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PAPER

Delay Distribution Based Remote Data Fetch Scheme for

Hadoop Clusters in Public Cloud∗

Ravindra Sandaruwan RANAWEERA†, Nonmember, Eiji OKI††, Fellow,
and Nattapong KITSUWAN†, Member

SUMMARY Apache Hadoop and its ecosystem have become
the de facto platform for processing large-scale data, or Big
Data, because it hides the complexity of distributed computing,
scheduling, and communication while providing fault-tolerance.
Cloud-based environments are becoming a popular platform for
hosting Hadoop clusters due to their low initial cost and limitless
capacity. However, cloud-based Hadoop clusters bring their own
challenges due to contradictory design principles. Hadoop is de-
signed on the shared-nothing principle while cloud is based on the
concepts of consolidation and resource sharing. Most of Hadoop’s
features are designed for on-premises data centers where the clus-
ter topology is known. Hadoop depends on the rack assignment
of servers (configured by the cluster administrator) to calculate
the distance between servers. Hadoop calculates the distance be-
tween servers to find the best remote server from which to fetch
data from when fetching non-local data. However, public cloud
environment providers do not share rack information of virtual
servers with their tenants. Lack of rack information of servers
may allow Hadoop to fetch data from a remote server that is
on the other side of the data center. To overcome this problem,
we propose a delay distribution based scheme to find the closest
server to fetch non-local data for public cloud-based Hadoop clus-
ters. The proposed scheme bases server selection on the delay dis-
tributions between server pairs. Delay distribution is calculated
measuring the round-trip time between servers periodically. Our
experiments observe that the proposed scheme outperforms con-
ventional Hadoop nearly by 12% in terms of non-local data fetch
time. This reduction in data fetch time will lead to a reduction
in job run time, especially in real-world multi-user clusters where
non-local data fetching can happen frequently.
key words: Public cloud, Hadoop, Big Data, HDFS

1. Introduction

The rapid expansion of IoT (Internet of Things) de-
vices, social networking, and online services etc. in re-
cent years allows organizations to collect large amounts
of data. Collecting data and leaving them at rest does
not bring any business value to an organization. Thus,
the collected data must be processed and analyzed to
add business value to the organization by taking data-
driven actions or to find value in collected data. An-
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alyzing so-called collected Big Data in a realistic time
within an economical cost has been a challenge for or-
ganizations.

Apache Hadoop (Hadoop) [2], an open-source im-
plementation of Google’s MapReduce [3] framework,
is a parallel-distributed processing framework that
allows organizations to process very large datasets
using commodity hardware efficiently in a realistic
time. Hadoop has become the most popular parallel-
distributed framework for processing large-scale data
because it hides the complexity of distributed com-
puting, scheduling, and communication while provid-
ing fault-tolerance. Hadoop makes use of inexpensive,
industry standard commodity servers to store and pro-
cess large volumes of data rather than relying on spe-
cially built proprietary servers. Thus, most of the for-
tune 500 companies use Hadoop to process large-scale
data within a reasonable budget. Initially, Hadoop was
used by large companies such as Yahoo, Facebook, eBay
etc., who were already collecting large amounts of data.
These large companies have their own data centers due
to cost efficiency and security reasons. Therefore, their
Hadoop clusters are also deployed in on-premises data
centers using physical clusters.

Cloud-based computing has, however, been draw-
ing attention because of its convenient pay-per-use
model and almost limitless capacity. Public cloud ven-
dors provide effective and cheap solutions for storing
very large datasets. As a result of the increased pop-
ularity of Hadoop and cost-effectiveness of cloud-based
computing, medium to small size companies [4] have
also started using Hadoop to take advantage of data-
driven decision making with the data they already have
or they are going to collect. Not only medium to small
size companies, but also large companies are finding
cloud-based Hadoop clusters more attractive. Large
companies such as Netflix and Twitter who had PB
scale on-premises Hadoop clusters have started moving
to cloud-based Hadoop clusters in recent years [5, 6].
A recent study by Gartner [7] shows that the number
of public cloud-based and on-premises Hadoop deploy-
ments is almost the same and 29% of Hadoop users in-
tend to use Hadoop both on-premises and in the cloud.
Also, IDC estimates that nearly 40% of Big Data anal-
yses will be supported by public cloud [8] infrastruc-
ture by 2020. It is clear that the Hadoop deployments
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are moving towards cloud-based infrastructure due to
increased advantages of flexibility, scalability, and low
initial cost of public cloud platforms. In order to attract
these potential customers who are interested in cloud-
based Hadoop deployments, not only cloud providers
such as Amazon, Microsoft, Google, IBM, etc. but also
Hadoop distributors such as Cloudera, Hortonworks,
and MapR offer straightforward cloud-based Hadoop
deployment solutions [9–15].

Cloud environments are designed as highly-
multiplexed, shared environments with virtual servers
and tasks from numerous tenants coexisting in the same
physical server to achieve cost effectiveness and on-
demand scaling. Memory, CPU, and network are the
basic resources provided by cloud providers. Tenants
can create a Hadoop cluster with a set of virtual servers
while achieving performance isolation from each server
on memory and CPU resources. On the other hand, the
network being a distributed resource makes it harder to
control the impact on the performance of each server,
unlike CPU and memory. As a result, the potential for
network performance interference is high and network
performance predictability remains a key concern [16]
in cloud environments.

HDFS (Hadoop Distributed File System) is the
distributed storage layer that is responsible for storing
data in Hadoop. In HDFS data is broken into blocks
and stored in multiple (at least three), different servers
as replicas for fault-tolerance and availability purposes.
Data processing frameworks on top of Hadoop such
as MapReduce, Hive or Spark access data stored in
HDFS. HDFS is designed with write-once-read-many
access model [17,18] to attain high throughput of data
access. Write-once-read-many means that once data is
written to HDFS, that particular data will be read by
processing tasks many times over the time. Therefore,
improving how data is read in HDFS has a larger im-
pact on the overall performance of HDFS compared to
improving how data is written to HDFS.

Data locality is the property that defines whether
data and processing task are co-located on the same
server. Hadoop tries to co-locate data and processing
task so that data access is fast because data is local [18].
This is one of the revolutionary concepts that was in-
troduced in Hadoop: “taking calculation to where data
is” rather than “taking data to the calculation”. Spe-
cially for large data sets, moving data over the network
is inefficient and costly. Unfortunately, it is not always
possible to co-locate data and processing task due to
resource unavailability. Experiments done by Ibrahim
et al. [19] show that approximately 23% of the map
tasks are non-local map tasks. Put differently, 23% of
the map tasks fetch non-local data required for the task
from a remote server that holds a copy of the data be-
fore the data processing starts. Many improvements
for enhancing data placement (data write) [20–22] in
HDFS were presented. However all of these studies are

focused on optimizing replica placement, which means
writing data into HDFS, while paying no attention to
data read improvement, that occurs more often com-
pared to data write.

When fetching a non-local data block, Hadoop
finds the best server to fetch data from comparing the
network distance of servers that hold a copy of the
particular data. The concept called “rack awareness”
is used to calculate the network distance. The “rack
awareness” concept and how Hadoop calculates net-
work distance is explained in Section 2.1. Cluster ad-
ministrators must assign a rack for each server in the
cluster based on cluster topology information manually
or using a script [23] to enable rack awareness. Cluster
administrators have access to the cluster topology in-
formation in on-premises Hadoop clusters. This allows
cluster administrators to specify rack of each server,
enabling “rack awareness”. Even though private cloud
or virtualized server based Hadoop clusters are differ-
ent from on-premises Hadoop clusters, they can also
utilize rack awareness since the administrators have
cluster topology information. Sahara [24] for private
cloud-based Hadoop clusters and Hadoop Virtualiza-
tion Extensions (HVE) [25] for virtualized server based
Hadoop clusters were presented to enhance Hadoop
clusters running in these environments.

However, unlike on-premises, private cloud or vir-
tualized environments, it is impossible to know the clus-
ter topology in public cloud environments since public
cloud vendors do not share information about physical
rack layouts. Therefore, assigning racks in public cloud
environments becomes impossible. If the rack assign-
ment of servers are not configured, as in public cloud-
based Hadoop clusters, HDFS data read performance
will be effected taking a longer time to fetch non-local
data [18]. In addition, public cloud environments are
shared by many tenants and available resources at a
given time vary depending on the usage. This may lead
to performance degradation and load imbalance in the
Hadoop cluster. Therefore, it is necessary to have a dy-
namic network distance calculation scheme for Hadoop
clusters hosted on public cloud environments.

It is clear that Hadoop’s current data read mech-
anism, which heavily depends on static rack awareness
configuration, is not able to find the best server to fetch
data from in public cloud-based Hadoop clusters. Mo-
tivated by this, this paper proposes a scheme to find the
best server to fetch data from, by dynamically consid-
ering the network delay distribution for public cloud-
based Hadoop clusters. More specifically, the proposed
scheme uses network delay distribution between server
pairs in the cluster to calculate the logical distance.
This logical distance is used to select the best server to
fetch non-local data. Experiments in public cloud en-
vironment indicate that the proposed scheme reduces
non-local data fetch time compared to conventional
Hadoop resulting shorter job run times and saving valu-
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able cluster resources. This paper is an extended ver-
sion of [1], where we extensively investigate the effect of
the number of background jobs and size of fetched data
on data fetch time using real-world Hadoop clusters.

The remainder of this paper is organized as follows.
Section 2 introduces some basic background of Hadoop
framework in detail. Section 3.1 describes the architec-
ture overview of the proposed scheme and section 3.2
describes our proposed scheme. In section 4, we de-
scribe the experimental results and section 5 concludes
this paper and provides future works.

2. Background

This section gives a brief overview of Hadoop which is
the open source implementation of MapReduce [3].

HDFS and YARN (Yet Another Resource Negotia-
tor) are the two main components of Hadoop. HDFS
is the distributed storage system. YARN is responsi-
ble for cluster resource management and job schedul-
ing. Typically, HDFS and YARN both are co-located in
the same server. HDFS and YARN both are designed
with master-slave architecture. The master process of
HDFS is called namenonde and it oversees and manages
data storage. The master process of YARN is called
resourcemanager and it oversees cluster resource man-
agement and computing functionalities. The slave pro-
cess of HDFS called datanode, stores the actual data in
its local disks and answers to data read/write requests
while the slave process of YARN called nodemanager,
does the processing within containers.

2.1 Rack Awareness

Figure 1 shows a typical on-premises cluster, which is
configured in fat-tree topology [26] with rows of racks.
Each rack contains 20-40 servers and they are connected
to a top-of-rack switch. These top-of-rack switches con-
nect to one or more core switches, creating multiple
paths between two servers in the cluster. The links
which connect core layer and edge layer are shared by
multiple servers at the same time. Traffic that go from
one rack to another, also called cross-rack traffic, travels
through the core layer links, making them a bottleneck.

Hadoop is designed to reduce cross-rack traffic and
utilize in-rack resources as much as possible because
cross-rack paths get congested easily. Unfortunately,
Hadoop is not able to understand the network topol-
ogy by itself without any human help. Rack assignment
information of of each server, especially slave servers,
must be configured by cluster administrator so that
Hadoop is able to utilize in-rack resources as much as
possible. The network distance or the closeness be-
tween slave servers are calculated using this rack in-
formation. Two servers in the same rack are closer
compared to two servers in separate racks. The net-
work distance calculated using rack information will be

Fig. 1 Fat tree topology based on-premises Hadoop cluster

static as long as the rack layout and rack information
are not changed.

Hadoop heavily depends on this static rack infor-
mation when reading data stored in HDFS. The data
reading procedure of HDFS is explained below.

1. A client that wants to read data in HDFS contacts
the namenode to determine the locations of the
data.

2. The namenode finds the addresses of the datan-
odes that have a replica of the requested data and
sorts the addresses according to the proximity to
the client using rack information. The sorted list
of datanode addressed are sent back to the client
which requested data locations.

3. If the client itself is a datanode and holds a replica
of the data block, it reads data directly from the
local disk (data locality). Otherwise, the client
connects to the closest datanode according to the
sorted datanodes list it received from namenode
and fetches non-local data via the network.

Hadoop considers the cluster topology as flat in
cloud-based Hadoop clusters where rack information is
not available. This leave Hadoop to misunderstand that
all servers are in a single rack even though it is differ-
ent in reality. As a result, Hadoop fails to calculate
the network distance between datanodes when reading
data and selects a datanode randomly to fetch non-local
data. Selecting a random datanode causes longer data
transfer time resulting longer job run time and wasting
valuable cluster resources.
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3. Proposed scheme

3.1 Architecture overview

The proposed non-local data fetch scheme based on
delay distribution for Hadoop clusters in public cloud
environments is presented in this section. The basic
idea of the proposed scheme is to compare the distri-
bution of round-trip time (RTT) between datanodes
and select a datanode with least delay when it is nec-
essary to fetch non-local data. The proposed scheme
adds two changes to conventional Hadoop: (1) adds a
new feature to datanode daemon to measure round-trip
time between servers, and (2) extends HDFS data read
procedure to use RTT-based delay distribution. The
flowchart of round-trip time measurement and delay
distribution calculation is shown in Figure 3. The cal-
culated delay distributions between datanode pairs are
compared when a datanode is selected to fetch data.
The namenode is responsible for sorting the datanodes
according to the proximity to the client in conventional
Hadoop. However, delay distribution is measured by
each datanode and it is not available to the namenode.
Therefore, in the presented scheme, a datanode which
acts as an HDFS client when fetching non-local data,
sorts the datanodes that hold replicas of a data block
according to the delay distribution, and connects to the
first datanode to fetch data.

Fig. 2 Flowchart of measuring RTT between servers

3.2 Non-local data fetch scheme

Conventional Hadoop calculates a network dis-
tance between servers by using the physical rack layout
information. Unfortunately, public cloud vendors do
not provide physical rack layout information to their
tenants as we explained in section 1. Even if the
“static” physical distance is obtained, it does not rep-
resent the resource availability correctly. It is necessary
to dynamically calculate the network distance accord-
ing to the state of the available resources because pub-
lic cloud environments are shared by many unrelated
tenants and performance interferences can happen fre-
quently. That is why we use a logical distance that can
be calculated by using commonly available/obtainable
network information in public cloud environments. In-
stead of using a static metric such as hop count, the pro-
posed scheme uses RTT-based delay distribution to cal-
culate the logical distance between servers. We adopt
RTT since it is relatively easy and inexpensive to use
in any environment.

The procedure of measuring RTT between servers
is explained below.
1. Each datanode gets a list of datanodes connected

to the cluster at startup.
2. Each datanode sends an Internet Control Mes-

sage Protocol (ICMP) echo request to all the other
datanodes periodically.

3. Each datanode records the time it took to get
an ICMP echo reply (RTT) from other datanodes
since sending the echo request.

RTT can suddenly change depending on the net-
work traffic and server workload, which will result in
abnormal measurements of RTT. In order to minimize
the impact of the sudden changes of RTT, the distri-
bution of RTT, or delay distribution that shows the
probability characteristic of the delay is used. De-
lay distribution between datanodes can be calculated
by using the periodically measured RTT. We update
the delay distribution by using exponential smoothing
technique [27, 28, 28] as shown Eq. (1). Exponential
smoothing technique is often used for time-series data
and it can be easily applied for making some determina-
tion based on prior observations. Let t be the measured
RTT between two servers and pτ (t) be the measured
RTT distribution at time τ . fτ (t) is the smoothed
RTT distribution at time τ , fτ−1(t) is the smoothed
RTT distribution calculated at time τ − 1, and α is the
smoothing factor.

f0(t) = p0(t), τ = 0 (1a)

fτ (t) = αpτ (t) + (1− α)fτ−1(t), τ > 0 (1b)

0 ≤ α ≤ 1 (1c)

In other words, the smoothed RTT distribution fτ (t)
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is a simple weighted average of the current measure-
ment of RTT distribution and the previous smoothed
RTT distribution. The value selected for α determines
how fτ (t) is updated. A larger value of α has less of
a smoothing effect and gives a greater weight to recent
changes in the measured data. In the extreme case with
α = 1, the output series are the same as the RTT distri-
bution. A smaller value of α has more of a smoothing
effect and gives a greater weight to measurements from
the more distant past.

The average time, maximum time, minimum time,
or a randomly selected point of the delay distribution
can be used to compare the delay distributions between
server pairs. In this study, we used the average, max-
imum, minimum, ϵ, and 1 − ϵ as comparison policies.
The delay distribution between servers can be calcu-
lated by using the measured RTT between servers. tmin

is the minimum delay time, tmax is the maximum de-
lay time, and tavg is the average delay time. ϵ is the
percentile of delay distribution and it is defined as,

ϵ =

∫ tmax

tϵ

fτ (t)dt. (2)

By using Eq. (2) for a given ϵ, we can calculate tϵ.
Similarly, t1−ϵ is defined as,

ϵ =

∫ t1−ϵ

tmin

fτ (t)dt. (3)

Figure 3 shows the positions of tmin, t1−ϵ, tavg, tϵ,
and tmax in the probability density function. The min-
imum delay time, tmin, and the maximum delay time,
tmax, are the two extremes of the delay distribution
and they do not accurately represent the delay char-
acteristic of server pairs. Values of tmax and tmin are
relatively unstable and contain abnormal delay times
due to sudden changes of network conditions in the en-
vironment. Therefore, this study only uses tmin and
tmax for comparison purposes.

Fig. 3 Probability function’s distribution

The modified data reading procedure of HDFS uti-
lizing the delay distribution is explained below.

1. A client contacts the namenode to determine the
locations of the data.

2. The namenode sends a list of the datanodes that
have a replica of requested data to the client.

3. If the client itself is a datanode and holds a replica
of the data, it directly reads data from the local
disk. Otherwise, the client sorts datanodes list ac-
cording to the delay distribution comparison policy
and connects to the datanode with the least delay
to fetch non-local data.

Let N be a set of datanodes in the cluster, and
M ⊂ N be a set of datanodes that holds a particular
data block where |M | = 3. Let P be the set of policies
where P ∈ {min,max, avg, ϵ, 1 − ϵ} and the selected
remote datanode can be expressed as,

datanode(i) = arg min
i′∈M

min
policy∈P

tpolicy(i
′). (4)

4. Performance Evaluation

4.1 Experimental Environment

This study compares HDFS data read performance
of the proposed scheme with conventional Hadoop by
fetching data from HDFS and running MapReduce
jobs. The total time took to fetch data from HDFS and
MapReduce job run time are the performance measures
of the evaluation.

Six clusters, one cluster for each policy, are used for
this experiment and their configurations are described
as follows. All the clusters are based on CDH (Cloud-
era’s Distribution including Apache Hadoop) 5.11.1 [30]
and deployed on AWS EC2 Tokyo region. Each cluster
consists of seven compute optimized c4.4xlarge [31] in-
stances (virtual servers) with one master server and six
slave servers. Each instance has 16 vCPUs, 32 GiB
(GiB: gibibyte is a multiple of the unit byte digital
data storage where 1GiB ≈ 1.074GB) of memory with
EBS storage [31]. CentOS 7.3 is installed as the op-
erating system. CDH 5.11.1 includes Hadoop-2.6 with
backports of latest patches. Default scheduler of CDH,
Fair Scheduler, is used without configuring any addi-
tional queues. 2GB of memory and one virtual CPU
for each map and reduce task is configured. The max-
imum memory allocated for YARN containers in each
nodemanager is 30GB leaving 2GB of memory operat-
ing system. Similarly, 15 virtual CPUs are allocated
for YARN containers in each nodemanger leaving one
virtual CPU for the operating system tasks. A total
of 210GB of memory and 105 virtual CPUs are avail-
able in the cluster. Rack assignment is not configured
for any of the servers since we do not have any phys-
ical rack layout information. Hence, Hadoop assumes
that all the servers are in one rack named default. For
performance evaluation, we create random text data us-
ing Hadoop’s randomtextwriter program. All the jobs
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are executed at the same time from six clusters. Clus-
ters are deployed once well in advance before the jobs
run and each job is executed ten times. The averaged
results and the standard deviations are shown in sec-
tion 4.2.

In this experiment, the value of α is set to 0.5 in or-
der to consider both new and old probabilities of RTT.
RTT between datanode pairs is measured every second
and delay distribution is calculated based on the mea-
sured RTT. ϵ is set to 0.15 after comparing data fetch
times for different values of ϵ. In order to implement
the proposed scheme, a new Java class is added to the
datanode to measure the delay time between datanodes
and DistributedFileSystem class is customized to com-
pare the delay distributions.

4.2 Results and discussions

First, HDFS data fetch time of conventional Hadoop
and the proposed scheme are measured. The results
are shown in Table 1. A 1GB file (eight data blocks) is
fetched from HDFS to one of the datanodes using built
in hdfs dfs command. For this experiment, we select the
datanode that has the least number of replicas of the
1GB file so that Hadoop can fetch more replicas from
remote datanodes. In this experiment, there are only
one replica stored at the particular datanode and seven
replicas are fetched from remote datanodes. Data fetch
time without background jobs and with background
jobs are measured.

To simulate a real-world multi-user cluster, data
fetch time while running background jobs are mea-
sured. Three wordcount MapReduce jobs, each count-
ing words in separate 20GB file are used as background
jobs. Wordcount is selected because it achieves a bal-
ance in both map and reduce stages. Each map task of
the wordcount job reads the input file line by line and
breaks it into words with key/value pair of the word
and 1. Each reduce task sums the counts of each word
and creates a single key/value with the word and sum
as the result of the job.

Conventional Hadoop is expressed as Tcon. TP ,
P ∈ {avg,max,min, ϵ, 1−ϵ} shows which policy is used
as the delay distribution comparison policy. Tavg ex-
presses that tavg is used as the delay distribution com-
parison policy, Tmax expresses that tmax is used as the
delay distribution comparison policy, etc.

When there are no background jobs running,

Tϵ < Tavg < T1−ϵ < Tmin < Tmax < Tcon (5)

is observed. For the scenario with background jobs run-
ning,

Tavg < Tϵ < T1−ϵ < Tmax < Tmin < Tcon (6)

is observed. In the case that there are background jobs
running, all the policies including conventional Hadoop

Table 1 HDFS data fetch times

Policy
Without background jobs With background jobs
Time [sec] Stdev. [sec] Time [sec] Stdev. [sec]

Tcon 4.3988 0.141 5.7020 0.184
Tavg 4.2700 0.135 5.0283 0.192
Tmax 4.3587 0.161 5.5263 0.188
Tmin 4.3454 0.162 5.5682 0.181
Tϵ 4.2366 0.155 5.1521 0.177
T1−ϵ 4.3131 0.144 5.3139 0.198

take longer time to fetch data compared to the results of
no background jobs. With background jobs, there are
more traffic (non-local data fetch of map tasks, shuffle
data etc.) transferred between the datanodes. This re-
duces the overall network throughput leading to longer
data transfer times.

When fetching non-local data from remote datan-
odes using conventional Hadoop, it randomly selects a
remote datanode to fetch data from. This randomly
selected datanode might be close to the data fetch-
ing datanode or distant from the data fetching datan-
ode. Both Eqs. (5) and (6) show that these randomly
selected remote datanodes are not closer to the data
fetching server, resulting longer data fetch times when
conventional Hadoop is used. On the other hand, TP ,
P ∈ {avg,max,min, ϵ, 1 − ϵ}, respectively uses tavg,
tmax, tmin, tϵ, and t1−ϵ of delay distribution as the
logical distance between servers to compare and select
the closest datanode resulting shorter data fetch times.
However, there is a possibility that Tmax or Tmin, which
compares the extremes of the delay distribution, may be
inferior compared to Tcon if there are abnormal delays
in RTT. In this experiment, there were no abnormal
delays that would affect the performance.

In the case without background jobs, limited num-
ber of data fetching from the same datanote occur.
In this case, reducing the worst-case delay time, tmax,
completes the data fetch in the least amount of time.
However, tmax and tmin are the two extremes of de-
lay distribution and they do not accurately represent
the delay characteristic of the cluster. Values of tmax

and tmin are relatively unstable and contain abnormal
delay times due to sudden network condition changes
which are more likely to occur in public cloud environ-
ments. Therefore, a policy that is robust against sud-
den network condition changes but reduces the worst-
case delay is desirable. Policy ϵ excludes worst-case
delay and compares the delay times that are ϵ% from
the worst-case delay, which is robust against sudden
network changes. The experimental results also show
that Tϵ is able to fetch data in a shorter time compared
to conventional Hadoop and other policies when there
are no background jobs.

In the case with background jobs, background jobs
also fetch data in addition to the data fetch command
that we run. This leads to multiple data fetches from
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the same remote datanode. Reducing just one data
fetch does not shorten the total data fetch time when
there are multiple data fetches because it is difficult to
estimate which data fetch among multiple data fetches
should be reduced. A policy that reduces the total time
of multiple data fetches at the same time is more suit-
able. The policy that compares the average delay time
is most suitable since it considers delay times of mul-
tiple data fetches. The experimental results also show
that Tavg is able to fetch data in a shorter time com-
pared to conventional Hadoop and other proposed poli-
cies with background jobs.

Table 2 shows the results of wordcount MapRe-
duce job, processing 10GB file without background
jobs. Rack-local map tasks are the map tasks that fetch
data from other datanodes. In this experiment, only
data-local and rack-local map tasks exist, since rack lo-
cations are not configured leaving Hadoop to consider
that all the servers are in a single rack. The number of
rack-local map tasks are verified from the job counters
information.

Table 2 Wordcount job completion time without background
jobs

Policy Time [sec] Stdev. [sec]
Average ratio of rack-
local map tasks [%]

Tcon 85.294 3.92 19.89
Tavg 80.551 3.42 19.89
Tmax 83.966 3.45 20.00
Tmin 84.880 4.11 20.11
Tϵ 80.053 3.84 20.00
T1−ϵ 82.851 3.71 20.11

From Table 2,

Tϵ < Tavg < T1−ϵ < Tmax < Tmin < Tcon (7)

is observed. Equation (7) shows that the proposed
scheme is able to reduce the wordcount job run time
compared to conventional Hadoop even though the av-
erage ratio of rack-local map tasks is slightly higher.
In the case that there are no background jobs running,
wordcount job is finished in shortest time when ϵ policy
is used. This is similar to the observation of Eq. (5).
Therefore, we can say that the policy which reduces the
worst-case delay time is preferable when there are only
a few data fetches occurring in the cluster.

Table 3 shows the results of wordcount job, pro-
cessing 10GB file with background jobs. Three word-
count jobs are executed in as background jobs, process-
ing separate 20GB files. Table 3 also shows the average
rack-local map task ratio.

From Table 3,

Tavg < Tϵ < T1−ϵ < Tmin < Tmax < Tcon (8)

is observed. This shows that the proposed scheme

Table 3 Wordcount job completion time with background jobs

Policy Time[sec] Stdev[sec]
Average ratio of rack-
local map tasks [%]

Tcon 167.931 10.2 30.40
Tavg 152.293 11.42 30.00
Tmax 159.902 10.9 31.32
Tmin 159.591 11.29 30.04
Tϵ 153.417 10.85 30.00
T1−ϵ 156.081 11.13 30.32

is able to reduce the job run time even with back-
ground jobs. The average job run time compared to
Table 2 is higher for all the policies including conven-
tional Hadoop. This is related to the fact that there are
more tasks running in the cluster which adds extra traf-
fic and more wait time to schedule tasks. Equation (8)
shows that Tavg finishes in the shortest time. This is
similar to what we observed in Eq. (6). Therefore, the
policy that reduces the average delay time is most suit-
able for real-world workloads where there are multiple
non-local data fetches occurring at the same time.

In real-world clusters there are multiple jobs run-
ning at the same time and from the above experimen-
tal results it is confirmed that reducing the average of
the delay distribution is most effective in such clusters.
In order to further investigate the effectiveness of the
policy that compares average delay distributions, data
fetch times are measured while changing the number of
background jobs. Figure 4 shows the data fetch times
of conventional Hadoop and the most effective policy
in the proposed scheme, which reduces the average de-
lay time. A 1GB file is fetched from HDFS to measure
the data fetch times. Wordcount MapReduce jobs that
process a 20GB file each are used as background jobs.

Fig. 4 HDFS data fetch time with changing number of back-
ground jobs

Tavg < Tcon (9)

is observed from Figure 4. These results further prove
that the proposed scheme is effective and continues to
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outperform conventional Hadoop with the number of
background jobs. However, the gap between the con-
ventional Hadoop and proposed scheme stops increas-
ing after three background jobs. This is mainly re-
lated to the network throughput reduction due to the
increase in number of background jobs. More back-
ground jobs cause more traffic in the network, reducing
the network throughput. As a result, the time it takes
to transfer data over the network increases similarly for
both conventional Hadoop and the proposed scheme.
However, the block locations and the number of blocks
of the 1GB file are fixed and the time to fetch non-local
data of the 1GB file becomes identical. Therefore, the
effectiveness of the proposed scheme peaks irrespective
of the number of background jobs.

Furthermore, data fetch time is measured while
changing the size of the fetched data. Three wordcount
jobs are used as background jobs. Figure 5 summarizes
the data size, data fetch time, and data fetch time re-
duction rate of the proposed scheme compared to con-
ventional Hadoop. Results from Figure 5 shows that
the proposed scheme becomes more effective with the
fetched data size. The number of data blocks that needs
to be fetched from remote datanodes increases with the
data size. More data blocks provide more opportunities
for the proposed scheme to expand the difference with
conventional Hadoop.

Fig. 5 Comparison of data fetch time with fetched data size

The experimental results show that the proposed
scheme, which uses delay distribution to compare the
logical distance between datanodes, is able to fetch non-
local data from remote datanodes efficiently compared
to conventional Hadoop. This results in shorter job
run times, saving valuable cluster resources which can
be used for other data processing jobs. Equations (6)
and (8) resemble the results that are closer to real-world
multi-user clusters where there are jobs running at the
same time. The number of non-local data fetches in-
creases with the number of concurrent jobs since it is
harder to schedule processing tasks on the same server

where data is. Therefore, Tavg, which reduces the av-
erage delay time of concurrent data fetches, is most
suitable for real-world clusters.

AWS EC2 is used as the experiment environment
in this study. The proposed scheme can easily be used
in any other public/private cloud environment since it
does not use any AWS specific tools. We selected rel-
atively easy to implement and inexpensive RTT based
delay distribution to compare server pairs, thus paving
the way to use our proposed scheme in any other cloud
environment. The experiments performed by chang-
ing the number of background jobs and fetched data
size confirmed that the proposed scheme is effective
even if the workload changes. The measurement val-
ues shown in this section may change depending on the
available resources in the environment at the job exe-
cution time as we explained in section 1. However, the
proposed scheme will outperform conventional Hadoop
because it selects datanode by comparing the delay dis-
tributions rather than randomly selecting a datanode to
fetch data.

The proposed scheme compares RTT based de-
lay distributions to select a datanode to fetch
data. Hadoop exposes statistical information regard-
ing Hadoop daemons, called metrics [32] for monitor-
ing, performance tuning, and debug purposes. Some of
the metrics exposed by Hadoop daemons can also be
used when a datanode is selected to fetch remote data
with some customization, since non of them measures
time between server pairs in the cluster.

5. Conclusion

Cluster administrator configured rack assignment in-
formation of servers in the cluster is used by conven-
tional Hadoop to calculate the network distance be-
tween datanodes. Hadoop uses the network distance
(hop count) calculated using rack assignment informa-
tion to select the best server to fetch non-local data.
However, there are cases where it is impossible to know
the rack assignment information such as public clouds.
Public cloud providers do not share the physical rack
layout information of servers with tenants. Therefore,
the administrators of public cloud-based Hadoop clus-
ters are unable to configure rack assignment of servers.
When rack information is not configured, Hadoop con-
siders all servers to be in one rack. This can lead to
fetching non-local data from randomly selected datan-
odes, causing longer data fetch time and wasting valu-
able cluster resources.

This paper proposed a delay distribution based
scheme to find the best datanode to fetch data from. It
determines the best remote datanode by comparing de-
lay distributions of datanode pairs. The average, max-
imum, minimum, ϵ, and 1 − ϵ of delay time is used
to compare the delay distributions between datanode
pairs. Experiments based on a public cloud environ-
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ment showed that the proposed scheme reduces non-
local data fetch time compared to conventional Hadoop
resulting shorter job run times. The results also sug-
gested the policy that reduces the average delay time is
better for real-world multi-user Hadoop clusters, since
it reduces the total delay time of multiple data fetches.
Moreover, the results suggested that this policy in-
creases the data fetch time difference from conventional
Hadoop as the data size increases.

In this paper, we used a probabilistic method to
improve non-local data fetching of public cloud-based
Hadoop clusters. Confirming the effectiveness of the
proposed scheme on on-premises Hadoop clusters is left
as part of our future work.
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