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Abstract

On this work a CFD optimization problem is treated from two different points of view. In

one hand, topology optimization using a homogenization method based on the Brinkmann

penalization is presented, implemented using the finite elements method and optimized

with a mesh adaptation step. Secondly, a shape optimization method based on Hadamard

boundary variation using differentiation with respect to the domain is developed, imple-

mented and tested. Finally, a coupling of both methods taking advantage of their own

attributes is proposed and tested. The expected results are obtained.

Keywords: CFD optimization, topology optimization, shape derivative, two step

optimization, Finite elements.
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Introduction

The constant development of Computer-Aided Engineering (CAE) has made increasingly

important the use of computational mechanics for design, re-design and general engineer-

ing studies. Concerning fluids, the design of aeronautical applications, wind energy mills,

biomedical appliances for the circulatory system or microfluidic devices are examples of

Computational Fluid Dynamics (CFD) applications.

The optimization is, by definition, the procedure to make a system or design as effec-

tive or functional as possible. In other words, is the selection of the best solution from all

the feasible ones to perform a function. The optimization using CFD has been studied

from different points of view and multiple approaches have been developed. The first ap-

plications can be seen on minimizing the drag on wing profiles (See for example:Pironneau

(1974)). More recently, general optimization procedures are created. Mohammadi and

Pironneau (2002) show developments on shape optimization for aeronautical applications

based on the adjoint method. A gathering of different methods and specific applications

is presented on Thvenin and Janiga (2008) with an engineering emphasis. And a wide

variety of studies are continuosly reported according to the problem features.

The topology optimization is very useful to obtain an initial design. The use of two

wings per side for an airplane in case of one or the number of pipes to transport a fluid

from multiple inputs to multiple outputs are questions that topology optimization can

answer. On the other hand, if the topology is already defined, small boundary variations

can be handled with shape optimization. For instance, small modifications on the shape

of high speed vehicles can lead to significant improvements on the drag.

Therefore, a complete optimum design should involve two steps, first find an initial

shape with a defined topology and then mildly deform this shape to obtain a better re-

sult. This thesis deals with the complete optimization process, a two step optimization

procedure is proposed and tested. On chapter 1, the development and implementation of
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a CFD topology optimization method is presented. Chapter 2 deals with the shape opti-

mization method based on shape derivatives. Finally, chapter 3 describes the procedure

to combine this methods in two steps and some application to numerical examples.



Chapter 1

CFD topology optimization using

SIMP method

The shape optimization with numerical methods can be tackled with a wide variety of

tools. A CFD optimization process using a Solid Isotropic Material with Penalization-

SIMP under a Finite Element method is developed. The SIMP method is capable of doing

topology changes having an implicit representation of the fluid boundary with a density

function.

This chapter explains the process of solving the topology optimization of a Stokes flow

system using a SIMP formulation with a material distribution model proposed by Khadra

et al. (2000) and used first by Borrvall and Petersson (2003) on fluid optimization methods.

An optimization program with Finite Elements is implemented using FreeFem++ (Hecht

(2012)). And a mesh adaptation step is added to improve the computational efficency of

the program.

1.1 Solid domain representation

A fictitious solid domain is aproached using a Brinkmann penalization on the Stokes

equation based on the theory of porous media. A term αv defined as the Darcy-friction

force is added to the stokes equation. The α coefficient can be defined as an inverse

permeability of the medium where the fluid moves.

3



4 CFD topology optimization using SIMP method

−µ∆u + αu +∇p = f (1.1)

∇ · u = 0 (1.2)

The α coefficient is defined to vary according to a density function to have no signifi-

cance on the fluid region but to take a great value on the solid domain, imposing a very

low permeability and making the velocity tend to cero.

This material distribution and multimaterial domains have been highly implemented

for topology optimization of structural mechanics, see for example Borrvall and Petersson

(2001) or Garcia and Steven (1999). As it is for solids, a density function ρ is defined

over the entire domain, where 0 ≤ ρ ≤ 1. By definition, this function takes the value of

ρ = 1 on the fluid domain and ρ = 0 on the solid one.

Now, the inverse permeability α can be defined as a function of the density. The use

of penalization on this function makes α tend to be a discrete value in order to obtain

“defined” boundaries.

α(ρ) = αmax + (αmin − αmax)ρ
1 + q

ρ+ q
(1.3)

Where αmax and αmin are the values of this coefficient for the solid and fluid domain

respectively. Borrvall and Petersson (2003) propose αmin = 2.5µ/1002 ≈ 0 and αmax =

2.5µ/0.012 ≈ ∞. The coefficient q is the penalization parameter (0 < q), the smaller it

is, the α function is more penalized (See figure 1.1).

With this solid representation, the complete domain is discretized and the solid is

implicitly defined by the density function ρ. On Lee (2012) Chapter 2, a validation of this

method for the Navier-Stokes flow simulation is done, and the best results (concerning

non-slip walls and zero-velocity in solid regions) is obtained with the coefficient αmax

greater than 106. Although the higher αmax and the lower αmin, the better physical

results are obtanied, the solution of the finite elements system of equation can be affected

with the ill-conditioned matrices (scaled by these extreme coefficients).
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Figure 1.1: Inverse permeability function for different penalization values

1.2 Optimization Process

The optimization process begins with the definition of an objective function Φ(u, ρ). This

function is usually composed by a pair of integrals, one over the domain and the other

over the boundaries (see Eq 1.4).

Φ(u, ρ) =

∫
Ω

F
Ω
(u, ρ)dΩ +

∫
Γ

F
Γ
(u, ρ)dΓ (1.4)

According to the optimization objectives, the functions F
Ω

and F
Γ

are defined. In

order to reduce the “hydraulic losses” of a Stokes system, the power dissipation of the

fluid is calculated. For other objectives, different functions can be defined with the form

of Eq 1.4. In this case the functions used are:

F
Ω

=
1

2
µ
∑
i,j

(
∂ui
∂xj

+
∂uj
∂xi

)2

+
∑
i

α(ρ)u2
i

F
Γ

= 0 (1.5)

The complete optimization problem to be worked on this case can be stated as follows.
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min
ρ

Φ(ui(ρ), ρ) =

∫
Ω

[
1

2
µ
∑
i,j

(
∂ui
∂xj

+
∂uj
∂xi

)2

+
∑
i

α(ρ)u2
i

]
dΩ

Subject to:

− µ∆ui + α(ρ)ui +∇p = fi in Ω

∇ · ui = 0 in Ω

ui = uD on ∂Ω∫
Ω

ρdΩ ≤ β

∫
Ω

1dΩ

0 ≤ ρ ≤ 1 in Ω

(1.6)

Where 0 ≤ β ≤ 1 is the maximum portion of the domain that is permitted to be

fluid. Following this, the coefficient (1−β) determines the minimum fraction of the entire

domain to set as solid. Having defined the objective function, the iterative optimization

can be divided on three main steps, an inital guess ρ0 should be given:

1. Given ρk, calculate α(ρk) and solve the state equation, in this case is the Stokes

flow to find (uk, pk).

2. Evaluate the objective function Φ(uk, ρk) and calculate the sensitivity dΦ/dρk.

3. Obtain a new guess ρk+1 according to ρk and dΦ/dρk.

The solution of these three steps is treated on the following subsections.

1.2.1 Stokes equation

The state eqution is defined as Eq 1.2. It is solved numerically using the Finite Element

Method with the FreeFem++ software. The variational formulation, after integrating by
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parts is: Find u ∈ V = H1
0 (Ω) and p ∈ Q = L2

0(Ω) s.t .

∫
Ω

µ∇u · ∇v dx+

∫
Ω

α(ρ)uv dx−
∫

Ω

div (v)p dx =

∫
Ω

fv dx−
∫
∂Ω

(∂u/∂n) v ds ∀v ∈ V∫
Ω

div (u)q dx = 0 ∀q ∈ Q

u(x) = ud for x ∈ ∂Ω

(1.7)

This variational formulation is solved having supplied a scalar field α(ρ).

1.2.2 Sensitivity analisys

Once the values of (uk, pk) are known (where k is the iteration number), the objective

function value is evaluated by replacing these values on Eq 1.6. To compute the objective

function sensitivity (dΦ/dρi), the adjoint method is used.

Defining the state equation (Stokes) residual as R, the optimization problem (Eq. 1.6)

can be written as:

min
ρ

Φ(u(ρ), ρ)

Subject to:

R(u, ρ) = 0∫
Ω

ρdΩ ≤ β

∫
Ω

1dΩ

0 ≤ ρ ≤ 1

The Lagrange functional is built using the cost function and the state equation residual

accompanied by an adjoint variable (l).

L = Φ + lR (1.8)

As the residual is defined as null (R = 0) the Lagrange functional is equal to the cost

function (L = Φ).

The sensitivity analisys is done over the functional L, obtaining:
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dL
dρ

=
∂Φ

∂ρ
+ l

∂R

∂ρ
+

(
∂Φ

∂u
+ l

∂R

∂u

)
du

dρ
(1.9)

The last term of Eq 1.9 can be null if:

∂R

∂u
l = −∂Φ

∂u
(1.10)

Finally the cost function derivative with respect to the design variable is defined as:

dΦ

dρ
=
dL
dρ

=
∂Φ

∂ρ
+ l

∂R

∂ρ
(1.11)

Where l is obtained by solving equation 1.10.

The partial derivatives of Φ and R with respect to the variable u are calculated in the

discrete form as done by Olesen et al. (2006).

1.2.3 Design parameters update

As proposed by Borrvall and Petersson (2003) and Olesen et al. (2006), the Method

of Moving Asymptotes (MMA) developed by Svanberg (1987) is implemented in order

to update the design variable ρ. Although this method involves solving a secondary

optimization problem after doing the sensitivity analisys, the convergence results given

make it an attractive tool to use.

The MMA guarantees that every step of the design parameter update is convergent

and meaningful even if the optimization constraints are on the limits. This is achived by

means of relaxing the constraints limits when the convergence is slow. An implementation

of this method on FreeFem++ is done based on Svanberg (1987).

1.3 Implementation

The algorithm implementation was done completely in FreeFem++ and the PARAVIEW

visualization software (Henderson (2007)) was used for postprocessing the results. 2D

examples proposed on earlier publications of this method such as Borrvall and Petersson

(2003) and Olesen et al. (2006) were used for the validation.
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Figure 1.2: Diffuser conditions

1.3.1 Diffuser

The first implementation is the diffuser optimization. This example consists of a square

domain with different inlet and outlet areas. Using the objective function defined on

Eq.1.5, an optimized transition from inlet to outlet is obtained in order to reduce the

fluid losses. The boundary conditions are shown on figure 1.2, the fluid volume constraint

is set as β = 0.5 and the initial density is set as ρ = 0.5 constant on the entire domain.

Both parabolic profiles are defined by the equation 1.12, where umax is the maximum

velocity, y is the vertical coordinate, c is the vertical coordinate of the boundary center

(where the velocity is maximum) and l is the boundary length. In order to preserve mass,

the maximum velocity in the parabolic inlet profile is set as umax = 1 and umax = 3 in

the outlet.

u = umax

(
1−

(
2(y − c)

l

)2
)

(1.12)

Figure 1.3 shows the obtained results after converging on 15 iterations using a 180x180

mesh and a constant penalization for the inverse permeability of q = 0.1. This result is

consistent with the one obtained in Borrvall and Petersson (2003).
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Figure 1.3: Diffuser density (ρ) solution

1.3.2 Double pipe

In this case two inlets and two outlets are defined on a rectangular domain with variable

length as shown on figure 1.4. The maximum fluid portion is set as β = 1
3
, and the

maximum velocity on the 4 parabolic profiles is set as umax = 1 using equation 1.12 as

the above example. The initial density is set as ρ = 1
3

constant on the whole domain.

Two penalization parameters q for α(ρ) are used following Borrvall and Petersson

(Borrvall and Petersson (2003)), in order to reach a global minimum. A first optimization

process is done using q = 0.01 and this solution is used as the initial guess of a new

process with q = 0.1. The domain length values simulated are δ = 1 and δ = 1.5 with

100x100 and 150x100 discretizations respectively. Figure 1.5 shows the obtained results.

1.4 Mesh adaptation

The current optimization process requires a refined mesh in order to obtain a good defi-

nition of the “boundaries” between the solid and fluid domains (change of density value).

It is seen on Borrvall and Petersson (2003) that the solution does not depends on the

mesh size, a coarse mesh gives a similar solution but with a diffuse boundary. Therefore,

it is proposed a two step optimization in order to obtain better computing times.

The proposed steps are:
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1. Solve the optimization process with a rough mesh and obtain a first density approx-

imation.

2. Based on the obtained result refine the mesh in order to have a higher element

density on the interfase between the fluid (ρ = 1) and solid (ρ = 0).

3. Solve new optimization case using the refined mesh and the density function ob-

tained on step 1 as an initial guess.

The mesh adapatation is based on the definition of the element size. The objective is

to have a refined mesh on the boundary between the solid and fluid domains, and larger

elements into both regions. In addition, the element size ratio is restricted in order to

have a smooth size variation on the mesh. That is,

s(ρ) =


smax, if ρ = 1

smax, if ρ = 0

smin, elsewhere

(1.13)

The method is implemented and tested on the diffuser benchmark. Figure 1.6 shows

the process results and 1.7 the objective function evolution over the iterations. The

objective function over the computation time is shown of figure 1.8.

Although the two step process requires more iterations to converge, the computational

efficiency is remarkable. The mesh optimization by refination on the desired regions is a

great advantage to benefit form every degree of freedom. A reduction of the 95% of the

computational time is achieved.
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Optimization:
15 Iter
1702 s

Optimization:
12 Iter 
9.44 s

Adapt Mesh:
0.66 s

Optimization:
9 Iter
66.5 s

492 DOF

3971 DOF

39109 DOF

Total Time: 1702 s Total Time: 76.6s

L2 error: 3.95% 

One Step Mesh Two step Mesh

Density

L2 error:
11.91% 

(180x180)

Figure 1.6: Mesh adaptation results compared with a single refined procedure
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Chapter 2

CFD shape optimization

The shape optimization using a derivative of the objective function with respect to the do-

main is a widely used method on solid mechanics. Applications of direct shape derivatives

to fluids can be seen for instance in Mohammadi and Pironneau (2010). The main idea

is to evolve the domain boundary according to a sensitivity analysis. Although the do-

main deformation can require remeshing and topology changes can cause problems on the

boundary evolution, the explicit definiton of the domain boundary is a great advantage.

The shape derivative of the Stokes energy dissipation is obtained using a Lagrangian

formulation. A finite elements optimization is implemented on FreeFem++ and validation

examples are executed.

2.1 Optimization Problem

Following last chapter, the objective function used is the power dissipation of the flow.

In contrast to chapter 1, no density function ρ is not needed and the classic Stokes is the

state equation. The complete optimization can be defined as follows:

15



16 CFD shape optimization

min
Ω

J(Ω, ui(Ω)) =

∫
Ω

µ∇ui : e(ui)dΩ

Subject to:

Ri(Ω, ui, p) : − µ∆ui +∇p− fi = 0 in Ω

C(Ω, ui) : div (ui) = 0 in Ω

ui = uDi on ΓD ∈ ∂Ω

ui = 0 on ∂Ω\ΓD ∈ ∂Ω

(2.1)

Where e(ui) = ∇ui + (∇ui)T .

2.2 Shape sensitivity analysis

The optimization process is based on the variation of the domain boundaries to evolve to

an optimum shape. This method is based on the structural shape optimization done by

Allaire (2006) on Chapter 6 and Dapogny (2013) on chapter 2.

2.2.1 Hadamard’s boundary definition

According to Hadamard (1909), any variation on the domain shape (without changing

the topology) can be defined with a displacement field θ and the initial domain Ω0 (See

figure 2.1). Assuming θ sufficiently small, a deformed domain Ω is represented by Ω =

(I + θ)(Ω0). The shape variations (I + θ) are considered homeomorphisms close to the

identity.

Mathematical details about this method can be found on Allaire (2006).

2.2.2 Shape derivative

The Cea’s method, developed by Céa (1986) is proposed to obtain the shape derivative.

It is based on the formulation of the Lagrange operator and the solution of the adjoint

state equation to find the objective function derivative.

The first step is the Lagrangian definition of the optimization problem, here the state

and continuity equations are incorporated as a constraint using lagrange multipliers (vi, q).
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Figure 2.1: Hadamard’s shape variation

The variables (ui, p, vi, q) must not depend on the domain. For the Dirichlet boundary

conditions, a change of variable must be done according to Allaire (2006) on sections 6.4.2

and 6.4.3. A “lifting” function uli is defined as Eq 2.2 and a new variable ũi that does not

depend on the Dirichlet boundary is defined as Eq 2.3.

uli =

uDi on ΓD

0 on ∂Ω\ΓD
(2.2)

ũi = ui − uli (2.3)

The variables (uΩ
i , p

Ω) are the solution of the state equations Ri = 0 and C = 0, if

and only if (ũi
Ω, pΩ) are the solution of the “lifted” system defined by:

R̃i(Ω, ũi, p) : −µ∆ũi +∇p− fi − µ∆uli =0 in Ω

C̃(Ω, ũi) : div (ũi + uli) =0 in Ω

ũi =0 on ΓD ∈ ∂Ω

ui =0 on ∂Ω\ΓD ∈ ∂Ω

(2.4)

Now, the lagrangian is defined:

L(Ω, ũi, p, vi, q) = J(Ω, ũi) +

∫
Ω

viR̃i(Ω, ũi, p)dΩ +

∫
Ω

qC̃(Ω, ũi)dΩ (2.5)

Using the first Green identity, the last equation is transformed into:
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L(Ω, ũi, p, vi, q) =

∫
Ω

µ∇(ũi) : e(ũi)dΩ +

∫
Ω

µ∇ũi : ∇vi dΩ−
∫

Ω

div (vi)p dΩ−
∫

Ω

fivi dΩ +

∫
Ω

µ∇uli : ∇vi dΩ +∫
∂Ω

(∂ũi/∂n) vi ds+

∫
Ω

div (ũi)q dΩ +

∫
Ω

div (uli)q dΩ (2.6)

The variables ṽi and q appear as lagrangian multipliers and act as a test function

to obtain the variational formulation of the state equations R̃i and C̃ into L as shown

on equation 2.6. Then, the last two terms of Eq 2.5 define the weak form of the state

equation. By solving the Lagrangian, and finding (ũi
Ω, pΩ) as the solution of the state

eqution (Eq 2.4), one can define the objective function as:

J(Ω) = L(Ω, ũi
Ω, pΩ, vi, q) ∀vi, q (2.7)

Then, the shape derivative of the function L is obtained. This derivative is the sen-

sitivity of the function L with respect to a domain variation θ as defined in subsection

2.2.1, it reads L′(Ω, ...)(θ).

L′(Ω, ũi, p, vi, q)(θ) =
∂L
∂Ω

(Ω, ũi, p, vi, q)(θ) +

∂L
∂ũi

(Ω, ũi, p, vi, q)(u̇i(θ)) +

∂L
∂p

(Ω, ũi, p, vi, q)(ṗ(θ)) +

∂L
∂vi

(Ω, ũi, p, vi, q)(v̇i(θ)) +

∂L
∂q

(Ω, ũi, p, vi, q)(q̇(θ)) (2.8)

This result (Eq 2.8) is obtained taking advantage of the non dependancy of the vari-

ables (ũi, p, vi, q) on the domain. The partial derivatives with respect to these variables

that are different from the domain are calculated:
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∂L
∂ũi

(Ω, ũi, p, vi, q)(ûi) = J ′(ũi, ûi)+

∫
Ω

µ∇ûi ·∇vi dΩ+

∫
∂Ω

(∂ûi/∂n) v ds−
∫

Ω

div (ûi)q dΩ

(2.9)

∂L
∂p

(Ω, ũi, p, vi, q)(p̂) = −
∫

Ω

div (vi)p̂ dΩ (2.10)

∂L
∂vi

(Ω, ũi, p, vi, q)(v̂i) =

∫
Ω

µ∇ũi ·∇v̂i dΩ−
∫

Ω

div (v̂i)p dΩ−
∫

Ω

fv̂i dΩ+

∫
∂Ω

(∂ũi/∂n) v̂i ds

(2.11)

∂L
∂q

(Ω, ũi, p, vi, q)(q̂) =

∫
Ω

div (ũi)q̂ dΩ (2.12)

The objective function derivative (J ′(ũi)) is calculated obtaining:

J ′(ũi, ûi) =

∫
Ω

µ∇ûi : e(ũi) dΩ +

∫
Ω

µ∇ũi : e(ûi) dΩ (2.13)

The last terms (Eqs 2.9 to 2.12) can be null and ignored from Eq 2.8. It is clear that

the term defined by making zero Eq 2.11 is the same weak form of the state equation and

Eq. 2.12 its continuity condition. In this case, one solves for finding (ũi
Ω, pΩ) s.t 2.11 and

2.12 go to cero for every (v̂i, q̂).

Likewise, the same is done for equations 2.9 and 2.10. One can see on 2.9 the same

state equation with a source term defined by the objective function derivative j′. On this

case, the results of the state equation (ũi
Ω, pΩ) are used to compute the source term and

the unknowns (vΩ
i , q

Ω) are found. This is the adjoint state system.

Finally, after making all these terms null, the shape derivative reads:

L′(Ω, ũi, p, vi, q)(θ) =
∂L
∂Ω

(Ω, ũi
Ω, pΩ, vΩ

i , q
Ω)(θ) (2.14)

Where the partial derivative ∂L
∂Ω

is calculated according to the structure theorem (See

Delfour and Zolésio (2011) theorem 9.3.6 or Dapogny (2013) theorem 2.2.2).
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∂L
∂Ω

(Ω, ũi
Ω, pΩ, vΩ

i , q
Ω)(θ) =∫

∂Ω0

θ · n̂i(µ∇ũiΩ : e(ũi
Ω) + µ∇ũiΩ : ∇vΩ

i − div (vΩ
i )pΩ − fivΩ

i

+µ∇uli : ∇vΩ
i + div (ũi

Ω)qΩ + div (uli)q)ds (2.15)

Where n̂i is the unitary vector that defines the normal direction of ∂Ω0. By continuity

condition: div (ũi
Ω) = − div (uli) and div (vΩ

i ) = 0, then if the body forces are null (fi = 0),

the shape derivative of the objective function defined on equation 2.1 reads:

J ′(Ω) =
∂L
∂Ω

(Ω, ũi
Ω, pΩ, vΩ

i , q
Ω)(θ) =∫

∂Ω0

θ · n̂i
(
µ∇ũiΩ : e(ũi

Ω) + µ∇ũiΩ : ∇vΩ
i + µ∇uli : ∇vΩ

i

)
ds (2.16)

The term vΩ
i is the solution to the adjoint system defined by equation 2.9 and 2.10

as continuity condition. The shape derivative can be defined as the sensitivity of the

objective function J(Ω) with respect to a variation of the domain shape defined by the

boundary displacement field of magnitude θ on the normal direction n̂i.

2.3 Domain variation

The shape sensitivity gives the direction to deform the domain in order to change the

objective function in a desired way. As defined on equation 2.15, if θ · n̂i = 1 the variation

of the objective function would have the magnitude of the term in brackets. This way a

displacement field m∂Ω
i = θn̂i over the boundary is found in order to minimize significantly

the cost function. This field is known on the entire boundary, has normal direction and

variable magnitude according to the sensitivity.

Now the purpose is to move the boundary according to this field m∂Ω
i . To avoid

remeshing, a continuous displacement field over the entire domain mΩ
i is found and the

complete mesh is displaced according to it. To determine the field mΩ
i by knowing its

value on the boundary (m∂Ω
i ), a displacement based linear elasticity problem is solved:



2.4 Implementation 21

− div
(
µ(∇mi + (∇mi)

T ) + λ(div (mi))I
)

= fi in Ω

fi = 0 in Ω

mi = m∂Ω
i on ∂Ω

(2.17)

Where µ and λ are the Lamé constants. The domain is updated by moving the

complete mesh according to the solution of equation 2.17 (mΩ
i = mi).

2.4 Implementation

The implementation of the method is done in FreeFem++ taking advantage of functions

such as movemesh to make the domain variation. The visualization is done in Paraview, an

open source visualization system, via exporting files with VTK format from FreeFem++.

The diffuser example was used to test the program.

2.4.1 Diffuser

The validation of the method is done with the diffuser example as defined in section 1.3.1

but with different inital conditions. The inital shape and boundary conditions can be

seen on figure 2.2. The maximum volume is 0.8, then the optimization iterations should

stop when it is reached. The maximum movement is defined as 5x10−4 and only the walls

are allowed to move, the inlet and the outlet should remain the same.

The initial, intermediate and final state of the optimization process are displayed in

figure 2.3. The program performed 248 iterations and stopped when the volume reached

the maximum, 0.8 in this case. Figures 2.4 and 2.5 show the objective function value and

the domain volume respectively over the iterations.

A comparison of this optimization method and the SIMP treated in chapter 1 is done

with this example. Figure 2.6 shows the results of both methods. Similar shapes are

obtained and the objective function values are Φ = 26, 49 for the SIMP method and

Φ = 27, 32 for the shape derivative method.
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Figure 2.2: Diffuser conditions
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(a) (b)

(c)

Figure 2.3: Diffuser initial shape (a), intermediate position with displacement field (b)
and optimized final shape (c).
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Figure 2.5: Domain volume over iterations
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Figure 2.6: Comparison of the optimization results using SIMP method (black and white
density function) and Shape optimization (red mesh).



Chapter 3

CFD two step optimization

To this chapter, two different CFD optimization methods have been studied. On one hand

the topology optimization method using SIMP with the fluid domain defined implicitly

by a density function ρ (Chapter 1). On the other hand a shape optimization method

based on the derivative with respect to the domain (shape derivative) where only the fluid

domain is taken into account and its boundary evolves to an optimum shape (Chapter

2). The purpose of this chapter is to combine this two methods to solve a problem by

making a two step process, first to find an initial shape using SIMP, and then extract the

fluid domain to apply the shape optimization process.

The use of these two methods for the same purpose has been studied by Pantz and

Trabelsi (2007) for solids and Othmer (2008) and Kongress et al. (2006) for fluids. On

both fluids works, topology and shape optimization methods are studied but they are not

applied on the same optimization example. In this chapter, a complete two step process

involving topology and shape derivative is presented.

3.1 Optimization process

The process can be rougly divided in three steps:

1. Solve the topology optimization process as done in section 1.2.

2. Extract from the resulting density function the fluid domain.

3. Modify the fluid boundaries using shape optimization (see section 2.3).

26
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3.2 Fluid domain obtainment

To couple the topology with the shape optimization process, the fluid domain must be

taken out from the density function distribution. This process will give a ragged bound-

ary for the domain and the shape optimization process requires a sufficiently smooth

boundary.

To take out the fluid domain, a isoline with ρ = 0.5 is created over the SIMP density

solution, and then used as border of the new domain. The software used (FreeFem++)

provides a function called isoline to create this contour from the density function, more-

over this function can smooth the isoline to obtain a more continuous boundary. Then

the fluid domain is discretized and used as input for the second step of optimization.

3.3 Implementation

To make the two step implementation a main function on FreeFem++ is created, the

objective function is the power dissipation of the fluid and the state equation is defined

by incompressible Stokes flow. The optimization problem is defined by equation 1.6 for

topology oprimization and by equation 2.1 for shape optimization. It can be proved that

both objective functions are equal when α ≈ 0, leading to the same optimization problem.

The first step is to define the space of design, then discretize it and run the topology

optimization process. From the topology optimization, a scalar function called density

is obtained. From this density function, a new domain is created according to section

3.2. This new domain is used as the intial state for the shape optimization process, the

one proposed on chapter 2. Having the volume as a constraint and stopping criteria for

the shape optimization process, brings the need for a clearance between the inital and

maximum volume to perform the optimization. Then, the volume constraint should be

slightly lower for the first step than for the second one.

3.3.1 Diffuser

The optimization of the diffuser with the inital conditions defined in figure 1.2 is done. The

volume constraint for the SIMP step is defined as 0.8 and for the second step is increased

to 0.85. A mesh adaptation step is implemented on the SIMP process as defined on section

1.4. The process is summarized in table 3.1 and the results in figure 3.1. The objective
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Iteration Event Objective
function
value

Fluid
domain
volume

0 SIMP optimization with
rough mesh start.

389.4 0.8

8 SIMP optimization with
rough mesh end.

26.9 0.8

9 SIMP optimization with
adapted mesh start.

26.5 0.8

11 SIMP optimization with
adapted mesh end.

26.3 0.8

12 Shape optimization start. 24.6 0.8
96 Shape optimization end. 23.7 0.85

Table 3.1: Two step optimization process of the diffuser.

function evolution over iterations is plotted in figure 3.2 where the gray line marks the

change of optimization step.

It can be seen that the objective function is always decreasing. The shape optimiza-

tion step does not reduce significantly the objective function but produces the smooth

boundary as desired. The global performance of the process is satisfactory.
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(a) (b)

(c) (d)

(e)

Figure 3.1: Diffuser initial state for SIMP optimization (a), final state for SIMP with
rough mesh (b), final state for SIMP with adapted mesh (c), inital fluid domain for shape
otimization obtained from SIMP density result (d) and shape optimization final result
(e).
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Figure 3.2: Objective function over iterations with zoom to the shape optimization step
(from iteration 12).



Chapter 4

Conclusions and perspectives

The CFD optimization method proposed on this project shows satisfactory results. As

inital step, the SIMP method is implemented with the purpose of producing an inital

design. Obtaining the fluid domain from the resulting density function of the topology

optimization will generate an undesired ragged surface. Therefore, the shape optimization

method using a shape derivative of the objective function is used to correct the ribbed

surface.

The topology optimization method presented in chapter 1 shows convergence in the

iterative process. The inclussion of the MMA to update the density function is essential

for the optimization process. The double pipe benchmark solution proves the capability

of the procedure to reach different topologies. In search of efficiency, the mesh adaptation

step is inserted in the process, remarkable results were obtained in terms of computational

time to reach a desired solution.

Although it is very popular for solid optimization, the shape optimization using shape

derivatives is still not used widely for CFD optimizations. The procedure of differentiating

with respect to the domain is ilustrated in a generic form and implemented to reduce the

Stokes flow energy dissipation (See chapter 2). The variation of a discretized domain

boundary is not an easy task, to avoid remeshing on every iteration is the main objective

of this implementation. The continuous displacement field found by solving a linear

elasticity equation over the domain along with the movemesh function provided by the

FreeFem++ software are the basis of the domain update. To keep a smooth boundary

and converge to an optimum result, small boundary displacements should be defined, then

a noticeable shape variation would require a large number of iterations.

31
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The two step process involving topology and shape optimization is the core of this

project (chapter 3). The coupling of these two methods with a isovalue domain obtainment

worked as expected. an intial design is obtained using the SIMP method and the surface

is smoothed sufficiently by the shape derivative based method while the objective function

is still decreasing. A optimum design with explicit boundary definition is obtained.

As future work, a 3D Navier-Stokes optimization method is proposed. The non-linear

term of this equation must be treated carefully in order to obtain valid sensitivities. The

domain update with the shape derivative can be done taking advantage of the MMA as

done on the SIMP method, this way local minima can be avoided and better convergence

reached.
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