HOG or “HOG-like” features, which may encode richer information from the original feature
data [7, 96, 99, 105, 128, 130].
Since then, several approaches utilizing Convolutional Neural Network (CNN) models arose
[9, 11, 12, 32, 84, 101, 117, 127]. In CNN models, features are not hand-crafted any longer
but learned during the training process. Current results on the Caltech Pedestrian Detection
Benchmark [30] show advantages of approaches using CNN models.1 Several CNN algorithms
still use gradient features of the ACF detector [27, 28]. Either in combination with learned
features [12] or during object proposal generation for the final classification using a CNN model
[84]. Ohn-Bar and Trivedi [99] also used gradient features of the ACF [27, 28] and LDCF
[96] detectors during their study of the modeling limitations of boosted decision tree classifiers.
They analyzed the impact of the modeling capacity of weak learners, data set size and data
set properties. With the employment of their findings, Ohn-Bar and Trivedi achieved the best
known results in the Caltech benchmark among non-CNN algorithms. However, the authors did
not analyze the impact of alternative image features.
The aim of this thesis is to investigate the applicability of shearlets to improve both currently
prevalent algorithm types for pedestrian detection, classical detection algorithms using hand-
crafted feature detectors as well as approaches using CNNs. We have chosen the shearlet frame-
work since it guarantees a unified treatment of the continuous as well as the discrete setting
[74]. According to the theory on shearlets, they provide optimally sparse approximations of
certain image models [52, 76]. Furthermore, they allow the characterization of edges in images
[53, 78]. On the practical side, shearlets have been applied in different image processing tasks,
e.g. denoising [35, 86] and edge detection [125]. Hereby, we consider our intention to merge
theory and practical application as promising.

1Benchmark results are available and updated frequently at http://www.vision.caltech.edu/Image Datasets/
CaltechPedestrians.

http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians
http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians
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Figure 1.2: Analysis of technology trends according to Gartner [39].

Furthermore, the multiscale framework of shearlets is an extension of wavelets, which have been
already used by Papageorgiou and Poggio [106] at the early stages of the research on object
detection. Viola and Jones [118] built up on this approach and used filters reminiscent to
Haar wavelet basic functions for the development of their pioneer object detection algorithm.
Wavelets were introduced by Goupillaud, Grossmann and Morlet [44, 49] in order to analyze
one-dimensional signals. Wavelet systems consist of analyzing functions which are dilated and
translated versions of a mother function ψ ∈ L2(R), i.e.

ψa,b (x) = 1√
a
ψ

(
x− b
a

)
, for a > 0, b ∈ R.

As Kutyniok and Labate [75] describe, wavelets have disadvantages in processing multivariate
data such as images. The two dimensional extension of wavelets using a tensor product is able to
optimally capture pointwise singularities. Yet this wavelet extension is not able to accurately deal
with well distributed singularities such as curved edges. The main reason is that each component
of the tensor is a one dimensional function, isotropically dilated from a mother function. To
overcome this disadvantage, several approaches of incorporating a directional sensitivity have
been established [3, 6, 67, 68, 112]. However, these approaches do not actually constitute an
extension of the wavelet framework to the multidimensional case. As a matter of fact, they do not
yield to an optimal approximation of multivariate data containing well distributed singularities.
Candès and Donoho [13, 14, 15] first provided with curvelets a system which is able to optimally
approximate bivariate functions with anisotropic features. Just as wavelets, curvelets also set
up a sequence of functions which are given on different scales and locations. In addition, these
functions are rotated to several orientations in order to incorporate directionality. The utilization
of rotations is one main drawback of curvelets since they do not comply with the Cartesian grid.
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Correspondingly, a direct numerical implementation of this approach is not possible. As a result,
Do and Vetterli [25] introduced contourlets as a pure discrete version of curvelets. However, this
approach does not provide a proper theoretical consideration of the continuous setting.

Guo, Kutyniok, Labate, Lim and Weiss [51, 81] first introduced shearlets, which build up on
wavelets with composite dilations [55, 56, 57]. The name of this framework refers to the utiliza-
tion of shearing to steer the analyzing function to the desired direction. This fact overcomes the
disadvantage of curvelets since the shearing operation conforms to the Cartesian grid. There-
fore, shearlets provide a direct transition from the continuous to the discrete setting and direct
implementations. These are very desirable properties for a theoretical as well as a practical
treatment and application.

Due to the incorporation of a directional sensitivity, the shearlet transform of an image allows
to capture the directional information of edges. Similar information is provided by gradient
histograms. The consideration of shearlets has several advantages. At first, they provide a
sparse representation of the image which means that the shearlet transform only has magnitude
with considerably high absolute value at pixels that correspond to edge points. Second, due to
the multi-scale framework of shearlets the structure of objects can directly be investigated at
different scales. Schwartz et al. [111] introduced a simple hand-crafted image feature based on
the shearlet transform and applied it to texture classification and face identification. In our work
concerning hand-crafted features, we define more complex feature types based on the shearlet
transform. Furthermore, we design shearlets dedicated to precisely locate edge structures in
images, since this is crucial for the detection quality using our features. Finally, we integrate
these shearlets in CNNs in order to improve the detection performance of state-of-the-art CNN
algorithms for pedestrian detection.

Contributions

In the following, we present our contribution to the development of pedestrian detection algo-
rithms and the deployment of the shearlet transform to image analysis tasks.

Compactly Supported Shearlets for Image Analysis

In our work, we analyze different types of shearlets and their digital realizations concerning
their ability for tasks of image analysis such as edge detection. A precise location of structures
in images is of main importance if one is interested in the definition of image features giving
structural information. Not surprisingly, shearlets with compact support in time domain provide
a better edge localization than band-limited shearlets. We define a new type of compactly
supported shearlets, called local precision shearlets, which shows an improved edge detection
quality in comparison to other implementations. Furthermore, we prove that the corresponding
local precision shearlet transform forms a frame.

Using Shearlet Features for Pedestrian Detection

Based on the local precision shearlet transform we define different types of image features.
Since the shearlet transform can be used to extract directional information about structures
in images the resulting shearlet features can be seen as appearance features. In other words
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shearlet features can provide information about the appearance of objects in images. Currently,
the dominant appearance features used in nearly all pedestrian detection algorithms are based
on image gradients. Here, the directional information of image structures is represented by
the gradient direction. Since shearlet features are providing similar information, they can be
seen as an alternative to gradient features. We analyze the impact of replacing gradient by
shearlet features. In fact, we show that our shearlet features outperform gradient features in
the application of pedestrian detection. Furthermore, we set up a filterbank for an intermediate
filtering layer between image feature computation and classification with our shearlets. The
application of this filterbank yields the currently best performing hand-crafted feature detector
in the Caltech Pedestrian Detection Benchmark [30].

Integration of Shearlets in Deep Learning Methods

With hand-crafted shearlet features as foundation we exploit the possibilities to integrate our
shearlets in Deep Learning methods such as CNNs. We aim to use shearlet filters at early
convolutional layers of a CNN instead of learned ones in order to improve its detection results.
The idea is that early CNN layers intuitively perform an edge detection, whereas shearlets
provide optimal filters for this task. Moreover, they can provide a good base for learning filters
of deeper layers. We find that the integration of shearlets in CNNs improves the results on
pedestrian classification and detection compared to corresponding reference networks trained on
the same data.

Embedded Realization

Besides the considerations for improving the detection quality, we focus on an embedded realiza-
tion of the shearlet transform. The computation of the shearlet coefficients is the core component
concerning runtime consumption in our hand-crafted feature detection algorithms. Therefore,
runtime optimization is crucial if one is interested in an embedded application using shearlets.
To our knowledge, our implementation of the shearlet transform is the first one considering an
application on an embedded target. Actually, our optimized realization is able to run our base
pedestrian detection algorithm on an embedded target with an adequate frame rate.

Outline

The thesis is organized as follows. Chapter 2 reviews the work on shearlets with a special focus on
image analysis. In particular, we analyze current realizations of the shearlet transform and their
applicability to be used as a basis for image feature computation. In Chapter 3, we define our
own type of shearlets specially designed for image analysis and show their practical advantages.
Moreover, we analyze their theoretical properties especially in the context of frame theory. The
theoretical analysis concerning the applicability for edge detection using our shearlets is done
in Chapter 4. We then use our shearlets in Chapter 5 to define hand-crafted image features
for the task of pedestrian detection. Furthermore, we set up two detection algorithms. One of
them is using basic shearlet features and the other one is applying an intermediate filtering layer
with a shearlet filterbank. Chapter 6 analyzes how our shearlets can be used to improve the
quality of pedestrian detection algorithms utilizing CNNs. Besides all considerations concerning
improvement of detection quality, Chapter 7 deals with embedded realization of the shearlet
transform and our base detection algorithm.



6 Introduction



7

“Pure mathematics is, in its way, the poetry of logical
ideas.”

Albert Einstein

2
Review on Shearlets for Image Analysis

The shearlet framework is a variation of the wavelet scheme for multidimensional data which
incorporates a directional sensitivity to capture anisotropic information. For an introduction
and details on wavelets see [90]. Like wavelets, shearlets are set up given a single or finite
set of generating functions, also called mother shearlets, which are translated along the signal
and dilated. To control the directional selectivity, the mother shearlet is sheared. The final
translated, dilated and sheared function is defined by

ψa,s,t := det (Aa)−
1
2 ψ

(
A−1
a S−1

s (· − t)
)
, (2.1)

with scaling matrix Aa and shearing matrix Ss given by

Aa :=
(
a 0
0
√
a

)
, a > 0

and
Ss :=

(
1 s
0 1

)
, s ∈ R.

As described in [75], the more general matrices

Aa,α :=
(
a 0
0 aα

)

can be used instead of Aa where the parameter α ∈ (0, 1) controls the degree of anisotropy. An
extensive study of transforms based on scalings with Aa,α can be found in [48].

One major goal in the analysis of signals is to define a representation system of functions using
sets of ψa,s,t. To guarantee stability of the representation while allowing nonunique decompo-
sitions, the concept of a frame has been established [23, 33]. A sequence

(
ϕi
)
i∈I in a Hilbert

space H is called a frame for H, if there exist constants 0 < A ≤ B <∞ such that

A ‖x‖2 ≤
∑
i∈I
|〈x, ϕi〉|2 ≤ B ‖x‖2 for all x ∈ H.
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The frame is called tight if the frame constants A and B fulfill A = B. If A = B = 1 is fulfilled,
the frame is called a Parseval frame. As described by Christensen [17], in case that

(
ϕi
)
i∈I is a

frame, a signal x ∈ H can be reconstructed from its frame coefficients by the formula

x =
∑
i∈I
〈x, ϕi〉S−1ϕi, (2.2)

where S : H → H is called the frame operator and given by

S (x) =
∑
i∈I
〈x, ϕi〉ϕi.

If
(
ϕi
)
i∈I is a Parseval frame we have S = IH, with the identity operator IH on H. Consequently,

this fact leads to the reconstruction formula

x =
∑
i∈I
〈x, ϕi〉ϕi. (2.3)

In the following sections we will provide theoretical key results about shearlets on the continuous
as well as the discrete setting. Furthermore, we will provide an overview over current imple-
mentations of the discrete shearlet transform and their properties concerning image analysis.

2.1 Continuous Shearlet Systems

We first give the definition of shearlet systems and the corresponding transform in the continuous
setting, i.e. for (a, s, t) ∈ R+×R×R2. This introduction is based on the description of Kutyniok
and Labate [75]. For implementation purposes, the parameters have to be defined on a discrete
subset of R+ × R× R2, which will be described in the subsequent section.

Definition 2.1. For ψ ∈ L2(R2), the continuous shearlet system SH (ψ) is defined by

SH (ψ) :=
{
ψa,s,t = det (Aa)−

1
2 ψ

(
A−1
a S−1

s (· − t)
)

: a > 0, s ∈ R, t ∈ R2
}
.

Just like the continuous wavelet transform [90], the continuous shearlet transform of a function
f ∈ L2(R2) is defined as the mapping from f to the coefficients of f associated to the shearlet
ψa,s,t.

Definition 2.2. The continuous shearlet transform of a signal f ∈ L2(R2) for (a, s, t) ∈ R+ ×
R× R2 is defined by

SHψ (f) (a, s, t) := 〈f, ψa,s,t〉

=
∫
R2
f (x)ψa,s,t (x)dx.

The resulting values SHψ (f) (a, s, t) = 〈f, ψa,s,t〉 are also called shearlet coefficients. As shown
in [54, 125], the shearlet transform of an image f characterizes the location and the orientation of
edges. The characterization is given via the asymptotic behavior of the shearlet transform at fine
scales. More precisely for an image point t not being an edge,

∣∣SHψ (f) (a, s, t)
∣∣ decays rapidly

for a→ 0 for each s ∈ R.
∣∣SHψ (f) (a, s, t)

∣∣ is said to decay rapidly if for any N ∈ N, there is a
cN > 0 such that

∣∣SHψ (f) (a, s, t)
∣∣ ≤ cNa

N , as a → 0. For an edge point t,
∣∣SHψ (f) (a, s, t)

∣∣
decays rapidly for a → 0 unless s equals the normal orientation to the edge at point t. Then
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one has
∣∣SHψ (f) (a, s, t)

∣∣ ∼ a 3
4 . More details on the theoretical analysis of edge detection using

shearlets are given in Section 2.4. For a more intuitive understanding one can say that high
absolute values of shearlet coefficients only appear at edge points and if the orientation of the
shearlet and the edge correspond to each other. Moreover, the finer the scale of the shearlet, the
finer edges can be detected. This ability will be used in Section 5.2 to define meaningful image
features for the task of pedestrian detection.

As described by Kutyniok and Labate [75], the mother function ψ is usually defined by its
Fourier transform ψ̂ to give a factorization of the frequency domain by defining

ψ̂ (ω1, ω2) := ψ̂1 (ω1) ψ̂2

(
ω2
ω1

)
.

The components ψ̂1 and ψ̂2 are commonly chosen to be compactly supported functions fulfilling
the following admissibility condition. This condition on ψ is of high importance since it leads
to the result that the associated shearlet transform is an isometry and to the existence of a
reconstruction formula.

Definition 2.3. If ψ ∈ L2 (R2) fulfills the condition

∫
R2

∣∣∣ψ̂ (ξ1, ξ2)
∣∣∣2

ξ2
1

dξ2dξ1 <∞, (2.4)

then it is called an admissible shearlet.

Further desirable properties of the shearlet mother function ψ in the frequency domain are given
as follows.

Definition 2.4 ([46, 47]). For p ∈ N, a function ψ ∈ L2(R2) possesses p (directional) vanishing
moments in x1 direction if ∫

R2

∣∣∣ψ̂ (ξ1, ξ2)
∣∣∣2

|ξ1|2p
dξ2dξ1 <∞. (2.5)

A function f ∈ L2(R2) has Fourier decay of order li in the i-th variable if
∣∣f̂ (ξ)

∣∣ . ∣∣ξi∣∣li .
Remark 2.5 ([46]). The rationale for the denotation of vanishing moments in the previous defi-
nition is that condition 2.5 is (almost) equivalent to∫

R
ψ (x1, x2)xl1dx1 = 0, for all x2 ∈ R2, l < p,

provided that ψ has sufficient spatial decay.

For the sake of completeness, we state the definition of vanishing moments in the one-dimensional
case.

Definition 2.6 ([90]). For p ∈ N, a function ψ : R→ R has p vanishing moments if∫
R
ψ (x)xldx = 0,

for all l ∈ N and l < p.
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Theorem 2.7 ([21]). Given an admissible ψ ∈ L2(R2), define

c−ψ :=
∫
R

∫ 0

−∞

∣∣∣ψ̂ (ξ1, ξ2)
∣∣∣2

ξ2
1

dξ2dξ1 and c+
ψ :=

∫
R

∫ ∞
0

∣∣∣ψ̂ (ξ1, ξ2)
∣∣∣2

ξ2
1

dξ2dξ1.

If c−ψ = c+
ψ = cψ, then the shearlet transform is a cψ-multiple of an isometry.

For a signal f ∈ L2(R2), we have the following reconstruction formula. Here, we use the notion
of an approximate identity, which is defined in Appendix A.

Theorem 2.8 ([21]). Let ψ ∈ L2(R2) be an admissible shearlet with c+
ψ = c−ψ = 1. Furthermore,

let (ρn)∞n=1 be an approximate identity such that ρn ∈ L2 (R2) and ρn (x) = ρn (−x) for all
x ∈ R2. For all f ∈ L2(R2), we have limn→∞ ‖f − fn‖2 = 0 with

fn (x) =
∫
R2

∫
R

∫
R+
SHψ (f) (a, s, t) (ρn ∗ ψa,s,t) (x) a−3dads dt.

As described by Kutyniok and Labate [75] an important example for the mother function ψ is
given by the classical shearlet [51, 55, 81].

Definition 2.9. Let ψ ∈ L2(R2) be given by

ψ̂ (ω1, ω2) = ψ̂1 (ω1) ψ̂2

(
ω2
ω1

)
, (2.6)

where ψ1 ∈ L2(R) is a discrete wavelet in the sense that it satisfies the discrete Calderón
condition, given by ∑

j∈Z

∣∣∣ψ̂1
(
2−jω

)∣∣∣2 = 1

for a.e. ω ∈ R, with ψ̂1 ∈ C∞ (R) and supp ψ̂1 ⊆
[
−1

2 ,−
1
16

]
∪
[

1
16 ,

1
2

]
. Furthermore, ψ2 ∈ L2 (R)

is a function that fulfills
1∑

k=−1

∣∣∣ψ̂2 (ω + k)
∣∣∣2 = 1

for a.e. ω ∈ [−1, 1], satisfying ψ̂2 ∈ C∞ (R) and supp ψ̂2 ⊆ [−1, 1]. Then ψ is called a classical
shearlet.

2.2 Discrete Shearlet Systems

In order to be able to digitally implement the shearlet transform, the shearlet parameters have
to be sampled such that a discrete set is made up. Discrete shearlet systems are defined by
taking only those shearlets that are associated with a discrete subset of R+ × R × R2. In the
following, we will mainly use the notation of [73].

Definition 2.10. Let ψ ∈ L2(R2) and ΓI ⊆ S given by

ΓI :=
{(
aj , sj,k, Ssj,kAajcm

)
: j, k ∈ Z, m ∈ Z2

}
, (2.7)
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with aj ∈ R+, sj,k ∈ R and sampling constant c > 0. An irregular discrete shearlet system
associated with ψ and ΓI , denoted by SH

(
ψ,ΓI

)
, is defined by

SH (ψ,ΓI) :=
{
ψj,k,m = det

(
Aaj

)− 1
2 ψ

(
Ssj,kAaj · −cm

)
: j, k ∈ Z, m ∈ Z2

}
.

The shearlet system SH (ψ,ΓR) given by

SH (ψ,ΓR) :=
{
ψj,k,m = a−

3
4 jψ

(
Sbkaj/2Aaj · −cm

)
: j, k ∈ Z, m ∈ Z2

}
with a > 1, b, c > 0 and the special parameter set ΓR ⊆ S defined by

ΓR :=
{(
aj , bka

j
2 , Sbkaj/2Aajcm

)
: j, k ∈ Z, m ∈ Z2

}
(2.8)

is called a regular discrete shearlet system.

The discrete shearlet transform is defined in analogy to the continuous case.

Definition 2.11. For ψ ∈ L2(R2), the discrete shearlet transform of a signal f ∈ L2(R2) is
defined by

SHψ (f) (j, k,m) := 〈f, ψj,k,m〉

with ψj,k,m ∈ {ΓI ,ΓR}.

The following theorem provides sufficient conditions under which an irregular shearlet system is
a frame for L2(R2).
Theorem 2.12 ([73]). Let c > 0 be fixed and, for j, k ∈ Z, let aj ∈ R+ and sj,k ∈ R. Define
ΓI ⊆ S as in (2.7). Further, let ψ ∈ L2(R2) and set

ϕ (n, SH (ψ,ΓI)) := ess sup
ξ∈R2

∑
j,k∈Z

∣∣∣ψ̂ (AajSTsj,kξ)∣∣∣ ∣∣∣ψ̂ (AajSTsj,kξ + n
)∣∣∣ for a.e. n ∈ R2 (2.9)

as well as
ϕ̃ (SH (ψ,ΓI)) :=

∑
j,k∈Z

∣∣∣ψ̂ (AajSTsj,kξ)∣∣∣2 . (2.10)

If there exist 0 < C ≤ D <∞ such that

C ≤ ϕ̃ (SH (ψ,ΓI)) ≤ D for a.e. ξ ∈ R2 (2.11)

and ∑
n∈Z2,n6=0

√
ϕ

(1
c
n, SH (ψ,ΓI)

)
ϕ

(
−1
c
n, SH (ψ,ΓI)

)
=: E < C, (2.12)

then SH
(
ψ,Γ

)
is a frame for L2(R2) with frame bounds A, B satisfying

1
c2 (C − E) ≤ A ≤ B ≤ 1

c2 (D + E) .

From this result, Lim [86] derived sufficient conditions for separable shearlets to provide a frame
for L2(R2).
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Theorem 2.13 ([86]). Let ΓR be given by (2.8) with a > 1 and b = 1 and scaling matrix Aa,α,
α ∈ [1/2, 1). We set β > 0 and γ > 2 (β + 2) and assume that β′ ≥ β + γ and γ′ ≥ β′ − β + γ.
We define ψ

(
x1, x2

)
= ψ1

(
x1
)
ψ2
(
x2
)

such that

∣∣∣ψ̂1 (ξ1)
∣∣∣ ≤ K1

|ξ1|β
′(

1 + |ξ1|2
)γ′/2

(2.13)

and ∣∣∣ψ̂2 (ξ2)
∣∣∣ ≤ K2

(
1 + |ξ2|2

)−γ′/2
(2.14)

with K1, K2 > 0. If
ess inf
|ξ2|≤1/2

∣∣∣ψ̂2 (ξ2)
∣∣∣2 ≥ K3 > 0 (2.15)

and
ess inf

ζa−1≤|ξ1|≤ζ

∣∣∣ψ̂1 (ξ1)
∣∣∣2 ≥ K4 > 0 for 0 < ζ ≤ min

(
1, a2

)
(2.16)

then there exists c0 > 0 such that the regular shearlet system SH
(
ψ,ΓR

)
is a frame for L2(R2)

for all c ≤ c0.

According to Lim [86], the assumptions of Theorem 2.13 imply that ψ has sufficient vanishing
moments and fast decay in the frequency domain. If they are fulfilled the regular shearlet
system based on separable shearlets provides a frame for L2(R2). As we will see later, this
result transfers to cone-adapted shearlet systems, which are described in the next section.

2.3 Cone-adapted Shearlet Systems

The shearlet systems described above do have a directional bias [75]. For example, for detect-
ing an edge along the x1-axis of an image, s → ∞ would be necessary. Obviously, this is a
drawback for practical applications. According to Kutyniok and Labate [75], a way to resolve
it is to define cone-adapted shearlets, tiling the frequency domain in a horizontal and a ver-
tical cone and defining shearlets separately for each cone. We set up a low-frequency region
R :=

{(
ξ1, ξ2

)
:
∣∣ξ1
∣∣, ∣∣ξ2

∣∣ ≤ 1/2
}
, horizontal cones C1 ∪ C3 :=

{(
ξ1, ξ2

)
:
∣∣ξ2/ξ1

∣∣ ≤ 1,
∣∣ξ1
∣∣ > 1/2

}
and vertical cones C2 ∪ C4 :=

{(
ξ1, ξ2

)
:
∣∣ξ2/ξ1

∣∣ > 1,
∣∣ξ2
∣∣ > 1/2

}
. In this section, we restrict the

description to the case of discrete shearlet systems.

Definition 2.14. Let φ, ψ, ψ̃ ∈ L2(R2) and Γ, Γ̃ ⊆ S given by

Γ :=
{(
aj , sj,k, Ssj,kAajcm

)
: j ∈ J, k ∈ K, m ∈ Z2

}
, (2.17)

and
Γ̃ :=

{(
ãj , s̃j,k, S

T
s̃j,k

Ããjcm
)

: j ∈ J̃ , k ∈ K̃, m ∈ Z2
}
, (2.18)

with aj ∈ R+, sj,k ∈ R for j ∈ J ⊆ Z, k ∈ K ⊆ Z, ãj ∈ R+, s̃j,k ∈ R for j ∈ J̃ ⊆ Z, k ∈ K̃ ⊆ Z,
Ããj = diag

(√
ãj , ãj

)
and sampling constants c > 0. An irregular cone-adapted discrete shearlet

system SH
(
φ, ψ, ψ̃,Γ, Γ̃

)
, is defined by

SH
(
φ, ψ, ψ̃,Γ, Γ̃

)
:= Φ (φ, c) ∪Ψ (ψ,Γ) ∪ Ψ̃

(
ψ̃, Γ̃

)
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R
C1

C2

C3

C4

ξ1

ξ2

Figure 2.1: Illustration of tiling the frequency plane into cones Ci, i = 1, . . . , 4.

where

Φ (φ, c) :=
{
φm = φ (· − cm) : m ∈ Z2

}
,

Ψ (ψ,Γ) :=
{
ψj,k,m = a

− 3
4

j ψ
(
Ssj,kAaj · −cm

)
: j ∈ J, k ∈ K, m ∈ Z2

}
,

Ψ̃
(
ψ̃, Γ̃

)
:=

{
ψ̃j,k,m = ã

− 3
4

j ψ̃
(
STs̃j,kÃãj · −cm

)
: j ∈ J̃ , k ∈ K̃, m ∈ Z2

}
.

Usually the functions are chosen such that φ is associated with the low-frequency region R,
ψ with C1 ∪ C3 and ψ̃ with C2 ∪ C4. Similar to the previous section, the regular variant of a
cone-adapted shearlet system reads as follows.

Definition 2.15. Let φ, ψ, ψ̃ ∈ L2(R2), a > 1 and b, c > 0. The regular cone-adapted discrete
shearlet system SH

(
φ, ψ, ψ̃, c

)
, is defined by

SH
(
φ, ψ, ψ̃, c

)
:= Φ (φ, c) ∪Ψ (ψ, c) ∪ Ψ̃

(
ψ̃, c

)
where

Φ (φ, c) :=
{
φm = φ (· − cm) : m ∈ Z2

}
,

Ψ (ψ, c) :=
{
ψj,k,m = a−

3
4 jψ

(
Sbkaj/2Aaj · −cm

)
: j ≥ 0, |k| ≤

⌈
a
j/2
⌉
,m ∈ Z2

}
,

Ψ̃
(
ψ̃, c

)
:=
{
ψ̃j,k,m = a−

3
4 jψ̃

(
ST
bkaj/2Ãaj · −cm

)
: j ≥ 0, |k| ≤

⌈
a
j/2
⌉
,m ∈ Z2

}
.

The discrete cone-adapted shearlet transform in the regular case is then given by the combination
of the discrete shearlet transforms of the shearlet system components.

Definition 2.16. For ψ, ψ̃, φ ∈ L2(R2) and a > 1 and b, c > 0, the discrete cone-adapted
shearlet transform of an image f ∈ L2(R2) is given by

SHφ,ψ,ψ̃ (f) (j, k,m) :=
(
〈f, φm〉 , 〈f, ψj,k,m〉 ,

〈
f, ψ̃j,k,m

〉)
, (2.19)

with j ≥ 0, |k| ≤
⌈
aj/2

⌉
and m ∈ Z2.
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In certain cases, the results for shearlet systems can be transferred to their cone-adapted variants.
In particular, Lim [86] derived the following statement.

Corollary 2.17. Let ψ
(
x1, x2

)
= ψ1

(
x1
)
ψ2
(
x2
)
, ψ̃

(
x1, x2

)
= ψ1

(
x2
)
ψ2
(
x1
)

and φ
(
x1, x2

)
=

ψ2
(
x1
)
ψ2
(
x2
)
, where the functions ψ1 and ψ2 satisfy the assumptions of Theorem 2.13. Then

there exists c0 > 0 such that SH
(
φ, ψ, ψ̃, c

)
forms a frame of L2(R2) for all c ≤ c0.

2.4 Edge Detection using Shearlets

In this section, we will recall major results on the characterization of edge points of a function
f = χR with R ⊂ R2 based on the properties of its continuous shearlet transform. In other
words, the boundary curve of a general region R ⊂ R2 will be characterized by the shearlet
transform. In the following, we mainly use the notation of [53].

Let R ⊂ R2 whose boundary ∂R is a curve of finite length L. Furthermore, let ~α : (0, L)→ ∂R
be a parametrization of ∂R. For any t0 ∈ (0, L) and any l ≥ 0, we assume that there exist
left and right limits ~α(l)(t−0 ) and ~α(l)(t+0 ). With ~n

(
t−
)

and ~n
(
t+
)

we denote the left and right
hand side outer normal directions of ∂R at ~α (t). If ~n

(
t−
)

= ~n
(
t+
)
, we use ~n (t). Furthermore,

we set ~κ
(
t−
)
, ~κ
(
t+
)
, or ~κ

(
t
)
, respectively for the curvature of ∂R at ~α (t), i.e. ~κ (t) = ‖~α′′ (t)‖.

Finally, we say that a shearing parameter s corresponds to direction ~n = ±
(
cos (θ0) , sin (θ0)

)
for

θ0 ∈ [0, 2π] if s = tan
(
θ0
)
.

Definition 2.18. Let R ⊂ R2 be as described above. A point p = ~α
(
t0
)

is a corner point of ∂R
if one of the following conditions holds:

i. ~α′
(
t−0

)
6= ~α′

(
t+0

)
ii. ~α′

(
t−0

)
= ±~α′

(
t+0

)
, but ~κ

(
t−0

)
6= ~κ

(
t+0

)
.

In case of i., we call p a corner point of first type and in case of ii., a corner point of second type.
If ~α is infinitely many times differentiable at t0, we call p = ~α

(
t0
)

a regular point of ∂R.

Guo and Labate [53] showed the following result for the characterization of edge points using
classical shearlets.

Theorem 2.19. Let ψ ∈ L2(R2) be a classical shearlet and R ⊂ R2 with boundary ∂R of length
L to be smooth except for finitely many corner points.

i. If p /∈ ∂R, then for any s ∈ R we have

lim
a→0+

a−NSHψχR (a, s, p) = 0, for all N > 0.

ii. Let p be a regular point of ∂R.

(a) If s = s0 does not correspond to the normal direction of ∂R at p, then

lim
a→0+

a−NSHψχR (a, s0, p) = 0, for all N > 0.
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(b) If s = s0 corresponds to the normal direction of ∂R at p, then

0 < lim
a→0+

a−
3
4 |SHψχR (a, s0, p)| <∞.

iii. Let p ∈ ∂R be a corner point.

(a) If p is a corner point of the first type and s = s0 does not correspond to any of the
normal directions of ∂R at p, then

lim
a→0+

a−
9
4 |SHψχR (a, s0, p)| <∞.

(b) If p is a corner point of the second type and s = s0 does not correspond to any of the
normal directions of ∂R at p, then

0 < lim
a→0+

a−
9
4 |SHψχR (a, s0, p)| <∞.

(c) If s = s0 corresponds to one of the normal directions of ∂R at p then

0 < lim
a→0+

a−
3
4 |SHψχR (a, s0, p)| <∞.

This result shows that for regular points p ∈ ∂R the shearlet transform using a classical shearlet
decays rapidly and asymptotically for a→ 0 if s does not correspond to the normal direction at
p. If s corresponds to the normal direction, we have

|SHψχR (a, s, p)| = O
(
a

3
4
)
, for a→ 0.

The same decay rate is present at a corner point p ∈ ∂R if s corresponds to a normal direction
of ∂R at p. In case s does not correspond to a normal direction of ∂R at a corner point p of the
second type, then we have

|SHψχR (a, s, p)| = O
(
a

9
4
)
, for a→ 0.

In case p ∈ ∂R is a corner point of the first type, the decay rate of |SHψχR (a, s, p)| is not slower
than O

(
a

9
4
)

for a→ 0 although it might be faster. Figure 2.2 [53] illustrates the decay rates of
the shearlet transform for the different categories of points p ∈ R2.
Kutyniok and Petersen [78] examined the characterization of edge points using compactly sup-
ported shearlets in order to resolve certain issues when using band-limited shearlets. According
to the authors, one major issue is that the decay rates of the shearlet transform are not uniform.
According to 2.19 a point p ∈ R2 is an edge point if

lim
a→0+

a−
3
4 |SHψχR (a, s, p)| > 0

for some s ∈ R. This limit can be arbitrarily close to 0 and the asymptotic behavior might
only be present for very small a ∈ R. In contrast, Kutyniok and Petersen [78] achieve uniform
estimates on the decay rates in a sense that there exist constants 0 < c1 ≤ c2 <∞ such that for
all a ∈ (0, 1)

c1a
3
4 ≤ |SHψχR (a, s, p)| ≤ c2a

3
4

for all edge points p ∈ ∂R and orientations that correspond to the normal direction. Furthermore,
another issue of using band-limited shearlets is that both types of corner types show the same
decay rates. According to Kutyniok and Petersen[78], corner points of first and second type can
be distinguished by different decay rates if one uses compactly supported shearlets. For their
findings, a definition of a restricted set of compact sets in R2 is necessary.
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Figure 2.2: Illustration of the decay rates of the shearlet transform using classical shearlets [53].

Definition 2.20. For ρ > 0 the set of all sets R ⊂ R2 with piecewise smooth boundary with
corner points {pi : i ∈ I} and arc-length parametrization ~α such that

i.
∥∥∥~α(3) (t)

∥∥∥ ≤ ρ for all t ∈ (0, L), t /∈ ~α−1 ({pi : i ∈ I}),

ii.
∥∥∥~α(3) (t±)

∥∥∥ ≤ ρ for all t ∈ ~α−1 ({pi}i∈I),
will be denoted by Rρ.

Before the statement of the result of [78], we introduce the denotation of the Sobolev space
consisting of all L times weakly differentiable functions f ∈ L2 (R2) with all weak derivatives in
L2 (R2) by HL

(
R2). For the basic definition of Sobolev spaces, see Appendix A. Furthermore,

we define the ball around s̃ with radius a by Ba (s̃) = {s ∈ R : |s− s̃| ≤ a} for a, s̃ ∈ R. With
these preparations, the result of [78] is then given by the following theorem. The obtained decay
rates of the different types of edge points using compactly supported shearlets are illustrated in
Figure 2.3.

Theorem 2.21 ([78] ). Let R ∈ Rρ for ρ > 0 and ψ ∈ L2 (R2) be L times weakly differentiable
with all derivatives in L2 (R2). Let furthermore ψ be a bounded compactly supported shearlet
with M vanishing moments such that there exists an α ∈ (1/2, 1) with (1− α)M ≥ 7

4 and(
α− 1

2

)
L ≥ 7

4 .

i. Let ~α (t0) = p ∈ ∂R be a regular point.

(a) If s does not correspond to the normal direction of ∂R at p, then SHψχR (a, s0, p)
decays as

SHψχR (a, s, p) = O
(
a(1−α)M + a(α− 1

2 )L) , for all α ∈
(1

2 , 1
)
.
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(b) If δ > 0, ‖p− pi‖ > δ for all corner points pi, and s̃ corresponds to the normal
direction of ∂R at p, then there exists a constant Cδ such that for all a ∈ (0, 1]

lim
a→0

a
3
4

∫
S̃
ψ (x) dx− Cδa

5
4 ≤ SHψχR (a, s, p) ≤ lim

a→0
a

3
4

∫
S̃
ψ (x) dx+ Cδa

5
4 ,

for s ∈ Ba (s̃), where

S̃ =
{

(x1, x2) ∈ suppψ : x1 ≤
1

2ρ (s)2
(
~α′′1 (t0)− s~α′′2 (t0)

)
x2

2

}
.

ii. Let p be a corner point.

(a) If p ∈ ∂R is a corner point of the first type and s̃ corresponds to a normal direction
of ∂R at p, then if s ∈ Ba (s̃)

lim
a→0+

a−
3
4SHψχR (a, s, p) ∈

{∫
S̃up

ψ (x) dx,
∫
S̃down

ψ (x) dx
}
,

where
S̃up = S̃ ∩ {x : x2 > 0} , S̃down = S̃ ∩ {x : x2 < 0} .

(b) If p ∈ ∂R is a corner point of the first type and s does not correspond to a normal
direction of ∂R at p, then

SHψχR (a, s, p) = O
(
a

5
4
)

for a→ 0.

If furthermore ψ (x1, x2) = ψ1 (x1)ψ2 (x2) for a wavelet ψ1 ∈ L2 (R), ψ ∈ C2 (R2) ∩
L2 (R2) and ψ2 (0) = 0, ψ′2 (0) 6= 0 and∫

(−∞,0)
ψ1 (x1)x2

1 6= 0,

then
lim
a→0+

a−
5
4 |SHψχR (a, s, p)| > 0.

(c) Let ψ (x1, x2) = ψ1 (x1)ψ2 (x2) with a bounded compactly supported wavelet ψ1 and a
compactly supported function ψ2 ∈ C2 (R) ∩ L2 (R) satisfying ψ′2 (0) 6= 0. If p ∈ ∂R
is a corner point of the second type and s does not correspond to a normal direction
of ∂R at p, then

SHψχR (a, s, p) = O
(
a

7
4
)

for a→ 0.

If furthermore ψ1 has three vanishing moments and∫
(−∞,0)

ψ1 (x1)x3
1dx1,

then
lim
a→0+

a−
7
4 |SHψχR (a, s, p)| > 0.
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Figure 2.3: Illustration of the decay rates using compactly supported shearlets [78].

2.5 Digital Shearlets

Currently, there are several digital realizations of shearlets and their transform [35, 58, 61, 77, 79,
80, 86]. For all these approaches, except [58], the algorithms are publicly available for download.
The implementations can be categorized into two groups. The underlying shearlet system is
either based on band-limited functions or it is set up using functions with compact support in
time domain. These two general categories will be further reviewed in the following subsections.

2.5.1 Band-limited Shearlets

As can be seen in the previous sections, the theoretical analysis of the shearlet transform is
concentrated on the Fourier domain. Especially the cone-adapted discrete shearlet system is
defined by a tiling of the frequency plane. Therefore, it seems natural to implement shearlets
directly according to this definition. Consequently, the shearlets are computed in Fourier domain.

As described in [75], Easley et al. [35] provided the first numerical implementation of the discrete
shearlet transform. On a given scale, the image is decomposed into a low pass and a high pass
image by the Laplacian pyramid scheme. Next, a directional filtering is performed on the pseudo-
polar grid. Finally, the Cartesian sampled values are reassembled and the inverse 2D FFT is
applied. To reduce the Gibbs type ringing, i.e. overshoots near jump points of a signal, also a
local variant of the shearlet transform has been implemented. For more details on the Gibbs
phenomenon, see [119, Section 4.7]. The shearlet transform is then carried out by a convolution
using directional filters governed by an approximation of the inverse shearlet transform of band-
limited window functions. These filters were able to be implemented with a matrix representation
that is of smaller size than the given image. Still they are not compactly supported in the
traditional sense. The implementation is available at www.math.uh.edu/∼dlabate.

Another approach is described in [79, 80]. Here, an isometric pseudo-polar Fourier transform
is obtained by careful weighting of the pseudo-polar grid, for which its adjoint can be applied
for the inverse transform. Band-limited shearlets are used to obtain tight frames such that the
adjoint frame operator allows for reconstruction. The corresponding implementation is called
ShearLab and available online in the form of a MATLAB toolbox at www.ShearLab.org.

In contrast to other approaches, the implementation of Häuser [60, 61], called Fast Finite Shearlet
Transform (FFST), utilizes a fully discrete setting. Not only the shearlet parameters a, s and
t are discretized but also only a finite number of discrete translations is considered. The use of
band-limited shearlets based on Meyer wavelets [93] enables the formation of a discrete Parseval
frame. Therefore, a direct reconstruction of an image using formula (2.3) is possible. The FFST
is also implemented as a MATLAB toolbox and online available at www.mathematik.uni-kl.de/
imagepro/software/ffst.

www.math.uh.edu/~dlabate
www.ShearLab.org
www.mathematik.uni-kl.de/imagepro/software/ffst
www.mathematik.uni-kl.de/imagepro/software/ffst
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On the one hand, a key advantage of a digitalization of the discrete shearlet transform in the
Fourier domain is the possibility to easily construct tight or even Parseval frames by using band-
limited shearlets. On the other hand, it entails the drawback that the band-limited shearlets
have infinite support in time domain. This introduces the above mentioned Gibbs type ringing.
Considering the shearlet transform as a convolution in time domain, one can intuitively imagine
that the support size has a major effect on the quality of localizing structures such as edges in
images. In case of an infinite shearlet support, image points outside of a near neighborhood are
taken into account during the computation of the shearlet transform of a given image point.
Figure 2.4a shows a shearlet in time domain for a 128 × 64 image on a fine scale generated
with the FFST toolbox. It illustrates that, even under a fine scale, still image points in a
wider neighborhood have a significant impact on the value of the shearlet coefficients using this
shearlet.

2.5.2 Compactly Supported Shearlets

In contrast to the approaches above, some implementations use compactly supported instead
of band-limited shearlets. The main reason is to provide better localization of the shearlet
transform which is useful for several applications.
The first implementation doing so was provided by Lim [86]. The presented shearlets are gen-
erated by separable functions, while each function component is compactly supported. These
separable functions are constructed using a Multi Resolution Analysis, which then leads to the
discrete shearlet transform to compute the shearlet coefficients of an image. As a main draw-
back, the corresponding shearlet system does not provide a tight frame as band-limited shearlets
are able to.
In [87], Lim was able to improve this approach in regards to frame properties by using non-
separable compactly supported shearlet mother functions. It was found that non-separable
compactly supported functions can better approximate band-limited mother functions, which
are able to lead to Parseval frames. The implementation of this approach is available online
as part of the ShearLab 3D MATLAB toolbox [77]. As its name implies this toolbox extends
[87] to the 3D situation. Furthermore, it utilizes universal shearlets which allow more flexibility
in terms of scaling. That means that at each scaling level the utilization of a different type of
scaling is possible by the introduction of a scale dependent scaling matrix

Ajαj :=
(
a 0
0 aαj

)
.

The toolbox is downloadable at www.ShearLab.org.
In Figure 2.4b, a shearlet at a fine scale generated by the ShearLab3D toolbox for a 128 × 64
image is shown. It has to be mentioned that it was not possible to generate a shearlet system
with the default parameters for such a small sized image. Instead the parameters had to be
adapted to get shearlets with support as small as possible with the side effect of losing accuracy.
One may argue that the image size of 128× 64 is unreasonable small. However, algorithms for
pedestrian detection, which are our main concern in this thesis, are trained on sample images
of size 128 × 64 or 64 × 32. Certainly, it is possible to pad the images in the training process
such that other parameters may be used. Anyway, this would lead to a bigger shearlet support
which is not beneficial for detecting such small object instances as required. For example in the
Caltech benchmark, the median height of pedestrians is just 48 pixels.
As can be seen in Figure 2.4, the amount of shearlet pixels with significant absolute value
involved in the computation of the shearlet coefficients at a given image point is clearly smaller

www.ShearLab.org
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(a) FFST (b) ShearLab3D

Figure 2.4: Fine scale shearlet in time domain generated for a 128× 64 image.

for ShearLab 3D shearlets as for the FFST. Intuitively, this leads to advantages for the task of
feature extraction used for pedestrian detection. Still, the shearlet filter sizes generated by the
ShearLab 3D toolbox seem to have room for improvement in regards to accuracy of localizing
edges in images. In the next chapter, we will set up our own shearlets with the aim to generate
shearlets with smallest possible support while retaining accuracy in directional adjustment.

2.6 Conclusion

In this chapter, we examined the current contributions on the shearlet framework. First, we
provided theoretical key results which will serve as a base for our own work. Second, we analyzed
current available realizations with a focus on their capabilities for image feature extraction.

We observed that most implementations concentrate them on fulfilling tight or even Parseval
frame properties instead of giving the ability to compute high quality image features. In order to
yield tight or Parseval frames, band-limited mother functions are commonly chosen. As a matter
of fact, the resulting shearlets have infinite support in time domain. Therefore, the localization
of edges in images using these shearlets is improvable.

However, we found that state-of-the-art realizations applying compactly supported shearlets,
such as ShearLab 3D [77], still generate shearlet filters with considerably large pixel size, which
has a negative effect on the localization of edges. In order to compute high quality image features
by precisely capturing edges in images, we set up our own shearlet design which we will describe
in the subsequent chapter.
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“Inspiration is hard to come by. You have to take it
where you find it.”

Bob Dylan

3
Local Precision Shearlets

In this chapter, we set up a new shearlet design tailored to the need that we have to detect
pedestrian instances with very small pixel size. In the previous chapter, we found that currently
available shearlet implementations are not fitted to that need since their shearlet filters have a
relatively big pixel size. Therefore, our shearlet design focuses on the ability to provide accurate
shearlet filters with small pixel size.

First, we define a new type of compactly supported shearlets. We design the mother shearlet
function specifically in order to be able to precisely localize structures in images. Second, we
define a new shearlet system. Our shearlet system is significantly different to common shearlet
systems in regards to directional distribution of the shearlets and the flexibility in defining the
used shearlets per scale. Subsequently, we show that our shearlet system forms a frame for
L2(R2). Finally, we discuss the possible algorithms for a signal reconstruction and the practical
application of our shearlets. Parts of this chapter have been published in [107].

3.1 Mother Shearlet

The choice of frequency bounded functions makes it possible to design shearlets that form a
Parseval frame for L2 (R2) such that a reconstruction of the signal given the shearlet coefficients
is possible. Besides its advantages, this approach leaves the drawback that the resulting functions
ψa,s,t have infinite support in time domain resulting in improvable edge detections. To avoid this
disadvantage for the localization of structures in images, which is crucial for feature extraction,
we design the mother shearlet ψ such that it has compact support [−b1, b1] × [−b2, b2] ⊂ R2 in
time domain with support boundaries b1, b2 ∈ R+ and b2 > b1. The last condition guarantees
that we have elongated functions already at the coarsest scale of the shearlet system. In addition,
we follow the approach of [69, 80, 86] and set up our mother shearlet as a separable function.
As preparation, we will define the basic function components of our mother shearlet.

Definition 3.1 ([90]). We call a function ψ1 : R→ C mother wavelet if it is of zero average, i.e.∫ ∞
−∞

ψ1 (x) dx = 0.
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Definition 3.2 ([83]). Let U ⊂ R be a closed subset and B ⊂ R be a set with U ⊂ B. A
continuous function ψ2 : R→ R is called a bump function for U supported in B if 0 ≤ ψ2 (x) ≤ 1
for x ∈ R, ψ2 (x) ≡ 1 for x ∈ U and supp ψ2 ⊆ B.

More precisely, we set up our mother shearlet ψ ∈ L2 (R2) according to the following definition.

Definition 3.3. Let B1 = [−b1, b1] and B2 = [−b2, b2] with b1, b2 ∈ R+, b2 > b1 and U ⊂ B2.
For x ∈ R2 the mother shearlet given by

ψ (x1, x2) := ψ1 (x1)ψ2 (x2) (3.1)

is called a local precision shearlet if it fulfills the following conditions

i. ψ1 ∈ L1 (R)∩L2 (R) is a mother wavelet compactly supported in B1 and point-symmetric
to (0, 0).

ii. λψ2 ∈ L1 (R) ∩ L2 (R), λ > 0, is a bump function for U supported in B2 axis-symmetric
to x2 = 0.

The separability (3.1) allows easy evaluations of theoretical properties as well as it enables
simple algorithmic realization. Concerning the Fourier transform ψ̂ := F (ψ) of a local precision
shearlet ψ we have

ψ̂ (ξ1, ξ2) =
∫
R2
ψ1 (x1) e−2πix1ξ1ψ2 (x2) e−2πix2ξ2dx1dx2

=
∫
R
ψ1 (x1) e−2πix1ξ1dx1

∫
R
ψ2 (x2) e−2πix2ξ2dx2

= ψ̂1 (ξ1) ψ̂2 (ξ2) . (3.2)

The definition of our ψ1-component is motivated by the work of Mallat and Zhong [91], where a
wavelet is chosen to be the first derivative of a smoothing function θ. Here, a smoothing function
is defined as any function θ : R → R that has an integral equal to 1 and that converges to 0 at
infinity. As an example, one can use a Gaussian as smoothing function. In that way this type
of wavelet is sharing the property of ψ1 being a point-symmetric function. The corresponding
wavelet transform of a signal f ∈ L2 (R) is then the first derivative of the signal smoothed at
the corresponding scale of the wavelet. As Mallat and Zhong [91] point out, the detection of
local extrema of the corresponding wavelet coefficients conforms to the one-dimensional Canny
edge detection [16] if one chooses θ to be a Gaussian. For a fast algorithmic implementation,
they introduce a wavelet which is set up as first derivative of a cubic B-spline. Duval-Poo et
al. [34] were able to improve edge detection with the FFST shearlet implementation [60, 61]
by using this wavelet as a replacement for the originally used Meyer wavelet [93] in the ψ1-
component. Our definition of the ψ2-component guarantees the symmetry in R2. Li and Shen
[85] used symmetric shearlets based on B-splines which provide optimally sparse approximations
of cartoon-like images.

We use these ideas as the basis to define a shearlet based on B-splines, which is fulfilling the
conditions of a local precision shearlet. In contrast to [34], our approach results in a separable
function which uses B-splines not just in ψ1 but also in ψ2. Since Duval-Poo et al. [34] use the
ψ2-component of the FFST [60, 61] along with non-separable mother functions, the resulting
shearlets are not compactly supported in time domain. Furthermore, we extend the approach
to allow higher orders of derivatives. The resulting shearlet is called spline shearlet and is set
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up as a centralized B-spline in the bump component ψ2 and its q-th derivative in the wavelet
component ψ1. The cardinal B-spline Np(x) : R→ R of order p ≥ 2 is defined by

Np (x) := (Np−1 ∗N1) (x) (3.3)

with

N1 (x) :=
{

1 0 ≤ x < 1,
0 otherwise.

Before stating the definition of a spline shearlet, we first present some useful properties of
cardinal B-splines.

Theorem 3.4 ([18]). The cardinal B-spline Np of order p ∈ N satisfies the following properties:

i. suppNp = [0, p] .

ii. Np (x) > 0 for all 0 < x < p.

iii.
∑∞
k=−∞Np (x− k) = 1 for all x ∈ R.

iv. N ′p (x) = Np−1 (x)−Np−1 (x− 1) for all x ∈ R.

v. The cardinal B-splines Np and Np−1 are related by the identity

Np (x) = x

p− 1Np−1 (x) + p− x
p− 1Np−1 (x− 1) .

vi. Np is symmetric with respect to the center of its support, i.e.

Np

(
p

2 + x

)
= Np

(
p

2 − x
)
, x ∈ R.

Definition 3.5. Let Np ∈ L2 (R) be a cardinal B-spline of order p ∈ N. For q ∈ Qm with

Qm := {1, 3, . . . , p− (1 + mod (p, 2))}

and r > 1, we call ψ(x1, x2) = ψ1(x1)ψ2(x2) a spline shearlet of order p and q-th derivative if

ψ1 (x) = Ñ (q)
p (rx) (3.4)

and
ψ2 (x) = Ñp (x) (3.5)

with x ∈ R and Ñp (x) := Np (x+ p/2).

It is easy to observe that the spline shearlet fulfills the conditions of a local precision shearlet.
The constant r > 1 causes that we have b2 > b1, i.e. that the support of ψ2 is larger than the one
of ψ1. Since Ñp (x) and Ñ (q)

p (x) have the same support, r equals the ratio b2/b1. In other words,
for the support boundaries of the resulting shearlet we get b1 = p/2r and b2 = p/2. Figure 3.1
shows a spline shearlet with p = 5, q = 1 and r = 3/2.

Next, we examine the number of vanishing moments of the first component of a spline shearlet.
As we will see in Chapter 4, the characterization of edge points using a local precision shearlet
is depending on the number of vanishing moments of ψ1.
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(a) Centralized B-spline ψ2 with p = 5 as well as its derivative ψ1
compressed with r = 3/2.
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(b) Spline shearlet ψ (x) = ψ1 (x1)ψ2 (x2).

Figure 3.1: Example of the spline mother shearlet and its components for p = 5.

Lemma 3.6. Let ψ(x1, x2) = ψ1(x1)ψ2(x2) be a spline shearlet of order p and q-th derivative.
Then ψ1 has q vanishing moments, i.e.∫

R
ψ1 (x1)xl1dx1 = 0

for all l < q.

Proof. For a spline shearlet of order p and q-th derivative we have

ψ1 (x1) = Ñ (q)
p (rx1)

with q ∈ 2N− 1, r > 1 and Ñ
(q)
p (x1) = N

(q)
p (x1 + p/2), where Np is a cardinal B-spline of order

p ∈ N. Furthermore we have b1 = p/2r. Integration by parts provides∫ p/2r

−p/2r
Ñ (q)
p (rx1)xl1dx1 = 1

r

(
Ñ (q−1)
p (p/2)︸ ︷︷ ︸

=0

· (p/2r)l − Ñ (q−1)
p (−p/2)︸ ︷︷ ︸

=0

· (−p/2r)l

−
∫ p/2r

−p/2r
Ñ (q−1)
p (rx1) lxl−1dx1

)
= − l

r

∫ p/2r

−p/2r
Ñ (q−1)
p (rx1)xl−1dx1.

Repeating this procedure l times with l < q, we have∫ p/2r

−p/2r
Ñ (q)
p (rx1)xl1dx1 =

(
− l
r

)l ∫ p/2r

−p/2r
Ñ (q−l)
p (rx1) dx1
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Figure 3.2: Shearlet component ψ1 of a spline shearlet of order p = 9 and q = 1, q = 3 and
q = 5.

=
(
− l
r

)l (
Ñ (q−l−1)
p (p/2)︸ ︷︷ ︸

=0

− Ñ (q−l−1)
p (p/2)︸ ︷︷ ︸

)
=0

= 0.

For l = q, we have(
− l
r

)q ∫ p/2r

−p/2r
Ñp (rx1)xl−qdx1 =

(
− l
r

)q ∫ p/2r

−p/2r
Ñp (rx1) dx1

6= 0,

due to the properties of a B-spline described in Theorem 3.4.

A big advantage of spline shearlets is that one can choose the grade of smoothness by the order
of the B-spline as well as the number of vanishing moments by the choice which derivative to
take. Figure 3.2 shows ψ1 of a spline shearlet of order p = 9 with different numbers of vanishing
moments. An increase in vanishing moments automatically increases oscillations. As we will
present in Section 4.2, in an edge detection algorithm these oscillations create artifacts reducing
the detection precision.

Another advantage is that a spline shearlet has explicit closed form expressions in time as well
as in frequency domain. For the Fourier transform of its centralized version Ñ1 one gets

F
(
Ñ1
)

(ξ) =
∫ 1/2

−1/2
e−2πixξdx

= −
[
e−2πixξ

2πiξ

]1/2

−1/2

= 1
πξ

1
2i
(
eπiξ − e−πiξ

)
= 1

πξ
sin (πξ)

= sinc (ξ) .

For a description on basic techniques concerning Fourier analysis applied here, see Appendix B.
For ψ̂2 (ξ) : = F

(
ψ2
)

(ξ) = F
(
Ñp
)

(ξ) we obtain using (3.3)

ψ̂2 (ξ) = sincp−1 (ξ) . (3.6)
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Figure 3.3: The spline shearlet in frequency domain

Since ψ1 is a derivative of centralized B-spline, we get

ψ̂1 (ξ) = 1
r

(i2πξ)q sincp−1
(
ξ

r

)
. (3.7)

Corollary 3.7. The Fourier transform of a spline shearlet ψ of order p = n + 1, and q-th
derivative, defined by (3.4) and (3.5) has a closed-form expression given by

ψ̂ (ξ1, ξ2) = 1
r

(
i2πξ1

r

)q
sincn

(
ξ1
r

)
sincn (ξ2) .

Proof. According to (3.2) we have ψ̂ (ξ1, ξ2) = ψ̂1 (ξ1) ψ̂2 (ξ2). Using (3.6) and (3.7) shows the
result.

In time domain, one can express a cardinal B-spline as a composition of piecewise polynomials.
That means, a cardinal B-spline of order p is at each interval [k, k + 1], 0 ≤ k ≤ p − 1, a
polynomial of degree p− 1. The coefficients of the involved polynomials can be calculated by a
simple algorithm [95]. For example, for p = 3 we have the Quadratic B-spline

N3 (x) =



1
2x

2 for 0 ≤ x < 1,
−x2 + 3x− 3

2 for 1 ≤ x < 2,
1
2x

2 − 3x+ 9
2 for 2 ≤ x < 3,

0 otherwise.

Given the cardinal B-spline by piecewise polynomials, the calculation of its q-th derivative is
very simple.
There are several other ways to define shearlets based on splines. One possibility is to define ψ1
by a compactly supported B-spline wavelet [19, 20], which is given by the following definition.
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Definition 3.8 ([20]). Let Np ∈ L2 (R) be a cardinal B-spline of order p ∈ N. Then the
compactly supported B-spline wavelet ψC,p of order p is defined by

ψC,p (x) := 1
22p−1

2p−2∑
j=0

(−1)j N2p (j + 1)N (p)
2p (2x− j) . (3.8)

For p = 1 we have the well-known Haar function

ψC,1 :=


1 for 0 ≤ x < 1

2 ,

−1 for 1
2 ≤ x < 1,

0 otherwise.

According to Chui and Wang [20], ψC,p is axis-symmetric for even p and point-symmetric for
odd p. Furthermore they state that suppψC,p = [0, 2p− 1] and thus for a centralized version
ψ̃C,p (x) = ψC,p (x+ (2p−1)/2) we have supp ψ̃C,p = [−(2p−1)/2, (2p−1)/2]. Figure 3.4a shows B-
spline wavelets of orders p = 1, p = 3 and p = 5. As can be seen, an increase in the order of the
B-spline directly increases the oscillations of the wavelet.

Another way to set up shearlets based on splines is presented by Lim [86]. Here, a pair of
shearlets is defined in frequency domain by

ψ̂1
0 := (i)l (sin (πξ1))l θ̂p (ξ1) θ̂p (ξ2)

ψ̂2
0 := (i)l

(
sin
(
πξ1
2

))l
θ̂p

(
ξ1
2

)
θ̂p (ξ2) ,

where θ̂p is the Fourier transform a box spline of order p given by

θ̂ (ξ1) =
(sin (πξ1)

πξ1

)p+1
e−iεπξ1 , with ε =

{
1 if p is even,
0 if p is odd.

The x1 component of this shearlet pair shows a very similar shape as the one of a spline shearlet
as illustrated in Figure 3.4b. Also here, we can adjust smoothness and oscillations separately.
But in contrast to spline shearlets, we do not have a closed form expression in time domain.
Concerning practical application, one either needs to compute the shearlet transform in Fourier
domain and the result has to be transferred to time domain by the inverse Fourier transform.
This leads to higher computational complexity in case of small filters, see 3.5. Or the shearlets
have to be transferred to the time domain such that the shearlet transform can be performed by
a convolution. Both ways entail a potential loss of calculation accuracy due to the involvement
of the inverse Fourier transform.

Turning to the properties of a general local precision shearlet, since ψ1 is an odd function and
ψ2 is an even one, [119] provides the following properties of the Fourier transform of ψ.

Lemma 3.9. Let ψ ∈ L2 (R2) be a local precision shearlet. Then ψ̂1 is an odd function, i.e.

ψ̂1 (ξ) = −ψ̂1 (−ξ) (3.9)

and ψ̂2 is even for all ξ ∈ R. Furthermore, ψ̂1 is purely imaginary and ψ̂2 is real.

With these properties, we get the following result for the continuous shearlet transform SHψ
described in Chapter 2.
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Figure 3.4: Shearlet components in x1 direction for different spline approaches.

Theorem 3.10. Let ψ ∈ L2 (R2) be a local precision shearlet that fulfills the admissibility
condition (2.4). Then for

c−ψ =
∫
R

∫ 0

−∞

∣∣∣ψ̂ (ξ1, ξ2)
∣∣∣2

ξ2
1

dξ1dξ2 and c+
ψ =

∫
R

∫ ∞
0

∣∣∣ψ̂ (ξ1, ξ2)
∣∣∣2

ξ2
1

dξ1dξ2

we have c−ψ = c+
ψ = cψ and SHψ is a cψ-multiple of an isometry.

Proof. According to (3.2) and (3.9) we get

c−ψ =
∫
R

∫ 0

−∞

∣∣∣ψ̂ (ξ1, ξ2)
∣∣∣2

ξ2
1

dξ1dξ2

=
∫
R

∫ 0

−∞

∣∣∣ψ̂1 (ξ1) ψ̂2 (ξ2)
∣∣∣2

ξ2
1

dξ1dξ2

=
∫
R

∫ 0

−∞

∣∣∣−ψ̂1 (−ξ1) ψ̂2 (ξ2)
∣∣∣2

ξ2
1

dξ1dξ2

=
∫
R

∫ ∞
0

∣∣∣ψ̂1 (ξ1) ψ̂2 (ξ2)
∣∣∣2

ξ2
1

dξ1dξ2.

Therefore we have c−ψ = c+
ψ = cψ. The isometry statement immediately follows from Theo-

rem 2.7.

Besides the closed-form expression of a spline shearlet in frequency domain, Corollary 3.7 pro-
vides the following result.
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Theorem 3.11. A spline shearlet ψ of order p = n + 1 with q-th derivative is admissible and
we have c+

ψ = c−ψ = cψ with

c+
ψ = 4qπ2

r522q (2n− 2q + 1)! (2n− 1)!

〈
2n− 1
n− 1

〉
n∑
j=0

(−1)j
(

2n
j

)
(n− j)2n−2q+1 .

and the Eulerian number〈
k
l

〉
=

l+1∑
j=0

(−1)j
(
k + 1
j

)
(l − j + 1)k for k, l ∈ N.

Proof. According to Corollary 3.7 we obtain

c+
ψ =

∫
R

∫ ∞
0

∣∣∣1r ( i2πr ξ1
)q

sincn
(
ξ1
r

)
sincn (ξ2)

∣∣∣2
ξ2

1
dξ1dξ2

=
∫
R

∫ ∞
0

1
r2

(
2π
r ξ1

)2q
sinc2n

(
ξ1
r

)
sinc2n (ξ2)

ξ2
1

dξ1dξ2

= 4q
∫
R

∫ ∞
0

π2q

r2q+2 ξ
2q−2
1 sinc2n

(
ξ1
r

)
sinc2n (ξ2) dξ1dξ2

= 4q
∫
R

∫ ∞
0

π2q

r2q+2 ξ
2q−2
1

(
sin
(
π
r ξ1
)

π
r ξ1

)2n (sin (πξ2)
πξ2

)2n
dξ1dξ2

= 4q
∫ ∞

0

sin2n (π
r ξ1
)

π2(n−q)

r2(n−q−1) ξ
2(n−q+1)
1

dξ1

∫
R

(sin (πξ2)
πξ2

)2n
dξ2

and therefore
c+
ψ = 4qπ2

r4

∫ ∞
0

sin2n (π
r ξ1
)(

π
r ξ1
)2(n−q+1) dξ1

∫
R

(sin (πξ2)
πξ2

)2n
dξ2. (3.10)

From [120, page 2703] we know∫ ∞
0

sin2n (ξ1)
(ξ1)2(n−q+1) = π

22n (2 (n− q + 1)− 1)!

n∑
j=0

(−1)j
(

2n
j

)
(2n− 2j)2(n−q+1)−1

= π22n−2q+1

22n (2n− 2q + 1)!

n∑
j=0

(−1)j
(

2n
j

)
(n− j)2n−2q+1

= π

22q−1 (2n− 2q + 1)!

n∑
j=0

(−1)j
(

2n
j

)
(n− j)2n−2q+1

and ∫ ∞
0

(sin (ξ1)
ξ1

)2n
dξ1 = π

2 (2n− 1)!

〈
2n− 1
n− 1

〉
.

Integration by substitution yields∫ ∞
0

sin2n (π
r ξ1
)(

π
r ξ1
)2(n−q+1) dξ1 = 1

r22q−1 (2n− 2q + 1)!

n∑
j=0

(−1)j
(

2n
j

)
(n− j)2n−2q+1

and ∫ ∞
0

(sin (πξ1)
πξ1

)2n
dξ1 = 1

2 (2n− 1)!

〈
2n− 1
n− 1

〉
.
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It follows that

c+
ψ = 4qπ2

r522q−1 (2n− 2q + 1)!

 n∑
j=0

(−1)j
(

2n
j

)
(n− j)2n−2q+1

 1
2 (2n− 1)!

〈
2n− 1
n− 1

〉

= 4qπ2

r522q (2n− 2q + 1)! (2n− 1)!

〈
2n− 1
n− 1

〉
n∑
j=0

(−1)j
(

2n
j

)
(n− j)2n−2q+1 .

In particular, we get c+
ψ < ∞. According to Theorem 3.10 we have c+

ψ = c−ψ = cψ showing the
result.

In case of a spline shearlet with q = 1, the formula for cψ simplifies to the following result.

Corollary 3.12. A spline shearlet ψ of order p = n + 1 with 1-st derivative is admissible and
we have

c+
ψ = c−ψ = cψ = 2

r

(
π

r2 (2n− 1)!

〈
2n− 1
n− 1

〉)2

.

Proof. For q = 1 we get for (3.10)

c+
ψ = 4π2

r4

∫ ∞
0

(sin (πξ1)
πξ1

)2n
dξ1

∫
R

(sin (πξ2)
πξ2

)2n
dξ2

and therefore

c+
ψ = 4π2

r4
1

2r (2n− 1)!

〈
2n− 1
n− 1

〉
1

(2n− 1)!

〈
2n− 1
n− 1

〉

= 2
r

(
π

r2 (2n− 1)!

〈
2n− 1
n− 1

〉)2

.

For the continuous shearlet transform, we derive the following finding.

Corollary 3.13. Let ψ ∈ L2(R2) be a spline shearlet of order p and q-th derivative. Then SHψ
is a cψ-multiple of an isometry with

cψ = 4qπ2

r522q (2n− 2q + 1)! (2n− 1)!

〈
2n− 1
n− 1

〉
n∑
j=0

(−1)j
(

2n
j

)
(n− j)2n−2q+1 .

Proof. The result directly follows from Theorems 3.10 and 3.11.

Theorem 3.14. Let ΓR be given by (2.8) with a > 1 and b = 1, set β > 0 and γ > 2 (β + 2)
and assume that β′ ≥ β + γ and γ′ ≥ β′ − β + γ. If ψ ∈ L2 (R2) is a spline shearlet of order
p = n+ 1 and q-th derivative with n ≥ γ′ − β′ + p and q ≥ β′, then there exists c0 > 0 such that
the regular shearlet system SH (ψ,ΓR) is a frame for L2 (R2) for all c ≤ c0.

Proof. We want to show that the conditions of Theorem 2.13 hold true for a spline shearlet
with n ≥ γ′ − β′ + p and q ≥ β′. Considering the condition (2.13), we set

dψ̂1
(ξ1) :=

∣∣∣ψ̂1 (ξ1)
∣∣∣
(
1 + |ξ1|2

)γ′/2

|ξ1|β
′ .
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Using this notation we have

dψ̂1
(ξ1) =

∣∣∣∣1r
(
i2π
r
ξ1

)q
sincn

(
ξ1
r

)∣∣∣∣
(
1 + |ξ1|2

)γ′/2

|ξ1|β
′

= (2π)q

rq+1

∣∣∣∣∣ξq1
(

sin
(
π
r ξ1
)

π
r ξ1

)n∣∣∣∣∣
(
1 + |ξ1|2

)γ′/2

|ξ1|β
′

= 2qπq−n

rq+1−n

∣∣sinn (πr ξ1
)∣∣ (1 + |ξ1|2

)γ′/2

|ξ1|β
′+n−q .

To estimate an upper bound for dψ̂1
(ξ1), we examine its behavior in three areas of ξ1, i.e. |ξ1|

tending to 0, to∞ and the area in between. We show that we have upper bounds for all of these
areas. Obviously, for any value range [a, b] ∈ R with a > 0 and b <∞ we have an upper bound
for dψ̂1

(ξ1) since it is continuous.

For |ξ1| → ∞, we have

dψ̂1
(ξ1) <

2q+γ′/2πq−n

rq+1−n

∣∣sinn (πr ξ1
)∣∣ |ξ1|γ

′

|ξ1|β
′+n−q ≤ K∞1

with K∞1 > 0 if γ′ ≤ β′ + n− q since sinn (πξ1) is bounded.
For |ξ1| → 0, we have that

dψ̂1
(ξ1) <

2q+γ′/2πq−n

rp+1−n |sinn (πξ1)|
|ξ1|β

′+n−q ≤ K0
1

if p ≥ β′ since p = n+ 1, while K0
1 > 0. Therefore we have found K1 = max

(
K∞1 ,K0

1
)

in order
to fulfill (2.13).
Concerning (2.14), we set

dψ̂2
(ξ2) :=

∣∣∣ψ̂2 (ξ2)
∣∣∣ (1 + |ξ2|2

)γ′/2

which yields

dψ̂2
(ξ2) = |sincn (ξ2)|

(
1 + |ξ2|2

)γ′/2
= |sin

n (πξ2)|
|πξ2|n

(
1 + |ξ2|2

)γ′/2
.

As before, we examine the behavior of dψ̂2
(ξ2) in the abovementioned three areas of its domain

of definition. Also for dψ̂2
(ξ2), its continuity shows an upper bound for the area between 0 and

∞. For |ξ2| → 0, this term is obviously bounded without any conditions. For |ξ2| → ∞, we have

dψ̂2
(ξ2) < 2γ

′/2π−n |sinn (πξ2)| |ξ2|γ
′

|ξ2|n
≤ K2

for K2 > 0 if n ≥ γ′. This condition is already ensured by the conditions on ψ1.
Finally, the properties of the sinc function yield that the we have{

ξ1 ∈ R :
∣∣∣ψ̂1 (ξ1)

∣∣∣2 = 0
}

= {0,±r,±2r, . . .}

and {
ξ2 ∈ R :

∣∣∣ψ̂2 (ξ2)
∣∣∣2 = 0

}
= {±1,±2, . . .} .

Since r > 1, conditions (2.15) and (2.16) are also fulfilled.
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3.2 Shearlet System and Transform

Given the definition of local precision shearlets, we now define the associated shearlet system
and transform. As described earlier, basic shearlet systems, i.e. not cone-adapted ones, do have
a directional bias such that detection of an edge along the x1 axis of an image would be only
possible with s→∞. We follow the idea of cone-adapted shearlets to use vertical and horizontal
shearlets and adjust it to our time domain setting. Therefore we define a shearlet ψ̃ with

ψ̃ (x1, x2) := ψ (x2, x1) . (3.11)

In that way we are able to cover the whole frequency plane with shear parameters |s| ≤
tan (π/4) = 1. However, we do not aim to tile the frequency domain into disjoint cones as
in the cone-adapted approach [75]. Moreover, we do not restrict ourselves to parabolic scaling.
Instead we choose a scaling matrix Aa,α given by

Aa,α =
(
a 0
0 aα

)

with a ∈ (0, 1] and α ∈ [1/2, 1). According to Kutyniok and Labate [75], the value α = 1/2 is
needed to get optimally sparse approximations of certain image models. However, in this thesis
we are not concerned with optimally sparse approximations but with an optimal setup for the
task of pedestrian detection. The lower the value of α the more elongated are the shearlets at
fine scales. Thus, the directional response is intensively concentrated to the corresponding shear
parameter s ∈ R. For the practical application for pedestrian detection we choose α significantly
larger than 1/2 to ensure that we cover all directions when considering only few shearlets at fine
scales. As we will see in Section 5.5.2, the choice of α > 1/2 has a significant positive effect on
the quality of our pedestrian detection algorithm.

For considerations in the frequency domain, we furthermore define a scaling function φ ∈ L2 (R2)
that is associated with low frequencies. We set

φ (x1, x2) := ψ2 (x1)ψ2 (x2) . (3.12)

Accordingly, we define the following shearlet system for the continuous case.

Definition 3.15. For ψ, ψ̃, φ ∈ L2 (R2) the continuous local precision shearlet system is given
by

LPSH
(
Φ,Ψ, Ψ̃

)
:= Φ (φ) ∪Ψ (ψ) ∪ Ψ̃

(
ψ̃
)

with

Φ (φ) :=
{
φt = φ (· − t) : t ∈ R2

}
,

Ψ (ψ) :=
{
ψa,s,t = a−

(α+1)
2 ψ

(
A−1
a,αS

−1
s (· − t)

)
: a ∈ (0, 1] , |s| ≤ 1 + aα, t ∈ R2

}
,

Ψ̃
(
ψ̃
)

:=
{
ψ̃a,s,t = a−

(α+1)
2 ψ̃

(
Ã−1
a,αS

−T
s (· − t)

)
: a ∈ (0, 1] , |s| ≤ 1 + aα, t ∈ R2

}
and Ãa,α := diag (aα, a).

For the transform associated with the local precision shearlet system, we formulate its definition
analogously to [75].
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Definition 3.16. For

SL :=
{

(a, s, t) : a ∈ (0, 1] , s ≤ 1 + aα, t ∈ R2
}

and ψ, ψ̃, φ ∈ L2 (R2), the continuous local precision shearlet transform of f ∈ L2 (R2) is given
by

LPSTφ,ψ,ψ̃ (f) (a, s, t) :=
(
〈f, φt〉 , 〈f, ψa,s,t〉 ,

〈
f, ψ̃a,s,t

〉)
(3.13)

with
(
t′, (a, s, t) ,

(
ã, s̃, t̃

))
∈ R2 × S2

L.

For the discrete setting used for implementation we define the shearlet system as follows.

Definition 3.17. For ψ, ψ̃, φ ∈ L2 (R2) the local precision shearlet system is given by

LPSH
(
Φ,Ψ, Ψ̃

)
:= Φ (φ) ∪Ψ (ψ) ∪ Ψ̃

(
ψ̃
)

where

Φ (φ) :=
{
φm = φ (· − cm) : m ∈ Z2

}
,

Ψ (ψ) :=
{
ψj,k,m = 2

j(α+1)
2 ψ

(
A−1

2−j ,αS
−1
sj,k
· −cm

)
: j ≥ 0, |k| ≤ η̃j ,m ∈ Z2

}
,

Ψ̃
(
ψ̃
)

:=
{
ψ̃j,k,m = 2

j(α+1)
2 ψ̃

(
Ã−1

2−j ,αS
−T
sj,k
· −cm

)
: j ≥ 0, |k| ≤ η̃j ,m ∈ Z2

}
,

with sj,k := tan (kπ/ηj), ηj ∈ 2N, η̃j := d(ηj/2−1)/2e and c > 0.

The parameter ηj denotes the number of shearlets at scale j. The shear parameter k is defined
such that the directions are uniformly distributed along the circle. The partitioning in horizontal
and vertical shearlets as well as the discretization of the shearing parameter k is illustrated for
a fixed scale j and ηj = 6 in Figure 3.5. For the special case of ηj divisible by 4, each diagonal
of R2 is covered by two shearlets, e.g. ψj,−1,m and ψ̃j,1,m. In this case we omit the horizontal
shearlets ψ̃.

Definition 3.18. For ψ, ψ̃, φ ∈ L2 (R2) and j ≥ 0, k ≤ η̃j , m ∈ Z2, the discrete shearlet
transform of an image f ∈ L2 (R2) is then given by

LPST φ,ψ,ψ̃ (f) (j, k,m) :=
(
〈f, φm〉 , 〈f, ψj,k,m〉 ,

〈
f, ψ̃j,k,m

〉)
(3.14)

which we call the local precision shearlet transform (LPST).

3.3 Frame Property

In this section, we examine the properties of local precision shearlets and the corresponding
shearlet transform concerning the ability to provide a frame for L2(R2). Let ψ ∈ L2 (R2) be a
local precision shearlet. Similar to [61], we obtain for the Fourier transform of ψa,s,t

ψ̂a,s,t (ξ) = a−
(α+1)

2 e−2πi〈ξ,t〉F
(
ψ

((
1
a − s

a
0 1

aα

)
·
))

(ξ)
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x1

x2

k = tan (0°)

k = tan (30°)

k = tan (−30°)

k = tan (30°)
k = tan (0°)

k = tan (−30°)

ψ̃

ψ

(a) Discretization of the shearing parameter k.

ψ

k = tan (−30°) k = tan (0°) k = tan (30°)

ψ̃

k = tan (30°) k = tan (0°) k = tan (−30°)

(b) Resulting vertical and horizontal spline shearlets (fine grid sampled)
for m = 5.

Figure 3.5: Visualization of vertical and horizontal shearlets for a fixed scale j and ηj = 6.
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= a−
(α+1)

2 e−2πi〈ξ,t〉
(
a−(α+1)

)−1
ψ̂

((
a 0
saα aα

)
ξ

)

= a
(α+1)

2 e−2πi〈ξ,t〉ψ̂

((
a 0
saα aα

)
ξ

)

= a
(α+1)

2 e−2πi〈ξ,t〉ψ̂ (aξ1, a
α (sξ1 + ξ2)) .

With the separability condition (3.1) we have

ψ̂a,s,t (ξ) = a
(α+1)

2 e−2πi〈ξ,t〉ψ̂1 (aξ1) ψ̂2 (aα (sξ1 + ξ2)) .

If ψ is a spline shearlet of order p = n + 1, n ∈ N, and q-th derivative then according to
Corollary 3.7 we get

ψ̂a,s,t (ξ) = a
(α+1)

2 e−2πi〈ξ,t〉 (i2πξ1)q sincn (aξ1) sincn (aα (sξ1 + ξ2)) .

Now, we analyze under which circumstances the local precision shearlet system forms a frame
given a mother shearlet ψ that fulfills the conditions of Theorem 2.13. A main topic during this
consideration is the required number of shearlets per scale such that the shearlet system covers
the whole frequency domain. We set

Θ :=
{

(ξ1, ξ2) : 1
2 ≤ |ξ1| ≤ 1, |ξ2| ≤

1
2

}
.

According to conditions (2.13) - (2.16), we have Θ ⊆ ess supp ψ̂. Therefore, Ψ is covering the
frequency cones C1 ∪ C3 if the scaled and sheared sets Θj,k with j ≥ 0 and |k| ≤ η̃j defined by

Θj,k := Aaj ,αS
T
sj,k

Θ
= {(ξ1, ξ2) : 1/2aj ≤ |ξ1| ≤ 1/aj, |sj,kξ1 + ξ2| ≤ 1/2aα}

=
{

(ξ1, ξ2) : 2j−1 ≤ |ξ1| ≤ 2j , |sj,kξ1 + ξ2| ≤ 2jα−1
}

are covering them. A set Θj,k is a trapezoid with |ξ1| ∈
[
2j−1, 2j

]
and a lower boundary line b0j,k

which can be expressed by
ξ2 = −sj,kξ1 − 2jα−1

and an upper boundary line b1j,k given by

ξ2 = −sj,kξ1 + 2jα−1.

For Ψ covering the frequency cones C1 ∪ C3 we need⋃
|k|≤η̃j

Θj,k =
{

(ξ1, ξ2) : 2j−1 ≤ |ξ1| ≤ 2j , |ξ2/ξ1| ≤ 1
}
,

for each j ≥ 0. Similar considerations can be set up for Ψ̃ to cover the cones C2 ∪ C4 while Φ
clearly takes care of the low-frequency region R.
Theorem 3.19. Let ψ ∈ L2 (R2) be a local precision shearlet that fulfills the conditions (2.13)
- (2.16) with β > 0, γ > 2 (β + 2), β′ ≥ β + γ and γ′ ≥ β′ − β + γ. If for ηj ∈ 2N, j ≥ 0, and
α ∈ [1/2, 1) we have

ηj ≥


π

2(atan(2j(α−1)−1+1)−π4 ) for mod (ηj , 4) 6= 0,
π

(π/4+atan(2j(α−1)−1)) for mod (ηj , 4) = 0,
(3.15)

then there exists a c0 > 0 such that the local precision shearlet system LPSH
(
Φ,Ψ, Ψ̃

)
is a

frame for L2 (R2) for all c ≤ c0.
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ξ1

ξ2

2jα−1

−2jα−1

Θj,k

Θj,k+1

b1
j,k

b0
j,k

b1
j,k+1

b0
j,k+1

Figure 3.6: One side of the essential support of separable shearlets fulfilling conditions (2.13) -
(2.16) for a fixed scale j and nearby shears.

Proof. We want to show that the conditions (2.11) and (2.12) adapted to our shearlet system
are fulfilled. Similar to the proof of Corollary 2.17, see [86], we have in our case

ϕ
(
n,LPSH

(
Φ,Ψ, Ψ̃

))
= ϕ

(
n,Φ (φ) ∪Ψ (ψ) ∪ Ψ̃

(
ψ̃
))

= ess sup
ξ∈R2

∞∑
j=0

η̃j∑
k=−η̃j

∣∣∣ψ̂ (Aaj ,αSTsj,kξ)∣∣∣ ∣∣∣ψ̂ (Aaj ,αSTsj,kξ + n
)∣∣∣

+
∞∑
j=0

k=η̃j∑
k=−η̃j

∣∣∣ ˆ̃ψ (Ãaj ,αSsj,kξ)∣∣∣ ∣∣∣ ˆ̃ψ (Ãaj ,αSsj,kξ + n
)∣∣∣

+
∣∣∣φ̂ (ξ)

∣∣∣ ∣∣∣φ̂ (ξ + n)
∣∣∣

≤ ϕ (n,Ψ (ψ)) + ϕ
(
n, Ψ̃

(
ψ̃
))

+ ϕ (n,Φ (φ))

for (2.9) and

ϕ̃
(
LPSH

(
Φ,Ψ, Ψ̃

))
= ϕ̃

(
Φ (φ) ∪Ψ (ψ) ∪ Ψ̃

(
ψ̃
))

=
∣∣∣φ̂ (ξ)

∣∣∣2 +
∞∑
j=0

k=η̃j∑
k=−η̃j

∣∣∣ψ̂ (Aaj ,αSTsj,kξ)∣∣∣2 +
∣∣∣ ˆ̃ψ (Ãaj ,αSsj,kξ)∣∣∣2

= ϕ̃ (n,Φ (φ)) + ϕ̃ (n,Ψ (ψ)) + ϕ̃
(
n, Ψ̃

(
ψ̃
))

for (2.10).

The upper bound conditions, i.e. the existence of D < ∞ and the fulfillment of (2.12), follow
from Theorem 3.14. Since there are upper bounds for a regular discrete shearlet system, we
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have upper bounds for each part of the local precision shearlet system. That means

ϕ̃
(
LPSH

(
Φ,Ψ, Ψ̃

))
≤

∣∣∣φ̂ (ξ)
∣∣∣2 + 2

∑
j,k∈Z

∣∣∣ψ̂ (Aaj ,αSTsj,kξ)∣∣∣2
≤ D1 + 2D2

:= D <∞

where D1 < ∞ since φ̂ is obviously bounded. Concerning (2.12), we have
ϕ
(
n,Ψ

(
ψ
))
, ϕ
(
n, Ψ̃

(
ψ̃
))
≤ ϕ

(
n, SH

(
ψ,ΓI

))
with ϕ (n, SH (ψ,ΓI)) as in (2.9) for the setup of

Theorem 2.13. Thus, for c > 0 we get

ϕ

(
n

c
,LPSH

(
Φ,Ψ, Ψ̃

))
≤ 2ϕ

(
n

c
, SH (ψ,ΓI)

)
+ ϕ

(
n

c
,Φ (φ)

)
.

Next, we estimate ϕ
(
n
c ,Φ

(
φ
))

. With n = (n1, n2) we have

ϕ

(
n

c
,Φ
(
φ
))

=
∣∣∣φ̂ (ξ)

∣∣∣ ∣∣∣∣φ̂(ξ + n

c

)∣∣∣∣
=

∣∣∣ψ̂2 (ξ1) ψ̂2 (ξ2)
∣∣∣ ∣∣∣∣ψ̂2

(
ξ1 + n1

c

)
ψ̂2

(
ξ2 + n2

c

)∣∣∣∣
=

∣∣∣ψ̂2 (ξ1)
∣∣∣ ∣∣∣ψ̂2 (ξ2)

∣∣∣ ∣∣∣∣ψ̂2

(
ξ1 + n1

c

)∣∣∣∣ ∣∣∣∣ψ̂2

(
ξ2 + n2

c

)∣∣∣∣
≤ K1

(
1 + |ξ1|2

)−γ′/2
K2

(
1 + |ξ2|2

)−γ′/2
· · ·

K1

(
1 +

∣∣∣∣ξ1 + n1
c

∣∣∣∣2
)−γ′/2

K2

(
1 +

∣∣∣∣ξ2 + n2
c

∣∣∣∣2
)−γ′/2

,

with K1, K2 < ∞ since ψ2 fulfills condition (2.14). We set µ := arg maxi=1,2 |ni| and µ̃ :=
arg mini=1,2 |ni| such that we have

∥∥n∥∥∞ = max
(∣∣n1

∣∣, |n2|
)

= |nµ|. We estimate the component
in ξµ̃-direction with Kµ̃(1 +

∣∣ξµ̃∣∣2)−γ
′/2 ≤ Kµ̃. Then we have

ϕ

(
n

c
,Φ
(
φ
))
≤ E2

(
1 + |ξµ|2

)−γ′/2
(

1 +
∣∣∣∣ξµ + nµ

c

∣∣∣∣2
)−γ′/2

,

with E2 <∞ . Therefore, we have

ϕ
(n
c
,Φ
(
φ
))
≤ E2 min

{
1, |ξµ|−γ

′}
min

{
1,
∣∣∣∣ξµ + nµ

c

∣∣∣∣−γ′
}
.

For any ξ, n ∈ R2 we choose c > 0 such that
∣∣nµ/2c

∣∣ > ξµ. As described in [124], we then have∣∣ξµ + nµ/c
∣∣ ≥ ∣∣nµ/c∣∣− ∣∣ξµ∣∣ ≥ ∣∣nµ/2c

∣∣ and thus max
{∣∣ξµ∣∣, ∣∣ξµ + nµ/c

∣∣} ≥ ∣∣nµ/2c
∣∣. It follows that

ϕ
(n
c
,Φ
(
φ
))
≤ E2

∣∣∣∣nµ2c

∣∣∣∣−γ′ = E2 (2c)γ
′
‖n‖−γ

′

∞ .

According to [86], we have

ϕ

(
n

c
, SH (ψ,ΓI)

)
≤ E3c

γ/2−β ‖n‖β−γ/2
∞

with E3 <∞. It follows that

ϕ

(
n

c
,LPSH

(
Φ,Ψ, Ψ̃

))
≤ 2E3c

γ/2−β ‖n‖β−γ/2
∞ + E2 (2c)γ

′
‖n‖−γ

′

∞ ≤ E4c
ι ‖n‖ι

′

∞ ,
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with E4 <∞ and

ι =
{
γ/2− β for c ≥ 1
γ′ for c < 1

, ι′ =
{
β − γ/2 for ‖n‖∞ ≥ 1
−γ′ for ‖n‖∞ < 1

,

since β > 0, β − γ/2 < −2 and γ′ > γ > β. Correspondingly, we get

∑
n∈Z2\{0}

√
ϕ

(
n

c
, SH (ψ,ΓI)

)
ϕ

(
−n
c
, SH (ψ,ΓI)

)
≤ E4c

ι

 ∑
m∈Z2\{0}

‖m‖ι
′

∞


and according to [86],

∑
m∈Z2\{0} ‖m‖

β−γ/2
∞ < ∞ when ι′ < −2. This condition is fulfilled since

we assume β > 0, γ > 2 (β + 2), β′ ≥ β + γ and γ′ ≥ β′ − β + γ. Analogously as in [86], we
conclude that for any E > 0, there exists a c0 > 0 such that

∑
n∈Z2\{0}

√
ϕ

(
n

c
,LPSH

(
Φ,Ψ, Ψ̃

))
ϕ

(
−n
c
,LPSH

(
Φ,Ψ, Ψ̃

))
< E

for all c ≤ c0.

For the lower bound, we show that the scaled and sheared sets Θj,k cover the frequency cones
C1∪C3. For mod (ηj , 4) 6= 0, we first need to show that the upper boundary line of the trapezoid
Θj,k is reaching the diagonal for |k| = (ηj/2−1)/2. This condition can be expressed by∣∣∣−sj,kξ1 + 2jα−1

∣∣∣ ≥ |ξ1| .

Because of the symmetry in possible values for k and due to the fact that |k| < 1, it is sufficient
to examine this condition for k = −(ηj/2−1)/2 and ξ1 = 2j . We have

−sj,k2j + 2jα−1 ≥ 2j ,

− tan
(
−
(
ηj
4 −

1
2

)
π

ηj

)
≥ 1− 2j(α−1)−1,

and therefore
tan

((
ηj
4 −

1
2

)
π

ηj

)
≥ 1− 2j(α−1)−1. (3.16)

We furthermore need to secure that no gaps between the trapezoids occur. That means the
upper boundary line of Θj,k+1 has to reach the lower line of Θj,k. Therefore we have

−sj,k2j − 2jα−1 ≤ −sj,k+12j + 2jα−1

and correspondingly
sj,k+1 − sj,k ≤ 2j(α−1). (3.17)

We set ∆sj,k := sj,k+1− sj,k = tan
(
(k + 1) π

ηj

)
− tan

(
k π
ηj

)
, k = −η̃j ,−η̃j + . . . η̃j − 1. Since tan

is a strictly monotonically increasing function we have ∆sj,k ≤ ∆sj,η̃j
. With (3.16) we get

∆sj,k ≤ tan
((

ηj
4 + 1

2

)
π

ηj

)
− tan

((
ηj
4 −

1
2

)
π

ηj

)

≤ tan
((

ηj
4 + 1

2

)
π

ηj

)
−
(
1− 2j(α−1)−1

)
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= tan
((

ηj
4 + 1

2

)
π

ηj

)
+ 2j(α−1)−1 − 1.

Using this condition in (3.17) yields

tan
((

ηj
4 + 1

2

)
π

ηj

)
+ 2j(α−1)−1 − 1 ≤ 2j(α−1),

tan
((

ηj
4 + 1

2

)
π

ηj

)
≤ 2j(α−1) − 2j(α−1)−1 + 1

= 2j(α−1)−1 + 1.

Solving this inequation for ηj provides(
ηj
4 + 1

2

)
π

ηj
≤ atan

(
2j(α−1)−1 + 1

)
,

π

2ηj
≤ atan

(
2j(α−1)−1 + 1

)
− π

4 ,

ηj ≥
π

2
(
atan

(
2j(α−1)−1 + 1

)
− π

4
) .

Under this condition, the cones C2 ∪ C4 are covered by the sets Θ̃j,k := Ãaj ,αSsj,kΘ̃ with Θ̃ :={
(ξ1, ξ2) : |ξ1| ≤ 1

2 ,
1
2 ≤ |ξ2| ≤ 1

}
analogously.

For the case of mod (ηj , 4) = 0, it is obvious that the diagonal is reached. In this case we need
to ensure that the cones C2 ∪ C4 are still covered completely although ψ̃j,−1,m and ψ̃j,1,m are
omitted. Since we have

Θ̃j,k =
{

(ξ1, ξ2) : |ξ1 + sj,kξ2| ≤ 2jα−1, 2j−1 ≤ |ξ2| ≤ 2j
}

we also have a right-hand side boundary line b̃0j,k with

ξ2 = 1
sj,k

(
−ξ1 + 2jα−1

)
and a left-hand side boundary line b̃1j,k with

ξ2 = 1
sj,k

(
−ξ1 − 2jα−1

)
.

Similar as before, we can examine under which condition b̃0j,k lies beneath b1j,−1 for sj,k =
tan (−(ηj/4−1)π/ηj) = tan (−π/4 + π/ηj) and ξ1 = 2j − 2jα−1. The latter is the point of the
diagonal at the boundary of Θ̃j,k in ξ2 direction. We get

1
sj,k

(
−2j + 2jα−1 + 2jα−1

)
≤ 2j − 2jα−1 + 2jα−1,

sj,k ≤ −2j + 2jα

2j ,

and therefore
tan (−π/4 + π/ηj) ≤ 2j(α−1) − 1. (3.18)
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Also in this case, we need to ensure that (3.17) is fulfilled. We use the fact that ∆sj,k ≤ ∆sj,η̃j−1

for all k = −η̃j ,−η̃j + . . . η̃j − 1, i.e.

∆sj,k ≤ tan (π/4)− tan (π/4− π/ηj) = 1− tan (π/4− π/ηj) .

For (3.17) we get
1− tan (π/4− π/ηj) ≤ 2j(α−1)

which is the same condition as (3.18). Solving for ηj yields

−π/4 + π/ηj ≤ atan
(
2j(α−1) − 1

)
,

ηj ≥
π(

π/4 + atan
(
2j(α−1) − 1

)) .
Obviously R is covered by Φ which finally yields

[
−1

2 ,
1
2

]2
∪

⋃
j∈Z

⋃
|k|≤η̃j

Θj,k ∪ Θ̃j,k

 = R2

and thus

∣∣∣φ̂ (ξ)
∣∣∣2 +

∞∑
j=0

k=η̃j∑
k=−η̃j

∣∣∣ψ̂ (Aaj ,αSTsj,kξ)∣∣∣2 +
∣∣∣ ˆ̃ψ (Ãaj ,αSsj,kξ)∣∣∣2

≥ K ′χ[−1/2,1/2]2 (ξ) +K

 ∞∑
j=0

k=η̃j∑
k=−η̃j

χΘj,k (ξ) + χΘ̃j,k
(ξ)


> 0

for almost every ξ ∈ R2.

Corollary 3.20. Let ψ ∈ L2 (R2) be a spline shearlet of order p = n + 1 and q-th derivative
with n and q as in Theorem 3.14. If ηj, j ≥ 0, fulfills (3.15), then there exists a c0 > 0 such
that LPSH

(
Φ,Ψ, Ψ̃

)
is a frame for L2 (R2) for all c ≤ c0.

Given the result that our shearlet system forms a frame for L2(R2), it is possible to reconstruct a
signal f ∈ L2(R2) by its shearlet coefficients. Although this topic is not in the focus of this thesis,
we will evaluate in the next section which algorithms are applicable for a signal reconstruction
with our shearlet system.

3.4 Signal Reconstruction

To reconstruct a signal f ∈ L2(R2), one can make use of the frame operator

S : L2(R2)→ L2(R2), f 7→
∑
i∈I
〈f, ϕi〉ϕi

of a frame Φ =
(
ϕi
)
i∈I for L2 (R2). According to Christensen [17], a signal f ∈ L2 (R2) can be

reconstructed by the formula (2.2)

f =
∑
〈f, ϕi〉S−1ϕi.
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Therefore, we need to find the inverse frame operator S−1 associated to our shearlet frame
LPSH(Φ,Ψ, Ψ̃) to provide an explicit reconstruction formula. As described in [17], the inversion
of the frame operator can be very complicated in practice. As an alternative, the following
algorithm, also known as the frame algorithm, is provided.

Lemma 3.21 ([17]). Let Φ = (ϕi)i∈I be a frame for L2(R2) with frame bounds A and B. For
f ∈ L2(R2), we define functions (gi)∞i=0 in L2(R2) by

g0 = 0, gi = gi−1 + 2
A+B

S (f − gi−1) , i ≥ 1. (3.19)

Then
‖f − gi‖ ≤

(
B −A
B +A

)i
‖f‖ .

The sequence elements gi in (3.19) converge to f for i → ∞, while their computation depends
on the frame bounds A and B. First, we need to know the frame bounds in order to apply the
frame algorithm. Second, the ratio of the frame bounds determines the speed of convergence to
f . It follows that gi might only converge slowly to f in case B is much larger than A. This could
refer to the cause that either the estimate of the frame bounds is not optimal or the frame is far
from being tight. In order to get to a faster convergence, Gröchenig [45] applies the Chebyshev
method and the conjugate gradients method.

Theorem 3.22 (Chebyshev algorithm [45]). Let Φ =
(
ϕi
)
i∈I be a frame for L2 (R2) with frame

bounds A, B and let

ρ := B −A
B +A

, σ :=
√
B −

√
A√

B +
√
A
.

For f ∈ L2 (R2), we define functions
(
gi
)∞
i=0 in L2 (R2) and corresponding numbers

(
λ
)∞
i=1 by

g0 = 0, g1 = 2
A+B

Sf, λ1 = 2,

and for i ≥ 2

λi = 1
1− ρ2

4 λi−1
, gi = λi

(
gi−1 − gi−2 + 2

A+B
S (f − gi−1)

)
+ gi−2.

Then
‖f − gi‖ ≤

2σi

1 + σ2i ‖f‖ .

Although, the elements gi converge faster to f in the Chebyshev algorithm than in the frame
algorithm, still the frame bounds are needed. This is not the case for the conjugate gradients
algorithm.

Theorem 3.23 (Conjugate gradient algorithm [45]). Let Φ =
(
ϕi
)
i∈I be a frame for L2 (R2) and

let f ∈ L2(R2)\f0, where f0 is the zero function. We define functions
(
gi
)∞
i=0,

(
ri
)∞
i=0,

(
pi
)∞
i=0

and numbers
(
λi
)∞
i=0 by

g0 = 0, r0 = p0 = Sf, p−1 = 0

and, for i ≥ 2,

λi = 〈ri, pi〉
〈pi, Spi〉

,
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gi+1 = gi + λipi,

ri+1 = ri − λiSpi

pi+1 = Spi −
〈Spi, Spi〉
〈pi, Spi〉

pi −
〈Spi, Spi−1〉
〈pi−1, Spi−1〉

pi−1.

Then gi → f for i→∞.

According to Theorem 2.12, the frame bounds A and B for our shearlet frame LPSH
(
Φ,Ψ, Ψ̃

)
can be estimated by 1/c2 (C − E) ≤ A ≤ B ≤ 1/c2 (D + E). Unfortunately, the constants
c, C,D,E < ∞ are not known explicitly. Therefore, the only possibility to approximate a
function f ∈ L2(R2) by one of the presented algorithms is the conjugate gradients algorithm.
However, since signal reconstruction is not the main concern in this thesis, we do not realize an
application of this algorithm and an analysis of the corresponding results.

3.5 Practical Application

The application of our shearlet design is crucial for the quality of pedestrian detection. It
gives us the ability to define shearlets compactly supported in time domain of any size such
that only the nearest neighborhood of m is considered for computing the shearlet transform
at location m and fine scales. This fact leads to very precise edge detections in comparison to
other known shearlets. See Section 5.5 for more details. We compute our shearlet filters by
sampling shearlets directly in time domain with a sampling constant c > 0. Additionally, in the
style of the Fast Finite Shearlet Transform (FFST) [61], we consider digital images in RM×N as
functions f ∈ L2 (R2) sampled on a grid G. In our case we define this grid by

G := {(cm1, cm2) : m1 = −bM/2c , . . . , dM/2e − 1,
m2 = −bN/2c , . . . , dN/2e − 1} .

Finally, the LPST is computed directly in time domain using the 2D convolution f ∗ ψj,k,0.

Now, we briefly address the topic of computational complexity. In contrast to our approach,
shearlet transforms are usually calculated by applying the 2D Fast Fourier transform (FFT) and
its inverse (IFFT). As described by Duval-Poo et al. [34] the computational complexity of the
shearlet transform of a N ×N sized image using FFT and IFFT is O

(
j0ηN

2 + j0ηN
2 log (N)

)
,

η =
∑j0−1
j=0 ηj . The parameter j0 ∈ N describes the number of scales considered during compu-

tation. This computational complexity can be reduced to O
(
N2 log (N)

)
since the number of

all shearlets j0η can be assumed as a small constant compared to N . According to the authors,
using a 2D convolution with W ×W sized shearlets results in O

(
j0ηN

2W 2) that reduces to
O
(
N2) if W � N . Using local precision shearlets, the condition W � N can be easily fulfilled

which leads to a significantly reduced computational complexity. When using small sized shear-
lets, e.g. 16× 16, we observe a decrease by an order of magnitude in the runtime for computing
the shearlet transform of a 640× 480 image.

3.6 Conclusion

In this chapter, we designed our own mother shearlets and shearlet system in order to have
the capability to compute highly qualitative image features. Concerning the design of mother
shearlets, we used compactly supported, separable functions with a point-symmetric wavelet
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in the first and an axis-symmetric bump function in the second component. As an important
example of our shearlets, we introduced spline shearlets. Such a shearlet ψ consists of a derivative
of a B-spline in the ψ1 and the corresponding B-spline itself in the ψ2 component. We showed
that spline shearlets are admissible and that the continuous shearlet transform is a multiple of
an isometry with their usage. In addition, we showed that they are suitable components for a
regular discrete shearlet system to form a frame for L2(R2).

Furthermore, we defined our discrete shearlet system with evenly distributed orientations of
the involved shearlets and a high degree of flexibility concerning the number of shearlets per
scale. We showed that this shearlet system forms a frame for L2(R2) provided that the mother
functions fulfill sufficient conditions and that we use enough shearlets per scale. We derived a
required number of shearlets per scale depending on the degree of anisotropy α.

Although the topic of signal reconstruction is not in the focus of this thesis, we examined which
algorithms could be used to reconstruct a signal f ∈ L2(R2) given its frame coefficients. We
concluded that the conjugate gradients algorithm is the only possibility to reconstruct a signal
with our shearlet system.

Finally, we discussed the practical application of our shearlets. We described that our digital
shearlet filters are obtained by a sampling directly in time domain. With a suitable sampling
of the input image, our shearlet transform is computed by a convolution in time domain, which
yields benefits concerning the computational costs of it.
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“There are things known and there are things unknown,
and in between are the doors of perception.”

Aldous Huxley

4
Edge Detection using Local Precision Shearlets

In this chapter, we study the characterization of edges based on the properties of the continuous
shearlet transform SHψ using a local precision shearlet ψ. The precise detection of edges is
the key factor for the extraction of highly qualitative image feature using shearlets. It is the
basis for a beneficial application of shearlets either in hand-crafted feature detectors or in CNN
algorithms. We study the ability of local precision shearlets to characterize edge points in the
manner of Guo and Labate [53]. The image function f is modeled as the characteristic function
χR of a bounded domain R ⊂ R2 with piecewise smooth boundary ∂R. We will use the notation
of [53] already presented in Section 2.4. This model scenario has been analyzed in several
papers for the case of band-limited shearlets [50, 53, 54]. In this case, the boundary ∂R, the
orientation and the type of the edge point can be deduced by the decay rate of the continuous
shearlet transform, see 2.19. As indicated before, band-limited shearlets have infinite support
in the space domain. The spatial localization of compactly supported shearlets can lead to
improved edge classification in comparison to band-limited shearlets. Kutyniok and Petersen
[78] analyzed the scenario if one replaces band-limited by compactly supported shearlets. The
results are presented in 2.21.

Although the results in [78] resolve the issues using band-limited shearlets described in Sec-
tion 2.4, certain additional assumptions on the compactly supported shearlets lead to drawbacks
in a practical application. First of all, the separable shearlet ψ = ψ1ψ2 shall fulfill in its sec-
ond function component ψ2 the condition ψ′2 (0) 6= 0 while ψ1 shall be a compactly supported
wavelet. This condition induces an asymmetry of the shearlet with respect to x2 that leads to a
stronger response of the shearlet transform on one side of an edge. Second, some results require
that the shearlet possesses a minimum number of vanishing moments. As indicated before, in-
creasing the vanishing moments increases the oscillations of a shearlet which create artifacts in
the edge detection result reducing the detection precision. As we will see in 4.2, a local precision
shearlet with just one vanishing moment creates visibly the best edge detection results. More
importantly, we will show in 5.5.2 that the best pedestrian detection results are achieved with
just one vanishing moment. Fittingly, the theoretical results we derive in this chapter for the
characterization of edge points using local precision shearlets also require a condition that limits
the number of vanishing moments to one.
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In contrast to the results from the publications stated above, we use the more flexible scaling
matrix Aa,α with degree of anisotropy α ∈ [1/2, 1). We derive decay rates depending on α, which
make it possible to detect edge points and the orientation of the corresponding edge. In case of
the special case α = 1/2, regular points and corner points of the first and second type can be
distinguished from one another by the limit value of the shearlet transform for a→ 0 in case s
corresponds to the normal direction at the analyzed point p ∈ ∂R. Remarkably, in this case the
symmetry of local precision shearlets improve the results of 2.21, originally described in [78],
concerning this limit value.

4.1 Characterization of Edge Points

First of all, for a local precision shearlet ψ, points p outside of the boundary do not have to be
characterized by the asymptotic decay of SHψχR (a, s, p) for a→ 0+. For such points p /∈ ∂R,
we derive the following statement.

Proposition 4.1. Let ψ ∈ L2 (R2) be a local precision shearlet and R ⊂ R2 with boundary ∂R
of length L to be smooth except for finitely many corner points. For p /∈ ∂R and each s ∈ R,
there is a scale a0

(
s
)
∈ R small enough such that we have SHψχR

(
a0
(
s
)
, s, p

)
= 0.

Proof. We analyze

SHψχR (a, s, p) = 〈χR, ψa,s,p〉

=
∫
R2
χR (x)ψa,s,p (x) dx

=
∫
R
ψa,s,p (x) dx

=
∫
R∩suppψa,s,p

ψa,s,p (x) dx.

Without loss of generality, we can assume p = (0, 0) and R being such that p /∈ ∂R. For all
other cases p′ 6= (0, 0), we just need to shift ψ and R by p′ which results in the same integration
result. Therefore, we examine

SHψχR (a, s, p) =
∫
R∩suppψa,s,p

ψa,s,0 (x) dx.

Since

ψa,s,0 (x) = a−
1+α

2 ψ
(
A−1
a,αS

−1
s x

)
= a−

1+α
2 ψ

((
1
a − s

a
0 1

aα

)(
x1
x2

))

= a−
1+α

2 ψ1

(1
a
x1 −

s

a
x2

)
ψ2

( 1
aα
x2

)
as well as suppψ1 ⊆ [−b1, b1] and suppψ2 ⊆ [−b2, b2] with b1, b2 ∈ R+, we have

suppψa,s,0 ⊆ {(x1, x2) : |x1| ≤ ab1 + saαb2, |x2| ≤ aαb2} .

For p /∈ R, there is an a0
(
s
)
∈ R+ small enough such that R ∩ suppψa,s,0 = ∅ and therefore

SHψχR (a, s, 0) =
∫
R∩suppψa,s,0

ψa,s,0 (x) dx
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=
∫
∅
ψa,s,0 (x) dx

= 0.

For the remaining possibility p ∈ R, there exists an a0
(
s
)
∈ R+ small enough such that R ∩

suppψa,s,0 = suppψa,s,0. In this case we get

SHψχR (a, s, 0) =
∫
R2
ψa,s,0 (x) dx

=
∫
R2
a−

1+α
2 ψ

(
A−1
a,αS

−1
s x

)
dx.

With σAa,α,Ss (x) := A−1
a,αS

−1
s x, we rewrite this equation by

SHψχR (a, s, 0) = a
1+α

2

∫
R2

det
(
∇σAa,α,Ss

)
ψ
(
σAa,α,Ss (x)

)
dx.

By applying the transformation theorem and by the separability of ψ we get

SHψχR (a, s, 0) = a
1+α

2

∫
R2
ψ (x) dx

= a
1+α

2

∫
R
ψ1 (x1) dx1

∫
R
ψ2 (x2) dx2.

The component ψ1 is defined as wavelet, i.e.
∫
R ψ1

(
x1
)
dx1 = 0. This fact yields

SHψχR (a, s, 0) = a
1+α

2

∫
R
ψ1 (x1) dx1︸ ︷︷ ︸

=0

∫
R
ψ2 (x2) dx2

= 0.

Regarding practical application, especially for detecting points of a pedestrian’s silhouette, reg-
ular points of ∂R are of major interest. In case that the shear parameter s does not correspond
to the normal direction of ∂R at p, we make use of the special properties of a local precision
shearlet to state a specific decay rate of the shearlet transform. Theorem 2.21 only provides
an estimation depending on the number of vanishing moments and the differentiability of the
shearlet in this case. In the opposite case that s corresponds the normal direction, we derive a
decay rate that matches the one of Theorem 2.21 for α = 1/2. For this special case, we have the
same limit value of the shearlet transform as in Theorem 2.21.

Theorem 4.2. Let ψ ∈ L2 (R2) be a local precision shearlet with suppψ ⊆ [−b1, b1]× [−b2, b2] ⊂
R2,

∫ 0
−b1

ψ1 (x1)x1dx1 6= 0 and ψ2 ∈ C2(R)∩L2(R) as well as R ⊂ R2 with boundary ∂R of length
L to be smooth except for finitely many corner points. Let furthermore p = ~α (t0), t0 ∈ (0, L),
be a regular point of ∂R.

i. If s = s0 does not correspond to the normal direction of ∂R at p, then

lim
a→0+

a−
3−α

2 |SHψχR (a, s, p)| > 0.
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ii. If s = s0 corresponds to the normal direction of ∂R at p, then

lim
a→0+

a−
1+α

2 |SHψχR (a, s, p)| > 0.

If furthermore we have α = 1/2, then

lim
a→0+

a−
3
4SHψχR (a, s, p) =

∫
S
ψ (x) dx if s ∈ Ba (s0) ,

with Ba (s0) = {s ∈ R : |s− s0| ≤ a},

S :=
{

(x1, x2) ∈ suppψ : x1 ≤
~α′′1 (t0)− s~α′′2 (t0)

2ρ (s)2 x2
2

}

and ρ (s) := cos (atan (s)).

Proof. The proof is separated according to the two items of the theorem.

i. According to the proof of Theorem 2.21 [78], we can analyze the situation for 〈χR, ψa,0,0〉
since the result can directly be transferred to the situation of a general s by considering
f := χR ◦Ss instead of χR. According to Kutyniok and Petersen [78], ~α is locally given as
the graph of a function g : [−ε, ε] → [−ε, ε], since it is differentiable at 0 and its normal
does not equal ±

(
1, 0
)
, such that for a small enough

〈χR, ψa,0,0〉 =
∫
x2≥g(x1)

ψa,0,0 (x) dx.

Since g (0) = 0 and α (t0) is a regular point of ∂R, i.e. infinitely many times differentiable
at t0 = 0, a Taylor expansion of g at 0 provides

〈χR, ψa,0,0〉 =
∫
x2≥g′(0)x1+R1g(x1,0)

ψa,0,0 (x) dx

with the remainder term R1g (x1, 0) of the Taylor expansion at 0. We rewrite the last
formula by

〈χR, ψa,0,0〉 =
∫
T
a−

1+α
2 ψ

(
A−1
a x

)
dx

=
∫
T
a−

1+α
2 ψ

(
σAa,α (x)

)
dx

= a
1+α

2

∫
T

det
(
∇σAa,α (x)

)
ψ
(
σAa,α (x)

)
dx

with σAa,α (x) := A−1
a,αx and T :=

{
(x1, x2) ∈ R2 : x2 ≥ g′ (0)x1 +R1g (x1, 0)

}
. An appli-

cation of the transformation theorem yields

〈χR, ψa,0,0〉 = a
1+α

2

∫
σAa,α (T )

ψ (x) dx

= a
1+α

2

∫
A−1
a,αT

ψ (x) dx

= a
1+α

2

∫
aαx2≥g′(0)ax1+R1g(ax1,0)

ψ (x) dx.
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Since α (t0) is a regular point of ∂R, we can use the Lagrange form [70] of the remainder
R1g (x1, 0) and get

R1g (ax1, 0) = 1
2g
′′ (ζ) a2x2

1,

for 0 < ζ < ax1. With the separability of local precision shearlets, we have

〈χR, ψa,0,0〉 = a
1+α

2

∫
aαx2≥g′(0)ax1+ 1

2g
′′(ζ)a2x2

1

ψ (x) dx

= a
1+α

2

∫
x2≥g′(0)a1−αx1+ 1

2g
′′(ζ)a2−αx2

1

ψ1 (x1)ψ2 (x2) dx.

We set t (x1) := g′ (0) a1−αx1 + 1
2g
′′ (ζ) a2−αx2

1 and split the integral

〈χR, ψa,0,0〉 = a
1+α

2

∫
x2≥t(x1)

ψ1 (x1)ψ2 (x2) dx

= a
1+α

2

∫
t(x1)≤0
x2≥t(x1)

ψ1 (x1)ψ2 (x2) dx+ a
1+α

2

∫
t(x1)≥0
x2≥t(x1)

ψ1 (x1)ψ2 (x2) dx.

In that way, the first integral takes care about negative values of t(x1) and the second one
deals with positive values of t(x1). Thus, we have

〈χR, ψa,0,0〉 = a
1+α

2

∫
0≥x2≥t(x1)

ψ1 (x1)ψ2 (x2) dx+ a
1+α

2

∫
t(x1)≤0
x2≥0

ψ1 (x1)ψ2 (x2) dx

+a
1+α

2

∫
x2≥t(x1)≥0

ψ1 (x1)ψ2 (x2) dx

= a
1+α

2

∫
0≥x2≥t(x1)

ψ1 (x1)ψ2 (x2) dx+ a
1+α

2

∫
t(x1)≤0
x2≥0

ψ1 (x1)ψ2 (x2) dx

+a
1+α

2

∫
t(x1)≥0
x2≥0

ψ1 (x1)ψ2 (x2) dx− a
1+α

2

∫
0≤x2≤t(x1)

ψ1 (x1)ψ2 (x2) dx

= a
1+α

2

∫
0≥x2≥t(x1)

ψ1 (x1)ψ2 (x2) dx+ a
1+α

2

∫
x2≥0

ψ1 (x1)ψ2 (x2) dx

−a
1+α

2

∫
0≤x2≤t(x1)

ψ1 (x1)ψ2 (x2) dx.

Since ψ integrates to 0 along x1, we have a
1+α

2
∫
x2≥0 ψ1 (x1)ψ2 (x2) dx = 0, which results

in

〈χR, ψa,0,0〉 = a
1+α

2

∫
0≥x2≥t(x1)

ψ1 (x1)ψ2 (x2) dx (4.1)

−a
1+α

2

∫
0≤x2≤t(x1)

ψ1 (x1)ψ2 (x2) dx. (4.2)

Next, we apply a Taylor expansion of ψ2 at 0 and use the fact that for a local precision
shearlet we have ψ′2 (0) = 0. For (4.1), we get

a
1+α

2

∫
0≥x2≥t(x1)

ψ1 (x1)ψ2 (x2) dx

= a
1+α

2

∫ b1

−b1

∫ 0

t(x1)
ψ1 (x1)ψ2 (x2) dx2dx1

= a
1+α

2

∫ b1

−b1

∫ 0

t(x1)
ψ1 (x1)

(
ψ2 (0) + ψ′2 (0)︸ ︷︷ ︸

=0

x2 +R1ψ2 (x2, 0)
)
dx2dx1



50 Edge Detection using Local Precision Shearlets

= a
1+α

2

∫ b1

−b1

∫ 0

t(x1)
ψ1 (x1) (ψ2 (0) +R1ψ2 (x2, 0)) dx2dx1

= a
1+α

2

∫ b1

−b1

∫ 0

t(x1)
ψ1 (x1)ψ2 (0) dx2dx1 + a

1+α
2

∫ b1

−b1

∫ 0

t(x1)
ψ1 (x1)R1ψ2 (x2, 0) dx2dx1.

Thus, we have

a
1+α

2

∫ b1

−b1

∫ 0

t(x1)
ψ1 (x1) (ψ2 (0) +R1ψ2 (x2, 0)) dx2dx1

= −a
1+α

2

(∫ b1

−b1
ψ1 (x1)ψ2 (0) t (x1)

)
dx1 + a

1+α
2

∫ b1

−b1

∫ 0

t(x1)
ψ1 (x1)R1ψ2 (x2, 0) dx2dx1.

Concerning the first term, we get∫ b1

−b1
ψ1 (x1)ψ2 (0)

(
g′ (0) a1−αx1 + 1

2g
′′ (ζ) a2−αx2

1

)
dx1

= a1−α
∫ b1

−b1
ψ1 (x1)ψ2 (0) g′ (0)x1dx1 + aCα

∫ b1

−b1
ψ1 (x1)ψ2 (0) 1

2g
′′ (ζ)x2

1dx1

= a1−α
∫ b1

−b1
ψ1 (x1)ψ2 (0) g′ (0)x1dx1 +O

(
aCα

)
.

with Cα > 1. For the second term, we estimate R1ψ2 (x2, 0). Since ψ2 ∈ C2(R) ∩ L2 (R)
is a bump function, we have that ψ′′2 (x2) ≤ M1 for all x2 ∈ (−t (x1) , t (x1)) and all
x1 ∈ [−b1, b1] with some M1 < ∞. According to [4], we can estimate the remainder
R1ψ2 (x2, 0) by

|R1ψ2 (x2, 0)| ≤ 1
2M1 (t (x1))2

= 1
2M1

(
g′ (0) a1−αx1 + 1

2g
′′ (ζ) a2−αx2

1

)2

= 1
2M1

(
g′ (0)2 a2(1−α)x2

1 + g′ (0) g′′ (ζ) a(1−α)(2−α)x3
1

+1
4g
′′ (ζ)2 a2(2−α)x4

1

)
= O

(
a2(1−α)

)
for a→ 0. Together, this yields that (4.1) equals

− a
1+α

2

(
a1−α

(∫ b1

−b1
ψ1 (x1)ψ2 (0) g′ (0)x1dx1

)
+O

(
a2(1−α)

))

= −a
3−α

2

(∫ b1

−b1
ψ1 (x1)ψ2 (0) g′ (0)x1dx1

)
+O

(
a

5−3α
2
)
.

Analogously, we get for (4.2)

a
3−α

2

(∫ b1

−b1
ψ1 (x1)ψ2 (0) g′ (0)x1dx1

)
+O

(
a

5−3α
2
)
.

Subtracting (4.2) from (4.1) finally yields

〈χR, ψa,0,0〉 = −a
3−α

2

(
2
∫ b1

−b1
ψ1 (x1)ψ2 (0) g′ (0)x1dx1

)
+O

(
a

5−3α
2
)
.
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Using the point-symmetry of ψ1 (x1) to (0, 0), we have that ψ1 (x1)x1 is axis-symmetric
to x1 = 0 and therefore

∫ 0
−b1

ψ1 (x1)x1dx1 =
∫ b1

0 ψ1 (x1)x1dx1. With the assumption∫ 0
−b1

ψ1 (x1)x1dx1 6= 0 it follows that
∫ b1
−b1

ψ1 (x1)x1dx1 6= 0. Thus, we finally get

lim
a→0+

a−
3−α

2 |〈χR, ψa,0,0〉| > 0.

ii. Again, we analyze the situation for 〈χR, ψa,0,0〉. As before, we apply the transformation
theorem to get

〈χR, ψa,0,0〉 = a
1+α

2

∫
A−1
a,αR

ψ (x) dx.

As shown by Kutyniok and Petersen [78], the boundary curve of R is given by ~α = (~α1, ~α2)T
and can be expressed as a function g := ~α1 ◦ ~α−1

2 . Similarly as in [78] but adjusted to the
scaling matrix Aa,α instead of Aa, we have

A−1
a,αR ∩ suppψ = {(x1, x2) ∈ suppψ : ax1 ≤ g (aαx2)} .

A Taylor expansion of g at 0 with utilization of the Lagrange form of the remainder
provides

〈χR, ψa,0,0〉 = a
1+α

2

∫
ax1≤g(0)+g′(0)aαx2+R1g(aαx2,0)

ψ (x) dx

= a
1+α

2

∫
ax1≤g′(0)aαx2+ 1

2g
′′(ζ)a2αx2

2

ψ (x) dx

= a
1+α

2

∫
x1≤g′(0)aα−1x2+ 1

2g
′′(ζ)a2α−1x2

2

ψ (x) dx

with 0 < ζ < aαx2. With t (x2) := g′ (0) aα−1x2 + 1
2g
′′ (ζ) a2α−1x2

2, we get

t (x2) = 1
n1
~α′1 (t0) aα−1x2 + 1

2g
′′ (ζ) a2α−1x2

2

= n2
n1
aα−1x2 + 1

2g
′′ (ζ) a2α−1x2

2,

since
(
α−1

2

)′
(0) = 1/n1 and ~α′1 (t0) = n2. Using the separability of local precision shearlets,

we have
〈χR, ψa,0,0〉 = a

1+α
2

∫
x1≤t(x2)

ψ1 (x1)ψ2 (x2) dx.

We split the integral∫
x1≤t(x2)

ψ1 (x1)ψ2 (x2) dx =
∫
t(x2)≥0
x1≤t(x2)

ψ1 (x1)ψ2 (x2) dx+
∫
t(x2)≤0
x1≤t(x2)

ψ1 (x1)ψ2 (x2) dx

=
∫
t(x2)≥0
x1≤0

ψ1 (x1)ψ2 (x2) dx+
∫

0≤x1≤t(x2)
ψ1 (x1)ψ2 (x2) dx

+
∫
x1≤t(x2)≤0

ψ1 (x1)ψ2 (x2) dx

=
∫
x1≤0

ψ1 (x1)ψ2 (x2) dx

+
∫

0≤x1≤t(x2)
ψ1 (x1)ψ2 (x2) dx (4.3)
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−
∫
t(x2)≤x1≤0

ψ1 (x1)ψ2 (x2) dx. (4.4)

Considering (4.3), we apply a Taylor expansion of ψ1 at 0 to get∫
0≤x1≤t(x2)

ψ1 (x1)ψ2 (x2) dx =
∫ b2

−b2
ψ2 (x2)

∫ t(x2)

0
ψ1 (0) + ψ′1 (0)x1

+R1ψ1 (x1, 0) dx1dx2

=
∫ b2

−b2
ψ2 (x2)

∫ t(x2)

0
ψ′1 (0)x1 +R1ψ1 (x1, 0) dx1dx2

=
∫ b2

−b2
ψ2 (x2) 1

2ψ
′
1 (0) (t (x2))2

+
∫ t(x2)

0
ψ2 (x2)R1ψ1 (x1, 0) dx1dx2

Similar as in i., we get

|R1ψ1 (x1, 0)| ≤ 1
2M1 (t (x2))2

= 1
2M1

(
n2
n1
aα−1x2 + 1

2g
′′ (ζ) a2α−1x2

2

)2

≤ 1
2M1

(
aαx2 + 1

2g
′′ (ζ) a2α−1x2

2

)2

= O
(
a2α

)
with M1 <∞, since in our situation we have n2/n1 ≤ a. Therefore, we have∫

0≤x1≤t(x2)
ψ1 (x1)ψ2 (x2) dx = O

(
a2α

)
.

The term
∫
t(x2)≤x1≤0 ψ1 (x1)ψ2 (x2) dx is approximated analogously such that we get

a
1+α

2

∫
x1≤t(x2)

ψ1 (x1)ψ2 (x2) dx = a
1+α

2

∫
x1≤0

ψ1 (x1)ψ2 (x2) dx+O
(
a

5α+1
2
)
.

Due to the symmetry properties of a local precision shearlet, we have∫
x1≤0 ψ1 (x1)ψ2 (x2) dx 6= 0 and therefore

lim
a→0+

a−
1+α

2 |〈χR, ψa,0,0〉| > 0.

Since ψ is a bounded compactly supported shearlet we can use Theorem 2.21 to state an
explicit limit value for SHψχR (a, s, p) in case of α = 1/2. From Theorem 2.21 we know
that for δ > 0, ‖p− pi‖ > 0 for all corner points pi of ∂R there exists a constant Cδ such
that for all a ∈ (0, 1] we have

a
3
4

∫
S
ψ (x) dx− Cδa

5
4 ≤ SHψχR (a, s, p) ≤ a

3
4

∫
S
ψ (x) dx+ Cδa

5
4

if s ∈ Ba (s0) = {s ∈ R : |s− s0| ≤ a} . Therefore we have

lim
a→0+

SHψχR (a, s, p) = a
3
4

∫
S
ψ (x) dx+O

(
a

5
4
)

and consequently
lim
a→0+

a−
3
4SHψχR (a, s, p) =

∫
S
ψ (x) dx.
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S

∂R

n x1

x2

Figure 4.1: Illustration of a regular point of ∂R at (0, 0) and the corresponding integral area S.

Remark 4.3.

i. For the statement above, we need a local precision shearlet to fulfill the condition∫ 0
−b1

ψ1 (x1)x1dx1 6= 0. Also in the subsequent statements about edge point character-
ization using local precision shearlets, we will use this condition. We will discuss its
consequential limitation on suitable shearlets in Section 4.2. However, we will show that
this limitation is in harmony with the observed behavior in the practical application of an
edge detection algorithm.

ii. If s corresponds to the normal direction, an explicit limit value of SHψχR (a, s, p) can be
only derived in case of parabolic scaling, i.e. α = 1/2. Only in this case a Taylor expansion
of 1/a~α(~α−1

2 (aαx2)) provides the finding of the integration area S. Here, the influence of
a vanishes in the second order component of the Taylor expansion. For more details, see
[78].

We now turn to the characterization of corner points p ∈ ∂R of the first type. When s does not
correspond to the normal direction at p, we derive that lima→0+ a

− 3−α
4 |SHψχR (a, s, p)| > 0.

For α = 1/2, this matches the result of Theorem 2.21. Although the properties of a local
precision shearlet differ from the conditions of the shearlet in Theorem 2.21, i.e. ψ2 (0) = 0 and
ψ′2 (0) 6= 0. In case s corresponds to the normal direction, we find again the decay rate of a

1+α
2

for a → 0. Again, this matches the decay rate in Theorem 2.21 for α = 1/2. In this case, we
even get a stronger result than in Theorem 2.21 by the statement of an explicit limit value of
a−

3
4SHψχR (a, s, p) for a→ 0+. In contrast, Theorem 2.21 provides two possible limit values.
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Theorem 4.4. Let ψ ∈ L2 (R2) be a local precision shearlet with suppψ ⊆
[
−b1, b1

]
×
[
−b2, b2

]
⊂

R2,
∫ 0
−b1

ψ1 (x1)x1dx1 6= 0 and ψ2 ∈ C2(R) ∩ L2(R) as well as R ⊂ R2, with boundary ∂R of
length L, be smooth except for finitely many corner points. Let furthermore ~α (t0) = p ∈ ∂R,
t0 ∈ (0, L), be a corner point of first type.

i. If s does not correspond to a normal direction of ∂R or a tangent direction, then we have

lim
a→0+

a−
3−α

2 |SHψχR (a, s, p)| > 0.

ii. If s0 corresponds to a normal direction of ∂R, then we have

lim
a→0+

a−
1+α

2 |SHψχR (a, s, p)| > 0.

If furthermore α = 1/2, then

lim
a→0+

a−
3
4SHψχR (a, s, p) =

∫
S̃
ψ (x) dx if s ∈ Ba (s0) ,

with Ba (s0) = {s ∈ R : |s− s0| ≤ a},

S̃ :=
{

(x1, x2) ∈ suppψ : x1 ≤
~α′′1 (t0)− s~α′′2 (t0)

2ρ (s)2 x2
2, x2 ≥ 0

}

and ρ (s) := cos (atan (s)).

Proof. We show the two statements separately.

i. According to the proof of Theorem 2.21 [78], we have

〈χR, ψa,0,0〉 = a
3
4
〈
χ
A−1
a T̃

, ψa,0,0
〉

+ a
3
4

∥∥∥χA−1
a T − χA−1

a T̃

∥∥∥
1

= a
3
4
〈
χ
A−1
a T̃

, ψa,0,0
〉

+ a
3
4O

(
a

3
2
)

= a
3
4
〈
χ
A−1
a T̃

, ψa,0,0
〉

+O
(
a

9
4
)

with

T :=
{

(x1, x2) ∈ suppψ : x1 ≤ 0, g− (x1) ≤ x2 ≤ g+ (x1)
}
,

T̃ :=
{

(x1, x2) ∈ suppψ : x1 ≤ 0,
(
g−
)′ (0)x1 ≤ x2 ≤

(
g+
)′

(0)x1

}
,

g+ := ~α2|t≥t0 ◦ ~α
−1
1 ,

g− := ~α2|t≤t0 ◦ ~α
−1
1 ,

for the case of α = 1/2. The case
(
g+)′ (0) ≤ 0 < (g−)′ (0) is considered but according

to [78], the same end result is achieved for different constellations of g+ and g−. For a
general α ∈ [1/2, 1), we analogously have

〈χR, ψa,0,0〉 = a
1+α

2
〈
χ
A−1
a,αT̃

, ψ
〉

+ a
1+α

2

∥∥∥χA−1
a,αT
− χ

A−1
a,αT̃

∥∥∥
L1(R2)

.

With the specifications of T and T̃ we get∥∥∥χA−1
a,αT
− χ

A−1
a,αT̃

∥∥∥
L1(R2)

=
∫
A−1
a,αT

1dx−
∫
A−1
a,αT̃

1dx
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=
∫ 0

−b1

∫ g+(x1)a1−αx1

g−(x1)a1−αx1
1dx2dx1 −

∫ 0

−b1

∫ (g+)′(0)a1−αx1

(g−)′(0)a1−αx1
1dx2dx1.

By a Taylor expansion of g− and g+ at 0 with Lagrange form of the remainder we
have g+ (x1) =

(
g+)′ (0) a1−αx1 + 1

2
(
g+)′ (ζ) a2−αx1 and g− (x1) = (g−)′ (0) a1−αx1 +

1
2 (g−)′

(
ζ̃
)
a2−αx1 with ζ and ζ̃ between 0 and x1. Thus, we get

∥∥∥χA−1
a,αT
− χ

A−1
a,αT̃

∥∥∥
L1(R2)

=
∫ 0

−b1

∫ (g+)′(0)a1−αx1+ 1
2 (g+)′(ζ)a2−αx1

(g−)′(0)a1−αx1+ 1
2 (g−)′(ζ̃)a2−αx1

1dx2dx1

−
∫ 0

−b1

∫ (g+)′(0)a1−αx1

(g−)′(0)a1−αx1
1dx2dx1.

= 1
2a

2−α
∫ 0

−b1

((
g+
)′

(ζ)−
(
g−
)′ (

ζ̃
))

x1dx1

= O
(
a2−α

)
for for a→ 0. Thus, we have

〈χR, ψa,0,0〉 = a
1+α

2
〈
χ
A−1
a,αT̃

, ψ
〉

+ a
1+α

2 O
(
a2−α

)
= a

1+α
2
〈
χ
A−1
a,αT̃

, ψ
〉

+O
(
a

5−α
2
)

= a
1+α

2

∫
A−1
a,αT̃

ψ (x) dx+O
(
a

5−α
2
)
.

Now, we make use of the specific properties of a local precision shearlet. Due to its
separability and with a Taylor expansion of ψ2 at 0 we get

〈χR, ψa,0,0〉 = a
1+α

2

∫ 0

−b1

∫ (g+)′(0)a1−αx1

(g−)′(0)a1−αx1
ψ1 (x1)ψ2 (x2) dx2dx1 +O

(
a

5−α
2
)

= a
1+α

2

∫ 0

−b1

∫ (g+)′(0)a1−αx1

(g−)′(0)a1−αx1
ψ1 (x1)ψ2 (0) + ψ′2 (0)x2

+R1ψ2 (x2, 0) dx2dx1 +O
(
a

5−α
2
)

for a → 0. Since ψ2 is a bump function axis-symmetric to x2 = 0 we have ψ′2 (0) = 0.
Thus, we have

〈χR, ψa,0,0〉 = a
1+α

2

∫ 0

−b1

∫ (g+)′(0)a1−αx1

(g−)′(0)a1−αx1
ψ1 (x1)ψ2 (0) dx2dx1

+a
1+α

2

∫ 0

−b1

∫ (g+)′(0)a1−αx1

(g−)′(0)a1−αx1
ψ1 (x1)R1ψ2 (x2, 0) dx2dx1 +O

(
a

5−α
2
)
.

Concerning the first term, integrating along x2 yields

a
1+α

2

∫ 0

−b1

∫ (g+)′(0)a1−αx1

(g−)′(0)a1−αx1
ψ1 (x1)ψ2 (0) dx2dx1

= a
3−α

2

(∫ 0

−b1
ψ1 (x1)ψ2 (0)

((
g+
)′

(0)−
(
g−
)′ (0)

)
x1dx1

)
.

For the second term, we estimate R1ψ2 (x2, 0). Since ψ2 ∈ C2(R) ∩ L2 (R) is a bump
function, we have that ψ′′2 (x2) ≤M1 for all x2 ∈ (−r (x1) , r (x1)) and all x1 ∈ [−b1, 0] with
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r (x1) = a1−αx1 max
(∣∣∣(g−)′ (0)

∣∣∣ , ∣∣∣(g+)′ (0)
∣∣∣) and some M1 < ∞. From [4], we estimate

the remainder R1ψ2 (x2, 0) by

|R1ψ2 (x2, 0)| ≤ 1
2M1 (r (x1))2

= 1
2M1

(
a1−αx1 max

(∣∣∣(g−)′ (0)
∣∣∣ , ∣∣∣∣(g+

)′
(0)
∣∣∣∣))2

= 1
2M1

(
a2(1−α)x2

1 max
(∣∣∣(g−)′ (0)

∣∣∣ , ∣∣∣∣(g+
)′

(0)
∣∣∣∣)2
)

= O
(
a2(1−α)

)
for a→ 0. Putting the pieces together, we get

〈χR, ψa,0,0〉 = a
3−α

2

∫ 0

−b1
ψ1 (x1)ψ2 (0)

((
g+
)′

(0)−
(
g−
)′ (0)

)
x1dx1

+a
1+α

2 O
(
a2(1−α)

)
+O

(
a

5−α
2
)

= a
3−α

2

∫ 0

−b1
ψ1 (x1)ψ2 (0)

((
g+
)′

(0)−
(
g−
)′ (0)

)
x1dx1 +O

(
a

5−3α
2
)
.

With the assumption
∫ 0
−b1

ψ1 (x1)x1dx1 6= 0, we finally have

lim
a→0+

a−
3−α

2 |〈χR, ψa,0,0〉| > 0.

ii. As described by [78], we can write χR = χR1 +χR2 where ∂R1 as well as ∂R2 have a corner
point of the first type at p. Furthermore, the normals of ∂R1 are perpendicular, where
one corresponds to s. Finally, none of the normals of ∂R2 corresponds to s. From i. we
know |〈χR2 , ψa,0,0〉| = O(a

3−α
2 ) for a→ 0 and therefore

|〈χR, ψa,0,0〉| = |〈χR1 , ψa,0,0〉+ 〈χR2 , ψa,0,0〉|

= |〈χR1 , ψa,0,0〉|+O
(
a

3−α
2
)

With the same method as in the proof of 4.2 ii., we derive

lim
a→0+

a−
1+α

2 |SHψχR1 (a, s, p)| > 0.

For the special case α = 1/2, we know from Theorem 2.21 [78] that for compactly supported
shearlets we have

lim
a→0+

a−
3
4 〈χR, ψa,s,p〉 ∈

{∫
S̃+
ψ (x) dx,

∫
S̃−
ψ (x) dx

}
if s ∈ Ba (s0) ,

with S̃+ := S ∩
{
x ∈ R2 : x2 ≥ 0

}
and S̃− := S ∩

{
x ∈ R2 : x2 < 0

}
. Since ψ is separable

and ψ2 is axis-symmetric to x2 = 0, we get∫
S̃+
ψ (x) dx =

∫{
x∈suppψ : x1≤

(~α′′1 (t0)−s~α′′2 (t0))
2ρ(s)2 x2

2,x2≥0
} ψ1 (x1)ψ2 (x2) dx

=
∫{

x∈suppψ : x1≤
(~α′′1 (t0)−s~α′′2 (t0))

2ρ(s)2 (−x2)2,x2≤0
} ψ1 (x1)ψ2 (−x2) dx
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n1
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S̃

∂R

x1

x2

Figure 4.2: Illustration of a corner point of the first type at (0, 0) with one normal ~n1 = (−1, 0)
and the corresponding integral area S̃.

=
∫
S̃−
ψ1 (x1)ψ2 (−x2) dx.

Due to the axis-symmetry of ψ2, i.e. ψ2 (x2) = ψ2 (−x2), we have∫
S̃+
ψ (x) dx =

∫
S̃−
ψ (x) dx

and therefore
lim
a→0+

a−
3
4 〈χR, ψa,s,p〉 =

∫
S̃
ψ (x) dx.

Finally, we examine the situation for corner points of the second type. If s does not correspond
to the normal direction of ∂R at p, we obtain the decay rate of a

3−α
2 for a→ 0. For α = 1/2, this

is a different result than in Theorem 2.21 due to differing properties of a local precision shearlet
in comparison to the shearlet described in Theorem 2.21. However, our result is suitable to the
other results given in this section. If s corresponds to the normal direction, the properties of a
local precision shearlet enable us to obtain an explicit limit value. For this case, Theorem 2.21
does not provide any result.

Theorem 4.5. Let ψ ∈ L2 (R2) be a local precision shearlet with suppψ ⊆
[
−b1, b1

]
×
[
−b2, b2

]
⊂

R and
∫ 0
−b1

ψ1 (x1)x1dx1 6= 0 as well as R ⊂ R2, with boundary ∂R of length L, be smooth except
for finitely many corner points. Let furthermore ~α (t0) = p ∈ ∂R, t0 ∈ (0, L), be a corner point
of second type.

i. If s does not correspond to a normal direction of ∂R or a tangent direction, then we have

lim
a→0+

a−
3−α

2 |SHψχR (a, s, p)| > 0.



58 Edge Detection using Local Precision Shearlets

ii. If s0 corresponds to the normal direction ~n (t0) of ∂R, then we have

lim
a→0+

a−
1+α

2 |SHψχR (a, s, p)| > 0.

If furthermore α = 1/2, then

lim
a→0+

a−
3
4SHψχR (a, s, p) =

∫
S̃−∪S̃+

ψ (x) dx if s ∈ Ba (s0) ,

with Ba (s0) = {s ∈ R : |s− s0| ≤ a},

S̃− :=

(x1, x2) ∈ suppψ : x1 ≤
~α′′1

(
t−0

)
− s~α′′2

(
t−0

)
2ρ (s)2 x2

2, x2 < 0

 ,
S̃+ :=

(x1, x2) ∈ suppψ : x1 ≤
~α′′1

(
t+0

)
− s~α′′2

(
t+0

)
2ρ (s)2 x2

2, x2 ≥ 0


and ρ (s) := cos (atan (s)).

Proof. The two statements are shown as follows:

i. Again, we first follow the procedure of [78] and examine the behavior for the special
case s = 0 and p = 0 while the result can directly be transferred to the general case.
According to the proof of Theorem 2.21 [78], ~α is locally given as the graph of a function
g : [−ε, ε]→ [−ε, ε] such that for a small enough

〈χR, ψa,0,0〉 =
∫
x2≥g(x1)

ψa,0,0dx

=
∫

0≥x2≥g′(0)x1+ 1
2 (g−)′′(0)x2

1

ψa,0,0dx

+
∫
x2≥g′(0)x1+ 1

2 (g+)′′(0)x2
1≥0

ψa,0,0dx+O
(
a3
)
,

where the part of g for x1 ≤ 0 is denoted by g− and the part for x1 > 0 by g+. Since p is
a corner point of the second type, we have (g−)′′ (0) 6= ±

(
g+)′′ (0). With an application

of the transformation theorem and by setting t− (x1) := g′ (0) a1−αx1 + 1
2 (g−)′′ (0) a2−αx2

1,
t+ (x1) := g′ (0) a1−αx1 + 1

2
(
g+)′′ (0) a2−αx2

1 we have

〈χR, ψa,0,0〉 = a
1+α

2

∫
0≥x2≥t−(x1)

ψ1 (x1)ψ2 (x2) dx

+a
1+α

2

∫
x2≥t+(x1)≥0

ψ1 (x1)ψ2 (x2) dx+O
(
a3
)
.

Applying the same method as in the proof of Theorem 4.2 i., we get

lim
a→0+

a−
3−α

2 |〈χR, ψa,0,0〉| > 0.

ii. We split χR = χR1 +χR2 such that ∂R1 and ∂R2 both have a corner point of the first type
at p with each one normal direction that corresponds to s0 and the other perpendicular
to it. Without loss of generality, we assume that ~α

(
t−0
)
∈ ∂R1 and ~α

(
t+0
)
∈ ∂R2. In the

opposite case, we would just switch the indices to get to the same result. From Theorem 4.4
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we know lima→0+ a
− 1+α

2 |SHψχR1 (a, s, p)| > 0, lima→0+ a
− 1+α

2 |SHψχR2 (a, s, p)| > 0 and
therefore

lim
a→0+

a−
1+α

2 |SHψχR (a, s, p)| > 0.

For the special case of α = 1/2, Theorem 4.4 furthermore provides

lim
a→0+

a−
3
4 〈χR1 , ψa,s,p〉 =

∫
S̃−
ψ (x) dx

and
lim
a→0+

a−
3
4 〈χR2 , ψa,s,p〉 =

∫
S̃+
ψ (x) dx

with s ∈ Ba
(
s0
)
,

S̃− :=

(x1, x2) ∈ suppψ : x1 ≤
~α′′1

(
t−0

)
− s~α′′2

(
t−0

)
2ρ (s)2 x2

2, x2 ≥ 0


and

S̃+ :=

(x1, x2) ∈ suppψ : x1 ≤
~α′′1

(
t−0

)
− s~α′′2

(
t−0

)
2ρ (s)2 x2

2, x2 ≥ 0

 .
Therefore, we have

lim
a→0+

a−
3
4 〈χR, ψa,s,p〉 = lim

a→0+
a−

3
4 〈χR1 , ψa,s,p〉+ lim

a→0+
a−

3
4 〈χR2 , ψa,s,p〉

=
∫
S̃−
ψ (x) dx+

∫
S̃+
ψ (x) dx.

As can be seen in the proof of Theorem 4.4, the axis-symmetry of ψ2 enables us to refor-
mulate S̃− by

S̃− :=
{

(x1, x2) ∈ suppψ : x1 ≤
1

2ρ (s)2

(
~α′′1

(
t−0

)
− s~α′′2

(
t−0

))
x2

2, x2 < 0
}
.

Therefore, we finally have

lim
a→0+

a−
3
4 〈χR, ψa,s,p〉 =

∫
S̃−∪S̃+

ψ (x) dx.

Summarizing, if one uses a local precision shearlet ψ for edge detection, SHψχR (a, s, p) will
decay for a → 0 with O

(
a

3−α
2
)

if the shear parameter s does not correspond to the normal
direction at p ∈ ∂R. The condition we need a local precision shearlet to fulfill is∫ 0

−b1
ψ1 (x1)x1dx1 6= 0 (4.5)

with suppψ ⊆
[
−b1, b1

]
×
[
−b2, b2

]
. This holds true for regular as well as corner points. If s

corresponds to the normal direction SHψχR (a, s, p) will decay with O
(
a

1+α
2
)
. For α = 1/2, we

can distinguish regular points, corner points of the first and the second type by the limit value
which can be computed specifically. As a second benefit in case of α = 1/2, the difference in the
decay rates a

3−α
2 and a

1+α
2 is more significant than for higher values of α. Although we have

these advantages for α = 1/2, higher values of α enable us to use only few shearlets for fine scales
such that we still cover the whole frequency plane. We will see in 5.5.2 that the consideration
of α > 1/2 leads to improved pedestrian detection rates.
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n
S̃+

S̃−
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x1

x2

Figure 4.3: Illustration of a corner point of the second type at (0, 0) and the corresponding
integral area S̃− ∪ S̃+.

4.2 Suitable Shearlets

For a general local precision shearlet, without specifying the explicit functions used, we see that
the condition (4.5) is fulfilled under the following circumstances.

Lemma 4.6. Let ψ = ψ1ψ2 be a local precision shearlet, where ψ1 has q vanishing moments.
Condition (4.5) is fulfilled if and only if q = 1.

Proof. Since ψ1 is a function point-symmetric to
(
0, 0
)
, the function ψ1x1 is axis-symmetric to

x1 = 0. Therefore, we have∫ 0

−∞
ψ1 (x1)x1dx1 =

∫ ∞
0

ψ1 (x1)x1dx1

= 1
2

∫
R
ψ1 (x1)x1dx1.

For q > 1 we have ∫
R
ψ1 (x1)x1dx1 = 0

and for q = 1 ∫ 0

−∞
ψ1 (x1)x1dx1 6= 0.

This completes the proof.

Intuitively, the usage of p = 1, i.e. only one vanishing moment, entails that we have only one
local extremum in the interval

[
−b1, 0

]
. Thus, it is clear that we have

∫ 0
−b1

ψ1
(
x1
)
x1dx1 6= 0.
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The choice of q = 1 contradicts the assumptions of Theorem 3.14 for providing a frame for
L2(R2). As described earlier, Theorem 3.14 implies that sufficient vanishing moments of ψ are
needed. For example, for spline shearlets we need at least q = 5, since we have q ≥ β′ with
β′ ≥ β+γ, β > 0 and γ > 2

(
β+ 2

)
. Therefore, with q = 1 we cannot apply Theorem 3.14 to get

a frame for L2(R2) with a regular shearlet system SH
(
ψ,ΓR

)
or Corollary 3.20 for our shearlet

system LPSH
(
Φ,Ψ, Ψ̃

)
. Still, one can choose p and q such that LPSH

(
Φ,Ψ, Ψ̃

)
forms a frame

for L2(R2) according to Corollary 3.20 and such that at least the edge characterization results
for a general compactly supported shearlet from 2.21 can be obtained. However, in Section 5.5
we will show that practically the usage of q = 1 delivers the best results for pedestrian detection.
Figure 4.4 shows exemplary edge detections of an image of the BSDS5001 data set provided by
the Shearlet Cascade Edge Detection (SCED) algorithm of [34] using different types of shearlets.
Algorithm 4.1 presents the SCED algorithm slightly adapted to our shearlet system definition.
First, the shearlet energy E is estimated at the finest scale. In the following, all points which
are likely to be noise are corrected by taking the energy value at a coarser scale. Finally, a non
maximum suppression based on the estimated orientation O and a thresholding are performed.
Clearly it can be seen that the local precision shearlet transform provides much more accurate
edge estimates than the original FFST and the adaption of Duval-Poo et al. [34]. Correspond-
ingly, we will show in Section 5.5 that the usage of the LPST yields significant improved results
for pedestrian detection in comparison to other available shearlet frameworks.

Algorithm 4.1 Shearlet Cascade Edge Detection (SCED) algorithm.
Input: f : input image, pShear: shearlet feature parameters containing j0: number of shearlet

scales, ηs: number of shearlets (directions) per scale, B: boundary of mother shearlet
support, α: degree of anisotropy, t: parameter for thresholding shearlet coefficients.

Output: E: edge image.
1: procedure SCED(f, pShear)
2: Ψ = getShearlets(B, j0, ηs, α);
3: LPST = locPrcShearletTransform(f,Ψ);
4: for all m ∈ f do
5: E (m) =

√∑
k (LPST (j0 − 1, k,m))2;

6: O (m) = arg maxk |LPST (j0 − 1, k,m)| ;
7: end for
8: for j = j0 − 2 to 0 do
9: for all m ∈ f do

10: ej (m) =
√∑

k (LPST (j, k,m))2;

11: E (m) =
{
E (m) if E (m) ≤ ej (m)
ej (m) if E (m) > ej (m)

12: end for
13: end for
14: E = nonMaxSup(E,O);
15: E = thresholding(E, t);
16: return E;
17: end procedure

Furthermore, in Figure 4.4c we illustrate the abovementioned edge artifacts which occur if one
uses a shearlet component in x1 direction with oscillations, for example a B-spline wavelet of
order p ≥ 3. While we can see a clear edge when using the spline shearlet of order p = 5

1Berkeley Segmentation Data Set and Benchmarks 500
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with q = 1, the replacement of ψ1 by the B-spline wavelet from (3.8) of order p = 5 introduces
shadow edges nearby the actual edge. These shadow edges are produced by the oscillations of
the applied wavelet. Thus, the requirement in Theorems 4.2-4.5 that a local precision shearlet
shall have only 1 vanishing moment for a characterization of edge points is in harmony with the
observations in Figure 4.4c.

4.3 Conclusion

In this chapter, we studied the capability of local precision shearlets to detect edges in images
from a theoretical point of view. We used the setup of Guo and Labate [53] where the image
function f is modeled as the characteristic function χR of a bounded domain R ⊂ R2 with
piecewise smooth boundary ∂R. In contrast to the existing literature, we considered a general
degree of anisotropy α ∈ [1/2, 1) during our examination.

Utilizing our shearlets, we showed that edge points p ∈ ∂R can be characterized by the de-
cay rates of the shearlet transform for decreasing scales. More precisely, we obtained that
SHψχR (a, s, p) decays for a→ 0 with O

(
a

3−α
2
)

if the shear parameter s does not correspond to
the normal direction at p ∈ ∂R. If s corresponds to the normal direction SHψχR (a, s, p) decays
with O

(
a

1+α
2
)
. For the special case of α = 1/2, we showed that the type of the edge points can

be determined by the limit of the shearlet transform.

In order to obtain our theoretical results, we showed that a shearlet mother function with just
one vanishing moment is required. Finally, we illustrated that this finding is in harmony with
the observed behavior in practice. In the practical application of an edge detection algorithm,
the utilization of shearlets with a higher number of vanishing moments resulted in less precise
edge detections.
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(a) Original image and edge detections provided by
the local precision shearlet transform using the spline
shearlet with p = 5 and q = 1.

(b) Edge detection using different shearlet frame-
works: FFST using Meyer wavelet (left) [60, 61] and
Mallat wavelet (right) [34].

(c) Edge artifacts using the B-spline wavelet from
(3.8) of order p = 5 (left) in comparison to edges
provided by the spline shearlet with p = 5 and q = 1
(right).

Figure 4.4: Edge detection example using different types of shearlets.
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“Experience without theory is blind, but theory without
experience is mere intellectual play.”

Immanuel Kant

5
Pedestrian Detection using Shearlet Features

In this chapter, we investigate if shearlets can provide the framework for generating the best
to date hand-crafted features for pedestrian detection. Schwartz et al. [111] defined a simple
image feature based on shearlet coefficients and applied it to texture classification and face
identification. For pedestrian detection, we define more complex feature types based on the
shearlet transform. Given the LPST defined in Section 3.2, we are able to describe the shearlet
features considered. Moreover, this chapter will provide the general detection algorithm and the
practical realization of it.

Finally, experimental results using shearlet features measured on the Caltech data set [30] are
given. Here, we compare the detection quality of gradient features to our approach showing
that shearlet features are a promising and outperforming alternative. Especially, we show the
improvement over the LDCF++ detector [99] which is currently the best performing detector in
the Caltech benchmark using hand-crafted features. Parts of this chapter have been published
in [107].

5.1 Pedestrian Detection using Hand-crafted Features

The classical method for the detection of pedestrians in images uses predefined, also called hand-
crafted, image features. These features are computed for a detection window which is slid over
the image such that a classifier can decide if the detection window contains a pedestrian or
not. Different types of classifiers are used in the current algorithms for pedestrian detection,
e.g. Support Vector Machines (SVM) and AdaBoost. However, Benenson et al. [8] find that no
classifier type is better suited for pedestrian detection than another. Therefore, a main focus is
on the informative content of the image features. The more meaningful the features, the higher
is the quality of the detection algorithm.

A breakthrough in the development of hand-crafted image features has been achieved by Dalal
and Triggs [22] with their definition of Histogram of Oriented Gradients (HOG) features. Here,
the image is divided into spatial cells and a histogram of gradient directions is computed over
the pixels of the corresponding cell. These local histograms are accumulated and normalized
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(a) Feature computation and classification for a detection window.

(b) Possible pipelines of the sliding window approach for a multiscale pedestrian detection.

Figure 5.1: Illustration of the classical method for pedestrian detection [27, 28].

over a block scheme. Dollár et al. [27, 28] built up on this feature type for their Aggregated
Channel Features (ACF) detector. This detector also uses gradient histograms but with a
different computation method. In addition, it uses gradient magnitude as features. The source
code of the ACF detector is available online [26]. According to Benenson et al. [8] in 2014, all
best performing pedestrian detection algorithms to that time used hand-crafted features based
on HOG or “HOG-like” features, which may encode richer information from the original feature
data [7, 96, 99, 105, 128, 130].

The classical method for pedestrian detection is illustrated in Figure 5.1 [27, 28] by the example
of the ACF detector. Per detection window, an image transformation is computed. The result of
such a transformation is also called channel. The image features are computed by aggregation
of these channels. Then, the computed features are vectorized and a classifier is applied for
the determination to which class the detection window belongs. The ACF detector uses an
AdaBoost classifier with boosted decision trees, which is described in [5].

For a detection of pedestrians of different scales, there are different possible pipelines for applying
the sliding window approach. In the standard pipeline, a dense image pyramid is created and
the detection window is slid over each image of the pyramid with a fixed size. If shift and
scale invariant features are used, like done by Viola and Jones [118], a second option is to use a
classifier pyramid. This means that a classifier can be placed at any location and any scale such
that no image pyramid needs to be created. Finally, the ACF detector [27, 28] uses a hybrid
approach of constructing an image pyramid with one octave between two consecutive images.
In the following, detector outputs are approximated within half an octave of each pyramid level.

Currently, pedestrian detection algorithms utilizing CNN models [9, 11, 12, 32, 84, 101, 117,
127] outperform detectors using hand-crafted features, see the Caltech Pedestrian Detec-
tion Benchmark results online available under http://www.vision.caltech.edu/Image Datasets/
CaltechPedestrians. We will deal with the capability of shearlets to improve CNN approaches
in Chapter 6.

http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians
http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians
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5.2 Shearlet Image Features

We consider digital images in RM×N as functions f ∈ L2 (R2) sampled on the grid G which
is given by G :=

{(
cm1, cm2

)
: m1 = −bM/2c , . . . , dM/2e − 1,m2 = −bN/2c , . . . , dN/2e − 1

}
with c > 0. Similarly to the procedure for the computation of HOG [22] or HOG-like [28, 29]
features, the image f is partitioned into quadratic patches Pl of predefined size ζ × ζ ∈ N2 with
localization l ∈ L := {(l1, l2) : l1 = 1, . . . , L1, l2 = 1, . . . , L2}, L1 = bM/ζc and L2 = bN/ζc. For
each image patch, different types of features are computed based on the shearlet transform. For
simplification we set

Cj,k (m) :=
∣∣∣LPST φ,ψ,ψ̃ (f) (j, k,m)

∣∣∣ (5.1)

for the absolute value of the result of the shearlet transform, namely the shearlet coefficient,
at pixel m ∈ G given scale j ∈ {0, . . . , j0 − 1} and shear k = −η̃j , . . . η̃j . Since we use vertical
and horizontal shearlets, we get two coefficients for each shearing parameter which we denote
by C1

j,k(m) and C2
j,k(m). Furthermore, we do not consider the coefficients obtained with the

generating function φ for our features. Thus, we have Cj,k(m) = (C1
j,k(m), C2

j,k(m)).

The first feature we introduce, called shearlet magnitude, provides orientation independent edge
information in a given patch. The provided information is similar to a gradient magnitude,
used by the ACF detector [27, 28], but the representation is more sparse due to the sparse
image representation provided by the shearlet framework. The feature is defined by taking the
normalized sum of shearlet coefficients over all shears in a scale j averaged over all pixels in
a patch Pl. This averaging procedure results in a downsampling which is also called feature
pooling.

We define the shearlet magnitude by

Mj (m) :=
2∑
i=1

η̃j∑
k=−η̃j

Cij,k (m) . (5.2)

We perform a local normalization by

M̃j (m) := Mj (m)(
M̄j (m) + ε

) , ε > 0, (5.3)

with ε > 0 and

M̄j (m) :=
R∑

p1=−R

R∑
p2=−R

wp1,p2Mj (m+ (p1, p2))

being the weighted average of the shearlet magnitude in an image area with center m and
radius R, i.e. size (2R+ 1) × (2R+ 1). The weights wp1,p2 are set to fulfill the conditions
0 ≤ wp1,p2 ≤ 1 for all p1, p2 ∈ {−R, . . . R} and

∑R
p1=−R

∑R
p2=−R wp1,p2 = 1. This normalization

scheme is adopted from the ACF detector [27, 28]. Using this notation, the shearlet magnitude
feature for patch Pl is computed by

SMj (l) := 1
ζ2

∑
m∈Pl

M̃j (m) . (5.4)

The procedure for calculating the shearlet magnitude feature is illustrated in Figure 5.2 for a
sample image of the Caltech test data set with a fixed parameter j. A colormap has been applied
to visualize data values from high to low by blue through white to red.
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f

Mj

M̃j

SMj

(5.2)

(5.3)

(5.4)

Figure 5.2: Procedure for calculating the shearlet magnitude feature for a fixed parameter j
with an exemplary patch size of 2× 2.
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To also incorporate the information about dominant orientations in a patch, a shearlet histogram
is used as second type of feature. Given a fixed scale j, each pixel m of a patch Pl is assigned to
the direction, i.e. its shear index, with the largest absolute value of the corresponding shearlet
coefficients. This operation can be expressed by

Oj (m) := arg max
(i,k)∈{1,2}×{−η̃j ,...η̃j}

Cij,k (m) .

Then, the shearlet histogram for patch Pl is set up by SHj,k(l) = (SH1
j,k(l),SH2

j,k(l)) and

SHij,k (l) := 1
ζ2

∑
m∈Pl

M̃j (m)χ{(i,k)} (Oj (m)) , (5.5)

where χ is the characteristic function. The informational content of it is similar to a gradient
histogram used in [27, 28]. Note that we get two features for every k . An exception is the
diagonal case, i.e. ηj divisible by 4, where we get one value for |k| = 1 since only one of two
shearlets is kept.

These shearlet features share the property of directly providing multi-scale information empow-
ered by the shearlet framework. In that way, it is possible to detect structures from fine to coarse
scales at the same time and to locate which type of structure is contained in which image area
via the patch partitioning. Figure 5.3 shows a visualization of the shearlet features averaged
over a set of pedestrian images for a fine scale j, 6 directions (ηj = 6), and a trivial patch size
of 1 × 1 (ζ = 1). The shearlet magnitude feature in the top row gives a good characterization
of the pedestrian’s silhouette in total. The shearlet histogram feature in the bottom row of
Figure 5.3 shows a strong response to certain body parts depending on the analyzed direction.
For example the first feature component, using vertical directed shearlets, responds heavily to
the side of the pedestrian’s silhouette. Feature components using sloped directions show a good
response to shoulder parts.

In comparison to the feature descriptor described by Schwartz et al. [111], these two kinds of
features provide much richer and more stable information about an object’s structure. In [111],
shearlet features are defined simply by the sum of absolute values of the shearlet transform over
all image pixels m for each scale j and shear k. The corresponding feature Hj (k) is computed
by

Hj (k) :=
dM/2e−1∑

m1=−bM/2c

dN/2e−1∑
m2=−bN/2c

|SHψ (f) (j, k,m)| . (5.6)

This corresponds to a shearlet coefficient feature without any normalization or patch localization.
As we will show in Section 5.5.2 using this feature even with normalization and patch localization
yields inferior detection results.

5.3 Shearlet Filterbank

In addition to shearlet features computed on input images, we consider an intermediate filtering
layer between original image feature computation and classification as described in [130]. After
computation of the original feature maps, the feature vector used for classification is built by
a sum pooling over rectangular regions. According to [130], this sum pooling can be rewritten
as a convolution with a filterbank, where one filter is used per rectangular shape. Following, a
single value of the convolution’s response map is used as feature. This procedure is illustrated
in Figure 5.4.
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SMj

SHj,k

Figure 5.3: Visualization of shearlet features for a fixed scale and 6 orientations averaged over
a set of pedestrian sample images. Top: shearlet magnitude, bottom: shearlet histogram.

In our case, the input features for the intermediate layer can be either color, gradient or shearlet
features. As filters, we use shearlets from our local precision shearlet system. Since this inter-
mediate layer is executed as a convolution with these shearlet filters, one can regard the result
as shearlet coefficients of image features. Given a feature map F ∈ RM̃×Ñ×D of size M̃ × Ñ and
depth D ∈ N, we have the shearlet filterbank feature

SF j,k (l) := 1
ζ̃2

∑
m∈P̃l

LPST φ,ψ,ψ̃ (F) (j, k,m) (5.7)

for a scale j, a shear k and a feature map patch P̃l of size ζ̃ × ζ̃. In addition to the resulting
filtered features, we preserve the original low level image features in the final feature space.
The setup of the shearlet filterbank is inspired by the filterbank of RotatedFilters [129]. For color
and magnitude features, we use only the horizontal and vertical shearlets. For each directional
feature, such as a gradient or a shearlet histogram, we use the shearlet corresponding to the
feature direction and its counterpart from the other spatial cone. It is worth mentioning that
such a shearlet filtering of gradient histograms is only possible with shear parameters set like in
the local precision shearlet system. Using other shearlet systems, the most shearlet directions
are not in correspondence to the directions of the gradient histogram features. Only the direc-
tional selection as applied in a local precision shearlet system, guarantees this correspondence.
Summarizing, for each image feature, we have a pair of shearlet filters per scale. Furthermore,
we add a simple 1× 1 square to the filterbank in order to preserve the original image features in
the final feature map. That means, we have a filtered feature space size of σf = σo ·

(
2j0 + 1

)
,

where σo is the size of the original feature space. Figure 5.5 illustrates its filters for one scale
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Figure 5.4: Intermediate layer filtering image features [130].

L U V |·|

Figure 5.5: Illustration of the shearlet filterbank. The top row contains the low level image
feature maps. L, U and V correspond to the color channels of the image and |·| denotes a
magnitude feature. The rotated bars represent directional histogram features. The middle and
the bottom row show the pair of shearlet filters for each of these feature maps.

and the connection to the original image feature maps. Here, LUV features are used for color
information. The LUV color space consists of three channels: L represents the luminance, U
and V the color type.

5.4 Implementation Details

The detection algorithm is based on a sliding window approach, where a detection window of
fixed size is slid over the image followed by a binary classification if a pedestrian is contained in
the window or not. This procedure is applied on different scales of the input image to allow for
different pedestrian sizes due to physical differences or differing distances to the camera. This is
a typical and widely used approach for pedestrian detection, see [31]. For binary classification,
a decision function is needed, which is typically carried out by a machine learning algorithm.
Based on feature vectors from a training data set containing positive and negative sample images
of the size of the detection window, the machine learning algorithm learns which feature values
belong to which class: “pedestrian” or “no pedestrian”. During the application of pedestrian
detection, the classifier then compares the measured features from the detection window to the
learned values. Besides the binary classification if the detection window contains a pedestrian
or not, the classifier also returns a classification score. To avoid nearby multiple detections of
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the same pedestrian only the detection with the maximum score is preserved if some detection
windows are overlapping by a predefined threshold. This technique is known as non maximum
suppression (NMS). As a general detection framework, we use an adaption of the ACF detector
by Dollár et al. [27, 28]. Especially, we use the same AdaBoost classifier which is described in
[5]. In this way, we are able to directly compare the feature performance avoiding potential side
effects because of a different classifier. For a d-dimensional feature vector x ∈ Rd, the output of
classifier we use is expressed by

H (x) =
T∑
t=1

λtht (x) ,

with λt ∈ R and weak learners ht, which are optimized during the training process. The weak
learners are shallow decision trees with

ht (x) = ptsgn (xdt − τt) ,

with a polarity pt ∈ {−1, 1}, a feature index dt ∈ {1, . . . , d} and a threshold τt. We will describe
the parametrization of the classifier used in our experiments in Section 5.5.1.

The first variant of our detector, called shearFtrs-v1 detector, is illustrated in Algorithm 5.1.
In this variant, we only compute low level image features based on the shearlet transform. The
application of a shearlet filterbank is described separately later on.

At first, the scales for scaling the input image are calculated such that the detection window
still fits into the smallest downscaled image. In addition, the local precision shearlet filters are
set up according to (3.1)-(3.11). Since the shearlet filters are not depending on the input image
or its size, the computation of them does not have to be done per image and can be outsourced
in case of multiple input images. Then, the LPST is calculated for each scaled image by (3.14).
Concerning input image type, we use images converted to LUV color space. To obtain the
shearlet coefficients of a LUV color image, we compute the shearlet coefficients for each color
channel separately and take for each pixel the shearlet coefficient with the maximum absolute
value.

The input image is not smoothed in order to denoise it before the shearlet transform is computed.
In our algorithm, we reduce the influence of noise from the input image by a shearlet thresholding
approach as described by Easley and Labate [36]. In this procedure, shearlet coefficients whose
absolute values fall below the predefined threshold tShear are set to zero. Given the result, one
can use the inversion formula of the shearlet transform in order to restore the image. However,
we are not interested in the output of a denoised image. Therefore, we use the modified shearlet
coefficients to calculate the shearlet features according to (5.1)-(5.4). Corresponding to the
normalization scheme of the ACF detector [27], the weights for the normalization of the features
are set as constants by the values of a triangle filter.

The parameters for setting up the shearlet filters as well as for computing the LPST and shearlet
features include the number of shearlet scales j0, the number of shears ηj per scale j, the size
of the mother shearlet support specified by its boundary B, the degree of anisotropy α, the
normalization radius R and the patch size ζ×ζ. The features are formatted such that the patches
are contained in the first two dimensions and the scales and shears in the third dimension. In
other words, we have SM ∈ RL1×L2×j0 and SH ∈ RL1×L2×j0η with η =

∑j0−1
j=0 ηj .

Subsequently, the features are concatenated along the fourth dimension, smoothed and given
to the sliding window approach as as feature map input together with a trained classifier and
a predefined stride. The AdaBoost classifier requires all features of a detection window being
in a single feature vector. Therefore, the computed features are vectorized before applying the
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Algorithm 5.1 Procedure of the shearFtrs-v1 detector.
Input: f : input image, C: classifier, Ds: dimensions of detection window, s: stride for sliding

window approach, tNms: threshold for non maximum suppression, pShear: shearlet feature
parameters containing j0: number of shearlet scales, ηs: number of shearlets (directions) per
scale, B: boundary of mother shearlet support, α: degree of anisotropy, tShear: parameter
for thresholding shearlet coefficients, R: normalization radius, ζ: patch size.

Output: bbs: bounding boxes of detections.
1: procedure sf-v1 Detect(f, C,Ds, s, tNms, pShear)
2: scls = getScales(f,Ds);
3: Ψ = getShearlets(B, j0, ηs, α);
4: for i = 1 to length(scls) do
5: g = scaleImage(f, sclsi);
6: LPST = locPrcShearletTransform(g,Ψ);
7: LPST = shearletThrsh(LPST , tShear);
8: C = |LPST | ;
9: for j = 0 to j0 − 1 do

10: Mj =
∑
k∈ΛCj,k;

11: M̃j = normalize(Mj , R);
12: end for
13: for all l ∈ L do
14: for j = 0 to j0 − 1 do
15: for all k ∈ {−η̃j , . . . , η̃j} do
16: SH1

j,k (l) = 1/ζ2
∑
m∈Pl M̃j (m)χ(1,k) (Oj (m)) ;

17: SH2
j,k (l) = 1/ζ2

∑
m∈Pl M̃j (m)χ(2,k) (Oj (m)) ;

18: end for
19: SMj (l) = 1/ζ2

∑
m∈Pl M̃j ;

20: end for
21: end for
22: F = concatenate( (SM,SH) , 4);
23: F = smooth(F );
24: bbsi = applySlidingWindow(F , C,Ds, s);
25: end for
26: bbs = transformCoords(bbs1, . . . , bbsn, scls);
27: bbs = applyNms(bbs, tNms);
28: return bbs;
29: end procedure
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classifier. After classification the coordinates of detected pedestrians, also called bounding boxes,
obtained from scaled images have to be transformed to coordinates of the original image. Finally,
the already mentioned non maximum suppression is applied to provide the final bounding boxes
of detected pedestrians.

Our second variant named shearFtrs-v2 detector, i.e. the application of a shearlet filterbank, is
illustrated in Algorithm 5.2. After computation of image scales and shearlets as in Algorithm 5.1,
the shearlet filterbank is set up corresponding to the basic image feature types specified in the
parameter pFtr. These basic image features can contain color, gradient or shearlet features.
Next, the corresponding feature map is computed for each image scale. For each element of
the shearlet filterbank, a convolution of the feature map with the corresponding filter element
is performed. This is equivalent to the computation in (5.7). As in Algorithm 5.1, the feature
map is given the sliding window approach as input to compute the bounding boxes of detected
pedestrians. Figure 5.6 shows exemplary detection results of a test image of the Caltech data
set [30] using the shearFtrs-v2 detector. Corresponding bounding boxes of detected pedestrians
are colored in green.

Algorithm 5.2 Procedure of the shearFtrs-v2 detector, i.e. the filterbank variant.
Input: f : input image, pFtr: feature map parameters, C: classifier, Ds: dimensions of de-

tection window, s: stride for sliding window approach, tNms: threshold for non-maximum
suppression, pShear: shearlet feature parameters containing j0: number of shearlet scales,
ηs: number of shearlets (directions) per scale, B: boundary of mother shearlet support, α:
degree of anisotropy, ζ̃: patch size.

Output: bbs: bounding boxes of detections.
1: procedure sf-v2 Detect(f, C,Ds, s, tNms, pF tr, pShear)
2: scls = getScales(f,Ds);
3: Ψ = getShearlets(B, j0, ηs, α);
4: fs = shearFilters(Ψ);
5: for i = 1 to length(scls) do
6: g = scaleImage(f, sclsi);
7: F = computeFtrMap(g, pF tr);
8: for j = 1 to numOfElements(fs) do
9: F̃ = conv2(F, fsj);

10: SF j(l) = 1/ζ̃2
∑
m∈P̃l

F̃ (m);
11: end for
12: bbsi = applySlidingWindow(SF , C,Ds, s);
13: end for
14: bbs = transformCoords(bbs1, . . . , bbsn, scls);
15: bbs = applyNms(bbs, tNms);
16: return bbs;
17: end procedure

5.5 Experiments

In this section, we show experimental results for pedestrian detection using shearlet features and
demonstrate their ability to provide better detection rates than gradient features. We evaluate
the detection quality by plotting Receiver Operating Characteristics (ROC) curves, which show a
tradeoff of the detection or miss rate against the false positives per image (fppi). All evaluations
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Figure 5.6: Example output of the shearFtrs-v2 detector. Detected pedestrians are represented
by green colored bounding boxes.

have been done on reasonable experiment of the Caltech benchmark [30, 31], which is widely
used for pedestrian detection benchmarks [8, 31, 129]. In this experiment, all pedestrians of
height 50 pixels and taller are evaluated, who are only slightly occluded, i.e. visible for at least
65%.

As indicated before, we are using the same detection framework and AdaBoost classifier as the
ACF detector [27, 28]. All currently top performing hand-crafted feature detectors are using
this framework [99, 129, 130]. This way we are able to directly compare the feature performance
avoiding potential side effects because of a different classifier. Besides the comparison to other
hand-crafted features, we also show the impact of parametrization of the feature computation.
Furthermore, we show detection results using different shearlet implementations such as FFST
[61] and ShearLab 3D [77].

Figure 5.7 shows ROC plots for the best achieved result using shearlet features and all other top
performing algorithms on the Caltech data set. The first algorithm not using a CNN framework is
the LDCF++ detector [99]. This detector is a modification of the LDCF detector [96], which uses
ACF features and an intermediate filtering layer to remove correlations in local neighborhoods.
In the term of LDCF++ detector, the first ‘+’ stands for adapted boosting and augmentation
parameters and the second ‘+’ for contextual analysis. A location prior model capturing spatial
context is used to recalculate the object score of the original hand-crafted feature detector. With
14.75%, the miss rate using shearlet features is below the one of the LDCF++ detector having
a miss rate of 14.98%. Comparing the pure feature detector results by excluding the contextual
analysis, the LDCF+ detector achieves a miss rate of 15.40%. Thus, with a miss rate of 14.75%,
the shearFtrs-v2 detector significantly outperforms LDCF+. Although the usage of shearlets
for computing hand-crafted features shows an improvement, still the detection results of CNN
approaches can not be reached. This is another indication that hand-crafted feature detectors
will not be able to compete with CNNs, nor by optimization of classifier parameters as in [99]
nor by definition of better features as in our work.
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Figure 5.7: ROC plots for currently top performing pedestrian detection algorithms on the
Caltech data set.

5.5.1 Detection Framework Settings

Like the ACF detector [27, 28], we use detection windows of size 128× 64 and a stride of 4 for
the sliding window procedure. We also use the same values for the number of image scales per
octave by 8 and the threshold for non maximum suppression of 65%.
We use the same classifier set up as in [99]. In this way, we have a fair comparison to the
gradient features of the ACF+ detector and the currently best performing hand-crafted features
of the LDCF+ detector. We use 4 stages of bootstrapping for training the AdaBoost classifier
on the Caltech data set with an increasing number of weak learners and a maximum of 4, 096
at the final stage. Furthermore, we use decision trees with a maximum depth of 5 as well as
48, 996 of positive and 200, 000 of negative sample images. The total number of positive training
samples is achieved by a data augmentation method as described in [99]. We sample every 4-th
frame of the training data set video sequences and scale the original samples by a factor of 1.1
in horizontal, vertical and both directions.

5.5.2 Image Feature Experiments

First, we evaluate the performance of the shearFtrs-v1 detector using shearlet features computed
directly from the original image. Before stating the comparison results, we give an overview of
the default parametrization which has been used to obtain the best results. We use 3 scales
with 12 shears per scale. The mother shearlet is chosen to be a spline shearlet of order m = 3
and 1-st derivative. We set the patch size parameter to ζ = 4, leading to a total number of
32 ·16 ·3 ·(12 + 1) = 19, 968 shearlet features. The radius for normalizing the shearlet magnitude
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during feature computation is set to R = 11. In addition, we use LUV color information as
feature like the ACF detector [27, 28].

On the Caltech data set, we achieve a log-average miss rate of 17.85%. The corresponding
ROC plot is shown in Figure 5.7 with denotation shearFtrs-v1. In comparison to gradient
features, Ohn-Bar and Trivedi [99] reported a log-average miss rate of 20.69% with their ACF+
detector as best known ACF result. Therefore, the usage of shearlet image features yields
a significant improvement in detection rates. The improvement amounts to such an extent
that the detector can compete with more enhanced hand-crafted feature approaches such as a
filterbank application, e.g. the Checkerboard detectors [130].

We now investigate the effect of key parameters on the detection quality. Especially of interest
are parameters used for computation of the shearlet features defined in Section 5.2. We con-
centrate on the results when changing values of one parameter and letting the other parameters
fixed to the best performing value. In general, we found consistent results if we change more
than one parameter at a time. Consider that we change one parameter to a value showing
decreased detection performance in a single parameter test. If we change another parameter
also to a worsening value of the corresponding single parameter test, the detection result further
decreases.

Shearlet Scales

One major parameter is the shearlet scales used for feature computation. First, we evaluate
different numbers of shearlet scales, i.e. j0 = 1, 2, 3. Further scales reduce the support of the
corresponding shearlets to such an extent that they are useless for practical application. A
larger support of the mother shearlet is enabling larger values of j0. Unfortunately, this leads to
inadequate edge detections at the coarsest scale. Furthermore, we also evaluate the performance
of single scales and different combinations of them.

Figure 5.8 shows the ROC plots for the different setups of scales used. While considering only
the coarsest scale, the detection quality drops to a log-average miss rate of 29.12%. Including the
second scale improves to 22.29% and to 17.85% with inclusion of the third scale. Concerning the
evaluation of single scales, we find that the finer the scale, the better is the detection performance.
While the first two scales achieve log-average miss rates of 29.12% and 21.24%, considering only
the third scale scores 20.59%, which is slightly better than the ACF+ result. Although, the
coarsest scale performs significantly worse than the others, it still provides useful information.
Sparing the incorporation of it reduces the detection quality from 17.85% to 18.80%.

Shearlets Per Scale

Besides the number of scales, the number of shearlets per scale ηj is a main parameter for the
shearlet filter setup. We mainly use a constant number of shearlets across scales to have the same
directional analysis on each scale level ranging from 6 to 14 shears per scale. Furthermore, we
test the detection performance with the number of shearlets of a regular cone-adapted discrete
shearlet system, i.e. 4, 8 and 16 shearlets per scale, and other schemes of increasing numbers of
shearlets per scale.

The evaluation of influence of ηj is shown in Figure 5.9. The best performance is achieved with
12 shearlets resulting in a log-average miss rate of 17.85%. A reduction to less shearlets per
scale as well as an increase to ηj = 14 for j = 0, 1, 2 results in a significant decrease of detection
quality. A consideration of more shears per scale increases the feature space. Thus, it is not
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Figure 5.8: Evaluation of number of shearlet scales.

surprising that there is a number of shearlets after which the feature space becomes too large
leading to a decreasing classifier performance. On the other hand, using less than 12 shearlets
per scale reduces the detection quality significantly since insufficient information is available.
Also a utilization of the number of shearlets of a regular cone-adapted discrete shearlet system,
with corresponding degree of anisotropy α = 1/2 yields drops in detection rates. Finally, variants
with other schemes of increasing numbers of shearlets per scale also show minor results.

Degree Of Anisotropy

Next, we analyze the impact of the degree of anisotropy α ∈ [1/2, 1) on the detection results.
More precisely, we use values of α = 1/2, α = 3/4 and α = 9/10.

In Figure 5.10, we show the ROC plots for the tested values. The parameter value of α =
3/4 performs best, whereas the value of α = 1/2, used in the regular shearlet systems, shows
significantly inferior performance with a log-average miss rate of 19.28%. This justifies the use
of the general scaling matrix Aa,α instead of the standard matrix Aa. Also values close to 1,
such as α = 9/10, show an inferior performance, e.g. with log-average miss rate of 19.78%.

Different Mother Shearlets and Shearlet Systems

Now, we show the impact of using different kinds of shearlets. First, we analyze the impact of
increasing the spline order p and the number of derivatives q of the mother shearlet function.
Moreover, we compare the results obtained by using the LPST against the ones achieved with
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Figure 5.9: Impact of shears per scale.
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Figure 5.10: Comparison of values for degree of anisotropy.
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the FFST [61] and ShearLab 3D [77]. For the application of these toolboxes, we mainly use
their standard parameters.
As can be seen in Figure 5.11a, detection rates significantly decrease as we increase either the
spline order or the number of derivatives of the underlying B-spline. Increasing the spline order
from p = 3 to p = 5, lowers the log-average miss rate from 17.85% to 21.77%. If we further
set the number of derivatives to q = 3, detection rates further decrease to a log-average miss
rate of 24.79%. This trend proves to be true for even higher values. The usage of p = 7 and
q = 5 performs significantly worse with a log-average miss rate of 27.88%. As explanation for
the observed behavior, an increase in the spline order implicates an increase in the support of
the shearlet. Furthermore, higher numbers of derivatives lead to more oscillations in the mother
function. Both facts result in a less precise localization of edges in images.
Figure 5.11b presents the ROC plots for the shearlet implementations considered. One can see
that the LPST outperforms ShearLab 3D and the FFST significantly. ShearLab 3D performs
second best with a log-average miss rate of 24.33%. A utilization of the FFST results in a
log-average miss rate of 34.82%. As described by Kutyniok et al. [77], the ShearLab 3D imple-
mentation also provides functions with compact support in time domain. This can explain why
it delivers better results than the FFST. The LPST is more flexible in regards to the number
of shearlets per scale since only ηj ∈ 2N is required. The FFST [61] is bound to ηj = 2j+2 and
ShearLab 3D to ηj = 2dj+2 with dj ∈ N. Consequently, the best performing parametrization of
ηj presented above is not possible for both toolboxes. For ShearLab 3D, we have chosen dj = 1
for j = 0, 1, 2, i.e. ηj = 8, since it corresponds to the next best parametrization from our exper-
iments concerning shearlets per scale, see Figure 5.9. Comparing the results for ηj = 8, still the
LPST performs significantly better than ShearLab 3D. We conclude, that our local precision
shearlets can generate more qualitative image features.
It is worth mentioning that gradient features of the ACF+ detector perform significantly better
than ShearLab 3D. As stated before, ACF+ achieves a log-average miss rate of 20.69%. That
means, we are only able to outperform gradient features with an application of the LPST.
However, it is not clear what results can be achieved with more extensive parameter tests when
using other shearlet toolboxes.

Feature Type

Finally, we analyze the informative content of each feature type. In other words, we present
the detection performance of the shearlet magnitude and the shearlet histogram when they are
used as single features. Moreover, we show the result of a feature type according to the feature
Hj (k) in (5.6) described by Schwartz et al. [111] as a single feature and the result if we add it
to our features.
Figure 5.12 shows the corresponding ROC plots. The best result as a single feature is achieved by
the shearlet histogram with a log-average miss rate of 19.48%. The shearlet magnitude feature
only achieves a log-average miss rate of 51.92%. A shearlet coefficient feature corresponding
to Hj (k) [111], denoted by shearCoeffs, results in a detection with log-average miss rate of
35.76%. Adding this feature type to the shearlet magnitude and histogram does not yield an
improvement. Detection rates drop to a log-average miss rate of 21.63%.

5.5.3 Filterbank Experiments

Now, we evaluate the performance of our second variant shearFtrs-v2. As described in Sec-
tion 5.3, we use LUV features with either gradient or shearlet features as input for the inter-
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(a) Evaluation of orders and derivatives of spline shearlets.
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(b) Comparison of LPST to the shearlet frameworks FFST and ShearLab 3D.

Figure 5.11: ROC plots of the shearFtrs-v1 detector evaluating different types of shearlets.
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Figure 5.12: Impact of image feature types.

mediate filtering layer. Although shearlet features perform better than basic image features as
shown in Section 5.5.2, the filterbank approach shows better results with gradient features as
input. To set up the filterbank, we use the standard options of the ACF and ACF+ detectors
with 6 orientations for the gradient histogram. Thus, we have 6 shearlets per scale in our fil-
terbank. Furthermore, we use the same characteristics for the generation of the shearlets as in
Section 5.5.2. During our experiments, we found equivalent results to our image feature experi-
ments concerning shearlet scales, degree of anisotropy and shearlet mother function parameters.
Overall, this setup achieves the best result using shearlet features on the Caltech data set. As
stated before, it is also the best known result on the Caltech data set using hand-crafted features,
see Figure 5.7.

An explanation for the better performance when using gradient input features is that the uti-
lization of shearlet features significantly increases the feature space. Using gradients with 6
orientations for the gradient histogram entails 35, 840 filtered features. If we use shearlet fea-
tures with 6 shearlets per scale, the final feature space size enlarges to 86, 016 features and to
107, 520 in case of 8 shearlets per scale. This can lead to an overfitting effect, i.e. the detector
can not generalize well from the training data set to test images it has not seen before. Con-
sequently, the detection rates decrease if the feature space size increases. For shearlet input
features, we measure a log-average miss rate of 16.35% with 6 shearlets per scale and 17.05%
with 8 shearlets per scale.
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Figure 5.13: Comparison of filterbank results with gradient and shearlet features as input.

5.6 Conclusion

In this chapter, we were investigating the applicability of the shearlet transform to provide mean-
ingful hand-crafted features for pedestrian detection. The idea behind it was that shearlets are
able to extract directional information from images, which is widely used in state-of-the-art
algorithms. Shearlets have multiple benefits compared to gradients concerning image features
or other filters in an intermediate filtering layer. Main advantages are the sparse image repre-
sentation and the multi-scale framework.

Using these properties, we defined two types of image features based on the shearlet transform,
namely the shearlet magnitude and shearlet histogram features. Based on our experimental
results on the Caltech data set [30], these features turned out to be very informative. We
showed that these features are able to outperform the gradient features of the ACF detector
[27], which all best performing hand-crafted features are using as a base. Furthermore, we
introduced an application of a shearlet filterbank for an intermediate filtering layer as described
in [130]. Using the abovementioned data set, we showed that this filterbank provides performance
improvements compared to other known filterbanks leading to the best known results using a
hand-crafted feature detector.

A crucial issue for computing high quality shearlet features is the design of the underlying
shearlets since edges have to be located very precisely. For that purpose, we introduced local
precision shearlets based on compactly supported shearlets in Chapter 3. The corresponding
shearlet transform delivers precisely located edge estimates which results in a higher quality
of pedestrian detection compared to other shearlet implementations. Furthermore, our flexible
shearlet system in regards to number of shearlets per scale provides more control over the feature
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space size and enables the usage of a shearlet filterbank similar to the RotatedFilters filterbank
[129].

With the result that shearlet features can outperform all other current hand-crafted features,
it has to be investigated if CNN approaches are subject to performance improvement when
integrating shearlets. For example, the subsequent application of a CNN as in [84], which
uses pedestrian proposals generated by gradient features, promises an improved detection if one
uses shearlet features instead. Furthermore, since the first layer of a CNN can be regarded
as to perform extraction of basic features like edges, one can imagine detection performance
improvements by an integration of shearlet filters in this layer. Due to the current dominance
of CNN approaches in the Caltech benchmark, we investigate this topic in the next chapter.
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“Learning never exhausts the mind.”
Leonardo da Vinci

6
Deep Learning with Shearlets

Deep learning methods such as Convolutional Neural Networks (CNNs) are the base of current
best performing algorithms for pedestrian detection. In Chapter 5, we show that we are able
to improve hand-crafted feature detectors with shearlet features but that detection algorithms
utilizing CNNs still show better detection rates. However, the question arises, if a concentration
on pure neural networks is the optimal approach. One may achieve even better results than
currently measured if we include insights from hand-crafted feature based pedestrian detection
approaches and theoretical frameworks. To this end, we exploit the possibilities to integrate
shearlets in CNNs. We aim to use shearlet filters at early convolution layers of a CNN instead
of learned ones in order to improve its classification and detection results. The underlying idea
is that early CNN layers intuitively perform an edge detection, whereas shearlets theoretically
provide optimal filters for this task. Moreover, they can provide a good base for learning filters
of deeper layers.

First, we give an introduction about Artificial and Convolutional Neural Networks and the appli-
cation of the latter for pedestrian detection. Next, we state results of related works concerning
the integration of theoretical frameworks in CNNs and describe our own concept and its imple-
mentation. Finally, we illustrate the capability of shearlets to improve CNNs in experiments on
pedestrian classification and detection.

6.1 Introduction on Neural Networks

First, we will introduce the concept of Artificial and Convolutional Neural Networks and its
basic terminology. This introduction is based on the description of Aghdam and Heravi [2].

Artificial Neural Networks (ANNs) consist of connected components called neurons. The basic
idea of ANNs is an imitation of biological neurons. A major feature of these networks is the
ability of learning to solve specific problems. Furthermore, we will describe the adaptation to
CNNs, which has been developed for image processing tasks.
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Figure 6.1: Illustration of an artificial neuron

6.1.1 Artificial Neural Networks

An Artificial Neural Network is composed of connected (artificial) neurons. An illustration of
such a neuron is given in Figure 6.1. The input of a neuron is calculated by the vector x ∈ Rd,
d ∈ N, which is multiplied component-wise with weights w1, . . . , wd. The weighted input values
are then summed up. Optionally, a bias b ∈ R is also included during summation. The summed
value is then fed into an activation function A which finally yields the output value a ∈ R, also
called activation. There are different types of activation functions, which can be used. They can
be chosen for a specific problem to be solved.

According to [2], the special case of a feedforward neural network is commonly for computer
vision tasks. Especially, convolutional neural networks are a specific type of feedforward net-
works. Therefore, we will refrain from describing different types of Artificial Neural Networks.
A feedforward network is made up of a number of layers containing various numbers of neurons.
Neurons of a layer are connected with all neurons of the subsequent layer. For this reason,
feedforward neural networks are called to be fully-connected.

The first layer is called input layer denoted by I, while the last one is called output layer denoted
by Z. All layers in between are called hidden layers denoted by Hl with l = 1, 2, . . . , L ∈ N.
The number of neurons in a hidden layer Hl is denoted by dl. Formally, we set H0 := I and
HL := Z. Figure 6.2 illustrates a simple example of a feedforward neural network consisting of
3 layers in total, thus 1 hidden layer. The dimension of the output vector z is determined by
the number of neurons in the output layer.

Now, we define the notation of the variables involved in a neural network which will be used
for describing calculation procedures. The weight wli,j denotes the connection of the neuron i
in layer l − 1 to the neuron j in layer l. Exemplary, the weight w3

2,3 of the third neuron in
the second layer to the second neuron in the third layer. A similar notation is used for bias
and neuron outputs, i.e. activations. Bias blj is located at neuron j in layer l. Analogously,
the activation of neuron j in layer l is denoted by alj . Usually, all neurons in the same layer
share the same activation function to compute their activation values. We will mainly use the
variables wl, bl and al, where wl ∈ Rdl−1×dl contains the weights connecting layers Hl−1 and Hl

as well as bl, al ∈ Rdl contain the bias terms and activations in layer Hl.

The hidden layers of a feedforward network can be seen as a feature transformation function.
In the first hidden layer, the input x is transformed into a d1 dimensional feature vector. In H2,
this vector is transformed into a d2 dimensional vector an so on. Therefore, for layer l we have

al = Al
(
wlal−1 + bl

)
.
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Figure 6.2: Illustration of an artificial neural network.

Finally, the output layer Z classifies this dL−1 dimensional feature vector. The output of the
network can be formulated by

f (x,W ) = aL = AL
(
· · ·
(
A2
(
A1
(
w1x+ b1

)
w2 + b2

)
· · ·
)
wL + bL

)
,

where we set W :=
{
w1, . . . , wL, b1, . . . bL

}
. The feature transformation of a feedforward network

does not have to be designed by hand but can be learned instead. We only have to define the
number of hidden layers, number of neurons in each layer and the type of activation functions.
These inputs are called hyperparameters. Given these parameters, feature transformation as
well as classification can be trained. The objective during training is to minimize the error (or
loss) of the network output. We consider a training data set D = {(x1, y1) , . . . (xn, yn)} with
inputs xk ∈ Rd and labels yk ∈ Rm, where m ∈ N is the number of output neurons. Given
this notation, we can formulate a loss function which measures the error between the outputs
of the network f (xk,W ) := zk = (zk,1, . . . , zk,m) and the true labels yk = (yk,1, . . . , yk,m). For
example, we can define the square loss function

L (W ) := 1
2

n∑
k=1

m∑
o=1

(zk,o − yk,o)2 .

Next, the procedure is to minimize such a loss function by the stochastic gradient descent algo-
rithm, which is a so-called batch procedure. That means, not all training samples are taken into
account for the calculation of the loss but only a randomly chosen subset of a predefined batch
size. After initialization, W is changed iteratively proportional to the gradient of loss ∇L, i.e.

∆W = −η̄∇L (W ) .

The constant η̄ ∈ R is called learning rate. As described in [2], a direct computation of this
gradient is not tractable in practice due to the usual huge amount of layers and neurons. To
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Figure 6.3:

overcome this issue, an algorithm called backpropagation [121] can be used to compute this
gradient of loss. For each iteration, the new weights and bias terms are calculated as follows

∆wl = −η̄δlal−1,

∆bl = −η̄δl

with

δLj = A′L

dL−1∑
i=1

wLi,ja
L−1
j + bL

(yj − aLj ) ,
δlj = A′l

dl−1∑
i=1

wli,ja
l−1
j + bl

((wl+1
)T

δl+1
)

for all neurons j in the corresponding layer.
As stated before, there are different types of activation functions which can be adapted to the
problem to be solved. According to [2], nonlinear activation functions in at least one neuron
of a feedforward network is required to be able to learn a nonlinear function. With linear
activation functions in all neurons, a feedforward network can only learn linear functions. A
second important property of an activation function is its differentiability since learning is usually
done by a gradient descend method.
As described in [2], a popular activation function is the sigmoid function Asig : R→ [0, 1], which
is given by

Asig (x) := 1
1 + e−x

.

Its derivative can be expressed by

A′sig (x) = Asig (x) (1−Asig (x)) .

Figure 6.4a shows the plots for these two functions.
The sigmoid function fulfills the requirement of differentiability. But the drawback is that its
gradients become very small for |x| → ∞. During training with the backpropagation method,
this causes a problem called vanishing gradients problem. During backpropagation, the gradient
of the loss function with respect to the current node is calculated by multiplying the gradient
of the activation function with its children. Thus, if the input for the activation function is far
from zero, then the gradient of loss with respect to the current node will be very small. In case
we have a network with many sigmoid functions as activations, the gradient vanishes in the first
layers. This leads to very small weight changes and a stop in learning. Therefore, the sigmoid
activation function can mainly be used in shallow networks, i.e. networks with few hidden layers.
It is not suitable for training networks with many hidden layers, also called deep networks.
Another possibility is the rectified linear unit (ReLU) activation function, which is defined by

Arelu (x) := max (0, x) .

The derivative of the ReLU function is given by

A′relu (x) =
{

0 for x < 0
1 for x ≥ 0

.
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(a) Sigmoid function (left) and its derivative (right).
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(b) ReLU function (left) and its derivative (right).

Figure 6.4: Plots of commonly used activation functions.

Their plots are shown in Figure 6.4b. According to [2], this nonlinear function is a good choice for
deep networks since it always delivers a strong gradient and thus avoids the vanishing gradient
problem. There are several types of activation functions building up on the ReLU function.
Since they do not provide further insights into the basic function of a neural network, we refrain
from their description.

6.1.2 Convolutional Neural Networks

As pointed out in [2], the structure of fully-connected feedforward networks is not suitable for
an application on images. Each image pixel needs to be connected to a neuron in the input layer
I. Next, each neuron in the input layer is connected with each neuron in the first hidden layer.
For a M ×N sized grayscale image f ∈ RM×N and d1 neurons in the first hidden layer H1 we
have a total number M ·N · d1 connections between I and H1. Even for images with moderate
resolution and shallow networks this would result in an impracticable huge amount of neurons
involved in the network. For example, considering a 16× 16 grayscale image and 7, 200 neurons
in H1, we already have 162 · 7, 200 = 7, 372, 800 parameters for connecting I with H1. For this
reason, Convolutional Neural Networks (CNNs) have been developed with the aim to reduce the
number of network parameters.

The Way to Convolution

The first strategy to reduce the number of parameters is to consider the geometry of pixels in
an image. For a given image pixel (m,n), we have a stronger correlation to its near than to
its far neighbors. Therefore, we only use the information of pixel (m,n) and the pixels in a
region of predefined size around it to extract information. Specifically, we first rearrange the dl
neurons in a hidden layer Hl into a number of Bl blocks of size M ′l ×N ′l . Next, we connect each
neuron in each block to a Kl ×Kl sized image region. This region is called receptive field of the
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corresponding neuron. In each block, the neurons in it extract information from each Kl ×Kl

image patch. Thus, the neurons in each block cover the whole image. In our above example,
with B1 = 50, M ′1, N ′1 = 12 and K1 = 5, we can reduce the number of network parameters to
52 · 50 · 122 = 180, 000.

As a second strategy for further reduction, we assume that all weights in one block share the
same weights. In our example, this leads to just 52 · 50 = 1, 250 weights, i.e. connections from
I to H1. This is just 0.017% of the original number of parameters in a fully-connected network.
For a further description of this weight sharing technique, we denote the output matrix of block
b in layer H1 by nb. Then, we have for all neurons (p, q) ∈ {0, . . .M ′1 − 1} × {0, . . . N ′1 − 1}

nb (p, q) = A

K1−1∑
j=0

K1−1∑
k=0

f (p+ j, q + k)wbj,k

 , (6.1)

where wbj,k denotes the weight (j, k) ∈ {0, . . . ,K1 − 1}2 in block b of layer H1. We can consider
(6.1) as the result of the discrete convolution of the input image f with the K1×K1 sized filter
w followed by an element-wise application of the activation function A. For the output of the
layer, convolution and activation function application is performed for each filter. The output
is then given by several image transformations, also called feature maps. More precisely, for
our M ×N grayscale image, we get B1 feature maps of size (M −K1 + 1)× (N −K1 + 1). Of
course, the described procedure can not solely be applied in H1 to the input image as in (6.1)
but also in subsequent layers to feature maps. Any layer performing convolution on either the
input image or on feature maps is called convolutional layer.

In CNNs, a convolution of a filter with a multi-channel input, such as a RGB image or a feature
map collection, results in single-channel output. Let X ∈ RM×N×C be multi-channel input for
convolution with C channels. To obtain a single-channel output of the convolution with a filter
g, we need the filter to be three-dimensional also with C channels, i.e. g ∈ RM ′×N ′×C . Then we
have X ∗ g ∈ RM−M ′+1×N−N ′+1×1.

We now assume that we have a multi-channel image f ∈ RM×N×C as input for the first con-
volutional layer with B1 filters of size M1 × N1 × C. Thus, we get a feature map collection
f1 ∈ RM−M1+1×N−N1+1×B1 after the first convolutional layer. The B2 filters of a consecutive,
second convolutional layer must then have dimensions M2 ×N2 ×B1. Consequently, we get B2
feature maps after the second convolutional layer.

CNNs incorporate the possibility to define a stride of convolution sconv ∈ N. A stride sconv > 1
means that the convolution is not computed for all pixels. For convolving X ∈ RM×N with filter
g ∈ RM ′×N ′ , we consider the formula

(X ∗ g) (m,n) =
M ′−1∑
i=0

N ′−1∑
j=0

X (m+ 1, n+ j) g (i, j) ,

m = 0, sc, 2sconv, . . . ,M − 1, n = 0, sconv, 2sconv, . . . , N − 1.

Consequently, the result has dimensions M−M ′
sconv

+ 1× N−N ′
sconv

+ 1.

Incorporation of Pooling

Similarly to hand-crafted feature detectors, CNNs incorporate an approach for feature pooling.
For this task, pooling layers are set up in the network architecture. The main reason for pooling
is a reduction of the dimensions, i.e. downsampling, of the feature maps. The downsampling
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Figure 6.5: LeNet-5 architecture [82].

factor is also called pooling stride and we denote it with spool ∈ N. To not lose too much
data during downsampling, a method called max pooling is commonly used. The pooling input
feature map is partitioned into dpool×dpool sized patches every spool pixels row- and column-wise.
For each patch we then have a pixel in the pooling output feature map showing the maximum
value in the corresponding patch. If spool < dpool, the pooling patches will overlap with their
neighbors. The pooling is applied to each feature map separately. Thus, the number of output
feature maps equals the number of input feature maps.
As an alternative to max pooling we have average pooling. As the name indicates not the
maximum value of a feature map patch is set as output but its average. According to Scherer
et al. [110], this pooling procedure usually provides inferior results compared to max pooling.

CNN Architecture

We now will put together the components of a CNN which we described above. Usually, a CNN
is composed of several convolutional layers with pooling layers in between. Directly before the
output layer, we have few fully-connected layers.
According to [2], the first layers usually have a small number of feature maps and the number
increases with the depth of the network. Furthermore, convolutional filters of sizes 3× 3, 5× 5,
7 × 7 and 11 × 11 are commonly used. Activation functions are usually placed directly after a
convolution layer. In practice, the usage of ReLU type activation function has been established.
We will further describe the interaction of the network layers by the example of one of the first
popular implementations of CNNs, called LeNet-5. This network has been developed by LeCun
et al. [82] for the classification of handwritten digits. The architecture of LeNet-5 is shown in
Figure 6.5. It consists of two convolutional layers, two pooling layers, two fully-connected layers
and an output layer. The input for this network is a grayscale image of size 32× 32. The first
convolution layer C1 consists of 6 filters with size 5× 5× 1. The size of the resulting 6 feature
maps is reduced to 14× 14 by pooling layer S2 with dpool = spool = 2. The second convolutional
layer C3 has 16 filters of size 5× 5× 6. Consequently, its output is of dimensions 10× 10× 16.
The pooling layer S4 then generates 16 feature maps of size 5 × 5. Subsequently, we have a
fully-connected layer C5 with 120 neurons, which are all connected to all neurons in S4. The
layer C5 can also be regarded as a convolutional layer with 120 filters of size 5× 5. Following,
another fully-connected layer F6 with 84 neurons is included. The classification is performed by
a radial basis function which is using 84-dimensional vectors as inputs. Finally, the output layer
is a 10-dimensional vector since 10 different digits shall be classified.
In the next years after the development of LeNet-5, the number of involved layers increased.
In 2012, the popular CNN called AlexNet, developed by Krizhevsky et al. [72], involves 5
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Figure 6.6: AlexNet architecture [72].

convolution and 3 pooling layers. LeNet-5 only uses 3 convolution and 2 pooling layers. With
a training on the huge ImageNet data set [24], Krizhevsky et al. [72] were able to win the
image classification task of the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC)
in 2012. The data set contains around 1.2 millions training images, 50, 000 validation images
and 150, 000 test images of 1000 classes of natural objects. The task of the ILSVRC classification
competition is to classify color images into the predefined 1000 distinct classes. Consequently,
the output of AlexNet is a 1000-dimensional vector. In this chapter, we pay special attention to
AlexNet since it uses relatively big filters of size 11× 11 in the first layer. This size is suitable
to set up local precision shearlet filters in contrast to smaller sizes often used in other CNN
architectures. Figure 6.6 shows the architecture of AlexNet. Two GPUs have been used in the
original implementation. The top layer part in the figure is carried out by one GPU, the lower
part by the other.

In the following years of the ImageNet challenge, the number of layers continued to increase
[63, 113, 115], reaching over 150 layers. One of these networks, namely the VGG16 [113], is
used in the current top performing algorithms for pedestrian detection [9, 32, 127]. Therefore,
we also consider this network for the integration of shearlets. The VGG16 network uses 13
convolutional layers, 5 pooling layers and 3 fully-connected layers. Therefore, it has 16 layers
containing weights. One of the main characteristics of this network is that is uses 3 × 3 filters
in all convolution layers. Since this size is too small to define multiscale shearlet filters, we
need to adapt this architecture for our shearlet integration. We will describe our adaptation in
Section 6.2.2.

6.1.3 Pedestrian Detection Algorithms using CNNs

As described by Benenson et al. [8], the first approaches using CNNs for the task of pedestrian
detection did not yield an improvement compared to hand-crafted feature detectors, although
CNNs already dominated classification challenges at that time. A reason behind this observation
is that object detection is much more complex than its classification. Objects shall not only be
classified but also localized without detailed information concerning size and number of objects
in the image.

Only by the development of the R-CNN approach of Girshick et al. [42], this problem could
be resolved. R-CNN is the abbreviation for Regions with CNN features. This approach utilizes
Region Proposals. That means, Regions of Interest (RoI) are extracted first by an external
algorithm. After these regions are scaled to a specific size, features for each RoI are extracted
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(a) R-CNN: Regions with CNN features [42].

(b) Fast R-CNN: Extension of R-CNN utilizing a RoI pooling layer [41].

Figure 6.7: illustration of the first successful detection algorithms utilizing CNNs.

by a CNN. These features are then learned by an SVM classifier per class for the classification
of each RoI. Figure 6.7a illustrates the procedure of R-CNN.

Main drawbacks of R-CNN are the runtime and the expensive training. The R-CNN procedure
is relatively slow, since CNN features have to be computed for each RoI separately. For deep
networks, this approach results in time consuming computations that are performed multiple
times in case RoIs are overlapping. Furthermore, the training has to be performed in several
steps. First, a CNN fine-tuning is performed followed by a training of SVM according to the
CNN features. Finally, a bounding box regressor is trained to reduce localization errors.

To resolve these drawbacks, Girshick [41] developed the Fast R-CNN algorithm by the intro-
duction of RoI pooling layers. Figure 6.7b illustrates the Fast R-CNN approach. An important
insight for this approach is that the weights of convolutional layers are independent of the input
size. Only the fully-connected layers require a fixed input size. The purpose of the RoI-Pooling
is to project the features provided by the last convolutional layer onto a fixed sized feature
vector. Like the R-CNN algorithm, Fast R-CNN receives an image and RoIs as input. Then,
it computes a feature map of the image by a convolutional network and projects the RoIs onto
this feature map. For that, the RoI pooling layer uses max-pooling to convert the feature map
of each RoI to a fixed size. With the aid of subsequent fully-connected layers, a feature vector
for each RoI is provided. The output of the algorithm contains two components. First, it de-
termines the object class with the highest classification certainty for each region and second the
bounding box for each object.

Still, the Fast R-CNN approach has the drawback that it requires RoIs computed by an external
algorithm. Therefore, the detection quality of Fast R-CNN is depending on the quality of the
precomputed Region Proposals. To resolve this dependency, Ren et al. [109] developed the Faster
R-CNN algorithm. It is an extension of Fast R-CNN by inserting a so-called Region Proposal
Network (RPN) after the last convolutional layer. The task of this network is to determine RoIs,
which are then given the Fast R-CNN algorithm as input. The general architecture of Faster
R-CNN is shown in Figure 6.8.
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Figure 6.8: Architecture of Faster R-CNN [109].

The RPN operates as a sliding window detector, i.e. it is slid over the feature map while an
evaluation takes place at each location of it. This procedure is carried out by a convolutional
layer with filters of small size, e.g. 3 × 3. In that way, for each position of the slid window,
another feature is computed, which is given to two fully-connected layers as input. These layers
determine if an object is present in the corresponding region and as the case may be, the
bounding box of it. Since there can be multiple objects within one region, a fixed number of so-
called anchors is considered for each region. These anchors represent different scales and aspect
ratios of an object. In [109], three scales are used with three aspect ratios respectively, i.e. nine
anchors in total. Finally, the outputs of the fully-connected layers are determined in relation to
the anchors. Figure 6.9 shows the structure of the Region Proposal Network assuming that the
last layer contains 256 filters.

Faster R-CNN provides very good results in relatively short runtime for general object detection
tasks, see [109]. However, Zhang et al. [127] show that this approach has an issue with the
specific task of pedestrian detection measured on the Caltech data set. Interestingly, the results
of the RPN part are quite good but the detection rates decline after utilization of the Fast
R-CNN algorithm. The authors reason this finding with the small pixel size of pedestrians
in the Caltech data set, whereas the filters of the last convolutional layer operate on a large
image section. Due to this mismatch, useful information may get lost in the RoI pooling layer.
Furthermore, Zhang et al. [127] argue that general object detection and pedestrian detection
have different difficulties. In general object detection, the main root cause for false predictions is
the presence of multiple object classes. In contrast, pedestrian detection mainly struggles with
hard background instances similar to pedestrians, such as streetlights.

Derived from their findings, Zhang et al. [127] developed the RPN+BF algorithm. Since RPN
delivers quite good results, this procedure is used to generate bounding boxes and corresponding
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Figure 6.9: Structure of the Region Proposal Network [109].

detection certainties. In combination with the features computed by the RPN, these outputs are
given a Boosted Forrest of [38] as input to provide the final results. Specific anchors reflecting
the properties of pedestrians are used for the RPN part. Nine different scales are used but only
one aspect ratio with value 0.41, which is the mean aspect ratio of pedestrians in the Caltech
data set. Similar to the AdaBoost classifier we used in Chapter 5, the Boosted Forrest classifier
is trained in multiple steps with bootstrapping. To resolve the issues caused by small sized
pedestrians, not only the features of the last convolutional layer are used but also features of
previous layers. The RPN+BF algorithm achieves a log-average miss rate of 9.6%, which made
it the best known approach at the date of its publication. In comparison, Faster R-CNN only
achieves 20.2%.
A subsequent approach was introduced by Du et al. [32]. This algorithm is called Fused
DNN, it is illustrated in Figure 6.10. Similar as in the RPN+BF approach, the first step is
the generation of pedestrian candidates. In this case, these candidates are provided by the
Single shot multibox detector (SSD) [89]. The SSD uses the VGG16 architecture as a basis but
adds further convolutional layers at the end of the network. In total seven layers generate the
pedestrian candidates by which different image scales are considered. The threshold for the
detection certainty is set to a very small value of 1% such that as many pedestrians as possible
are detected. However, this produces many false positives.
The generated candidates are then given as input to one or more classification networks with the
aim to scale their confidence scores. Let pm be the score that classification network m provides
for a candidate. The SSD score SSSD is then multiplied by a factor

am := max
(
pm
a
, b

)
,

where the required constants are set as a = 0.7 and b = 0.1 by cross validation, see [32].
Consequently, the confidence gets increased if the network classifies the candidate as a pedestrian
with a score pm > a. Otherwise it is scaled by a factor am < 1 but not less than b in order to
prevent any classification network from dominating. The score computed by the algorithm can
be expressed by

SFDNN = SSSD

M∏
m=1

am,

where M is the number of classification networks used. In [32], the utilization of the two
networks GoogLeNet [115] and ResNet-50 [63] yields a log-average miss rate of 8.65% for the
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Figure 6.10: Architecture of Fused DNN [32].

Caltech benchmark. In addition, Du et al. [32] utilize the semantic segmentation network of
[126] for a parallel classification in order to further improve the detection rates. This network
classifies each pixel to the two classes “pedestrian” and “no pedestrian”. The score SFDNN is
preserved in case the pixels belonging to a pedestrian account for at least 20% of the bounding
box. Otherwise, the score is reduced with respect to size of overlapping area. The combined
score is expressed by

Sall =

SFDNN , if Am
Ab

> 0.2
SFDNN max

(
Am
Ab
ass, bss

)
, otherwise,

where Ab is the area of the bounding box and Am the area within Ab belonging to a pedestrian
in the semantic segmentation mask. Again, the required constants are set by cross validation
with ass = 4 and bss = 0.35. With the utilization of the semantic segmentation network, the
log-average miss rate improves to 8.18%. Not surprisingly, the runtime increases significantly.
Du et al. [32] report an increase from 0.16s per frame to 2.48s with the usage of a Titan X GPU.

Finally, we present the approach of Brazil et al. [9], named simultaneous detection and seg-
mentation R-CNN (SDS-RCNN). This procedure combines insights from RPN+BF and Fused
DNN and achieves currently the best results in the Caltech benchmark. The architecture of
SDS-RCNN is illustrated in Figure 6.11a. The procedure consists of two stages. First, an RPN
is used for the generation of pedestrian candidates and corresponding scores. As basis for the
computation of feature maps, Brazil et al. [9] use layers of the VGG16 model pretrained on
ImageNet. The generated candidates are then given to a classification network similar as in [32].
This network also consists of VGG16 layers including the first two fully-connected layers. Again
similar to [32], the candidate scores are adjusted by the classification network. Let p1

i , i ∈ {0, 1},
be the RPN score for class i and p2

i the score of the classification network accordingly. The final
score is computed by

p = ep
1
1+p2

1

ep
1
1+p2

1 + ep
1
0+p2

0
.

Consequently, an exceedingly confident score is obtained in case both networks yield the same
result. Otherwise, the result corresponds to the value of the more confident network. Therefore,
it is desirable that at least one network is confident with its classification in case of differing
results provided by the two networks.
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(a) Architecture of the SDS-RCNN algorithm.

(b) Visualization of RPN feature maps without and with semantic seg-
mentation.

Figure 6.11: Illustration of the key features of the SDS-RCNN procedure [9].

In order to use the fully-connected layers of the VGG16 model for the classification network,
the candidates have to be scaled to a fixed size. The original VGG16 network requires an input
image of size 224 × 224. Since the most pedestrians in the Caltech data set have a height
between 30 and 80 pixels, the input image size is adjusted to 112 × 112 and the last pooling
layer is discarded. With the insight of [32] that the incorporation of semantic segmentation can
improve the detection rates, Brazil et al. [9] insert another layer in both stages of SDS-RCNN.
The so-called segmentation infusion layer outputs two masks in order to illuminate pedestrians
in the feature maps preceding the classification layers. The infusion layer is placed after the fifth
convolutional layer, where the input data has been down-sampled significantly. Therefore, Brazil
et al. [9] find that it is sufficient to train the infusion layer with box-based annotations instead
of pixel-wise ones. Figure 6.11b visualizes the influence of the segmentation infusion layer on
the RPN feature maps. Since the segmentation is performed on already computed features, its
incorporation does not effect the runtime as much as for Fused DNN [32].

The training of SDS-RCNN proceeds in two phases. First, only the RPN is trained, whereas
the weights of the first four convolutional layers are set as fixed. Subsequently, the classification
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network is trained with pedestrian candidates generated by the RPN. Also the first four layers
of the classification network are set as fixed. As a result, two different feature maps are obtained
by the networks. The SDS-RCNN algorithm achieves a log-average miss rate of 7.36%, which is
currently the best result in the Caltech Pedestrian Detection Benchmark. The Matlab code of
it is available online under https://github.com/garrickbrazil/SDS-RCNN.

6.2 Integration of Shearlets in CNNs

As we have seen in the previous chapter, currently all best performing pedestrian detection
algorithms in the Caltech benchmark are based on CNNs. However, it may be possible to achieve
even better results if one incorporates “traditional” object detection approaches and theoretical
frameworks. In Chapter 5, we showed that shearlets provide the framework to achieve the best
performing hand-crafted features for pedestrian detection. Therefore, we integrate shearlets in
a CNN and analyze in which way we can benefit from it.

In the following, we first have a look at publications related to our approach. Here, we find
insights about the functionality of CNNs justifying our basic idea. Subsequently, we derive a
concept for the integration of shearlets in neural networks. Finally, we present the implementa-
tion framework we use in our work. Especially, we describe the deep learning framework Caffe
and our strategy to incorporate shearlets in it.

6.2.1 Related Work

In [116], Szegedy et al. find an instability of deep neural networks against certain perturbations
of its input. By small variations of test images with the aim to maximize the prediction error
of the network, the authors create adversarial images. These perturbations are imperceptible
to the eye but they cause the network to misclassify the image. Furthermore, the applied
perturbations are robust in a sense that neural networks with different learning parameters and
training data still are subject to the same misclassification. Thus, a theoretical treatment of
neural networks should especially investigate the stability under various transformations such
as scalings, translations, deformations.

A first approach to provide such a stability is made by Bruna and Mallat [10]. Here, the wavelet
scattering transform introduced in [92] is implemented by a convolutional network. Bruna and
Mallat set up two-dimensional wavelets by dilating a band-pass filter ψ by 2j for j ∈ Z and by
rotating by rθ ∈ Rθ, where Rθ is a set of rotations of angles θ = 2kπ/K for 0 ≤ k < K ∈ N, i.e.

ψj,θ (x) := 2−2jψ
(
2−jrθx

)
. (6.2)

The corresponding wavelet transform of a signal f ∈ L2(R2) with respect to j and rθ is computed
by f ∗ψj,θ. For a sequence p = ((j1, θ1) , (j2, θ2) , . . . , (jl, θl)) also called path of length l ∈ N, the
scattering transform is given by

S̃p (f) := µ−1
p

∫
R2
Upf (x) dx,

with
Upf := |||f ∗ ψj1,θ1 | ∗ ψj2,θ2 | · · · ∗ ψjl,θl |

and the Dirac response
µp :=

∫
R2
Upδ (x) dx.

https://github.com/garrickbrazil/SDS-RCNN
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The scattering transform is a translation invariant representation which is Lipschitz-continuous
to deformations. For setting up a network, a windowed scattering transformed in the neighbor-
hood of x ∈ R2 is used which is defined by

Spf (x) := Upf (x) ∗ φ2J (x) =
∫
R2
Upf (y)φ2J (x− y) dy

= |||f ∗ ψj1,θ1 | ∗ ψj2,θ2 | · · · ∗ ψjl,θl | ∗ φ2J (x) ,

with a scaled low-pass filter φ2J (x) = 2−2Jφ(2−Jx) and a predefined scale 2J . The layer l of
the scattering convolution network is defined by the propagated signals (Upf)p∈Pl , where Pl is
the set of all paths p := ((j1, θ1) , . . . , (jl, θl)) of length l. Correspondingly, the filters are not
learned but given by predefined wavelets. Bruna and Mallat [10] employ this network to the
task of classification of handwritten digits and achieve state-of-the-art results.

Oyallon et al. [104] utilize a network with wavelet scattering to the task of object classification.
This network is extended by Oyallon and Mallat [103] by the application of a second order
wavelet transform. Given an image f ∈ L2(R2), the output of the network with J layers,
denoted by fJ , is computed by two wavelet transforms. At a given depth j1 in the network, the
absolute value of the spatial wavelet transform at scale j1 is computed. The output f1

j1 can be
expressed by

f1
j1 (x, θ) :=

∣∣∣f ∗ ψj1,θ (2j1−1x
)∣∣∣ .

In order to obtain a representation which is stable to rotations and to deformations along
rotations, a second wavelet transform is computed along the angle parameter θ. This transform
is called roto-translation wavelet transform. It is computed by convolutions with the three
dimensional wavelet

ψj,β,j̃ (x, θ) := ψj,β (x)ψj̃ (θ) ,

with a spatial wavelet ψj,β(x) as in (6.2) of scale j > j1 and an angular wavelet ψj̃(θ) of scale
2j̃ for 1 ≤ j̃ ≤ J̃ < log2K. The output f2

j for scale j > j1 is given by

f2
j (x, θ) :=

∣∣∣f1
j1 ∗ ψj,β,j̃

(
2−j−1x, 2−j̃−1θ

)∣∣∣ .
For the final output of the network at layer J , the image as well as the first and the second order
coefficients are averaged at scale 2J , i.e.

fJ :=
{
f ∗ φ2J , f

1
j ∗ φ2J , f

2
j ∗ φ2J

}
1≤j≤J

,

with the scaled low-pass filter φ2J . According to Oyallon and Mallat [103], the instability
against perturbations found by Szegedy et al. [116] can be avoided by the usage of the roto-
translation wavelet transform. The roto-translation scattering networks achieve comparable
results to unsupervised deep learning approaches. However, supervised learning procedures
score significantly better results. An increase of the number of wavelet layers does not yield a
classification improvement. To further improve the classification results, Oyallon et al. [102]
introduce Deep Hybrid Networks. The first layers of these networks are initialized and fixed
by roto-translations followed by a common CNN architecture. This way, comparable results to
standard CNN approaches can be achieved while less layers have to be learned.

All approaches presented above are based on the work of Mallat [92]. They are restricted to the
application of wavelets in convolutional networks. Therefore, Wiatkowski and Bölcskei [122, 123]
extend their theoretical analysis to more general cases. More precisely, the layer l of a network
is build up on a module consisting of a semi-discrete frame and Lipschitz-continuous operators.
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Based on atoms gλl ∈ L1(R2) ∩ L2(R2), a semi-discrete frame for L2(R2) is a collection Ψl :=
{TbIgλl}b∈R2,λl∈Λl , with translation (Ttf)(x) = f (x− t), t ∈ R2, involution (If)(x) := f(−x)
and a countable index set Λl, if there exist 0 < A ≤ B <∞ such that

A ‖f‖22 ≤
∑
λl∈Λl

∫
R2
|〈f, TbIgλl〉|

2 db =
∑
λl∈Λl

‖f ∗ gλl‖
2
2 ≤ B ‖f‖

2
2 ,

for all f ∈ L2(R2). The following definitions and statements are abstracted from [123].

Definition 6.1. For l ∈ N, let Ψl be a semi-discrete frame for L2(R2) and let Ml : L2(R2) →
L2(R2) and Pl : L2(R2)→ L2(R2) be Lipschitz-continuous operators with Mlf = 0 and Plf = 0,
respectively. Then, the sequence of triplets

Ω := ((Ψl,Ml, Pl))l∈N

is called a module-sequence. In each frame of the module-sequence, one of the atoms is designated
as the output-generating atom χl−1 := gλ∗

l
, λ∗l ∈ Λl, of the network layer l − 1.

Based on such a module-sequence, the operator of a network layer and the feature extractor
of a network are defined as follows. The corresponding network architecture is illustrated in
Figure 6.12.

Definition 6.2. Let Ω = ((Ψl,Ml, Pl))l∈N be a module-sequence, let {gλl}λl∈Λl be the atoms
of the frame Ψl and let Sl be the pooling factor associated with the network layer l. Define the
operator Ũl associated with layer l ∈ N of the network as Ũl : Λl × L2(R2)→ L2(R2),

Ũl (λl, f) := Ũl [λl] f := SlPl (Ml (f ∗ gl)) (Sl·) .

Define the set Λl1 := Λ1×Λ2× · · ·×Λl as well as Λ0
1 := {∅} and Ũ0 [∅] f := f for all f ∈ L2(R2).

Furthermore, the operator is extended for q ∈ Λl1 to

Ũ [q] f = Ũ [(λ1, λ2, . . . , λl)] f
:= Ũl [λl] · · · Ũ2 [λ2] Ũ1 [λ1] f,

with Ũ [∅] f := f .

Then, the feature extractor ΦΩ based on Ω maps f ∈ L2(R2) to its feature vector

ΦΩ (f) :=
∞⋃
l=0

Φl
Ω (f) ,

where Φl
Ω (f) :=

{(
Ũ [q] f

)
∗ χl

}
q∈Λl1

, with χl−1 := gλlfor all l ∈ N.

According to Wiatkowski and Bölcskei [123], the feature extractor ΦΩ is translation invariant in
a way that it becomes more translation invariant as the network depth increases. Furthermore,
the authors provide a bound on the sensitivity of the feature extractor with respect to time-
frequency deformations defined by

(Fτ,ωf) (x) := e2πiω(x)f (x− τ (x)) ,

with ω ∈ C(R2,R) and τ ∈ C1(R2,R2). We summarize these results in the following theorem.
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Figure 6.12: Network architecture of a deep CNN feature extractor ΦΩ [123]. The index λ(k)
l is

associated with the k-th atom g
λ

(k)
l

of frame Ψl in network layer l.

Theorem 6.3. Let Ω = ((Ψl,Ml, Pl))l∈N be a module-sequence with frame upper bounds Bl > 0
and Lipschitz constants Ll, Rl > 0 of the operators Ml and Pl such that

max
(
Bl, BlL

2
lR

2
l

)
≤ 1, for all l ∈ N.

i. Let Sl ≥ 1, l ∈ N, be the pooling factor of the network layer l and assume that the operators
Ml and Pl commute with the translation operator Tt, i.e.

MlTtf = TtMlf, PlTtf = TtPlf,

for all f ∈ L2(R2), t ∈ R2 and l ∈ N. The features Φl
Ω (f) generated in network layer l

satisfy
Φl

Ω (Ttf) = Tt/(S1···Sl)Φ
l
Ω (f) ,

for all f ∈ L2(R2), t ∈ R2 and l ∈ N, where TtΦl
Ω (f) refers to the element-wise application

of Tt. If, in addition, there exists a constant C1 > 0 such that the Fourier transforms χ̂l (ξ)
of the atoms χl satisfy the decay condition

|χ̂l (ξ)| |ξ| ≤ C, a.e. ξ ∈ R2, for all l ∈ N0,

then ∑
q∈Λl1

∥∥∥Φl
Ω (Ttf)− Φl

Ω (f)
∥∥∥2

2


1/2

≤ 2π |t|C
S1 · · ·Sl

‖f‖2 ,

for all f ∈ L2(R2) and t ∈ R2.

ii. There exists a constant C2 > 0 such that for all f ∈ L2(R2) that are band-limited, ω ∈
C(R2,R), and τ ∈ C1(R2,R2) with Jacobian matrix Dτ satisfying ‖Dτ‖∞ ≤ 1/4, the
feature extractor Φl

Ω for l ∈ N satisfies∑
q∈Λl1

∥∥∥Φl
Ω (Fτ,ωf)− Φl

Ω (f)
∥∥∥2

2


1/2

≤ C2 (R ‖τ‖∞ + ‖ω‖∞) ‖f‖2 .
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Figure 6.13: Visualization of the first layer of AlexNet [72].

6.2.2 Shearlet Initialized CNNs

In our work, we adapt some ideas of the approaches presented above. But instead of wavelets,
we use shearlets since they are an extension of wavelets especially developed for the treatment
of multivariate data such as images. Furthermore, Wiatowski and Bölcskei [123] provide a
justification of our approach from a theoretical point of view. However, we do not initialize
the first layers completely by shearlets but only a portion of it. We describe the reasoning for
this procedure on the basis of Figure 6.13. It visualizes the filters which have been learned
in the first convolutional layer of AlexNet [72]. In the original implementation, each layer of
the network has been splitted in two parts and trained on two GPUs separately. Since the
communication between the two GPUs only happens at particular locations in the network,
the first half of the filter set is significantly different to the second half. For our work, we can
find some valuable characteristics of the filters. It appears that roughly one half of the filters
is used for edge detection. These filters are characterized by straight lines oriented in different
directions. They show a close resemblance to shearlet filters, however they appear to be slightly
noisy. Furthermore, one cannot recognize particular scalings. The rest of the filters in this layer
mostly detect color combinations in the image, which cannot be realized by the application of
shearlet filters.

For the generation of our Shearlet Initialized CNN (SI-CNN) based on AlexNet, we proceed as
follows. First, we use the structure of AlexNet and initialize one half of the filters in the first
layer by specific precomputed shearlet filters. To this end, we may use one or more shearlet
systems. Then, we use a random distribution of the weights for the rest of the filters. Let Γ1
denote the filter set of the first convolutional layer containing n1 filters. If we use ns shearlet
systems Ψ1, . . . ,Ψns with a total number of η shearlets, we have

Γ1 :=
{

Ψ1, . . . ,Ψns , γ
1
1 , . . . γ

1
n1−η

}
,

where γ1
1 , . . . γ

1
n1−η are randomly initialized filters. Finally, we train this network from scratch.

The usage of pretrained posterior layers does not appear useful since they depend on the filters
of the first layer. In Section 6.3, we experiment with two options. We either fix the shearlet
filters or we use them only for initialization but leaving them trainable. In the first case, one
half of the first layer convolves the input image with shearlet filters. In fact, this portion of
the first layer computes the shearlet transform of the input image. In 6.14, we illustrate our
approach on the integration of shearlets in a CNN.

For our approach, the advantage of the AlexNet architecture is the filter size of 11 × 11 in
the first convolutional layer. For this size, it is feasible to construct filters with local precision
shearlets. Other available shearlet implementations such as the FFST [60, 61] and ShearLab
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Figure 6.14: Illustration of the shearlet integration into a CNN. The filter ψ represents a shearlet
whereas γ1, γ2 and γ3 denote randomly initialized filters of the first, second and third convolu-
tional layer. The feature map after the first convolutional layer F1 consists of the local precision
shearlet transform and the convolution result with the filters γ1, which is denoted by F1/2.

3D [77] create shearlet filters a lot bigger than 11 × 11. In contrast to AlexNet, the VGG16
network used for the SDS-RCNN algorithm [9] uses filters of size 3×3 in all convolutional layers.
Even if we combine the first two convolutional layers before the first pooling layer, we still have
a 5 × 5-sized receptive field with respect to the input image. This size is too small to create
shearlet filters with adequate quality. Therefore, we have to adapt the network architecture. We
use 9× 9-sized filters in the first convolutional layer and directly attach the first pooling layer.
Despite the increased filter size, we can still save training time if we fix the shearlet filters.

Since a training from scratch with a versatile data set like ImageNet consumes a lot of time, we
train our networks with smaller data sets. As we lose accuracy thereby, we train the standard
network corresponding to the respective SI-CNN with the same data sets. As a result, we obtain
reference values which tell us if our approach is promising.

6.2.3 Implementation Details

For our implementation of CNNs, we use the open source framework Caffe [66]. This framework
has been developed by the Berkeley Vision and Learning Center and is especially designed for
computer vision tasks. A major advantage of Caffe is its modularization, which enables us to
quickly adapt existing CNN models. In addition to it, the separation of the model definition with
the protocol buffer language by Google and the actual implementation in C++ facilitates a rapid
evaluation of new models. For more details about protocol buffers, see https://developers.google.
com/protocol-buffers/. Furthermore, Caffe provides interfaces to Python and Matlab which can
simplify implementations. In particular, we use the Matlab interface for the implementation
of the SDS-RCNN algorithm. The Python interface is employed for the visualization of the
filters in the first convolutional layer of our networks. The Python functions for this feature are
available under https://github.com/smistad/visualize-caffe/.

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://github.com/smistad/visualize-caffe/
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Caffe stores all data (inputs, weights, gradients) in structures called blobs. These blobs are
multidimensional arrays which store data for CPU as well as for GPU calculations. The transfer
from CPU to GPU and vice versa is carried out by a SyncedMem class. Any value in a blob
can be read as constant or as variable. Especially, the constant access is used to minimize the
transfer between CPU and GPU.

The application of functions in Caffe is implemented by layers. A layer transfers one or more
(bottom) blobs into one or more (top) blobs. Particular functions like the ReLU function can be
calculated “in place”, i.e. without an additional blob. Each layer implements a setup function
as well as one backward pass and one forward pass for CPU and GPU respectively. The setup
function initializes the network layers. The forward pass calculates the output of the network
layers with input of the bottom blobs and delivers it to the top blobs. The network architecture
can be specified simply by the definition of layers and corresponding bottom and top blobs in a
.prototxt file.

Caffe uses so-called weight filler for the initialization of weights in a network layer. We make
use of these weight fillers for the initialization of a CNN with shearlets. Since the shearlet
transform is in fact a convolution, we use convolutional layers in Caffe and initialize them with
precomputed shearlet filters. To this end, we have a closer look at the structure of a blob in
Caffe, since the weights for the weight filler are also stored in blobs.

A blob for a convolutional layer has four dimensions (N,C,H,W ), where N is the number of
filters, C is the number of input channels, H is the height of the filters and W is the width of
the filters in pixels respectively. Due to the internal representation of a blob as one-dimensional
array, the value for index (n, c, h, w) is located internally at index ((nC + k)H + h)W + w.

For the computation of the shearlet filters, we use our Matlab implementation of local precision
shearlets already used in Chapter 5. With this implementation, we obtain a three-dimensional
matrix Wshear with dimensions (H,W,N) containing one or more local precision shearlet sys-
tems. To consider the number of input channels, we introduce a fourth dimension C and use
the same filters for each channel.

Now, the matrixWshear has to be converted into a structure that a Caffe blob expects. For that,
we make use of the indexing order described above. We have to perform an index shift since the
indexing above is based on C++ arrays starting with index 0, whereas Matlab indexing starts
with 1. Finally, we obtain a weight vector W̃shear ∈ RNCHW with

W̃shear ((((n− 1)C + c− 1)H + h− 1)W + w) =Wshear (h,w, n, c) ,

with h = 1, . . . ,H, w = 1, . . . ,W , n = 1, . . . , N and c = 1, . . . , C. Now, we export this vector
into a text file in which row i contains the weight that shall initialize the blob at position i− 1.
Finally, we can easily read this text file via C++ and integrate the corresponding function in
the Caffe header file filler.hpp.

6.3 Experiments

We split our experiments in two parts. First, we deal with the more simple task of pedestrian
classification. We use a modest training data set to speed up the training process and thus to
quickly evaluate different settings. Second, we apply our insights of the first step to the more
complex task of pedestrian detection. For that purpose, we use the SDS-RCNN algorithm [9]
presented in Section 6.1.3 and exchange the pretrained filters with our own ones.
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For the initialization of the first layer with shearlets, we use local precision shearlet systems.
Deduced from our experiments for the pedestrian detection with hand-crafted features in Sec-
tion 5.5, we always use three scales, i.e. j0 = 3. As indicated before, further scales reduce the
shearlet support to such an extent that they are useless for practical application. Furthermore,
we use the best performing degree of anisotropy in Section 5.5, i.e. α = 3/4. We mainly use 8
shearlets per scale, since this number is most suitable to attain the needed number of filters for
the shearlet initialization. Only when we obtain too many filters, we partly use 6 shearlets per
scale. The scope for development is mainly concerned with the spline order p and the number
of derivatives q of spline shearlets. We consider spline shearlets with q = 1 since they show
the best results for hand-crafted feature detectors, but also higher derivatives. These shearlets
show a strong similarity to the AlexNet filters in Figure 6.13. We remark that our filters do not
represent the complete shearlets at coarse scales. Small values at the border are “clipped off”.
In this way, our filters correspond to the learned filters in Figure 6.13. To change the size of
shearlet within a filter, we adapt the values of p and q as well as the sampling constant c.

6.3.1 Pedestrian Classification

For our first experiments, we use the AlexNet architecture. We initialize 48 filters of the first
layer with shearlets. For the remaining 48 filters, we use a random, Gaussian initialization with
mean 0 and standard deviation 0.01. Furthermore, we initialize the bias with 0. Except the
shearlet initialization, this corresponds to the standard initialization of AlexNet. On one side,
we evaluate the results if we fix the shearlet filters such that only the random initialized filters
are learned. In comparison, we evaluate what happens if we enable the shearlet filters for the
learning procedure.

Concerning the data set, we use samples of the Caltech data set with size 128×64. For training,
we use around 2 · 105 images for class 0, i.e. “no pedestrian”, and around 5 · 104 images for class
1. All images are sampled from the training portion of the Caltech data set. For test, we sample
4, 000 images for class 0 and 1, 000 for class 1 from the Caltech test data set. This amount of
images is sufficient for basic tests on the effect of the shearlet initialization.

Turning to the shearlet parametrization, we use five variants i ∈ {1, . . . , 5}. For the first four
variants, we apply (p1, q1) = (3, 1) and (p2, q2) = (7, 3). With 8 shearlets per scale, we get
2 · 24 = 48 shearlet filters as required. The three variants distinguish themselves by the choice
of different sampling constants. We denote the vector of sampling constants for variant i by
ci = (ci1, ci2), where cij is the sampling constant for (pj , qj). We set

c1 = (0.25, 0.35) ,
c2 = (0.30, 0.40) ,
c3 = (0.35, 0.45) ,
c4 = (0.45, 0.75) ,

such that the shearlets are represented smaller with each variant. Only with variant 4, the
shearlets of the coarsest scales are represented completely in the corresponding filters. This
filter variant is visualized in Figure 6.15. Each filter is shown three times, since we apply each
filter to all color channels of RGB images.

Finally, we consider a fifth variant which uses only shearlet filters and no randomly initialized
ones. We use filters of variant 2 and in addition shearlets with (p3, q3) = (7, 5) and (p4, q4) =
(5, 3), whereas we only use 6 shearlets per scale. Furthermore, we compute a low-pass filter for
each (p, q)-pair to have a closer correspondence to the original AlexNet filters. To reach the
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Figure 6.15: Visualization of the shearlet filters according to variant 4.

required number of 96 filters, we include shearlets with just one scale and 8 shears. To be very
different from the remaining filters, we use (p5, q5) = (11, 9).

Now, we train our five variants with fixed shearlet filters on the data set described above. We
use a maximum number of 40, 000 iterations with a batch size of 128 and a learning rate of 0.01.
Table 6.1 shows the best classification result for each variant on the test data set itemized by
classes as well as the result after only 5, 000 iterations. The percentages state the proportion of
correctly classified images of each class. We remark that variant 4 has been realized at a later
stage of our work. Therefore, results for this variant are not shown in the table. We recognize
a clear advantage of SI-CNNs at an early stage of training after 5, 000 iterations. This speaks
for the utilization of an initialization with shearlets. Throughout the training, the randomly
initialized networks catch up but do not reach the SI-CNN results completely. Furthermore we
can see that SI-CNNs reach their best results earlier than randomly initialized networks.

The results of all networks show a better classification of class 0. Therefore, we adapt the
training data set. To increase the proportion of pedestrians, we remove one half of the images
for class 0 for the training set as well as for the testing set. Subsequently, we flip each image to
obtain a bigger amount of images. In this way, we obtain a training data set of around 2 · 105

images of class 0 and 1 · 105 images of class 1. The test data set then contains around 2, 000
images of class 0 and 1, 000 images of class 1. Table 6.2 shows the results governed with the
new data set, whereas we illustrate the results at an early stage of the training already after
1, 000 iterations. Results of variant 4 after 1, 000 iterations are missing, again because it has
been developed at a later stage of our work.

We can recognize differences at an early stage of the training very clearly now. After 1, 000
iterations, a randomly initialized network classifies every test image as “no pedestrian”. In
comparison, SI-CNNs deliver useful results already at this stage. Again, the results get more
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Variant Iteration Class 0 Class 1 Overall
Gaussian 5, 000 98.86% 89.16% 96.91%
Gaussian 40, 000 99.72% 95.08% 98.79%

1 5, 000 98.91% 96.69% 98.47%
1 30, 000 99.62% 96.39% 98.97%
2 5, 000 99.37% 96.39% 98.77%
2 20, 000 99.49% 96.08% 98.81%
3 5, 000 98.23% 99.10% 98.41%
3 10, 000 99.57% 96.49% 98.95%
5 5, 000 99.47% 96.08% 98.79%
5 20, 000 99.49% 96.49% 98.89%

Table 6.1: Classification results after the first training.

Variant Iteration Class 0 Class 1 Overall
Gaussian 1, 000 100% 0% 67.02%
Gaussian 25, 000 99.25% 97.36% 98.63%

1 1, 000 99.35% 92.70% 97.16%
1 15, 000 99.10% 97.46% 98.56%
2 1, 000 98.90% 91.08% 96.32%
2 20, 000 99.10% 97.77% 98.66%
3 1, 000 99.20% 91.99% 96.82%
3 20, 000 99.15% 98.17% 98.83%
4 10, 000 98.95% 99.09% 99.00%
5 1, 000 98.45% 96.15% 97.69%
5 25, 000 99.10% 98.07% 98.76%

Table 6.2: Classification results after the second training.

similar throughout the training. Still, the best performing network is a SI-CNN, more precisely
variant 4. Furthermore, we recognize that randomly initialized networks show a more unequal
treatment of the two classes. Images of class 1 are misclassified significantly more often than
images of class 0. Finally, we see that variants with a bigger value of the sampling constant
perform better.

Now, two questions arise. First, since we have fixed the shearlet filters until now, which results
will we achieve if we enable them for training? Second, what will happen if we train with a
maximum number of iterations bigger than 40, 000 iterations?

First, we consider variant 5 which is the only one that uses shearlet filters only. Again, we train
with a maximum number of 40, 000 iterations but with learnable shearlets now. The best result
is achieved after 20, 000 iterations with a classification rate of 99.15% for class 0, 96.96% for
class 1 and 98.43% overall. This result is inferior to the one with fixed filters. Therefore, we will
not evaluate variant 5 during further experiments. Furthermore, we will not use variants 1 and
2 since Table 6.2 reports inferior results for them. Now, we train the remaining variants 3 and 4
with a maximum of 350, 000 iterations and use fixed and learnable shearlet filters respectively.
We multiply the learning rate of 0.01 by 0.1 each 100, 000 iterations, as recommended in the
Caffe tutorial1. In addition, we train our reference network with Gaussian initialization with
the same settings. Table 6.3 reports the classification results after this training.

1http://caffe.berkeleyvision.org/tutorial/

http://caffe.berkeleyvision.org/tutorial/
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Variant Iteration Class 0 Class 1 Overall
Gaussian 350, 000 99.45% 96.55% 98.49%
3 / fixed 350, 000 99.30% 97.67% 98.76%

3 / learnable 350, 000 99.50% 97.06% 98.70%
4 / fixed 350, 000 99.40% 97.67% 98.83%

4 / learnable 350, 000 99.55% 96.96% 98.70%

Table 6.3: Classification results after the third training.

For both variants of shearlet initialization, we achieve better results in case they are fixed and
not learnable. Again, variant 4 shows up to be more successful than variant 3. Both shearlet
networks provide significantly better results than the randomly initialized network, especially
for class 1.

As a final test concerning pedestrian classification, we use an externally pre-trained AlexNet
and compare its performance to the one of our SI-CNNs. Such models can be downloaded from
the so-called Model Zoo of Caffe under https://github.com/BVLC/caffe/wiki/Model-Zoo. We
train this model on our data set for 150, 000 iterations with a learning rate of 0.01 and then
multiply the learning rate by 0.1 for a training of further 150, 000 iterations. The best result is
achieved after 20, 000 iterations with classification rates of 99.35% for class 0, 96.55% for class
1 and a total of 98.83%. Therefore, without any pre-training on diverse training data sets, we
achieve the same result with the SI-CNN of variant 4 as an extensively pre-trained network.

6.3.2 Pedestrian Detection

During our experiments concerning pedestrian classification, we have noticed that the shearlet
initialization of parts of the first layer has a positive effect on the classification results. Therefore,
we want to transfer our approach to the task of pedestrian detection. As indicated before, we
use the state-of-the-art algorithm SDS-RCNN [9]. In this approach, features are extracted by a
pre-trained VGG16 network. But until now, we do not have shearlet initialized VGG16 networks
available. Therefore, we first use AlexNet as a basic structure for feature extraction.

We utilize the AlexNet SI-CNN of variant 4 which we have trained with a maximum of 350, 000
iterations. According to the insights of the previous section, we always fix the shearlet filters.
As a reference network, we use the Gaussian initialized network trained with 350, 000 iterations
as well as the AlexNet model from the Caffe Model Zoo.

Originally, the filters of the convolutional layers before the second pooling layer are fixed during
the training of the SDS-RCNN algorithm. Since our pre-training is not as extensive as in the
original approach, we set these first filters, except the shearlet filters, as learnable. We take over
all other settings from the original SDS-RCNN algorithm. Especially, we start with a learning
rate of 0.001 and multiply it by 0.1 after 60, 000 iterations and stop the training after 120, 000
iterations.

The SDS-RCNN implementation delivers three log-average miss rates. The result when RPN is
used exclusively, the result with exclusive utilization of R-CNN and finally the result when the
classification probabilities are combined according to the procedure described in Section 6.1.3.

Table 6.4 shows the results of the SDS-RCNN application with different CNNs based on AlexNet.
The SI-CNN-v4 provides better results than the randomly initialized CNN. But the results are
significantly inferior to the rates of the AlexNet from the Model Zoo. We deduce that our
pre-training is not sufficient. However, the AlexNet from the Model Zoo also provides results in

https://github.com/BVLC/caffe/wiki/Model-Zoo
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Variant RPN R-CNN Fusion
Gaussian 62.83% 40.85% 38.89%

SI-CNN-v4 53.44% 39.54% 36.10%
Model Zoo 33.47% 26.11% 22.97%

Table 6.4: SDS-RCNN results with AlexNet models.

Figure 6.16: Visualization of 9× 9 sized shearlet filters for VGG16.

great need of improvement. The combined log-average miss rate of 22.97% is significantly higher
than the one we achieved with hand-crafted shearlet features in Section 5.5. We conclude that
AlexNet is not sufficient as the basis for the feature extraction.

Therefore, we use only the VGG16 architecture during our remaining experiments. As described
in Section 6.2, the filter size of the original VGG16 is too small for a straightforward shearlet
initialization. Our resolution is to utilize one layer with 9 × 9 sized filters instead of the first
two layers with filters of size 3 × 3. We split the 64 filters of this layer into 42 shearlet filters
and 22 randomly initialized filters. Concerning the shearlet filters, we use 8 shears per scale
with (p1, q1, c1) = (5, 3, 0.65) as well as 6 shears per scale with (p2, q2, c2) = (3, 1, 0.45). The
corresponding filters are visualized in Figure 6.16.

Furthermore, we use a second network with filters of size 7× 7 instead of 9× 9 in the first layer.
For these filters, we use the same spline parameters but use 6 shears for the first spline and
8 for the second one. For the sampling constants we use c1 = 0.85 and c2 = 0.6. The choice
of these sampling constants follows the observation from the previous section that we achieve
better results if the shearlets are not clipped off.

During our previous pedestrian detection experiments, we found that our pre-training was not
sufficient. Especially, our training data set only contained two classes so far. Therefore, we
want to use a more comprehensive data set to be able to extract more general features. We
choose the CIFAR-100 data set, which has been introduced in [71] and is online available under
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Variant RPN R-CNN Fusion
Reference / 3× 3 17.91% 24.65% 14.73%
Reference / 9× 9 18.51% 24.22% 14.76%
SI-CNN / 9× 9 15.93% 24.59% 13.74%
SI-CNN / 7× 7 21.42% 25.79% 17.01%

Table 6.5: SDS-RCNN results with VGG16 and pre-training with CIFAR-100.

https://www.cs.toronto.edu/∼kriz/cifar.html. The CIFAR-100 data set consists of 100 classes
with 600 images respectively. The images have size 32 × 32, whereby the fully-connected layer
of our network is built by relatively few neurons. This speeds up our training. Furthermore, the
data set contains images of persons, which may be beneficial for our task of pedestrian detection.

Unfortunately, the training of VGG16 with the CIFAR-100 data set yields some difficulties.
First, VGG16 is a relatively deep network, such that no convergence can be achieved with
Gaussian initialization. Simonyan and Zisserman [113] solved this problem by training more
shallow networks with random initialization and then using the trained filters for initialization
of the target network. We choose a different procedure and directly train the deep network with
the initialization method described by He et al. [62]. Instead of setting the standard deviation
of the Gaussian distribution fixed to 0.01, we count the number of inputs of a neuron n and then
set the standard deviation to

√
2/n. This type of initialization results in a good convergence

behavior, especially for neurons with the ReLU activation function.

Another issue we face is overfitting caused by the relatively small training data set of 50, 000
images. As a resolution, we first augment the data set by flipping each image. Second, we
perform a normalization over the training batches after each layer. This method is called a
batch normalization and introduced by Ioffe and Szegedy [65].

Finally, we remember that the first two fully-connected layers of VGG16 are used during the
training of the classification network of the SDS-RCNN algorithm. We cannot take over this
procedure, since we would need a training on images of size 224× 224. Therefore, we initialize
our fully-connected layers randomly for our training of SDS-RCNN.

Since we changed the architecture of VGG16, we use two reference networks. The first reference
network uses the original VGG16 with 3× 3 filters in the first layer, the second one uses 9× 9
sized filters. We train all networks with a maximum of 350, 000 iterations with a learning rate
of 0.01 that we multiply by 0.1 each 100, 000 iterations. The results are reported in Table 6.5.

We can see that the miss rates are significantly better than the ones with AlexNet. Since the
SI-CNN with 7 × 7 sized filters performs significantly worse than all other networks, we will
not consider this variant during our remaining experiments. Concerning the reference networks,
we do not find a significant difference in the detection quality if we use the original VGG16
architecture or the adapted one. However, the original architecture is more appealing since it
requires less memory. The SI-CNN with 9× 9 sized filters performs about 7% better in relation
to the reference networks. However, this improvement appears mainly in the RPN part.

In summary, we were able at all times to improve the classification and detection rates by a
shearlet initialization compared to corresponding reference networks. However, the achieved
log-average miss rate of 13.74% of a SI-CNN based on VGG16 and pre-trained on CIFAR-100 is
clearly inferior to the one reported by Brazil et al. [9]. By the utilization of the original VGG16
pre-trained on the enormous ImageNet data set [24] a log-average miss rate of 7.36% is reached.
We finally conclude that shearlets can improve neural networks but they cannot ease the need

https://www.cs.toronto.edu/~kriz/cifar.html
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of huge, comprehensive data sets for the training of CNNs. We leave the extensive trainings of
SI-CNNs with the ImageNet data set as a perspective for further research.

6.4 Conclusion

In this chapter, we evaluated in which way the initialization of the first layer of a CNN with
shearlets affects the performance of the network for the classification and the detection of pedes-
trians. Our basic idea is that early CNN layers intuitively perform an edge detection. From a
theoretical point of view, shearlets provide optimal filters for this task. To merge the theory
with procedures which have shown to deliver best results in practice, we initialize a portion of
the first layer filters by shearlets. The remaining filters are initialized and learned as in the
corresponding state-of-the-art procedures.

In our first experiments, we addressed only the classification of pedestrians. Here, we found
that CNNs initialized with shearlets in the first layer show satisfactory results already after
very early stages of the training. In comparison, randomly initialized networks can not provide
useful results after the same training stage. Furthermore, we measured that classification results
are always better if we fix the shearlet filters and do not enable them for training. During
all classification experiments, we achieved better results with shearlet initialization than with
corresponding reference networks.

In further experiments, we use these insights for the task of pedestrian detection. First, we
noticed that the shearlet initialization cannot improve relatively shallow networks as AlexNet
[72] such that they could be applied for the detection of pedestrians with state-of-the-art results.
Concerning deeper architectures, we were able to improve the detection performance of the
VGG16 model [113] by shearlet initialization trained on the CIFAR-100 data set. The original
VGG16 trained on the same data and with the same parameters cannot reach the results using
shearlets. However, the best result of the SI-CNN trained on CIFAR-100 is clearly inferior to
the one achieved with the utilization of the VGG16 pre-trained on the extensive ImageNet data
set as reported in [9]. This finding underpins the immense power of data for object detection
algorithms.

We conclude that shearlet initialization cannot ease the need of a pre-training with huge and
comprehensive data sets. Such a training requires a vast amount of time and specific hardware.
Considering one wants to estimate the behavior of a CNN with a new network architecture a
large-scaled training is not mandatory. Parameters can be adjusted more quickly if the training
is firstly restrained to smaller data sets. In this case the shearlet initialization can be very
beneficial, since we measured a better convergence behavior at the beginning of the training. As
a perspective for further research, it has to be evaluated in detail if the shearlet initialization
still leads to improvement in case of a training with an extensive data set such as ImageNet.
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“What really matters is what you do with what you
have.”

H.G. Wells

7
Embedded Realization

A major application area of pedestrian detection is the automotive sector. Currently deployed
warning or brake intervention systems in vehicles profit from an accurate pedestrian detection
to potentially save numerous lives. However, to be applied in a vehicle, a detection algorithm
has to be runable with restricted hardware requirements of an automotive Electronic Control
Unit (ECU), i.e. an embedded system. In addition, it has to provide a useful frame rate on this
hardware system.
In this chapter, we analyze in which way the local precision shearlet transform and a pedestrian
detection algorithm based on it can be realized on an embedded system. Therefore, we re-
implement our base detection algorithm shearFtrs-v1 in C++ programming language whereas
the NVIDIA Jetson TK1 developer kit [98] serves as an embedded target. As architectural
foundation the Robot Operating System (ROS) [100] is used, which is placed on a Ubuntu
operating system.

7.1 Hardware System

The developer kit Jetson TK1 from NVIDIA provides a platform, which uses the performance
of a graphic processor for the area of embedded systems and its tasks. It utilizes a NVIDIA
Kepler GPU with 192 CUDA Cores in combination with Quad-Core ARM Cortex A15 CPU
and 2 GB RAM. The NVIDIA Jetson contains a wide range of conventional periphery which
makes it useable for many applications. The kit includes

� 16 GB eMMC Memory

� 1 Full-Size HDMI Port

� 1 RTL8111GS Realtek GigE LAN

� 1 SATA Data Port

The complete content of the developer kit can be taken from its user guide [97]. In addition to
the platform, NVIDIA delivers a wide range of tools such as the IDE NSight or the analysis tool
Tegra System Profiler.
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Figure 7.1: NVIDIA Jetson TK1 developer kit [98].

7.2 Software System

A main focus for the choice of the software system is that it shall have high modularity and
easy extensibility. During research for suitable and available architectures, the Robot Operating
System (ROS) [100] and the Microsoft Robotics Developer Studio (MRDS) [94] appear. Our
hardware system and its development tools require a Ubuntu operating system. Since it is set
up on Ubuntu, we choose ROS as a basis for our software system. In 2007, Willow Garage
and the University of Stanford began the development of the Robot Operating Systems. It is a
mixture of OS and Middleware, whereas it is similar to a service oriented architecture. ROS is
based on a peer-to-peer communication connected to a buffer and a lookup system, which enables
to communicate with every process synchronous or asynchronous. With a microkernel design
based on multiple tools for build and run processes of the different components, ROS achieves
a high degree of isolation of each command. That means each command is an isolated execute
such that failures only influence the corresponding process and not the complete system. ROS
supports different types of programming languages, for example Python or C++. The peer-to-
peer communication is processed via XML-RPC, which is available in most of the programming
languages. The libraries of ROS are set up on the Ubuntu OS and are located above the layer
of device drivers, Ubuntu scheduling and file system. Thus, the Ubuntu scheduler directly
influences the ROS processes.

The basic principle of ROS is the parallel processing of a high amount of executes and the
synchronous or asynchronous exchange of information. The executes are mapped to nodes,
whereas each node subscribes itself via TCP/IP or UDP to the ROS master and delivers its
configuration. The master can be seen as a broker of the complete system. It is a declaration and
memory service, enabling the nodes to know each other and to communicate. Furthermore, the
master provides a parameter service. With this service, parameters and data can be stored and
retrieved flexibly. Thus, the ROS master fulfills the secondary function as a parameter database.
The communication between the nodes is performed via topics in the asynchronous case and via
services in the synchronous case. The communication via topics can be seen as an asynchronous
information bus. One or more nodes can write information on a topic, whereas one or more
nodes can retrieve this information. Services provide a synchronous request-answer interaction.
In each case, a communication medium is needed. Therefore, ROS provides messages composed
of a combination of kernel elements, such as integers or floats, and a container, which contains
the kernel elements.
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Figure 7.2: ROS communication.

7.3 System Architecture

The system architecture of our base detection algorithm is divided into ROS nodes. Each of
these nodes executes specific tasks and provides services according to them. Besides services, the
system also includes a publish/subscribe mechanism. This mechanism allows a node to subscribe
a specific topic in which another node is publishing. The partitioning in nodes modularizes the
system on a high level and allows easy extensions. Nodes are independent by each other and can
be executed on different hardware platforms at the same time. For example, one can execute all
computations on the embedded platform while the visualization is done on an external device.
A specialty of this system is the concept of action-servers, which can be seen as an abstraction
of services. In some cases, services consume relatively high runtime, e.g. for huge computations.
In these situations, the system does not know in which state the service is. Furthermore, the
service can not be terminated simply. For such cases, we design action-servers, which are part
of the ROS package actionlib.

Our system contains 7 nodes, which are independent executables. That means, the execution of
nodes is not affected from each other. In case of a failure situation on a node, the system is not
affected in total but only the respective process. Our nodes communicate via messages, which are
mostly included in service or action requests. Figure 7.3 shows an overview of our system where
nodes are illustrated as gray components. These nodes are connected via interfaces by which
they communicate with each other. Some nodes have special interfaces, which are illustrated in
red in Figure 7.3. These interfaces carry out special communication, e.g. to an external device.

The system is composed of following nodes.

� PD Initialization Node:
The PD Initialization Node computes mainly the shearlet filters according to the de-
scription in Chapter 3. They are provided to the remaining nodes in a topic via the
publisher pub PD Initialization PShearlets.

� PD Detection Node:
Given an input image provided by the PD InputOutput Node, the PD Detection Node
carries out the pedestrian detection.
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Figure 7.3: System architecture of our detection algorithm.

� PD InputOutput Node:
This node is the interface to the system environment and the stored data sets. The latter
can be loaded and be provided via a topic.

� PD Control Node:
The PD Control Node takes over the control of the complete system.

� PD Training Node:
This node contains the training of the AdaBoost classifiers. All relevant training data is
loaded and subsequent calculations are initiated.

� PD Calculation Node:
The PD Calculation Node carries out all fundamental calculations. These calculations
are provided via different action-servers.

� PD Visualization Node:
This node displays the detection results provided by the system.

7.3.1 Interfaces

To ensure the communication between the abovementioned nodes, we have to set up a precise
interface description. We will use ROS messages, ROS services and ROS actions as interfaces.
These communication concepts are provided by the ROS architecture. Figure 7.4 shows an
overview over the communication between the nodes. In the following, we will provide a complete
description of the interfaces in our system.

Messages

The concept of ROS messages is the fundamental building block of the communication in our
system. The system contains 47 messages and uses these messages in all interactions between the
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Figure 7.4: Communication overview of our system.
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Standard type Unit C++
bool unsigned 8-bit int uint8 t
int8 signed 8-bit int int8 t
uint8 unsigned 8-bit int uint8 t
int16 signed 16-bit int int16 t
uint16 unsigned 16-bit int uint16 t
int32 signed 32-bit int int32 t
uint32 unsigned 32-bit int uint32 t
int64 signed 64-bit int int64 t
uint64 unsigned 64-bit int uint64 t
float32 32-bit IEEE float float
float64 64-bit IEEE float double
string ascii string (4) std::string
time secs/nsecs signed 32-bit ints ros::Time
duration secs/nsecs signed 32-bit ints ros::Duration

Table 7.1: Standard types of ROS Messages

nodes. Messages are available as ROS standard types and stored in .msg files. The available types
are shown in Table 7.1. In addition, arrays of these standard types are allowed. A special case is
the message type sensr msgs/Image, which is contained in the ROS package Sensor Msg. This
message type is used for the transfer of images in a ROS system. In this chapter, the computer
vision library OpenCV is used. Therefore, the content of sensr msgs/Image message has to
be converted to a OpenCV compatible format. This task is carried out via the ROS package
CV Bridge. For a detailed description of the abovementioned packages, see [100].

For any of our 47 messages, classes and functions are available to convert a ROS datatype
into an OpenCV datatype and vice versa. Exemplary, Listing 7.1 shows function toMsg for
the message pShearlets. This function converts the data content of the message class and
stores it in the ROS message pShearlets. This specific message is implemented by the object
embedded pd::PShearlet pShearlets. In line 22, we have the conversion of an OpenCV image
to a sensr msgs/Image. The function MatToMsg will be described more detailed in Section 7.4.
The message pShearlets is part of an action-server or a service request and serves as a container
for the calculated shearlet parameters.

Topics

Topics are used to identify messages and to control the communication. A node writes messages
to topics such that another node can read this message via the corresponding topic. The com-
munication via topics can be seen as an asynchronous interaction paradigm. A node that has
subscribed a topic receives a notification if new data is available for this topic.

In our pedestrian detection system, we have 5 topics with 5 publishers which are
writing messages and 7 subscribers which are reading them. Exemplary, the pub-
lisher pub PD Initialization PShearlets writes the data of the shearlet parameters
on the topic PD Initialization Node/PShearlets. Correspondingly, the subscriber
sub PD Initialization Node PShearlets reads this data. The topic structure in this example
is illustrated in Figure 7.5.
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1 embedded_pd :: PShearlets PD_Util :: PShearlets :: toMsg ()
2 {
3 sensor_msgs :: Image result_image ;
4 cv_bridge :: CvImage cv_image ;
5 embedded_pd :: PShearlets pShearlets ;
6

7 pShearlets . nameOfShearlet = this -> nameOfShearlet ;
8 pShearlets . dim_img = this -> dim_img ;
9 pShearlets .supp = this ->supp;

10 pShearlets . shearsPerScale = this -> shearsPerScale ;
11 pShearlets . numOfAllShears = this -> numOfAllShears ;
12 pShearlets . nScales = this -> nScales ;
13 pShearlets . scalesUsed = this -> scalesUsed ;
14 pShearlets .RMS = this ->RMS;
15 pShearlets . ShearletIdx = this -> shearletIdxs ;
16 pShearlets . thresholdingFactor = this -> thresholdingFactor ;
17 pShearlets . flag_fourier = this -> flag_fourier ;
18

19 ros :: Time time = ros :: Time :: now ();
20 for (std :: size_t i = 0; i < Psi.size (); i++)
21 {
22 result_image = PD_Util :: MatToMsg (this -> Psi.at(i),"Psi", i, sensor_msgs ::

image_encodings :: TYPE_32FC1 );
23 pShearlets .Psi. push_back ( result_image );
24 }
25 return pShearlets ;
26 }

Listing 7.1: Conversion struct to PShearlets Message

Figure 7.5: Topic structure of message PShearlets
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1 # request
2 string text_in
3

4 ---
5

6 # response
7 PShearlets pShearlets

Listing 7.2: Service definition for Get PShearlets.

Services

Our system contains 12 services, which are provided by the nodes. Services are defined in .srv
files and compiled to source code by the ROS Client Library. The format of service definitions is
based on the one for messages and is extended by a request/response functionality. As can be seen
in Listing 7.2, the sections for request and response are separated by three consecutive ‘-’. Here,
the definition of the service Get PShearlets is shown as an example. This service is provided
by the PD Calculation Node and is used to communicate the current shearlet parameters.

Actions

Our system contains 4 actions, which are exclusively provided by the PD Calculation Node.
The reason behind it is that the PD Calculation Node executes all fundamental calculations
and that actions are designed for long term calculation periods. In contrast to services, actions
can be used synchronously and asynchronously. Actions are defined in .action files, while their
format is similar to the one of services. Listing 7.3 exemplarily shows the definition of the action
Shearlet Computation. It is separated into 3 sections, i.e. goal, result and feedback. Each
section contains message standard types as well as more complex messages, which are composed
of different standard types. The content of the sections can be described as follows:

� goal
A goal is sent from the action-client to the action-server. It contains data to achieve the
goal for which the action-server has been defined.

� feedback
A feedback is sent from the action-server to the action-client and delivers the progress of
the calculation. This information can be sent several times.

� result
A result is sent from the action-server to the action-client when the corresponding goal
is achieved. In contrast to a feedback, a result can only be sent once.

The action Shearlet Computation is executed by the shearlet computation action client
of the PD Initialization Node, such that the shearlets are computed according to the data
contained in the corresponding goal.

Parameter Server

The parameter server provides a platform where all parameters can be saved. It is offered by
the ROS master, which serves as a central interface in our system. Parameters can be up- or
downloaded via topics.
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1 # goal definition
2 int32 shearlet_type
3 int32 shearlet
4 int32 [] dim_image
5 int32 [] shearsPerScale
6 int32 numOfAllShears
7 int32 nScales
8 float32 [] supp
9

10 ---
11

12 # result definition
13 PShearlets pShearlets
14

15 ---
16

17 # feedback
18 int32 [] sequence

Listing 7.3: Action definition for Shearlet Computation.

7.3.2 Dynamic Behavior

In this section, we describe the dynamic behavior of our system with sequence diagrams and state
machines. Sequence diagrams illustrate the communication in a system time-wise. Elements in
such a diagram include communication partners, interactions, lifeline and messages [64].

Sequences

In the following, we will show two sequence diagrams which illustrate the behavior of our system.
We will use the UML notation given in Table 7.2.

Sequence 1 - Procedure without Classifier File The first sequence, shown in Figure 7.6,
illustrates the procedure of the system with training of a classifier. The PD Control Node sends
a message to the PD Initialization Node to initialize the shearlet parameters. Next, the
PD Initialization Node sends a service request to the PD Calculation Node, which computes
the corresponding shearlets. These are then sent back to the PD Initialization Node, which
subsequently writes the shearlet parameter on a topic via an asynchronous message. Out of
this topic, the PD Training Node and the PD Detection Node receive a message containing the
shearlet parameters. Subsequently, the PD Control Node receives a message that the initial-
ization is complete. Following, the training process is initiated by a message sent from the
PD Control Node to the PD Training Node. This is the main difference between the two se-
quence diagrams. The PD Training Node sends a message to the PD Calculation Node to calcu-
late the features for the training data. When the calculation is complete, the PD Training Node
receives a positive response message. Subsequently, this node sends a message again to the
PD Calculation Node, now to train the classifier. Once more, the PD Training Node re-
ceives a positive response when the calculation is finished. At this stage, all inputs for
performing the detection task are available. To start the detection, the PD Control Node
sends a message to the PD Detection Node. In turn, this node sends a message to the
PD Input Output Node, which loads one or more input images and writes it on a topic. The
PD Input Output Node sends a positive message that the loading process has been started. Next,
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Type Description

Synchronous message

Asynchronous message

Response message

Communication partner. Starting from
here, the lifeline proceeds downwards. An
execution by an object is illustrated by a
rectangle bar. The sequence is illustrated
top down.

Table 7.2: Sequence diagram notation.

the PD Detection Node receives a message with the input images and computes the image fea-
tures via the PD Calculation Node. Once the features are computed, the classification is started
by a message of the PD Detection Node to the PD Calculation Node. In response to that, the
PD Calculation Node sends the detection results back to the PD Detection Node, which com-
municates them on a topic. This topic is read by the PD Visualization Node to display the
detection results.

Sequence 2 - Procedure with Classifier File The second sequence, shown in Figure 7.7,
illustrates the procedure in case no training prior to detection is needed. The only difference to
the first sequence is that a pretrained classifier file is available. This file is loaded after request
by the PD Control Node to the PD Calculation Node. Subsequently, detection and all further
processes described in the first sequence are performed.

System States

In addition to sequence diagrams, we describe the behavior of the system with state machines.
They enable us to illustrate the different states of an object in the system and its possible
transitions. The state machines in this section are designed according to the modeling concept
of David Harel [59]. As described earlier, our detection system consists of 7 nodes. Each node
is started by the execution of a launch file, which is described more detailed in Section 7.4. The
state machine of the system startup is illustrated in Figure 7.8. Here, the state transition of
each node in its init state takes place.
Each node contains an individual state table with a mapping of states to corresponding functions.
An example is given in Listing 7.4, which shows the state table for the PD Initialization Node.
The state table of a node is initialized by a transition table, see for example Listing 7.5.
The state transition is performed by a simple function call, which is illustrated in Listing 7.6.
In this function, the variable newState gets the corresponding enumeration value which causes
the transition of the state machine. In the following, we describe the behavior of each node by
its state machine.
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Figure 7.6: Sequence of procedure without classifier file.
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Figure 7.7: Sequence of procedure with classifier file.
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Figure 7.8: State machine for the system startup

1 BEGIN_STATE_MAP
2 STATE_MAP_ENTRY (& PD_Initialization_Node :: PD_Init_Off )
3 STATE_MAP_ENTRY (& PD_Initialization_Node :: PD_Init_On )
4 STATE_MAP_ENTRY (& PD_Initialization_Node :: PD_Init_Publish_PShearlets )
5 END_STATE_MAP

Listing 7.4: State table for PD Initialization Node.

1 enum E_States
2 {
3 PD_INITIALIZATION_NODE_OFF = 0,
4 PD_INITIALIZATION_NODE_ON ,
5 PD_INITIALIZATION_NODE_PUBLISH_PSHEARLETS ,
6 ST_MAX_STATES
7 };
8

9 BEGIN_TRANSITION_MAP
10 TRANSITION_MAP_ENTRY ( PD_INITIALIZATION_NODE_OFF )
11 TRANSITION_MAP_ENTRY ( CANNOT_HAPPEN )
12 TRANSITION_MAP_ENTRY ( CANNOT_HAPPEN )
13 END_TRANSITION_MAP (NULL)

Listing 7.5: Transition table for PD Initialization Node

1 InternalEvent ( PD_INITIALIZATION_NODE_ON );

Listing 7.6: State transition for PD Initialization Node
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Figure 7.9: State machine for PD Initialization Node.

PD Initialization Node The PD Initialization Node performs the calculation of the shear-
lets and their transmission to other nodes in the system. Figure 7.9 shows the state machine con-
tained in this node. On execution of the launch file, the init state PD INITIALIZATION NODE OFF
is entered. No tasks are executed in this state. The transition to the state
PD INITIALIZATION NODE ON takes place when the service PD Initialization Node Init srv
is called. In this state, the calculation of the shearlets is performed. If the calculation is fin-
ished successfully, the transition to the state PD INITIALIZATION NODE PUBLISH PSHEARLETS is
performed. Here, the calculated shearlet parameters are written to a topic. Subsequently, the
state PD INITIALIZATION NODE OFF is entered. The transition to the end state is performed on
termination of the program and can be reached from any other state.

PD Control Node This node is responsible for the flow control in our system. Figure 7.10
shows the state machine contained in the node. On execution of the launch file, the init
state PD CONTROL NODE OFF is entered. No tasks are executed in this state. No further
event is needed for the state transition to PD CONTROL NODE INIT OPTS. It occurs directly af-
ter the previous state transition. In this state, all system parameters are loaded and ini-
tialized. After completion of the initialization, the shearlet filters are calculated in the state
PD CONTROL NODE INIT CLASSIFIER. Here, the service of the PD Initialization Node is called
to compute the shearlets. Subsequently, the classifier is initialized. In this state, it is identified
if there is a classifier file already available or not. If there is no classifier file available, the state
PD CONTROL NODE TRAINING is entered. In case there is already a classifier available, we enter the
state PD CONTROL NODE DETECTION. The state PD CONTROL NODE TRAINING calls a service from
the PD Training Node, leading to training and saving of a classifier. Next, we have the state tran-
sition to PD CONTROL NODE DETECTION. Here, a service from the PD Detection Node is called to
start the detection. If the detection has been started successfully, the state PD CONTROL NODE ON
is entered. In this state, the node sleeps and performs no tasks. The transition to the end state
is performed on termination of the program and can be reached from any other state.

PD Training Node The PD Training Node is responsible for the training of the classifier.
In Figure 7.11, we have its state machine. On execution of the launch file, the init state
PD TRAINING NODE OFF is entered. No tasks are executed in this state. The state transition
to PD TRAINING NODE ON occurs when the service PD Training Node Train srv is called. In
this state, the training of the classifier is performed. When the training is completed, the state
PD TRAINING NODE OFF is entered. The transition to the end state is performed on termination
of the program and can be reached from any other state.
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Figure 7.10: State machine for PD Control Node.

Figure 7.11: State machine for PD Training Node.

PD Calculation Node The PD Calculation Node is the node where all fundamental calcula-
tions are performed. Figure 7.12 shows the state machine contained in the node. On execution
of the launch file, the init state PD CALCULATION NODE OFF is entered. No tasks are executed in
this state. Subsequently, the state transition to PD CALCULATION NODE ON occurs. In this state,
all action-servers responsible for the corresponding calculations are started. The transition to
the end state is performed on termination of the program and can be reached from any other
state.

PD Detection Node This node is responsible for the pedestrian detection on given input im-
ages. Figure 7.13 shows the state machine contained in the node. On execution of the launch file,
the init state PD DETECTION NODE OFF is entered. No tasks are executed in this state. The state
transition to PD DETECTION INIT OPTS occurs when the service PD Detection Node Detect srv
is called. Here, all required parameters for the detection are initialized. When the initialization
is completed, the state PD DETECTION NODE STARTIO is entered. In this state, the service of
the PD InputOutput Node is called to start loading the input images. When this is completed
successfully, the state transition to PD DETECTION NODE ON occurs. Actually in this state, we

Figure 7.12: State machine for PD Calculation Node.
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Figure 7.13: State machine for PD Detection Node.

Figure 7.14: State machine for PD Input Output Node.

have the pedestrian detection. The transition to the end state is performed on termination of
the program and can be reached from any other state.

PD Input Output Node This node is the interface to the input images as well as the visu-
alization devices. Figure 7.14 shows the state machine contained in the node. On execu-
tion of the launch file, the init state PD INPUT OUTPUT NODE OFF is entered. No tasks are
executed in this state. The state transition to PD INPUT OUTPUT NODE ON occurs when the
service PD Input Output Node Start srv is called. In this state, it is decided if input im-
ages from the hard disk are loaded or if images are received via TCP/IP. This decision
is made on the value of the flag mode, which is set by the initial configuration. If this
flag has the value IO MODE SAVED IMAGES, the state PD INPUT OUTPUT NODE LOAD SAVED IMAGES
is entered. Here, the saved input images are loaded and subsequently written on a
topic in the state PD INPUT OUTPUT NODE SEND IMAGES. If the flag mode has the value
IO MODE SOCKET CONNECTION, the state transition to PD INPUT OUTPUT NODE SOCKET CON occurs.
Here, an incoming TCP/IP connection is awaited. In case of a successful connection, the state
PD INPUT OUTPUT NODE SOCKET RECV is entered. In this state, the TCP/IP client receives im-
ages on which a pedestrian detection is performed. The result is then sent back to the TCP/IP
client. The transition to the end state is performed on termination of the program and can be
reached from any other state.

PD Visualization Node The PD Visualization Node displays the detection results. Fig-
ure 7.15 shows the state machine contained in the node. On execution of the launch file, the init
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Figure 7.15: State machine for PD Visualization Node.

state PD VISUALIZATION NODE OFF is entered. No tasks are executed in this state. Subsequently,
the state PD VISUALIZATION NODE ON is entered in which input data is awaited. If there is data
available, it is displayed. The transition to the end state is performed on termination of the
program and can be reached from any other state.

7.3.3 Partitioning

Via a CUDA interface, the NVIDIA Jetson TK1 provides the ability to use a GPU for calculation
purposes. For this, NVIDIA has developed a specific hardware architecture. The following
description of it is based on [88]. Figure 7.16 illustrates the connection between CPU and GPU.
As can be seen, the CPU accesses GPU kernel functions via wrapper functions. These are
functions which are distributed by the scheduler on a scalable array of multithreaded Streaming
Multiprocessors (SMs). A SM is comparable to a CPU in a sense that it has a register, an
instruction memory, multiple cores and a shared memory such that threads can exchange data.
It is designed to execute hundreds of threads in parallel. This ability is achieved by a Single-
Instruction Multiple Thread (SIMT) architecture in which a scheduler clusters 32 threads. These
threads are jointly generated, controlled and can execute the same instruction in one step. This
clustering procedure is also called warp. Threads can be jointly started at the same memory
address, however they have their own counters and registers. Optimally, each thread of a warp
executes the same instruction to achieve the highest performance. The abovementioned kernels
work on logical data blocks, which the scheduler partitions on the SMs. On the other hand,
SMs partition these blocks into different warps. For more details on the NVIDIA hardware
architecture, see [88]. As can be seen in Figure 7.16, our overall system contains kernel functions
of the pedestrian detection system, OpenCV and NVIDIA. Kernel functions from the pedestrian
detection system are GPU functions developed in this thesis. Whereas the other kernel functions
are GPU functions provided by the OpenCV library and NVIDIA, respectively.

Figure 7.17 shows the CPU and GPU interfaces by the aid of component diagrams. For each
of the illustrated wrapper and kernel functions, we have homogeneous CPU functions. By the
initial configuration of the system, it can be chosen if the system shall be run with GPU support
or as a CPU only variant.

7.4 Implementation

In this section, we will describe the crucial topics concerning implementation of the system. It
is of major importance to achieve balance between memory consumption and computational
power. The underlying Matlab algorithm is implemented only in regards to detection quality.
The interaction of detection quality, memory consumption and computational power is regarded
only as a subsidiary. Therefore, the Matlab implementation can not be transferred directly to
C++ but only output-driven.
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Figure 7.16: Connection of CPU and GPU via wrapper functions.

Figure 7.17: CPU and GPU interfaces.
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1 <launch >
2 <rosparam param="opts/nWeak" >[32 ,128 ,1024 ,2048] </rosparam >
3 <rosparam param="opts/pLoad/ squarify " >[3.0 ,0.41] </rosparam >
4 <rosparam param="opts/ pPyramid /minDs" >[100 ,41] </rosparam >
5

6 <node
7 pkg=" embedded_pd "
8 type=" pd_detection_node "
9 name=" pd_detection "

10 output =" screen "
11 launch - prefix ="xterm -e"
12 />
13 </ launch >

Listing 7.7: Launch file example.

1 void simple (int n, float *a, float *b)
2 {
3 int i;
4

5 # pragma omp parallel for
6 for (i =1; i<n; i++) {} /* i is private by default */
7 b[i] = (a[i] + a[i -1]) / 2.0;
8 }

Listing 7.8: Example of an OpenMP directive.

As described earlier, the system is started by the execution of a launch file. Such a ROS launch
file contains init and configuration information which can be processed by the tool roslaunch.
Listing 7.7 shows an example of a launch file for three parameters and one node.

7.4.1 Optimization

To gain performance boosts, our system is extended in terms of multithreading. For this pur-
pose, OpenMP is used to generate and maintain threads. OpenMP is an acronym for Open
specifications for Multi Processing. It holds compiler directives, library functions and environ-
ment variables and provides bindings for the programming languages C, C++ and FORTRAN
[108]. These languages are extended by constructs for execution of programs with different data
by multiple threads, for distribution of tasks to multiple threads, for synchronization of threads
and for declaration of shared and private variables of threads. Parts of a serial program can be
parallelized by only few directives. It gives one the ability of a parallel processing on multiple
processors, such that runtime can be reduced significantly. Listing 7.8 shows an example of the
simplicity using OpenMP. Here, a for loop is distributed on the available cores.

This example is a simple construct, which can be extended by a diverse number of complex
directives. In Listing 7.9 we exemplarily show the implementation of the shearlet transform in
space domain. The contained for loop is parallelized by OpenMP. The difference to the for
loop in Listing 7.8 is that each thread requires data which it reads and writes. To guarantee
a secure access to the data, OpenMP provides different clauses. In this example, we have the
clauses shared, private, firstprivate and ordered. The clauses shared and private specify
if the data can be accessed by all threads or only by one. The clause firstprivate is used to
initialize private variables with the value of the master thread. The clause ordered references
to the scheduling of the threads and their access on the shared object.
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1 void pd:: shearletTransformSpace (Mat & I, vector <Mat >& Psi , vector <Mat >& C, int
flag_fourier )

2 {
3 Mat w,conv;
4 int nShearlets = Psi.size ();
5 C. reserve ( nShearlets );
6

7 # pragma omp parallel for firstprivate ( flag_fourier ) private (w,conv) shared
(C ,Psi ,I) ordered schedule ( dynamic )

8 for (int i = 0; i < nShearlets ; i++)
9 {

10 if ( flag_fourier )
11 {
12 w = Psi.at(i);
13 fftshift (w);
14 idft(w, DFT_COMPLEX_OUTPUT );
15 fftshift (w);
16 }
17 else
18 {
19 w = Psi.at(i);
20 }
21 conv2(I, w, CONVOLUTION_SAME , conv);
22 conv = abs(conv);
23

24 # pragma omp ordered
25 C. push_back (conv.clone ());
26 }
27 }

Listing 7.9: Implementation of the shearlet transform in space domain using OpenMP directives.
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1 #!/ bin/sh
2 # Set CPU to full performance on NVIDIA Jetson TK1 Development Kit
3 if [ $(id -u) != 0 ]; then
4 echo " Need root permissions "
5 echo "$ sudo "$0""
6 exit
7 fi
8

9 cd /sys/ devices / system /cpu
10 grep -H . cpuquiet / tegra_cpuquiet / enable
11 grep . cpu ?/ online
12 grep . cpu ?/ cpufreq / scaling_governor
13

14 echo 0 >cpuquiet / tegra_cpuquiet / enable
15 for i in cpu ?; do
16 read online <$i/ online
17 [ " $online " = 1 ] && continue
18 echo 1 >$i/ online
19 done
20 for i in cpu ?; do
21 echo performance >$i/ cpufreq / scaling_governor
22 done
23

24 grep -H . cpuquiet / tegra_cpuquiet / enable
25 grep . cpu ?/ online
26 grep . cpu ?/ cpufreq / scaling_governor

Listing 7.10: NVIDIA Jetson TK1 CPU optimization.

Besides the optimization of the calculation processes, we also have to consider to optimize the
embedded target itself. The Tegra K1 chipset of the NVIDIA Jetson TK1 development kit
has been developed for mobile applications. It contains several systems which maintain the
hardware. These systems can either accelerate or decelerate the hardware. On delivery, the
CPU and the GPU are not configured to the maximum performance. Listings 7.10 and 7.11
show the shell scripts which are used to set the high-performance configurations of CPU and
GPU.

The NVIDIA Jetson TK1 has 2GB of RAM, of which 50% are consumed by the operation
system. Therefore, only 1GB of RAM is available for calculation. Unfortunately, the training
process requires 6GB. Therefore, the embedded target does not perform a training process and
receives a classifier trained on the PC.

Concerning runtime performance, an efficient application of the ROS architecture results in
significant gains. We illustrate this on the example of the training process. We consider that
1, 000 images of the training data set shall be loaded to train the classifier. A sequential procedure
of the training process is shown in 7.18. Except the calculations of the PD Calculation Node,
which are distributed to multiple CPU cores, the complete process runs only on one CPU core.

Intuitively, an optimization of this procedure is beneficial. For this purpose, 4 action-servers
with 4 action-clients are set up, where each one processes a portion of the training images.
This procedure is shown in 7.19. With this solution, all CPU cores perform calculations with
maximum performance, such that the runtime of the training phase can be reduced significantly.
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1 #!/ bin/sh
2 # Set CPU to full performance on NVIDIA Jetson TK1 Development Kit
3 if [ $(id -u) != 0 ]; then
4 echo "Need root permissions "
5 echo "$ sudo "$0""
6 exit
7 fi
8

9 cd /sys/ kernel /debug/clock
10

11 for clock in gbus emc; do
12 grep -H . $clock /rate
13 read rates <$clock / possible_rates
14 for rate in $rates ; do
15 [ "$rate" = ’(kHz)’ ] && break
16 max_rate = $rate
17 done
18 echo ${ max_rate }000 >override . $clock /rate
19 echo 1 >override . $clock /state
20 grep . override . $clock /rate override . $clock /state
21 done

Listing 7.11: NVIDIA Jetson TK1 GPU optimization.

Figure 7.18: Sequential process of the training phase.
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Figure 7.19: Multiaction structure of the training process.

7.4.2 HW/SW Codesign

The support of the GPU and its usage as a coprocessor can result in significant increase of
computational performance. In this section, we analyze the source code and identify possible
processes in which the parallel computing using the GPU can be beneficial. One of these
processes is the computation of the shearlet transform from a color image, for example in LUV
color space. Here, each color channel is convolved with all shearlet filters. Thus, if we have
for example 18 shearlets it results in 54 convolutions. Since this calculation consumes a lot of
runtime, it is a suitable candidate for using the GPU as coprocessor. Figure 7.20 illustrates
the concept of how the GPU can be used in this case. The GPU is intended to perform the
convolutions with one color channel while the CPU takes care of the remaining color channels.

Surprisingly, the anticipated speed up does not take place. Instead the calculation time is even
decelerated. The main reason for this fact is that data has to be transferred from CPU to
GPU before calculation and vice versa after it. This context switch results in a faster runtime
of the CPU only solution. Therefore, a deeper analysis is needed how the GPU can be used
as a coprocessor to spare runtime. For this purpose, one can use genetic algorithms [43] for
optimization. Genetic algorithms are based on the concepts of natural selection and natural
genetics and used as search algorithms. An evolutionary process is executed in which selection,
recombination and mutation are performed. Through such procedures, random combination of
components are assembled and selected by best results. Thus, one gets an optimal assembly
of software and hardware components. This procedure is used for the analysis of the GPU
improvement abilities. As a result, no tested permutation with the GPU yields in a performance
improvement. The system performs better with the CPU only solution. Therefore, the issue
of HW/SW codesign fades from the spotlight concerning runtime optimization. We leave a
deeper analysis and a more sophisticated development concerning GPU usage as an open topic
for future works. Especially, embedded targets with more powerful GPU performance should be
considered since it is immensely increasing at the moment.
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Figure 7.20: Calculation process with GPU as coprocessor.

7.5 Conclusion

In this chapter, we described the implementation of the pedestrian detection algorithm for an
embedded target. As a result, we have a version of the detection algorithm shearFtrs-v1 runable
with 10fps on the NVIDIA Jetson TK1 target. The architectural basis is the Robot Operating
System, which leads to a high modularity and extensibility of our system. By the encapsulation
of the detection algorithm on multiple nodes, the system can be distributed to diverse platforms.
Thus, resources for calculation, control and visualization processes can be separated. By the
ROS parameter server, our system is simply parameterized and has user-friendly configuration
interfaces. For this purpose, the system can be configurated and started externally by a launch
file.

Concerning runtime optimization, an efficient usage of the ROS architecture and the application
of multithreading yield major performance boosts. Contrary to expectations, the usage of a
GPU as coprocessor does not yield any performance improvements. A deeper analysis and a
more sophisticated development concerning GPU usage is left as a perspective for future works,
especially by using recently released embedded targets, for which the GPU performance has
dramatically increases at present.
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“Every new beginning comes from some other beginning’s
end.”

Seneca

8
Conclusions and Perspectives

In this thesis, we have addressed the application of shearlets for image feature extraction both
from a theoretical and a practical point of view. We paid special attention to the usage in
pedestrian detection algorithms, since these are currently a key topic in the area of computer
vision and artificial intelligence. In that sense, we analyzed the applicability of shearlets to im-
prove the detection quality of current state-of-the-art approaches. These approaches split up in
two main categories. First, so-called classical pedestrian detection algorithms computing hand-
crafted image features and subsequent application of a machine-learning procedure. Second,
detection algorithms based on Convolutional Neural Networks. Currently, the best performing
algorithms belong to the second category. In order to have a complete analysis, we studied the
improvement ability of hand-crafted image features based on shearlets as well as the shearlet
integration into CNNs. To round up, we examined the deployability of a pedestrian detection
algorithm which requires the computation of the shearlet transform on an embedded system,
e.g. an electronic control unit. To that end, we evaluated if such an algorithm can be run on a
reasonably priced embedded target with a practical usable frame rate.

In Chapter 2, we reviewed the existing shearlet frameworks. We first concentrated on providing
some theoretical key results from the recent literature on shearlet frameworks. Next, we turned
to the analysis of current realizations, especially in regards to their usability for image feature
extraction. We found that most frameworks concentrate on fulfilling tight frame properties. To
achieve that aim, band-limited shearlet mother functions are commonly used. This leads to
shearlets with infinite support in time domain and thus to improvable localization of edges in
images. Current frameworks using compactly supported shearlets, such as ShearLab 3D [77],
produce shearlets with support sizes still having room for improvement concerning precision in
localization of edges.

Given our considerations about the improvability of edge detection using shearlets we set up our
own shearlet design in Chapter 3. We applied compactly supported, separable mother functions
which are point-symmetric in the first and axis-symmetric in the second component. We call
shearlets based on these mother functions local precision shearlets. The corresponding shearlet
system is set up such that we have a high amount of flexibility concerning the number of shearlets
per scale. This property is essential for controlling the dimension of the image feature space
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used for pedestrian detection. We showed that our shearlet system forms a frame for L2 (R2)
and provided the conditions that have to be fulfilled for this statement.
In Chapter 4, we dealt with the properties of local precision shearlets concerning edge detection
from a theoretical point of view. We showed that, using our shearlets, edge points in R2 and
their type can be characterized by the limits of the shearlet transform for decreasing scales.
Furthermore, we showed which property the shearlet mother function has to fulfill and gave
corresponding examples.
Turning to the practical side, we described the pedestrian detection using shearlet features in
Chapter 5. We defined two types of image features based on the shearlet transform, namely the
shearlet magnitude and shearlet histogram features. Moreover, we defined a filterbank based
on shearlets for an intermediate filtering layer between feature computation and classification.
Based on our experimental results on the Caltech data set [30], our features turned out to be
very informative. We showed that they are able to outperform all other hand-crafted features
currently used.
Recently, various pedestrian detection algorithms using CNN models were set up [11, 12, 32,
84, 117, 127]. In CNN models, features are not hand-crafted any longer but learned during the
training process. Current results on the Caltech pedestrian detection benchmark data set [30]
show better detection results of approaches using CNN models. Due to the current prevalence
of CNN approaches for pedestrian detection, we studied the possibility to integrate shearlets in
CNN models in Chapter 6. We used shearlet filters at early convolution layers of a CNN instead
of learned ones. Our reasoning for this approach is that the first layers of a CNN perform an
edge detection and that shearlets theoretically represent optimal filters for this topic. In order
to harmonize the theory with approaches showing the best results in practice, only a portion
of the first layer filters is initialized by shearlets. We initialize and train the remaining filters
as in the corresponding state-of-the-art procedures. In our experiments concerning pedestrian
classification, we found that this approach applied to the network architecture of AlexNet [72]
yields improvements of classification results compared to the original AlexNet trained on the
same data. In our experiments concerning the detection of pedestrians, we found that we need
deeper architectures like the VGG16 [113] in order to achieve results in the range of currently
best performing algorithms. We achieved improvements of the detection quality by a shearlet
initialization of the VGG16 model [113] trained on the CIFAR-100 data set. However, we could
not obtain the results of Brazil et al. [9], who applied the VGG16 pre-trained on the extensive
ImageNet data. We found this result as an indication for the immense power of data in deep
learning algorithms and concluded that shearlets cannot ease the need of a pre-training with
huge and comprehensive data sets. We left the evaluation of the shearlet integration with a
pre-training on an extensive data set such as ImageNet as a perspective for further research.
In Chapter 7, we described how the shearlet transform and the base algorithm presented in
Chapter 5 can be ported to an embedded target. We re-implemented the algorithm in C++
and used the NVIDIA Jetson TK1 developer kit [98] as an example for a suitable embedded
platform. Given this reasonably priced target, we were able to run the detection algorithm with
a useful frame rate of 10fps. A next step would be to further boost the runtime by an efficient
use of the GPU. Especially under usage of recently released embedded targets, for which the
GPU performance has dramatically increased in the last few years.
In summary, we found that the framework of shearlets provides the ability to improve both
prevalent types of pedestrian detection. Classical algorithms using hand-crafted image features
as well as approaches utilizing CNN models. In order to achieve that goal we first needed to
carefully design shearlets such that they have compact support in time domain and can be
digitalized to filters with small pixel size. Second, we needed to build a shearlet system that
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is more flexible in terms of shearlets per scale. In that way, we were able to better control
the feature space size of our hand-crafted features as well as the number of shearlets integrated
into a CNN. Moreover, the corresponding sampling strategy of the shearing parameter provided
the possibility to apply an intermediate filterbank layer with shearlet filters on top of gradient
histogram features. This led to the currently best performing hand-crafted image features in the
Caltech Pedestrian Detection Benchmark [30]. Moreover, we provided an embedded realization
of the shearlet transform and a detection algorithm based on it with a practical useful frame
rate by a mindful system and software architecture as well as optimized implementation.

This means that we needed to carefully adapt the theory on shearlets according to the require-
ments of the practical application. On the other hand, a mindful theoretical treatment of the
shearlet framework enabled the improvement of state-of-the-art procedures in practice. In other
words, only by a careful consideration of both sides, our merge of theory and practice led to
success.



140 Conclusions and Perspectives



141

A
Spaces of Functions

In this chapter, we briefly describe the spaces of functions used in this thesis. The description
is based on the definitions in [1]. In the following, we will consider Ω as an open subset of Rd.
A basic but important space is the one of continuous functions C (Ω). In addition, Cm (Ω)
denotes the space of m-times continuously differentiable functions. For a differentiable function f
defined on Ω and a multi-index α = (α1, . . . , αd) ∈ Zd+, we write |α| =

∑d
j=1 αj , xα = xα1

1 · · ·x
αd
d

and
Dα = ∂α1

∂xα1
1
· · · ∂

αd

∂xαd1

for the partial derivative of it. Cm (Ω) consists of all functions f defined on Ω that are continuous
and for which their partial derivatives Dαf of orders |α| ≤ m are continuous on Ω. For the
infinitely many-times continuously differentiable functions, we set C∞ (Ω) =

⋂∞
m=0C

m (Ω). The
subspaces of C (Ω), Cm (Ω) and C∞ (Ω), consisting of all functions that are compactly supported
in Ω, are denoted by C0 (Ω), Cm0 (Ω) and C∞0 (Ω).
As Kutyniok and Labate [75] describe, the space of square-integrable functions on Rd, denoted
by L2(Rd), is the standard model for signals in Rd. In general, for 1 ≤ p <∞ the space Lp (Ω)
consists of all functions f defined on Ω that fulfill∫

Ω
|f (x)|p dx <∞.

The space Lp (Ω) is equipped with the Lp-Norm ‖·‖p defined by

‖f‖p =
(∫

Ω
|f (x)|p dx

)1/p

,

while the corresponding inner product is given by

〈f, g〉 =
∫

Ω
f (x) g (x)dx.

Next, we take care of the notion of an approximate identity in Lp spaces. A sequence of functions
(ρn)∞n=1 is called an approximate identity if ρn ≥ 0,

∫
Rd ρn (x) dx = 1 and for every f ∈ L1(Rd),

we have limn→∞ ‖ρn ∗ f − f‖1 = 0.
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Finally, we state the main definitions concerning Sobolev spaces. At first, we need the definition
of weak derivatives. Let f, gα ∈ L1

loc (Ω), i.e. f, gα ∈ L1 (Ω) for every open subset U ⊂ Ω. We
say that gα is the weak derivative of f if∫

Ω
f (x)Dαφ (x) dx = (−1)|α|

∫
Ω
g (x)φ (x) dx

for every φ ∈ C∞0 (Ω). For m ∈ N+, 1 ≤ p < ∞ and f ∈ Lp
(
Rd
)
, we define the Sobolev norm

‖·‖m,p as follows:

‖f‖m,p =

 ∑
0≤|α|≤m

‖Dαf‖pp

1/p

.

We define the vector space

Hm,p (Ω) =
{
f ∈ Lp (Ω) : Dαf ∈ Lp

(
R2
)
, 0 ≤ |α| ≤ m

}
,

where Dαu is the weak derivative. Equipped with the norm ‖·‖m,p, Hm,p
(
Ω
)

is called Sobolev
space over Ω.
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B
Basic Fourier Analysis

This chapter contains the basic definitions and results concerning Fourier analysis used in this
thesis. The description is based on [45]. In general, Fourier analysis treats the analysis of
functions concerning their Fourier transform. The Fourier transform of a signal f ∈ L1(Rd) is
defined by

f̂ (x) =
∫
Rd
f (x) e−2πi〈x,ξ〉dx,

where 〈x, ξ〉 =
∑d
i=1 xiξi is the inner product in Rd. In some cases we will also write F(f)

instead of f̂ . A fundamental result concerning Fourier analysis is Plancharel’s theorem which is
given as follows.

Theorem B.1. For f ∈ L1(Rd) ∩ L2(Rd) we have∥∥f∥∥2 =
∥∥f̂∥∥2.

Consequently, F satisfies the Plancharel formula for f, g ∈ L2(Rd), which is given by〈
f, g

〉
=
〈
f̂ , ĝ

〉
.

An interpretation of Plancharel’s theorem is that the Fourier transform preserves the energy of
a signal f .

In the following, we describe how the Fourier transform behaves for some basic operations on
functions on which the transform is applied. For f ∈ L1(Rd) and x, ξ ∈ Rd we define the
translation by x as

Txf (t) := f (t− x)

and the modulation by ξ as
Mξf (t) := e2πi〈ξ,t〉f (t) .

For a translated or modulated signal f ∈ L1(Rd), we have

T̂xf = M−xf̂
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and
M̂ξf = Tξ f̂ .

Due to the last formula, modulations are also called frequency shifts. Similarly, translations are
also called time shifts. A combination of the last two formulas yields

T̂xMξf = M−xTξ f̂ = e−2πi〈x,ξ〉TξM−xf̂ .

A main functional operation in this thesis is the convolution of two functions f, g ∈ L1(Rd). It
is defined by

(f ∗ g) (x) =
∫
Rd
f (y) g (x− y) dy

and satisfies
‖f ∗ g‖1 = ‖f‖1 ‖g‖1 .

For the Fourier transform of the convolution of two functions we get

(̂f ∗ g) = f̂ · ĝ.

Another topic of interest is the Fourier transform of derivatives. As before, given a multi-index
α = (α1, . . . , αd) ∈ Zd+, we write Dαf for the partial derivative of f and xα = xα1

1 · · ·x
αd
d . For

the Fourier transform of it, we get
D̂αf = (2πiξ)α f̂

and
̂((−2πix)α f) = Dαf̂ .

Finally, we state the inversion formula for the Fourier transform.

Theorem B.2. For f ∈ L1(Rd) and its Fourier transform f̂ ∈ L1(Rd), we have

f (x) =
∫
Rd
f̂ (ξ) e2πi〈x,ξ〉dξ, for all x ∈ Rd.
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C
An Alternative Approach on Shearlet Design

In the following, we design a local precision shearlet as alternative to the ones described in
Section 4.2 that is appealing concerning boundary definition and discretization and mimics
characteristics of spline shearlets to fulfill condition (4.5). Our method to design a well shapeable
mother function is closely related to the construction of the famous Meyer wavelet [93], which
is originally defined in frequency domain. Consequently they are used by Kutyniok et al. [80]
as well as Häuser and Steidl [61] for their definition of shearlets in frequency domain. We adapt
this idea to define shearlets in time domain. According to Häuser [60], Meyer wavelets can be
characterized by freely selectable parameters of a center x0, a starting point A and a support
width d0. Our approach to define the shearlet components ψ1 and ψ2 is mainly adapted from
the description of Meyer-type wavelets by Häuser [60].

We start by using a function v : R→ R with v ∈ Ck, k ∈ N, and

v (x) =


0 for x ≤ 0,
1− v (1− x) for 0 < x < 1,
1 for x ≥ 1

to define function w1 : R→ R by

w1 (x) =


sin
(
π
2 v (px− q)

)
for A ≤ x ≤ x0,

cos
(
π
2 v (rx− q)

)
for x0 < x ≤ A+ d0

0 otherwise
,

with A, x0, d0 ∈ R+
0 and parameters p, q, r ∈ R. According to [60], with v ∈ Ck it follows that

also w1 ∈ Ck. There are many possible choices to define an appropriate function v depending
on the desired order of smoothness k. Following the proposal of Kutyniok et al. [80], we use
v ∈ C1 given by

v (x) =


0 for x < 0,
2x2 for 0 ≤ x ≤ 1

2 ,

1− 2 (1− x)2 for 1
2 < x ≤ 1,

1 for x > 1.
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(a) Wavelet ψ1 and bump function ψ2.
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(b) Shapeable shearlet ψ (x) = ψ1 (x1)ψ2 (x2).

Figure C.1: Example of a shapeable shearlet and its components for a0 = 1/4 and x0 = 2.

According to Häuser [60], the parameters for w1 are given by p = 1/x0(1−a0), q = a0/(1−a0), r =
a0/x0(1−a0) with 0 < a0 ≤ 1. It follows that A = x0a0 as well as A+ d0 = x0/a0 and therefore

w1 (x) =


sin
(
π
2 v (px− q)

)
for x0a0 ≤ x ≤ x0,

cos
(
π
2 v (rx− q)

)
for x0 < x ≤ x0

a0
,

0 otherwise.

Originally, Meyer wavelets are defined as even functions given v and w1. To fulfill the condition
on the wavelet component of a local precision shearlet, we make use of the sign function sgn.
Let ψ1 : R→ R be defined by

ψ1 (x) = sgn (x)w1 (|x|)

=


sgn (x) sin

(
π
2 v (p |x| − q)

)
for x0a0 ≤ |x| ≤ x0,

sgn (x) cos
(
π
2 v (r |x| − q)

)
for x0 < |x| ≤ x0

a0
,

0 otherwise.
(C.1)

For the bump component ψ2, we use the scaling function of the Meyer wavelet which is given by

w2 (x) =


1 for 0 ≤ |x| ≤ a0x0,

cos
(
π
2 v (px− q)

)
for a0x0 ≤ |x| ≤ x0,

0 otherwise.

To ensure the symmetry of ψ in R2, we scale w2 such that we get the same support boundary
as for ψ1. Consequently, we define ψ2 : R→ R by

ψ2 (x) = w2 (a0 |x|)



147

=


1 for 0 ≤ |x| ≤ x0,

cos
(
π
2 v (r |x| − q)

)
for x0 ≤ |x| ≤ x0

a0
,

0 otherwise.
(C.2)

Definition C.1. We call ψ = ψ1ψ2 with ψ1 and ψ2 defined by (C.1) and (C.2) a shapeable
shearlet.

Since ψ is continuous and compactly supported, we obtain ψ ∈ L2 (R2). Figure C.1 shows an
example of the components ψ1 and ψ2 and the resulting shearlet using parameters a0 = 1/4 and
x0 = 2. Therefore, we have a support boundary b = 8 for both components in this example.
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D
Notation, Symbols and Abbreviations

In this chapter, we recall some standard notation which was not defined in the main body
or the previous parts of the Appendix. Furthermore, we will provide a list with symbols and
abbreviations used in this thesis.

D.1 Standard Notation

For f, g : R → R and a ∈ R, we write f (x) = O (g (x)) for x → a if and only if there exist
positive numbers δ and C such that

|f (x)| ≤ C |g (x)| , when 0 < |x− a| < δ.

For D ⊂ Rd, the characteristic function χD : Rd → {0, 1} is defined by

χD (x) =
{

1 for x ∈ D,
0 otherwise.

Concerning practical application of the convolution defined in Appendix B, we state the def-
inition of the discrete convolution of two sequences. Since we deal with images in this the-
sis, we consider the sequences to be of finite length. Let f (n) = f (0) , . . . , f (M − 1) and
g (n) = g (0) , . . . , g (N − 1) be sequences in Rd of length M,N ∈ N. Then, the discrete convo-
lution of f and g is defined by

(f ∗ g) (n) =
min(n−M+1,N−1)∑

k=max(0,n)
f (n) g (n− k) .
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D.2 Symbols

Sets, Spaces and Norms

C Set of all complex numbers
N Set of natural numbers without 0.
N0 Set of natural numbers with 0, N0 = N ∪ {0}
R Set of all real numbers
R+ Set of all real positive numbers without 0
Z Set of integers
Z+ Set of positive integers without 0
Ck Space of functions f : R→ R which are k-times continuously

differentiable
H Hilbert space
Hs (Ω) Sobolev space of order s
Lp (Ω) Space of all measurable functions f : Ω→ C such that∫

Ω
∣∣f (x)

∣∣pdx <∞ for 1 ≤ p <∞
Rθ Set of rotations of angles θ = 2kπ/K for 0 ≤ k < K ∈ N
‖·‖X Norm of space X
‖·‖∞ Supremum norm
〈·, ·〉 Scalar product of L2

Operators and Functions

A Activation function
Dα Partial derivative operator for multi-index α = (α1, . . . , αd) ∈ Zd+
∂
∂xi

Partial derivative operator in xi direction
∇ Gradient operator
F Fourier transform operator
f̂ Fourier transform of function f , i.e. f̂ = Ff
f ∗ g Convolution of two functions f and g
Mξ Modulation operator (modulation by ξ)
I Identity operator
ψj,θ 2-dimensional wavelet rotated by angle θ
ψj,β,j̃ Roto-translation wavelet
S Frame operator
Sp Windowed scattering transform for path p

S̃p Scattering transform for path p
Tx Translation operator (translation by x)
χD Characteristic function

Shearlet Systems and Transforms

Aa,α Scaling matrix
Aa Parabolic scaling matrix
b1, b2 Boundaries of a local precision shearlet
c Sampling constant
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c−ψ , c+
ψ , cψ Admissibility constants of a shearlet ψ

Ci Frequency domain cones, i = 1, . . . , 4
ΓI Irregular shearlet parameters
ΓR Regular shearlet parameters
Γ, Γ̃ Irregular one-adapted shearlet parameters
LPSH Local precision shearlet system
LPSTφ,ψ,ψ̃ Continuous local precision shearlet transform
LPST φ,ψ,ψ̃ Discrete local precision shearlet transform
R Low frequency region
Ss Shearing matrix
SL Parameter set for continuous local precision shearlet transform
SH (ψ) Continuous shearlet system
SHψ Shearlet transform
SH

(
ψ,ΓI

)
Irregular shearlet system

SH
(
ψ,ΓR

)
Regular shearlet system

SH
(
φ, ψ, ψ̃,Γ, Γ̃

)
Irregular cone-adapted shearlet system

SH
(
φ, ψ, ψ̃, c

)
Regular cone-adapted shearlet system

Φ, Ψ, Ψ̃ Components of a cone-adapted shearlet system
φm Low-frequency component of a cone-adapted shearlet system
ψj,k,m Discrete shearlet
ψa,s,t Continuous shearlet

Shearlet Features

Cj,k Shearlet coefficient for scale j and shear k
ε Normalization constant
M ×N Image size
Mj Shearlet magnitude for scale j
M̃j Normalized shearlet magnitude for scale j
Oj Orientation of maximum shearlet coefficient at scale j
Pl Quadratic image patch
R Normalization radius
SHj,k Shearlet histogram feature for scale j and shear k
SMj Shearlet magnitude feature for scale j
ζ Patch size

Miscellaneous

~α (t) Arc-length parametrization of ∂R
Bε (p) Ball of radius ε with center p
det (A) Determinant of matrix A
diag (v) Diagonal matrix with entries v
ΦΩ Feature extractor based on module-sequence Ω
G Digital grid
γl Gaussian initialized filter in layer l of a Convolutional Neural Network
Hl Hidden layer l in an Artificial Neural Network
supp f Support of function f , i.e. {x : f (x) 6= 0}
~κ
(
t−
)
, ~κ
(
t+
)

Curvature at point α (t) of ∂R



152 Notation, Symbols and Abbreviations

µp Dirac response concerning the scattering transform of path p〈
n
k

〉
Eulerian number

~n
(
t−
)
, ~n
(
t+
)

Outer normals at point α (t) of ∂R
O (g) Landau symbol
Ω Module-sequence
Sρ Domains with piecewise smooth boundary and curvature bounded by ρ

D.3 Abbreviations

ACF Aggregated Channel Features
ADAS Advanced Driver Assistance Systems
AEB Autonomous Emergency Braking
ANN Artificial Neural Network
CNN Convolutional Neural Network
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
eMMC Embedded Multimedia Card
FFST Fast Finite Shearlet Transform
FFT Fast Fourier Transform
FPGA Field Programmable Gate Array
FPPI False Positives Per Image
GPU Graphics Processing Unit
HDMI High Definition Multimedia Interface
HOG Histogram of Oriented Gradients
HW Hardware
IFFT Inverse Fast Fourier Transform
ILSVRC ImageNet Large-Scale Visual Recognition Challenge
IP Internet protocol
LAN Local Area Network
LDCF Local Decorrelation Channel Features
LPST Local Precision Shearlet Transform
MRDS Microsoft Robotics Developer Studio
NCAP New Car Assessment Program
NMS Non-Maximum Suppression
PC Personal Computer
PD Pedestrian Detection
R-CNN Regions with CNN Features
ReLU Rectified Linear Unit
ROC Receiver Operating- Characteristic
RoI Regions of Interest
ROS Robot Operating System
RPN Region Proposal Network
RSS Really Simple Syndication
SATA Serial AT Attachment
SCED Shearlet Cascade Edge Detection
SDS-RCNN Simultaneous Detection and Segmentation R-CNN
SI-CNN Shearlet Initialized CNN
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SIMT Single-Instruction Multiple Thread
SM Streaming Multiprocessor
SOC System-on-a-Chip
SSD Single Shot Multibox Detector
SVM Support Vector Machines
SW Software
TCP Transmission Control Protocol
UDP User Datagram Protocol
XML-RPC Extensible Markup Language Remote Procedure Call
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USA, 2012.

[37] Euro NCAP. 2020 roadmap. Online, www.euroncap.blob.core.windows.net/media/16472/
euro-ncap-2020-roadmap-rev1-march-2015.pdf, March 2015.

[38] Jerome Friedman, Robert Tibshirani, and Trevor Hastie. Additive logistic regression: A
statistical view of boosting (with discussion and a rejoinder by the authors). Annals of
Statistics, 28(2):337–407, April 2000.

[39] Gartner Inc. Hype cycle for emerging technologies. Online, http://www.gartner.com, July
2017.
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