32 research outputs found

    Enabling Work-conserving Bandwidth Guarantees for Multi-tenant Datacenters via Dynamic Tenant-Queue Binding

    Full text link
    Today's cloud networks are shared among many tenants. Bandwidth guarantees and work conservation are two key properties to ensure predictable performance for tenant applications and high network utilization for providers. Despite significant efforts, very little prior work can really achieve both properties simultaneously even some of them claimed so. In this paper, we present QShare, an in-network based solution to achieve bandwidth guarantees and work conservation simultaneously. QShare leverages weighted fair queuing on commodity switches to slice network bandwidth for tenants, and solves the challenge of queue scarcity through balanced tenant placement and dynamic tenant-queue binding. QShare is readily implementable with existing switching chips. We have implemented a QShare prototype and evaluated it via both testbed experiments and simulations. Our results show that QShare ensures bandwidth guarantees while driving network utilization to over 91% even under unpredictable traffic demands.Comment: The initial work is published in IEEE INFOCOM 201

    Datacenter Traffic Control: Understanding Techniques and Trade-offs

    Get PDF
    Datacenters provide cost-effective and flexible access to scalable compute and storage resources necessary for today's cloud computing needs. A typical datacenter is made up of thousands of servers connected with a large network and usually managed by one operator. To provide quality access to the variety of applications and services hosted on datacenters and maximize performance, it deems necessary to use datacenter networks effectively and efficiently. Datacenter traffic is often a mix of several classes with different priorities and requirements. This includes user-generated interactive traffic, traffic with deadlines, and long-running traffic. To this end, custom transport protocols and traffic management techniques have been developed to improve datacenter network performance. In this tutorial paper, we review the general architecture of datacenter networks, various topologies proposed for them, their traffic properties, general traffic control challenges in datacenters and general traffic control objectives. The purpose of this paper is to bring out the important characteristics of traffic control in datacenters and not to survey all existing solutions (as it is virtually impossible due to massive body of existing research). We hope to provide readers with a wide range of options and factors while considering a variety of traffic control mechanisms. We discuss various characteristics of datacenter traffic control including management schemes, transmission control, traffic shaping, prioritization, load balancing, multipathing, and traffic scheduling. Next, we point to several open challenges as well as new and interesting networking paradigms. At the end of this paper, we briefly review inter-datacenter networks that connect geographically dispersed datacenters which have been receiving increasing attention recently and pose interesting and novel research problems.Comment: Accepted for Publication in IEEE Communications Surveys and Tutorial

    Delay Distribution Based Remote Data Fetch Scheme for Hadoop Clusters in Public Cloud

    Get PDF
    Apache Hadoop and its ecosystem have become the de facto platform for processing large-scale data, or Big Data, because it hides the complexity of distributed computing, scheduling, and communication while providing fault-tolerance. Cloud-based environments are becoming a popular platform for hosting Hadoop clusters due to their low initial cost and limitless capacity. However, cloud-based Hadoop clusters bring their own challenges due to contradictory design principles. Hadoop is designed on the shared-nothing principle while cloud is based on the concepts of consolidation and resource sharing. Most of Hadoop\u27s features are designed for on-premises data centers where the cluster topology is known. Hadoop depends on the rack assignment of servers (configured by the cluster administrator) to calculate the distance between servers. Hadoop calculates the distance between servers to find the best remote server from which to fetch data from when fetching non-local data. However, public cloud environment providers do not share rack information of virtual servers with their tenants. Lack of rack information of servers may allow Hadoop to fetch data from a remote server that is on the other side of the data center. To overcome this problem, we propose a delay distribution based scheme to find the closest server to fetch non-local data for public cloud-based Hadoop clusters. The proposed scheme bases server selection on the delay distributions between server pairs. Delay distribution is calculated measuring the round-trip time between servers periodically. Our experiments observe that the proposed scheme outperforms conventional Hadoop nearly by 12% in terms of non-local data fetch time. This reduction in data fetch time will lead to a reduction in job run time, especially in real-world multi-user clusters where non-local data fetching can happen frequently

    Choreo: network-aware task placement for cloud applications

    Get PDF
    Cloud computing infrastructures are increasingly being used by network-intensive applications that transfer significant amounts of data between the nodes on which they run. This paper shows that tenants can do a better job placing applications by understanding the underlying cloud network as well as the demands of the applications. To do so, tenants must be able to quickly and accurately measure the cloud network and profile their applications, and then use a network-aware placement method to place applications. This paper describes Choreo, a system that solves these problems. Our experiments measure Amazon's EC2 and Rackspace networks and use three weeks of network data from applications running on the HP Cloud network. We find that Choreo reduces application completion time by an average of 8%-14% (max improvement: 61%) when applications are placed all at once, and 22%-43% (max improvement: 79%) when they arrive in real-time, compared to alternative placement schemes.National Science Foundation (U.S.) (Grant 0645960)National Science Foundation (U.S.) (Grant 1065219)National Science Foundation (U.S.) (Grant 1040072

    NUMFabric: Fast and Flexible Bandwidth Allocation in Datacenters

    Get PDF
    We present xFabric, a novel datacenter transport design that provides flexible and fast bandwidth allocation control. xFabric is flexible: it enables operators to specify how bandwidth is allocated amongst contending flows to optimize for different service-level objectives such as minimizing flow completion times, weighted allocations, different notions of fairness, etc. xFabric is also very fast, it converges to the specified allocation one-to-two order of magnitudes faster than prior schemes. Underlying xFabric, is a novel distributed algorithm that uses in-network packet scheduling to rapidly solve general network utility maximization problems for bandwidth allocation. We evaluate xFabric using realistic datacenter topologies and highly dynamic workloads and show that it is able to provide flexibility and fast convergence in such stressful environments.Google Faculty Research Awar
    corecore