5,337 research outputs found

    AFRANCI : multi-layer architecture for cognitive agents

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201

    Evolutionary model type selection for global surrogate modeling

    Get PDF
    Due to the scale and computational complexity of currently used simulation codes, global surrogate (metamodels) models have become indispensable tools for exploring and understanding the design space. Due to their compact formulation they are cheap to evaluate and thus readily facilitate visualization, design space exploration, rapid prototyping, and sensitivity analysis. They can also be used as accurate building blocks in design packages or larger simulation environments. Consequently, there is great interest in techniques that facilitate the construction of such approximation models while minimizing the computational cost and maximizing model accuracy. Many surrogate model types exist ( Support Vector Machines, Kriging, Neural Networks, etc.) but no type is optimal in all circumstances. Nor is there any hard theory available that can help make this choice. In this paper we present an automatic approach to the model type selection problem. We describe an adaptive global surrogate modeling environment with adaptive sampling, driven by speciated evolution. Different model types are evolved cooperatively using a Genetic Algorithm ( heterogeneous evolution) and compete to approximate the iteratively selected data. In this way the optimal model type and complexity for a given data set or simulation code can be dynamically determined. Its utility and performance is demonstrated on a number of problems where it outperforms traditional sequential execution of each model type

    Evaluation of a fuzzy-expert system for fault diagnosis in power systems

    Get PDF
    A major problem with alarm processing and fault diagnosis in power systems is the reliance on the circuit alarm status. If there is too much information available and the time of arrival of the information is random due to weather conditions etc., the alarm activity is not easily interpreted by system operators. In respect of these problems, this thesis sets out the work that has been carried out to design and evaluate a diagnostic tool which assists power system operators during a heavy period of alarm activity in condition monitoring. The aim of employing this diagnostic tool is to monitor and raise uncertain alarm information for the system operators, which serves a proposed solution for restoring such faults. The diagnostic system uses elements of AI namely expert systems, and fuzzy logic that incorporate abductive reasoning. The objective of employing abductive reasoning is to optimise an interpretation of Supervisory Control and Data Acquisition (SCADA) based uncertain messages when the SCADA based messages are not satisfied with simple logic alone. The method consists of object-oriented programming, which demonstrates reusability, polymorphism, and readability. The principle behind employing objectoriented techniques is to provide better insights and solutions compared to conventional artificial intelligence (Al) programming languages. The characteristics of this work involve the development and evaluation of a fuzzy-expert system which tries to optimise the uncertainty in the 16-lines 12-bus sample power system. The performance of employing this diagnostic tool is assessed based on consistent data acquisition, readability, adaptability, and maintainability on a PC. This diagnostic tool enables operators to control and present more appropriate interpretations effectively rather than a mathematical based precise fault identification when the mathematical modelling fails and the period of alarm activity is high. This research contributes to the field of power system control, in particular Scottish Hydro-Electric PLC has shown interest and supplied all the necessary information and data. The AI based power system is presented as a sample application of Scottish Hydro-Electric and KEPCO (Korea Electric Power Corporation)

    Optimization of accurate estimation of single diode solar photovoltaic parameters and extraction of maximum power point under different conditions

    Get PDF
    Introduction. With the snowballing requirement of renewable resources of energy, solar energy has been an area of key concern to the increasing demand for electricity. Solar photovoltaic has gotten a considerable amount of consideration from researchers in recent years. Purpose. For generating nearly realistic curves for the solar cell model it is needed to estimate unknown parameters with utmost precision. The five unknown parameters include diode-ideality factor, shunt-resistance, photon-current, diode dark saturation current, and series-resistance. Novelty. The proposed research method hybridizes flower pollination algorithm with least square method to better estimate the unknown parameters, and produce more realistic curves. Methodology. The proposed method shows many promising results that are more realistic in nature, as compared to other methods. Shunt-resistance and series-resistance are considered and diode constant is not neglected in this approach that previously has been in practice. The values of series-resistance and diode-ideality factor are found using flower pollination algorithm while shunt-resistance, diode dark saturation current and photon-current are found through least square method. Results. The combination of these techniques has achieved better results compared to other techniques. The simulation studies are carried on MATLAB/Simulink.Вступ. З огляду на величезну потребу у відновлюваних енергетичних ресурсах, сонячна енергія стала ключовою сферою розв’язання проблеми зростання попиту на електроенергію. За останні роки сонячна фотоелектрична техніка отримала значну увагу з боку дослідників. Мета. Для створення майже реалістичних кривих для моделі сонячних батарей необхідно оцінити невідомі параметри з максимальною точністю. П'ять невідомих параметрів включають коефіцієнт ідеальності діодів, опір шунту, фотонний струм, струм темного насичення діодів і послідовний опір. Новизна. Запропонований метод дослідження поєднує алгоритм запилення квітів із методом найменших квадратів для кращої оцінки невідомих параметрів та отримання більш реалістичних кривих. Методологія. Запропонований метод демонструє багато перспективних результатів, які є більш реалістичними за своєю природою, порівняно з іншими методами. Розглянуто опір шунта і послідовний опір, і в цьому підході, який раніше застосовувався на практиці, не нехтують постійною діода. Значення послідовного опору та коефіцієнта ідеальності діодів визначаються за допомогою алгоритму запилення квіток, тоді як опір шунту, струм темного насичення діодів і фотонний струм - методом найменших квадратів. Результати. Поєднання цих методів забезпечило кращі результати у порівнянні з іншими методами. Моделювання проводиться на MATLAB/Simulink

    Design of Low Power MAX Operator for Multi-valued Logic System

    Get PDF
    AbstractA voltage-mode three transistor based MAX circuit for implementation of multi-valued logic (MVL) system is proposed in this paper. The proposed MAX operates at very low power consumption ranging in micro watts. To evaluate MAX performance, a NOR gate realization is done and compared to standard CMOS NOR gate. The HSpice simulation result confirms the MAX based NOR gate to operate with minimal delay at low power level. The simulations have been performed on 180nm technology

    A Field Guide to Genetic Programming

    Get PDF
    xiv, 233 p. : il. ; 23 cm.Libro ElectrónicoA Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4) is an introduction to genetic programming (GP). GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. The authorsIntroduction -- Representation, initialisation and operators in Tree-based GP -- Getting ready to run genetic programming -- Example genetic programming run -- Alternative initialisations and operators in Tree-based GP -- Modular, grammatical and developmental Tree-based GP -- Linear and graph genetic programming -- Probalistic genetic programming -- Multi-objective genetic programming -- Fast and distributed genetic programming -- GP theory and its applications -- Applications -- Troubleshooting GP -- Conclusions.Contents xi 1 Introduction 1.1 Genetic Programming in a Nutshell 1.2 Getting Started 1.3 Prerequisites 1.4 Overview of this Field Guide I Basics 2 Representation, Initialisation and GP 2.1 Representation 2.2 Initialising the Population 2.3 Selection 2.4 Recombination and Mutation Operators in Tree-based 3 Getting Ready to Run Genetic Programming 19 3.1 Step 1: Terminal Set 19 3.2 Step 2: Function Set 20 3.2.1 Closure 21 3.2.2 Sufficiency 23 3.2.3 Evolving Structures other than Programs 23 3.3 Step 3: Fitness Function 24 3.4 Step 4: GP Parameters 26 3.5 Step 5: Termination and solution designation 27 4 Example Genetic Programming Run 4.1 Preparatory Steps 29 4.2 Step-by-Step Sample Run 31 4.2.1 Initialisation 31 4.2.2 Fitness Evaluation Selection, Crossover and Mutation Termination and Solution Designation Advanced Genetic Programming 5 Alternative Initialisations and Operators in 5.1 Constructing the Initial Population 5.1.1 Uniform Initialisation 5.1.2 Initialisation may Affect Bloat 5.1.3 Seeding 5.2 GP Mutation 5.2.1 Is Mutation Necessary? 5.2.2 Mutation Cookbook 5.3 GP Crossover 5.4 Other Techniques 32 5.5 Tree-based GP 39 6 Modular, Grammatical and Developmental Tree-based GP 47 6.1 Evolving Modular and Hierarchical Structures 47 6.1.1 Automatically Defined Functions 48 6.1.2 Program Architecture and Architecture-Altering 50 6.2 Constraining Structures 51 6.2.1 Enforcing Particular Structures 52 6.2.2 Strongly Typed GP 52 6.2.3 Grammar-based Constraints 53 6.2.4 Constraints and Bias 55 6.3 Developmental Genetic Programming 57 6.4 Strongly Typed Autoconstructive GP with PushGP 59 7 Linear and Graph Genetic Programming 61 7.1 Linear Genetic Programming 61 7.1.1 Motivations 61 7.1.2 Linear GP Representations 62 7.1.3 Linear GP Operators 64 7.2 Graph-Based Genetic Programming 65 7.2.1 Parallel Distributed GP (PDGP) 65 7.2.2 PADO 67 7.2.3 Cartesian GP 67 7.2.4 Evolving Parallel Programs using Indirect Encodings 68 8 Probabilistic Genetic Programming 8.1 Estimation of Distribution Algorithms 69 8.2 Pure EDA GP 71 8.3 Mixing Grammars and Probabilities 74 9 Multi-objective Genetic Programming 75 9.1 Combining Multiple Objectives into a Scalar Fitness Function 75 9.2 Keeping the Objectives Separate 76 9.2.1 Multi-objective Bloat and Complexity Control 77 9.2.2 Other Objectives 78 9.2.3 Non-Pareto Criteria 80 9.3 Multiple Objectives via Dynamic and Staged Fitness Functions 80 9.4 Multi-objective Optimisation via Operator Bias 81 10 Fast and Distributed Genetic Programming 83 10.1 Reducing Fitness Evaluations/Increasing their Effectiveness 83 10.2 Reducing Cost of Fitness with Caches 86 10.3 Parallel and Distributed GP are Not Equivalent 88 10.4 Running GP on Parallel Hardware 89 10.4.1 Master–slave GP 89 10.4.2 GP Running on GPUs 90 10.4.3 GP on FPGAs 92 10.4.4 Sub-machine-code GP 93 10.5 Geographically Distributed GP 93 11 GP Theory and its Applications 97 11.1 Mathematical Models 98 11.2 Search Spaces 99 11.3 Bloat 101 11.3.1 Bloat in Theory 101 11.3.2 Bloat Control in Practice 104 III Practical Genetic Programming 12 Applications 12.1 Where GP has Done Well 12.2 Curve Fitting, Data Modelling and Symbolic Regression 12.3 Human Competitive Results – the Humies 12.4 Image and Signal Processing 12.5 Financial Trading, Time Series, and Economic Modelling 12.6 Industrial Process Control 12.7 Medicine, Biology and Bioinformatics 12.8 GP to Create Searchers and Solvers – Hyper-heuristics xiii 12.9 Entertainment and Computer Games 127 12.10The Arts 127 12.11Compression 128 13 Troubleshooting GP 13.1 Is there a Bug in the Code? 13.2 Can you Trust your Results? 13.3 There are No Silver Bullets 13.4 Small Changes can have Big Effects 13.5 Big Changes can have No Effect 13.6 Study your Populations 13.7 Encourage Diversity 13.8 Embrace Approximation 13.9 Control Bloat 13.10 Checkpoint Results 13.11 Report Well 13.12 Convince your Customers 14 Conclusions Tricks of the Trade A Resources A.1 Key Books A.2 Key Journals A.3 Key International Meetings A.4 GP Implementations A.5 On-Line Resources 145 B TinyGP 151 B.1 Overview of TinyGP 151 B.2 Input Data Files for TinyGP 153 B.3 Source Code 154 B.4 Compiling and Running TinyGP 162 Bibliography 167 Inde
    corecore