40 research outputs found

    The use of kurtosis de-noising for EEG analysis of patients suffering from Alzheimer's disease.

    Get PDF
    The use of electroencephalograms (EEGs) to diagnose and analyses Alzheimer’s disease (AD) has received much attention in recent years. The sample entropy (SE) has been widely applied to the diagnosis of AD. In our study, nine EEGs from 21 scalp electrodes in 3 AD patients and 9 EEGs from 3 age-matched controls are recorded. The calculations show that the kurtoses of the AD patients’ EEG are positive and much higher than that of the controls. This finding encourages us to introduce a kurtosis-based de-noising method. The 21-electrode EEG is first decomposed using independent component analysis (ICA), and second sort them using their kurtoses in ascending order. Finally, the subspace of EEG signal using back projection of only the last five components is reconstructed. SE will be calculated after the above de-noising preprocess. The classifications show that this method can significantly improve the accuracy of SE-based diagnosis. The kurtosis analysis of EEG may contribute to increasing the understanding of brain dysfunction in AD in a statistical way

    Issues and recommendations from the OHBM COBIDAS MEEG committee for reproducible EEG and MEG research

    Get PDF
    The Organization for Human Brain Mapping (OHBM) has been active in advocating for the instantiation of best practices in neuroimaging data acquisition, analysis, reporting and sharing of both data and analysis code to deal with issues in science related to reproducibility and replicability. Here we summarize recommendations for such practices in magnetoencephalographic (MEG) and electroencephalographic (EEG) research, recently developed by the OHBM neuroimaging community known by the abbreviated name of COBIDAS MEEG. We discuss the rationale for the guidelines and their general content, which encompass many topics under active discussion in the field. We highlight future opportunities and challenges to maximizing the sharing and exploitation of MEG and EEG data, and we also discuss how this ‘living’ set of guidelines will evolve to continually address new developments in neurophysiological assessment methods and multimodal integration of neurophysiological data with other data types.Peer reviewe

    Independent Component Analysis in a convoluted world

    Get PDF

    Electroencephalograph (EEG) signal processing techniques for motor imagery Brain Computer interface systems

    Get PDF
    Brain-Computer Interface (BCI) system provides a channel for the brain to control external devices using electrical activities of the brain without using the peripheral nervous system. These BCI systems are being used in various medical applications, for example controlling a wheelchair and neuroprosthesis devices for the disabled, thereby assisting them in activities of daily living. People suffering from Amyotrophic Lateral Sclerosis (ALS), Multiple Sclerosis and completely locked in are unable to perform any body movements because of the damage of the peripheral nervous system, but their cognitive function is still intact. BCIs operate external devices by acquiring brain signals and converting them to control commands to operate external devices. Motor-imagery (MI) based BCI systems, in particular, are based on the sensory-motor rhythms which are generated by the imagination of body limbs. These signals can be decoded as control commands in BCI application. Electroencephalogram (EEG) is commonly used for BCI applications because it is non-invasive. The main challenges of decoding the EEG signal are because it is non-stationary and has a low spatial resolution. The common spatial pattern algorithm is considered to be the most effective technique for discrimination of spatial filter but is easily affected by the presence of outliers. Therefore, a robust algorithm is required for extraction of discriminative features from the motor imagery EEG signals. This thesis mainly aims in developing robust spatial filtering criteria which are effective for classification of MI movements. We have proposed two approaches for the robust classification of MI movements. The first approach is for the classification of multiclass MI movements based on the thinICA (Independent Component Analysis) and mCSP (multiclass Common Spatial Pattern Filter) method. The observed results indicate that these approaches can be a step towards the development of robust feature extraction for MI-based BCI system. The main contribution of the thesis is the second criterion, which is based on Alpha- Beta logarithmic-determinant divergence for the classification of two class MI movements. A detailed study has been done by obtaining a link between the AB log det divergence and CSP criterion. We propose a scaling parameter to enable a similar way for selecting the respective filters like the CSP algorithm. Additionally, the optimization of the gradient of AB log-det divergence for this application was also performed. The Sub-ABLD (Subspace Alpha-Beta Log-Det divergence) algorithm is proposed for the discrimination of two class MI movements. The robustness of this algorithm is tested with both the simulated and real data from BCI competition dataset. Finally, the resulting performances of the proposed algorithms have been favorably compared with other existing algorithms

    Modelling and Classification of Motor Imagery EEG for BCI

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Detecting single-trial EEG evoked potential using a wavelet domain linear mixed model: application to error potentials classification

    Full text link
    Objective. The main goal of this work is to develop a model for multi-sensor signals such as MEG or EEG signals, that accounts for the inter-trial variability, suitable for corresponding binary classification problems. An important constraint is that the model be simple enough to handle small size and unbalanced datasets, as often encountered in BCI type experiments. Approach. The method involves linear mixed effects statistical model, wavelet transform and spatial filtering, and aims at the characterization of localized discriminant features in multi-sensor signals. After discrete wavelet transform and spatial filtering, a projection onto the relevant wavelet and spatial channels subspaces is used for dimension reduction. The projected signals are then decomposed as the sum of a signal of interest (i.e. discriminant) and background noise, using a very simple Gaussian linear mixed model. Main results. Thanks to the simplicity of the model, the corresponding parameter estimation problem is simplified. Robust estimates of class-covariance matrices are obtained from small sample sizes and an effective Bayes plug-in classifier is derived. The approach is applied to the detection of error potentials in multichannel EEG data, in a very unbalanced situation (detection of rare events). Classification results prove the relevance of the proposed approach in such a context. Significance. The combination of linear mixed model, wavelet transform and spatial filtering for EEG classification is, to the best of our knowledge, an original approach, which is proven to be effective. This paper improves on earlier results on similar problems, and the three main ingredients all play an important role

    Riemannian approaches in Brain-Computer Interfaces: a review

    Get PDF
    International audienceAlthough promising from numerous applications, current Brain-Computer Interfaces (BCIs) still suffer from a number of limitations. In particular, they are sensitive to noise, outliers and the non-stationarity of ElectroEncephaloGraphic (EEG) signals, they require long calibration times and are not reliable. Thus, new approaches and tools, notably at the EEG signal processing and classification level, are necessary to address these limitations. Riemannian approaches, spearheaded by the use of covariance matrices, are such a very promising tool slowly adopted by a growing number of researchers. This article, after a quick introduction to Riemannian geometry and a presentation of the BCI-relevant manifolds, reviews how these approaches have been used for EEG-based BCI, in particular for feature representation and learning, classifier design and calibration time reduction. Finally, relevant challenges and promising research directions for EEG signal classification in BCIs are identified, such as feature tracking on manifold or multi-task learning

    Independent component analysis and source analysis of auditory evoked potentials for assessment of cochlear implant users

    No full text
    Source analysis of the Auditory Evoked Potential (AEP) has been used before to evaluate the maturation of the auditory system in both adult and children; in the same way, this technique could be applied to ongoing EEG recordings, in response to acoustic specific frequency stimuli, from children with cochlear implants (CI). This is done in oder to objectively assess the performance of this electronic device and the maturation of the child?s hearing. However, these recordings are contaminated by an artifact produced by the normal operation of the CI; this artifact in particular makes the detection and analysis of AEPs much harder and generates errors in the source analysis process. The artifact can be spatially filtered using Independent Component Analysis (ICA); in this research, three different ICA algorithms were compared in order to establish the more suited algorithm to remove the CI artifact. Additionally, we show that pre-processing the EEG recording, using a temporal ICA algorithm, facilitates not only the identification of the AEP peaks but also the source analysis procedure. From results obtained in this research and limited dataset of CI vs normal recordings, it is possible to conclude that the AEPs source locations change from the inferior temporal areas in the first 2 years after implantation to the superior temporal area after three years using the CIs, close to the locations obtained in normal hearing children. It is intended that the results of this research are used as an objective technique for a general evaluation of the performance of children with CIs

    Independent component analysis techniques and their performance evaluation for electroencephalography.

    Get PDF
    The ongoing electrical activity of the brain is known as the electroencephalogram (EEG). Evoked potentials (EPs) are voltage deviations in the EEG elicited in association with stimuli. EPs provide clinical information by allowing an insight into neurological processes. The amplitude of EPs is typically several times less than the background EEG. The background EEG has the effect of obscuring the EPs and therefore appropriate signal processing is required for their recovery. The EEG waveforms recorded from electrodes placed on the scalp contains the ongoing background EEG, EPs from various brain sources as well as signal components with sources external to the brain. An example of externally generated signal which is picked up by the electrodes on the scalp is the electrooculogram (EOG). This signal is generated by the eyes when eye movements or blinks are performed. Saccade-related EEG waveforms were recorded from 7 normal subjects. A signal source separation technique, namely the independent component analysis (ICA) algorithm of Bell and Sejnowski (hereafter refereed to as BS_ICA), was employed to analyse the recorded waveforms. The effectiveness of the BS_ICA algorithm as well as that of the ICA algorithm of Cardoso, was investigated for removing ocular artefact (OA) from the EEG. It was quantitavely demonstrated that both ICA algorithms were more effective than the conventional correlation-based techniques for removing the OA from the EEG.A novel iterative synchronised averaging method for EPs was devised. The method optimally synchronised the waveforms from successive trials with respect to the event of interest prior to averaging and thus preserved the features of the signals components that were time-locked to the event. The recorded EEG waveforms were analysed using BS_ICA and saccade-related components (frontal and occipital pre-saccadic potentials, and the lambda wave) were extracted and their scalp topographies were obtained. This initial study highlighted some limitations of the conventional ICA approach of Bell and Sejnowski for analysing saccade-related EEG waveforms.Novel techniques were devised in order to improve the performance of the ICA algorithm of Bell and Sejnowski for extracting the lambda wave EP component. One approach involved designing a template-model that represented the temporal characteristics of a lambda wave. Its incorporation into the BS_ICA algorithm improved the signal source separation ability of the algorithm for extracting the lambda wave from the EEG waveforms. The second approach increased the effective length of the recorded EEG traces prior to their processing by the BS_ICA algorithm. This involved abutting EEG traces from an appropriate number of successive trials (a trial was a set of waveforms recorded from 64 electrode locations in a experiment involving a saccade performance). It was quantitatively demonstrated that the process of abutting EEG waveforms was a valuable pre-processing operation for the ICA algorithm of Bell and Sejnowski when extracting the lambda wave.A Fuzzy logic method was implemented to identify BS_ICA-extracted single-trial saccade-related lambda waves. The method provided an effective means to automate the identification of the lambda waves extracted by BS_ICA. The approach correctly identified the single-trial lambda waves with an Accuracy of 97.4%

    On robust spatial filtering of EEG in nonstationary environments

    Full text link
    corecore