
NUMFabric: Fast and Flexible Bandwidth Allocation
in Datacenters

Kanthi Nagaraj?, Dinesh Bharadia†, Hongzi Mao†, Sandeep Chinchali?, Mohammad Alizadeh†, Sachin Katti?
?Stanford University, †MIT CSAIL

ABSTRACT
We present NUMFabric, a novel transport design that pro-
vides flexible and fast bandwidth allocation control. NUM-
Fabric is flexible: it enables operators to specify how band-
width is allocated amongst contending flows to optimize for
different service-level objectives such as weighted fairness,
minimizing flow completion times, multipath resource pool-
ing, prioritized bandwidth functions, etc. NUMFabric is
also very fast: it converges to the specified allocation 2.3×
faster than prior schemes. Underlying NUMFabric is a novel
distributed algorithm for solving network utility maximiza-
tion problems that exploits weighted fair queueing packet
scheduling in the network to converge quickly. We evaluate
NUMFabric using realistic datacenter topologies and highly
dynamic workloads and show that it is able to provide flexi-
bility and fast convergence in such stressful environments.

CCS Concepts
•Networks→Transport protocols; Data center networks;

Keywords
Resource allocation; Convergence; Network utility maxi-
mization; Weighted max-min; Packet scheduling

1. INTRODUCTION
Bandwidth allocation in networks has historically been

at the mercy of TCP. TCP’s model of allocation assumes
that bandwidth should be shared equally among contend-
ing flows. However, for an increasing number of networks
such as datacenters and private WANs, such an allocation is
not a good fit and is often adversarial to the operator’s in-
tent. Consequently, there has been a flurry of recent work
on transport designs, especially for datacenters, that target
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SIGCOMM ’16, August 22 - 26, 2016, Florianopolis , Brazil
© 2016 Copyright held by the owner/author(s). Publication rights licensed to
ACM. ISBN 978-1-4503-4193-6/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2934872.2934890

different bandwidth allocation objectives. Many aim to min-
imize per-packet latency [2, 54] or flow completion time [23,
3], while others target multi-tenant bandwidth allocation [58,
7, 55, 26], while still others focus on sophisticated objectives
like resource pooling [56], policy-based bandwidth alloca-
tion [35], or coflow scheduling [15, 17, 14]. In effect, each
design supports one point in the bandwidth allocation policy
design space, but operators ideally want a transport that can
be tuned for different points in the design space depending
on workload requirements.

In this paper, we present NUMFabric, a novel transport
fabric that enables operators to flexibly specify bandwidth
allocation policies, and then achieves these policies in the
network using simple, distributed mechanisms at the switches
and end-hosts. NUMFabric’s design is based on the clas-
sic Network Utility Maximization (NUM) [33] framework
which allows per-flow resource allocation preferences to be
expressed using utility functions. Utility functions encode
the benefit derived by a flow for different bandwidth alloca-
tions, and can be chosen by the operator to achieve differ-
ent bandwidth and fairness objectives. In §2, we show how
an operator can translate high level policies such as varying
notions of fairness, minimizing flow completion times, re-
source pooling a la MPTCP [56] and bandwidth functions [35]
into utility functions at end-hosts. NUMFabric then realizes
the bandwidth allocation that maximizes the sum of the util-
ity functions in a completely distributed fashion.

Network utility maximization of course is not new. There
is a long line of work [61] on designing distributed algo-
rithms based on gradient descent for NUM (§3). However,
these algorithms are slow to converge to the optimal rate. For
datacenter workloads, where a majority of the flows may last
only a few RTTs due to the high link speeds, the convergence
time of these algorithms is often much larger than the life-
time of the majority of flows, and hence no guarantees on re-
source allocation can be made. Moreover, gradient-descent
algorithms are difficult to tune since they have a “step-size”
parameter that needs to be tuned for each workload and re-
source allocation objective. In practice, given the scale of
datacenters and the variety of objectives, getting the tuning
right is a formidable task.

Our main technical contribution is a transport design for
solving the NUM problem that converges significantly faster
than prior work and is much more robust. The key insight

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/89358536?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1145/2934872.2934890

Op#mal	weight	Computa#on	
(XWI)		

Weighted	max-min	transport	
(Swi=)	

weights

NUMFabric Layers

XWI	weight	computa#on		

Swi=	rate	control	

Hosts

XWI	price	computa#on		

WFQ	scheduling	

Switches

Minimize avg flow
completion time

Pick utility functions
 and send to hosts

Figure 1: NUMFabric’s high level architecture. The op-
erator picks utility functions based on the desired alloca-
tion objective. NUMFabric realizes the allocation with
distributed mechanisms at the hosts and switches that
implement two logical layers: (1) Swift, a network-wide
weighted max-min achieving transport; (2) xWI, an op-
timal weight computation algorithm.

underlying NUMFabric is to decouple the mechanisms for
maximizing network utilization and achieving the optimal
relative bandwidth allocation across competing flows. Ex-
isting NUM algorithms couple these objectives and try to
accomplish both simultaneously through price variables at
the links. This process is slow and brittle due to the need to
balance between moving quickly towards the optimal allo-
cation, and avoiding congestion or under-utilization (§4).

NUMFabric employs independent mechanisms for the two
goals by decomposing the task of solving the NUM prob-
lem across two logical layers. Figure 1 shows the high level
architecture. At the bottom layer, NUMFabric combines a
packet scheduling mechanism based on weighted fair queu-
ing (WFQ) [53, 16] at the switches and a simple rate con-
trol scheme at the hosts to achieve a network wide weighted
max-min rate allocation for competing flows. NUMFabric’s
packet scheduling differs from standard WFQ in that the
flow’s weights are set dynamically at the hosts and carried in
packet headers. This design, which we call the Swift trans-
port (§4.1), exploits the fact that datacenter switches can
be designed to support more sophisticated packet schedul-
ing than simple FIFO queues [59]. Swift guarantees that the
network is fully utilized while keeping flows isolated using
WFQ. It achieves the weighted max-min allocation rapidly
as the flows, or their weights, change.

Swift provides a convenient abstraction for controlling the
relative bandwidth allocation of flows (via the flow weights).
NUMFabric leverages this capability via a novel distributed
algorithm called eXplicit Weight Inference (xWI) which runs
on top of Swift (§4.2). In xWI, the sources and switches
exchange information in packet headers to iteratively com-
pute the weights that flows should use to achieve the optimal
bandwidth allocation. Essentially, xWI iteratively guides the
network from one weighted max-min allocation to the next
until it finds the optimal NUM solution. Since there is no risk

of congestion or under-utilization with weighted max-min
allocations, xWI can aggressively update the link weights
towards the optimal point and converge quickly.

We evaluate NUMFabric with detailed packet-level simu-
lations in ns3 [49] using realistic datacenter topologies and
workloads (§6). We compare NUMFabric for several re-
source allocation objectives with the best in class scheme
for that objective, including pFabric [3] for FCT minimiza-
tion, a variant of RCP [30] for α-fairness [47], and a well-
known gradient-descent algorithm [40] for solving general
NUM problems. We find that NUMFabric is fast and flexi-
ble. Specifically, compared to gradient descent based solu-
tions [40, 30], NUMFabric converges to the optimal alloca-
tions 2.3× faster at the median and 2.7× faster at the 95th

percentile; it also allows operators to realize a wide variety
of fairness-utilization objectives [47], policies that optimize
flow completion time [3], and sophisticated policies such as
resource pooling [56] and bandwidth functions [35].

2. HOW TO CHOOSE UTILITY
FUNCTIONS?

NUMFabric adopts NUM [33] as a flexible framework for
expressing fine-grained bandwidth allocation preferences as
an optimization problem. In the most basic form, each net-
work flow is associated with a utility as a function of its rate.
The goal is to allocate rates to maximize the overall system
utility, subject to link capacity constraints:

maximize
∑
i

Ui(xi)

subject to Rx ≤ c. (1)

Here, x is the vector of flow rates; R is the {0, 1} routing
matrix, i.e., R(i, l) = 1 if and only if flow i traverses link l;
and c is the vector of link capacities. The utility functions,
Ui(·) are assumed to be smooth, increasing, and strictly con-
cave.1 A flow is defined generically; for example, a flow can
be a TCP connection, traffic between a pair of hosts, or traf-
fic sent or received by a host.

The utility function choice depends on the bandwidth al-
location objective that the operator wishes to achieve. We
pick four popular and broad bandwidth allocation policies
and show how they can be expressed using utility functions
below; a similar exercise can be carried out for other poli-
cies. Table 1 provides a summary.
Fairness. Various notions of fairness can be expressed sim-
ply by changing the shape of the utility functions. The α-
fair [47] class of utility functions, represented in the first
row of Table 1, enable an operator to express different pref-
erences on the fairness/efficiency trade-off curve by vary-
1Concave utility functions ensure the optimization problem
is tractable and has a unique global optimum [12]. Some
practically interesting utility functions are not concave, e.g.,
bandwidth guarantees for inelastic flows. In such cases,
global optimization is generally intractable, but under cer-
tain conditions distributed algorithms have been shown to
attain the global optimum [22]. A study of non-concave util-
ity functions is beyond the scope of this paper.

Allocation Objective NUM objective
Flexible α-fairness [47]

∑
i x

1−α
i /(1− α)

Weighted α-fairness
∑
i w

α
i x

1−α
i /(1− α)

Minimize FCT [3]
∑
i xi/si

Resource pooling [68]
∑
i y

1−α
i /(1− α),

where yi =
∑
p∈Path(i) xip

Bandwidth functions [35]
∑
i

∫ xi
0
Fi(τ)

−αdτ

Table 1: Example utility functions for several resource
allocation policies. The case α = 1 is to be interpreted
in the limit α→ 1; e.g.,

∑
i log xi for the first row.

ing α, a non-negative constant. α = 0 is purely utilitarian:
maximize overall throughput without concern for fairness.
As α increases, the NUM solution gets “more fair”, even-
tually converging to the egalitarian max-min fair allocation
as α → ∞. An important case is α = 1, which is a com-
promise between these extremes and is called proportional
fairness. α-fair utility functions can also be generalized to
express relative priorities using different weight multipliers
for different flows, as shown in the second row of Table 1.

Minimizing Flow Completion Time. Size-based schedul-
ing policies that are effective for minimizing (average) flow
completion time can also be approximated within the NUM
framework, as shown in the third row of Table 1. The util-
ity functions are linear in the rates and associate a weight
to each flow inversely proportional to its size (si). It is
not difficult to see that the solution to this problem coin-
cides with the Shortest-Flow-First policy for flows sharing
a single link. As we show in §6.3, this objective also per-
forms very well in the multi-link case. Similarly, the weights
can be chosen inversely proportional to the remaining flow
size or flow deadlines to approximate Shortest-Remaining-
Processing-Time (SRPT) or Earliest-Deadline-First (EDF)
scheduling for meeting deadlines [23, 3].2

Resource Pooling. The goal of resource pooling [68] is to
make a collection of network links behave as though they
make up a single link with the aggregate capacity (see [68],
Figure 1, for an illustration). This is useful in datacenters,
where the network fabric has a large number of paths and
we would like flows to use the entire pool of capacity effi-
ciently. The Multipath TCP (MPTCP) [69, 56] congestion
control algorithm has recently been proposed for achieving
resource pooling. MPTCP divides a flow into sub-flows that
traverse different paths and implements a coordinated con-
gestion control across them to realize resource pooling.

It turns out that resource pooling for multipath flows can
be expressed as a NUM problem, as shown by Kelly [31].
The key idea is to consider the utility for a flow in terms
of the total rate of all its sub-flows. Any sharing/fairness
objective can be generalized for multipath resource pooling
in this way. The fourth row of Table 1 shows this for the

2The linear objective is not strictly concave, hence the NUM
solution may not be unique. We can avoid this in practice by
using

∑
i x

1−ε
i /si instead, with a small ε such as 0.1.

Fair	Share	(f)

Ba
nd

w
id
th
	fu

nc
tio

n	
B(
f)

Flow1=10

Flow2=0

Flow1=15

Flow2=10

25Gbps

10Gbps

Flow1
Flow2

10Gbps 25Gbps

Figure 2: Flow1 (blue) and Flow2 (red) share a link and
have the bandwidth functions shown. If the link speed
is 10 Gbps, the blue flow gets all of the link, correspond-
ing to a fair share of 1. But with a link speed of 25 Gbps,
the blue flow gets 15 Gbps and the red flow gets 10 Gbps,
for a fair share of 2.5.

α-fairness objective. Here yi is the total rate, summed over
the rates of the subflows on different paths.

Bandwidth Functions. Bandwidth functions are an intu-
itive abstraction for expressing bandwidth sharing policies
that have been used in Google’s Bandwidth Enforcer (BwE)
system for their private WAN [25, 35]. A bandwidth func-
tion, B(f), specifies the bandwidth to be allocated to a flow
as a non-decreasing function of a dimensionless variable, f ,
called the fair share. The bandwidth function indicates the
priority and weight of a flow relative to other flows for dif-
ferent values of f . As an illustration, Figure 2 shows the
bandwidth functions of two flows. Here, flow 1 has strict
priority over flow 2 for the first 10 Gbps of capacity (f ≤ 2);
beyond that, flow 2 receives bandwidth at twice the slope of
flow 1 until it reaches 10 Gbps (2 ≤ f ≤ 2.5), and so on.

Formally, given the bandwidth functions, Bi(f), for a set
of flows sharing a single link, the bandwidth allocation is
determined by finding the largest value of f such that (1)
flow i is allocated bandwidth Bi(f); (2) the link is not over-
subscribed, i.e.

∑
iBi(f) ≤ C, whereC is the link capacity.

Computing this allocation is straight forward via a water-
filling procedure: start with f = 0 and increase f until the
link capacity is reached. Figure 2 shows the resulting band-
width allocation for the two flows, when contending for a
link of capacity 10 Gbps or 25 Gbps. This water-filling pro-
cedure can be generalized for an arbitrary number of links by
calculating a max-min set of fair share values for the flows
(see [35] for details).

We now show how, given a set of operator-defined band-
width functions, Bi(fi), we can derive corresponding utility
functions (shown in the last row of Table 1) such that the
NUM solution achieves the desired allocation. For technical
convenience, we assume that Bi(·) are strictly increasing.
Let Fi(x) , B−1i (x) be the inverse bandwidth function,
giving the fair share as a function of allocated bandwidth.
Now consider the following utility function:

Ui(xi) =

∫ xi

0

Fi(τ)
−αdτ, (2)

where α is positive constant. Ui(·) is concave and increas-

ing, hence the NUM problem has a unique optimal solution.
It turns out that for large α, the NUM solution is close to the
allocation corresponding to the bandwidth functions.3 In-
formally, the reason is that for large α, the marginal utility,
U ′i(xi) = Fi(xi)

−α, increases very sharply for smaller val-
ues of fair share, Fi(xi). Therefore, NUM favors increas-
ing the fair share (and rate) of flows with smaller fair share.
For large α, the result is an allocation that is approximately
max-min in the fair shares, as desired. In practice, we find
that α ≈ 5 is sufficient for very good approximation (§6.3).

3. PRIOR APPROACHES TO NUM
There are several well understood distributed algorithms

for NUM [33, 29, 40] that have a structure similar to end-to-
end congestion control. At a high level, sources determine
the rates of flows based on congestion feedback from net-
work links. Each link computes a congestion price based on
the aggregate traffic at the link, and each source adjusts its
rate (or window size in window-based schemes like TCP)
based on the aggregate congestion price along its path. To
make the description precise, we focus on a standard and
well-studied end-to-end algorithm for NUM first proposed
by Low et al. [40]. We call it the Dual Gradient Descent
(DGD) algorithm for reasons which will become evident.

Dual Gradient Descent Algorithm
In the DGD algorithm, the flow rates and link prices are

interpreted as the primal and dual variables of the NUM
optimization problem (1). The DGD algorithm is an itera-
tive gradient descent based procedure for computing the pri-
mal and dual optimal variables. We omit the derivation for
brevity, but it can be shown that this can be done in a dis-
tributed fashion because the dual problem decomposes into
independent subproblems, one for each flow, as shown in
Low et al. [40] (Sec IV). We focus on the two key opera-
tional aspects of the algorithm: how prices at each link (rep-
resented by pl for link l) are computed and updated at the
switches, and how end-hosts compute and update their send-
ing rates (represented by xi for sender i).

Updating sending rates at the end-hosts. The DGD algo-
rithm proceeds in iterations. In iteration t, given the (fixed)
link prices, each flow sets its rate, xi to:

xi(t) = U ′−1i

 ∑
l∈L(i)

pl(t)

 , (3)

where L(i) is the set of links on flow i’s path. The rate up-
date has an intuitive interpretation; it sets the rate of each
flow to be such that the marginal utility is equal to the over-
all sum of prices of the links on the flow’s path. Note that
the flow only needs to know the overall sum of prices, not
the individual prices of the links along the path.

Updating link prices at the switches. Subsequently, fixing
the flow rates xi(t) for iteration t, the DGD algorithm cal-
culates the price at each link for iteration t + 1 using the

3The desired allocation is achieved in the limit: α→∞.

following gradient descent step:

pl(t+ 1) =

pl(t) + γ

 ∑
i∈S(l)

xi(t)− cl

+

. (4)

Here, S(l) is the set of flows incident on link l, and γ is the
step size. The notation [x]+ means max(x, 0). Equation (4)
has an intuitive interpretation. The term

∑
i∈S(l) xi − cl is

the net traffic through the link minus its capacity, and turns
out to be the gradient for the dual problem. The price is
a measure of congestion: it increases when traffic exceeds
the link’s capacity and decreases otherwise. Further, the
increase or decrease is controlled by the gradient. Equa-
tions (3) and (4) define the DGD algorithm. Low et al. [40]
prove that the iterations converge to the NUM solution, pro-
vided the step size parameter is sufficiently small.
Drawbacks of DGD. The DGD algorithm is simple and el-
egant, but it has some key drawbacks in practice. First, it
converges slowly and can take many iterations to find the
optimal solution. This is important because if the underly-
ing conditions change before the algorithm converges (e.g., a
flow arrives or departs), then the algorithm is constantly try-
ing to catch up to the new optimal allocation. Specifically,
if the convergence time is greater than the coherence time of
the workload, the algorithm will never converge.

Second, the DGD algorithm is very sensitive to the step
size parameter, γ, in Equation (4). If γ is too small, the
prices are prohibitively slow to converge, but set γ too large
and the system becomes unstable and oscillatory. The “right”
value of γ depends on a complex mix of network structure,
flow pattern, and feedback latency. There is little theoretical
guidance for tuning DGD beyond very conservative bounds
that guarantee convergence [40].

4. DESIGN
NUMFabric solves NUM bandwidth allocation problems

faster and more robustly than existing approaches. NUM-
Fabric’s insight is to decouple the underlying mechanisms
for maximizing network utilization and achieving the opti-
mal relative rate allocation. Existing NUM algorithms such
as DGD couple these objectives and accomplish both in the
price computation. Specifically, link prices in DGD directly
dictate the sending rates of flows (Eq. (3)). DGD gradually
adjusts the link prices (Eq. (4)) to (1) match the aggregate
traffic at each bottleneck link to its capacity; (2) drive the rel-
ative rate allocations of the flows towards the optimal value.
These two objectives are achieved simultaneously: as the
prices react to local rate-capacity mismatches at each link,
they also collectively converge to specific values such that
the flows attain the optimal relative rate allocations.

The link prices in DGD essentially act both as a measure
of congestion to control network utilization, and as a coor-
dination signal between different flows to determine the rel-
ative rate allocation. This coupling makes for a brittle dy-
namic, where any change (e.g., a flow arrival or departure)
that requires the link prices to change in order to achieve the
correct relative allocation cannot occur without rate-capacity

mismatches at the links. In fact, a link’s price cannot change
unless there is a rate-capacity mismatch at that link (Eq. (4)).
For this reason, DGD must adjust the link prices gradually,
in order to avoid under-utilization or packet drops.

NUMFabric decouples the objectives using two separate
layers, as shown in Figure 1:

• The Swift transport (§4.1), a transport design that given
a weight for each flow, quickly achieves the network-
wide weighted max-min fair rate allocation for all flows.
• The eXplicit Weight Inference (xWI) algorithm (§4.2),

a distributed algorithm that calculates the optimal weights
for the flows such that the weighted max-min rate allo-
cation (achieved by Swift) solves the NUM problem.

Swift provides the abstraction of a network with guaran-
teed high utilization and weighted max-min allocation [44,
9], where the flow weights can be set dynamically. This al-
lows the relative bandwidth allocation of the flows to be con-
trolled without having to worry about high utilization or net-
work congestion. xWI leverages this capability to quickly
search for the optimal weights and link prices, which now
solely act as a coordination signal — not a measure of con-
gestion — enabling xWI to converge quickly and safely.

4.1 The Swift Transport
Swift flows have a weight that is set by the source and

is sent to the network in packet headers. The Swift trans-
port uses a combination of WFQ [53, 16] in the switches
and a simple rate control scheme at the end-hosts to achieve
the network-wide weighted max-min rate allocation. We de-
scribe each component in turn.

Swift Switches
The switches implement a packet scheduling algorithm

based on classical WFQ [53, 16]. WFQ services a set of
flows contending at a link in proportion to their weights.
Swift switches do the same, except that the flow’s weight
is allowed to change on a packet-by-packet basis. We leave
the details of the algorithm and its practical realization using
recently proposed hardware mechanisms [59] to §5.

Swift Rate Control
WFQ achieves weighted max-min allocation for a single

link. To achieve network-wide weighted max-min allocation,
each flow must also send traffic at the rate dictated by the
WFQ scheduler at its bottleneck link. If a flow sends below
or above the rate that WFQ allows, it can under-utilize the
available capacity or cause packet drops.

We design a simple window-based rate control scheme
to achieve network-wide weighted max-min. The rate con-
trol algorithm has two requirements. First, it must set the
window size to be larger than the bandwidth-delay prod-
uct (BDP) for the flow, so that the flow’s rate is not lim-
ited by its window. Second, it must keep the buffer occu-
pancy small at the switches. This is important for fast con-
vergence: large buffer occupancies slow down convergence
to weighted max-min when the set of flows (or their weights)
change, because large buffers may take a long time to drain
when a flow’s bottleneck shifts from one link to another.

Our rate control algorithm is inspired by packet-pair [34]
and packet-train [13] techniques for estimating available band-
width in a network of switches with WFQ packet scheduling.
The receiver measures the inter-packet time for each incom-
ing packet, and sends this value to the sender in acknowl-
edgments. Upon receiving an ACK, the sender calculates a
rate sample, bytesAcked / interPacketTime, and
smoothens these values using an exponentially weighted mov-
ing averaging (EWMA) filter [62] to estimate the available
bandwidth, R̂. The sender then sets its window size to W =
R̂ × (d0 + dt), where d0 is the baseline fabric RTT (with-
out queuing delay) and dt is a small slack factor (e.g., a few
packets worth of delay) chosen to ensure that the window
size is larger than the BDP (estimated by R̂× d0).

To start, the sender initially sends a small burst (e.g., 3
packets in our implementation) into the network. This burst
ensures that packets are queued at the bottleneck, and thus
the inter-packet time observations at the receiver reflect the
true available bandwidth. Upon receiving the first inter-packet
time sample,4 the sender initializes R̂; thereafter, it updates
R̂ and the window size as explained above.

4.2 The xWI Algorithm
xWI is a novel distributed algorithm for solving NUM

problems that runs on top of a weighted max-min achiev-
ing transport layer like Swift. xWI is inspired by iterative
message passing [43] algorithms. In each iteration, sources
exchange messages with switches to compute the weights
to set for their flows in Swift. xWI iteratively refines the
weights to arrive at the optimal NUM allocation.

The key idea in xWI is to iteratively solve the KKT system
of equations [12] for the NUM problem:

U ′i(xi) =
∑
l∈L(i)

pl for all flows i, (5)

pl

 ∑
i∈S(l)

xi − cl

 = 0 for all links l, (6)

where xi are the flow rates, and pl are the link prices. Intu-
itively, the first condition implies that at the optimal point, a
flow’s marginal utility is equal to the total price it must pay
on the path it is traversing. The second condition implies
that either a link is fully utilized (i.e. the sum of the rates
of flows on that link is equal to the link capacity), or if it is
underutilized, the link price is zero. The flow rates and link
prices are optimal iff they satisfy the above equations and
are feasible, i.e., Rx ≤ c, p ≥ 0 [12, 61].
Flow weight assignment and rate allocation. Recall the
rate assignment step in the DGD algorithm (Eq. (3)), which
sets the rate of each flow based on the sum of the link prices
on its path. xWI uses the same function of the sum of the
link prices, but uses it to set the flow’s weight to be used
by Swift, not its rate. Specifically, in iteration t, the flow’s
4The first inter-packet time arrives with the second ACK
(following the standard three-way handshake). The sender
ignores the first ACK and sends nothing.

weight is assigned as

wi(t) = U ′−1i

 ∑
l∈L(i)

pl(t)

 . (7)

The Swift transport then takes these weights and allocates
rates to all flows according to weighted max-min:

{wi(t)}
weighted max-min−−−−−−−−−−−→ {xi(t)} (8)

The intuition for this step is that the above function of the
link prices calculates rates such that Eq. (5) is satisfied. If
the prices are at the optimal values, this calculation gives the
optimal rates, but generally, the calculated values are not op-
timal (or even feasible) rates for incorrect prices. Here, using
weights has a crucial advantage: it lets Swift find a feasible
and efficient allocation that approximately satisfies Eq. (5)
even if the link prices are not optimal. By contrast, assigning
rates (as done in DGD), can cause over- or under-utilization
if the link prices have not converged to the optimal values.
As the prices reach the optimal values, the weights computed
by Eq. (7) will be the same as the optimal rates for the NUM
problem; and Eq. (5) will be satisfied exactly.
Price computation. Next, link prices at iteration t + 1 are
updated based on the values (link prices and flow rates) in
iteration t to approach the optimal values. For this purpose,
each link independently updates its price towards satisfying
the two optimality conditions in Eqs. (5) and (6).

The update rule consists of two terms, corresponding to
the two optimality conditions. The first term is given by

presl , pl(t) + min
i∈S(l)

(
U ′i(xi(t))−

∑
k∈L(i) pk(t)

|L(i)|

)
, (9)

and tries to satisfy the system of equations (5). Here, |L(i)|
denotes the number of links in flow i’s path. Notice that for
each flow passing through link l, the corresponding equa-
tion in (5) has a residual: U ′i(xi(t)) −

∑
k∈L(i) pk(t). The

intuition behind Eq. (9) is to adjust the link prices to push
these residual values to zero as much as possible. To see
how, consider a flow with residual e traversing L links. If
each link on the flow’s path adds e/L to its price, the resid-
ual will become zero. Equation (9) applies the same idea,
except that each link adjusts its price based on the smallest
residual, such that after the update, the residual for the flow
with the smallest residual before the update becomes zero.

For the second optimality condition (Eq. (6)), notice that
Swift’s weighted max-min allocation ensures that the link
capacities are never exceeded; i.e.

∑
i∈S(l) xi(t) ≤ cl, for

all links l and iterations t. Equation (6) is automatically sat-
isfied for bottleneck links, for which

∑
i∈S(l) xi(t) = cl. For

underutilized links, however, the price must be driven to zero
to satisfy (6). We achieve this by subtracting a term based
on underutilization from presl :

pnewl ,

[
presl − η

(
1−

∑
i∈S(l) xi(t)

cl

)
pl(t)

]
+

, (10)

where η is a positive constant. The parameter η may appear
similar to the step size parameter γ of the DGD algorithm in
Eq. (4). But η has a much less crucial role: it only kicks in
for underutilized links to drive the price to zero. The second
term above will be zero for all bottlenecks links at all times.
Therefore, xWI is largely insensitive to the value of η.

The final refinement is an averaging of the new price esti-
mate and the current value, which is a standard technique [24,
38, 63] for ensuring such non-linear dynamical systems con-
verge to a fixed point:

pl(t+ 1) = βpl(t) + (1− β)pnewl . (11)

Here, β ∈ (0, 1) is the averaging parameter (set to 0.5 in our
implementation). We have found averaging to be important
for improving system stability, particularly in the presence
of noise (e.g., due to traffic burstiness, measurement noise,
etc) in our packet-level simulations.

We have proven that the xWI dynamical system has a
unique fixed point, and this fixed point solves the NUM op-
timization problem (1). We have also conducted extensive
numerical simulations of the algorithm, and found that xWI
converges to the NUM optimal solution across a wide range
of randomly generated topologies and flow patterns. We
leave these results to the extended version of this paper [48].
In §6, we evaluate NUMFabric using packet level simula-
tions for realistic datacenter topologies and workloads.
Distributed realization. xWI can be implemented in a com-
pletely decentralized fashion. The flow weight calculation
in Eq. (7) requires the sources to know the sum of the link
prices along their path, which can be obtained using end-
to-end feedback (same as in DGD). Swift then realizes the
weighted max-min allocation in Eq. (8) as described in §4.1.
For the price computation, to evaluate presl in Eq. (9), the
switches need to know the normalized residual, i.e. residual
divided by path length:

(
U ′i(xi(t))−

∑
k∈L(i) pl(t)

)
/|L(i)|,

for each flow through the link. Each flow calculates this
value and sends it to the switches on its path in packet head-
ers. Finally, the underutilization term in Eq. (10) only re-
quires local information: the total traffic through the link and
the current link price. We describe the NUMFabric protocol
that implements xWI in detail next.

5. NUMFABRIC’S PRACTICAL DESIGN
We functionally sketch out the actions at the receiver, the

sender, and the switch. NUMFabric adds five fields to packet
headers in the transport layer: virtualPacketLen and
interPacketTime for Swift; pathPrice, pathLen,
and normalizedResidual for xWI.

The NUMFabric Receiver and Sender
The receiver gets the sum of the link prices and the num-

ber of links on the path from the pathPrice and pathLen
fields in received packets. It then simply reflects these values
and the latest inter-packet time (used by Swift’s rate control
algorithm; see §4.1) back to the sender in ACKs.

The sender maintains the inverse of the marginal utility
function, U ′−1i (·), and uses the pathPrice obtained from

each ACK to compute the flow’s weight (Eq. (7)). The weight
is used to set the virtualPacketLen field for outgoing
packets as the packet length divided by the weight (we dis-
cuss how switches use this field below). The sender also
sets the normalizedResidual field in each outgoing
packet as the marginal utility minus the path price divided
by the path length (see §4.2). The marginal utility is cal-
culated as U ′i(R̂), where R̂ is the current estimated rate of
the flow. As explained in §4.1, R̂ is computed by apply-
ing an EWMA filter to the inter-packet times obtained from
ACKs and is also used to set the flow’s window size: W =
R̂ × (d0 + dt). For control packets such as SYNs and pure
ACKs, the virtualPacketLen field is set to zero, and
the normalizedResidual field is ignored by the switches.

The NUMFabric Switch
The switch implements WFQ packet scheduling (§4.1) and

the xWI price computation (§4.2).

NUMFabric’s WFQ design. The full hardware implementa-
tion of WFQ for NUMFabric is not the focus of this paper.
We briefly sketch out a design conceptually based on Start
Time Fair Queuing (STFQ) [20]. STFQ approximates the or-
der with which packets would depart in WFQ by assigning
a virtual start and virtual finish time to each packet. It then
schedules packets in ascending order of virtual start time.
Let pki be the k-th packet of flow i. Upon pki ’s arrival, STFQ
computes the virtual start and finish time as follows:

S(pki) = max
(
V, F (pk−1i)

)
, (12)

F (pki) = S(pki) +
L(pki)

wi
. (13)

Here, L(pki) is the length of packet pki and wi is the weight
for flow i. V is the virtual time at the switch at the time
of packet pki ’s arrival (see [19, 20] for details). To compute
these values, the switch maintains V (a single register), as
well as the virtual finish time of the last packet, F (pk−1i), for
each active flow. The virtualPacketLen field of packet
pki provides L(pki)/wi, which the switch uses for Eq. (13).

The design sketched above requires a priority queue to
schedule packets in increasing order of virtual start times.
While today’s switches do not support priority queues, re-
cent work [59, 60] has shown that it is feasible to implement
programmable priority queues in emerging programmable
switching chips [11]. This design allows packets to be in-
serted into the queue based on a programmable rank value
that is computed before the packet is enqueued. The pa-
per [60] shows how STFQ can be realized with this design.
We omit the details and refer the reader to [60].

xWI price computation. The switch computes and updates
the price for each of its outgoing links periodically. We as-
sume the price updates are synchronized at all switches. This
can be accomplished in datacenters with Precision Time Pro-
tocol [37], which is now a common feature in commodity
switches [46]. The price is computed as shown in Figure 3.
The procedure is a faithful implementation of the xWI price
calculation described in §4.2.

enqueueing packet p upon arrival
def enqueue(p):
if p is DATA: # not control (e.g., SYN)

minRes = min(p.normalizedResidual, minRes)

dequeueing packet p for departure
def dequeue(p):
bytesServiced += p.length
p.pathPrice += price
p.pathLen += 1

price update timeout
def priceUpdateTimeout():
u = bytesServiced / (priceUpdateTime *

linkCapacity) # link utilization
newPrice = max(price + minRes - eta * (1 - u) *

price, 0)
price = beta * price + (1 - beta) * newPrice
bytesServiced = 0
minRes = inf

Figure 3: Price computation in the NUMFabric switch.

6. EVALUATION
In this section, we present an extensive ns3 simulation-

based evaluation of NUMFabric. The goal is to evaluate
NUMFabric’s (1) fast convergence to the optimal allocation
in dynamic settings; and its (2) flexibility for meeting various
bandwidth allocation objectives precisely and robustly. The
code used for all our simulations can be found at [50].

Topology. We simulate a data center network built using
a leaf-spine architecture. There are a total of 128 servers
connected to 8 leaf switches with 10 Gbps links. Each leaf
switch is connected to 4 spine switches using 40 Gbps links,
thus ensuring full bisection bandwidth. The switches are
modeled as standard output-queued switches, with a buffer
of size 1 MB per port. We chose this large limit to avoid
complications for comparing the convergence times of dif-
ferent algorithms which are sensitive to packet drops. All of
the implemented schemes target a small queue occupancy,
and thus avoid packet drops well below this buffer size; the
queue occupancies are typically only a few packets at equi-
librium. The network RTT is 16 µs.

Schemes compared. We have implemented the following:
DGD rate control, an idealized rate control protocol based
on the Dual Gradient Descent algorithm described in §3.
The sources calculate their sending rates from the network
price (obtained from ACKs) according to Eq. (3). They then
transmit at exactly this rate on a packet-by-packet basis. The
switches implement a price update rule similar to Eq. (4),
with an additional term to control the queue occupancy:

pl ← [pl + a(y − C) + bq]+ . (14)

Here, y is the link throughput, C is the link capacity, q is the
queue occupancy, and a and b are constant parameters. The
price is updated periodically.

RCP?[30], a generalization of RCP [18] for α-fairness [47].5

As in standard RCP, switches in RCP? allocate a fair share
rate to all flows passing through each of their links. The fair

5Standard RCP achieves max-min fairness [18].

share is updated periodically according to:

Rl ← Rl

(
1 +

T
d

(
a(C − y)− b qd

)
C

)
. (15)

Here, Rl is the fair-share rate that is advertised by the switch
to flows passing though link l, T is the update interval, and
d is the running average of the RTT of the flows. C, y, and
q have the same interpretation as in DGD. When a packet
is served by link l, R−αl is added to a field in the packet
header (similar to the path price field in DGD). The source
calculates the sending rate for flow i as follows:

xi =

 ∑
l∈L(i)

R−αl

−1
α

. (16)

The sum is over the links L(i) on flow i’s path and is ob-
tained through ACKs. RCP? is similar to DGD since both
algorithms set the sending rates directly based on explicit
network feedback in the form of a sum over per-link vari-
ables that depend on link congestion.
NUMFabric, our design as described in §5.
Oracle, a numerical fluid model simulation that takes the
current network state, including the topology and current set
of flows, as input and outputs the optimal rate allocation ac-
cording to the NUM problem. We use the Oracle to test the
correctness and speed of convergence of the NUMFabric,
DGD and RCP? algorithms.

Table 2 shows the default parameter settings for all schemes.

Scheme Parameters

DGD [Eq. (14)]

priceUpdateInterval = 16 µs
a = 4× 10−9 Mbps−1

b = 1.2× 10−10 B−1

RCP? [Eq. (15)]
rateUpdateInterval = 16 µs

a = 3.6
b = 1.8

NUMFabric [§5]

ewmaTime = 20 µs
dt = 6 µs

priceUpdateInterval = 30 µs
eta = 5 [Eq. (10)]

beta = 0.5 [Eq. (11)]

Table 2: Default parameter settings in simulations.

Note on the implementation of DGD and RCP?. We en-
hance DGD and RCP? to limit the number of unacknowl-
edged bytes that flows can have to 2× the Bandwidth-Delay
Product. This ensures that flows are large enough to satu-
rate the network yet restricts them from building up large
queues when the rates have not converged to the correct val-
ues. Large queues adversely affect stability and convergence
times for both DGD and RCP? by increasing feedback delay.
Therefore, the results that we report are better than what can
be achieved with the standard rate-based implementation of
these schemes. Also, the performance of DGD and RCP? is
very sensitive to the gain parameters associated with utiliza-
tion and queue occupancy (a and b). We swept across the
parameter space and picked parameters that gave the fastest
convergence time while maintaining stability.

6.1 Convergence to NUM Allocations
We design two scenarios to quantify the speed of conver-

gence: semi-dynamici scenarios where we can inject net-
work events in a controlled manner and measure conver-
gence times accurately, and realistic dynamic scenarios from
measured datacenter workloads.

Semi-dynamic Workload
For this experiment, we randomly pair 1000 senders and

receivers among the 128 servers in our network to create
1000 random flow paths. To inject dynamism, we create
“network events,” where we randomly choose 100 of these
paths to either start 100 new flows or stop 100 active flows.
For each network event, we define the convergence time as
the time it takes for the rates of at least 95% of the flows
to reach within 10% of the optimal NUM allocation (which
we compute using the Oracle mentioned earlier). We also
make sure that the flows stay within this margin for at least
5 ms before declaring they have converged. Once the rates of
95% of the flows converge, we trigger the next flow start/stop
event. We ensure that there are 300-500 flows active after
each event, and simulate 100 such events. The NUM objec-
tive for these experiments is proportional fairness:

∑
i log(xi).

Measuring convergence time accurately at microsecond
timescales is tricky. At these timescales, rate measurements
are noisy because of small variations in inter-packet times
(e.g., due to bursty packet scheduling at the switches [8]).
To overcome the noise, we use exponential averaging [62]
with a time constant of 80 µs to filter the rates measured at
the destination. It takes loge(10) × 80 ≈ 185 µs for the fil-
ter’s output to reach 90% of its final value. We subtract this
additional delay from all measured convergence times since
it’s an artifact of our measurement that would exist even if
the flows converged instantaneously.

Figure 4(a) compares the convergence times for NUM-
Fabric, DGD and RCP?. NUMFabric converges in 335 µs
at the median: ∼ 2.3× faster than DGD and RCP?. At the
95th percentile, NUMFabric converges in 495 µs: ∼ 2.7×
faster than the other schemes. It is important to note that
these values are for 95% of a few hundred flows to converge
after a network event. NUMFabric’s convergence time for
individual flows is much lower.

The primary reason for NUMFabric’s fast convergence is
the agility that the decoupled combination of Swift’s con-
vergence to weighted max-min and xWI’s fast computation
of link prices provides. Since DGD and RCP? have to opti-
mize both objectives simultaneously, they move towards the
optimal allocation more gingerly.
Comparison with DCTCP. We were also hoping to com-
pare NUMFabric with a deployed congestion control algo-
rithm like DCTCP. However, although the rates achieved by
DCTCP flows are stable when averaged over longer time-
scales (several milliseconds), they are very noisy at timescales
of 100s of microseconds. As a result, DCTCP flows es-
sentially never converge, unless we measure the rates over
timescales much longer than the convergence time of the
other algorithms. For example, Figure 4(b) shows the rates
achieved by a typical DCTCP flow during several network

0.0 0.5 1.0 1.5 2.0
Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0
P
ro

b
a
b
ili

ty

NUMFabric

DGD

RCP

(a) CDF of convergence time

1.0 1.1 1.2 1.3 1.4 1.5 1.6
Time (seconds)

0

1

2

3

4

5

R
at

e(
G

bp
s)

(b) Rate of a typical DCTCP flow

1.0 1.1 1.2 1.3 1.4 1.5 1.6
Time (seconds)

0

1

2

3

4

5

R
at

e(
G

bp
s)

(c) Rate of a typical NUMFabric flow

Figure 4: Convergence behavior of NUMFabric, DGD, RCP? and DCTCP in semi-dynamic scenario. The rates are
measured using an EWMA filter with a 80 µs time constant. To calculate the convergence time, we subtract 185 µs (the
rise time of the filter) from the measured convergence times.

events. The expected rate of the flow is shown by the solid
red line. It is clear from the figure that DCTCP flows will
never converge to within 10% of the expected rate. The rates
achieved by the corresponding flow under NUMFabric are
shown in Figure 4(c). Note that the expected rates for the
same flow are different in these figures since DCTCP does
not optimize for proportional fairness.

Dynamic Workloads
Next, we evaluate NUMFabric’s fast convergence for more

realistic dynamic settings. We consider two workloads based
on measurements from a web search [3] cluster and a large
enterprise [4]. In the web search workload, about 50% of the
flows are smaller than 100 KB, but 95% of all bytes belong
to the larger 30% of the flows that are larger than 1 MB. The
enterprise workload is also heavy-tailed, but has many more
short flows with 95% of the flows smaller than 10 KB. The
flows arrive as a Poisson process of different rates to simu-
late different load levels.

It is difficult to define convergence time for such dynamic
workloads since a majority of the flows finish before they
converge (esp. flows smaller than a BDP). Hence we com-
pare the average rates of the flows achieve to what they would
have achieved with an ideal Oracle that assigns all flows their
optimal NUM rates instantaneously. Specifically, we calcu-
late the rate of a flow as its size divided by its completion
time, and calculate the normalized deviation from ideal for
scheme X as (rateWithX−idealRate)/idealRate,
where idealRate is the rate of the flow with the Oracle.
For example, a normalized rate deviation of +1 means that
the flow’s rate is 2× larger than its rate with the Oracle, while
negative values indicate that the flow’s rate was lower than
with the Oracle.

We bin the flows into different sizes and compare the rate
deviation for each bin separately. The bin boundaries are
chosen log-scale in the bandwidth-delay product (BDP), which
is 200 KB in our network. Figure 5(a) shows the normal-
ized rate deviation over all flows belonging to each bin for
the web search workload. The smaller flows have larger er-
rors for DGD and RCP? since the flows may not last enough
RTTs for these schemes to converge. NUMFabric achieves

(05) (510) (10100) (1001K) (1K10K)
Flow Sizes in BDPs

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

N
or

m
al

iz
ed

 d
ev

ia
tio

n
fr

om
 id

ea
l r

at
es NUMFabric

DGD
RCP

(a) Websearch workload

(05) (510) (10100) (1001K) (1K10K)
Flow Sizes in BDPs

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

N
or

m
al

iz
ed

 d
ev

ia
tio

n
fr

om
 id

ea
l r

at
es NUMFabric

DGD
RCP

(b) Enterprise workload

Figure 5: Deviation from ideal rates for NUMFabric,
DGD and RCP? in two dynamic workloads. The box
shows the 25th and 75th percentiles and whiskers extend
to show 1.5 times the box length. Outliers are omitted.

rates fairly close to the rates achieved by the Oracle even in
this bin. As the flow sizes increase, NUMFabric’s faster con-
vergence brings it closer to the Oracle’s rates while DGD and
RCP? still lag. The median error of NUMFabric is around
zero for all the bins beyond a flow size of 100 KB. This
means that under NUMFabric, flows with size above ∼5
BDP converged on the average. One interesting observation
here is that the median errors of DGD and RCP? are nega-

0 5 10 15 20 25
dt (µs)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
o
n
v
e
rg

e
n
ce

 t
im

e
 (

m
s)

(a) Sensitivity to dt

20 40 60 80 100 120 140
Price update interval (µs)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
o
n
v
e
rg

e
n
ce

 t
im

e
 (

m
s)

(b) Sensitivity to price update interval

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
alpha

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
o
n
v
e
rg

e
n
ce

 t
im

e
 (

m
s)

2.0X

1.0X

(c) Sensitivity to α

Figure 6: Median convergence times as we vary difference parameters in NUMFabric. The 2× line in part (c) is for
NUMFabric slowed down by a factor of 2.

tively biased. This indicates that the flows under DGD and
RCP? achieved lower than the ideal rates. This is a direct
consequence of the slow convergence of these algorithms
and the consequent inability to grab available bandwidth.

Figure 5(b) plots the performance for the enterprise work-
load. This workload is more skewed, nearly 70% of the flows
send 1 or 2 packets. Convergence for such flows is mean-
ingless since the notion of a rate itself is hard to define. This
clearly shows up in the plots: the deviation for the very small
flows is relatively large for all 3 schemes. The median devi-
ation from ideal for NUMFabric is nearly zero for all other
bins for this workload as well.

6.2 Parameter Sensitivity Analysis
NUMFabric performs well for a wide range of values of

its parameters, but requires tuning to extract the best perfor-
mance. We present some insights for tuning the parameters
of the two layers of NUMFabric, Swift and xWI, and the
interplay between them. We also use the semi-dynamic sce-
nario designed in §6.1 to quantify parameter sensitivity.

Swift parameters
The Swift sender applies an EWMA filter to the inter-

packet times reported with each ACK to estimate the flow’s
rate. The EWMA filter’s time constant, ewmaTime, deter-
mines how fast or slow the rate estimate matches the avail-
able capacity at the bottleneck. This parameter should be
set large enough for the filter to “span” enough samples to
get a reliable estimate; otherwise, the rate estimate can be
noisy due to natural variations in inter-packet times. The
noise causes undesirable oscillations in Swift’s window size
as well as the normalized residual calculation discussed in
§5. We found an ewmaTime of 20 µs or more is required
for good stability in a 10 Gbps network. The higher the link
speed, the faster we can collect inter-packet time samples
and the faster we can run the filter.

The delay slack parameter, dt, used by Swift to calcu-
late the window size (§4.1) exhibits a trade-off: setting it
too small risks underutilizing the available bandwidth, but if
too large, it causes a large buffer occupancy and slows down
convergence. In Figure 6(a), we vary the value of dt from
3 µs to 24 µs. We observed that with dt = 3 µs, many
events don’t converge at all — the plot shows the median for

events that did converge. This is because for WFQ to work
correctly, each flow must have at least 1 packet queued at its
bottleneck link at all times. With a very small dt, the win-
dow sizes become so small that this condition is sometimes
not satisfied. On the other hand, a very high dt also leads to
slower convergence and sometimes oscillating rates. We find
that it is sufficient to set dt to the delay-equivalent of a small
number (e.g., 5-10) packets. For example, for our 10Gbps
network, we use dt = 6 µs which targets a buffer occupancy
of 5 packets (1500 bytes each) at every bottleneck link.

xWI parameters
Link prices are updated periodically to reflect changes in

the normalized residual values of flows and utilization of
links since the last price update. Once a link price is up-
dated, the switch has to wait for the sources to learn of the
new prices, adjust the flow’s weight, and measure the impact
on the rate achieved by Swift to calculate the new normalized
residual values (§5). There is no benefit, and indeed it can
be detrimental to stability, to update prices before Swift has
had time to react. This process takes at least 1.5-2 RTTs:
1 RTT for the weights to reflect the new prices; and 0.5-
1 RTTs for Swift’s WFQ and rate control mechanisms to
achieve the new weighted max-min allocation (and measure
it). In practice, achieving and measuring the new weighted
max-min allocation can take longer because of dependencies
among flows for convergence6 and EWMA filtering for rate
measurement. While worst-case bounds can be found for
convergence to weighted max-min [57], they depend on the
traffic pattern, and our experiments indicate the bounds are
overly conservative for NUMFabric.

In Figure 6(b), we measure the impact of the price update
interval on NUMFabric’s convergence by varying it from
30 µs to 128 µs. As expected, the median convergence time
increases as the price update interval increases. In practice,
we find that a price update interval of around 2 RTTs usually
works well and is fast; increasing it beyond 2 RTTs improves
robustness, but is slower, while decreasing it much below
2 RTTs degrades convergence and is not recommended.

The two other parameters of xWI are the multiplier for the

6See [57] for an analysis of dependency chains during con-
vergence to max-min.

utilization term (η; Eq. (10)) and the averaging parameter (β;
Eq. (11)) for the price calculation. xWI is largely insensitive
to these parameters. We use β = 0.5 and η = 5.

Different utility functions
We also tested NUMFabric with different utility functions

by varying α in the α-fair family of utility functions. We
found that while the default parameters of NUMFabric work
fine for moderate values of α, for α below 0.5 or above 2.0,
some events in the semi-dynamic scenario don’t converge.
The reason is that, at more extreme values α, some of the
calculations become numerically unstable; e.g., with very
low values of α, the weight calculation in Eq. (7) is very
sensitive to noise. Therefore, a faster control loop that does
not smooth over enough rate samples to filter out the noise
can cause oscillations. To test this, we slowed down NUM-
Fabric 2×, by increasing the price update interval to 60 µs
and ewmaTime to 40 µs, and found that NUMFabric con-
verges for nearly all events at all values of α. As Figure 6(c)
shows, this slowdown comes at a modest cost to the median
convergence time.

We repeated the same experiment with lower α with DGD
and RCP?, and found that the algorithms do not converge for
values of α lower than 0.5 with the default parameters. We
could not get either algorithm to converge reliably even after
slowing down the gain factors by 4×.

6.3 Flexibility
In this section, we experimentally evaluate NUMFabric’s

ability to achieve a wide variety of bandwidth allocation ob-
jectives. We focus on three policies discussed in §2 which
have been the focus of much recent work: minimizing flow
completion times [3], resource pooling [56], and bandwidth
allocation objectives specified via bandwidth functions as in
the recent BwE system [35].

Minimizing Flow Completion Time (FCT)
As discussed in §2, the utility function:

∑
i(1/si)x

1−ε
i ,

where si is the flow size and ε is a small constant approxi-
mates the Shortest-Flow-First allocation policy for minimiz-
ing FCT. We use ε = 0.125; note that this objective is similar
to α-fairness with α = 0.125. For NUMFabric to converge
to optimal values for such a small α, we slow down the sys-
tem 2× as described in § 6.2.7 We compare NUMFabric with
pFabric [3], the state-of-the-art transport for FCT minimiza-
tion. We replicate the same evaluation topology and work-
load as in the pFabric paper [3] (the web search workload),
and compare the FCTs achieved by NUMFabric and pFabric
as network load varies from 20% to 80%. Figure 7 shows the
results. We observe that NUMFabric achieves FCTs close
to pFabric. The average normalized FCT of NUMFabric is
within 4-20% of pFabric under different load conditions.

Resource Pooling
Next, we evaluate if NUMFabric can achieve a resource

pooling bandwidth allocation objective. We use a leaf-spine
7Mimicking pFabric [3], we also set the initial window size
to be equal to the BDP, so that short flows are able to send
enough data in the first RTT.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Load

1

2

3

4

FC
T
/F

C
T
_I

D
E
A

L

NUMFabric

pFabric

Figure 7: NUMFabric with the FCT minimization utility
function vs. pFabric. The results are normalized to the
lowest possible FCT for each flow given its size.

topology with 128 servers, 8 leaf switches and 16 spine switches.
All links have 10 Gbps speed. We use a permutation traffic
pattern exactly as in the MPTCP paper [56], where servers
1–64 each send to one server among 65–128. Each source
destination pair flow uses one or more sub-flows, with each
sub-flow hashed onto a path at random. We vary the number
of sub-flows between each source-destination pair and plot
the total achieved throughput and the per-flow throughputs
in Figure 8.

We consider two utility functions: (1) No Resource Pool-
ing, which is just proportional fairness at the sub-flow level;
(2) Resource Pooling, which aims for proportional fairness
at the level of the aggregate rates of the source-destination
pairs (summed across all their sub-flows). This is the utility
function shown in the fourth row of Table 1 with α = 1.

To implement this utility function, we need a small change
to the NUMFabric sender. Specifically, every sub-flow first
computes a weight according to Eq. (7) based on the aggre-
gate price on its path. It turns out, however, that this value
corresponds to the total weight for the entire flow between
the source-destination pair, from the perspective of the price
(congestion) on the sub-flow’s path. To compute the weight
for the sub-flow itself, we multiply the total weight by the
fraction of the total throughput being served by the sub-flow.
This intuitive heuristic works well in our experiments, and
we leave its detailed analysis to future work.

Figure 8(a) shows that as the number of sub-flows in-
creases to 8, NUMFabric with resource pooling achieves
close to the optimal throughput of 1. Moreover, as shown in
Figure 8(b), the allocation is extremely fair across all flows
(source-destination pairs). This is despite the fact that the
sub-flows of these flows are mapped randomly to different
paths, and thus compete with different numbers of other sub-
flows. The flow-level fairness is a direct consequence of the
resource pooling objective. In fact, without resource pool-
ing, the allocation is much less fair across flows.

Bandwidth Functions
Next, we evaluate how well NUMFabric can achieve more

complex bandwidth allocation objectives specified by band-
width functions [35]. Specifically, we use the utility function
derived in §2 to closely approximate bandwidth functions.

We use the same scenario shown in Figure 2 (originally
described in the BwE paper [35]). Two flows with the band-

1 2 3 4 5 6 7 8
Number of subflows

0

20

40

60

80

100

T
h
ro

u
g
h
p
u
t

(%
 o

f
th

e
 o

p
ti

m
a
l)

Resource pooling

No resource pooling

(a) Total throughput

0 10 20 30 40 50 60
Rank of flow

0

20

40

60

80

100

T
h
ro

u
g
h
p
u
t

(%
 o

f
o
p
ti

m
a
l)

Resource Pooling

No Resource Pooling

1 sub-flow

(b) Flow-level fairness

Figure 8: Resource pooling: (a) Total throughput
achieved as we increase the number of sub-flows per flow
(b) Flows ranked by throughput.

Figure 9: The throughput achieved by two competing
flows on a bottleneck link with varying capacity. The
bandwidth functions of the flows are shown in Figure 2.

width function shown in Figure 2 are competing on a link.
We vary the link capacity from 5 Gbps to 35 Gbps, and plot
the throughput achieved by each flow in Figure 9. The re-
sults show that NUMFabric’s allocation is almost identical
to the expected allocation at all link capacities.

Bandwidth Functions & Resource Pooling
An interesting question is whether we can combine band-

width functions and resource pooling. In other words, can
operators specify bandwidth functions for flows over a net-
work that is also expected to provide resource pooling? Such
a system doesn’t exist to the best of our knowledge, but
would be quite useful in datacenters. To implement this,

Flow1

5Gbps

Flow2

3Gbps

X	Gbps

Th
ro
ug
hp

ut
	(G

bp
s)

Flow1
Flow2

Time	(ms)

X=5Gbps X=17	Gbps

Figure 10: The middle link in the topology has variable
link capacity (X), which is initially set to 5 Gbps and
changes to 17 Gbps after 5 ms. The plot shows the time
series of the aggregate throughput achieved by the two
flows before and after the capacity change. The two flows
use the bandwidth functions shown in Figure 2.

we modify the utility function modeling the bandwidth func-
tion to consider the aggregate throughput achieved by a flow
across all its sub-flows, instead of the throughput of individ-
ual sub-flows. As in the previous experiment, we have two
flows over a topology of three links as shown in Figure 10.
The link in the middle is shared by the two flows, while only
Flow 1 sends on the top link and only Flow 2 sends on the
bottom link. These two flows use the same bandwidth func-
tions as in previous section (shown in Figure 2).

To evaluate how well NUMFabric can combine bandwidth
functions and resource pooling, we choose a scenario where
we change the capacity of the middle link from X = 5 Gbps
to X = 17 Gbps, after 5 ms of simulation. Figure 10 shows
the throughput of each flow before and after this transition.
Initially, when the speed of the middle link is 5 Gbps, we
should expect an overall allocation of 10 Gbps to Flow 1 and
3 Gbps to Flow 2 according to the bandwidth function. This
would imply that the middle link is solely used for Flow 1’s
traffic as Figure 10 shows. When the middle link speed in-
creases to 17 Gbps, we would expect 15 Gbps for Flow 1 and
10 Gbps for Flow 2 given their bandwidth functions. NUM-
Fabric quickly achieves the correct bandwidth allocation as
shown in the figure.

7. RELATED WORK
Datacenter Transport. Most existing datacenter transport
techniques focus on a specific allocation objective, e.g., meet-
ing deadlines [67, 64], minimizing flow completion times [3,
23], network latency [1, 2], providing bandwidth guaran-
tees [58, 7, 55, 26] or improving convergence times [27].
Our design is most closely related to pFabric [3], which also
uses in-network packet scheduling to decouple the network’s
scheduling policy from rate control. However, pFabric only
supports the SRPT scheduling policy for minimizing FCT.
NUMFabric supports any policy which can be expressed as
a NUM problem, including minimizing FCT. Our simula-
tions show that NUMFabric has nearly as good performance
as pFabric while being much more flexible.

Fastpass [54] is a centralized arbiter for scheduling every
packet in the datacenter. This gives flexibility to implement

any network resource allocation policy. However, a central-
ized scheme is inherently prone to scaling problems due to
(1) the large scale and churn in datacenter networks which
will stress the communication and computation capabilities
of the centralized arbiter; and (2) the overhead of communi-
cating with a centralized arbiter for very short flows.

The XCP protocol [28] designed in the Internet context is
also based on the insight that utilization control and fairness
should be decoupled. XCP, however, decouples these func-
tions within the rate control layer, and is therefore similar to
other gradient-based designs which need many iterations to
converge. It is also not designed for flexible objectives.

FCP [21] is a congestion control algorithm that provides
flexibility to end-hosts to realize different objectives for re-
source allocation among flows originating from the same
end-host. Realizing network-wide objectives in FCP requires
modifying the switch algorithms to expose differential pric-
ing tailored for specific objectives. NUMFabric supports a
much wider range of network-level objectives (e.g., flexible
bandwidth functions [35]) in a unified framework.

Packet scheduling. The PIFO programmable scheduler [60]
demonstrates the feasibility of implementing programmable
priority queues in modern switch hardware, which can be
used to realize NUMFabric’s Swift transport fabric, (§5).
Universal Packet Scheduling [45] attempts to realize any
given packet schedule with a single scheduling algorithm
in the switches (which coincidentally also requires a pri-
ority queue). Although promising, flexible packet schedul-
ing alone cannot achieve arbitrary network-wide objectives
such as α-fairness, resource pooling, and bandwidth func-
tions (§2). These require coordination among competing
flows, which is exactly what NUMFabric achieves via link
prices and the xWI algorithm (§4.2).

Network Utility Maximization. NUMFabric builds on a
long line of work that began with Kelly’s seminal paper [33]
on an optimization framework for resource allocation in the
Internet. The NUM literature is vast: many distributed al-
gorithms [40, 52, 66], congestion control protocols [65, 47],
and active queue management schemes [6] have been de-
signed based on NUM. In addition, the optimization view-
point provides a theoretical framework for analyzing exist-
ing congestion control protocols (such as TCP) as distributed
algorithms for solving NUM for specific utility functions [39,
42, 41, 32, 36] (refer to [61] for a comprehensive survey).

Several distributed algorithms have been proposed in the
theoretical literature [5, 10, 66] for NUM that aim to speed
up convergence using Newton-method-based update steps.
The calculations in these algorithms are much more involved
than traditional gradient-based schemes (and NUMFabric),
but they may result in faster convergence.

The NUM framework has also been generalized in various
ways: utilities can be functions of rate, delay, jitter, reliabil-
ity, etc. and can even be coupled across flows [51]. The
assumption of continuity and concavity of the utility func-
tions can be relaxed [22]. While we do not consider these
extensions in this paper, we believe our new approach for
solving NUM may apply more generally.

8. CONCLUSION
NUMFabric enables operators to flexibly optimize the net-

work’s bandwidth allocation in order to meet service level
objectives. By decoupling network utilization from rela-
tive bandwidth allocation via a weighted max-min achieving
transport layer based on WFQ, NUMFabric shows how in-
network packet scheduling can help implement diverse poli-
cies at datacenter speeds and scales.

NUMFabric pushes the envelope on the convergence speed
of practical mechanisms for achieving NUM at scale, but it
is still not fast enough for the shortest of flows which last
fewer than 5-10 RTTs (§6.1). In the future, NUMFabric’s
two layers (Figure 1) could evolve to improve convergence
speed or simplify the implementation. For instance, an inter-
esting line of future work could consider alternatives to Swift
(§4.1) for achieving weighted max-min, for example, prac-
tical approximations of WFQ such as a small set of queues
with different weights; or replacing WFQ altogether with a
fast proactive rate control scheme such as PERC [27].

NUMFabric’s theoretical analysis also warrants more at-
tention. While we can show that NUMFabric’s fixed point is
unique and optimal [48], we have yet to prove that it always
converges or analytically characterize any constraints on its
parameters for convergence.

Finally, it is still an open question as to how an operator
can take advantage of NUMFabric’s capabilities to optimize
application layer objectives. This is the focus of our current
work. We are extending NUMFabric to support more gen-
eral definitions of flows such as co-flows [15, 17], VM-level
and tenant-level aggregates [7, 55, 26, 35].
Acknowledgements. We thank our shepherd, David Wether-
all, and the anonymous SIGCOMM reviewers for their valu-
able feedback which helped improve the presentation of the
paper. This work was partly supported by a Google Faculty
Research Award.

9. REFERENCES
[1] M. Alizadeh et al. Data Center TCP (DCTCP). In SIGCOMM, 2010.
[2] M. Alizadeh et al. Less is more: trading a little bandwidth for

ultra-low latency in the data center. In NSDI, 2012.
[3] M. Alizadeh et al. pFabric: Minimal Near-optimal Datacenter

Transport. In SIGCOMM, 2013.
[4] M. Alizadeh et al. CONGA: Distributed congestion-aware load

balancing for datacenters. In SIGCOMM, 2014.
[5] S. Athuraliya and S. Low. Optimization flow control with

Newton-like algorithm. In GLOBECOM, 1999.
[6] S. Athuraliya, S. H. Low, V. H. Li, and Q. Yin. REM: active queue

management. IEEE Network, 15(3):48–53, 2001.
[7] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards

Predictable Datacenter Networks. In SIGCOMM, 2011.
[8] J. C. R. Bennett and H. Zhang. WF2Q: worst-case fair weighted fair

queueing. In INFOCOM, 1996.
[9] D. P. Bertsekas, R. G. Gallager, and P. Humblet. Data networks,

volume 2. Prentice-Hall International New Jersey, 1992.
[10] D. Bickson, Y. Tock, A. Zymnis, S. P. Boyd, and D. Dolev.

Distributed large scale network utility maximization. In ISIT, 2009.
[11] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown,

M. Izzard, F. Mujica, and M. Horowitz. Forwarding Metamorphosis:
Fast Programmable Match-action Processing in Hardware for SDN.
In SIGCOMM, 2013.

[12] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge
university press, 2009.

[13] R. L. Carter and M. E. Crovella. Measuring Bottleneck Link Speed in
Packet-switched Networks. Perform. Eval., 27-28:297–318, Oct.
1996.

[14] M. Chowdhury and I. Stoica. Efficient coflow scheduling without
prior knowledge. In SIGCOMM, 2015.

[15] M. Chowdhury, Y. Zhong, and I. Stoica. Efficient Coflow Scheduling
with Varys. In SIGCOMM, 2014.

[16] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a
Fair Queueing Algorithm. In SIGCOMM, 1989.

[17] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron.
Decentralized Task-aware Scheduling for Data Center Networks.
SIGCOMM, 2014.

[18] N. Dukkipati, M. Kobayashi, R. Zhang-Shen, and N. McKeown.
Processor sharing flows in the internet. In IWQoS, 2005.

[19] S. J. Golestani. A self-clocked fair queueing scheme for broadband
applications. In INFOCOM, 1994.

[20] P. Goyal, H. M. Vin, and H. Cheng. Start-time fair queueing: a
scheduling algorithm for integrated services packet switching
networks. IEEE/ACM Transactions on Networking (TON),
5(5):690–704, 1997.

[21] D. Han, R. Grandl, A. Akella, and S. Seshan. Fcp: a flexible transport
framework for accommodating diversity. In SIGCOMM, 2013.

[22] P. Hande, Z. Shengyu, and M. Chiang. Distributed rate allocation for
inelastic flows. IEEE/ACM Transactions on Networking (TON),
15(6):1240–1253, 2007.

[23] C.-Y. Hong, M. Caesar, and P. B. Godfrey. Finishing Flows Quickly
with Preemptive Scheduling. In SIGCOMM, 2012.

[24] S. Ishikawa. Fixed points by a new iteration method. Proceedings of
the American Mathematical Society, 44(1):147–150, 1974.

[25] S. Jain et al. B4: Experience with a Globally-deployed Software
Defined Wan. In SIGCOMM, 2013.

[26] V. Jeyakumar et al. EyeQ: Practical Network Performance Isolation
at the Edge. In NSDI, 2013.

[27] L. Jose et al. High Speed Networks Need Proactive Congestion
Control. In HotNets, 2015.

[28] D. Katabi, M. Handley, and C. Rohrs. Congestion control for high
bandwidth-delay product networks. In SIGCOMM, 2002.

[29] F. Kelly. Charging and rate control for elastic traffic. European
transactions on Telecommunications, 8(1):33–37, 1997.

[30] F. Kelly, G. Raina, and T. Voice. Stability and fairness of explicit
congestion control with small buffers. ACM SIGCOMM Computer
Communication Review, 2008.

[31] F. Kelly and T. Voice. Stability of end-to-end algorithms for joint
routing and rate control. SIGCOMM, 2005.

[32] F. P. Kelly. Mathematical modeling of the internet. Mathematics
unlimited-2001 and beyond, pages 685–702, 2001.

[33] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan. Rate control for
communication networks: Shadow prices, proportional fairness and
stability. The Journal of the Operational Research Society, 49(3):pp.
237–252, 1998.

[34] S. Keshav. A Control-theoretic Approach to Flow Control. In
SIGCOMM, 1991.

[35] A. Kumar et al. BwE: Flexible, Hierarchical Bandwidth Allocation
for WAN Distributed Computing. In SIGCOMM, 2015.

[36] S. Kunniyur and R. Srikant. End-to-end congestion control schemes:
Utility functions, random losses and ecn marks. IEEE/ACM
Transactions on Networking, 11(5):689–702, 2003.

[37] K. Lee, J. C. Eidson, H. Weibel, and D. Mohl. Ieee 1588-standard for
a precision clock synchronization protocol for networked
measurement and control systems. In Conference on IEEE, volume
1588, page 2, 2005.

[38] L.-S. Liu. Ishikawa and mann iterative process with errors for
nonlinear strongly accretive mappings in banach spaces. Journal of
Mathematical Analysis and Applications, 194(1):114–125, 1995.

[39] S. H. Low. A duality model of tcp and queue management
algorithms. IEEE/ACM Transactions on Networking (TON),
11(4):525–536, 2003.

[40] S. H. Low and D. E. Lapsley. Optimization flow control i: basic
algorithm and convergence. IEEE/ACM Transactions on Networking
(TON), 7(6):861–874, 1999.

[41] S. H. Low, F. Paganini, and J. C. Doyle. Internet congestion control.
Control Systems, IEEE, 22(1):28–43, 2002.

[42] S. H. Low, L. L. Peterson, and L. Wang. Understanding tcp vegas: a
duality model. Journal of the ACM, 49(2):207–235, 2002.

[43] D. J. MacKay. Information theory, inference and learning
algorithms. Cambridge university press, 2003.

[44] L. Massoulié and J. Roberts. Bandwidth sharing: objectives and
algorithms. In INFOCOM, 1999.

[45] R. Mittal, R. Agarwal, S. Ratnasamy, and S. Shenker. Universal
packet scheduling. In NSDI, 2016.

[46] T. Mizrahi, E. Saat, and Y. Moses. Timed Consistent Network
Updates. In SIGCOMM, 2015.

[47] J. Mo and J. Walrand. Fair end-to-end window-based congestion
control. IEEE/ACM Transactions on Networking (ToN),
8(5):556–567, 2000.

[48] K. Nagaraj, D. Bharadia, H. Mao, S. Chinchali, M. Alizadeh, and
S. Katti. NUMFabric: Fast and Flexible Bandwidth Allocation in
Datacenters. https:
//people.csail.mit.edu/alizadeh/papers/numfabric-techreport.pdf.

[49] ns3 Network Simulator. http://www.nsnam.org/.
[50] NUMFabric public release.

https://knagaraj@bitbucket.org/knagaraj/numfabric.git.
[51] D. P. Palomar and M. Chiang. A tutorial on decomposition methods

for network utility maximization. IEEE Journal on Selected Areas in
Communications, 24(8):1439–1451, 2006.

[52] D. P. Palomar and M. Chiang. Alternative distributed algorithms for
network utility maximization: Framework and applications. IEEE
Transactions on Automatic Control, 52(12):2254–2269, 2007.

[53] A. K. Parekh and R. G. Gallager. A generalized processor sharing
approach to flow control in integrated services networks: the
single-node case. IEEE/ACM Transactions on Networking (ToN),
1(3):344–357, 1993.

[54] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal.
Fastpass: A Centralized "Zero-queue" Datacenter Network. In
SIGCOMM, 2014.

[55] L. Popa et al. Faircloud: sharing the network in cloud computing. In
SIGCOMM, 2012.

[56] C. Raiciu et al. Improving Datacenter Performance and Robustness
with Multipath TCP. In SIGCOMM, 2011.

[57] J. Ros and W. K. Tsai. A theory of convergence order of maxmin rate
allocation and an optimal protocol. In INFOCOM, 2001.

[58] A. Shieh, S. Kandula, A. G. Greenberg, C. Kim, and B. Saha.
Sharing the data center network. In NSDI, 2011.

[59] A. Sivaraman et al. Towards Programmable Packet Scheduling. In
HotNets, 2015.

[60] A. Sivaraman et al. Programmable Packet Scheduling at Line Rate.
In SIGCOMM, 2016.

[61] R. Srikant. The mathematics of Internet congestion control. Springer,
2004.

[62] I. Stoica, S. Shenker, and H. Zhang. Core-stateless Fair Queueing:
Achieving Approximately Fair Bandwidth Allocations in High Speed
Networks. In SIGCOMM, 1998.

[63] K.-K. Tan and H. K. Xu. Approximating fixed points of
nonexpansive mappings by the ishikawa iteration process. Journal of
Mathematical Analysis and Applications, 178(2):301–308, 1993.

[64] B. Vamanan, J. Hasan, and T. N. Vijaykumar. Deadline-Aware
Datacenter TCP (D2TCP). In SIGCOMM, 2012.

[65] D. X. Wei, C. Jin, S. H. Low, and S. Hegde. Fast tcp: motivation,
architecture, algorithms, performance. IEEE/ACM Transactions on
Networking (ToN), 14(6):1246–1259, 2006.

[66] E. Wei, A. Ozdaglar, and A. Jadbabaie. A distributed newton method
for network utility maximization. In CDC, 2010.

[67] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron. Better never
than late: meeting deadlines in datacenter networks. In SIGCOMM,
2011.

[68] D. Wischik, M. Handley, and M. B. Braun. The resource pooling
principle. SIGCOMM, 2008.

[69] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley. Design,
Implementation and Evaluation of Congestion Control for Multipath
TCP. In NSDI, 2011.

https://people.csail.mit.edu/alizadeh/papers/numfabric-techreport.pdf
https://people.csail.mit.edu/alizadeh/papers/numfabric-techreport.pdf
http://www.nsnam.org/
https://knagaraj@bitbucket.org/knagaraj/numfabric.git

	Introduction
	How to choose utilityfunctions?
	Prior Approaches to NUM
	Design
	The Swift Transport
	The xWI Algorithm

	NUMFabric's Practical Design
	Evaluation
	Convergence to NUM Allocations
	Parameter Sensitivity Analysis
	Flexibility

	Related Work
	Conclusion
	References

