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Abstract

This thesis is about convolutive ICA with application to EEG. Two methods
for convolutive ICA are proposed.

One method, the CICAP algorithm, uses a linear predictor in order to formulate
the convolutive ICA problem in two steps: linear deconvolution followed by
instantaneous ICA.

The other method, the CICAAR algorithm, generalizes Infomax ICA to include
the case of convolutive mixing. One advantage to the CICAAR algorithm is that
Bayesian model selection is made possible, and in particular, it is possible to
select the optimal order of the filters in a convolutive mixing model. A protocol
for detecting the optimal dimensions is proposed, and verified in a simulated
data set.

The role of instantaneous ICA in context of EEG is described in physiological
terms, and in particular the nature of dipolar ICA components is described. It
is showed that instantaneous ICA components of EEG lacks independence when
time lags are taken into consideration. The CICAAR algorithm is shown to be
able to remove the delayed temporal dependencies in a subset of ICA compo-
nents, thus making the components “more independent”. A general recipe for
ICA analysis of EEG is proposed: first decompose the data using instantaneous
ICA, then select a physiologically interesting subspace, then remove the delayed
temporal dependencies among the instantaneous ICA components by using con-
volutive ICA. By Bayesian model selection, in a real world EEG data set, it is
shown that convolutive ICA is a better model for EEG than instantaneous ICA.






Resumé

Denne afhandling omhandler convolutive ICA med applikation indenfor EEG.
To metoder til convolutive ICA er beskrevet.

Den ene metode, CICAP metoden, benytter en lineser praediktor for at formulere
problemet i to skridt: lineser affoldning efterfulgt af instantan ICA.

Den anden metode, CICAAR metoden, generaliserer Infomax ICA til at omfatte
foldede miksturer. En fordel ved CICAAR metoden er at Bayesiansk model se-
lektion er mulig, og specielt er det muligt at veelge den optimale leengde af
filtrene i en foldende mikstur model. En protokol til at finde de optimale di-
mensioner er foreslaet, of verificeret i et simuleret dataseet.

Instantan ICA bliver belyst i forbindelse med EEG, og specielt med henblik
pa dipolare ICA komponenters opstaen af fysiologiske arsager. Det vises at
de instantane ICA komponenter ikke er uafheengige hvis man tager forsinkelser
i betragtning. Det viser sig at CICAAR metoden kan fjerne disse forsinkede
temporale athaengigheder i en delmaengde af de instantane ICA komponenter,
og saledes ggre komponenterne “mere uatheengige”. En generel opskrift pa ICA
analyse af EEG bliver foreslaet: forst dekomponeres data med instantan ICA,
dernaest vaelges en delmeengde af fysiologisk interessante komponenter, dernaest
fjernes de forsinkede afthaengigheder med convolutive ICA. Ved Bayesiansk model
selektion, i et segte EEG dataszet, bliver det vist at convolutive ICA er en bedre
model end instantan ICA.
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CHAPTER 1

Introduction

Electromagnetic activity from the human brain can be measured by sensitive
electrodes positioned on the skin surface of the human head. This measurement
technique is known as electroencephalography (EEG), and it opens the possi-
bility of studying ongoing dynamics in a working human brain without having
to open the skull that surrounds the brain. For instance, EEG is well known
for diagnostics of epilepsy, and for monitoring patients that suffer from epilep-
tic strokes. Other measurement techniques, as for instance functional Magnetic
Resonance Imaging (fMRI) and Positron Emission Tomography (PET), do not
require opening the skull either, but EEG has a very high temporal resolution
compared to these methods. Furthermore, hardware for EEG data acquisition
is cheap and easy to implement and the technique has thus achieved widespread
focus in both research and industry.

Historically, time-domain analysis of EEG has mainly been limited to averages of
many experimental repeats. However, progress in neurophysiology suggest that
brain dynamics are closely connected to dynamic reallocation of attention, to
memory related activity, and to self evaluation of consequences of actions. This
again suggests that an appropriate analysis of EEG must include separation of
independent brain components, and modelling of their dynamic interrelations.

Independent Component Analysis (ICA) is a method for separating signals that
occur in an observed mixture, and ICA has become a widespread technique for
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removing some of the artifacts that very often contaminate EEG. The reason
that ICA works well for this purpose is that the noise is mixed ‘instantaneously’
with the EEG. This means that there are no echoes or delays in the mixing,
and the mathematical model that underlies ICA can therefore be written on the
form of a simple General Linear Model. However, limitations of this simple form
imply that ICA can not be used to solve a significant classical problem, namely
“The Cocktail Party Problem” where sound signals are mixed in a reverberant
environment. In EEG there are no echoes as such in the mixture, but there
is potentially an interesting analogy from EEG to the Cocktail Party Problem
anyway: Different cortical areas might interact in a ‘reverberant’ way.

It turns out that ICA can be generalized to include so-called ‘convolutive mix-
tures’ and can potentially solve The Cocktail Party Problem. The form of ICA
that builds around the convolutive mixing model is known as ‘convolutive Inde-
pendent Component Analysis’ (convolutive ICA) and is the main focus of this
thesis. This thesis will present two original methods for convolutive ICA, and
explore the problem theoretically. Furthermore, effort will be put into testing
whether convolutive ICA is relevant in EEG.



CHAPTER 2

Convolutive Mixtures

A convolutive mixture model can be seen as a generalization of the General
Linear Model (GLM) in which the ‘source’ signals (the regressors) are filtered
before mixing in the data. The filtering is individual for each combination of
data dimension d € {1...D} and source dimension k € {1...K}, and a noise-
free D-dimensional convolutive mixture can thus be written as

L
Xt = Z ATSt—T (21)
T=1

where L is the order of the mixing filters, the L + 1 matrices {A,} are the time-
lagged ‘mixing matrices’, and the N source signal vectors s; are of dimension K.
When the number of data dimensions equals the number of sources, i.e. when
D = K, the mixture is ‘square’. When D > K the mixture is ‘overdetermined’.
When D < K the mixture is ‘underdetermined’.

This chapter deals with two fundamentally different situations where the mixing
matrices are sought estimated: 1) when the sources are known, and 2) when both
the mixing matrices and the sources are unknown.
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2.1 The multivariate Wiener Filter

If the sources are known, the mixing matrices of a convolutive mixture can be
estimated by least-squares estimation, i.e. solving

< XtStf)\T > = ZAT < SthStf)\T > (22)

T

for A, by matrix inversion. This is a generalization of the Wiener-Hopf equa-
tions (see e.g. [48]) for estimating the coefficients of a ‘Wiener filter’ to the
multivariate case. Thus, the ‘multivariate Wiener filter equation’ (2.2) is the
key to estimating the mixing matrices of a convolutive mixture when the sources
are known.

2.2 Convolutive ICA

The problem of identifying both the mixing matrices and the source signals
from the data, based on the assumption that the source signals are statistically
independent, is known as ‘convolutive Independent Component Analysis’ or
‘convolutive ICA’. One common application for convolutive ICA is the problem
of acoustic blind source separation (BSS) where sound sources have been mixed
in a reverberant environment and are sought separated. ‘Instantaneous’ ICA
is a special case of convolutive ICA where L = 0, i.e. not taking signal delays
and echoes into account. Hence, instantaneous ICA methods fail to produce
satisfactory results for the acoustic BSS problem which has thus been the focus
of much convolutive ICA research, see e.g. [29, 44, 2].

2.2.1 Identifiability

Generally in ICA, the ordering of the sources is arbitrary since any reordering
would simply imply the same reordering of the columns of each mixing ma-
trix. This ambiguity is known as the ‘permutation ambiguity’. Furthermore,
an arbitrary linear filter can be applied to any of the sources since the inverse
filtering applied to each of the mixing filters for that source would keep the
model consistent with the same data. This ambiguity is known as the ‘filter
ambiguity’.

Assuming a convolutive mixture, correlations in the data are summarized in this
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linear system
T T T
<xixXp oy >= Y A <si.s) > AL (2.3)
7,7’
For stationary sources, all source auto-correlation (and scaling) can be explained

by the mixing matrices (due to the filter ambiguity) and the sources can thus
be assumed temporally uncorrelated, i.e.

I for 7=7"+A
T
< St_7Sp_ 1y >= 24
T A {O otherwise (24)
Then
< XtXt,)\T >= Z AT/+AAI/ (25)

meaning that correlations in the data can be explained entirely by the mixing
matrices. But for any orthogonal matrix Q it holds that

<xxa' >=> A ,QQTAT (2.6)

T

and the mixing matrices can thus only be identified up to an arbitrary column
rotation. The conclusion is, for stationary sources, that convolutive ICA is not
to be solved using second order statistics only, see also [19, 24].

2.2.2 Invertibility

Formally, when the number of sources does not exceed the dimension of the
data, i.e. when K < D, perfect inversion of a convolutive mixture is obtained
through the autoregressive operator

L
st =AJ (xt - ZATét_T> ., K<D (2.7)
T=1

where AS‘ denotes Moore-Penrose inverse of Ag. This follows simply from elimi-
nating s; in (2.1). For D = K, (2.7) is the only perfect inverse of the convolutive
mixture, and the recursive structure of (2.7) illustrates an inherent problem in
convolutive ICA: — some convolutive mixtures are not invertible — i.e. the
sources can not be separated perfectly, as is the case when the recursive filter
(2.7) is unstable and D = K.

For the sake of stability, the use of IIR filters for unmixing has often been dis-
couraged in convolutive ICA research, see e.g. [29], and most previous methods
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for convolutive ICA have formulated the problem instead as one of identifying
a FIR unmixing model

Q
8t = Zw)\xt—)\ (2-8)
A=0

see e.g. [7, 29, 38, 3, 12, 44, 4, 8, 49, 56, 9, 50, 2]. Using such FIR model
for unmixing can ensure stable estimation of the sources but will not solve the
fundamental problem of perfect inversion of a linear system in cases in which it
is not invertible.

Invertibility of a linear system is related to the phase characteristic of the system
transfer function. A SISO (single input / single output) system is invertible if
and only if the complex zeros of its transfer function are all situated within
the unit circle. Such a system is characterized as 'minimum phase’ [48]. If the
system is not minimum phase, only an approximate, 'regularized’ inverse can
be sought, see e.g. [22] on techniques for regularizing a system with known
coefficients. For MIMO (multiple input / multiple output) systems, the matter
is more involved. The stability of (2.7), and hence the invertibility of (2.1), is
related to the eigenvalues A, of the matrix

—ATAL —ATA, ... —ATA,
I 0
. (2.9)
I 0

For K = D, a necessary and sufficient condition is that all eigenvalues \,, of
(2.9) are situated within the unit circle, |A,,| < 1 [39]. The 'minimum phase’
concept can thus be generalized to MIMO systems, where the eigenvalues of
(2.9) are the generalized ’poles’ of the transfer function of the inverse of the
MIMO system. A SISO system being minimum phase implies that no system
with the same frequency response can have a smaller phase shift and system
delay. Generalizing that concept to MIMO systems, it is possible to get a
feeling for what a generalized 'minimum phase’ MIMO system must look like.
In particular, most energy must occur at the beginning of each filter, and less
towards the end. However, not all SISO source-to-sensor paths in the MIMO
system need to be minimum phase for the MIMO system as a whole to be
generalized 'minimum phase’.
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2.2.3 FFT based methods

Convolution in time domain is equivalent to multiplication of Fourier transforms,
thus, the convolutive mixture can be written for each frequency f as

Xp = Ay (2.10)

where x;, Af, and Sy are Fourier transforms of x;, Ay, and s; respectively.
This suggests that convolutive ICA can be reduced to solving an instantaneous
ICA problem at each frequency. But, an individual permutation problem ap-
plies to every instantaneous ICA decomposition, i.e. the ordering of the sources
is individual for each frequency, hence reconstruction of the convolutive com-
ponents involves solving a massive cross-frequency permutation problem. For
non-stationary sources, second order statistics can be used to solving the massive
cross-frequency permutation problem as in e.g. [44, 2].
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CHAPTER 3

Algorithm |I: CICAAR

In this chapter a maximum likelihood algorithm for convolutive ICA is proposed.
The ‘CICAAR’ algorithm is a pure generalization of the Infomax ICA algorithm
(the Bell-Sejnowski algorithm [5]) to convolutive mixtures. Infomax ICA is
highly regarded in EEG analysis (see e.g. [32, 10]) and the generalization of
Infomax ICA to convolutive mixtures is a principled direction for investigating
the properties of convolutive ICA in EEG.

3.1 Likelihood for square mixing

The derivation of the likelihood for a square convolutive mixing model takes
departure in the following matrix product abbreviation of a general convolutive
mixing model:

XN A() A1 AL SN
XN—-1 Ao A1 AL SN—-1
= . : (3.1)
X1 Ay S1

where, from here on, the upper triangular block Toeplitz mixing matrix is de-
noted by T, the left column vector by x, and the right column vector by s. This
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representation allows the likelihood, assuming no noise, to be written

I({A.}) = /5(x —Ts)p(s)ds (3.2)

which evaluates to
I{A;}) = [det T| ' p(T~'x) (3.3)

c.f. section M.2. The determinant of an upper block triangular matrix equals
the product of the determinants for each block on the diagonal [40], hence

[({A+}) = |det Ag| " p(T™'x) (3.4)

By assuming the source signals to be i.i.d., the likelihood is now written

I({A+}) = |det Ao ™™ [ p(80) (3.5)

t=1

where §; is the estimate of source vector s; from matrix inversion of T. The
inverse of T can be written on operator form as a multivariate AR(L) process

L
ét = Aal (Xt - Z ATét_7—> (36)
T=1

which follows simply by eliminating s; in (2.1). One important property of (3.6)
is that it is presented in terms of the model parameters, i.e. the A,’s. The
cost-function of the CICAAR algorithm, the negative log likelihood, can thus
be written in terms of the mixing model parameters

N

—logl({A;}) = Nlog|det Ao| — > logp(s,) (3.7)
t=1

Thus, the cost-function is calculated by first unmixing the sources using (3.6),
then measuring (3.7). It is clear that this cost-function reduces to that of stan-
dard Infomax ICA [5] when the order L of the convolutive model is set to zero;
in that case (3.7) can be estimated using §; = Ay 'x;.

Other authors have proposed the use of IIR filters for separating convolutive
mixtures using the maximum likelihood principle. The CICAAR cost-function
(3.7) generalizes that of [57] to allow separation of more than only two sources.
Furthermore, the auto-regressive inverse (3.6) used in the CICAAR cost-function
bears interesting resemblance to that of [7, 6]. Though put in different analytical
terms, the inverses used there are equivalent to the CICAAR inverse. However,
the unique CICAAR expression (3.6), and its remarkable analytical simplicity,
is the key to learning the parameters of the mizing model (2.1) directly.
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3.1.1 Automatic handling of instability

As described in section 2.2.2, an IIR unmixing process can potentially become
unstable. Since (3.6) is IIR, instability must be controlled somehow. Fortu-
nately, the maximum likelihood approach has a built-in regularization that
avoids the problem. This can be seen in the likelihood equation (3.5) by noting
that although an unstable IIR filter will lead to a divergent source estimate, S;,
such large amplitude signals are exponentially penalized under most reasonable
source probability density functions (pdf’s), e.g. for EEG data p(s) = sech(s)/m,
ensuring that unstable solutions are avoided in the evolved solution. Therefore,
it may prove safe to use an unconstrained iterative learning scheme to unmix
e.g. EEG data. Once the unmixing process has been stably initialized, each
learning step will produce model refinements that are stable in the sense of
equation (3.6). Even if the system (2.1) is not invertible, meaning no exact
stable inverse exists, the maximum-likelihood approach will give a regularized
and stable generalized minimum phase solution c.f. section 2.2.2.

3.1.2 Computing the gradient

The tradition with Infomax ICA is to optimize the cost-function w.r.t. to the
parameters of the unmixing matrix see e.g. [31, 47]. The CICAAR algorithm
follows this tradition by optimizing w.r.t. the parameters of the unmixing sys-
tem, i.e. the elements of Aal and the elements of A,. Optimization is gradient
based, and the gradient of the cost-function is now presented in two parts. Part
one reveals the partial derivatives of the source estimates while part two uses
the result from part one to compute the gradient of the cost function.

Part one — Partial derivatives of the unmixed source estimates

The partial derivatives which shall be used in part two are given by

a(ét)k o . L A~ —1 L aé25—7'
AT, 5(i— k) (xt ;ATSt_T) - (AO ;ATa(Agl)i)k (3.8)

J

-1 a -1 z 0847
m = —(Ag ri(8t—r); — (AO Z Ar’a(AT)i])k (3.9)

T/=1
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Source 1 -> Sensor 1 Source 2 -> Sensor 1

1 r T g r g
M, e
-1 ud 1 1 1 ud 1 1 1
1 Source 1 -> Sensor 2 Source 2 -> Sensor 2
o MLl
L‘_UJJ pENEy

—1 L Il Il 1 L Il Il 1

0 10 20 300 10 20 30

Filter lags Filter lags

Figure 3.1: Convolutive mixing model of order L = 30 for producing a square
mixture two sources. This system is well-posed, meaning that the eigenvalues
of (2.9) are situated within the unit circle and hence exact inversion is possible
through (3.6).

Part two — Gradient of the cost function

The gradient of the cost function with respect to Ay 1is given by

0 —logl({A-})

A(A ), (3.10)

N
08¢
=-NA" )i =) ¥ ———
tzzl 8(A0 l)ij
where (¥: )k = p'( (8¢)r )/p( (8)r ) = —tanh( (8;)x ). The gradient with
respect to the other mixing matrices is

N

d—logl({A}) o 08
TaA, Y oA, 311

These expressions allow use of general gradient optimization methods. Refer to
section T.2 for implementation details.

3.1.3 Example — Joint deconvolution and unmixing

Two sources of length N = 30000 are drawn i.i.d. from a Laplace distribu-
tion. For visualization purposes the signals are raised to the power of two while
preserving the sign. They are then mixed through the square system shown in
figure 3.1. The system is well-posed, meaning that perfect inversion is possible
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Source scatter Source scatter Source scatter Source scatter Source scatter

Cost function

0 50 100 150 200 250 300 350 400
Iterations

Figure 3.2: Cost function optimization. The scatter plots illustrate the progress
of joint deconvolution and unmixing. In the early iterations, the cost function
decreases a lot due to the fact that a simple re-scaling of the data will fit the
prior much better. Later, deconvolution is responsible for the refinements that
produce the star-shape in the scatter plots, and jointly, the refinements align
the star-shape along the axes thus unmixing the sources.
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as the eigenvalues of (2.9) are situated within the unit circle. Figure 3.2 shows
how minimization of the cost function yields joint deconvolution and unmixing.
Deconvolution is responsible for producing the star shape in the source scatter
plots, and the signals are unmixed by aligning the star shape along the axes.

3.1.4 Modelling auto-correlated sources

The assumption in the likelihood, that source signals are i.i.d., is fundamentally
okay for stationary sources since source auto-correlations can be modelled by
the mixing model, c.f. the filter ambiguity in section 2.2.1. However, a more
economic representation in terms of the number of parameters can be obtained
by introducing a model for each of the sources

M
se(t) = he(N)ar(t — A) (3.12)
A=0

where zj(t) represents an i.i.d. signal—a whitened version of the source signal.
This allows a reduction of the value of L, i.e. lowering the number of param-
eters in the mixing model while still modelling the same amount of temporal
dependencies in the data. Note that some authors of FIR unmixing methods
have also used source models, e.g. [46, 45, 3].

The negative log likelihood of the model combining (2.1) and (3.12) is given for
the square case

N
—logl({A;}, {he(\)}) = Nlog| det Ag| + N > log|hk(0)] — Y log p(z)
k t=1

(3.13)
where z; is a vector of whitened source signal estimates at time ¢t using the AR
operator

M
Z(t) = (Sk(t) =D h(N)E(t - /\)> /P (0) (3.14)
A=1

which is the inverse of (3.12). Without loss of generality the first coefficient
in the filters can be set hi(0) = 1, allowing the negative log likelihood to be
written

N
—logI({A}, {hx(\)}) = Nlog|det Ag| — Y " log p(2) (3.15)

where

M
2(t) = (ék(t) =) h(N)2k(t - A)) (3.16)
A=1
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The number of parameters in this model is D?(L + 1) + DM, thus if L can be
reduced by increasing M instead, a more economic representation is obtained.

3.1.5 Computing the gradient

For notational convenience introduce the following matrix notation instead of
(3.16), handling all sources in one matrix equation

24 =8 — Z H)2; (3.17)

where the H)’s are diagonal matrices defined by (Hy):; = hi ().

In the following, the algorithm equations are split into three parts; ‘part A’ and
‘part C’ are in principle identical to the equations of part one and part two
found in section 3.1.2, but with a new ‘part B’. If M is set to zero part B does
nothing, z; equals s; and the algorithm reduces to the plain square CICAAR
without a source model.

Part A — Partial derivatives of the unmixed source estimates

The partial derivatives which shall be used in part B are given by

0Bk _ 51 [ o) (s as”
m—él (t ZA-rtr>j ( ZA )U>k (3~18)

. L ~
Y (Aal > A a%iﬁ%)k 319

Part B — Partial derivatives of the whitened source estimates

The partial derivatives which shall be used in part C are given by

()1 (80 A )i
oAy O(AG Y ZHAa (A1), (3.20)
@)k _ 0Bk i/[: HAM G
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(2t _ 5'Zt N\
OHz)i —otk=1) <Z HA’ >k (3.22)

A=1
The work involved in part B is minimal due to the diagonal structure of the H)
matrices.

Part C — Gradient of the cost-function

The gradient of the cost-function (3.15), using the result in part B, is given by

0 —logl 8zt
-2 = i P T — (3.23)
a(‘AO 1)ij Z ' )zg
0 — 1ogl T 8zt
A, Zzl)t » (3.24)
a— logl 3zt
a H)\ i Z¢t m (325)

where (¥¢)r = p'((2¢)x)/ P((2t)k)-

3.1.6 Example — The optimal model structure

Two source signals are generated by taking two synthetic i.i.d. signals and
filtering each of them using the respective filters shown on figure 3.3(a). This
generates two independent and auto-correlated signals, and these are then mixed
using the square system with L = 10 shown on figure 3.3(b). The generating
model has thus (L, M) = (10, 15).

First note that the generating model is in itself ambiguous; an arbitrary filter can
be applied to a source model filter if the inverse of the arbitrary filter is applied
to the respective column of mixing filters. Therefore, to compare results visually,
each system of arbitrary dimension (L, M) must be visualized by its equivalent
‘mixing only’ system which has the dimensions (Leq, Meq) = (L + M,0). The
equivalent system is found by convolving the source model filters with each of
the filters in the corresponding column in the mixing model.

Figure 3.4 displays such equivalent mixing systems, i.e. where each mixing filter
has been convolved with the respective source model filter. Figure 3.4(a) shows



3.1 Likelihood for square mixing 17
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(a) Source model filters, M = 15.
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0 il 1,
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(b) Convolutive mixing system, L = 10.

Figure 3.3: Filters for generating synthetic data. First, two i.i.d. signals are
filtered through their respective filters shown in (a). Both filters are minimum-
phase meaning that they can be perfectly inverted by (3.17). Then, the filtered
signals are mixed using a distinct filter for each source-sensor path shown in (b).
The mixing system shown in (b) is well-posed meaning that (3.6) is stable.
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(a) Generating model (L, M) = (10, 15)
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(b) Estimated by the algorithm (L, M) = (10, 15)
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(c) Estimated by algorithm (L, M) = (5, 20)

Figure 3.4: Mixing filters convolved with respective source model filters. (a)
for the generating model. (b) for an estimated model with the ’true’ L and M.
Clearly, the algorithm has succesfully identified the situation. (c) for the Bayes
optimal model with (L, M) = (5,20). This is a more economic representation
than the generating model, still it clearly resembles the true situation to great
accuracy.
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Figure 3.5: The BIC for various combinations of L and M. The true generating
model was (L, M) = (10, 15), but here (L, M) = (5,20) is found optimal. The
optimal model has fewer parameters than the true model, still it resembles the
response of the true model as is illustrated in figure 3.4.

the equivalent for the true generating model shown in figure 3.3; Figure 3.4(b)
shows the equivalent for a run with the algorithm using N = 300000 training
samples and using the (L, M) of the generating model. The result is perfect
up to sign and scaling ICA ambiguities; Figure 3.4(c) shows the equivalent
for a run with the algorithm using N = 100000 and the Bayes optimal choice
of (L, M) = (5,20) which is found by monitoring Bayes Information Criterion
(BIC, [54]), see figure 3.5 and refer to appendix B for a description of BIC in the
context of the CICAAR algorithm. In the finite data, BIC has found a model
with an equivalent transfer function that resembles that of the generating model
(compare figure 3.4(a) with figure 3.4(c)), but using fewer parameters than in
the generating model.

This finding is further underlined by studying learning curves, i.e. how does the
training set dimension NV influence learning. The likelihood evaluated on a test
set is used to measure the learning of different models. Three models are now
up for comparison; one which is the generating model (L, M) = (10,15), one
(L, M) = (25,0) which is more complex but fully capable of imitating the first
model, and (L, M) = (5,20) which is the BIC optimal choice. Figure 3.6 shows
learning curves of the three models, the test set is Niest = 300000 samples. The
uniform improvements in generalization of the ‘optimal model’ further under-
lines the importance of model selection in the context of convolutive mixing.
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Figure 3.6: Learning curves for three models: The generating model (L, M) =
(10, 15), a model with (L, M) = (25,0) which is more complex but fully capable
of ‘imitating’ the first model, and the model (L, M) = (5,20) which was found
Bayes optimal according to BIC. The generalization error is estimated as the
likelihood of a test set (Niest = 300000). The uniform improvements in gen-
eralization of the ‘optimal model’ further underlines the importance of model
selection in the context of convolutive mixing.

3.2 Protocol for selecting L and M

A simple protocol is now proposed for determining the dimensions (L, M) of
the mixing model and source model. First, expand the mixing model L while
keeping M = 0, and find the optimal L by monitoring BIC. This will model the
total temporal dependency structure of the system. From here on the optimal
L is termed Ly, .x. Next, expand the order M of the source model while keeping
L 4+ M = Lyay; finding the optimal (L, M) by monitoring BIC. This will move
as much correlation as possible from the mixing model to the source model.

3.2.1 Example — Detecting a convolutive mixture

This example is designed to illustrate the protocol, and to illustrate the impor-
tance of the source model when dealing with the following fundamental question:
'Is there evidence in the data for using convolutive ICA instead of instantaneous
ICA?’. Detecting the order of L holds the answer to that question. In the frame-
work of Bayesian model selection, models that are immoderately complex are
penalized by the Occam factor, and will therefore only be chosen if there is
a relevant need for their complexity. However, this compelling feature can be
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disrupted if fundamental assumptions are violated, and the analyst must be
extra careful when claiming an answer to a question like the above. One such
assumption is involved in the derivation of the likelihood without the source
model. The problem is that the likelihood will favor models based not only
on achieved independence but on source whiteness as well. A model selection
scheme for L which does not take the source auto-correlations into account will
therefore be biased upwards because models with a larger value for L can absorb
more source auto-correlation than models with lower L values. The cure to this
problem is to invoke the source auto-correlation model of section 3.1.4.

An instantaneous mixture is now produced by mixing the two auto-correlated
sources from section 3.1.6 with a random matrix. The data thus holds correla-
tions, but the mixing model is instantaneous and there should be no evidence
for using convolutive ICA instead of instantaneous ICA.

First step in the protocol is to keep M = 0. Figure 3.7(a) shows the result of
using Bayesian model selection without the source model (M = 0). Since the
signals are auto-correlated, the model BIC simply increases as function of L up
to the maximum which is attained at a value of L.« = 15.

The next step in the protocol is to invoke the source model, increasing M while
keeping L + M = 15 fixed. Figure 3.7(b) shows that lower L are preferable
(because the models has fewer parameters while still explaining the same amount
of temporal dependencies in the data). Thus, thanks to the source model,
the correct answer is obtained: L should be zero — ’there is no evidence of
convolutive ICA’!

3.3 Likelihood for overdetermined mixing

The likelihood has yet only been derived for square mixing. However, the overde-
termined case, where the number of sources is strictly less than the number of
sensors (K < D), is often relevant in practice. For instance, current EEG
experiments typically involve simultaneous recording from 30 to 100 or more
electrodes, forming a high (D) dimensional signal. After signal separation the
hope could be to find a relatively small number (K) of independent components.
In line with the square CICAAR which was derived for K = D, this section de-
scribes the ‘rectangular’ CICAAR which is derived for overdetermined mixing.
In the following derivation of the likelihood, it is assumed that the number of
convolutive source processes does not exceed the dimension of the data, i.e.
K <D.
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Figure 3.7: (a) the result of using Bayesian model selection without allowing for
a filter (M = 0). Since the signals are auto-correlated L is detected at a value
of L =15. (b) fix L+ M = 15, and now get the correct answer: L = 0 — "There
is no evidence of convolutive ICA’ !
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Assuming independent and identically distributed (i.i.d.) sources and no noise,
the likelihood for the model (2.1) is

N
(A = [+ [ T8t ptsnds, (3.26)
t=1
where
L
€ = Xt — Z A,,—Stfr (327)
7=0
and d(e;) is the Dirac delta function.

First, note that only the N’th term under the product operator in (3.26) is a
function of sy. Hence, the sy-integral may be evaluated first, using (M.7) it
yields

N—-1
(A = AT A [ [oen) [T Slenpisods (328)

where the remaining integrals are over all sources except sy, and

L sp, forn < N
ét = AS_ (Xt — E A.,-ut_7-> , Uy = { " (329)
T=1

S, forn> N

Now, as before, only one of the factors under the product operator in (3.28) is
a function of sy_;. Hence, the sy_1-integral can now be evaluated, yielding

N-2
1((A) = A0 A0 " [+ [ psw)p-0) [] deoplsds:  (330)

where the remaining integrals are over all sources except sy and sy_1, and

L spforn< N —1
& =AT | x; — Arw_, | ,u, =" 3.31
' O<t ; ! ) {énfornZN—l ( )
By induction, and assuming s,, is zero for n < 1, the result is finally
N
I({A-}) = A" Aol T p(30) (3.32)
t=1

where .
s =A7 (xt - ZAT§H> (3.33)
T=1

Thus, the likelihood is calculated by first unmixing the sources using (3.33),
then measuring (3.32).
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3.3.1 Computing the gradient

The gradient of the cost-function is presented here in two parts. Part one reveals
the gradient of the source estimates while part two uses the result of part one
to compute the gradient of the negative log likelihood. Differentiation w.r.t. a
Moore-Penrose inverse matrix is described in appendix M.

Part one — Partial derivatives of the unmixed source estimates
The partial derivatives which shall be used in part two are given by
a(ét)k + 8St T
m 5 Z — Xt — Z A-,—St T ' A Z A A+ ) (334)
L

8?53))1; = —(AD)ki(Br—r); — (AJ > AT/(f(i:;;j)k (3.35)

/=1

Part two — Gradient of the cost-function
The gradient of the negative log likelihood with respect to A{ is given by

0—logl({A;}) 084
Tk O v

where ( ¥: )i = D'( (8t)r )/ p( (8¢)r ). The gradient with respect to the other
mixing matrices is

0— 1ogl{A} T 3St
5(A-); Z*” Ay (337)

3.3.2 The null-space problem

Even though the above derivation is valid for the overdetermined case (D >
K), the validity of the zero-noise assumption proves vital in this case. The
explanation for this can be seen in the definitions of the likelihood (3.32) and
unmixing filter (3.33):
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- In (3.32), note that rotation in the columnspace of Ay will not influence the
determinant term of the likelihood. From (3.33) note that the estimated
source vectors §; are found by linear mapping through Ag :RP — RF.
Hence, the source-prior term in (3.32) alone will be responsible for deter-
mining a rotation of Ay that “hides” as much variance as possible in the
null-space (RP~%) of AJ in (3.33). In an unconstrained optimization
scheme, this side-effect will be untamed and consequently will hide data
variance in the null-space of A(J{ and achieve an artificially high likelihood
while relaxing the effort to make the sources independent.

3.4 Practical propositions for overdetermined con-
volutive ICA

It has just been argued that the rectangular CICAAR suffers from the null-space
problem. Three ways of avoiding the null-space problem is now proposed:

1. (Residual cost term) Add a term to the cost function so that the model is
punished for not explaining the data.

2. (‘Augmented’ configuration) Perform the decomposition with K set to D,
i.e. attempting to estimate some extra sources.

3. (‘Diminished’ configuration) Perform the decomposition with D set to K,
i.e. on a K-dimensional subspace projection of the data.

The first proposition, adding a residual cost term, would involve even more
calculus. That trail stops here. The other two propositions, the augmented
and diminished configurations, are more appealing because they are simple and
practical approaches that use the square CICAAR. They will be described in
the following.

3.4.1 Augmented configuration CICAAR

One solution to the null-space problem could be to parameterize the null-space
of AS’ , or equivalently the orthogonal complement space of Ag. This can be seen
as a special case of the algorithm in which Ay is D-by-D and A, is D-by-K.
With the D — K additional columns of Ay denoted by B, the model can be
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written

L
x; = Bv, + Z Arsi_, (3.38)
=0

where v; and B constitute a low-rank approximation to the noise. The prior
p-d.f. on v; must be chosen so that large variances in that subspace become
improbable. Here the proposed p.d.f. is a Gaussian. Note that (3.38) is a
special case of the square convolutive mixing model. In this case, attempt to
estimate the extra instantaneous noise sources in addition to the convolutive
sources. The implementation is thus a special case of the square CICAAR, but
with D — K sources being instantaneous.

3.4.2 Diminished configuration CICAAR

An even simpler procedure is to project the data down to K dimensions and
then use the regular square case CICAAR on the projection. This will extract
K sources, and the overdetermined model can be obtained afterwards by solving
the multivariate Wiener filter equation (2.2).

3.4.3 Example — Extracting fewer sources than sensors

In this example the performance of the rectangular CICAAR (suffering from
the null-space problem), the augmented, and the diminished configurations are
investigated as a function of signal-to-noise ratio (SNR). First, two synthetic
iid. source signals s1(t) and s2(t) (with 1 < ¢ < N and N = 30000) were
generated from a Laplace distribution, sx(t) ~ p(z) = 3 exp(—|z|) with vari-
ance var{sy(t)} = 2. These signals were then mixed using the filters of length
L = 30 shown in figure 3.8 producing an overdetermined mixture (D = 3,

K = 2). A 3D iid. Gaussian noise signal n, was added to the mixture

X; = ong + Zf:o A.s,_; with a controlled variance ¢?. In the following,

the rectangular, augmented, and diminished configurations are compared by
how well they estimate the two sources by measuring the correlations between
each true source signal, si(t), and the best-correlated estimated source, $x(t).
Figure 3.9 shows how well the sources were estimated at different SNR levels
(SNR = 2/05?).

Rectangular. All three data channels were decomposed using the rectangular
CICAAR and the two true sources estimated. As shown in figure 3.9, the
quality of the estimation using this configuration was the worst one out of the
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Figure 3.8: An overdetermined mixing system. This system is well-posed, mean-
ing that the eigenvalues of (2.9) are situated within the unit circle and hence an
exact and stable inverse exists in the sense of (3.33).

three configurations. But even though the rectangular CICAAR gives the worst
source estimates, it has the highest (best) likelihood as is illustrated in figure
3.10. The figure compares the likelihood for the rectangular and augmented
configurations since these two are given the exact same data as input.

Augmented. Figure 3.9 shows how well the sources were estimated using this
configuration for different SNR levels. For the best estimated source (figure 3.9-
A), the augmented configuration gave better estimates than the rectangular or
diminished configurations. This was also the case for the second source (figure
3.9-B) at low SNR, but not at high SNR since in this case the ‘true’ B of (3.38)
was near zero which is improbable under the likelihood. But, in the presence of
considerable noise, the best separation was obtained by augmenting the model
and extracting, from the D-dimensional mixture, K sources as well as a (rank
D — K) approximation of the noise.

Diminished. To investigate the possibility of extracting the two sources from
a two-dimensional projection of the data, the third ’sensor’ was simply removed
from the decomposition. Figure 3.9 shows that in the presence of considerable
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Figure 3.10: The rectangular CICAAR achieves an artificially high likelihood
due to the null-space problem.
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noise, the separation achieved was not as good as in the augmented configura-
tion. However, the diminished configuration used the lowest number of param-
eters and hence had the lowest computational complexity, while the separation
it achieved was close to that of the augmented configuration. At very high
SNR, the diminished configuration was even slightly better than the augmented
configuration.
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CHAPTER 4

Algorithm Il: CICAP

This chapter describes the CICAP algorithm for convolutive ICA. The deriva-
tion uses an approximation allowing the problem to be reduced to simple blind
deconvolution based on second-order statistics followed by a linear mapping
which can be identified using instantaneous ICA.

4.1 Linear prediction

The derivation takes its departure in assuming the existence of a multi-lag linear
predictor of the form

M

Xepr = Weaxex +€(7) (4.1)
A=0

where Wy are the prediction parameter matrices and €;(7) is the prediction
error at prediction horizon 7. Now, in place of x; substitute the convolutive
model (2.1) to get

L M L
Z AT’St-i-T—T’ - ZWT,X Z AT/St—T/—>\ + et(T) (42)
A=0

T/=0 /=0
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Now the second-order statistics come into play; multiply by s from right and
average assuming that the sources are temporally uncorrelated, i.e

T —
o o= [y s
Then (4.2) yields
A, <sisf >= W, oAy < sisp > + < €(1)sy > (4.4)
Assuming that all sources have non-vanishing variance
A, =W, Ag+ < €(1)sf ><ssf >7! (4.5)

which elegantly expresses the relationship between mixing matrices and linear
predictors. Inserting (4.5) into the convolutive mixing equation (2.1) yields

L
X = Z (WT,OAo—i— < Et(T)S;f >< ststT >_1) St (4.6)
=0

Thus, the problem has been reduced to identifying the zero-lag mixing matrix
Ay, and the source variances, and the correlation sequences between prediction
errors and sources. Further note that Wy o = I and €;(0) = 0, hence

L
X; = A()St + Z (WT70A0+ < Gt(T)Srtr >< StS;F >71) S¢t—r (47)
T=1

4.2 Prediction error approximation

The ‘prediction error approximation’ is now invoked,
< €(T)sf >= 0 (4.8)
see also figure 4.2. Now, (4.6) can be rewritten

L L
Xt = ZWT,OAOSth = ZWT,Outfr (49)

7=0 7=0

i.e. a convolutive mixture of the u;’s with known mixing matrices. Solving (4.9)
for u; yields a classical MIMO (multiple input multiple output) deconvolution
problem. As in the CICAAR, by eliminating u; in (4.9) the ‘naive’ deconvolution
filter is obtained, i.e.

L
i = Agse = Wo g <xt — ZWT,Oﬁ”> (4.10)

T=1
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which can potentially become unstable. A suggestion for regularized deconvo-
lution with the Conjugate Gradients Least Squares algorithm (see e.g. [55, 22])
is given in the implementation which is described in section 4.3. Anyhow, as-
suming that @ is obtained by the MIMO deconvolution, the problem is now
reduced to an instantaneous ICA problem since

lit = A()St (411)
thus the zero-lag mixing matrix Ay can be estimated using an appropriate al-
gorithm for that sort of problem.

Finally — with the prediction error approximation — (4.5) can be rewritten
A =W_ oAy (4.12)

suggesting that the remaining mixing matrices could be generated from the
zero-lag mixing matrix using the linear predictor. In section 4.3, however, an
alternative method is put forth because of practical reasons which will be men-
tioned there.

4.3 Implementation

This section describes the steps to convolutive ICA with the CICAP algorithm
in more detail.

4.3.1 Step 1 — Estimating the linear predictor

The prediction matrices are estimated using least-squares, i.e. solving
M
< Xt_;,_-,—XtT_(; >= ZW7—7)\ < Xt_)\X’tr_é > (413)
A=0

for VVT, A by matrix inversion. The linear system is not huge and can be solved
using a direct method such as the Matlab ‘backslash’ operator. The correlation
matrices in (4.13) are measured respecting data epoch boundaries.

4.3.2 Step 2 — Regularized deconvolution

Solving (4.9) for 0 is equivalent to solving the potentially huge linear system

x =Tu (4.14)
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where x is a stacked column vector of observations x; and u is a stacked column
vector of righthand-side vectors u; and

Woo Wio ... Wppo

Woo Wio ... Wiy
T - _ (4.15)

Wi

)

which is in likely to be ill-posed, meaning that an exact solution is impossible
to obtain in practice, as the norm of the solution diverges, see e.g. [22].

The problem of solving ill-posed inverse problems can be approached by opti-
mization of the lagrangian function (see e.g. [18, 22])

min | Tu — x|3 + Alul3 (4.16)
the normal equation formulation of this problem is
(TTT 4+ AD)u =T x (4.17)

and the solution to that problem is known as the ‘Tikhonov’ regularized solu-
tion. Since the system is probably huge, an iterative method for solving it is
chosen. The Tikhonov solution can in principle be obtained through the Singular
Value Decomposition (SVD) [22], and recent progress in the field of huge SVD’s
suggests that the problem could be solved using an off-the-shelve toolbox such
as [23]. However, at the time of implementation another method was chosen,
namely the Conjugate Gradients Least Squares (CGLS) algorithm for solving
linear systems in the least squares sense. The CGLS, with early stopping, has
regularization properties similar to Tikhnov regularization [22].

CGLS with early stopping

Translated from [22] and [55] to the present context, the CGLS algorithm for
deconvolution is implemented like this:

1. Initialize

(a) Initial guess u(® =0
(b) The residual vector for the least squares problem r(® = x—Tu(® = x

(¢) The residual for the normal equations d(®) = TTr(®)

2. Iterate, k denotes iteration number.
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k= ITTeED 3/ Td* )3

Q

u) = ul=1 4 g d*-D

o = HTT D3/ T3

)

)
(c) r®) = =1 _ o, Td*-D
(d) 5

) d®) = TTr®) 1 g 0D

3. Stop when the number of iterations k exceeds some maximum Kkyax, O
when the residual drops below a certain threshold, [[r()||o < &[|r(® |5 [55].

In each iteration two matrix-vector products are performed; one matrix-vector
product is Td*~1 which is performed by the forward sweeping filter

(Td*—V Z W, od\" Y (4.18)

and the other matrix-vector product is TTr(*) which is performed by the reverse
sweeping filter

)e = ZWTOrHT (4.19)

The CGLS algorithm is thus easily implemented but perhaps less easy to un-
derstand. Refer to [55] for a good introduction. A short intuitive explanation of
the CGLS is: It uses multiplication with TT and T, then updates the estimated
solution in each iteration. The larger eigenvalues of T are thus mainly con-
tributing to the solution in the early iterations, while the smaller eigenvalues
need more iterations for their contribution to take effect in the solution. By
limiting the number of iterations (early stopping) the solution is thus mainly
flavored by the larger eigenvalues of T, thus the stopping threshold £ (see the
CGLS above) effectively works as a regularization parameter.

4.3.3 Step 3 — Instantaneous ICA

In this step, the source signals are extracted from an instantaneous mixture.
Choosing an algorithm for doing so involves the typical considerations about
source kurtosis etc. Here, the Infomax algorithm [5] is chosen in the context of
EEG, see also [32].
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4.3.4 Step 4 — Re-estimating the mixing matrices

Since 0 in general has to be is estimated using regularization, the generator
equation (4.12) is not valid in practice. Instead, the mixing matrices can be
estimated by solving the multivariate Wiener filter equation (2.2).

4.4 Example — Extracting two stationary sources
from a well-posed mixture

The CICAP algorithm is now illustrated on a synthetic mixture of two source
signals. FEach source signal is generated by first drawing a signal of length
N = 30000 i.i.d. from a Laplace distribution with variance 2, then raising each
sample to the power of three. The source signals are then mixed using the
square system shown on figure 4.1(a) generating the 2D mixture which is now
subject to analysis with the CICAP algorithm.

The linear predictor matrices are then estimated as described above. To inves-
tigate the validity of the prediction error approximation, the prediction error is
measured for every 7

M

Et(T) = X1 — Z WT’)\Xt,)\ (420)
A=0

and then the relative prediction error

_ Y aln)eln)

Zivﬂ XX

As expected, the relative prediction error increases as a function of the predic-
tion horizon 7 as shown on figure 4.2. The correlation coefficient between the
prediction error in one data channel and one of the sources is shown along with
the prediction error in figure 4.2. The coefficient stays bounded as the predic-
tion error increases, suggesting that the prediction error is uncorrelated with
the sources. Thus, in this case the prediction error approximation turned out
to be valid.

e(7)

(4.21)

The next step in the CICAP algorithm is to deconvolve the data using CGLS.
The regularization parameter was set to £ = 0.01 and CGLS converged in 42
iterations. A scatter plot of the data channels and the deconvolved data is
shown on figure 4.3(a) and figure 4.3(b) respectively.
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(a) True mixing system. This system is well-posed, meaning that the
eigenvalues of (2.9) are situated within the unit circle and hence exact
inversion is possible through (3.6).

'Source 1’ -> Sensor 1 'Source 2’ -> Sensor 1

°| 7 mm
0 me C =
5t i
'Source 1' -> Sensor 2 'Source 2’ -> Sensor 2
5 i
mwmwm :
5t i

0 10 20 30 0 10 20 30
Filter lags Filter lags

(b) estimated mixing system

Figure 4.1: CICAP estimation of the mixing system. The estimate is perfect up
to scaling and permutation.
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Figure 4.2: Validating the prediction error approximation. The correlation
coefficient between the prediction error in one data channel and one of the
sources is shown along with the prediction error. The relative prediction error
increases as a function of prediction horizon 7, but the error/source correlation
stays bounded. This suggests that the prediction error is uncorrelated with the
sources, thus, in this case the prediction error approximation turned out to be
valid.

The next step is to use ICA to estimate a linear mapping of the deconvolved data
which will generate the independent sources. A scatter plot of the estimated
sources is shown in figure 4.3(c).

Finally, the mixing matrices are estimated using the method described in section
4.3.4 and the result is shown in figure 4.1(b) which is very similar to the true
mixing system except for a scaling/permutation.
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(a) scatter plot of the data channels

(b) scatter plot of the deconvolved data

(c) scatter plot of the unmixed sources

Figure 4.3: The CICAP algorithm solves the problem by deconvolution (a) —
(b); Then unmixing is achieved by Infomax ICA (b) — (c).
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CHAPTER 5

Comparative evaluation of
algorithms

Comparison of algorithms for convolutive ICA is a research topic with many
challenging aspects in itself. Most research in this field has addressed the acous-
tic problem of separating sound sources in a reverberant environment. In acous-
tic situations, the aim is typically to extract source signals from the mixture such
that the extracted signals do not interfere with each other in the audible sense.
Different interference measures has been proposed and typically these measures
involve benchmark data sets including the ‘true’ sources for comparison, see e.g.
[53, 1, 58].

The algorithm evaluations that are about to be made in this chapter are not
about optimal separation of speech and music sources from data. To separate
sources perfectly from acoustic data would require the model order to be so
large that entire room reverberations could be explained by the model. The
purpose of this chapter is instead to give a fair treatment of some fundamen-
tal properties of the CICAAR and CICAP algorithms. These will be high-
lighted in mutual contrast, and in contrast to another algorithm namely the
algorithm proposed by Lucas Parra and Clay Spence in [44]. The ‘Parra’ al-
gorithm represents a state-of-the-art algorithm for acoustic blind source sepa-
ration, and in the remainder of this chapter it is chosen as representative for
FFT based algorithms with FIR unmixing in general. The implementation of
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the Parra algorithm was kindly provided by Stefan Harmeling and is available
at http://ida.first.gmd.de/ harmeli/download/download_convbss.html

5.1 Non-stationary audio

The Parra algorithm is known to work efficiently with acoustic data including
speech sources. Therefore the first choice of data for the purpose of algorithm
comparison is this:

- A 16kHz signal recorded indoor by two microphones. The two sound
sources in the room was a male speaker counting from one to ten and a
loud music source respectively. The microphones and the sources were
located in the corners of a square. The signal is kindly provided by Dr.
T-W. Lee, and is identical to the one used in [29].

The true sources are unknown, thus other means must be used to assessing the
quality of separation. ..

5.1.1 A quality measure for unknown sources

The goal in convolutive ICA is (now stating it simply...) to decompose the data
into sources while removing temporal dependencies between the sources up to
lags of order L. The separation achieved in a convolutive ICA decomposition can
therefore be assessed by measuring the temporal dependencies between sources
up to lags of order L. A necessary (but not sufficient) condition for temporal
independence up to lags of order L is uncorrelatedness up to lags of order L.

Define the ‘crosstalk of prediction order R matrix’

var §!

R
(Cr)ij = where &(t) = Zuﬁ’jéj(t -7) (5.1)
7=0

al
var 8%

where {7} are estimated by solving the univariate case of the Wiener filter
equation (2.2), i.e. minimizing

{17} = argmin [ () — 5i(0) |2 (5.2)

Uncorrelatedness of the sources up to lags of order L would imply the crosstalk
of prediction order R = L matrix being the identity. The crosstalk matrix is
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related to the statistics of Granger causality tests, see e.g. [19]. The ‘crosstalk’
measure is now defined as the maximal off-diagonal element in the crosstalk
matrix, i.e.
Crosstalkp = mj?{(CR)ij (5.3)
7]

The crosstalk says how much variance of one source can be explained linearly
from the history of order R of another source — the maximal value over exclusive
combinations of sources. Thus for any convolutive ICA decomposition, if the
order (L) of the model is known, the quality of achieved separation can be
assessed from the separated sources directly. A necessary condition for perfect
separation in a convolutive mixture is the crosstalk of order R = L being zero.
For the non-stationary audio data used here, the crosstalk measure can thus be
used for metering the performance of the CICAAR, the CICAP, and the Parra
algorithms.

5.1.2 Assessing the implicit model order

On the other hand, the convolutive model order (L) is not always defined. For
instance, the Parra algorithm defines the order (Q) of the unmixing FIR, system
instead. As a first step to assessing the implicit model order given some data
and a set of separated sources, the convolutive model is estimated by solving the
multivariate Wiener filter equation (2.2) for some L. To check that the order L
of the multivariate Wiener filter is large enough, the residual of data channel d
is measured

L
ra(t) = za(t) = Y Y (A-)ardi(t —7) (5.4)
=0 k
where x4(t) is the data in channel d, §x(t) is estimated source number k. Finally

the ‘leftovers’ measure is hereby defined as the largest relative channel residual,
for the model of order L

var rq

Leftoversy, = max (5.5)

var xq

Thus, estimating the implicit convolutive model for a given set of separated
sources involves estimation of the mixing matrices using the multivariate Wiener
filter equation (2.2), and checking of the model order by measuring the leftovers.

5.1.3 Evaluating CICAAR for L =50

The CICAAR algorithm was applied to the data using L = 50. There are
no other tunable parameters for the CICAAR algorithm. The resulting source
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crosstalk and leftovers was
e Crosstalkso = 1.7% @ Leftoverssg = 0%

meaning that 1.7% of the variance of one source could be explained by the
history of order 50 from the other source. For the square CICAAR algorithm
the leftovers is always zero meaning that the sources and the model explain the
data with zero residual.

5.1.4 Evaluating CICAP for L = 50

The CICAP algorithm was applied to the data using L = 50. For the CICAP
algorithm there is another parameter that needs to be addressed here:

& — the regularization parameter, the higher the more regularization.

Figure 5.1(a) shows the leftovers that was measured for various values of &.
If ¢ is large (e.g. close to 1), it means that the CICAP algorithm is extremely
regularized, and the figure shows how the solution did not explain the data when
the algorithm was too regularized. Figure 5.1(b) shows the crosstalk for various
values of €. Clearly, regularization was necessary as can be seen from the steep
rise in the crosstalk for low values of ¢ (little regularization). At £ = 0.00046
the values

e Crosstalksg = 10.2% @ Leftoverssy = 0.02%

seemed to be optimal with the lowest crosstalk while explaining the data to
great accuracy.

5.1.5 Evaluating Parra for L ~ 50

The model order is undefined for the Parra algorithm. Other tunable parameters
to be addressed in this experiment were

T — the length of the FFT.



5.1 Non-stationary audio 45

5, ‘
CICAP L=50 —&—
-~ 4 1
S
o 3 1
¢
g 2 ]
s
1 o
o A
0.1 0.01 0.001 0.0001
3
(a)
60

Crosstalk (%)

0.1 0.01 0.001 0.0001

(b)

Figure 5.1: Evaluation of the CICAP algorithm at various values of the reg-
ularization parameter &; (a) Too much regularization results in a large model
residual; (b) Too little regularization results in an increased crosstalk.
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Figure 5.2: Crosstalk and leftovers of the Parra algorithm, for different combi-
nations of FFT length 7" and FIR unmixing order Q.

) — the order of the FIR unmixing system.

The maximum number of iterations was set so high that the effective stopping
criterion was machine precision convergence in the cost function of the algo-
rithm. Figure 5.2(a) shows the crosstalk measure assuming an implicit model
order of L = 50 and for different combinations of FFT length 7" and FIR un-
mixing order Q). Figure 5.2(b) shows the leftovers correspondingly. The best
separation (lowest crosstalk) was obtained with T'= 1024 and @ = 250 obtain-
ing

e Crosstalksg =1.3% @ Leftoverssg = 5.3%
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Figure 5.3: True mixing filters. This system is well-posed, meaning that the
eigenvalues of (2.9) are situated within the unit circle and hence exact inversion
is possible through (3.6).

However, the high leftovers value indicates that the implicit model order does
not fit within the assumed model order of L = 50. The implicit model order
of the algorithm in this instance must be somewhat larger than L = 50, thus
comparison with the CICAAR and CICAP algorithms (for L = 50) would be
unfair. Instead, a threshold value is now set for what is an acceptable leftovers;
models with a higher leftovers than that is then rejected on the basis of not
sticking to the assumed model order (L). Here, the threshold is arbitrarily set
to 1%; then the best instance of the Parra algorithm was with T = 4096 and
@ = 150 obtaining

e Crosstalksg = 2.0% @ Leftoverssg = 0.78%

5.2 Stationary white noise mixture

A mixture of stationary sources is now generated. Two sources are drawn i.i.d.
from a Laplace distribution and mixed through the system shown on figure 5.3.
The mixing system is well-posed.
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Figure 5.4: Estimated by the CICAAR algorithm. The CICAAR algorithm
estimated the convolutive model with great accuracy.

5.2.1 Evaluating CICAAR, CICAP, Parra

The CICAAR algorithm estimated the convolutive model with great accuracy,
see figure 5.4.

The CICAP algorithm estimated the convolutive model with great accuracy,
see figure 5.5. The regularization parameter was set to a very small value of
& = 0.0001 because the mixture was known to be well-posed.

The Parra algorithm failed to estimate the convolutive model, as could be ex-
pected due to its assumption that sources are non-stationary (as is the case for
speech signals). Combinations of T and @ were tried on a grid of every combina-
tion of @ € [50, 100, 150, 200, 250] and T € [128, 256,512, 1024, 2048, 4096]. The
maximum number of iterations was set so high that the effective stopping cri-
terion was machine precision convergence in the cost function of the algorithm.
An estimate is shown for 7" = 256 and @ = 100 in figure 5.6. The estimate
shown there is typical for the experiment, and is effectively equivalent to a unit
matrix mixing system.

5.3 Summary

The evaluations in this chapter was about removing temporal dependencies up
to lags of an order L. To summarize the evaluation. . .
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Figure 5.5: Estimated by the CICAP algorithm. The CICAP algorithm esti-
mated the convolutive model with great accuracy, see figure 5.5. The regulariza-
tion parameter was set to a very small value of £ = 0.0001 because the mixture
was known to be well-posed.
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Figure 5.6: Estimated by the Parra algorithm. The estimate is shown for T" =
256 and @ = 100, but many combinations of 7" and ) were tried. The estimate
shown here is typical for the experiment, and is effectively equivalent to a unit
matrix mixing system.
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CICAAR In both non-stationary and stationary data, the CICAAR algorithm
performed well without tuning any parameters.

CICAP In the stationary data, the performance of the CICAP algorithm was
close to that of the CICAAR. In the non-stationary data however, the CI-
CAP algorithm was inferior. The reason can be that the linear predictors
are contaminated to some degree by the non-stationary correlations in the
signal, and thus tampering with the algorithm in the deconvolution step.

Parra In the non-stationary data, the performance of the Parra algorithm was
close to that of the CICAAR algorithm. Comparison was made possible by
assessing the model order (L) though a measure of model data residual. In
the stationary data, the Parra algorithm failed to produce a useful result.



CHAPTER 6

EEG physiology and ICA

This chapter defines what EEG is and deals with what is currently understood
about ICA in EEG — not the complete reference, but a foundation for later
chapters. The physiological statements made herein are based on [27, 28] (refer
for further reading about EEG and physiology). Features of EEG that are
relevant to understanding ICA decomposition of EEG are addressed here.

Figure 6.2, figure 6.3 and figure 6.4(a) were produced using the EEGLAB tool-
box for Matlab, see [10], with the DIPFIT plug-in for dipole fitting and visual-
ization by Robert Oostenveld, see also [52].

6.1 Dipoles — The physiological basis of EEG

Most neurons in the surface of the brain (Cerebral Cortex) are 'pyramidal cells’.
A pyramidal cell has a body (the soma) and a single long nerve fiber (the axon)
extending away from the body. The axon conducts electrical communication to
and from the soma. When a cell receives ’excitatory stimulation’ from other
cells and reaches a certain threshold, the cell undergoes depolarization creating
an ’action potential’. The action potential causes a flow of positively charged
ions along the axon and generates a dipole with orientation along the axon as
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Figure 6.1: Each pyramidal cell generates an electromagnetic dipole when it
fires. The activity of many cells firing in synchrony can reach the electrode.

illustrated in figure 6.1(a). The electroencephalogram (EEG) is the recording of
brain activity using electrodes on the scalp. However, the potential generated
by a single neuron is not strong enough to be picked up by an extra-cranial
electrode. Instead, EEG electrodes can pick up potentials generated by larger
groups of neurons firing in synchrony as illustrated in figure 6.1(b). On a local
scale in Cerebral Cortex, pyramidal cells are very well aligned and highly con-
nected, and the necessary synchrony is often in place. This makes it possible to
pick up brain activity with EEG.

Cerebral Cortex is highly wrinkled with ridges (gurus) and fissure (sulcus).
Therefore, a dipole can have any orientation relative to the scalp depending on
where it sits in the brain and on whether it sits in a gyrus or in a sulcus. The
topography of the voltage potentials generated by a dipole which is perpendicu-
lar to the scalp surface is unipolar, and the topography for a dipole which is not
perpendicular to the scalp surface is in general bipolar. Figure 6.2 illustrates
these two different dipole situations. In figure 6.2(a) a dipole is situated in a
sulcus, and its orientation is parallel to the local scalp surface. The resulting
topography is shown in figure 6.2(b). In figure 6.2(c) another dipole is situated
on a gyrus, and its orientation is perpendicular to the local scalp surface. The
resulting topography is shown in figure 6.2(d).

6.1.1 Topographic convention

EEG is recorded using a finite number of electrodes. Figure 6.3 shows the indi-
vidual positioning of 124 electrodes projected onto a cartoon head. Electrodes
positioned ’below equator’ on the real head are drawn outside the cartoon head.
For visualization, scalp topography values are interpolated from the measure-
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(a) Dipole near the left side of the skull. (b) Scalp topography for the
dipole in (a).

(c) Dipole situated in the back of the head. The orientation (d) Scalp topography for per-
is perpendicular to the skull. pendicular dipole in (c).

Figure 6.2: Two situations where a dipole is close to the skull. The local orien-
tation of the dipole makes a big difference in the local scalp topography of the
dipole.

(a) electrode positions  (b) electrode positions and (c) interpolated topogra-
interpolated topography phy

Figure 6.3: Placement of 124 electrodes on the scalp and visualization of inter-
polated topography. Electrodes positioned 'below equator’ are drawn outside
the cartoon head.
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ments of surrounding electrodes. Brighter pixels represent higher numerical
values than dimmer pixels.

In practice the EEG measurement readouts are relative to some electrical refer-
ence. Electromagnetic interference from the surrounding world is minimized by
choosing a reference which is close to the EEG electrodes and also kept spatially
fixed with the EEG electrodes. In a typical recording setup, all EEG electrodes
share a common reference which could for instance be securely attached to an
earlobe on the subject. EEG topographies are sensitive to the choice of elec-
trical reference but can be re-referenced to another electrode, or to a group
of electrodes, by linear mapping of the obtained recording. Several reference
systems has been invented, but for the remainder of this thesis the choice of
reference will be the ’average reference’ which is the instant average potential
of all electrodes. The reason for this choice is that the topographic response
of a dipole will be fairly non-sensitive to its spatial orientation relative to the
electrical reference.

6.2 Instantaneous ICA — A physiologically mea-
ningful basis for EEG

Denote by D the number of electrodes, and by x; the D-dimensional vector of
electrode potentials measured at time t.

First assume a simplistic world. In this world there is a number of dipoles
inside the brain which constitute brain activity, a number of dipoles outside the
brain constituting noise interference, and no other electromagnetic activity in
this world. All dipoles are spatially fixed. Since the generated potentials from
different dipoles are linearly and instantly added in the electrodes, the following
linear model is valid

Xt = G}’t (61)

where y; is a K-dimensional vector representing the amplitude of each dipole at
time ¢, and G is a D-by-K matrix where each column represents the topography
of its respective dipole configuration. In this world, assuming that the number
of dipoles K does not exceed the number of electrodes D, it would be possible to
isolate the contribution of each dipole to the electrodes by inverting G. Thus, if
the dipoles acted independently, Independent Component Analysis (ICA) would
be a valid technique for estimating G in this simplistic world.

In practice it turns out that the dipoles act independently to some extend. As
mentioned in section 6.1 dipolar activity is due to the high connectedness on a
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EEG

(a) (b)

Figure 6.4: A bimodal dipolar ICA component. (a) spatial projection; (b) func-
tional explanation: A implies B and C so that B and C are somewhat synchro-
nized. To some extend B and C act together as a bimodal dipole configuration,
which has been learned by ICA.

local scale in the Cerebral Cortex. On a longer scale however, dipoles are more
loosely connected, and with significant communication delays. The implication
is that ICA decomposition of EEG most often includes a number of components
having ‘dipolar’ spatial projections to the sensors, see e.g. [36, 35, 26, 11, 33, 43].
In fact, the topographies shown in figure 6.2(b) and figure 6.2(d) were found by
running ICA on an EEG data set'. These components are ‘unimodal’ dipolar
components, and the dipole configurations in figure 6.2(a) and figure 6.2(c) were
actually found by fitting a single dipole to the topographic maps, see [52, 60, 61].

Occasionally, components can exhibit ‘bimodal’ dipolar spatial projection. E.g.
the spatial projection shown in figure 6.4(a) must be explained by (at least) two
dipoles. The explanation for this must be that two dipoles at different locations
in the brain act partially in synchrony as illustrated in figure 6.4(b) where the
functional abstracts ‘B’ and ‘C’ are both responding to ‘A’ and act in synchrony.

6.2.1 Removing interferences by projection

The use of ICA for identifying and removing interference activity in EEG has
been widely studied since the work of Makeig et al. in 1996 [32]. The work then
was based on the standard Infomax ICA algorithm (from 1995 [5]) for sources
with positive kurtosis, and Infomax ICA has turned out to be an effective tool
for removing e.g. eye-blink interferences from EEG. This is simply done by
removing artifact components from the ICA decomposition, hence obtaining a

IThe data set was a 126 electrode recording during a pain experiment which was conducted
at Center for Sensory-Motor Interaction, Aalborg University, Denmark.
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projection of the data which is then clean from the artifacts. Other interferences
such as 50Hz line noise with negative kurtosis can similarly be removed by using
an ‘extended ICA’ algorithm which is again the Infomax ICA algorithm but
allowing for sources with negative kurtosis [25, 30, 26].

6.2.2 Incurable artifacts

In the real world, electrodes come off, the electrode-to-skin impedance varies
over time, or the subject wiggles his ears. The point is that (6.1) often breaks
down in practice. In order to obtain a clean and useful ICA decomposition,
epochs of data with such incurable artifacts are typically rejected from the data
before ICA. Epoch rejection is typically performed by visual inspection of the
data time series, or by simple automatic heuristics based on e.g. short time
power, see e.g. [11].



CHAPTER 7

Convolutive ICA in EEG

In chapter 6 it was discussed how ICA works as a tool for finding a physiologi-
cally meaningful basis for EEG, i.e. finding independent components (ICs) with
dipolar spatial projections. This chapter deals with the use of convolutive ICA
on a subspace of such dipolar ICs in order to make them temporally indepen-
dent up to lags of order L. Figure 7.1 illustrates that idea: The EEG data are
decomposed into a mixing matrix (A'°A) and ‘activations’ (the IC time series);
A subspace is then chosen by picking out a few of the ICs, and the activations
belonging to that subspace are then subject to convolutive ICA decomposition.

A key finding will is put forth in this chapter: It is shown that convolutive ICA
is relevant for EEG. This finding is based on Bayesian model selection in a real
EEG data set, and further elaborated by analysis of a convolutive decomposition
in both time- and frequency domain.

7.1 Case study

The data set for this case study was 20 minutes of a 71-channel human EEG
recording. The data set was obtained from the Schwartz Center for Computa-
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Figure 7.1: The idea of applying convolutive ICA to an ICA subspace of EEG
data. The EEG data are decomposed into a mixing matrix (A'°A) and acti-
vations. A subspace is then chosen by picking out a few of the ICs, and the
activations belonging to that subspace are then subject to convolutive ICA de-
composition. Resulting from the convolutive ICA decomposition are CCs, i.e.
the estimated mixing filters {A,} and the innovations.

tional Neuroscience!, University of California, San Diego, USA. The electrode
locations were digitized and their locations were as shown in figure 7.2. The
subject was working on a ‘letter two-back with feedback’ memory task:

- Letters (A, B or C) were presented to the subject with a constant rate of
two letters per three seconds. Each time a letter was presented, the task
was to know whether that letter was the same as the letter that preceded
the preceding letter (two-back). The subject would press a button to
indicate his solution. If the answer was wrong, auditory feedback was
given — a buzz — and the subject would then know that an error had
been made. The feedback was given at a fixed latency of one second
relative to the presented letter.

20 epochs were recorded, each of a duration of one minute, the sampling rate
was 250Hz.

7.1.1 An ICA subspace

The recording was decomposed using extended Infomax ICA (see [25, 30, 26],
c.f. section 6.2.1) into 71 independent components, i.e. assuming the model

x; = ATOAgIOA (7.1)

For numeric convenience the data was (low-pass filtered and) downsampled to

Ihttp://sccn.ucsd.edu/



7.1 Case study 59

“12, ]
15, 14-15+16"17 415" 1°

.23
24 Lon Lpg <27 -28 wpg *30

=33 .34 435 »35 *37 38 «30 #40

=43 +d44 *45 vd45 e47 +45 =40 agq

«54"55 56 57 +58 «
v5554 57 +58 «50,

50
G4 W3R y

Figure 7.2: The 71 electrodes were digitized, their locations were as shown here.

50Hz sampling rate after filtering between 1 and 250 Hz using a 0.2Hz transition
band FIR filter with zero phase shift.

Five of the resulting independent components (ICs) were selected for further
analysis. These components were chosen because they showed event-related
activity following the subject button presses [34]. Their scalp maps (from the
relevant five columns of A'®4) are shown on the left margin of figure 7.3. The
five ERP-images? right next to the scalp maps in figure 7.3 are ERP-images of
the ICA activations. The vertical line indicates when the feedback occurs in
each trial, and the sigmoid curve indicates the latency of the button press. All
trials have been sorted by the button press latency. Clearly, the activations for
the five chosen ICs show activity following the button press, but the response
is different between the five I1Cs.

The crosstalk matrix® of order R = 0 for the five ICs is shown in figure 7.4. The
off-diagonal elements were very small, as expected, because the activations had
been made maximally independent by the Infomax ICA algorithm. However,
there were delayed temporal dependencies between the activations; this was
evident from the crosstalk matrix of order R = 10, shown in figure 7.5, where
some of the off diagonal elements were significantly larger than those in figure
74.

2See section E.2 for a description of ERP-images.
3See section 5.1.1 for the definition of the crosstalk matrix.
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Figure 7.3: Erp images for the IC activations (on the left margin, towards this
caption), for the CC innovations (top margin), and for the CC contributions
to the IC activations (lower right 5 x 5). The scalp maps for the five ICs are
shown along on the left margin. The color map scaling is individual for each
ERP image. The vertical line indicates when the feedback occurs in each trial,
and the sigmoid curve indicates the latency of the button press. All trials have
been sorted by the button press latency.



7.1 Case study 61

100%
100%
100%
100%

100%

0% 0% 0% 0_%.

Figure 7.4: Crosstalk matrix of order R = 0, measured from the ICA activations.
The squares have areas proportional to the respective crosstalk matrix elements.
The percentage written above the squares have been rounded. The off-diagonal
elements were very small, as expected, because the activations had been made
maximally independent by the Infomax ICA algorithm.
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Figure 7.5: Crosstalk matrix of order R = 10, measured from the ICA activa-
tions. The squares have areas proportional to the respective crosstalk matrix
elements. The percentage written above the squares have been rounded. Here
some of the off diagonal elements were significantly larger than zero indicating
that there were temporal dependencies between the activations when lags up to
order R = 10 were considered.
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7.1.2 Detecting the optimal convolutive model

To investigate whether convolutive ICA was relevant for the delayed temporal
dependencies, convolutive ICA decomposition was applied to the five component
activation time series, i.e. assuming the model

L
sioh = ALsPoM (7.2)
7=0

As described in section 3.2 a convolutive mixture can be detected using the
CICAAR algorithm with the following protocol:

- First, increasing the order of the convolutive model L (keeping M = 0)
while monitoring the BIC. To produce error bars, jackknife resampling
was used [17]; i.e. for each value of L, 20 runs with the algorithm were
performed, one for each jackknifed epoch, thus the data in each run con-
sisted of the 19 remaining epochs. Figure 7.6A shows the jackknifed BIC.
Clearly, the BIC was at least Ly,,x = 40, meaning that some correlations
in the data extended to at least 800 ms.

- Next, the range of possible source model filters was swept, i.e. values
of M while keeping L + M = 40. Figure 7.6B shows that the optimal
convolutive model order L was significantly larger than zero, and hence
convolutive ICA was indeed relevant. The optimal jackknifed BIC was
(L, M) = (10, 30).

This is indeed a key result — it can be concluded that convolutive ICA is relevant
for EEG, and the temporal dependencies between the different activations are
mainly to be modelled up to 10 lags (~ 200ms).

7.1.3 Exploring the optimal model, (L, M) = (10, 30)

The innovations were estimated using the AR inverse (3.6). Figure 7.7 shows the
resulting percent of variance of the contributions from each of the innovations to
each of the activations. Before plotting, the order of the five CCs was arranged
so that the diagonal elements in the shown matrix were dominant. As the large
diagonal contributions in figure 7.7 show, each CC dominated one IC. However,
there were clearly significant off-diagonal contributions as well, indicating that
each CC had captured some interaction between the ICs. Figure 7.8 shows the
5 x 5 matrix of learned convolutive mixing filters. The dominant diagonal filters
are shown in one-third scale in figure 7.8.
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Figure 7.6: Jackknife estimated BIC for convolutive ICA, and jackknifed er-
rorbars. (A) Clearly, the BIC was at least Lj,.x = 40, meaning that some
correlations in the data extended to at least 800 ms. (B) The optimal convo-
lutive model order L was significantly larger than zero, and hence convolutive
ICA was indeed relevant. The optimal jackknifed BIC was (L, M) = (10, 30).

Figure 7.9 shows the crosstalk matrix of order R = 10 for the innovations. The
vanishing off-diagonal elements indicate that the convolutive ICA model of order
L = 10 has successfully removed temporal dependencies up to order 10 between
the innovations. This can be compared directly to the crosstalk matrix of order
R = 10 measured for instantaneous ICA in figure 7.5; clearly convolutive ICA
has successfully removed some temporal dependencies that were present in the
activations to begin with. This finding was further elaborated. Figure 7.10
shows the crosstalk? for various prediction orders R for the IC activations and
for the CC innovations. As expected from the previous results, as the prediction
order R increased, the crosstalk of the instantaneous IC activations increased.
E.g. for one of the IC activations, 9% of the variance could be explained by
linear prediction from the previous 10 time points (200 ms) of another IC. For
the CC innovations, however, the crosstalk in figure 7.10 remained low as the
prediction order increased, indicating that convolutive ICA in fact deconvolved
delayed correlations present in the EEG subspace data. For prediction orders
greater than R = 10, the crosstalk for the CC innovations also increased because
the convolutive model with L = 10 had only removed temporal dependencies
up to order 10.

The five ERP-images on the top margin of figure 7.3 are made from the five CC
innovations. The 5 x 5 matrix of ERP-images in the lower right area of figure

4See section 5.1.1 for the definition of crosstalk.
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Figure 7.7: Percent variance of the IC activations accounted for by the five

derived CCs through the learned convolutive model.

The IC scalp maps on

the left are shown for interest. Contributions arranged on the diagonal are
dominant. Squares represent the (rounded) percent variance of the IC activation
time series accounted for by each CC through the convolutive model. Significant
off-diagonal elements indicate that each CCs describes some interaction between

the IC activations.
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Figure 7.8: Convolutive mixing filters. Learned by convolutive ICA using the
CICAAR algorithm (L, M) = (10, 30). The dominant diagonal filters are shown
in one-third scale.
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Figure 7.9: Crosstalk matrix of order R = 10 measured for the innovations. The
squares have areas proportional to the respective crosstalk matrix elements. The
percentage written above the squares have been rounded. Clearly convolutive
ICA has successfully removed some temporal dependencies that were present in
the activations to begin with (compare to figure 7.5).
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Figure 7.10: Crosstalk for different prediction orders. The crosstalk was mea-
sured for instantaneous ICA activations and for convolutive ICA innovations.
As the prediction order R increased, the crosstalk of the instantaneous IC ac-
tivations increased. E.g. for one of the activations, 9% of the variance could
be explained by linear prediction from the previous 10 time points (200 ms) of
another IC. For the innovations, however, the crosstalk remained low as the pre-
diction order increased, indicating that convolutive ICA had in fact unmixed the
delayed temporal dependencies present between the activations. For prediction
orders greater than R = 10, the crosstalk for the convolutive ICA innovations
also increased because the convolutive model with L = 10 had only removed
temporal dependencies up to order 10.
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7.3 are made from the CC contributions to each IC through the model. Note
how each individual CC has a different contribution to the different ICs.

Frequency domain

Figure 7.11 shows the power spectral contributions of the most contributing
CCs to the five ICs. The most contributing CCs are found in accordance with
figure 7.7. Note that the broad alpha® band spectral peak in IC1 (uppermost
panel in figure 7.11) around 10Hz has been split between CC1 and CC3. In the
middle panel, note the distinct spectral contributions of CC1 and CC3 to the
double alpha peak in the IC3 spectrum. In line with the time domain analysis,
the CCs made different spectral contributions to the ICs. For example, CC1
made different power spectral density contributions to IC1, IC3 and ICA4.

Figure 7.12 shows the power spectra for the five innovations; clearly, the inno-
vations had distinct non-white power spectra. The color of each innovation was
mainly due to the source model as can be seen from whitening the innovations
by using the AR inverse of the source color model, i.e. (3.16); the whitened in-
novation power spectra are shown in figure 7.13. From figure 7.13 it seems that
the source model order (M = 30) was not completely enough to model the long
autocorrelations (low frequencies) in the innovations. This finding stems with
the fact that the BIC in figure 7.6A had not yet peaked at L + M = 40. So, the
model order of L+ M = 40 was not enough to model all temporal dependencies
in the data. However, this was not the point of introducing the source model.
The point was to be able to detect a convolutive mizture, and the finding that
convolutive ICA was relevant instead of instantaneous ICA still remains.

5See section E.1 for spectral properties of EEG.
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Figure 7.11: Spectral contributions (in thin traces) of the most contributing
CCs to the five ICs (in bold traces), in accordance with figure 7.7. The broad
alpha band spectral peak in IC1 (uppermost panel) around 10Hz has been split
between CC1 and CC3. Similarly, in the middle panel, there are distinct spectral
contributions of CC1 and CC3 to the double alpha peak in the IC3 spectrum.
Note also how CC1 made different power spectral density contributions to IC1,

IC3 and IC4.
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Figure 7.12: Power spectra for the five innovations. They are clearly non-white.
The color of each innovation was mainly due to the source model as can be seen
from the whitened innovations whose power spectra are shown in figure 7.13.
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Figure 7.13: Power spectra for the five whitened innovations. It seems that the
source model order (M = 30) was not completely enough to model the long
autocorrelations (low frequencies) in the innovations.



CHAPTER 8

Conclusion

This thesis was about convolutive ICA, and about investigating whether convo-
lutive ICA would be a relevant model for EEG.

Two original methods for convolutive ICA were proposed, namely the CICAAR
and the CICAP algorithms.

The CICAP algorithm assumed the existence of a linear predictor in order to
formulate the convolutive ICA problem in two steps: linear deconvolution fol-
lowed by instantaneous ICA. The derivation of the algorithm gave great insight
into the nature of the convolutive ICA problem, but the CICAP algorithm had
problems in a test situation with non-stationary data. A possible explanation
for this deficiency was that the linear predictor, which was estimated from the
data, was under the influence of non-stationary correlations in the data. Thus,
the CICAP algorithm was disrupted in the deconvolution step where an inverted
form of the linear predictor was to be applied to the data.

The CICAAR algorithm was based on a derivation of the likelihood function,
involving a multivariate auto-regressive inverse filter which was kept stable by a
density declaration on the sources. The algorithm was a direct generalization of
Infomax ICA to include the case of convolutive mixing, and hence was a natural
choice for investigating the outcome of convolutive ICA decomposition of EEG
data in contrast to Infomax ICA decomposition. The likelihood function was
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also derived for the overdetermined case, but it turned out that the algorithm
then suffered from the null-space problem. Two practical cures to the null-
space problem were investigated, namely the augmented and the diminished
approaches (both utilized the square case of the CICAAR), and they turned
out to be practically valid.

One advantage to the CICAAR algorithm was that Bayesian model selection
was possible, and in particular, it was possible to select the optimal order of
the filters in the convolutive mixing model. To be able to reject convolution
correctly in favor for instantaneous ICA instead, a FIR model for the source
auto-correlations was introduced in the CICAAR algorithm. A protocol for de-
tecting the optimal dimensions of the model was proposed, and it was shown
by simulation that the protocol successfully rejected convolution in an instan-
taneous mixture.

The role of instantaneous ICA in context of EEG was described in physiological
terms, and in particular the nature of dipolar ICA components was described.
A proposed measure, the crosstalk measure (which was related to measures of
Granger causality), showed that the instantaneous ICA components lacked in-
dependence when time lags were taken into consideration. It was shown that
the CICAAR algorithm could be used to remove the delayed temporal depen-
dencies in a subset of ICA components, thus making the components “more
independent”. A general recipe for ICA analysis of EEG was proposed: first
decompose the data using instantaneous ICA, then select a physiologically in-
teresting subspace, then remove the delayed temporal dependencies among the
instantaneous ICA components by using convolutive ICA. This recipe turned
out computationally feasible with the CICAAR algorithm while yielding results
that were easy to interpret. Finally, by careful Bayesian model selection it was
shown that convolutive ICA was a better model for EEG than instantaneous
ICA.



APPENDIX B

Bayes Information Criterion

(BIC)

Let M represent a specific choice of model. The Bayes Information Criterion
(BIC) is given by [54]

dimé

log p(M|data) ~ log p(data|y, M)— log N (B.1)

where dim @ represents the number of parameters in the model, 8y are the max-
imum likelihood parameters, N is the number of samples in the data set.

The number of parameters for different configurations of the CICAAR algorithm
is outlined in the following table

CICAAR configuration ‘ dim @
Square D*(L+1)+ DM
Overdetermined (Augmented) D?+ DK.L+ DM

Overdetermined (Diminished) | K2(L + 1) + KM + dimpca

where K. is the number of convolutive components, and dimpca is the number
of parameters used when PCA is used for the projection, (dimpca is given in
[20]).
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Bayes Information Criterion (BIC)




APPENDIX E

EEG primer and event-related
transforms

E.1 Spectral properties of EEG

Historically, much EEG research has been presented in terms of signal power
at empirical frequency bands. Figure E.1 shows a typical power spectrum of an
EEG channel recording. The peak at 50Hz comes from electromagnetic ’line-

Power Spectral Density (dB/Hz)

10 50 60

20 30 40
Frequency (Hz)

Figure E.1: A typical EEG powerspectrum.
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Figure E.2: The ERP image is a nice way to display ERP variability while
enhancing structure. In this image, averaging was performed in bins of 10 trials
which gives a structure-enhancing smoothing effect.

noise’ and is not of any interest. Most of the brain-related power lies below
30Hz. The peak at 8Hz is in the so-called ’Alpha’ frequency band. The Alpha
band expands from about 8Hz to about 12Hz and is characteristic of a relaxed
and alert state of consciousness. Other frequency bands, which are important in
the mapping of EEG and mind, have been identified empirically. Their precise
frequencies might vary slightly from presentation to presentation, but to name
a few: "Delta’ (0 to 4Hz), "Theta’ (4Hz to 8Hz), ’Alpha’ (8Hz to 12Hz), 'Beta’
(12Hz to 30Hz), 'Gamma’ (30Hz to 80Hz).

E.2 The ERP image

One property that makes EEG attractive is its temporal resolution which is very
high compared to other brain imaging techniques such as functional Magnetic
Resonance Imaging (fMRI). EEG can potentially tell us precisely when some-
thing happened in the brain. EEG activity from cognitive processing which is
directly related to a certain event is called the 'Event Related Potential’ (ERP).
The amplitude of the ERP is in general so small, compared to the ongoing EEG
and noise, that the tradition has been to analyze the ERP by aligning and aver-
aging many trials. Noise and other activity, which is random with respect to the
event, will be attenuated by the averaging while the reproducible activity will
be enhanced in the average ERP. However, the problem with averaging is that
brain activity which does not reproduce itself exactly the same way in each trial,
so-called ’induced’ activity, will disappear or be distorted by the averaging.

Makeig et al. [37] has proposed the 'ERP image’ which generalizes the simple
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ERP averaging. A pixel, say at position (x,y) in an ERP image, is the signal
intensity of trial x at time-latency y relative to the beginning of the trial. The
structure in the image is enhanced further by vertical smoothing, i.e. binning
of the trials and averaging within the bins. Figure E.2(a) shows an ERP image
and the associated average ERP. The activity is clearly variant from trial to
trial, and the average ERP is a rough summary of this activity. A particularly
useful feature of the ERP image is that it can potentially reveal some interplay
between the event used for aligning and another event. An example of this is
seen in figure E.2(b) where the trials have been sorted according to the timing
of another event and the sigmoidal curve displays the timing of that other event.

E.3 Coherence

A simple measure for the interrelation between cortical areas is obtained by
measuring the cross correlation between signals from relevantly sited electrodes.
The areas of interest might interact with a typical delay, and furthermore, a
better measure should not be affected by the variance of the signals. Hence the
cross-correlation function coefficient

Cay(T) = Aay(T)// var(x)var(y) (E.1)

is the natural choice, where 7y, (7) =< z(¢)y(t — 7) > is the cross correlation
function between signals x(t) and y(t). As certain frequencies in the EEG seem
to have certain functional relevance another measure, namely ’coherence’, is
popular in EEG analysis (see e.g. [42, 59]). Coherence is defined by

Cay(f) = |Gy (F)I/ ) Gaa(F)Gyy (f) (E.2)

where Gy (f) denotes cross power spectra that must be estimated by epoch
averaging [51, 42]. The coherence gives a measure of the linear dependence
between two signals as a function of frequency. Coherence can also be examined
at different frequencies for the two sites, i.e.

Cay(f1, 2) = |Gy (f1, L)/ \) Gaa(F1) Gy (f2) (E.3)
see e.g. [59].

E.4 Inter-trial coherence (ITC)

Inter-trial coherence (ITC) is a measure for the synchronization between a sig-
nal and an event-indicator function. In particular, inter-trial phase coherence
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(ITPC) is a measure of phase synchronization, at a given frequency f, as a
function of event-relative time t. It is defined by

N
ITPC(f,t) = % Zl m o

where F,,(f,t) is a (complex) time-frequency transform of signal trial n. ITPC is
also known as the ’phase-locking factor’ [37, 10]. Similarly, another ITC measure
is the inter-trial linear coherence ITLC = Y F,,(f,t)/\/N >, [Fu (f,)[?.




APPENDIX M

Matrix Results

M.1 Derivatives involving the pseudo inverse

A wrt. Moore-Penrose pseudo inverse

AT
a(aAJr) = ATA(FEL);; — AY(FL) ;AT — ATA(EL);;AAY | Ae RN M >N
ij
(M.1)
and as a special case when A is square
oAT T T M x M
-=-A(EL)AT , AeR (M.2)

(A1)
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proof

First, define B = A*, i.e. also, A= BT(BBT)~!. Then

AT 9(BBT)"'B

O(A*t)y;  O(B)i

Ty—1
_(ppT)1 0B, ABBY)

d(B)i; 9(B)i; b

0BT OB
d(B)ij - 9(Bij)
=(BB")""(EL);; — (BB")"" [B(EL);; + (EL);;B"] (BB")"'B

—ATA(EL);; — AT(EL);;A” — ATA(EL);;AA*

=BBY)"YEL);; - (BBY)™' |B BT (BBT)"'B

alternative proof of (M.2)

IAT(AT)—L 0

ox o

AT (A7) +AT8(AT)_1 —0

ox Ox n
8AT AT)—I

log determinant of square wrt. A

T
W 24", AeRMN M >N (M.3)
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proof

_py (Dlog AT A (AT A)T
- 9ATA  9(A)mn
:rI\I_ ( / 1 ATA)
)mn

T
T ( 8A A )

aAT 0A
oo (e st

( [ )mn 8(A)mn

N
(ATA) Ay + > (ATA) AT

j=1

'MZ

<
Il
—_

N
=2 (ATA), AT,
j=1
=2[(ATA)71AT]
=2(A+)nm
ZQ(ATJr)mn

log determinant of square wrt. Moore-Penrose pseudo in-
verse

Olog |ATA\

2(ATY,; A MXN pr> N M.4
(AT, —2(A4%)i; cR M > (M.4)
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proof

Using (M.3) and the chain rule

log |AT A AT
aa(gA'Jr)ij ek <(AT)+5(8A+)M>
(define B = A™T)
QAT
=2Tr <BT8(A+)ij>
(using (M.1))
=2Tr (B*((BB")""(EL)y; — (BB")"" [B(EL); + (EL);;B"| (BBY)™'B))
=2Tr (B ((BBT) YEL)y;) —2Te (BY(BBY) "' [B(EL);i + (EL);B"| (BB")™'B)
( (A[B(EL);; + (EL);; B"] (BB")™'B)
=2Tr (A(EL);;) —2Tr ([B(EL)j; + (EL);; B"] (BB") ™)
(EL)i;) —2Tr (B(EL);(BB")™") —2Tr (EL);; BY(BB™)™)

M.2 Integrals involving Dirac delta function

Scalar

/p(s)é(vs —x)ds = ﬁp(m/v) (M.5)

proof
The delta function is defined by the tractable form

[ o= /opturdn = pa/o).
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To get the integral (M.5) to the tractable form use the transformation which
satisfies vo(u) — x = u — z/v, namely,

d(u) =u/v —x/v? — z/v.

Then, transforming the integral and plugging in the Jacobian we get

/p(s)é(vs —x)ds z/ 8(25;) d(u — z/v)p(u)du
“pplar)
Mixing matrix
/p(s)é(As —x)ds = |det A|"'p(A™ ) (M.6)

proof

The delta function is defined by the tractable form
/5(u — A7 a)p(u)du = p(A ).

To get the integral (M.6) to the tractable form use the transformation which
satisfies Ap(u) —x = u — A~ 12, namely,
du) =A" u — AN (A e —x).

Then, transforming the integral and plugging in the Jacobian we get

/p(s)é(As —x)ds :/ 8@257) S(u— A7 x)p(u)du

=| det(A)|"'p(A™ )

Undercomplete mixing matrix

For A e RM*N M > N we find

AT A —-1/2 At = AAT
/p(s)§(x — As)ds = | mp(AT) e . * (M.7)
0 , otherwise
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proof

We shall make use of the mapping = +— (21 , z|)) = Utz Uﬁx), ie. Uﬁ =
(ATA)=1/2 AT such that U”UI{A = A.

:/p(s)é(xL)é(x” — (As)))ds
=0(xz) /p(s)é(xu — (As)))ds

— 5(z1) / p()0((AT )"/ AT g — (AT A)1/2 AT As)ds

(...integral transformation...)

o(x) / | det(ATA)|71/2p(u)5((ATA)71ATx —u)du

(

(x1)| det(ATA)[/2p((ATA) A )
(1) det(ATA)[71/2p(ATa)

(x — AAT )| det(ATA)| 7Y/ 2p(A )
{ATA| V2p(Ate) o= AA*a

0 , otherwise

0
)
0
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Model selection for convolutive ICA with an

application to spatio-temporal analysis of EEG

Mads Dyrholm, Scott Makeig and Lars Kai Hansen

November &, 2005

Abstract We present a new algorithm for maximum likelihood convolu-
tive independent component analysis (ICA) in which sources are unmixed using
stable auto-regressive filters determined implicitly by estimating a convolutive
model of the mixing process. By introducing a convolutive mixing model for
the sources we show how the order of the filters in the convolutive model can be
correctly detected using Bayesian model selection. We demonstrate a framework
for deconvolving a subspace of independent components in electroencephalogra-
phy (EEG). Initial results suggest that in some cases convolutive mixing may be

a more realistic model for EEG signals than the instantaneous ICA model.

1 Introduction

Motivated by the EEG signal’s complex temporal dynamics we are interested
in convolutive independent component analysis (cICA), which in its most basic
form concerns reconstruction of L 4+ 1 mixing matrices A, and N source signal
vectors ('innovations’), s;, of dimension K, combining to form an observed D-

dimensional linear convolutive mixture
L
X, = E As, ., (1)
=0

1
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That is, cICA models the observed data x as produced by K source processes
whose time courses are first convolved with fixed, finite-length time filters and
then summed in the D sensors. This allows a single source signal to be expressed
in the different sensors with variable delays and frequency characteristics.

One common application for this model is the acoustic blind source separation
problem in which sound sources are mixed in a reverberant environment. Simple
ICA methods not taking signal delays into account fail to produce satisfactory
results for this problem, which has thus been the focus of much cICA research
(e.g., [Lee et al., 1997b; Parra et al., 1998; Sun and Douglas, 2001; Mitianoudis
and Davies, 2003; Anemdiller and Kollmeier, 2003]).

For analysis of human electroencephalographic (EEG) signals recorded from
the scalp, ICA has already proven to be a valuable tool for detecting and enhanc-
ing relevant 'source’ subspace brain signals while suppressing irrelevant 'noise’
and artifacts such as those produced by muscle activity and eye blinks [Makeig
et al., 1996; Jung et al., 2000; Delorme and Makeig, 2004]. In conventional ICA
each independent component (IC) is represented as a spatially static projection
of cortical source activity to the sensors. Results of static ICA decomposition
are generally compatible with a view of EEG source signals as originating in
spatially static cortical domains within which local field potential fluctuations
are partially synchronized [Makeig et al., 2000; Jung et al., 2001; Delorme et al.,
2002; Makeig et al., 2004a; Onton et al., 2005]. Modelling EEG data as consist-
ing of convolutive as well as static independent processes allow a richer palette
for source modeling, possibly leading to more complete signal independence.

In this paper we present a new cICA decomposition method that, unlike most
previous work in the area, operates entirely in the time-domain. One advantage
of the time-domain approach is that it avoids the need to window the data and
hence avoids the need for manual tuning of window length and tapering. Al-

though tuning a wavelet or DFT (discrete fourier transform) domain approach is
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possible in many acoustic situations in which ’gold standard’ performance mea-
sures (e.g., listening tests) are available, no such ’gold standard’ of success is
available in the case of human EEG. Also, time domain deconvolution is not re-
stricted to one frequency band at a time, and thus can avoid the difficult process
of piecing together deconvolutions computed separately at different frequencies
[Anemiiller et al., 2003].

The new scheme also makes no assumptions about 'non-stationarity’ of the
source signals, a key assumption in several successful cICA methods (see e.g.
[Parra and Spence, 2000; Rahbar et al., 2002]) whose relevance to EEG is unclear.
Previous time-domain and DFT-domain methods have formulated the problem
as one of finding a finite impulse response (FIR) filter that unmixes as in (2)
below [Belouchrani et al., 1997; Choi and Cichocki, 1997; Moulines et al., 1997;
Lee et al., 1997a; Attias and Schreiner, 1998; Parra et al., 1998; Deligne and
Gopinath, 2002; Douglas et al., 1999; Comon et al., 2001; Sun and Douglas, 2001;
Rahbar and Reilly, 2001; Rahbar et al., 2002; Baumann et al., 2001; Anemiiller
and Kollmeier, 2003]

ét = ZW)\Xt,)\ (2)
A

However, the inverse of the mixing FIR filter modeled in (1) is, in general, an
infinite impulse response (IIR) filter. We thus expect that FIR based unmixing
will require estimation of extended or potentially infinite length unmixing filters.
Our method, by contrast, finds such an unmixing IIR filter implicitly in terms

of the mizing model parameters, i.e. the A,’s in (1), isolating s; in (1) as

L
& =AY (xt -3 Afst_T) (3)
=1

where A¥ denotes Moore-Penrose inverse of Ag. Another advantage of this
parametrization is that the A,’s allow a separated source signal to be easily
back-projected into the original sensor domain.

Other authors have proposed the use of IIR filters for separating convolutive
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mixtures using the maximum likelihood principle. The unmixing IIR filter (3)
generalizes that of [Torkkola, 1996] to allow separation of more than only two
sources. Furthermore, it bears interesting resemblance to that of [Choi and
Cichocki, 1997; Choi et al., 1999]. Though put in different analytical terms, the
inverses used there are equivalent to the unmixing IIR (3). However, the unique
expression (3), and its remarkable analytical simplicity, is the key to learning

the parameters of the mizing model (1) directly.

2 Learning the mixing model parameters

Statistically motivated maximum likelihood approaches for cICA have been pro-
posed ([Torkkola, 1996; Pearlmutter and Parra, 1997; Parra et al., 1997; Moulines
et al., 1997; Attias and Schreiner, 1998; Deligne and Gopinath, 2002; Choi et al.,
1999; Dyrholm and Hansen, 2004]) and are attractive for a number of reasons.
First, they force a declaration of statistical assumptions—in particular the as-
sumed distribution of the source signals. Secondly, a maximum likelihood so-
lution is asymptotically optimal given the assumed observation model and the
prior choices for the ‘hidden’ variables.

Assuming independent and identically distributed (i.i.d.) sources and no

noise, the likelihood of the parameters in (1) given the data is

p(XI{AD = [+ [ oo pisods, (4)

where

L
e = Xy — Z ATSt—T (5)
7=0

and d(e;) is the Dirac delta function.
In the following derivation, we assume that the number of convolutive source
processes K does not exceed the dimension D of the data. First, we note that

only the N’th term under the product operator in (4) is a function of sy. Hence,
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the sy-integral may be evaluated first, yielding

N-1

POXI(A D) = ATA 2 [ [psn) [[ depsids. (o)

t=

where integration is over all sources except sy, and

L
sy = AF (xN - ZATSNT> (7)
=1

Now, as before, only one of the factors under the product operator in (6) is a

function of sy_1. Hence, the sy_;-integral can now be evaluated, yielding

N-2

p(XI{AD) = AT [ [ o pisv-o) [] steoplsodse  (8)

t=1

where integration is over all sources except sy and sy_1, and

s, form< N —1

L
& =A7F (xt - ZATu”> u, = (9)
=1

S, forn>N-1
By induction, and assuming s,, is zero for n < 1, we get

p(X[{A}) = |AT Ao [ [ p(3) (10)

t=1

where .
& =A7 (xt -3 A7§t7> (11)
=1

Thus, the likelihood is calculated by first unmixing the sources using (11), then
measuring (10). It is clear that the algorithm reduces to standard Infomax ICA
[Bell and Sejnowski, 1995] when the length of the convolutional filters L is set

to zero and D = K; in that case (10) can be estimated using §; = Ay 'x;.

2.1 Model source declaration ensures stable un-mixing

Because of inherent instability concerns, the use of IIR filters for unmixing has
often been discouraged [Lee et al., 1997a]. Using FIR unmixing filters could cer-

tainly ensure stability but would not solve the fundamental problem of inverting

5
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a linear system in cases in which it is not invertible. Invertibility of a linear
system is related to the phase characteristic of the system transfer function. A
SISO (single input / single output) system is invertible if and only if the com-
plex zeros of its transfer function are all situated within the unit circle. Such
a system is characterized as 'minimum phase’. If the system is not minimum
phase, only an approximate, 'regularized’ inverse can be sought. (See [Hansen,
2002] on techniques for regularizing a system with known coefficients).

For MIMO (multiple input / multiple output) systems, the matter is more
involved. The stability of (11), and hence the invertibility of (1), is related to

the eigenvalues )\, of the matrix

—A¥A, —ATA, ... —A¥A,
N I 0
A= (12)
I 0

For K = D, a necessary and sufficient condition is that all eigenvalues A, of
A are situated within the unit circle, |\,,| < 1 [Neumaier and Schneider, 2001].
We can generalize the 'minimum phase’ concept to MIMO systems if we think of
the A,’s as quasi 'poles’ of the inverse MIMO transfer function. A SISO system
being minimum phase implies that no system with the same frequency response
can have a smaller phase shift and system delay.

Generalizing that concept to MIMO systems, we can get a feeling for what a
quasi ‘minimum phase’ MIMO system must look like. In particular, most energy
must occur at the beginning of each filter, and less towards the end. However,
not all SISO source-to-sensor paths in the MIMO system need be minimum phase
for the MIMO system as a whole to be quasi 'minimum phase’.

Certainly, unmixing data using FIR filters is regularized in the sense that
their joint impulse response is of finite duration, whereas IIR filter impulse re-

sponses may potentially become unstable. Fortunately, the maximum likelihood



94 Publications

approach has a built-in regularization that avoids this problem [Dyrholm and
Hansen, 2004]. This can be seen in the likelihood equation (10) by noting that
although an unstable IIR filter will lead to a divergent source estimate, §;, such
large amplitude signals are exponentially penalized under most reasonable source
probability density functions (pdf’s), e.g. for EEG data p(s) = sech(s)/m, en-
suring that unstable solutions are avoided in the evolved solution.

If so, it may prove safe to use an unconstrained iterative learning scheme
to unmix EEG data. Once the unmixing process has been stably initialized,
each learning step will produce model refinements that are stable in the sense of
equation (11). Even if the system (1) we are trying to unmix is not invertible,
meaning no exact stable inverse exists, the maximum-likelihood approach will

give a regularized and stable quasi 'minimum phase’ solution.

2.2 Gradients and optimization

The cost-function of the algorithm is the negative log likelihood

N

L{A}) == log|det AT Aol = logp(s:) (13)

=1
The gradient of the cost-function is presented here in two steps. Step one reveals
the partial derivatives of the source estimates while step two uses the step one
results in a chain rule to compute the gradient of the cost-function (see also

[Dyrholm and Hansen, 2004])

Step one — Partial derivatives of the unmixed source estimates
9(3,) L 03
t)k . ~ # t—1
06 _ 5 ( - A> (A A, ) (1)
A(AY)y ; : 2 O(AL)ij

and (9 )i = p'( (8)r )/P( (8i)x )-

0(8)k S L o
D0 () - (A?;Af'am»m)k (15)




P.1 M. Dyrholm, S. Makeig and L. K. Hansen, Model selection for

convolutive ICA with an application to spatio-temporal analysis of EEG,

Neural Computation

95

Step two — Gradient of the cost-function The gradient of the cost-
function with respect to A# is given by
OL({A 08
(AG)is (A
and the gradient with respect to to the other mixing matrices is
N

L( {A} ast
DA, Zdzta (17)

These expressions allow use of general gradient optimization methods, a sta-
ble starting point being A, = 0 (for 7 # 0) with arbitrary Ag. In the experiments
reported below, we have used a Broyden-Fletcher-Goldfarb-Shanno (BFGS) al-
gorithm for optimization. See [Cardoso and Pham, 2004] for a relevant discussion

and [Nielsen, 2000] for a reference to the precise implementation we used.

3 Three approaches to overdetermined cICA

Current EEG experiments typically involve simultaneous recording from 30 to
100 or more electrodes, forming a high (D) dimensional signal. After signal
separation we hope to find a relatively small number (K) of independent com-
ponents. Hence we are interested in studying the so-called ’overdetermined’
problem (K < D). There are at least three different approaches to performing

overdetermined cICA:
1. (Rectangular) Perform the decomposition with D > K.

2. (Augmented) Perform the decomposition with K set to D, i.e. attempting

to estimate some extra sources.

3. (Diminished) Perform the decomposition with D equal to K, i.e. on a

K-dimensional subspace projection of the data.
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Figure 1: A synthetic MIMO mixing system. Here, two sources were convolu-

tively mixed at three sensors. The 'poles’ of the mixture (as defined in section

2.1) are all situated within the unit circle, hence an exact and stable inverse

exists in the sense of (11).
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Figure 2: Comparison of source separation of the system in Fig. 1 using three

cICA approaches (Rectangular, Augmented, Diminished). A: Estimates of true

source activity: correlations with the best-estimated source. B: Similar correla-

tions for the less well estimated source.

We compared the performance of these three approaches experimentally as a

function of signal-to-noise ratio (SNR). First, we created a synthetic mixture,

two i.i.d source signals s;(¢) and s3(¢) (with 1 < ¢ < N and N = 30000)

generated from a laplacian distribution, s;(¢) ~ p(x) = % exp(—|z|) with variance

2

Var{sg(t)} = 2. These signals were mixed using the filters of length L = 30

shown in Figure 1 producing an overdetermined 3-D mixture (D = 3, K = 2).

A 3-D ii.d. Gaussian noise signal n; was added to the mixture x;, = on; +

L . .
> o Arsi_, with a controlled variance o2.

Next, we investigated how well the three analysis approaches estimated the

two sources by measuring the correlations between each true source innovation,

sp(t), and the best-correlated estimated source, §x(t).

Approach 1 (Rectangular). Here, all three data channels were decomposed

and the two true sources estimated. Figure 2 shows how well the sources were

estimated at different SNR levels. The quality of the estimation dropped dra-

10



98 Publications

matically as SNR decreased. Even though our derivation (Section 2) is valid
for the overdetermined case (D > K), the validity of the zero-noise assumption
proves vital in this case. The explanation for this can be seen in the definitions
of the likelihood (10) and unmixing filter (11).

In (10), any rotation on the columns of Ay will not influence the determinant
term of the likelihood. From (11) we note that the estimated source vectors §; are
found by linear mapping through A# :RP — R¥. Hence, the source-prior term
in (10) alone will be responsible for determining a rotation of Ay that hides as
much variance as possible in the nullspace (RP~X) of A# in (11). In an uncon-
strained optimization scheme, this side-effect will be untamed and consequently
will hide source variance in the nullspace of A and achieve an artificially high

likelihood while relaxing the effort to make the sources independent.

Approach 2 (Augmented). One solution to the problem with the Rectangu-
lar approach above could be to parameterize the nullspace of A#, or equivalently
the orthogonal complement space of Aj. This can be seen as a special case of the
algorithm in which Ay is D-by-D and A is D-by-K. With the D — K additional

columns of Ay denoted by B, the model can be written

L
Xt — BVt + Z ATSt—T (18)

=0
where v; and B constitute a low-rank approximation to the noise. Hence, we
declare a Gaussian prior p.d.f. on v;. Note that (18) is a special case of the
convolutive model (1). In this case, we attempt to estimate the third (noise)
source in addition to the two convolutive sources.

Figure 2 shows how well the sources are estimated using this approach for
different SNR levels. For the best estimated source (Fig. 2-A), the Augmented
approach gave better estimates than the Rectangular or Diminished approaches.
This was also the case for the second source (Fig. 2-B) at low SNR, but not at

high SNR since in this case the 'true’ B was near zero and became improbable

11
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under the likelihood model.

Approach 3 (Diminished). Finally, we investigated the possibility of ex-

tracting the two sources from a two-dimensional projection of the data. Here,

we simply excluded the third ’sensor’ from the decomposition. Figure 2 shows

that even in the presence of considerable noise, the separation achieved was not

as good as in the Augmented approach. However, the Diminished approach used

the lowest number of parameters and hence had the lowest comutational com-

plexity. Furthermore, it lacked the peculiarities of the Augmented approach at

high SNR. Finally we note that once the Diminished model has been learned,

an estimate of the Rectangular model can be obtained by solving

<XiSp, > = ZAT < S-S,y > (19)

T

for A, by regular matrix inversion using the estimated sources and < - >=

N
% Zl:l'

Summary of the three approaches. In the presence of considerable noise,

the best separation was obtained by augmenting the model and extracting, from

the D-dimensional mixture, K sources as well as a (rank D — K) approximation

of the noise. However, the Diminished approach had the advantage of lower

computational complexity, while the separation it achieved was close to that

of the Augmented approach. At very high SNR, the Diminished approach was

even slightly better than the Augmented approach. The Rectangular approach,

meanwhile, had difficulties and should not be considered for use in practice as

the presence of some channel noise may be assumed.

4 Detecting a convolutive mixture

Model selection is a fundamental issue of interest, in particular, detecting the

order of L can tell us whether the convolutive mixing model is a better model

12



100 Publications

than the simpler instantaneous mixing model of standard ICA methods. In the
framework of Bayesian model selection, models that are immoderately complex
are penalized by the Occam factor, and will therefore only be chosen if there
is a relevant need for their complexity. However, this compelling feature can
be disrupted if fundamental assumptions are violated. One such assumption
was involved in our derivation of the likelihood, in which we assumed that the
sources are iid, i.e. not auto-correlated. The problem with this assumption is
that the likelihood will favor models based not only on achieved independence
but on source whiteness as well. A model selection scheme for L which does not
take the source auto-correlations into account will therefore be biased upwards
because models with a larger value for L can absorb more source auto-correlation
than models with lower L values. To cure this problem, we introduce a model

for each of the sources
M
se(t) =Y (M) z(t — N) (20)
A=0

where z;(t) represents an i.i.d. signal-—a whitened version of the source signal.
Introducing the K source filters of order M allows us to reduce the value of L,
i.e. lowering the number of parameters in the model while achieving uniformly
better learning for limited data [Dyrholm et al., 2005].

We note that some authors of FIR unmixing methods have also used source
models, e.g. [Pearlmutter and Parra, 1997; Parra et al., 1997; Attias and Schreiner,
1998].

4.1 Learning source auto-correlation

The negative log likelihood for the model combining (1) and (20) is given by

N
L = Nlog|det Ag| + N> log |hx(0)] = Y log p(2:) (21)
k t=1

where z; is a vector of whitened source signal estimates at time ¢ using an

operator that represents the inverse of (20), and we assume A, to be square as

13
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in the Diminished and Augmented approaches above. We can without loss of

generality set hy(0) = 1, then

N
L = Nlog|det Ag| — Z log p(2:) (22)

=1
For notational convenience we introduce the following matrix notation instead

of (20), bundling all sources in one matrix equation

M
= Z H)\Zt,A (23)
A=0

where the Hy’s are diagonal matrices defined by (Hy):; = hi()).

To derive an algorithm for learning the source auto-correlations in addition
to the mixing model we modify the equations found in Section 2.2; inserting
a third, Source model step (see below) between the two steps found there, i.e.

substituting z, for §; in step two.

Source model step The inverse source coloring operator is given by

@)k 0Bk gy Ok
Ba; oA, = aa, (%)
@) 0Bk =gy Ok
aA), A, 2= Tam), (26)
a(it)k . 0Z¢—y
B, T D) (ZH O(H,), ) 27)

Step two modified — Gradient of the cost-function The gradient of the

cost-function with respect to A# with the source model invoked is given by

IL({A-}) _ A T Zt
oAY)y; M)y Z’” I(AY);

(28)

14
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and the gradient with respect to to the other mixing matrices is

A __ "y 0

4.2 Protocol for detecting L

We propose a simple protocol for determining the dimensions (L, M) of the con-
volutional and source filters. First, expand the convolution without an autofilter
(M = 0). This will model the total temporal dependency structure of the sys-
tem Lpax. The optimal dimension is found by monitoring the Bayes Information

Criterion (BIC) [Schwarz, 1978]

log p(MIX) ~ log p(X]fy, M) — 220

log N (30)

where M represents a specific choice of model structure (L, M), @ represents the
parameters in the model, 6y are the maximum likelihood parameters, and N is
the size of the data set (number of samples).

Next, keep the temporal dependency constant, (L + M) = L.y, while ex-
panding the length of the source autofilters M, again monitoring the BIC to

determine the optimal choice of L = L., — M.

4.3 Example: Correctly rejecting cICA of an instanta-

neous mixture

We will now illustrate the importance of the source model and the validity of the
protocol for detecting L when dealing with the following fundamental question:
Do we learn anything by using convolutive ICA instead of instantaneous ICA?
Or, put in another way, Should L be larger than zero?

To produce an instantaneous mixture we now generate two random signals
from a Laplace distribution, filter them through filters of order 15 shown in

Figure 3, and mix the two filtered sources using an arbitrary square mixing

15
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Figure 3: These filters are used to produce autocorrelated sources (M =1
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Figure 4: A: The result of using Bayesian model selection without allowing for

an autofilter (M = 0). Since the signals are non-white, the validity of L is

unquestioned even at 15 lags (L = 15). B: We fix L + M = 15, and now get the

correct answer, that model information is largest for L = 0, meaning there is no

evidence of convolutive mixing.

16
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matrix. Figure 4A shows the result of using Bayesian model selection for this
mixture without allowing for a filter (M = 0). This corresponds to model
selection in a conventional convolutive model. Since the signals are non-white,
L is detected and the model BIC simply increases as function of L up to the
maximum, here stopped at L = 15. Next, (Fig. 4B) we fix L + M = 15. Models
with a larger L have at least the same capability as models with lower L, though
models with lower L are preferable because they have fewer parameters. By
adding the source model, we get the correct answer in this case: These data

contain no evidence of convolutive mixing.

5 Deconvolving an EEG ICA subspace

We will now show by example how cICA can be used to separate the delayed
influences of statically defined ICA components on each other, thereby achieving
a larger degree of independence in the convolutive component time courses. The
procedure described here can be seen as a Diminished approach in which we ex-
tract K convolutive components from the D-dimensional data by deconvolving
a K-dimensional subspace projection of the data. In [Dyrholm et al., 2004] we
used a subspace from Principal Component Analysis (PCA), but as our experi-
ment will show, using ICA for that projection has the benefit that the subspace
can be chosen e.g. for physiological interest.

As a first test of this approach, we applied convolutive decomposition to
20 minutes of a 71-channel human EEG recording (20 epochs of 1 minute du-
ration), downsampled for numeric convenience to a 50-Hz sampling rate after
filtering between 1 and 25 Hz with phase-indifferent FIR filters. First, the
recorded (channels-by-times) data matrix (X) was decomposed using extended
Infomax ICA [Bell and Sejnowski, 1995; Makeig et al., 1996; Jung et al., 1998;
Lee et al., 1999; Jung et al., 2001] into 71 maximally independent components

whose ("activation’) time series were contained in (components-by-times) ma-
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trix S'®* and whose (’scalp map’) projections to the sensors were specified in

(channels-by-components) mixing matrix A'°A assuming instantaneous linear

mixing X = AICASICA,

Five of the resulting independent components (ICs) were selected for further

analysis on the basis of event-related coherence results that showed a transient

partial collapse of component independence following the subject button presses

[Makeig et al., 2004b]. Their scalp maps from the relevant five columns of A4

are shown on the left margin of Figure 7. Next, cICA decomposition was applied

to the five component activation time series (relevant five rows of S'4), assuming

the model

t—7

L
S}fCA _ Z ATSCICA (31)
=0

As a qualified guess of the order L, we applied the approach to estimating

L

outlined in Section 4.2 above to the EEG subspace data. First, we increased the

order of the convolutive model L (keeping M = 0) while monitoring the BIC. To

produce error bars, we used jackknife resampling [Efron and Tibshirani, 1993];

i.e. for each value of L, 20 runs with the algorithm were performed, one for

each jackknifed epoch, thus the data in each run consisted of the 19 remaining

epochs. Figure 5A shows the mean jackknifed BIC. Clearly, the BIC, without an

autofilter included, was at least L., = 40, since some correlations in the data

extended to at least 800 ms. Next, we swept the range of possible source model

filters M, keeping L + M = 40. Figure 5B shows that L = 10, corresponding to

a filter length of 200 ms, proved optimal.

Figures 6 shows the 5 x 5 matrix of learned convolutive kernels. Before

plotting, we arranged the order of the five output CCs so that the diagonal

(CC; — IC;) kernels, shown in one-third scale in Fig. 6, were dominant.

Figure 7 shows the resulting percent of variance of the contributions from

each of the CC innovations to each of the IC activations. As the large diagonal

contributions in Figure 7 show, each convolutive CCj dominated one spatial

18
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Figure 5: Using the protocol for detecting the order of L for EEG. A: There are
correlations over at least 40 lags in the data. This corresponds to 800ms. B: By
introducing the source model it turns out that L should only be on the order of

10 corresponding to 200 ms.

static IC (ICy). However, there were clearly significant off-diagonal contributions
as well, indicating that spatiotemporal relationships between the static ICA
components was captured by the cICA model.

To explore the robustness of this result further, we tested for the presence of
delayed correlations, first between the static 1C activations (si$(¢)) and then
between the learned CC innovations (s{I“4(¢)). Figure 8 shows, for the most
predictable IC and CC, the percent of their time course variances that was
accounted for by linear prediction from the past history (of order r) of the
largest contributing remaining ICs or CCs, respectively.

As expected from the cICA results, as the prediction order (r) increased,
the predictability of the static ICA component activation also increased. For
the ICA component activation, 9% of the variance could be explained by linear
prediction from the previous 10 time points (200 ms) of another ICA component.
The static ICA component time courses were nearly ’independent’ only in the
sense of zero-order prediction (r = 0), as expected from their derivation. Their

lack of independence at other lags is compatible with the cICA results. For
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Figure 6: Kernels of the five derived convolutive ICA components (CCs), ar-
ranged (in columns) in order of their respectively contributions to the five static
ICA components (ICs) (rows). Each CC made a dominant contribution to one
IC; these were ordered so as to appear on the diagonal. Scaling of the diagonal

kernels is one third that of the off-diagonal kernels.
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Figure 7: Percent variance of five static ICA components (ICs) accounted for

by the five derived convolutive components (CCs). The IC scalp maps on the
left are shown for interest. Contributions arranged on the diagonal are domi-
nant. Squares represent the (rounded) percent variance of the IC activation time
series accounted for by each CC. Significant off-diagonal elements indicate the
presence of significant delayed spatiotemporal interactions between the static IC

activations.
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Figure 8: Predictability of the most predictable ICA component activation (IC3)
and cICA component innovation (CC5) from the most predictive other IC and

CC component, respectively (IC1, CC3).
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the CC innovation, however, the predictability in Figure 8 remained low as

r

increased, indicating that cICA in fact deconvolved delayed correlations present

in the EEG subspace data.

Figure 9 shows the power spectral densities for each of the IC activations

(in bold traces) along with the two CCs (in thin traces) that, in accordance

with Figure 7, contributed the most to the respective IC (c.f. Figure 7). Note

that the broad alpha band spectral peak in IC1 (uppermost panel in Figure 9)

around 10Hz has been split between CC1 and CC3. In the middle panel, note

the distinct spectral contributions of CC1 and CC3 to the double alpha peak in

the IC3 spectrum. As expected, the CCs made different spectral contributions

to the IC time courses. For example, CC1 made different power spectral density

contributions to IC1, IC3 and IC4.

6 Discussion

In general, the usefulness of any blind decomposition method applied to biolog-

ical time series data is most likely relative to the fit between the assumptions

of the algorithm and the underlying physiology and biophysics. Therefore

it

is important to consider the physiological basis of the delayed interactions be-

tween statically-defined independent component time courses we observed her

€,

and the possible physiological significance of the derived convolutive component

filters and time courses.
These results have at least two possible interpretations. First, static 1C

decomposition in this case may have found a maximally-independent basis of

A

a

five or more dimensional subspace of spatially dynamic EEG processes. This

explanation could be sensible if the five IC source areas were adjacent or ove
lapping, compatible with patterns of continuous spatial current flow across

single cortical region. However, in this case simple inverse source modeling u

-

a

S-

ing equivalent dipole modes (not shown) suggested that the five IC scalp maps
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used here might be associated with source activities generated in fairly well sep-

arated cortical territories. The physiological explanation for the observed lagged

interactions between them thus might depend on delayed influences produced by

neural spike-mediated communications from other cortical areas. These spike-

mediated influences might not themselves produce far-field EEG signals at the

scalp, but might add to the coherent source field oscillations occurring in the

target source domain.

In this model, each cICA kernel would represent a local delayed EEG response

in one ICA source area induced by cICA activity in another ICA source area.

The cICA components then represent the local oscillatory (and/or other) EEG

signal originating within each spatially separate ICA source domain, shorn of the

delayed oscillatory influences arriving from other, distant cortical EEG source

areas. Whatever the ultimate biological interpretation, the convolutional ICA

data model presented here suggests that further study of delayed interactions

between distinct EEG activities may be useful for modeling network dynamics

underlying motor planning, attentional dynamics, and other cognitive processes

that are known to involve simultaneous dynamic changes in multiple cortical

regions [Makeig et al., 2002, 2004b].

Applied to these EEG data static ICA gave 15-20 components that were of

physiological interest according to their spatial projections or activation time se-

ries, although we were not able to practically deconvolve more than five sources

here because of numeric complexity. Open questions, therefore, are to identify

independent component subspaces of interest for cICA decomposition and/or to

explore the efficiency of performing cICA on larger computer clusters. In future,

convolutive ICA might also be applied usefully to other types of biomedical time

series data that involve stereotyped source movements, thus presenting prob-

lems for static ICA decomposition. These might include electrocardiographic

(ECG) and brain hemodynamic measures such as diffusion tensor imaging (DTT)

24



112 Publications

[Anemiiller et al., 2004].
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Abstract. The CICAAR algorithm (convolutive independent compo-
nent analysis with an auto-regressive inverse model) allows separation
of white (i.i.d) source signals from convolutive mixtures. We introduce a
source color model as a simple extension to the CICAAR which allows
for a more parsimoneous representation in many practical mixtures. The
new filter-CICAAR allows Bayesian model selection and can help answer
questions like: ’Are we actually dealing with a convolutive mixture?’. We
try to answer this question for EEG data.

1 Introduction

Convolutive ICA (CICA) is a topic of high current interest and several schemes
are now available for recovering mixing matrices and sources signals from con-
volutive mixtures, see e.g., [4]. Convolutive models are more complex than con-
ventional instantaneous models, hence, the issue of model optimization is im-
portant. Convolutive ICA in its basic form concerns reconstruction of the L+1
mixing matrices A, and the N source signal vectors s; of dimension K, from a
D-dimensional convolutive mixture

L
Xy = ZATSt—T (1)
=0

Here we focus, for simplicity, on the case where the number of sources equals
the number of sensors, D = K.

We have earlier proposed the CICAAR approach for convolutive ICA [3] as a
generalization of Infomax [2] to convolutive mixtures. The CICAAR exploits the
relatively simple structure of the un-mixing system resulting when the inverse
mixing is represented as an autoregressive process. In the original derivation we
were forced to assume white (i.d.d) sources, i.e., that all temporal correlation in
the mixture signals appeared through the convolutive mixing process. A more
economic representation is obtained, however, if we explicitly introduce filters to
represent possible auto-correlation of sources. This added degree of freedom also
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Fig. 1. Filters for generating synthetic data. First, two i.i.d. signals are colored through
their respective filters (a). Then, the colored signals are convolutively mixed using a
distinct filter for each source-sensor path (b).

carries another benefit, it allows for optimizing the model structure: How much
correlation should be accounted for by the source filters, and how much should
be accounted for by the convolutive mixture? Explicit source auto-correlation
modeling using filtered white noise has been proposed earlier by several authors,
see e.g., [1,7,8].

2 Modelling convolutive ICA with auto-correlated
sources

We introduce a model for each of the sources

si(t) = D Nzt = A) (2)

A=0

where zi(t) represents a whitened version of the source signal. The negative log
likelihood for the model combining (1) and (2) is given by

N
L = Nlog|det Ao| + Ny log 7 (0)] — Y log p(2) (3)
k t=1

where z; is a vector of whitened source signal estimates at time ¢ using an
operator that represents the inverse of (2). We can without loss of generality set
hi(0) =1, then

N

L = Nlog|det Ag| — ) logp(2:) (4)

t=1
The number of parameters in this model is D?(L + 1) + DM, and it can thus be
minimized if M is increased so as to explain the source auto-correlations allowing
L to be reduced in return. An algorithm for convolutive ICA which includes the
source model can be derived by making a relative straight forward modification
to the equations of the CICAAR algorithm found in [3], see appendix A.
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Fig. 2. Mixing filters convolved with respective color filters. (a) for the generating
model. (b) for an estimated model with the 'true’ L and M. (c) for the Bayes optimal
model with (L, M) = (5,20). (d) shows the BIC for various models, and (L,M)=(5,20)
is found optimal.

3 Model Selection Protocol

Let M represent a specific choice of model structure (L, M). The Bayes Infor-
mation Criterion (BIC) is given by logp(M|X) ~ log p(X|0y, M)— 428 log N
where dim @ is the number of parameters in the model, and 6y are the maximum
likelihood parameters [9].

We propose a simple protocol for the dimensions (L, M) of the convolutional-
and source-filters. First, expand the convolution length L without a source model
(i.e. keeping M = 0). This will model the total temporal dependency structure
of the system. The optimal L, denote it Ly ax, is found by monitoring BIC. Next,
expand the dimensions M of the source model filters while keeping the temporal
dependency constant, i.e. keeping (L + M) = Lyax.

3.1 Simulation example

The first experiment is designed to illustrate the protocol for determining the
dimensions of the convolution and the source filters. We create a 2 x 2 system
with known source filters M = 15 and known convolution L = 10...
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Fig. 3. Learning curves for three models: The generating model (L, M) = (10, 15), a
model with (L, M) = (25,0) which is more complex but fully capable of ‘imitating’ the
first model, and the model (L, M) = (5, 20) which was found Bayes optimal according
to BIC. The generalization error is estimated as the likelihood of a test set (Niest =
300000). The uniform improvements in generalization of the ‘optimal model’ further
underlines the importance of model selection in the context

Data — Two signals are generated by filtering temporally white signals using
the filters shown on Figure-1(a). The signals are then mixed using the 2 x 2 x 10
system shown on Figure-1(b). The generating model has thus (L, M) = (10, 15).

Result — First we note, the model is in itself ambiguous; an arbitrary filter can
be applied to a color filter if the inverse filter is applied to the respective column
of mixing filters. Therefore, to compare results we inspect the system as a whole,
i.e. source color convolved with a column of mixing filters.

Figure-2 displays convolutive mixing systems where each mixing channel has
been convolved with the respective color filter; (a) for the true generating model;
(b) a run with the algorithm using N = 300000 training samples and using the
(L, M) of the generating model. The result is perfect up to sign and scaling
ICA ambiguities; (c) shows a run with the algorithm using N = 100000 and the
Bayes optimal choice of (L, M) = (5,20) c.f. (d), in the finite data the protocol
has found a parsimonious model with similar overall transfer function. We first
study the learning curves, i.e., how does the training set dimension N, influence
learning. We use the likelihood evaluated on a test set to measure the learning of
different models. We now compare learning curves for three models; one which
is the generating model (L, M) = (10, 15), one (L, M) = (25,0) which is more
complex but fully capable of imitating the first model, and (L, M) = (5,20)
which is optimal according to BIC. Figure-3 shows learning curves of the three
models, the test set is Niest = 300000 samples. The uniform improvements in
generalization of the ‘optimal model’ further underlines the importance of model
selection in the context of convolutive mixing.
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3.2 Rejecting convolution in an instantaneous mixture

We will now illustrate the importance of the source color filters when dealing with
the following fundamental question: Do we learn anything by using Convolutive
ICA instead of instantaneous ICA?—or put in another way: ’should L be larger
than zero?’.

Data — To produce an instantaneous mixture we now mix the two colored
sources from before using a random matrix.

Result — Figure-4(a) shows the result of using Bayesian model selection without
allowing for a filter (M = 0). This corresponds to model selection in a conven-
tional convolutive model. Since the signals are non-white L is detected and the
model BIC simply increases as function of L up to the maximum which is at-
tained at a value of L = 15. Next, in Figure-4(b) we fix L + M = 15. Models
with a greater L have at least the same capability as a model with a lower L;
but as expected lower L are preferable because the models has fewer parameters.
Thus, thanks to the filters, we now get the correct answer: "There is no evidence
of convolutive ICA’.

-30000 ‘ ‘ -31660 ———————
-32000 ‘+_+'+,y+++’**'**'**'**'**“ -31680 kL L+M=15 - e i

-34000 .t . 3
-36000 + 1 -31700 | ", ]
© -38000  /° {1 o -31720 | 1
242000 |/ ] -31760 | R
-46000 M=0 ot -31780 |
-48000 : : : : 31800 L+ v o
0 5 10 15 20 25 0246 8101214

L L
(a) M=0 (b)y M+ L=15

Fig. 4. (a) the result of using Bayesian model selection without allowing for a filter
(M = 0). Since the signals are non-white L is detected at a value of L = 15. (b) we
fix L + M = 15, and now get the correct answer: L = 0 — "There is no evidence of
convolutive ICA’.

4 Is convolutive ICA relevant for EEG?

The EEG signals from the entire brain superimpose onto every EEG electrode
instantaneously; there are no delays or echoes, hence, the mixing of the electro-
magnetic activity is definitely not a convolutive process. However, the question
is whether the convolutive mixing model is relevant as a model for the brain
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activity itself. It is well known that EEG activity exhibits rich spatio-temporal
dynamics and that different tasks of the brain combine different regions in differ-
ent frequency bands, and so, we expect the Bayes optimal model to potentially
include some convolutive mixing L > 0.

Data — 20 minutes of a 71-channel human EEG recording downsampled to a 50-
Hz sampling rate after filtering between 1 and 25 Hz with phase-indifferent FIR
filters. First, the recorded (channels-by-times) data matrix (X) was decomposed
using extended infomax ICA [2,5] into 71 maximally independent components
whose ('activation’) time series were contained in (components-by-times) ma-
trix S'°A and whose (’scalp map’) projections to the sensors were specified in
(channels-by-components) mixing matrix A'®A  assuming instantaneous linear
mixing X = AICASICA Three of the resulting independent components were
selected for further analysis on the basis of event-related coherence results that
showed a transient partial collapse of component independence following the sub-
ject button presses [6]. Their scalp maps (the relevant three columns of AIC4)
are shown on Figure 5(a).

Convolutive ICA analysis — Next, convolutive ICA decomposition was applied
to the three component activation time series (relevant three rows of S'4) which
we shall refer to as channels chy, chs and chs. Following our proposed protocol,
we find Lyax = 110, then L = 9 as shown on Figure-5(c) — so, we are in fact
dealing with a convolutive mixture. Figure-5(b) shows, for one of the resulting
convolutive ICA components, cross correlation functions between its contribution
to the channels (with each a scalp map associated). Clearly, there are delayed
correlation between the different brain regions, and this is not possible to model
with an instantaneous ICA model, hence the need for convolutive mixing.

15 -222000

c M+L=110
S 1t 1 223000 [0 1
S o5t i - -224000 # S, -
IS 0 [ e 20 295000 “en
(8] B 0]
@ -05 ¢ ichichy - -226000 1
e -1y yichichg -
5 Y chychy - -227000 + 1

L 20-1510-5 0 5 10 15 20 228000 —

-20-15-10 - 0 20 40 60 80 100 120
lag L
(b) (c) We find L =9

Fig.5. (a) Scalp maps for the three ICA components. (b) for one of the resulting
convolutive ICA components, cross correlation functions between its contribution to
the channels. (¢) Finding L = 9 for the EEG data.
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5 Conclusion

We have incorporated filters for modelling possible source auto-correlations into
an existing algorithm for convolutive ICA. We have proposed a protocol for
determining the dimension L of a convolutive mixture utilizing the filters. We
have shown that convolutive ICA is relevant for real EEG data.

Appendix A: Source modeling with the CICAAR
algorithm

For notational convenience we introduce the following matrix notation instead
of (2), handling all sources in one matrix equation

M
= ZH)\Zt,)\ (5)
A=0

where the H)’s are diagonal matrices defined by (Hy):; = hi(N).

Given a current estimate of the mixing matrices A, and the source filter
coefficients hy (), First apply equation 7 of [3] to obtain §;. Then apply the
inverse source coloring operator

2 =58-> Hiz (6)

which must replace §; in [3] (in equations 6,8,9 and 11). This involves the fol-
lowing partial derivatives which in turn uses the result from [3] (from equations
7,10,12)

0(2¢)r, o St)k:
a(BT)ij 7' 17 Z H 7')7,] (7)

where B, = A for 7 > 0 and By = Aal. Furthermore

(&) o~ 1y 0%
s, — Ok = Ea)i - (ZH»a(HW)k (®)

A=1

The work involved in this plug-in is minimal due to the diagonal structure of
the H) matrices. Finally,

(9zt
a(HA Z«/:t PN 9)

where (¥;)r = p'((2)r)/P((2)k)-
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CICAAR: Convolutive ICA with an
Auto-Regressive Inverse Model

Mads Dyrholm and Lars Kai Hansen

Informatics and Mathematical Modelling
Technical University of Denmark
2800 Kgs. Lyngby, Denmark

Abstract. We invoke an auto-regressive IIR inverse model for convolu-
tive ICA and derive expressions for the likelihood and its gradient. We
argue that optimization will give a stable inverse. When there are more
sensors than sources the mixing model parameters are estimated in a
second step by least squares estimation. We demonstrate the method
on synthetic data and finally separate speech and music in a real room
recording.

1 Introduction

Independent component analysis (ICA) of convolutive mixtures is a key problem
in signal processing, the problem is important in speech processing and numerous
other applications including medical, visual, and industrial signal processing, see,
e.g., [1-5] . Convolutive ICA in its basic form concerns reconstruction of the L+1
mixing matrices A, and the IV source signal vectors s; of dimension K, from a
D-dimensional convolutive mixture,

Ty = ZATStf‘,-. (1)

We will assume L so large that all correlations in the process x can be ‘explained’
by the mixing process, and the source signal vectors are assumed temporally
independent: p({s;}) = thil p(s¢). This is motivated by the observation that
source signal auto-correlations can not be identified without additional a priori
information [1]. This is most apparent in the frequency domain A,s,. A non-
zero ‘filter’ h(w) can be multiplied on a given source if 1/h(w) is applied to the
corresponding column of the set of Fourier transformed mixing matrices A,,.

Statistically motivated maximum likelihood schemes have been proposed, see
e.g. [1,6-8]. The likelihood approach is attractive for a number of reasons. First,
it forces a declaration of the statistical assumptions—in particular the a priori
distribution of the source signals, secondly, the maximum likelihood solution
is asymptotically optimal given the assumed observation model and the prior
choices for the ‘hidden’ variables.

IR representations of an inverse model have been proposed in e.g. [9,10]. In
this paper we will invoke an auto-regressive IIR inverse model. This involves a
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linear recursive filter for estimation of the source signal and a non-linear recursive
filter for maximum likelihood estimation of the mixing matrices. Our derivation
formally allows the number of sensors to be greater than the number of sources.

2 Estimating the sources through a stable inverse

Let us define x, A, and s such that x = As is a matrix product abbreviation of
the convolutive mixture

TN AO Al AL SN
TN—-1 AO A1 N AL SN—1 (2)
T AO S1

which allows the likelihood to be written p(z|[{A.}) = [d(x — As)p(s)ds.

2.1 Square case likelihood
In the square case, D = K, the likelihood integral evaluates to

p(al{Ar}) = | det A" 'p(A™ ). (3)
Since A is upper block triangular we obtain p(z|{A,}) = |det Ao| " Np(A~1x),
furthermore, assuming i.i.d. source signals we finally get

N

p({z}{Ar}) = | det Ao~V [T p((A7"2)0). (4)

t=1
The inverse operation A~z is the multivariate AR(L) process

L
§t = Aal$t — Aal Z A7—§t_-,— (5)

T=1

which follows simply by eliminating s; in (1). In terms of (5) we now rewrite the
negative log likelihood

N
L({A;}) = Nlog|det Ao| = > logp(5,) , K = D. (6)

2.2 Overdetermined case likelihood

When D > K there are many inverse operations A~! : R” — IR which satisfy
A~'A = I. In this work we base the source estimates §; on a particular choice
of inverse operation, i.e. we define 8 = A~'x by the multivariate AR(L) process

L
§t = A#.Z'f — AO# Z A7—§t_7—, (7)
T=1
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where A# denotes Moore-Penrose generalized inverse. The process (7) is inverse
in the sense A~'A = I which means that when it is configured with the true
mixing matrices it allows perfect reconstruction of the sources. Evoking (7) the
likelihood integral can be evaluated to

L({A}) = —log|det AT Aol - Zlogp 4), K <D. ()

t=1

The derivation of (8) is deferred to Sec. A for aesthetic reason, but note that
(8) is based on our particular choice of inverse (7). For K = D we note that (7)
and (8) are identical to (5) and (6) respectively.

2.3 Optimization yields a stable inverse

In praxis, convolution system matrices such as A are often found to be poorly
conditioned and hence the inverse problem § = A~ !z sensitive to noise, see
g. [11]. The extreme case for the inverse is it being unstable and sensitive
to machine precision rounding errors. Fortunately, the maximum likelihood ap-
proach has a built-in regularization against this problem. This is seen from the
likelihood noting that an ill-conditioned estimator {AT} will lead to a divergent
source estimate §;; but such large amplitude signals are exponentially penalized
under the source pdf’s typically used in ICA (p(s) = sech(s)/x). Therefore, our
proposition is that it is ’safe’ to use an iterative learning scheme for optimiz-
ing (8) because once it has been initialized with a well-conditioned convolution
matrix A a learning decrease in (8) will lead to further refinements {A,} which
are stable in the context of equation (7). If no exact stable inverse exists the
Maximum-Likelihood approach will give us a regularized estimator.
We propose here to use a gradient optimization technique. The gradient of
the negative log likelihood w.r.t. Ag& is given by

OLUAY _ _yury N T 0%
o), N(A3)i; ;w (05, P (9)
where
06 s (e S s ) - (a 051,
8(A#) 5( ( t ;AT t—‘r>j ( _I_Zl A#)2J> (10)

and (¥(8) )k = 0'( (8)k )/p( (st)k )- The gradient w.r.t. to the other mixing
matrices is given by

aL( {A}) 8st
5 Zw (50 504, (11)

where
DGk ‘ L 08y_p
a(A ) _(A#)k:7( —T ] - <A(7)% ;:1 AT’ a(AT)zJ>k (12)
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These expressions allow for general gradient optimization schemes. A starting
point for the algorithm is Ay being random numbers and A, =0 for 7 20 — a
stable initialization according to (7).

2.4 Re-estimating the mixing filters

When the dimension of z; is strictly greater than the number of sources, D > K,
the mixing matrices which figure as parameters for the learning process can not
be taken as mixing filter estimates because AA™! # [ = A§ # z. Instead
we here propose to estimate the mixing filters by least-squares. Multiplying (1)
with szl y from right and taking the expectation we obtain the following normal
equations

<ausiy > = ZAT < StgSL o\ > (13)
which is solved for A, by regular matrix inversion using the estimated sources
and < - >= % le\f:r This system is unlikely to be ill conditioned because the
sources are typically uncorrelated mutually and temporally.

2.5 Dimensionality reduction

For lowering the training complexity we here propose to use a K-dimensional
subspace representation of the data y; = ULz, where Uy € RP*E is a projec-
tion. We can write a regular convolutive mixture where the number of sensors
is now equal to K,

L
Yo=Y Brsir, B, =UiA,, (14)
7=0

and note that the sources are unaltered by the projection. This means that we
should be able to recover the sources from the projection using the square case
of our algorithm. Once the sources have been estimated the D-by-K mixing
matrices {A7} are estimated c.f. Sec 2.4.

3 Experiments

3.1 Simulation data

We now illustrate the algorithm on a three-dimensional convolutive mixture
of two sources, i.e. D = 3, K = 2. The true mixing filters are shown in the
left panel of Fig.1 and set to decay within 30 lags, i.e. L = 30. The source
signals, N = 30000, are both drawn from a Laplace distribution. 5000 consecutive
samples is zeroed out from one of the sources, say ’Source-1’. Results are then
evaluated from the estimated Source-1 by measuring the interference power P
in the period where the true Source-1 is silent. We here define the Signal to
Interference Ratio (SIR) P./P;, where P, is the signal power which is estimated
in a period where both sources are active.
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Fig. 1. (left) true mixing filters, (right) estimated mixing filters.

The data is projected onto the two major principal components and the
sources §; are estimated c.f. Sec. 2.5. The optimization scheme is Newton steps,
i.e. updating {AT} by —H 'g where g is the gradient vector and H~' is the
inverse Hessian which is estimated using the outer product approximation update
per sample (see e.g. [12, page 153]). Convergence detected in 124 iterations.
Obtained SIR = 19.3dB. The corresponding mixing filters estimated by (13) are
then used as a starting guess for the general overdetermined algorithm using the
original three-dimensional data as input. Convergence detected in 20 iterations.
Obtained SIR = 34.2dB. Then we use (13) to estimate the corresponding mixing
filters and the result is displayed in the right pane of Fig. 1.

3.2 Real audio recording

We now apply the proposed method to a 16kHz signal which was recorded indoor
by two microphones and produced by a male speaker counting one-ten and a
loud music source respectively. The microphones and the sources were located
in the corners of a square. The signal is kindly provided by Dr. T-W. Lee, and
is identical to the one used in [13]. We choose the number of mixing matrices
L = 50. This time we use a BFGS Quasi-Newton optimization scheme (see
e.g. [12, page 288]) convergence is reached in 490 iterations.

As noted, the source signals can only be recovered up to an arbitrary filter and
we experience indeed a whitening effect on the sources. In [13] a low-pass filter
was applied to overcome the whitening effect, hence, to make the sources ‘sound
more real’. In our presentation, because we have the forward model parameters,
we reconstruct the microphone signals separately as they would sound if the
other source was shut. This is simply achieved by propagating the given source
signal through the estimated mixing model. Fig. 2 shows the recorded mixture
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Microphone-1 Microphone-2
Mixture Mm e o imdonebmmiest
Speech -M‘-’-P—“—‘-*—F e .
N

Fig. 2. Separation of real world sound signals. (Top row) The recorded mixture of
speech and music. (Middle row) Separated speech reconstructed in the sensor domain.
(Bottom row) Separated music reconstructed in the sensor domain.

along with the results of separation. For listening test and further analysis we
have placed the resulting audio files at URL http://www.imm.dtu.dk/ mad/
cicaar/sound.html. Again we evaluate the result by SIR; the interference power
P, as the mean power in ten manually segmented intervals in which the speaker
is silent, and the signal power P is similarly estimated as the mean power in
ten manually intervals where the speaker is clearly audible (and subtracting
off the interference power). The SIR of the proposed algorithm and using the
parameters described is SIR = 12.42 dB. The algorithm proposed by Parra and
Spence [2] represents a state-of-the-art alternative for evaluation of performance.
In the following table we give SIR’s for the Parra-Spence algorithm using the
implementation kindly provided by Stefan Harmeling! based on window lengths
(N) and for three different numbers of un-mixing matrices (Q):

SIR (dB)|Q = 50 Q = 100 Q = 200
N=512 | 11.9 118 123
N=1024| 120 122 12,5
N=2048| 11.9 120  12.3

The table indicates that in order to obtain a separation performance similar to
that of the proposed algorithm the Parra-Spence inverse filter () needs to be
somewhat larger than the length of the IIR filter L = 50 we have used. Future
quantitative studies are needed to substantiate this finding invoking a wider
variety of signals and interferences.

4 Conclusion

We have proposed a maximum-likelihood approach to convolutive ICA in which
an auto-regressive inverse model is put in terms of the forward model parame-
ters. The algorithm leads to a stable (possibly regularized) inverse and formally
allows the number of sensors to be greater than the number of sources. Our
experiment shows good performance in a real world situation. In general, for
perfect separation a stable un-regularized inverse must exist. An initial delay,

! nttp://ida.first.gmd.de/ harmeli/download/download_convbss.html
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e.g., is not minimum phase and no causal inverse exist. On the other hand, in
that case, the source can simply be delayed and thus remove the initial delay in
the filter — exploiting the filter ambiguity. Such manoeuvre will in some cases
make a real room impulse response minimum phase [14].

A Derivation of the likelihood in the overdetermined case
We shall make use of the following definition: $;(st—1,8¢—2,...,8t—r) = Ao#xt —
A# ZT 1 Arsi—-. We can write the likelihood
N-1
P(X|{A,}) = / / (/ (s3)5(fx) dsN> Hp 50)5(f)ds1 ... dsy 1.
(15)

where f; = x; — Zf:o A, st r. The first step in this derivation is to marginalize
out sy, using

p(sn)3(fx)dsn = |AT Aol /2p( 55 (16)
SN

where §§\1,) =3$n(SN-1,-..,SN—L). Then we can rewrite the likelihood with one
integral evaluated, i.e.

N-1
pX1AD = 1454012 [ [ ) TT b dn
SN—-1 =
(17)

Following the same idea to marginalize out sy_; now using

/ (59 p(sn—1)3(fx—1)dsn—1 =|AT Ao 2p( 82 (50 ) (18)
(1)

5y_1 =5N-1(5N-2,5N-3,---ySN-1-L
where Ag)l i ’ ’ )
SN

) . Then we can write the likeli-
_SN(SN 19SN— 27"'78N—L)
hood with two integrals evaluated

P(XI{A}) = | A Ag| /2 / ; /

/ p( 3y A(Q) )n( 3(1) 1) H D(s¢)0(fe)dsy ... .dsy_2.
SN

By repeating this procedure to evaluate all integrals we eventually get

égl) =3 (50,8 17"'a81—L)
N 552) (551),807---,82_0
A(3 2) (1
P(XHAY) =IAT Al 2 T w37 ), {387 = 8357 817, sar)
t=1 .
. 1) A(t—2 A(t—L
Sgt): qcha 5 )a (tz)v---asit—L))

(20)
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Assuming s; zero for t < 0 we finally get

N
p(X{A:}) = AT Ao M2 p(30) s 80 = 8u(811, 802, 8p). (21)

t=1
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Convolutive ICA (c-ICA) captures complex spatio-temporal EEG
activity.
Mads Dyrholm, Lars Kai Hansen, Li Wang¥*, Lars Arendt-Nielsen*, Andrew
CN Chen*

Informatics and Mathematical Modelling, Technology University of Denmark, Denmark
*Human Brain Mapping and Cortical Imaging Laboratory, Aalborg University, Denmark

[Background]

Independent Component Analysis (ICA) is a useful tool for removing electroencephalographic (EEG)
artifacts such as eye-blink or eye-movement. Artifact activity that is spatially-separable and temporally
independent from other EEG activity will, in a successful ICA decomposition, appear in a separate
component. The ICA method is advocated because the obtained artifact components can be excluded
from the EEG by a linear projection. Hence it is possible to clean EEG in its full length without loosing
contaminated data segments. However, this approach still requires an expert judgment to determine
which of the obtained ICA components are wanted or unwanted. In this work we show how
Convolutive ICA (c-ICA) can capture more complex spatio-temporal behavior in a single component
than is possible with conventional ICA. This creates components with more realistic temporal structure
and furthermore assists the component inspection procedure by reducing the number of components to
inspect. Convolutive ICA of EEG data has been studied by Makeig et al (2002,2003) in the complex
frequency domain, here we apply a temporal un-mixing c-ICA approach which does not require
windowing or frequency based representation of data.

[Methods]
The data used for the analysis was a 124 channel EEG recorded at 204.8Hz sampling rate. Electric
pulses were generated at approximately 2Hz and applied to the subjects little-finger as stimulus. An
eighty seconds long recording was obtained with approximately 150 stimulation epochs. DC
components and slow drift were eliminated from each channel separately by high-pass filtering with a
0.2Hz transition-band around 1Hz cutting frequency. Five principal component features were extracted
from the resulting data matrix for convolutive independent analysis (fig. 1).

ICA algorithm: Maximum-Likelihood instantaneous ICA (Bell & Sejnowski, 1995). Convolutive
ICA algorithm: Maximum-Likelihood (Dyrholm & Hansen, 2003). The number of convolutive lags
was set to fifty samples (0.25 sec).

[Results]

The ICA and c-ICA algorithms each resulted in five components. We illustrate the difference between
the two ICA approaches by analysis of the components with the maximum correlation with the
stimulus delivery. In Fig. 2 and 3 we show time series for the conventional and c-ICA for the five
spatial variance components. The conventional ICA time series all follow a stereotypical time-course,
hence appear as being completely time synchronized. While the c-ICA time series show non-trivial
delay structure between the five spatial patterns, hence, can give rise to time variant scalp contours of
activity. This is an important advantage for c-ICA because it directly, within a single component can
capture delayed correlations across the features and locations. In Fig. 4 we show the cross-correlation
between time series associated with two of the spatial variance features. The cross-correlation function
shows two off-center peaks characteristic of two symmetrically delayed signal components. The
conventional ICA algorithm captures only the “average” behavior, while the c-ICA component
captures the delayed presence of one of these components.

[Conclusion]
Convolutive ICA (c-ICA) offers a more flexible representation with non-trivial temporal structure of
the component time series, highly relevant for EEG analysis.

<Acknowledgement: supported by the Danish Technological Council >
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A PREDICTION MATRIX APPROACH TO
CONVOLUTIVE ICA

Lars Kai Hansen and Mads Dyrhalm
Infonrmatios and Mathematical Modelliog
Technical Urlversity of Denmnarck 3321
DE-2800 Lynghy, DENMARK
il B diu dl mad@imamn. dbo,dk

Abstract., A finear prediction opproach reduces consolufive in-
dependent component analyais (ICA} to the following three steps:

Solution of a set af multivariate linear prediction problerms, o e

multivariate deconvalution problem with known matriz coefficicnls,
and finally solution of g corventional instantenecus mactng 104
problem.

CONVOLUTIVE MIXING

Independent component analysis (TCA) of convalutive mixmres 13 a prob-
lemn of considerable eurrent interest in neural comnitaiion, say [or modeling
apeech processing and furthermore has mmmerous applications iu signal pro-
cesding, see, e.g. |1, 2, 3. 4. 5.

Convolutive ICA in its simplest form concerns reconstooction of the L —
1 mixing matrices and the T source signal vectors From a0 D-dimensional
cenvelutive mixture,

[
i . TR 1R B (1)

=i

The K-dimensional soures signal vectors are assumed remporally ndepen-
dents p{{&}) = H;I':] prs ) We mll asaume Tis g large that the correlations
in the process 3 can b explained by the miing metrices. Tn face, as uolod
tiy [L], possible aule-correlations of the souree signals van oot be dentilied
withesn! additional a priced Information. In order to see this, note that in L

freqquency dorwaln the convelulion beecomes a product of Fourier tranaforms
By = Ausy, i)

hence, any non-gero filter’ .'.ILI:;.:} can be maltipliod on a given souree if 1 hiw)
iz applied to the worresponding colurem of A, Another obsorvation is that
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[ur stationary Gaussian while noise sources, the aufficiene aatistic {xf:::i_é';
toes nol allow hall recovery of the mixing marrices since

{xt:‘;rhi} = Zﬁrﬁ:—ruh (&)

wrhich i invariant 1o comman rotation A, — A, U of all mixding masrices.

Mot earlior approachez to convolutive ICA are based on frequenor do-
miadn catimation using (2), This leads to a set of conventional “mstantansons’
1CA prablems, one for each frecquency, and i3 hampered by 8 massive permi-
taticn problem which can be tamed by adding a prior source ‘smasothoess'
information or other more elaborate schemes |2, 3, 4, 5, 6. Anotber lue of
work i3 based on oprimization of certain 'independency measuees®, pdoriea
tion maximization or other heuriscics, see eg., [T, 8, 0, 10, LL, 12, 13,

Statiatically motivated maximum Hkelibood schermes bave been proposed,
typically leading to hish-dimensional optimisalions w.e b to all elemenes of
all miwing matrioes, see g, 14, L, 18], The aim o this paper is to invoke s
ferwr simiple approcimations and use these and atraightforveerd Hnear alpebra
tar petdues the problem toa conventional [CA problem, We will avoid the fre-
quiney domain representation all together, hence, wewill not further acdidiess
the frequency componettt permucation problem,

TEMPORATL TUN-MIXTNG

We will present & temparal wu-mixing proceduve in which che key new ingre-
dient is the use of predictivn maleices, heoee, this step is first illnstrated oo
the well-nnderstond problom of destontensons TCA of temporally cormilated
BOMITO R

Comstder the instantanoous MIXIng system

Xy = 1*154. [4::

For simplicity we will consider square mixing so that D = R, e, A dsa
K os I maerin with real elaments; Lot the prediction matris W be the bes
linear predicoor of the series x

Kpdr = Wiy + €1, =)

Mow right multiply (3} by the transpoaed source vweelor s, and average w.r.t.
ihe source distribulicn, IT we assume fe -] ) & O, we oblain
A":ﬁr I d_-ﬁ';r :' “rJ-A{HerI :'..,
AC. = W.AC,, il

whiete the mattices Oy and C, sre disgonal because the 2ources are indepen-
dent, and constant in time by stationarity, Tron () we learn thae the mixing
maltix A is the matrix formed by the cgeavectors of the predietion matriz.
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The eigenvalues in the diagonal of che matrix C,.E,?' At formakized aiilo-
correlation values of the given source at the lag 7. Equations {5-6) [oom an
alternslive route Lo 1he so-calted Molgedey-Sehuster algorithm, see |16, 17
This algaritho is o gquick (elosed [oem) ICA approach, for mixing problemns
with time-correlaled sources and whore Lhere are values of 7 for which the
zonres have different normalized auto-correlations, gee eg. [18] for a2 more

detailed diseussion and multi-media applicationa.

Next we will show how the prediction matrix method can he wse to sim-
plify the convelutive mixing problem. The linesr prediction appeoach is Hest

peneralized to a multi-lag linesr predictor of Lhe T,

M

Xipr = E Weake—x + €i—r- (7

& 4

Substitutiog the sonvolutive prooess (1) we find

Eﬁrﬁg+1—_J—L"f\'r-,_Lﬂ -] L P T Lﬂ_:l

=l =0

As abiove we multiply (8 by '-:'-!,I and average w.r.t. the amiree digtribntion now
assuming, as discessed abore, thar the sourees are ferpomlly encorreloled;

=T Sr' 1= Cpls s, to get

A Cp=W._ ACy,. rq:'

Furthermore, assuming that all sourees have non-vanishing waianee we can
divide by the diagonal seurce covarianee matvix Cg Lo avedve at the resule,

A=W A, 1)

Henee, the existence of the lnear predictor (7] implies that the delaved miviog
miakriees are peperated fom the “zere lag’ mixing matrix by che prediclion

ol ries,

We cstimate the predietion matrices Wes by leasl squaces, For cach

value of 7 separately we obtain a coupled sot of equations,

M
{xe I-rxtl- 5= Ewr.a{xt .kx;r_.-_:h (11

A=il

'l.'u"ll.ll. Lhe expectations estimaled fom the measured time series x by () =
7 Flood The linear equations in [11) are easily solved for W. s by matric
iuversion, For each value of © we will eventually need the a0t of L+ 1 marrices
W, of, (10} Note that the couphing to the other prodiction marriees (for
& piven 7) in (11) makes Wo o different, fronn the matrix obtained by msking

a linear prediction in (V) with id = (L
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The generator property {10] is next used to sirplify the convolutive mix-
ing problem. First rewrite (1)

i L
= z W.aAusi_- = z Wonlsy (12
r=I1 =]

The signals 1, = Ags, form gn uncorrelated serieq as thew are proporctional
to the soures sories &,

We have already estimated the prediction matrices from messured data,
bewee, (12} is a standard linear MIMO system with Ereaen matriz coefficients
W. 5, and can be solved by a variety of methods producing an estimare of
the time series Gy, = 1,..., T In this work we nge the simple reenrive Hlcer

L
-~ 224 E - s
G = Wi~ WIEW ol {13)
This filter may become unstable, in such case a more Tobust remalarized pati-
mialor can be invoked, o, substituting

-1 T 2 =1
Woo = (81 + W, W) " (1d)

in (13}, The remaining problem i3 to estimate Ag and che soures gignals s
from the series
iy = Agx;. (14)

This is a conventional ICA problem with temporally indepeadont scurce sig
nals and ecan be solved by any of the standard approaches. TF the distribution
of the source slgnals have positive kurtosis, as appropriste for, wg., speech
signals we can use the Infomax approach of Dell end Sejuowski [L9].

Snlving the ]'I-Tl’]l'l-]d-"rl] (18] we olilain A..n and 8, using (1) we can then
generate the matrices AT uking hha W 4°% hence concluding our recips far
anlying the convahitive mixing problam (1),

SIMULATION EXAMPLE

W illastrace the viahility of the prediction bosed approach by & small simoe-
lation exarophe.

A 0= K = % convelutive mixbure was created by first desigring a sel
of 2 % 2 mixing matrices (L = 30}, These were next applied as in {1) to
f idd. random aonrce spnal (10 = 300007, The distriburion of the aouroe
sigrale was made non-gaussian, with positive kurtosia, ba the transfrmalion
& = dign(u) = ui® where u~ A{0.1). The source and the mixed signals car
be seen in Figure 1, while (he midng mateices are shown for reference in
Figure 7,

In Figures 2-3 we firat, ilustrace Whe axcetlent qualicy of she linear madel
in (T},
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'|r!-|'|, l "||' Il
Tt Al

Figuse [ Simulation experiment involving L = ) square mixng modrices {7 = I}
convolved wich i.dd. long-tailed source signals, In the upper passl we shiow &
short sepment of the two convolved gigaals (x), in the lower panel we show the
corresponding segments of the Lwe sourees (8,). The mixving matdees ane shown in

Figure 7.

Figure 2 shows scattor plots of the prediction ermor (£, 7= 2 wa. tho
st signal (=), I is uportant foe bhe generator relation (107 that Rwese
tieme series are rouphly uneorrelated. In Figure 3 we have further quantiled

this relation as fuoction of the prediction horizom (7). As expecied

precliclions bocomes more and more noisy 45 we increase T, L, the relative

powier in gy iucrcascs, Rowover, morve important 18006 that the correlation

belween the source sipnal and the srror remains lmited, supporling relation
1R 4 Bl

(10},

Next we lnvesiigale the quality of the pradietion matriz estimates. The
ratios A Ay b were compuited with the ‘e’ matrices wsed i the gsimolaton,
In Fagire 4 we pompace these macrices with the marrices estimataed froees data,
the match 38 pood and the cther four channels are of similar qualily {data

ThaE shicrw )

The MIRO probilem s solved using (13), The relative reconstrienion erooe
wus stoall {({x — 3)% /(2" < 107, Uging our in-houge implementation
of the Bell and Sejnoerskl alpocitlun, instantanecas TOA was applied to the
resmlting Hime series 13,0 The estinaled sourees are compared with the “true’

sources in Figure § and the consisteney is remarksble.

Using the reconstructed Ag woe estimaled the remaining metrices & ns-

dl_MalT..nh sl b availalle from wew, Lot Aty 4k 2 18p
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Figure 4: Simmlation experimont &5 in Figure 1. We show che relative prediction
crror (the mesn square error normalised Ty che signal varance) os function of
the prodiction harison (+), and che cnrrelation coefficients between o4, and ;-
While the prediclions become increasinply randacn, the cormeladion eorflicienls stay
in the range —{L05 — (L1056, ensaring that the eoror m (10 15 hauhded.

ing (10), The matrix elements A o - e compared I Pleure 6 with the
correspoiding element of matrices found by geweralion wsiog the e Ay,
Apart [rom the absalote amplitode, these clemenls ae o good agreement.,
wdicating that the approach has guite sugeesslnlly solved the convolutive

mixing problom.
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Figure: 5: Simulation experiment as o Figure 1, We plid Wi teue sminees of zhe
gimulation eeperiment vs, the recopslrucied seurees. The sign and the orderiog of
the reconstructed sources have beon modified for elarity. The reconstructod sources
pre vl alipred with the troe sourvces, chis s highly non-grivial for convalotive
mixtures,

CONCLUSION

We have proposed o linear preciction approach to the comadutive ICA prob-
lern. Within a linear procdiction assumption and linear algebra, the prablem
ia reduced to the following three steps; Solving a set of mltivariate lin-
enr prediction probleons, solving a linear multivariate deconvolulion problem
with kuown matriz coellicients, and finally solving » convenlional Instanta-
neous mixing [CA problem. A small simmlation example showed Ghal the
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Figure 6: Simulation experiment a3 o Figurs | The recovered matrix eloments

Az, (buttom row) are compared with Lede maceices (upper tow) and che matri-
ves obtiined by mulaplying the prediction matrices W o on che trie Ar-matriz
(rmiddle row),

approach is able to aconrately eacimate the wixing matviees and the soures
signals, We are carrencly trving to identity proper condiclons for the linesr
prediction assumption and also to invoks inore robust schemes for solving the
MIMO problem.,
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APPENDIX T

Toolbox implementation notes

T.1 Functions in the toolbox

Function name | Description Matlab | Fortran90
cicaar CICAAR algorithm. X X
cicaarmpi CICAAR algorithm for multiple X
CPUs running in parallel.
cicaarwrite Export matlab array for use with X
the binary CICAAR implemen-
tation.
cicaarread Import result from the binary X
CICAAR implementation.
cicap CICAP algorithm. X
convestmix Estimate the multivariate X
Wiener filter.
convmix Produce a convolutive mixture. X
convis Calculate the generalized poles X
of a convolutive mixing system
crosstalk Measure the crosstalk matrix. X
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T.2 Pointers towards a CICAAR computer im-
plementation

The implementation of the CICAAR algorithm used in this thesis uses the BFGS
optimization routine of [41] for gradient based optimization which was also used
in the ICA:DTU implementation of Infomax ICA available at
http://mole.imm.dtu.dk/toolbox/ica/.

A stable starting point is A, = 0 (for 7 # 0) with arbitrary A,.

In each iteration, the parameter refinements might result in an unstable inverse
used for estimation of the likelihood. In such cases, the negative log likelihood
is likely to be represented as IEEE inf in the computer. When that happens,
IEEE inf is replaced with an arbitrary (very) high number due to the line-
search procedure of the BFGS optimizer. Also, when the auto-regressive inverse
is detected to diverge, the gradient is unnecessary and is not calculated. Thus,
the infeasible iterations consume considerably less computational power than
the feasible iterations.
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