A finite-element algorithm for computing free-surface flows driven by
arbitrary body forces is presented. The algorithm is primarily designed for the
microfluidic parameter range where (i) the Reynolds number is small and (ii)
force-driven pressure and flow fields compete with the surface tension for the
shape of a stationary free surface. The free surface shape is represented by
the boundaries of finite elements that move according to the stress applied by
the adjacent fluid. Additionally, the surface tends to minimize its free energy
and by that adapts its curvature to balance the normal stress at the surface.
The numerical approach consists of the iteration of two alternating steps: The
solution of a fluidic problem in a prescribed domain with slip boundary
conditions at the free surface and a consecutive update of the domain driven by
the previously determined pressure and velocity fields. ...Comment: Revised versio