790 research outputs found

    Computing stationary free-surface shapes in microfluidics

    Full text link
    A finite-element algorithm for computing free-surface flows driven by arbitrary body forces is presented. The algorithm is primarily designed for the microfluidic parameter range where (i) the Reynolds number is small and (ii) force-driven pressure and flow fields compete with the surface tension for the shape of a stationary free surface. The free surface shape is represented by the boundaries of finite elements that move according to the stress applied by the adjacent fluid. Additionally, the surface tends to minimize its free energy and by that adapts its curvature to balance the normal stress at the surface. The numerical approach consists of the iteration of two alternating steps: The solution of a fluidic problem in a prescribed domain with slip boundary conditions at the free surface and a consecutive update of the domain driven by the previously determined pressure and velocity fields. ...Comment: Revised versio

    Pearling instability of nanoscale fluid flow confined to a chemical channel

    Full text link
    We investigate the flow of a nano-scale incompressible ridge of low-volatility liquid along a "chemical channel": a long, straight, and completely wetting stripe embedded in a planar substrate, and sandwiched between two extended less wetting solid regions. Molecular dynamics simulations, a simple long-wavelength approximation, and a full stability analysis based on the Stokes equations are used, and give qualitatively consistent results. While thin liquid ridges are stable both statically and during flow, a (linear) pearling instability develops if the thickness of the ridge exceeds half of the width of the channel. In the flowing case periodic bulges propagate along the channel and subsequently merge due to nonlinear effects. However, the ridge does not break up even when the flow is unstable, and the qualitative behavior is unchanged even when the fluid can spill over onto a partially wetting exterior solid region.Comment: 17 pages, 12 figures, submitted to Physics of Fluids, fixed equation numbering after Eq. (17

    Boundary elements method for microfluidic two-phase flows in shallow channels

    Full text link
    In the following work we apply the boundary element method to two-phase flows in shallow microchannels, where one phase is dispersed and does not wet the channel walls. These kinds of flows are often encountered in microfluidic Lab-on-a-Chip devices and characterized by low Reynolds and low capillary numbers. Assuming that these channels are homogeneous in height and have a large aspect ratio, we use depth-averaged equations to describe these two-phase flows using the Brinkman equation, which constitutes a refinement of Darcy's law. These partial differential equations are discretized and solved numerically using the boundary element method, where a stabilization scheme is applied to the surface tension terms, allowing for a less restrictive time step at low capillary numbers. The convergence of the numerical algorithm is checked against a static analytical solution and on a dynamic test case. Finally the algorithm is applied to the non-linear development of the Saffman-Taylor instability and compared to experimental studies of droplet deformation in expanding flows.Comment: accepted for publication, Computers and Fluids 201

    A comparison of slip, disjoining pressure, and interface formation models for contact line motion through asymptotic analysis of thin two-dimensional droplet spreading

    Get PDF
    The motion of a contact line is examined, and comparisons drawn, for a variety of models proposed in the literature. Pressure and stress behaviours at the contact line are examined in the prototype system of quasistatic spreading of a thin two-dimensional droplet on a planar substrate. The models analysed include three disjoining pressure models based on van der Waals interactions, a model introduced for polar fluids, and a liquid-gas diffuse-interface model; Navier-slip and two non-linear slip models are investigated, with three microscopic contact angle boundary conditions imposed (two of these contact angle conditions having a contact line velocity dependence); and the interface formation model is also considered. In certain parameter regimes it is shown that all of the models predict the same quasistatic droplet spreading behaviour.Comment: 29 pages, 3 figures, J. Eng. Math. 201

    Elastocapillary Levelling of Thin Viscous Films on Soft Substrates

    Get PDF
    A thin liquid film with non-zero curvature at its free surface spontaneously flows to reach a flat configuration, a process driven by Laplace pressure gradients and resisted by the liquid's viscosity. Inspired by recent progresses on the dynamics of liquid droplets on soft substrates, we here study the relaxation of a viscous film supported by an elastic foundation. Experiments involve thin polymer films on elastomeric substrates, where the dynamics of the liquid-air interface is monitored using atomic force microscopy. A theoretical model that describes the coupled evolution of the solid-liquid and the liquid-air interfaces is also provided. In this soft-levelling configuration, Laplace pressure gradients not only drive the flow, but they also induce elastic deformations on the substrate that affect the flow and the shape of the liquid-air interface itself. This process represents an original example of elastocapillarity that is not mediated by the presence of a contact line. We discuss the impact of the elastic contribution on the levelling dynamics and show the departure from the classical self-similarities and power laws observed for capillary levelling on rigid substrates

    Topology and Shape optimization for CFD-Computational Fluid Dynamics

    Get PDF
    On this work a CFD optimization problem is treated from two different points of view -- In one hand, topology optimization using a homogenization method based on the Brinkmann penalization is presented, implemented using the finite elements method and optimized with a mesh adaptation step -- Secondly, a shape optimization method based on Hadamard boundary variation using differentiation with respect to the domain is developed, imple- mented and tested -- Finally, a coupling of both methods taking advantage of their own attributes is proposed and tested -- The expected results are obtaine

    A distributed resistance inverse method for flow obstacle identification from internal velocity measurements

    Get PDF
    We present a penalization parameter method for obstacle identification in an incompressible fluid flow for a modified version of the Oseen equations. The proposed method consist in adding a high resistance potential to the system such that some subset of its boundary support represents the obstacle. This allows to work in a fixed domain and highly simplify the solution of the inverse problem via some suitable cost functional. Existence of minimizers and first and second order optimality conditions are derived through the differentiability of the solutions of the Oseen equation with respect to the potential. Finally, several numerical experiments using Navier-Stokes flow illustrate the applicability of the method, for the localization of a bi-dimensional cardiac valve from MRI and ultrasound flow type imaging data
    • 

    corecore