216 research outputs found

    State estimation for aggressive flight in GPS-denied environments using onboard sensing

    Get PDF
    In this paper we present a state estimation method based on an inertial measurement unit (IMU) and a planar laser range finder suitable for use in real-time on a fixed-wing micro air vehicle (MAV). The algorithm is capable of maintaing accurate state estimates during aggressive flight in unstructured 3D environments without the use of an external positioning system. Our localization algorithm is based on an extension of the Gaussian Particle Filter. We partition the state according to measurement independence relationships and then calculate a pseudo-linear update which allows us to use 20x fewer particles than a naive implementation to achieve similar accuracy in the state estimate. We also propose a multi-step forward fitting method to identify the noise parameters of the IMU and compare results with and without accurate position measurements. Our process and measurement models integrate naturally with an exponential coordinates representation of the attitude uncertainty. We demonstrate our algorithms experimentally on a fixed-wing vehicle flying in a challenging indoor environment

    Development of a ground robot for indoor SLAM using Low‐Cost LiDAR and remote LabVIEW HMI

    Get PDF
    The simultaneous localization and mapping problem (SLAM) is crucial to autonomous navigation and robot mapping. The main purpose of this thesis is to develop a ground robot that implements SLAM to test the performance of the low‐cost RPLiDAR A1M8 by DFRobot. The HectorSLAM package, available in ROS was used with a Raspberry Pi to implement SLAM and build maps. These maps are sent to a remote desktop via TCP/IP communication to be displayed on a LabVIEW HMI where the user can also control robot. The LabVIEW HMI and the project in its entirety is intended to be as easy to use as possible to the layman, with many processes being automated to make this possible. The quality of the maps created by HectorSLAM and the RPLiDAR were evaluated both qualitatively and quanitatively to determine how useful the low‐cost LiDAR can be for this application. It is hoped that the apparatus developed in this project will be used with drones in the future for 3D mapping

    External multi-modal imaging sensor calibration for sensor fusion: A review

    Get PDF
    Multi-modal data fusion has gained popularity due to its diverse applications, leading to an increased demand for external sensor calibration. Despite several proven calibration solutions, they fail to fully satisfy all the evaluation criteria, including accuracy, automation, and robustness. Thus, this review aims to contribute to this growing field by examining recent research on multi-modal imaging sensor calibration and proposing future research directions. The literature review comprehensively explains the various characteristics and conditions of different multi-modal external calibration methods, including traditional motion-based calibration and feature-based calibration. Target-based calibration and targetless calibration are two types of feature-based calibration, which are discussed in detail. Furthermore, the paper highlights systematic calibration as an emerging research direction. Finally, this review concludes crucial factors for evaluating calibration methods and provides a comprehensive discussion on their applications, with the aim of providing valuable insights to guide future research directions. Future research should focus primarily on the capability of online targetless calibration and systematic multi-modal sensor calibration.Ministerio de Ciencia, Innovación y Universidades | Ref. PID2019-108816RB-I0

    Three-dimensional Laser-based Classification in Outdoor Environments

    Get PDF
    Robotics research strives for deploying autonomous systems in populated environments, such as inner city traffic. Autonomous cars need a reliable collision avoidance, but also an object recognition to distinguish different classes of traffic participants. For both tasks, fast three-dimensional laser range sensors generating multiple accurate laser range scans per second, each consisting of a vast number of laser points, are often employed. In this thesis, we investigate and develop classification algorithms that allow us to automatically assign semantic labels to laser scans. We mainly face two challenges: (1) we have to ensure consistent and correct classification results and (2) we must efficiently process a vast number of laser points per scan. In consideration of these challenges, we cover both stages of classification -- the feature extraction from laser range scans and the classification model that maps from the features to semantic labels. As for the feature extraction, we contribute by thoroughly evaluating important state-of-the-art histogram descriptors. We investigate critical parameters of the descriptors and experimentally show for the first time that the classification performance can be significantly improved using a large support radius and a global reference frame. As for learning the classification model, we contribute with new algorithms that improve the classification efficiency and accuracy. Our first approach aims at deriving a consistent point-wise interpretation of the whole laser range scan. By combining efficient similarity-preserving hashing and multiple linear classifiers, we considerably improve the consistency of label assignments, requiring only minimal computational overhead compared to a single linear classifier. In the last part of the thesis, we aim at classifying objects represented by segments. We propose a novel hierarchical segmentation approach comprising multiple stages and a novel mixture classification model of multiple bag-of-words vocabularies. We demonstrate superior performance of both approaches compared to their single component counterparts using challenging real world datasets.Ziel des Forschungsbereichs Robotik ist der Einsatz autonomer Systeme in natürlichen Umgebungen, wie zum Beispiel innerstädtischem Verkehr. Autonome Fahrzeuge benötigen einerseits eine zuverlässige Kollisionsvermeidung und andererseits auch eine Objekterkennung zur Unterscheidung verschiedener Klassen von Verkehrsteilnehmern. Verwendung finden vorallem drei-dimensionale Laserentfernungssensoren, die mehrere präzise Laserentfernungsscans pro Sekunde erzeugen und jeder Scan besteht hierbei aus einer hohen Anzahl an Laserpunkten. In dieser Dissertation widmen wir uns der Untersuchung und Entwicklung neuartiger Klassifikationsverfahren zur automatischen Zuweisung von semantischen Objektklassen zu Laserpunkten. Hierbei begegnen wir hauptsächlich zwei Herausforderungen: (1) wir möchten konsistente und korrekte Klassifikationsergebnisse erreichen und (2) die immense Menge an Laserdaten effizient verarbeiten. Unter Berücksichtigung dieser Herausforderungen untersuchen wir beide Verarbeitungsschritte eines Klassifikationsverfahrens -- die Merkmalsextraktion unter Nutzung von Laserdaten und das eigentliche Klassifikationsmodell, welches die Merkmale auf semantische Objektklassen abbildet. Bezüglich der Merkmalsextraktion leisten wir ein Beitrag durch eine ausführliche Evaluation wichtiger Histogrammdeskriptoren. Wir untersuchen kritische Deskriptorparameter und zeigen zum ersten Mal, dass die Klassifikationsgüte unter Nutzung von großen Merkmalsradien und eines globalen Referenzrahmens signifikant gesteigert wird. Bezüglich des Lernens des Klassifikationsmodells, leisten wir Beiträge durch neue Algorithmen, welche die Effizienz und Genauigkeit der Klassifikation verbessern. In unserem ersten Ansatz möchten wir eine konsistente punktweise Interpretation des gesamten Laserscans erreichen. Zu diesem Zweck kombinieren wir eine ähnlichkeitserhaltende Hashfunktion und mehrere lineare Klassifikatoren und erreichen hierdurch eine erhebliche Verbesserung der Konsistenz der Klassenzuweisung bei minimalen zusätzlichen Aufwand im Vergleich zu einem einzelnen linearen Klassifikator. Im letzten Teil der Dissertation möchten wir Objekte, die als Segmente repräsentiert sind, klassifizieren. Wir stellen eine neuartiges hierarchisches Segmentierungsverfahren und ein neuartiges Klassifikationsmodell auf Basis einer Mixtur mehrerer bag-of-words Vokabulare vor. Wir demonstrieren unter Nutzung von praxisrelevanten Datensätzen, dass beide Ansätze im Vergleich zu ihren Entsprechungen aus einer einzelnen Komponente zu erheblichen Verbesserungen führen

    Ultra high frequency (UHF) radio-frequency identification (RFID) for robot perception and mobile manipulation

    Get PDF
    Personal robots with autonomy, mobility, and manipulation capabilities have the potential to dramatically improve quality of life for various user populations, such as older adults and individuals with motor impairments. Unfortunately, unstructured environments present many challenges that hinder robot deployment in ordinary homes. This thesis seeks to address some of these challenges through a new robotic sensing modality that leverages a small amount of environmental augmentation in the form of Ultra High Frequency (UHF) Radio-Frequency Identification (RFID) tags. Previous research has demonstrated the utility of infrastructure tags (affixed to walls) for robot localization; in this thesis, we specifically focus on tagging objects. Owing to their low-cost and passive (battery-free) operation, users can apply UHF RFID tags to hundreds of objects throughout their homes. The tags provide two valuable properties for robots: a unique identifier and receive signal strength indicator (RSSI, the strength of a tag's response). This thesis explores robot behaviors and radio frequency perception techniques using robot-mounted UHF RFID readers that enable a robot to efficiently discover, locate, and interact with UHF RFID tags applied to objects and people of interest. The behaviors and algorithms explicitly rely on the robot's mobility and manipulation capabilities to provide multiple opportunistic views of the complex electromagnetic landscape inside a home environment. The electromagnetic properties of RFID tags change when applied to common household objects. Objects can have varied material properties, can be placed in diverse orientations, and be relocated to completely new environments. We present a new class of optimization-based techniques for RFID sensing that are robust to the variation in tag performance caused by these complexities. We discuss a hybrid global-local search algorithm where a robot employing long-range directional antennas searches for tagged objects by maximizing expected RSSI measurements; that is, the robot attempts to position itself (1) near a desired tagged object and (2) oriented towards it. The robot first performs a sparse, global RFID search to locate a pose in the neighborhood of the tagged object, followed by a series of local search behaviors (bearing estimation and RFID servoing) to refine the robot's state within the local basin of attraction. We report on RFID search experiments performed in Georgia Tech's Aware Home (a real home). Our optimization-based approach yields superior performance compared to state of the art tag localization algorithms, does not require RF sensor models, is easy to implement, and generalizes to other short-range RFID sensor systems embedded in a robot's end effector. We demonstrate proof of concept applications, such as medication delivery and multi-sensor fusion, using these techniques. Through our experimental results, we show that UHF RFID is a complementary sensing modality that can assist robots in unstructured human environments.PhDCommittee Chair: Kemp, Charles C.; Committee Member: Abowd, Gregory; Committee Member: Howard, Ayanna; Committee Member: Ingram, Mary Ann; Committee Member: Reynolds, Matt; Committee Member: Tentzeris, Emmanoui

    Monocular Vision based Particle Filter Localization in Urban Environments

    Get PDF
    This thesis presents the design and experimental result of a monocular vision based particle filter localization system for urban settings that uses aerial orthoimagery as a reference map. The topics of perception and localization are reviewed along with their modeling using a probabilistic framework. Computer vision techniques used to create the feature map and to extract features from camera images are discussed. Localization results indicate that the design is viable

    A framework for surface metrology on Cultural Heritage objects based on scanning conoscopic holography

    Get PDF
    L'applicazione della metrologia di superficie e dell'analisi dimensionale allo studio dei beni culturali può rivelare importanti informazioni sull'oggetto e favorire l'integrazione di molteplici tecniche diagnostiche. Tuttavia, l'applicazione di queste discipline ai Beni Culturali richiede particolari requisiti e attenzioni. In questa tesi, presento i risultati dell'implementazione di diversi sistemi di misurazione della superficie basati sul principio della conoscopia olografica. I senori conoscopici sono strumenti capaci di misurare distanze con precisione micrometrica a scale diverse, accoppiati a slitte micrometriche possono essere utilizzati per acquisire scansioni areali dell'oggetto in esame. Per facilitare la loro applicazione alle opere d'arte ho sviluppato un extit{framework} per applicare la metrologia di superficie ai beni culturali. Il framework copre diversi aspetti del processo di analisi ed utilizzo dei dati e comprende la creazione di raccolte di campioni, le strategie per la scansione dell'oggetto, l'archiviazione e l'analisi dei dati ed eventualmente l'incertezza legata alla misura. Il extit{framework} mira a rendere più accessibile l'implementazione della metrologia di superficie e dei sistemi di scansione dell'analisi dimensionale per l'analisi dei beni culturali. I risultati raccolti su una varietà di materiali artistici (metalli, dipinti su tavola, tela, carta, pergamena e dipinti murali) mostrano come questi sistemi possano essere utilizzati per monitorare gli effetti delle procedure di pulitura, la stabilità dimensionale delle opere d'arte ed il loro invecchiamento.The application of surface metrology and dimensional analysis to the study of artworks can reveal important information on the object and aid the integration of multiple techniques. However, the application of these disciplines to Cultural Heritage objects necessitates particular care and requirements. In this dissertation, I present the results of the implementation of different systems, based on Conoscopic Holography range finders, for measuring the surface. Conoscopic holography range finders are viable instruments for measuring distances with micrometer accuracy at different scales, coupled with micrometric stages they can be used for acquiring areal scans of the object under investigation. To ease their application to artworks I built a framework for applying surface metrology to Cultural Heritage objects. The framework covers different aspects of the research workflow comprising the creation of samples collections, the strategies for scanning the object, the storing and the analysis of the data and eventually the uncertainty linked to the measurement. This framework aims to make more accessible the implementation of surface metrology and dimensional analysis scanning systems tailored to the analysis of Cultural Heritage objects. The results collected on a variety of artworks materials (metals, panels painting, canvas, paper, parchment and mural paintings) show how these systems can be used for monitoring the effects of cleaning procedures, the dimensional stability of the artworks and their ageing

    Contributions to Intelligent Scene Understanding of Unstructured Environments from 3D lidar sensors

    Get PDF
    Además, la viabilidad de este enfoque es evaluado mediante la implementación de cuatro tipos de clasificadores de aprendizaje supervisado encontrados en métodos de procesamiento de escenas: red neuronal, máquina de vectores de soporte, procesos gaussianos, y modelos de mezcla gaussiana. La segmentación de objetos es un paso más allá hacia el entendimiento de escena, donde conjuntos de puntos 3D correspondientes al suelo y otros objetos de la escena son aislados. La tesis propone nuevas contribuciones a la segmentación de nubes de puntos basados en mapas de vóxeles caracterizados geométricamente. En concreto, la metodología propuesta se compone de dos pasos: primero, una segmentación del suelo especialmente diseñado para entornos naturales; y segundo, el posterior aislamiento de objetos individuales. Además, el método de segmentación del suelo es integrado en una nueva técnica de mapa de navegabilidad basado en cuadrícula de ocupación el cuál puede ser apropiado para robots móviles en entornos naturales. El diseño y desarrollo de un nuevo y asequible sensor lidar 3D de alta resolución también se ha propuesto en la tesis. Los nuevos MBLs, tales como los desarrollados por Velodyne, están siendo cada vez más un tipo de sensor 3D asequible y popular que ofrece alto ratio de datos en un campo de visión vertical (FOV) limitado. El diseño propuesto consiste en una plataforma giratoria que mejora la resolución y el FOV vertical de un Velodyne VLP-16 de 16 haces. Además, los complejos patrones de escaneo producidos por configuraciones de MBL que rotan se analizan tanto en simulaciones de esfera hueca como en escáneres reales en entornos representativos. Fecha de Lectura de Tesis: 11 de julio 2018.Ingeniería de Sistemas y Automática Resumen tesis: Los sensores lidar 3D son una tecnología clave para navegación, localización, mapeo y entendimiento de escenas en vehículos no tripulados y robots móviles. Esta tecnología, que provee nubes de puntos densas, puede ser especialmente adecuada para nuevas aplicaciones en entornos naturales o desestructurados, tales como búsqueda y rescate, exploración planetaria, agricultura, o exploración fuera de carretera. Esto es un desafío como área de investigación que incluye disciplinas que van desde el diseño de sensor a la inteligencia artificial o el aprendizaje automático (machine learning). En este contexto, esta tesis propone contribuciones al entendimiento inteligente de escenas en entornos desestructurados basado en medidas 3D de distancia a nivel del suelo. En concreto, las contribuciones principales incluyen nuevas metodologías para la clasificación de características espaciales, segmentación de objetos, y evaluación de navegabilidad en entornos naturales y urbanos, y también el diseño y desarrollo de un nuevo lidar rotatorio multi-haz (MBL). La clasificación de características espaciales es muy relevante porque es extensamente requerida como un paso fundamental previo a los problemas de entendimiento de alto nivel de una escena. Las contribuciones de la tesis en este respecto tratan de mejorar la eficacia, tanto en carga computacional como en precisión, de clasificación de aprendizaje supervisado de características de forma espacial (forma tubular, plana o difusa) obtenida mediante el análisis de componentes principales (PCA). Esto se ha conseguido proponiendo un concepto eficiente de vecindario basado en vóxel en una contribución original que define los procedimientos de aprendizaje “offline” y clasificación “online” a la vez que cinco definiciones alternativas de vectores de características basados en PCA
    corecore