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Summary

This thesis describes the construction of discriminative models for motor

imagery EEG classification in brain computer interfaces (BCIs). Two types

of methods are introduced to address the issues from the perspectives of

model generalization and model adaptation.

The computational model for motor imagery EEG feature extraction

needs to be a discriminative function conforming to the underlying dynamics

of motor imagery, and robust against nonstationarity inherent in EEG. There

exist successful methods that extract the event-related (de)synchronization

(ERD/ERS) effects by designing spatial filters that maximize differences be-

tween EEG signals from different classes. However, in the presence of causal

relationships and neuronal propagation, spatial filters in the instantaneous

mixing model are not capable of describing such dynamics. To this end, a

novel computational model for discriminative learning of propagation and

spatial pattern is proposed. By introducing a convolutive model, the causal

relationship could be covered in extracting ERD/ERS related features. Ex-

perimental studies on a two-class motor imagery data validate the effec-

tiveness of the model, and indicate that the proposed model is better for

background-noise attenuation. An ensemble learning method is proposed to

improve the feature extraction model by addressing the biased estimates of

covariance matrix. The mismatch between the data and the feature extrac-

tion model are used to re-sample the training trials, and different models

are generated for different sub-sets of trials. The spatial filters are obtained

by ensembling multiple models, and discrepancies between samples can be

xi



Summary

addressed. The experimental results demonstrate that the ensemble learning

model can improve the classification accuracy.

The large variation in EEG signals recorded on different days makes learn-

ing such nonstationarity within training data ineffective. It is necessary for

the computational model constructed from the training data to adapt to the

test data. The key challenge involved in computational model adaptation is

how to construct a metric that measures this mismatch between test data

and training model without test labels. To solve this problem, we construct a

data-model mismatch metric to evaluate the feature extraction model, which

is used to guide the adaptation toward reducing data-model mismatch in

the proposed model adaption method. Experimental results show that the

quantified mismatch is closely related to the classification accuracy, and com-

parison with other state-of-the-art spatial filter design methods validates the

proposed model adaption method. To further understand the nonstationarity

inherent in EEG and its implication on feature distribution change, a theo-

retical analysis is performed from the perspective of discriminative subspace

of the EEG covariance matrix. By establishing the relationship between

the shift of the discriminative subspace and that in feature space, a model

adaptation method is proposed with the discriminative subspace updated

for the test data. To take the risk from semi-supervised learning into con-

sideration, a cross-validation-based loss function is proposed to evaluate the

adaption direction. Experimental results show that compared to the adap-

tation method based on normalization, the proposed adaptation method can

further enhance the classification results.
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5.2 The change in ||Ête|| with respect to the iteration number k.

As shown in this figure, the change in ||Ête|| becomes very small
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Chapter 1

Introduction

1.1 Background

1.1.1 Brain Computer Interface

The discovery that electrical signals produced by the human brain could be

recorded from the scalp implies the possibility of communicating with exter-

nal devices via brain independent of muscle, and subsequently, makes brain

computer interface (BCI) research a burgeoning field [1, 2]. By measuring

central nervous system (CNS) activity, a BCI system enables people to access

and understand the ongoing brain activities, and also provides alternative

brain output pathways that are independent of normal brain outputs such as

peripheral nerves. Applications of BCI range from modulating normal CNS

output to facilitating new interactions between CNS and the environment

[3].

There exist many kinds of brain signals, which can be categorized by the

type of measurement technique being used or the nature of the brain activity

being measured. For instance, activation, communication and information

transfer in the CNS are fulfilled by neuronal action potentials (or spikes),

which also give rise to neuronal electrical activities in the cerebral cortical

surface [4]. Such electric fields are accessible to magnetic recording, such as

1



Chapter 1. Introduction

magnetoencephalography (MEG), and various types of electric recordings at

different spatial scales, including electroencaphalography (EEG), electrocor-

ticography (ECoG), and multielectrode arrays implanted in the brain tissue

[5, 6, 7, 8]. Besides electric signals, chemical processes involved in brain

activities can also be measured, e.g., using positron emission tomography

(PET) [9, 10]. In addition, the metabolic process involved in the energy con-

sumption during different brain activities can be revealed by the change in

hemoglobin, which is regarded as the blood-oxygen-level-dependent (BOLD)

response [11, 12]. Based on the BOLD response, there are metabolic signal

measurements including functional near-infrared spectroscopy (fNIRS) and

functional magnetic resonance imaging (fMRI) [13, 14, 15, 16, 17, 18].

Among all the aforementioned different measurement techniques, EEG is

the most popular and widely-used measurement in BCI systems [19]. Com-

pared to EEG, both fMRI and MEG are more expensive and call for much

more complicated implementation. Also, PET, fNIRs, and fMRI suffer from

poor temporal resolution and delayed responses, which make these measure-

ments less feasible for most of the BCI applications in reality. In contrast,

electrical signals usually have relatively high temporal resolution and fast

response. However, electric signal measurements except EEG, i.e., ECoG

and implanted electrodes, are also less practical and convenient, because as

invasive methods these measurements need surgical operations. In conclu-

sion, EEG-based BCI is the most widely studied and applied BCI paradigm,

which can be attributed to the following advantages of EEG:

i) EEG provides real-time measurements for on-going brain activities;

ii) EEG can be implemented under relatively lower cost; and

2



1.1. Background

iii) EEG recording is non-invasive.

EEG-based BCI systems vary depending on the EEG signals used to

drive the system, which can be categorized by the type of the signal genera-

tion. One kind of the EEG signals is generated by external stimulus, and is

regarded as evoked potentials (EPs). For example, P300 is a kind of endoge-

nous event-related brain potentials (ERPs) in EEG, and it occurs over the

central-parietal scalp around 300 milliseconds after a rare stimulus appears

in the typical “odd-ball” experiment paradigm [20, 21, 22]. The speller based

on P300 with the “odd-ball” paradigm is one of its most important applica-

tions, and it functions in a similar way to a standard computer keyboard.

In the experiment, a subject is presented with a matrix of characters, and

required to attend to one of the elements in it. By successively and randomly

intensifying either a row or a column of the matrix, the “odd-ball” event is

created when the intensification event is relevant to the element with the

subject’s attention. Thus, P300 can be triggered and observed from EEG

when such events occur [23, 24]. By eliciting and detecting P300, a “virtual

keyboard” BCI system is created as a helpful alternative communication or

control approach for the disabled people who cannot use normal control de-

vices [25, 26, 27, 28].

In contrast to the signals that are generated as the direct results of exter-

nal stimulus, another kind of commonly used EEG signals are spontaneous

changes in rhythmic activity recorded over the sensorimotor cortex known

as sensorimotor rhythms (SMRs) [29, 30]. Changes in the SMRs are typi-

cally associated with motor cortex activation [31]. In particular, decrease in

SMRs, known as ERD, has been discovered during motor behaviors, followed

3



Chapter 1. Introduction

by the discovery that increase in SMRs, known as the ERS, is also related

to sensorimotor events [32, 33, 34].

Not only real motor movements, imagination of certain movements (re-

garded as motor imagery) can also be revealed by ERD/ERS in EEG sig-

nals, which has attracts even more attention in EEG-based BCI research

[30, 35, 36]. As a dynamic state facilitated by the motor system, motor

imagery relates to intending and preparing movements. It is also generally

assumed that internally motor imagery can cause the same motor repre-

sentations as the corresponding motor execution [37, 38]. Many findings

suggest that there exist parallels between the motor imagery and the exe-

cuted movement, i.e., close temporal coupling between motor imagery and

executed movement [39, 40, 41]. Moreover, motor imagery can even lead

to performance improvements for athletes, and previous studies also suggest

the effectiveness of motor imagery training for functional recovery of stroke

patients [42].

Motor imagery related SMR has been extensively studied and exploited

in BCI for supportive and therapeutic purpose, and is a highly attractive

research area. For example, the motor impairment caused by stroke is one

of the major causes of permanent disabilities, and active movement training

(AMT) is usually used to restore the patients’ motor function [42]. How-

ever, this kind of traditional therapy is quite labor intensive and expensive.

To this end, motor-imagery-based BCI provides promising solutions. By de-

tecting and quantifying ERD and ERS associated with motor imagery, BCI

can translate motor imagery of certain actions into commands for possible

orthosis to perform predefined tasks, which is illustrated by Figure 1.1. On

the one hand, the motor-imagery-based BCI system can be used as a sub-

4



1.1. Background

stitute of neuromuscular functions for environment control or interaction.

On the other hand, patients could restore their motor functions gradually

through AMT provided by BCI rehabilitation systems with less assistance

from therapists [43, 44, 45]. For example, it has been reported that patients

with spinal cord injuries could regain hand grasp function with a motor im-

agery BCI-based rehabilitation system, and many studies show that stroke

patients’ motor functions could be improved with BCI-based rehabilitation

[46, 47, 48]. In short, motor-imagery-based BCI does not require any volun-

tary muscle control, and can be used to develop alternative supportive and

therapeutic systems that call for less manpower [49, 50, 51, 52].

 

Figure 1.1: An example of motor-imagery-based BCI rehabilitation system

1.1.2 Processing Procedures in a BCI system

To learn the mental condition from the EEG signals is the core for the us-

ability, information transfer, and robustness of BCI systems [51, 53, 54].

Especially for the aforementioned BCI-based rehabilitation system, the ef-

fectiveness of the rehabilitation is largely depending on classifying EEG sig-

nals corresponding to the correct motor imagery task. Generally speaking,
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for motor-imagery-EEG-based BCI, it takes three steps in processing raw

EEG signals to obtain the classification results regarding the motor imagery

condition, which are the preprocessing step, feature extraction step and clas-

sification step.

Preprocessing aims at increasing the signal-to-noise ratio of the input sig-

nals, and it usually includes temporal filters and spatial filters. A temporal

filter is used to obtain EEG signal components from frequency bands with

the strongest SMR effect obtained by bandpass filtering. For example, it is

generally believed that ERD/ERS is more distinctive at 4−30Hz, and subse-

quently, a bandpass filter of around 4− 30Hz is usually applied to raw EEG

signals. Given the drawbacks of EEG with regards to poor spatial resolution,

spatial-filtering is used to localize EEG signals recorded from multiple chan-

nels. Common average reference (CAR) filtering subtracts a common sample

average of all the remaining channels from one specific channel. Similarly, in

Laplacian filtering, the average of the four neighbouring channels is used as

the reference for a specific channel. Both CAR and Laplacian filtering are

commonly-used spatial filtering techniques to alleviate spatial mixture and

enhance localizing information as preprocessing [55].

Feature extraction is the process of obtaining signal characteristics that

can represent certain mental conditions for discriminative purposes. The

characteristics containing useful information in a compact and efficient form

is referred to as a feature or a feature vector. There are frequency-analysis

methods that extract the frequency parameters pertaining to ERD/ERS as

features, such as the Fourier transform, the wavelet transform, the Hilbert-

Huang transform, and the autoregressive model [56, 57, 58, 59, 60]. Moreover,

entropy measurements such as Kolmogorov entropy have also been used as
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features to quantify ERD/ERS [61]. Recently, the analysis of neuronal con-

nectivity is gaining more attention in neuroscience because it describes the

general functioning of the brain and communication between its different re-

gions [62, 63, 64]. For example, causal connectivity is found in motor related

core regions such as the primary motor cortex (M1) and supplementary mo-

tor area (SMA) during motor imagery [39]. Therefore, scalp connectivity or

intra-channel synchronization measurements have been used as features for

motor imagery analysis [65, 66]. Synchronization features derived from the

phase locking value (PLV) and from the spectral coherence have been exam-

ined for classifying mental tasks in [66]. Similarly, in [65], nonlinear regressive

coefficients and PLV are used as features of amplitude and phase coupling be-

tween different brain regions, and prior neurophysiological knowledge is used

to determine the pairs of electrodes of interest. Furthermore, common spa-

tial pattern analysis (CSP) is a type of feature extraction method based on

spatial filter design. By maximizing the power differences between different

motor imagery conditions, spatial filters of CSP can capture the ERD/ERS

associated with motor imagery with the power of the signal in the pseudo-

scalp space as features [67, 53]. Because of its discriminative function, CSP

differs from the other spatial filtering methods, and is regarded as a feature

extraction method, while filtering methods such as CAR and Laplacian filters

are usually regarded as preprocessing procedures.

The final stage of a BCI is usually classification, where the mental state

corresponding to the type of the motor imagery being performed is predicted

by classifying the features of the brain signals. Classification methods in

machine learning have been widely explored and applied in BCI. The most

commonly-used and successful classifiers in BCI include linear discriminant
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analysis (LDA), support vector machine (SVM) and naive Bayesian classifier.

In [68, 69], the authors compare the performances of several classifiers.

Figure 1.2 shows a block diagram of the three procedures in a typical

BCI system: preprocessing, feature extraction and classification. Usually,

to detect motor imagery condition accurately, machine learning is applied

for both feature extraction and classification to build effective discrimination

models. To formulate the relationship between EEG data and the label, i.e.,

the ground truth of the corresponding motor imagery task being performed,

the computational models used in these two steps need to be trained by train-

ing data with labels, which is usually regarded as the calibration or training

stage. After the training stage, the resultant feature extraction model and

classification model are applied to the test data to predict the labels, which

is regarded as the evaluation or test stage. It should be noted that prepro-

cessing, feature extraction and classification are not always separate steps.

As introduced before, frequency analysis and spatial filter design can be used

for both preprocessing and feature extraction. In some studies, part of the

preprocessing and feature extraction are formulated in one model, while in

some other studies the feature extraction model is optimized by the same

optimization function in the classifier [70, 71].

1.2 Objectives

Because EEG data is typically represented by a large matrix of multi-channel

time series, which cannot be fed to the classifier directly, the feature ex-

traction step is of particular importance for the accuracy and reliability of

BCI. As introduced earlier, measured from electrodes on the scalp that are
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Figure 1.2: EEG processing procedures involved in BCI

far from the neurons, EEG fails to provide precise positions of the activated

brain areas, and is very prone to artefacts, such as electrooculography (EOG)

and electromyography (EMG) interference. Apart from the mixing nature

of brain signals, the characteristics of the brain signal of a specific mental

task may vary largely from trial to trial, and from session to session. Such

nonstationarity inherent in EEG makes capturing information related to mo-

tor imagery even more difficult [72, 50]. Therefore, it is very challenging to

obtain discriminative and effective features from EEG by distinguishing be-

tween the change in SMRs due to motor imagery and the irrelevant changes

from background noise. Thus, the main motivation of this thesis is to en-

hance the performance of BCI with the focus on feature extraction for motor

imagery EEG.

The computational model for feature extraction needs to be a discrimina-

tive function that is in accordance with underlying dynamics and phenomena

of brain activities during motor imagery while robust against the nonstation-

ary nature of EEG. The challenge for such a computational model aiming at

9
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motor imagery EEG classification in BCI arises mainly from two aspects:

i) complex dynamics and phenomena of brain activities during motor im-

agery revealed by accumulating neuroscience findings need to be taken

into consideration; and

ii) nonstationary nature of EEG and low signal-to-noise ratio cause inef-

fective feature extraction with resultant inaccurate prediction.

It is worthwhile noting that these two aspects are not independent of each

other. A model depicting the dynamics more accurately is more robust to a

certain extent because it is better in capturing activities relevant to motor

imagery from varying noises. Regarding these two aspects, limitations of

existing research studies can be summarized below:

i) despite computational models combining frequency, temporal and spa-

tial analysis, causal connectivity between different brain areas caused

by possible neuronal propagation effect during motor imagery is not

fully investigated; and

ii) most existing works that address nonstationarity focus on measuring

data variations, while the data-model mismatch has not been addressed

directly and sufficiently.

The main aim of this study is to propose computational models for feature

extraction regarding research issues arising from the two aforementioned as-

pects so as to enhance the performance of the BCI in classifying motor im-

agery EEG. More specifically, the objectives of this thesis are:

i) to introduce a convolutive computational model to depict the more

complex underlying causal relationships involved in ERD/ERS effects;
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ii) to build an ensemble learning model with a re-sampling approach that

takes the mismatch between model and data into consideration;

iii) to propose a model adaptation method using a novel quantification of

data-model mismatch between the training model and the test data;

and

iv) to present a discriminative subspace tracking method for model adap-

tation with theoretical investigation of the data-model mismatch from

the perspective of subspace.

The outcomes of this study may improve the capabilities of BCI in detecting

and classifying motor imagery EEG:

i) with more complex underlying dynamics of motor imagery being cov-

ered, the computational model is more accurate and is better in back-

ground noise attenuation;

ii) ensemble learning of multi-model improves the performance of the model

with the mismatch between data and model being considered; and

iii) the nonstationarity inherent in EEG data could be addressed by adapt-

ing the model for the test data.

1.3 Structure of the Thesis

In the context of feature extraction for motor imagery EEG classification

in BCI, this thesis addresses the following problems: model generalization

and model adaptation. In Chapter 2, we give a literature review of feature
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extraction methods for motor imagery EEG. In Chapter 3, we propose a com-

putational model to account for neuronal propagation effect in spatial pattern

analysis, and estimate the propagation and volume conduction jointly and

iteratively in the proposed unified model. In Chapter 4, an ensemble learning

of spatial filter design is proposed to address the nonstationarity issue, which

takes the mismatch between samples and the model into consideration. In

Chapter 5, we propose a model adaptation method by introducing a quan-

tification of the mismatch between training model and test data based on a

tensor formulation. In Chapter 6, a discriminative subspace tracking algo-

rithm is proposed for model adaptation. In summary, the whole structure of

the thesis is shown in Figure 1.3.
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Chapter 2

Literature Review

A vast number of studies addressing feature extraction have been proposed to

determine the most distinctive characteristics in EEG that represent the men-

tal task of interest. For motor imagery EEG classification, spatial filtering

has been widely used to localize EEG signals with the strongest ERD/ERS

involved in motor imagery, and probably the most recognized feature extrac-

tion technique is the spatial filter design based on CSP [53, 67].

2.1 Common Spatial Pattern Analysis

In CSP, the desired spatial filters are constructed as projection matrices.

The prominent ERD/ERS can be extracted by maximizing the variance of

the projected signal under one condition while minimizing it under another

so that the EEG signal could be classified by its power in the projected space

[73, 74].

Let R+/− ∈ Rnc×nc be the pooled estimate of the covariance matrix of the

band-pass filtered EEG signal measured from nc channels under condition +

or − (e.g., the left hand imagination or right hand imagination), i.e.,

Rc =
1

|Qc|
∑
i∈Qc

X i(X i)T

tr[X i(X i)T ]
, c ∈ {−,+} (2.1)
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where X i is the data matrix of a short segment of the band-pass filtered EEG

signal for trial i, and tr[·] is the trace of a matrix. Considering the binary

classification problem, the two classes are indexed by c ∈ {+,−}. Qc denotes

the set of trials that belongs to class c such that Q+
⋂Q− = ∅, and |Qc|

denotes the total number of samples belonging to set Qc. Let

R = R+ +R− (2.2)

with the eigen-decompositions as

R = URΓUT
R (2.3)

where UR is the matrix of eigenvectors and Γ is the diagonal matrix of eigen-

values. Thus, the whitening transformation P can be obtained as

P = Γ−
1
2UT

R (2.4)

Let

Σ+ = PR+P T (2.5)

Σ− = PR−P T (2.6)

Σ+ and Σ− in (2.5) and (2.6) have two key properties for the discrimination

of motor imagery EEG. Firstly, they share common eigenvectors:

Σ+ = UΛ+UT (2.7)

Σ− = UΛ−UT (2.8)

16



2.1. Common Spatial Pattern Analysis

Secondly, the sum of the corresponding eigenvalues is 1:

Λ− + Λ+ = I (2.9)

where I ∈ Rnc×nc is the identity matrix. Then, the spatial filter W in CSP

can be obtained as

W = (P TU)T (2.10)

such that

WR+W T = Λ+ (2.11)

WR−W T = Λ− (2.12)

The significance of the transformation in (2.11) and (2.12) lies in the fact that

the diagonal elements λcj, j = 1, 2, ...nc, in Λc are the variances of the signal

after the projection by W . Given that λ+
j + λ−j = 1, if λ+

j is close to one,

λ−j is close to zero. In other words, the corresponding spatial filter wj yields

signals of class + with high variance and signals of class - with low variance

in the surrogate space, and vice versa. Therefore, if we sort λcj, j = 1, 2, ...nc

in a descending order (or an ascending order) and pick wj corresponding to

the largest and the smallest λcj, we can extract features of variances with the

strongest discriminative information. Usually, λcj is sorted in a descending

(or an ascending) order, and correspondingly the top and bottom rows of W

17
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are used, which yields the feature f as

fij = log
wjX

i(X i)TwT
j∑

j wjX i(X i)TwT
j

, j = 1, . . . , r, nc − r + 1, . . . , nc (2.13)

where fij is the j-th element of fi, and r is the number of pairs of spatial

filters being used.

The calculation of W can also be expressed as solving the optimization

problem of maximizing the Rayleigh coefficient between R+ and R−, i.e.,

ŵ = arg max
w

wR+wT

wR−wT
(2.14)

(2.2)-(2.10) and the optimization function (2.14) can be solved as a general-

ized eigenvalue decomposition problem, i.e.,

R+wT = λR−wT (2.15)

In short, optimizing wj to minimize or maximize λj is equivalent to find-

ing the spatially-filtered signal with the strongest ERD/ERS effects, which is

the reason why CSP is successful in extracting discriminative features from

motor imagery EEG. Thus, efforts have been made to improve CSP, which

will be discussed in the following sections.

2.2 Theoretical Analysis of CSP

There exist many works that analyze CSP from different angles for further

understanding and possible improvement in addition to its discriminative

function in maximizing power differences between classes. In [75], the au-
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thors build a two-stage hierarchical Bayesian structure to model the underly-

ing brain activities during motor imagery, and show that CSP is a maximum

likelihood (ML) estimate of the model under certain assumptions. In [76],

the authors establish the theory linking spatial filtering directly to Bayes

classification error in the CSP feature space. In particular, it is proved that

Bayes error can be reduced by minimizing the Rayleigh quotient in (2.14).

Moreover, it is proved in [77] that spatial filters in CSP project the EEG

data into subspaces where the Kullback-Leibler divergence (KL-divergence)

between the data distributions from two classes is maximized. Therefore, the

objective function of CSP can also be formed in a divergence-based frame-

work. The significance of this work lies in the fact that it is a unifying

framework for CSP with different kinds of regularization.

2.3 Joint Optimization of Spatial Temporal and

Spectral Parameters

Despite the importance of spatial filtering, temporal and spectral analysis are

also critical for motor imagery EEG classification [32, 78, 30]. For example,

it is generally believed that broad band around 8 - 40Hz is the band with

the most distinctive ERD/ERS effects. However, the specific discriminative

bands for different subjects may be different. Besides frequency components,

time segmentation is also critical for effective feature extraction. Even in the

BCI experiments with a specific cue to instruct subjects to start performing

motor imagery, it is difficult to know the exact time when the motor imagery

begins. Therefore, many works improve the feature extraction model by
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combining temporal and spectral analysis with the spatial pattern analysis,

i.e., CSP.

In [70], common spatio-spectral pattern (CSSP) is proposed by optimizing

spatial filters by adding a one-time-delayed sample, which is equivalent to

increasing the number of the channels. In [79], common sparse spectral

spatial pattern (CSSSP) extends CSSP by implementing the optimization of

a complete global spatial-temporal filter into the objective function of CSP.

In [71], iterative spatio-spectral patterns learning (ISSPL) is designed to

automatically learn spatio-spectral filters and the classifier sequentially from

labeled multichannel EEG data in an iterative fashion. In each iteration, the

spatial filters are calculated via CSP based on the spectral filters optimized

in the preceding iteration. Coefficients of the temporal filters can be regarded

as the feature coefficients, and are optimized using the optimization function

of SVM.

In addition to the optimization of a single frequency band, in [80, 68, 81,

82], EEG signals are decomposed into several frequency bands, and spatial

filters based on multiple bands are explored. In particular, filter bank CSP

(FBCSP) employs multiple bandpass filters, which is denoted as a filter bank,

to bandpass filter the EEG raw data into different frequency bands [80, 68].

CSP is implemented on each of these bands. Thus, each pair of bandpass

and spatial filter yields CSP features that are specific to the frequency range

of the bandpass filter. After calculation of features of each band, feature

selection based on mutual information is applied. As a result, only those

effective spatial filters corresponding to the selected features are used for

test data, which reduces the computational complexity. In [82], sub-band

CSP (SBCSP) employs a Gabor Fourier-based filterbank and calculates a
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sub-band score for each spatial filter based on classifiers. In other words,

different from FBCSP selecting and combining features from different bands,

SBCSP fuses the bands according to the scores by a recursive band elim-

ination based on classification algorithms. Based on FBCSP, an optimum

spatio-spectral filtering network (OSSFN) is proposed by jointly learning the

bandpass filters and spatial filters to maximize the mutual information be-

tween feature vector variables and the class label [83]. Instead of designing

the candidate filters in advance, in [84], the authors propose discriminative

filter bank CSP (DFBCSP), which designs finite impulse response filters and

the associated spatial weights simultaneously. Different from the mutual in-

formation, the objective function used in [84] is Rayleigh quotient, and both

spatial filters and temporal filters are solved in a sequential manner with the

parameters optimized one by one.

As stated earlier, the effectiveness of CSP in feature extraction for motor

imagery EEG lies in discriminating power difference, which is in accordance

with the ERD/ERS phenomenon involved in motor imagery. Recently, in-

creasing neuroscience findings based on fMRI or EEG suggest that brain

activities of neuronal connectivities exist during motor imagery in brain ar-

eas such as M1 or SMA [85, 39]. In particular, the analysis of neuronal

connectivity is gaining more attention because it describes the general func-

tioning of the brain and communication between its different regions [62, 64].

In the presence of neuronal propagation and causal relationship during motor

imagery, connectivity measurements have been explored as features [65, 66].

Given the importance of the synchronization or coupling features, in [86],

PLV is combined with FBCSP in the filter bank feature combination (FBFC)

model.
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2.4 Extensions of CSP for Nonstationarity

Brain signals are typically mixtures of significant noises, extraneous informa-

tion, and the components of interest, and all these components could vary

due to different experimental setups, subjects’ conditions and some other fac-

tors, which contribute to the nonstationarity inherent in EEG. Recent neuro-

imaging studies have shown that nonstationarity may be partially caused by

low frequency spontaneous fluctuations in brain signals that are coherent

within resting state networks (RSNs) [87, 88]. As reported in [87], intrinsic

brain activity of RSNs persists during task performance and contributes to

variability in evoked brain responses, as well as in human behaviours. Be-

sides, electrode impedance and positioning, and subjects’ different response

behaviours would also result in the drastic signal variation. However, because

the calibration procedure is tedious and time-consuming, it is not feasible to

account for such data variation by calibrating the computational model in

every session for patients who are undergoing continuous rehabilitation. For

practical BCI-based rehabilitation, only the computational model obtained

from the calibration session is available for all the following rehabilitation ses-

sions [49]. Hence, it would be useful to propose methodologies that address

the nonstationarity issue in motor imagery EEG classification.

Among a number of algorithms that have been proposed to address the

nonstationary issue, one category considers improving the robustness of the

model using calibration data only, such that this may translate to better

generalization in processing unseen test data [67, 73, 74].

As EEG could be regarded as a mixture of underlying stationary and

nonstationary sources, it could be helpful to distinguish between stationary
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and nonstationary contributions for constructing a more robust model. To

this end, in stationary subspace analysis (SSA), the observed signal is mod-

eled as a linear superposition of stationary and nonstationary sources, and

the aim is to separate the two groups by estimating the mixing matrix [89].

In [90], SSA has been applied to motor imagery EEG classification as a kind

of preprocessing procedure. Given the stationary components identified by

SSA, CSP is applied to the stationary sources for feature extraction, and

it is found that the classifier performance is significantly improved by the

preprocessing of SSA. However, as pointed out in [77], this kind of two-step

approach suffers from the loss of discrimination information in the first step,

i.e., the SSA step. To avoid the loss in the two-step combination of SSA and

CSP, regularization-based methods have been studied extensively to incor-

porate stationarity constraint into the discriminative objective function in

CSP.

The regularization method refers to adding certain terms to the denom-

inator of the CSP objective function in a Rayleigh coefficient form (2.14).

In this way, this term, denoted as the regularization term, can be penal-

ized in the objective function [91]. A regularization-based robust model was

first proposed in [72], which is denoted as invariant CSP (iCSP). In iCSP,

the invariant property of CSP is achieved by adding disturbance covariance

matrices as the regularization term. Therefore, iCSP is robust against dis-

turbances whose covariance could be anticipated from prior physiological

knowledge or extra measurements like EOG or EMG. However, the extra

recordings or prior knowledge about noise are usually not available or reli-

able. In [92], stationary CSP is proposed to address nonstationary noise in

a more general case. Instead of using additional recordings to estimate the
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nonstationary artefacts, nonstationarity is estimated as the sum of absolute

differences between the mean variance and variance of a certain trial in the

projected space. By penalizing the cross-trial differences, spatial filters can

keep the variance features as stable as possible across trials while differen-

tiating variances between two conditions. In [93], the authors introduce a

different penalizing term that measures the KL-divergence of distributions of

EEG data across trials, and subsequently, the learning algorithm can mini-

mize within-class dissimilarities while maximizing inter-class separation. In

[94], the nonstationary projection directions are estimated based on the prin-

cipal component analysis (PCA) using cross-subject data, and then penalized

in the objective function to build subject-specific spatial filters. Similarly to

[94], cross-subject data are also used in [95] to enhance the robustness of

the spatial filters. In particular, instead of estimating the directions of the

nonstationary components, average covariance matrices of multiple subjects

are directly incorporated in the denominator of the Rayleigh coefficient as

a kind of ground truth of the covariance matrix estimate. In this way, an

inaccurate model could be avoided when only very few EEG data from a sin-

gle subject are available. In [77], those methods regularizing nonstationarity

measurements are unified in a divergence-based framework, and different di-

vergence measurements, such as KL-divergence, symmetric KL-divergence

and beta-divergence, are compared and discussed.

Different from the aforementioned methods regularizing covariance ma-

trix estimates or nonstationary components, another category of regulariza-

tion method imposes constraints on the solution to mitigate the influence of

artifacts. In [91], CSP with Tikhonov regularization (TRCSP) is proposed

by penalizing the l2 norm of the solutions so that the channels with large
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weights can be penalized. Given that the importance of different channels

is different for motor imagery classification, a weighted version of TRCSP is

also introduced in the same work. In particular, different penalty levels are

assigned to different channels, and the penalty level is defined according to

the activation levels of different brain regions for a given mental task in the

literature. Moreover, the sparsity of the spatial filters is used as the con-

straint in [96] based on the l1/l2 norm. Based on the sparse spatial filters

obtained, only a few channels are selected to perform feature extraction.

Another category of methods investigates the actual variations across

sessions and then adapts detection models accordingly. While motor imagery

EEG detection algorithms usually consist of a feature extraction step and a

classification step, some methods focus on the classification step and study

the shift of CSP features with fixed spatial filters [97, 98, 99, 100, 101].

Studies in [97] show that the two-class motor imagery EEG classification

accuracy could increase significantly among more than 90% of the subjects

by using simple adaptive procedures such as bias adaptation. The shortfall

of this methodology is that adapting a classifier is not effective when the test

features are inseparable.

To address the issue of feature separability, another category of adapta-

tion methods investigates the adaptation of the feature extraction model, i.e.,

spatial filters. Variations of EEG data across sessions can be taken into con-

sideration by incorporating data from test sessions to adapt the projection

matrix in CSP [102]. In particular, since the solution of the spatial filters in

CSP is based on the joint diagonalization of the average covariance matrices,

such adaptation can be achieved by updating the covariance matrices by us-

ing test data. In [100], both the feature extraction model and classifier are
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adapted with more test data available using an expectation-maximization

method.

Another approach assumes that there is a domain-invariant subspace (a

domain refers to a training space or a test space [103]), where the classifier

trained by training data could be equally effective to test data [104]. In

[104], this domain-invariant subspace is assumed to be the whitened subspace,

where the whitened training data and test data have the same (or similar)

marginal distributions, and the posterior distributions of the labels are the

same across domains. Therefore, the whitening part in the spatial filter is

updated based on test data, which is equivalent to projecting both training

data and test data to the invariant whitened space. Similarly, in domain

space adaptation (DSA) in [103], a linear mapping matrix is estimated to

project the test data into the training data space based on minimizing the

KL-divergence between data in the two spaces, and the unsupervised case

of DSA is shown to be equivalent to [104]. As pointed out in [104], this

domain-invariant assumption on the whitened space holds only when the

linear transformation between the two domains is symmetric.

2.5 Conclusion

In this chapter, we present a brief review of feature extraction methods for

motor imagery EEG. By maximizing the differences of signal powers between

different conditions, CSP can be regarded as the most successful method in

capturing ERD/ERS effects in motor imagery EEG, and it has been intro-

duced in detail. Moreover, there are a large number of BCI research studies

aiming at improving CSP, and these methods are introduced from three per-
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spectives: theoretical analysis of CSP, joint optimization of different param-

eters in CSP, and enhancement of CSP regarding nonstationary issues.

As stated earlier, the main signal processing issues for classifying motor

imagery EEG are the complex dynamics and phenomena involved in the mo-

tor imagery and the nonstationary nature of EEG, and there are still research

gaps arising from these two aspects in the feature extraction model develop-

ment. Despite spatial filter design combined with frequency and temporal

analysis, investigation of causal relationship between EEG signals during

motor imagery for feature extraction is not given adequate attention. More-

over, regarding EEG nonstationarity, data variation measurements are often

adopted with very few works addressing the mismatch between the data and

the model directly. Thus, in the following chapters, novel computational

models regarding these two issues are proposed for motor-imagery-based

BCIs from the perspectives of model generalization and model adaptation.
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Chapter 3

Discriminative Learning of

Propagation and Spatial Pattern

As introduced earlier, multiple brain regions cooperate during motor imagery

[85, 39]. To investigate such connectivity or causal relationship, the directed

transfer function (DTF) has been used to evaluate the causal flow between

any given pair of channels in a multi-channel EEG in the frequency domain

[105, 106, 107]. The estimation of the DTF is based on a multivariate au-

toregressive model (MVAR) and, more importantly, it has been applied to

EEG data of voluntary finger movement and motor imagery for event-related

causal flow investigation [108, 109]. Based on DTF, it has been found that

there is a rapid increase in information outflow from electrodes FC3 and C3

caused by ERS, and propagation of β-synchronization from FC3 and FC1 to

C3, C1, Cz, CP3 and CP1, which provides the evidence of communication

between different sensorimotor areas [110]. The causal flow or time-lagged

correlation is assumed to be caused by possible neuronal propagation [111].

However, looking at only the time profiles of ERD/ERS, it is difficult to

judge which is the primary source of activity.

In the presence of neuronal propagation and causal relationship during

motor imagery, conventional spatial filter design is not adequate to capture
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the underlying brain activities [112, 113]. It is worthwhile noting that, al-

though some of the connectivity measurements mentioned earlier have been

explored in existing works [65, 66], only scalp connectivity or intra-channel

synchronization measurements are directly used as features, whereas volume

conduction effects are not rigorously addressed. One consequence is that

bandpower variations are misinterpreted as changes in connectivity [114].

Therefore, rather than ignoring the connectivity or propagation between

sources in spatial filter design or using scalp connectivity directly as features,

we would like to promote a computational model that can more accurately

describe the underlying processes by considering both neuronal propagation

and volume conduction effects.

In this chapter, we present a novel feature extraction model for motor im-

agery EEG based on a multi-variate convolutive process with an analysis of

the spurious effects in classifying ERD/ERS based on an instant linear mix-

ture model. The effectiveness of introducing a time-lagged demixing matrix

to produce time-decorrelated data is analyzed theoretically from the perspec-

tive of background noise elimination. Furthermore, the demixing matrices

accounting for propagation and volume conduction are estimated jointly and

iteratively in the proposed model. Through the experimental study, we eval-

uate the efficiency of the proposed method in terms of classification accuracy

in a two-class motor imagery EEG classification problem. We also analyze

the effectiveness of the proposed method for background noise elimination

using the KL-divergence measurement.

This chapter is organized as follows. In Section 3.1, limitations of con-

ventional spatial filter design are discussed, with the necessity of taking the

causal propagation into consideration. Then, the details of the proposed dis-

30



3.1. Data Model and Problem Formulation

criminative learning of propagation and spatial pattern are given in Section

3.2. The investigation in background noise is performed in Section 3.3. In

Section 3.4, the validity of the proposed method is verified by experimental

studies on two-class motor imagery classification. Concluding remarks are

given in Section 3.5.

3.1 Data Model and Problem Formulation

Let X(t) be the time-series of a multi-channel EEG signal, with each com-

ponent in X(t) representing a particular EEG channel measured at time t.

Considering the complex temporal dynamics, in particular the latent causal

relations in X(t), we describe the observed data X(t) as an nc-dimension

linear convolutive mixture process of order l [112, 115], i.e.,

X(t) =
l∑

τ=0

Φ(τ)S(t− τ) (3.1)

where S(t) is the source signal of interest, Φ(τ) is the projection matrix of

the order τ , and l is the maximum time-lagged order. When l = 0, the ob-

served data X(t) is an instant mixing process. For simplicity of description,

the additive EEG noise can be described by an component in S(t). Conven-

tionally, it is assumed in motor imagery EEG classification that X(t) is an

instant linear mixture of source signals. This leads to an instant de-mixing

solution to the estimation of S(t):

Ŝ(t) = WX(t) (3.2)
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In (3.2), W does not necessarily be the CSP projection matrix but could

be any projection or demixing matrix based on an instant linear model.

Because the thesis focuses on feature extraction model, W in CSP is used in

this section.

Interestingly, we note that the estimate Ŝ(t) given by (3.2) is also a mix-

ture of the time-lagged components, i.e.,

Ŝ(t) =
∑
τ

Φw(τ)S(t− τ) (3.3)

where Φw(τ) = WΦ(τ) is a mixing matrix. In discriminative analysis, W is

designed to extract the most discriminative signal Ŝ(t). However, as shown

in (3.3), discriminative signals could still be mixed with non-discriminative

ones in Ŝ(t).

A perfect solution would be that Φw(τ) takes an identity matrix form

for τ = 0 and a zero matrix form for any τ 6= 0. This is generally impos-

sible except for the case that Φ(τ)=0 for τ 6= 0, or in other words, when

the convolutive mixture model in (3.1) reduces to an instant mixing model.

Therefore, it is necessary to take the causal flow into consideration together

with spatial filter design in a unified model to have a better estimation of

S(t), which is the motivation of the work in this chapter.

Solving the reconstruction problem of S(t) from (3.1) may lead to a so-

lution in the form of an infinite impulse response (IIR) filter. As we will

elaborate shortly and also for practical use, we simplify the problem into a

finite impulse response (FIR) filter given by

Ŝ(t) = W (X(t)−
p∑

τ=1

A(τ)X(t− τ)) (3.4)
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where A(τ) is the demixing matrix of the order τ that accounts for the time-

lagged propagation effect.

For the convenience of analysis, we divide the reconstruction problem of

S(t) into two parts. First, we define

X̃(t) = X(t)−
p∑

τ=1

A(τ)X(t− τ) (3.5)

where X̃(t) is the signal processed by a finite multi-variate FIR filter of order

p. For the simplicity of presentation, we refer to it as the time-decorrelated

data in the following discussion. The source signal can be recovered from the

time-decorrelated data X̃(t) by

Ŝ(t) = WX̃(t) (3.6)

Although calculating Ŝ(t) based on (3.5) and (3.6) resembles the causal con-

nectivity estimation based on MVAR analysis, the objective of this work

is discriminative learning, different from the connectivity identification in

[112, 111, 116]. For connectivity analysis, S(t)/Ŝ(t) is usually regarded as

the innovation process which is a temporally and spatially uncorrelated time

sequence. In contrast, Ŝ(t) based on (3.5) and (3.6) is assumed to be the

discriminative signal with the ERD/ERS effects enhanced by the demixing

matrix A(τ). Detailed discussions of the differences and relationship between

the connectivity analysis and the proposed method can be found in Appendix

A.2. Thus, based on the convolutive model, propagation effects can be ad-

dressed in the discriminative model. The joint estimation of A(τ) and W in
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(3.5) and (3.6) for the objective of classification is introduced in the following

section.

3.2 Joint Estimation of Propagation and Spa-

tial Pattern

We adopt the principle of CSP in the joint estimation of propagation and

spatial pattern. The normalized sample covariance matrix Ri of trial i is

obtained as

Ri =
X i(X i)T

tr[X i(X i)T ]
(3.7)

Suppose that the signal power is to be maximized for class +, the objective

function in CSP can be given in the form of optimization by

ŵ = arg max
w

wR+wT s.t. w(R+ +R−)wT = 1 (3.8)

To extract ERD/ERS, we deal with the estimation of S(t) in the proposed

model by adopting the variance discriminative objective in CSP. To em-

bed the estimation of A(τ) in (3.4) into the objective function (3.8), we

rewrite (3.5) to make the relationship between raw EEG data X and the

time-decorrelated data X̃ more compact by defining

Â(τ) =

 I, τ = 0;

−A(τ), τ > 0.
(3.9)

which we refer to as the time-lagged demixing matrix for simplicity. There-
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fore, X̃(t) in (3.5) becomes

X̃(t) =

p∑
τ=0

Â(τ)X(t− τ) (3.10)

Similarly, the covariance matrix of X̃(t) is

R̃i =
X̃ i(X̃ i)T

tr(X̃ i(X̃ i)T )
(3.11)

and the average covariance based on X̃(t) for each class is

R̃c =
1

|Qc|
∑
i∈Qc

R̃i, c ∈ {−,+} (3.12)

Replacing Rc in (3.8) with R̃c and considering (3.10) and (3.11), the

optimization problem becomes

max
w,Â(τ)

w

(
p∑

τ1=0

p∑
τ2=0

Â(τ1)R+(τ∆)Â(τ2)T

)
wT , s.t.

w

(
p∑

τ1=0

p∑
τ2=0

Â(τ1)(R+(τ∆) +R−(τ∆))Â(τ2)T

)
wT = 1 (3.13)

where Rc(τ∆) = 1
|Qc|
∑

i∈Qc X i(t − τ1)(X i(t − τ2))T . In this way, the esti-

mation of model (3.4) can be achieved by solving the optimization problem

in (3.13). Moreover, as shown in (3.13), only one Â(τ), as a part of the fea-

ture extraction model, is obtained upon the completion of the optimization

since the calculation is conducted with the averaged matrix Rc(τ∆) over all

the trials. This is very different from the regression model in connectivity

analysis, where the estimated models are usually different for different trials.
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Since the above objective function can be highly nonlinear, we adopt

an iterative procedure to estimate the spatial filter w and the time-lagged

demixing matrix Â(τ). We alternatively update one while fixing the other.

The spatial filter w can be obtained (with fixed Â(τ)) by solving (3.8) with

Rc substituted with R̃c as

ŵ = arg max
w

wR̃+wT s.t. w(R̃+ + R̃−)wT = 1 (3.14)

For Â(τ), we calculate the j-th column of Â(τ), [â1j, â2j, . . . , âncj]
T , sep-

arately based on a fixed spatial filter w and [â1m, â2m, . . . , âncm]T (m =

1, . . . , nc and m 6= j) from the last iteration. In this way, the informa-

tion flow from different channels is optimized individually, and the update

of Â(τ) finishes upon the completion of estimating [â1j, â2j, . . . , âncj]
T for

j = 1, . . . , nc. The implementation of the proposed discriminative learning

algorithm of propagation and spatial patterns is summarized in Algorithm

1. The loop will not stop until the convergence criteria are met.

Note that during the optimization, only one spatial filter w is used. After

completion of the optimization, X̃ can be obtained from (3.10), and subse-

quently R̃c can be obtained based on (3.11). Therefore, by replacing Rc with

R̃c, we can calculate the projection matrix W as in (2.2)-(2.10), and select r

pairs of spatial filters corresponding to the r largest/smallest eigenvalues in

(2.11) as in the usual CSP procedure. Replacing X i in (2.13) with X̃ i, the

feature f̃
i
for trial i is obtained as

f̃
i

j = log
wjX̃

i(X̃ i)TwT
j∑

j wjX̃ i(X̃ i)TwT
j

, j = 1, . . . , r, nc − r + 1, . . . , nc (3.15)
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where f̃
i

j is the j-th element of f̃
i
.

Algorithm 1 Discriminative learning of propagation and spatial pattern
Input: Training EEG data with class labels;
Output: Spatial filter w and time-lagged demixing matrix Â(τ).
begin

Set the initial parameters of the spatiotemporal filters Â(τ) as zero ma-
trices;
while k < nk do

Compute X̃ based on Â(τ) using (3.10);
Compute w by solving the optimization problem in (3.14);
% Update the spatial filter w
for j = 1 : nc do

Compute [â1j, â2j, . . . , âncj]
T based on the updated spatial filter w

by solving the optimization problem in (3.13);
% Update Â(τ).

Compute the change in the norm Â(τ) by δ = ‖Â(τ)k‖−‖Â(τ)k−1‖
‖Â(τ)k−1‖ ;

if δ < ζ (ζ is a small preset constant) then
Stop.

k=k+1;

3.3 Background Noise Separation

In this section, we investigate the effectiveness of introducing the time-lagged

demixing matrix Â(τ) into the estimation of the ERD/ERS source. To fur-

ther analyze and evaluate the proposed model, the difference between the

time-decorrelated EEG signal X̃(t) in (3.5) and original EEG data X(t) is

investigated. Suppose X(t) is described by the following MVAR model

X(t) =

q∑
τ=1

B(τ)X(t− τ) +N(t) (3.16)
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where N(t) is the prediction error. It is also regarded as the innovation

process because it is spontaneous and cannot be totally predicted by past

observations [111]. Note that B(τ) is the mixing matrix based on the regres-

sion model, which is different from A(τ) estimated in the proposed model

for discriminative purpose and q is the order of the MVAR model. Simi-

larly, (3.16) is rearranged in the following form to make the input-output

relationship more compact

N(t) =

q∑
τ=0

B̂(τ)X(t− τ) (3.17)

where

B̂(τ) =

 I, τ = 0;

−B(τ), τ > 0.
(3.18)

Transforming (3.17) into the frequency domain yields

N(f) = B(f)X(f) (3.19)

B(f) =

q∑
τ=0

B̂(τ)e−i2πfτ (3.20)

where f is the frequency. Therefore, the transfer function of the system H(f)

can be described by

H(f) = B−1(f) (3.21)

such that X(f) = H(f)N(f).

By substituting (3.16) into (3.5) and following the steps from (3.19) to
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(3.21), we obtain

X̃(f) = (I − A(f))X(f)

= (H(f)− A(f)

B(f)
)N(f) (3.22)

where

A(f) =

p∑
τ=0

Â(τ)e−i2πfτ (3.23)

Let H̃(f) = H(f)− A(f)
B(f)

, which is the transfer function from N(f) to X̃(f).

Since the causal flow measurement DTF is defined based on the transfer

function [107], we see that the proposed method changes the information flow

by changing the transfer function from H(f) to H̃(f). Moreover, comparison

of the transfer functions of X̃ and X in (3.22) shows its similarity to the

classical signal-plus-noise (SPN) model. In particular, in [117] the observed

EEG data containing ERP XE(f) is usually formulated as

XE(f) = ΦESE(f) + Z(f) (3.24)

where SE(f) is the ERP of interest, ΦE is the projection matrix, and Z(f)

is the background noise or the ongoing activity.

As discussed in [117], the background noise is not a noise despite its

noise-like appearance but represents ongoing brain activity rich in oscilla-

tory content. In the light of the above discussion, we can interpret (3.22)

from a similar perspective. As indicated in (3.22), the frequency compo-

nent removed from X is an oscillatory signal with a transfer function A(f)
B(f)
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and it can be regarded as an estimate of ongoing activity. In this way, the

ERD/ERS components are enhanced in the proposed model with the oscil-

latory background noise attenuated.

The KL-divergence is a measure of probability divergence given two prob-

ability distributions, and it has been utilized to evaluate nonstationarity in

motor imagery EEG classification problem [103, 93, 77]. Therefore, to verify

that the component removed from X is the background noise, we adopt the

KL-divergence as the criterion.

As the Gaussian model is usually used to model EEG data, we consider

the KL-divergence between two Gaussian distributions. Assume two Gaus-

sian distributions N 0(µ0
N ,Σ

0
N) and N 1(µ1

N ,Σ
1
N). Then, the KL-divergence

between them is

DKL(N 0(µ0
N ,Σ

0
N)||N 1(µ0

N ,Σ
0
N)) = 1

2
(tr((Σ1

N)−1Σ0
N)

−(µ1
N − µ0

N)T (Σ1
N)−1(µ1

N − µ0
N)− ln(

det Σ0
N

det Σ1
N
− kN)) (3.25)

where µ1
N(µ0

N) and Σ1
N(Σ0

N) are respectively the mean and covariance of

the distribution N 1(µ1
N ,Σ

1
N)(N 0(µ0

N ,Σ
0
N)). It is reasonable to assume that

the improved separation of background noise will result in more stationary

data with less within-class dissimilarities. We therefore adopt KL-divergence

to measure such within-class dissimilarities. The smaller the KL-divergences

within trials from the same class, the less the variation of the data, which gen-

erally relates to better classification results. Since EEG data is usually pro-

cessed to be centered and the dimension kN of the distribution is the number

of channel nc, for every trial i from class c, we use DKL(N (0, Ri)||N (0, Rc))

to measure the dissimilarity of the distribution of this trial from the mean
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distribution of the class c as

DKL(N (0, Ri)||N (0, Rc)) =
1

2
(tr((Ri)−1Rc)− ln(

detRi

detRc
)− nc) (3.26)

and subsequently we obtain an average probability divergence D for EEG

data X as

D =
∑
c=+,−

1

|Qc|
∑
i∈Qc

DKL(N (0, Ri)||N (0, Rc)) (3.27)

Similarly, we obtain D̃ based on X̃ as

D̃ =
∑
c=+,−

1

|Qc|
∑
i∈Qc

DKL(N (0, R̃i)||N (0, R̃c)) (3.28)

In this way, by comparing D and D̃, we can evaluate the quality of X and

X̃ in terms of within-class dissimilarities.

Moreover, The proposed method addresses a more complicated dynamics

of motor imagery EEG but does not depend on the very critical explanation

of the generation of ERD/ERS. On the one hand, it is possible that propa-

gation effects that contribute to the generation of ERD/ERS exist. On the

other hand, discriminative sources could correlate with noise in a convolu-

tive manner. Blind source separation or connectivity estimation methods, as

discussed before, may not be effective for this classification problem because

it is difficult to differentiate between these two kinds of propagation effects.

The proposed model, which is formulated in a phenomenological form (3.22),

takes both cases into consideration.
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3.4 Experimental Study

3.4.1 Experiment Set-Up and Data Description

A total of 16 subjects participated in the study with informed consent. Ethics

approval was obtained beforehand from the Institutional Review Board of

National University of Singapore. EEG from 27 channels were obtained us-

ing Nuamps EEG acquisition hardware with unipolar Ag/AgCl electrodes

channels. The sampling rate was 250 Hz with a resolution of 22 bits for the

voltage range of ± 130 mV. A bandpass filter of 0.05 to 40 Hz was set in the

acquisition hardware.

In the experiment, the training and test sessions were recorded on dif-

ferent days with the subjects performing motor imagery. During the EEG

recording process, the subjects were asked to avoid physical movement and

eye blinking. Additionally, they were instructed to perform kinesthetic mo-

tor imagery of the chosen hand in two runs. During the idle state, they

did mental counting to make the resting EEG signal more consistent. Each

run lasted for approximately 16 minutes and comprised 40 trials of motor

imagery and 40 trials of idle state. Each training session consisted of 2 runs

while the test session consisted of 2-3 runs. Details of the scalp map of the

27 channels and the segmentation of one trial can be found in Appendix A.1,

and more details of experiment setup can be found in [118].

3.4.2 Data Processing

We select the time segments from 0.5s to 2.5s after the cue [96]. The raw

data is pre-filtered by a 8-35Hz band pass filter that covers rhythms related
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to motor imagery. The filtered training data is used to train the feature

extraction model based on the proposed method as described in Section 3.2,

where ζ = 0.02 and nk = 30. The number of spatial filters in W is chosen as

2 (r = 2 in (3.15)). As discussed in [69], for BCI tasks with explicit known

cue, the linear support vector machine (SVM) shows advantages. Thus, in

this work, we adopt the linear SVM with a soft margin, which is trained by

the extracted training features first and applied to test features to obtain the

predicted labels.

3.4.3 Investigation on the Order of the Time-Lagged

Demixing Matrix

To determine the order p of Â(τ) in (3.10), we fit the MVAR model to EEG

data as in (3.16). Although the orders p and q have different meanings, the

analysis of the order q of the mixing matrix B(τ) in (14) gives the time-

lagged level at which the propagation effects are stronger. From (20) and

the analysis given in Section 3.3, it is reasonable to choose the order p of

Â(τ) in accordance with q, the order of B(τ), as Â(τ) corresponds to certain

components of B(τ) in frequency domain. Therefore, the analysis of the

mixing matrix B(τ) can be used to initialize the order p of Â(τ) in the

proposed model. The Swartz Bayesian criterion is used to automatically

select the model order that best matches the data [119]. We found that for

every subject, order 5 for q is selected for most of the trials and order 4

or 6 is selected for the remaining of the trials. Therefore, we restrict the

investigation to orders 4, 5 and 6.

Figure 3.1 illustrates the result of one subject in the dataset introduced
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in Section 3.4.1. The y-axis indicates the value of the norm of mixing matrix

B(τ) in (3.16) of different orders and the x-axis indicates the order τ . The

coefficient matrices are obtained under MVAR models with q equal to 4, 5

or 6, and averaged over the training set and test set respectively, resulting

in the six lines in Figure 3.1. We see that, in all six cases, the norms of

the coefficient matrices of orders 2 and 3 are the highest, which means that

the data at time t is most influenced by the data at time t − 2 and time

t − 3. Therefore, the order p of Â(τ) should include these two time lags,

and subsequently the proposed discriminative learning model addresses the

most influential propagation effects. Furthermore, we focus on investigating

the feasibility of the proposed model with order 4 and below. It is sufficient

that Â(τ) covers only the major components in B̂(τ) to aim at the most

influential propagation effect.

3.4.4 Classification Results

Tables 3.1 summarizes the performance of the proposed feature extraction

method, compared with CSP as the baseline. In the table, we refer to the

proposed method as discriminative propagation and spatial pattern analysis

(DPSP), and results of DPSP with p = 1, 2, 3, 4 are included.

As shown by the classification results, the proposed feature extraction

method improves the performance of the classifier, and the improvements are

significant when the order of Â(τ) in DPSP is 2 or 3, which is in agreement

with the previous analysis based on the MAVR model. Specifically, the

average classification accuracy for order 2 is 68.30% and the accuracy for

order 3 is 67.91%, both of which are higher than that of CSP (65.56%).
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Figure 3.1: Norms of coefficient matrices under MVAR model. The x-axis
represents the order τ and y-axis represents the norm of B(τ). Three MVAR
models with orders q from 4 to 6 are used to fit EEG data of training and
test sets separately, yielding six lines. And the peak points of the six lines
correspond to either τ = 2 or τ = 3.

The paired t-test confirms the significance of the improvement at a 5% level

with p-values equal to 0.008 and 0.040, corresponding to the cases of p = 2

and p = 3, respectively. The accuracy for order 4 is 66.01%, which are

not significantly different. Moreover, the accuracy for order 1 is almost the

same as that of CSP, which also confirms our previous analysis, i.e., it is

necessary and sufficient for Â(τ) to cover the major components of B̂(τ).

The propagation effect is strongest at orders 2 and 3 so that the optimization

based on Â(τ) for order 1 has little effect and results in almost the same

result. The optimization based on Â(τ) of order 4 accounts for most of the

propagation effect, but using more parameters will pose a risk of over-fitting.

Theoretically, the higher the order of Â(τ), the better the results would be,
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since more information is taken into consideration. However, the increased

number of parameters would give rise to over-fitting, which would adversely

affect the classification performance. A good balance between accounting for

the propagation effects and over-fitting is obtained by covering as few major

components of propagation as possible, which comes from orders 2 and 3 in

this experiment.

Figure 3.2 is used to compare the results in a more intuitive manner.

Each plot in Figure 3.2 shows the test accuracy under DPSP with order p

against that under CSP. The x-axis represents the accuracy results under

CSP and the y-axis represents that under DPSP. In each plot, a circle above

the diagonal line marks a subject for which DPSP outperforms CSP.

3.4.5 Analysis of Background Noise Separation

To further verify the validity of DPSP, we have evaluated the classwise KL-

divergence (Section 3.3), and results averaged among all subjects are shown

in Table 3.2 and Figure 3.3. Note that for the computation of DKL of both

training set and test set, the average covariance matrix Rc (R̃c) is the mean of

the training set since under the single-trial analysis setting we cannot obtain

the mean of the test set. Therefore, the fact that the average divergence

D of the test set is larger than that of the training set in all cases reflects

the differences between the test set and the training set, as indicated by

Table 3.2. This is mainly caused by the session-to-session transfer effects.

According to the results, the proposed DPSP algorithm decreases the KL-

divergence within the same class for both the training set and the test set,

which means that, compared to the EEG data X, the data processed by
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Table 3.1: Session-to-session transfer test results (%)

Subject CSP DPSP
p=1 p= 2 p=3 p=4

1 65.00 65.41 62.91 66.66 67.08
2 51.25 51.25 54.17 52.08 52.08
3 55.00 55.00 57.50 55.83 55.00
4 66.67 66.67 70.41 71.25 77.08
5 54.58 54.16 67.08 70.41 58.33
6 67.08 67.50 72.50 69.16 69.58
7 77.08 77.08 77.92 76.66 72.5
8 94.16 94.16 92.50 96.25 95.41
9 74.58 75.00 75.83 75.83 74.58
10 61.66 61.25 60.41 60.83 60.00
11 46.25 46.67 49.16 53.33 47.08
12 77.00 77.08 81.25 79.58 73.33
13 51.25 51.25 54.58 51.25 50.00
14 72.08 72.08 79.16 73.75 74.58
15 65.83 65.58 67.50 64.16 64.58
16 69.58 69.60 70.00 68.75 65.00

mean 65.56 65.59 68.30 67.91 66.01
std 12.26 12.28 11.57 11.79 12.35

p-value - 0.64 0.008 0.040 0.63

p is the order of Â(τ) in DPSP. The larger p is, the better the results would
be with more propagation effects taken into consideration. However, the in-
creased number of parameters would give rise to over-fitting. A good balance
is to cover as few major components of propagation as possible, which could
be the reason why p = 2 and p = 3 yield better results than p = 1 and p = 4.
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Figure 3.2: Test classification accuracy comparison. The x-axis represents
the accuracy result under CSP and the y-axis represents that under DPSP
with different orders p. The y = x line is denoted in dotted-dashed line. In
each plot, a circle above the y = x line marks a subject for which DPSP
outperforms CSP. It can be seen from the plots that improvements of DPSP
for order 2 and 3 are significant.
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Table 3.2: KL-divergence comparison(%)

p=2 p=3 p=4
D D̃ 1− D̃

D
D̃ 1− D̃

D
D̃ 1− D̃

D

Training set 4.96 4.09 17.68% 4.25 14.39% 4.84 2.55%
Test set 64.3 25.2 60.84% 36.68 42.98% 57.09 11.24%

p is the order of Â(τ) in DPSP. The decreases in the KL-divergence in X̃ of
different orders compared to X are shown in percentage. Great decrease in
the KL-divergence indicates that X̃ is more stationary than X. The decrease
is more significant for the test data.

DPSP X̃ is more stationary. A more significant decrease is achieved for the

test set, which means that the proposed method is more stationary against

the session-to-session transfer effects. Moreover, the comparison between

different orders indicates that a better performance is achieved with order 2,

which is in accordance with the classification accuracy results.

Figure 3.4 illustrates the correlation between the decrease of KL-divergence

and the increase of the classification accuracy at the subject level. The lin-

ear correlation coefficient rc equals to 0.30 and 0.31 corresponding to p = 2

and p = 3, respectively. Due to the large variety across subjects, their KL-

divergence may lie in different feature spaces. The decrease of KL-divergence

and the increase of classification performance may not correlate linearly. It

can be seen that almost all the points lie in the first quadrant, indicating

that the decrease in the KL-divergence contributes to the increase in the

classification accuracy to a certain extent. Nevertheless, there could be ad-

ditional factors that contribute to the increase in classification accuracy, and

this would be an interesting topic for future work.
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Figure 3.3: Decrease in the KL-divergence. The decreases in the KL-
divergence in X̃ of different orders compared to X are shown in percentage.
Great decrease in the KL-divergence indicates that X̃ is more stationary than
X. Therefore, the proposed DPSP algorithm can reduce varying background
noise and session-to-session transfer effects.
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(a) rc = 0.30 (p = 2)
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(b) rc = 0.31 (p = 3)

Figure 3.4: Correlation between the decrease of the KL-divergence and the
increase of the classification accuracy. The x-axis represents the decrease
of the KL-divergence and y-axis represents the increase of the classification
accuracy. Subfigures (a) and (b) correspond to p = 2 and p = 3, respectively.
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3.4.6 Discussion

Figure 3.5 displays A(τ) for two subjects. For a better comparison of differ-

ences between the proposed method and the MVAR model, mixing matrices

B(τ) based on the MVAR model of the two subjects are also provided. As

seen in Figure 3.5, the diagonal elements of B(τ) are much higher than the

off-diagonal elements, because the auto spectrum of the signal is usually

stronger than the cross spectrum between the EEG signals from different

channels. However, there are no large differences between diagonal elements

and off-diagonal elements in A(τ). Since the diagonal elements of A(τ) are

not significantly larger than the off-diagonal ones, the auto spectrum of the

signal is not modulated radically by A(τ). Moreover, elements of higher

values concentrate in certain columns in A(τ), which means that the prop-

agation effects from a certain channel are modified more substantially than

that from other channels.

Moreover, a comparison between Figures 3.5 (a) and (b) shows that the

coefficient matrices A(τ) are quite different for different subjects due to the

large inter-subject variability. With more parameters optimized for each

subject, the proposed method may not be suitable for the inter-subject task,

which is one limitation of the proposed method.

Regarding the number of spatial filters r, usually 2 or 3 pairs of spatial

filters are used, i.e., r = 2, 3 [91, 68]. Experimental studies have also been

conducted with r = 3. The proposed method shows significant improvements

when p = 2 and p = 3, which is similar to the case with r = 2. Regarding the

parameters used in the iteration, nk = 30 is chosen based on extensive tests.

For ζ, as long as the relative difference of the norm of A(τ) is small, e.g.,
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(a) Comparison between A(τ) and B(τ) for subject 7
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(b) Comparison between A(τ) and B(τ) for subject 14

Figure 3.5: Comparison of coefficient matrices obtained by the proposed
method, A(τ), and the mixing matrices in MVAR, B(τ). For both subjects,
the diagonal elements of B(τ) are much higher than the off-diagonal elements.
For A(τ), elements of higher values are found in certain columns.
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δ < 0.02 , the resultant differences of the feature extraction would be limited.

Therefore, the sensitivity of the proposed method to these two parameters is

acceptable.

3.5 Conclusion

Co-existence of brain connectivity and volume conduction may have compli-

cated effects in EEG measurements, and poses technical challenge to detect-

ing the correct motor imagery condition. Conventional linear spatial filters

designed with the instantaneous mixing model are not sufficient in address-

ing such complicated dynamics. Due to the causal relationship, reconstructed

ERD/ERS signals based on the instantaneous demixing may not be optimal

in terms of discrimination.

Moreover, the propagation effects are closely related to the background

noise and nonstationarity of EEG. It is possible that an electrode that actu-

ally contains no discriminative information could be given a high weight due

to information flow from signals containing ERD/ERS and such dependence

could be very unstable compared with the original ERD/ERS source. The

above analysis is the motivation to propose the computational model for the

discriminative learning of propagation and spatial patterns.

We have reported in this chapter a novel computational model that ac-

counts for both time-lagged correlations between signals and the volume con-

duction effect. Experimental results have shown statistically significant im-

provement in classification accuracy under the proposed learning method.

Moreover, the effectiveness of the background noise attenuation is also con-

firmed with a significant decrease of KL-divergence of EEG data of the same

54



3.5. Conclusion

class, especially for test data.
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Chapter 4

Ensemble Learning of Spatial

Filter Design

CSP designs spatial filters by jointly diagonalizing the average covariance

matrices from two different classes, and subsequently, the effectiveness of

feature extraction is somewhat sensitive to the estimates of the covariance

matrices. In other words, biased estimates of covariance matrices may result

in an inaccurate feature extraction model.

To this end, in this chapter we introduce an ensemble learning frame-

work for spatial filter design by considering the mismatch between data and

model. In particular, there exist some training trials for which the projection

matrix in CSP fails to extract discriminative features. This may be caused

by the fact that the covariance matrices used to construct the CSP model are

biased estimates for those trials. These trials in the training set are utilized

to re-estimate the covariance matrices and projection matrices. Instead of

giving different weights to the training trials, the projection matrix for fea-

ture extraction is obtained by integrating multiple projection matrices that

are estimated using different subsets of the training trials. Based on the

integrated model, feature extraction is carried out and is followed by classifi-

cation. The validity of the proposed method is verified through experimental
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studies with two sets of two-class motor imagery data. The results show that

the proposed method is able to generate more discriminative features.

This chapter is organized as follows. In Section 4.1, the problem of mis-

match between model and data is discussed, followed by the details of the

proposed spatial filter design method based on ensemble learning. In Section

4.2, the validity of the proposed method is verified by experimental studies

on the two-class motor imagery classification problem. Concluding remarks

are given in Section 4.3.

4.1 Spatial Filter Design Based on Ensemble

Learning

4.1.1 Problem Formulation

The projection matrix W in CSP is computed from the average covariance

matrices of the band-passed EEG signals from different classes. However,

due to the discrepancies between the covariance matrices and the estimates,

W may fail to extract discriminative features for certain trials.

Figure 4.1 shows an example of a 2D feature distribution obtained by

CSP before taking the logarithm. The dataset used to obtain the results in

Figure 4.1 are described in Section 4.2. Given the function of CSP projection

matrix W in (2.2)-(2.10), ideally all the features of class + should be around

the lower-right side, with f1 maximized and f2 minimized, and the other way

around for class −. The line x = y is a natural classifier for the features from

two classes. However, as shown in Figure 4.1, there exist many features lying

on the wrong side, indicated by red and blue crosses, for which the classifier
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would very likely give wrong labels.
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Figure 4.1: An example of a 2D feature distribution obtained by CSP. The
line x = y is denoted in dashed line, which can be regarded as a classifier.
Red and blue crosses represent features lying on the wrong side.

The example shows that there exists a mismatch between some samples

and the CSP model based on the average covariance matrices. Such a mis-

match can be attributed to the covariances of those exceptional samples being

very different from the average ones. Since neither the distribution of the

raw EEG data nor the covariance matrices can be measured directly, it is

difficult to evaluate whether the average covariance matrices are biased, and

would give rise to the mismatch.

To this end, in the following section, we will introduce a method to reduce
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the mismatch caused by covariance matrix discrepancies, and thus improve

the separability of features.

4.1.2 Spatial Filter Design

To take the mismatch between certain trials and the feature extraction model

into consideration, we propose a spatial filter design method by ensemble

learning. Figure 4.2 shows the flow chart of the proposed method. In par-

ticular, subsets of training data consisting of exceptional trials are formed,

different spatial filters are generated based on different subsets of trials, and

finally the feature extraction model, We, is obtained by combining these

models.

Subsets of 
training trials Spatial filtersTraining trials 

W

Subsets of 
training trials Spatial filters

Ensemble 
Learning

We

Subsets ofSubsets of 
training trials Spatial filters

Figure 4.2: Flow chart of the proposed method. Subsets of training data
consisting of exceptional trials are formed, different spatial filters are gen-
erated based on different subsets of trials, and finally the feature extraction
model, We, is obtained by combining these models.
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The following sections are dedicated to introduce the proposed spatial

filter design method in two steps: selection of exceptional samples and en-

semble learning of spatial filter design.

4.1.2.1 Selection of Exceptional Samples

In this section, we will discuss the criterion to select the exceptional samples.

The feature reflects the mismatch between the model and the data caused

by the covariance matrix discrepancies. As described in Section 2.1, fi is the

variance feature extracted for trial i which contains 2r elements. Suppose

that the first r features are generated by the spatial filters maximizing the

activity of class +. According to CSP, if trial i is from class +, the first

r elements in fi should be close to the largest elements in Λ+, while the

last r elements close to the smallest elements in Λ+. The elements in Λ+

constitute the mean feature of class +. In the general cases, if r = 1, fi1

would be around one, and fi2 around zero. Theoretically, features from two

classes can be divided by the line x = y. Thus, trials lying on the wrong sides

can be considered as exceptional trials, as seen in Figure 4.1. Those trials

suffer from relatively larger covariance matrix discrepancies regarding the

mean covariance matrices, as the feature extraction model fails to generate

proper features for them. Besides, there are also some trials with both feature

values close to zero, which are also considered as trials with the mismatch.

Be selecting these two kinds of exceptional trials, we can obtain subsets of

indexes referred to the exceptional samples for the two classes, Q+
b and Q−b .

The total number of selected trials of class + and class - are denoted as

|Q+
b | and |Q−b |, respectively, similar to Q+ and Q− in (2.1). The following

equation describes the re-sampling criteria
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i ∈

 Q
+
b , when i ∈ Q+ and fij < finc−j+1 or fij < ξ,

Q−b , when i ∈ Q− and finc−j+1 < fij or finc−j+1 < ξ.
(4.1)

where j = 1, 2, ..., r denotes the index of feature, and ξ is the parameter

controlling which features close to zero to be chosen.

Instead of selecting trials that are misclassified by the classifier, we pro-

pose the criterion in (4.1). Generally speaking, the training classification

results are not very proper for feature extraction model evaluation. Consid-

ering training classification accuracy, it is possible that the classifier could

predict the labels correctly for the training trials with less discriminative fea-

tures. In this case, the classifier is also prone to over-training. Therefore, the

features are selected based on the principle of CSP, which is a more direct

evaluation of the mismatch between the feature extraction model and the

samples.

4.1.2.2 Ensemble Learning of Spatial Filters

After the trial re-sampling step, we calculate the new covariance matrices for

trials belonging to Qcb with

Rc
b =

1

|Qcb|
∑
i∈Qc

b

X i(X i)T

tr[X i(X i)T ]
, c ∈ {+,−} (4.2)

With R+
b and R−b , projection matrices for trials from Q+

b and Q−b can be

obtained. W+
b is computed using R+

b and R−, while W−
b is calculated using

R+ and R−b , which can be represented in the form of generalized eigenvalue
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decomposition similar to (2.15), as follows

R+
b (w+

b )T = λR−(w+
b )T (4.3)

R−b (w−b )T = λR+(w−b )T (4.4)

where w−b (w
+
b ) is a spatial filter. Assuming that the first r spatial filters

maximizing the power of EEG signals from class + and the last r spatial

filters maximizing that from class -, the computation of the new projection

matrix We is described by

we,j =
|Q+| − |Q+

b |
|Q+| wj +

|Q+
b |

|Q+|w
+
b,j (4.5)

we,nc−j+1 =
|Q−| − |Q−b |
|Q−| wnc−j+1 +

|Q−b |
|Q−|w

−
b,nc−j+1 (4.6)

where we,j is the j-th row of We with j ≤ r. Similarly, wj, w+
b,j and w−b,j

are respectively used to denote the j-th rows of W , W+
b and W−

b . As shown

in (4.5) and (4.6), We is the weighted combination of the three projection

matrices. The reason why the summation is not conducted between the co-

variance matrices R+
b , R

−
b , R

+ and R− is that it would be equivalent to giving

different weights to different trials. Possible cancelling effects of covariance

matrix summation would undermine the effect of re-estimation. Since the

change in W with respect to the change in covariance matrices is nonlinear

and complicated, it is more direct and effective to integrate the model at the

projection matrix level. With the projection matrix We based on ensemble

learning, feature extraction can be conducted. The procedure of calculating

We in the proposed method is summarized in Algorithm 2.
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Algorithm 2 Ensemble learning of spatial filters.
Input: Training data and training labels;
Output: We.
begin

Apply CSP to the whole training data to obtain training features;
Select exceptional trials in training data according to the criteria indi-
cated in (4.1);
Compute W+

b and W−
b for the selected samples X i, i ∈ Q+

b or i ∈ Q−b as
indicated in (4.2) to (4.4);
Obtain We from W , W+

b and W−
b as indicated in (4.5).

end

4.2 Experimental Study

4.2.1 Experiment Set-Up and Data Description

In this study, two sets of data are used to evaluate the performance of the

proposed spatial filter design. The first set is the open dataset BCI competi-

tion III Dataset IVa, which contains five subjects. For each subject, a total

280 single-trials of samples, including training and test sets, are recorded

using 118 channels. For each trial, the subjects were instructed to perform

one of two motor imagery tasks with right hand or foot. In this work, 280

samples of data are divided equally into training and test sets, different from

the competition setting that is aimed at the problem of a small number of

training samples. Moreover, for computation efficiency, 28 (F3, F1, Fz, F2,

F4, FC5, FC3, FC1, FCz, FC2, FC4, FC6, C5, C3, C1, Cz, C2, C4, C6, CP5,

CP3, CP1, CPz, CP2, CP4, CP6, O1, O2) of 118 channels are used.

The other dataset contains 16 subjects with one motor imagery (MI)

session and one passive movement (PM) session collected on the same day.

The motor imagery session is as described in Section 3.4.1. During the passive

movement session, EEG data were collected from the subjects while passive
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movement of the chosen hand was performed using the haptic knob robot.

Similarly, the other class is the idle state, during which the subjects also did

mental counting as instructed to make the EEG signals more constant. Each

passive movement session consists of 2 runs, each of which comprises 40 trials

of the passive movement class, and 40 trials of the idle class.

4.2.2 Data Processing

For each trial of data, time segments of 0.5 to 2.5s after the cue were used

following most of the works that are employed in this dataset, such as [96,

120]. The raw signal is filtered by band-pass filters of 8-35Hz for the same

reason. The filtered signal is used to extract features as described in Section

4.1.

First, CSP is applied to the band passed EEG signals from the training

set to obtain projection matrix W . Subsequently, the signals are spatially

filtered by the first and last two spatial filters, i.e., r = 2, and the variance

features are extracted as in (2.4). Then, a new projection matrix We is

derived according to (4.1) and (4.5), where ξ is set to 0.1. Finally, the first

and last two spatial filters in We are applied to both training and test data,

and the re-calculated variance features are classified by the support vector

machine (SVM) classifier.

4.2.3 Classification Results

Tables 4.1 and 4.2 summarize the classification results of the two datasets,

where W indicates the baseline method, i.e., CSP, and We indicates the

proposed ensemble learning method. In Table 4.2, “MI-MI” denotes using
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the first run of the motor imagery data as the training data and the second

one as the test data, and “PM-MI” denotes using the passive movement data

as the training data and the motor imagery data as test data. Usually, MI

calibration is more difficult and tedious to perform, and PM data is relatively

easier to obtain [118]. Therefore, it would be more desirable for practical

implementation that the computational model in BCI trained by PM data

could perform well in classifying motor imagery data. This is the reason

why using the PM model to test MI data is investigated. Moreover, the

incorrectness level er =
∑

c=+,− |Qc
b|∑

c=+,− |Qc| has also been included in Tables 4.1 and

4.2.

It is shown by the comparison that the proposed spatial filter design

method improves the performance of the classifier in terms of average clas-

sification accuracies with lower standard deviation values in all three cases.

Moreover, the proposed method shows more improvements in the “PM-MI”

case, which indicates that it could perform better with the experiment paradigm

change. We also applied the paired t-test to classification accuracy results

to validate the effectiveness of the proposed method. As discussed in [121],

some subjects have difficulties in performing BCI, which is termed “BCI il-

literacy”. It is very difficult to capture the modulation of SMRs for these

subjects during motor imagery, and training a classifier with an acceptable

accuracy will not be possible. Therefore, the reliability in classifying motor

imagery of those BCI illiterate subjects is quite important for BCI. Usually,

subjects with error rates higher than 30% (BL) are regarded as BCI illiterate

[121, 103]. Therefore, in our experiments, the illiterate subjects with base-

line classification accuracies lower than 70% are investigated separately with

their t-test results listed in Table 4.3. The results show that the proposed
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method is more effective for the subjects with relatively poorer BCI perfor-

mance, with a p-value of 0.012 at the 5% confidence level. In particular,

for the dataset IVa, the proposed method achieves a greater improvement

for the subject av. It is observed that the lower the baseline classification

accuracy, the higher the incorrectness level er, which indicates that the pro-

posed method is more effective for the illiterate subjects. Relatively, fewer

improvements are achieved in the dataset of 16 subjects. The two classes in

dataset IVa are hand and foot movement motor imageries. It is possibly be-

cause that the re-estimation of covariances is more effective with both classes

being motor imageries, the data of which are more consistent than that of

the idle state. One class in the dataset of 16 subjects is the idle condition

which is more noisy and unstable. The re-estimation of the covariance ma-

trices could be less effective, as the covariance matrix discrepancies are still

relatively large within the selected subset Qcb in (4.1). Nevertheless, there

are still improvements in average classification accuracies for this dataset.

Figure 4.3 shows the comparison of the results summarized in Table 4.1

and 4.2, where results from different datasets are plotted in different shapes.

As the x-axis represents the accuracies under CSP and the y-axis represents

the accuracies under the proposed method, the more dots above the line y =

x, the greater the improvements that are achieved with the proposed method.

Generally, there are more dots above the line y = x indicating that the

proposed method could improve the performance of the classifier. Moreover,

on the left side of Figure 4.3, there are more subjects with improvements by

using the proposed method, and these are the subjects with BCI illiteracy.

An example of features corresponding to the first and the last spatial

filters is shown in Figure 4.4 to illustrate class-wise feature distribution. As
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Table 4.1: Competition III Dataset IVa test results (140-140) (%)

Subject aa al av aw ay mean std
er 22.86 0.00 38.57 16.43 16.43 16.71 15.13
W 75.00 95.00 61.43 87.68 95.71 83.00 14.64
We 71.43 95.00 68.57 90.00 97.43 84.29 13.29

Table 4.2: Test results (16-subject dataset) (%)

MI-MI PM-MI
Subject er W We er W We

1 21.25 70.00 72.50 22.50 61.88 62.50
2 36.67 61.67 68.33 30.00 59.17 63.33
3 41.67 73.33 65.00 48.33 60.00 60.00
4 26.67 85.00 83.33 9.17 68.33 68.33
5 10.00 71.67 71.67 18.33 62.50 64.17
6 11.67 96.67 96.67 15.83 82.50 85.00
7 26.67 76.67 80.00 18.33 70.83 68.33
8 6.67 93.33 93.33 5.00 98.33 98.33
9 15.00 88.75 88.75 15.00 86.88 84.38
10 28.33 46.67 45.00 30.00 55.00 61.67
11 25.00 46.67 55.00 45.00 49.17 50.00
12 3.33 78.33 78.33 7.50 83.33 84.17
13 33.75 52.50 52.50 38.75 59.38 56.25
14 10.00 93.75 93.75 3.75 81.88 82.50
15 43.75 68.75 73.75 43.75 52.50 61.88
16 15.00 80.00 78.75 16.25 81.88 70.76

mean 22.21 73.98 74.79 22.97 69.60 70.76
std 12.60 15.99 15.13 14.42 13.35 14.68

Table 4.3: T-test results for different groups of subjects.

all subjects illiterate subjects
p-value (W vs. We) 0.050 0.012

The results show that the proposed method is more effective for the subjects
with relatively poorer BCI performance, with a p-value of 0.012 at the 5%
confidence level.
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Figure 4.3: Test classification accuracy comparison. The x-axis represents
the accuracies under CSP, and the y-axis represents the accuracies under
the proposed method. Generally, there are more dots above the line y =
x. Moreover, on the left side of the figure there are more subjects with
improvements by using the proposed method, who are the subjects with BCI
illiteracy.
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Figure 4.4: An example of feature distribution comparison (subject av). The
2D features correspond to the first and the last spatial fitters in W or We.
The overlap of features from the two classes is reduced by using the proposed
method for both training set and test set.

illustrated by Figure 4.4, the overlap of features from the two classes is re-

duced by using the proposed method for both training and test sets. More-

over, the within-class feature dissimilarities are also reduced as the variances

of the features are smaller by using the proposed method, which indicates

that the ensemble learning of spatial filter could alleviate the sample discrep-

ancy problem to a certain extend.

4.2.4 Spatial Filter Comparison

Figure 4.5 shows an example of spatial filter weights in projection matrices

W and We. The spatial filters from W are shown in subfigure (a) and that

from We in subfigure (b). The left plots in subfigures (a) and (b) correspond
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Figure 4.5: An example of spatial filter weights in projection matricesW and
We (subject 2). In We, the weights of the spatial filter maximizing the right
hand motor imagery are more concentrated on the left hemisphere compared
with that in W .

to the spatial filters maximizing the power of EEG signals with motor im-

agery of right-hand movements, while the right plots correspond to that of

the idle states. It is seen in these figures that in We the weights are more

concentrated on the left hemisphere compared with that inW , which implies

an improvement as the right hand motor imagery relates to the activities in

the left hemisphere. There is not much difference between W and We for the

spatial filters maximizing the power of the idle state.

If W/We is interpreted from the perspective of channel selection, those

channels with larger weights should contain more discriminative powers. It

is possible that some channels are given relatively higher weights based on

the average covariance matrices, while for certain trials these channels are

not discriminative or very noisy. Therefore, the resulting features of these
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trials may contain wrong information. With the proposed ensemble learning

method, weights of channels are combined based on different groups of trials

so that certain exceptional patterns can be taken into consideration.

4.2.5 Discussion

The proposed method aims at reducing the error caused by covariance matrix

discrepancies. The motivation is straightforward: if the projection matrixW

is ineffective in generating a proper feature for a certain trial, there is a

mismatch between the model and the data. This would be a rare case if

samples from the same class are fairly consistent. However, as shown in the

feature distribution in Figure 4.1, discrepancies exist within the same class,

since the EEG data are quite nonstationary. However, how to discriminate

two classes while considering within-class discrepancies is difficult for the

spatial filter design. In the EEG data space or the covariance matrix space,

it is difficult to evaluate the distribution of trials. To this end, we utilize

features to evaluate the model, and select the exceptional trials with the

mismatch problem.

W functions by maximizing the differences of the variances between two

classes after the projection. Given certain trials selected as exceptional sam-

ples from one class, which trials from the other class should be used for co-

variance matrix estimation cannot be determined, as discrepancies also exist

in the trials from the other class. In other words, there exist several combi-

nations of the covariance estimates to calculate W considering different pat-

terns in different trials. To overcome this problem, a new projection matrix

W+
b /W

−
b for the exceptional samples is computed based on the mean covari-
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ance matrix of these samples and the mean covariance matrix of all samples

from the other class. In this way, the new projection matrix W+
b /W

−
b aims

at discriminating the exceptional trials from all trials of the other class. The

virtue of this strategy lies in avoiding totally different projection matrices for

ensemble learning while maintaining one of the covariance matrices.

With ensemble learning, biased estimates could be taken into considera-

tion. For example, in subject av, the reason why there is a significant accu-

racy improvement could be that the average covariance matrices are biased

greatly by noise, and the exceptional samples are actually trials containing

the discriminative information. By the re-estimating process, such a bias is

reduced. It is also possible that there exist several kinds of patterns within

one class, and the patterns that dominate the training set are very different

from that dominate the test data. The exceptional samples are more similar

to test data. Therefore, by balancing those different patterns with combined

projection matrices, the model generalization could be improved.

Regarding the parameter ξ in (4.1), we did not tune it although other

values of ξ could result in better results for certain subjects. Moreover, if

methods such as cross-validation are used to tune ξ based on training data,

it is also possible that the over-fitting problem could emerge.

In this work, despite the study on the “PM-MI” paradigm, the proposed

method is evaluated by classifying data recorded on the same day. Prelimi-

nary results on classifying test data recorded on different days show limited

improvements. As in the proposed method, the mismatch between data and

the model is evaluated within training set, it is possible that more significant

nonstationarity cannot be fully removed, which is the limitation of this work

to be addressed in the future work.
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4.3 Conclusion

This work has addressed the problem of mismatch between model and sam-

ples brought by within-class covariance matrix discrepancy. To take the

discrepancies of covariance matrices and their estimates into consideration,

an approach to design spatial filters based on ensemble learning has been

studied. In particular, the mismatch between the model and data has been

evaluated based on the features, and subsequently, the exceptional trials

for which the current projection matrix cannot extract proper features have

been selected. By ensembling models recalculated based on different subsets

of training data, more patterns within one class can be taken into considera-

tion in a very direct and convenient manner. The experimental results have

shown that the proposed spatial filter design method yielded a better clas-

sification accuracy. The significance of this improvement has been validated

using t-test especially for the BCI illiterate subjects.

The proposed method combines different projection matrices in a weighted

way so that the mismatch between data and the model can be alleviated,

while the problem of nonstationarity of data recorded on different day can-

not be fully solved by the proposed method. Given that the data-model

mismatch is critical for the performance of BCI systems, we will focus on

the development of adaptive learning schemes considering the mismatch. In

particular, we will investigate how to evaluate the mismatch between the

training model and test data without test labels and use it to adapt the

model. In this regard, instead of improving the model generalization, we can

implement adaptation by addressing the mismatch problem of the training

model and test data, which will be introduced in the following chapters.

74



Chapter 5

Model Adaptation Based on

Tensor Decomposition

Given the significant data variation between sessions, learning the nonsta-

tionarity within the training data is not effective enough. The mismatch

between the model obtained from training data and test data is more criti-

cal. Thus, it is important to construct a metric that measures this mismatch

between test data and the model obtained from training data, and make use

of the mismatch metric to guide the adaptation of feature extraction models.

This chapter presents a systematic attempt to quantify the data-model

mismatch and use the mismatch metric as a basis for the model adaptation.

We apply a tensor model to the covariance matrices of EEG data so that

the ERD/ERS effects of multi-trial data as well as the projection matrix

can be formulated in a unified model [122]. Interpreted from a regression

perspective, the residual part in this tensor model reflects the fitness of the

projection matrix in describing the ERD/ERS effects underlying the covari-

ance matrices. Therefore, this residual error can be used to evaluate the

feature extraction model.

As it is difficult to achieve the residual error minimization and the dis-

crimination objective simultaneously, we propose a two-step approach where
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the residual error is estimated in the first place and then combined with the

discriminative objective function in a regularized manner. For model adap-

tation, the major challenge in the first step lies in learning the mismatch

relevant to the discriminative task without the true labels of new sessions.

To address this issue, we adopt a semi-supervised learning approach to take

the class information into consideration instead of the conventional error

minimization used in regression model estimation. In this way, the perfor-

mance of feature extraction model can be enhanced by the adaptation toward

reducing the data-model mismatch.

This chapter is organized as follows. In Section 5.1, spatial pattern anal-

ysis with a tensor model is presented, followed by the introduction of the

adaptation method based on the quantification of the mismatch between

model and data. In Section 5.2, we present the investigation into the correla-

tion between the classification performance and data-model mismatch metric

as well as the validation of the proposed method in a two-class motor imagery

classification problem. Concluding remarks are given in Section 5.3.

5.1 Spatial Filter Adaptation Based on Tensor

Decomposition

5.1.1 Spatial Filtering in Tensor Decomposition Form

For convenience, we will follow the conventional notations and definitions in

the area of multi-linear algebra. Thus, in this study, tensors are denoted

by calligraphic letters [123]. For the details of the definitions and notations,

please refer to Appendix A.3.
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Let V be an arbitrary projection matrix that maps EEG data from the

scalp space to a surrogate channel space, where the resulting covariance ma-

trix is

Λi
v = V TRiV (5.1)

The covariance matrix Ri of trial i can be written as

Ri = V −TΛi
vV
−1 (5.2)

where Λi
v is usually assumed to be diagonal for ERD/ERS feature extraction

[75, 124].

To describe multiple trials in one model, we adopt the tensor model to

describe the mapping relationship in (5.2). Let R be a tensor including the

covariance matrices of totally ni trials as R ∈ Rnc×nc×ni . Then, the i-th

frontal slice of R is the covariance matrix Ri for trial i, and (5.2) for all trials

can be formulated as

R = I ×1 V ×2 V ×3 Λd + E (5.3)

where I ∈ Rnc×nc×nc is the cubic tensor with ones along the super diagonal,

and E ∈ Rnc×nc×ni is the tensor of residual error components. Each of the

frontal slices of E is denoted by Ei. Λd = [λ1
d, λ

2
d, . . . , λ

ni
d ]

T ∈ Rni×nc , where

λid, i ∈ 1, ..., ni is the vector containing the diagonal elements of Λi
v in (5.2).

In addition, Λd can be regarded as the matrix containing the variances of the

signals of all trials after projection.

The objective of the discriminative spatial pattern learning is to estimate
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spatial filter V in (5.3) so that the reconstructed signal can be classified. In

CSP, the solution can be obtained as a generalized eigen-decomposition of

covariance matrices of two classes (2.15). Define R̄ ∈ Rnc×nc×2 as a tensor

such that R+ and R− are frontal slices [122]. And CSP can be written in a

tensor form as

R̄ = I ×1 V ×2 V ×3 Λ̄d (5.4)

with the solution V = W T . Λ̄d = [λ+, λ−]T ∈ R2×nc , where λ+ and λ−

are, respectively, vectors consisting of diagonal elements of Λ+ and Λ− in

(2.11). In other words, they are the eigenvalues of R+ and R+ upon the joint

diagonalization.

An interesting term in (5.3) but absent in (5.4) is E . It is the residual

part of modelling which is not taken into consideration in CSP. It is often

neglected in conventional spatial filter design methods, where the multi-way

structure of the data is simplified by averaging covariance matrices. In [122],

this non-jointly-diagonalized term has been explored and it is assumed to

be related to the quality of the EEG trials. Compared with parameters that

measure the data variation, the residual part E provides a natural data-model

mismatch metric in a more direct way. In other words, the residual part E

can be used to evaluate the performance of the spatial filter because it reflects

how accurate the model is in describing the ERD/ERS process. Based on

this motivation, we utilize the tensor model of the covariance matrices for the

data-model mismatch metric estimation, which is used to guide the spatial

filter adaptation.
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5.1.2 Tensor Decomposition Based Adaptation

As the residual part E can be regarded as a quantification of the mismatch

between model and data, the mismatch between the calibration model and

test data from different sessions is of particular interest, which is formulated

as

Ete = Rte − I ×1 Wtr ×2 Wtr ×3 Λd,te (5.5)

where Rte is the tensor of covariance matrices of all test trials and Wtr is the

solution of CSP in (5.4) obtained from the calibration session. Then, Λd,te

contains the variances of the signals after projection, and Ete is the tensor of

residual error components, i.e., the mismatch metric between the calibration

model and the test data. The error part of test data, Ete, is usually much

larger than that of the training data, i.e.,

Etr = Rtr − I ×1 Wtr ×2 Wtr ×3 Λd,tr (5.6)

Examples will be shown in Section 5.2.

To address the session-to-session transfer problem,Wtr should be adapted

toward minimizing the residual error with respect to the test data while

keeping power differences between classes maximized. However, it is difficult

to combine the objective function that minimizes the residual error with

the one maximizing the Rayleigh coefficient in CSP, as both W and Λ are

dependent on each other. To this end, we propose a two-step approach where

the residual error is estimated at the first step and then combined with the

objective function of CSP in a regularized manner.
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5.1.2.1 Residual Error Estimation

In (5.5), Λd,te corresponds to the variance features used for classification of

the test data (details of variance feature extraction can be found in [73]). The

estimation of Ete is not useful for the adaptation of the discrimination model,

if Λd,te is not separable. To solve this problem, we propose a semi-supervised

learning approach to evaluate and adapt the discrimination model as shown

in Algorithm 3, instead of using Ete in (5.5) directly. Details of the derivation

of the updating equations (5.8) and (5.9) can be found in Appendix A.4 and

[122]. Different from the iteration in [122], the class information is taken into

consideration in the estimation to obtain the data-model mismatch metric

relevant to the discriminative objective.

As shown in (5.4), Λ̄d consists of λ+ and λ−, which are the vectors com-

prising, respectively, the eigenvalues of R+ and R− upon joint diagonaliza-

tion. Generally speaking, λ+ and λ− are the centres of distributions of the

training features. It is desirable that the test features are close to the cor-

responding centers in a class-wise way. Therefore, we adopt λ+ and λ− as

the references of variance features of the two classes by using pseudo labels

of the test data, denoted by ŷ in (5.7). Upon the class-wise initialization,

(5.8) and (5.9) are iterated in a data-driven manner so that this estimation

process is not relying on the predicted labels totally. In other words, by

combining the semi-supervised initialization and iteration procedure, we can

balance the trade-off between the discrimination objective and the risk of

semi-supervised learning. This approach also allows that intrinsic variations

remain, and only the residual parts that cannot be jointly diagonalized will

be penalized.
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Algorithm 3 Estimation of residual error
Input: Training data, a batch of test EEG data w/o class label, and maxi-

mum number of iteration nk;
Output: Data-model mismatch metric Ête.
begin

Train a feature extraction model based on the training data;
Obtain features of both training data and test data;
Train a classifier based on the training features;
Classify the test features to obtain the estimated label ŷ;
Initiate Λ0

d,te as

λi,0d,te =

{
λ+, ŷi = +;
λ−, ŷi = −. (5.7)

where λi,0d,te is the i-th column of Λ0
d,te.

Initiate V 0 = W T
tr ;

while k < nk do
Update V k as

V k = Rte,(2){(Λk−1
d,te � V k−1)T}† (5.8)

where † denotes the pseudo-inverse of a matrix.
Update Λk

d,te as

Λk
d,te = Rte,(3){(V k � V k)T}† (5.9)

k = k + 1;
Compute

Ête = Rte − I ×1 V
k ×2 V

k ×3 Λk
d,te (5.10)
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5.1.2.2 Regularization of the Error Term

The residual error term Ête estimated in Algorithm 3 cannot be regularized

directly because it may not be positive-definite, and in this case the regular-

ization actually increases the mismatch as discussed in [92]. In this section,

we introduce two methods to guarantee that the penalty term to be positive,

and the results comparison and discussion will be given in the next section.

Let Êi
te be the i-th frontal slice of Ête. To guarantee that the penalty term

is positive, we consider the penalty term in the form

Ps(w) = w(
nte∑
i=1

(Êi
teÊ

iT

te ))wT (5.11)

where nte is number of test trials available for adaptation. The penalty term

in (5.11) may fail to penalize appropriate elements of W in certain cases, as

pointed out in [125, 77]. To solve this problem, we propose a novel operator

F∗. Let E ∈ Rnc×nc be an arbitrary error term with eigen-composition

E = UeDeU
T
e , (5.12)

Then, we have

F∗(E) =
nc∑
m=1

|de,m|


u2
e,1m . . . |ue,1mue,ncm|
... . . . ...

|ue,1mue,ncm| . . . u2
e,ncm

 (5.13)

where ue,nm, m, n = 1, ..., nc is the element of the n-th row and m-th column

of Ue. Detailed discussion of operation F∗ and its relationship with the

“flipping” method in [92] can be found in Appendix A.5. The penalty term
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based on (5.13) is

Pf (w) = w(
nte∑
i=1

F∗(Êi
te)

T )wT (5.14)

With the regularization terms, the regularized objective functions based

on CSP become

J+(w) =
wR+wT

w(R+ +R−)wT + µP (w)
(5.15)

J−(w) =
wR−wT

w(R+ +R−)wT + µP (w)
(5.16)

where µ ∈ [0, 1] is the tuning parameter. By maximizing (5.15) and (5.16),

spatial filters that respectively maximize the power of class + and − can

be obtained [91]. P (w) in (5.15) and (5.16) represents a penalty term. By

replacing P (w) with Ps(w) in (5.11) or Pf (w) in (5.13), we can obtain ob-

jective functions based on different transformation methods. More forms

of P (w) will be introduced in Section (5.2.2) for comparing the proposed

method with other regularization-based spatial filtering methods.

Note that while R+ and R− are computed using training data only, P (w)

is calculated based on a batch of unlabelled test data as presented in Al-

gorithm 3, and (5.11)-(5.13). Therefore, (5.15) and (5.16) are applied to

update the spatial filters and it can be considered as adaptation. By penaliz-

ing P (w) in the objective function, the residual part E can be minimized in

the updated CSP space. Subsequently, the updated model fits the new data

better, and the performance of feature extraction can be improved.
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5.2 Experimental Study

5.2.1 Experiment Set-Up and Data Description

Please refer to Section 3.4.1.

5.2.2 Data Processing and Feature Extraction

Since FBCSP is one of the most successful feature extraction methods for

motor imagery EEG classification, we implement the proposed adaptation

method based on FBCSP. First, we train FBCSP and the Naive Bayesian

Parzen Window (NBPW) classifier with the training data as in [80, 68].

Then, data from the test session is divided equally into two batches, and as

described in Section 5.1.2, Ête is estimated based on the first batch of the test

data and the projection matrix Wa is obtained using different penalization

terms as in Section 5.1.2.2. Note that during the adaptation procedure the

true labels of the test data are not available. This adaptation procedure

is only applied to the bands selected in FBCSP for the sake of efficiency.

Finally, the updated projection matrices were applied to the training data

and the classifier was re-trained by the updated training features. Test data

from the second batch is classified by the updated model. For the convenience

of presentation, we refer to the batch of test data used to estimate the error

term as the adaptation batch, and the rest of test data as the evaluation

batch.

To compare the proposed method with other regularization based meth-

ods and adaptation methods, we implement Tikhonov (Tik) regularized CSP,

spatially regularized (SP) CSP [91], unsupervised data space adaptation
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(DSA) [103], naive regularization using average covariance of the test set

(nvCSP), and stationary CSP (sCSP) [92]. For Tik and SP, we use cross-

validation results of the training set to select the best regularization term,

as in [91]. In DSA [103], the space adaptation matrix is calculated using the

test data from the adaptation batch

WDSA = WtrR̄
1
2
trR̄
− 1

2
te (5.17)

where R̄tr and R̄te are average covariance matrices of training set and adap-

tation batch, respectively. In nvCSP, R̄te is used as the regularization term,

as below

Pnv(w) = wR̄tewT (5.18)

Note that for nvCSP we use the ratio between the number of the training

trials and test trials to determine the regularization coefficient, i.e., µ = nte

ntr
,

where ntr denotes the number of training trials. For a better comparison,

sCSP is implemented in an adaptive manner using data from the adaptation

batch

Pst(w) = w(
nte∑
i

F(Ri
te − R̄tr))wT (5.19)

where F denotes the “flipping” operator introduced in [92]. Moreover, to

validate the necessity of Algorithm 3, we use Ete in (5.5) as the regularization

term, by substituting Ei
te into (5.11) and (5.14) for Êi

te.

Since sCSP and the proposed method are used for adaptation, the cross-

validation based training set cannot be used to select µ. Thus, we choose to
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cross-validate the classification performance in a leave-one-subject-out man-

ner. In particular, µ is pre-set as µ ∈ {0.1, 0.2, ..., 1}, and for a current

subject the value of µ is chosen as the one with the best average performance

for the rest of the subjects. All methods are implemented with FBCSP in

the same way, i.e., they are all applied to the bands selected by FBCSP.

5.2.3 Analysis of Residual Error

In this section, we investigate the residual error E to validate the proposed

method in measuring the mismatch between the feature extraction model

and data. In particular, we perform the correlation test between ||Etr/te||

and the classification accuracy. 5-by-5 cross-validation accuracies are used

for training data and session-to-session transfer classification accuracies are

used for test data. Figure 5.1 illustrates the correlation between the clas-

sification accuracy based on FBCSP and average ||Etr/te|| of trials from the

training/test set. Pearson’s correlation coefficient rc equals −0.60 for the

training data with p-value 0.01. Therefore, we can see that the accuracy

for the training data significantly correlates to ||E|| in a negative way. The

p-value for the test data is not significant (0.19) but the correlation is also

negative (-0.34). The correlation for the test data is not significant, which

is possibly because the session-to-session transfer classification accuracy is

subject to more complicated factors. We see that the regression lines for

the test data and training data in Figure 5.1 are almost parallel. Generally,

there is a trend that a higher ||Etr/te|| may correspond to a lower classification

accuracy and vice versa.

In addition, the change of Ête with respect to the iteration number is also
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Figure 5.1: Relation between the residual error and classification accuracy.
Each circle or triangle marks one subject. The x-axis represents the classifi-
cation accuracy and the y-axis represents ||Etr|| or ||Ete||. For both training
data and test data, there is a trend that a larger ||Etr|| or ||Ete|| may corre-
spond to a lower classification accuracy. Pearson’s correlation test shows a
significant correlation for training data with coefficient rc equal to −0.60 and
p-value equal to 0.01.
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investigated because there is an iteration procedure in Algorithm 3. Figure
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Figure 5.2: The change in ||Ête|| with respect to the iteration number k. As
shown in this figure, the change in ||Ête|| becomes very small after 2 iterations.
Thus, for the efficiency of computation, it is reasonable to run the iterations
twice.

5.2 shows an example of the change in ||Ête|| during the process of iteration,

where the 4 frequency bands are selected by mutual information for this

subject. As shown in Figure 5.2, the change in ||Ête|| is very small after 2

iterations, and this trend exists for every subject. Thus, it is reasonable to

run the iterations twice, and this setting is applied to all subjects to obtain

the classification results in the following section.

5.2.4 Classification Results

In this section, we present the classification results using the proposed tensor

decomposition adaptation (TDA) method. Table 5.1 summarizes the per-

88



5.2. Experimental Study

formance of the methods mentioned in Section 5.2.2 compared with FBCSP

without any adaptation or regularization as the baseline. Note that all clas-

sification accuracies are based on the evaluation batch. We use TDAs or

TDAf to indicate that (5.11) or (5.13) is used in the proposed method to

transform E into a positive definite matrix. And for simplicity, Ps(Ete) or

Pf (Ete) indicates that the direct differences between test data and model Ete

in (5.5) are used with different transforming methods. Generally, all adap-

tation methods improve the performance of FBCSP while spatial-smoothing

methods (“Tikhonov” and “SP”) fail to do so. Paired t-test results show

that only TDAs and TDAf outperform the baseline in a significant way, and

TDAs achieves the highest accuracy of 74.41% which indicates the effective-

ness of the proposed methods. One reason for the better results of TDAs

could be that Êj
teÊ

jT

te is simpler so it is closer to the original error while

operation F∗(E) modifies the term substantially and becomes less accurate.

Moreover, the iteration in Algorithm 3 actually decreases ||ÊteÊte||2F , equalling∑nte

j tr(Êj
teÊ

jT

te ) (Appendix A.4), which could also be a reason that Êj
teÊ

jT

te

in (5.11) matches TDA better.
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5.2. Experimental Study

The changes in the feature distribution between sessions are shown in

Figure 5.3. In particular, in each subfigure of Figure 5.3, the distributions

of the 2D features in different sessions are plotted and the corresponding

subjects are listed. Those features correspond to the most discriminative

spatial filters selected using mutual information in the FBCSP procedure.

The terms “a-batch” and “e-batch” are used to represent the adaption batch

and the evaluation batch. We can see that without adaptation, the feature

distributions shift greatly. It is clearly shown that such a shift has been

reduced significantly by TDA, and subsequently, the feature distributions

become more consistent across sessions. More importantly, we find that the

variances of the features are also reduced by TDA, which means that the

proposed method can also reduce the within-session nonstationarity.

Visualization of class-wise feature distribution is shown in Figure 5.4 to

compare the separations of features from different classes with and without

adaptation. The non-linear classification boundary in NBPW classifier is

presented by the contrast between colors blue (class −) and red (class +).

Comparing the left and right columns in Figure 5.4, it can be seen that

by employing the proposed method, more features lie on the correct side of

the classifier. In particular, for subject 1, it is observed that the reduced

shifts between training and test features contribute to the improvements.

For subject 4, separability of the test features is improved more significantly.

Therefore, besides the shift of the average distance, the proposed method

is able to capture the cross-session nonstationarity that makes the feature

extraction model fail to extract discriminative features for certain subjects.

This improvement is a more meaningful adaptive behaviour of the feature

extraction model.
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Figure 5.3: Tracking the nonstationary feature space across sessions. Com-
paring the feature distributions extracted from the training session and two
test batches, we observe that the feature distributions become more consis-
tent across sessions by employing TDA, with the distances between training
features and test features significantly reduced.

Figures 5.5 (a) and (b) show the change of ||Etr/te|| with different values

of tuning parameter µ. The x-axis represents the value of µ and the y-axis

||Etr/te||. Note that in this analysis ||Etr/te|| is calculated by substituting

Wa using different µ into (5.6) or (5.5). Therefore, when µ = 0, ||Etr/te||

equals to that in (5.6) or (5.5), respectively. The baseline values are given by

dotted/dashed lines. For the two sets of test data, ||Ete|| decreases first and
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(d) Subject 4 (TDAs)

Figure 5.4: Visualization of class-wise feature distributions. The non-linear
classification boundary in NBPW classifier is presented by the contrast of
different color patterns. By employing TDA, more features fall in the corre-
sponding side of the boundary.

93



Chapter 5. Model Adaptation Based on Tensor Decomposition

0 0.2 0.4 0.6 0.8 1
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

‖E
tr
/
te
‖

Tuning parameter μ

 

 

Training set

Test set (adatptation batch)

Test set (evaluation batch)

(a) TDAf

0 0.2 0.4 0.6 0.8 1

0.2

0.25

0.3

0.35

0.4

‖E
tr
/
te
‖

Tuning parameter μ

 

 

Training set

Test set (adatptation batch)

Test set (evaluation batch)

(b) TDAs

Figure 5.5: Change of ||E|| with respect to µ. The x-axis represents the value
of µ, and the y-axis represents ||Etr/te|| averaged across subjects. ||Etr/te||
based on FBCSP without any adaptation are denoted with dotted-dashed
lines.
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Figure 5.6: Change of accuracy with respect to µ. The x-axis represents the
value of µ, and the y-axis represents accuracy averaged across subjects.
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Figure 5.7: Change of accuracy with respect to change of ||E||. The x-axis
represents the decrease of ||E||, and the y-axis represents change of accuracy.
Each triangle marks one subject.
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then increases. The trends for TDAs and TDAf are different, the reason for

which could be that after squaring the scale of the elements in the penalty

terms changes greatly. Figures 5.6 (a) and (b) show the change of accuracy

with respect to µ. Comparing Figures 5.5 and 5.6, we see that in general

the lower the value of ||Ete||, the higher the accuracy. Since E reflects the

mismatch between model and data, when a high weight is given to the penalty

term, we sacrifice the fitness of that model for training data. The value of µ

actually controls the balance between test data and training data. As shown

in Figures 5.5 (a) and (b), µ = 0.1 for TDAf and µ = 0.8 for TDAs can be

deemed as “equilibrium” points, where the decrease of Ete is significant while

Etr is not increased greatly. This is the reason why these two parameters

yield the best accuracy improvements in Figures 5.6 (a) and (b). Figures 5.7

(a) and (b) show classification improvements with decrease in ||Ete||. In both

cases, we find that improvements increase with decrease in ||Ete||, which is

not significant in the Pearson’s correlation test. As we have discussed earlier,

since the improvements are subject to both ||Etr|| and ||Ete||, it is reasonable

that such unilateral correlations are not significant.

5.2.5 Discussion

As described in Section 5.1, the role of the regularization term of TDA can be

viewed as minimizing the regression error of the model. A natural idea is to

use the residual parts of the training data to regularize the model to improve

model generalization. However, from the experimental study, it is found that

the classification performance of such an implementation is not significantly

higher than that of FBCSP without any regularization. The reason is that,
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Chapter 5. Model Adaptation Based on Tensor Decomposition

since the average covariance matrices are obtained from training data, the

residual parts are trivial, as shown in Figure 5.1. Therefore, it is more ef-

fective to utilize the residual error from the test data to adapt the model.

By improving the model from the perspective of fitness, the classification

performance can be enhanced simultaneously.

Regarding the choice of parameters, for most of the regularization based

methods, the most time-consuming part is related to optimizing parameters

using cross-validation. However, since the proposed method is designed for

adaptation, such cross-validation based on the training set is not appropriate.

Therefore, we adopt leave-one-out to choose different regularization terms µ.

Moreover, our analysis on the relationship between ||Etr/te|| and accuracy im-

provements in Figures 5.6 and 5.5 also provide insights into the selection of

µ by balancing ||Ete|| and ||Etr||. For the number of iterations in estimating

Ete in Algorithm 3, we show that only after 2 iterations, the change of ||Ete||

becomes quite small. In addition, more iterative steps could be redundant,

because we wish to maintain the discriminative property of Λd. Therefore, we

choose the number of iterations as 2, which satisfies the requirements and also

reduces the computational burden. Based on the above discussion, for these

two parameters there exist feasible values based on which general improve-

ments can be achieved. It is not necessary to tune the parameters for every

subject individually, although there may exist better classification results for

certain subjects by setting them differently. Regarding the necessity of the

tensor formulation and the iteration, we have performed the adaptation us-

ing Ete in (5.5) and there is no significant improvement, which validates our

consideration that penalizing Ete could be ineffective since Λte,d in (5.5) may

not be discriminative. Moreover, we would like to address the effectiveness
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of the proposed method as it can be combined with FBCSP easily with low

computational complexity and achieves performance improvements. In par-

ticular, 4 frequency bands are typically selected for a subject in FBCSP. For

example, it takes 0.0574s for a 4.00 GB CPU to process one trial to obtain

the mismatch estimates for 4 bands in MATLAB. The rest time between

trials is around 5s and usually much longer between runs. Thus, such a com-

putational time is acceptable for the proposed method to be implemented

online.

As described earlier, there exist other works addressing the nonstationar-

ity problem by utilizing data from other subjects [95, 94]. However, based on

FBCSP, usually different frequency bands are selected for different subjects,

which makes such multi-subject strategies difficult to implement. Recently,

a generic framework is proposed in [77], in which CSP and its regularization

methods are unified based on divergence. The divergence-based regulariza-

tion objective function needs to be solved by a geodesic searching approach or

a deflation method. In addition, FBCSP addresses the stationarity problem

by selecting bands using mutual information, and subsequently, improve-

ments gained by regularization based on training data could be limited.

Therefore, in this work, we focus on the regularization objective function

that could be solved by eigen-decomposition in one step for the sake of the

computational efficiency. For a similar reason, the signals after projection

are assumed to have diagonal covariance matrices in (5.2) as in CSP. Given

the neuroscience findings about source connectivities, a possible extension of

the proposed method could be measuring the data-model mismatch for the

computational model based on convolutive sources model in Chapter 3.
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5.3 Conclusion

For practical BCI systems, a computational model obtained from the train-

ing/calibration session is required to be applied to test sessions conducted

on different days, while data variation between sessions often leads to the

inaccuracy of the computational model. Despite the effort made on adaptive

BCI, the quantification of mismatch between test data and training model

needs to be investigated. In this work, we present a systematic attempt to

quantify the data-model mismatch, and use the mismatch metric to guide

the model adaptation.

To capture the multidimensional structure of EEG, we adopt a tensor

model to formulate the mapping between the variances of the source sig-

nals and covariance matrices of scalp EEG signals. The residual error of this

model proves to be an effective quantification of the mismatch between model

and data. Different from the conventional regression models, the mismatch

metric needs to be relevant to the discrimination function. However, in adap-

tation, true class labels of test data are not available in this discriminative

estimation of the mismatch metric. To solve this problem, the estimation is

accomplished by a semi-supervised learning approach. Then, the feature ex-

traction model can be updated accordingly toward reducing the data-model

mismatch.

We implement the proposed adaptation method combined with FBCSP,

which improves the session-to-session transfer classification accuracy signifi-

cantly as confirmed by the statistical test. Moreover, our correlation analysis

also validates the effectiveness of the proposed metric as a quantification of

mismatch between model and data.
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Chapter 6

Model Adaptation through

Subspace Tracking

As shown in Section 2.1, the projection matrix in CSP consists of a whitening

part and an orthogonal part, and there are methods that adapt the projection

matrix by re-estimating the whitening part. This whitening approach is

equivalent to projecting both training data and test data to an invariant

subspace, which is the orthogonal part in the projection matrix [104, 103].

The cross-session invariance of the subspace holds under the assumption that

the linear transformation between the two domains is symmetric.

However, due to the significant cross-session data variation, the discrimi-

native subspaces also vary from the training data to the test data. The adap-

tation issue for a more general case, i.e., the asymmetric transformation case,

should be taken into consideration for feature extraction. In fact, it is not

feasible to seek an invariant subspace where both training data and test data

are discriminative. The major challenge is adapting discriminative subspaces

for the test data while keeping the feature spaces consistent from session to

session. To solve this problem, in this work, we propose a novel adaptation

approach based on the divergence framework [77]. The cross-session change

can be taken into consideration by searching the discriminative subspaces
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for the test data on a manifold of orthogonal matrices in a semi-supervised

manner. The model adaptation is based on the divergence measurement of

distributions of the training data and the test data in different subspaces.

In particular, the adaptation objective is to maximize inter-class divergence

between the test data distribution in the adapted subspaces and the train-

ing data distribution in the original subspaces. By adding a regularization

term, within-class divergence could also be taken into consideration. In this

way, although different projection matrices are applied to training data and

test data, the feature space is more consistent and the performance of the

classifier can be improved without the adaptation of the classifier.

This chapter is organized as follows. In Section 6.1, the problem of dis-

criminative subspace shift in feature extraction is investigated and discussed.

In Section 6.2, the adaptation method based on the divergence framework

for the spatial filter design is presented. In Section 6.3, the shift of the dis-

criminative subspace is further investigated by a numerical study, and the

validity of the proposed method is verified by experimental studies on a two-

class motor imagery classification problem. Concluding remarks are given in

Section 6.4.

6.1 Problem Formulation

6.1.1 Spatial Filter Adaptation Based on Normalization

To address the nonstationarity of EEG data from different sessions, we use

Rtr to denote the average covariance matrix of the training data, and Rte to

denote the test data as computed in (2.2). Assuming that the prior proba-
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6.1. Problem Formulation

bilities of the two classes are equal, Rtr/te can be obtained as

Rtr/te =
1

|Qtr/te|
∑

i∈Qtr/te

Ri (6.1)

where Qtr/te denotes the training/test set. Given the composition of W as

in (2.10), the projection matrix obtained based on the training set is

Wtr = UT
trPtr (6.2)

where Ptr and Utr are the whitening part and the orthogonal part based

on the training set, respectively. In [104], it has been established that the

projection matrix can be adapted by replacing the whitening part Ptr = R
− 1

2
tr

with Pte = R
− 1

2
te so that the updated projection matrix becomes

Wn = WtrP
−1
tr Pte

= UT
trPte (6.3)

where Wn denotes the adapted projection matrix based on the method in

[104], which is usually referred to as the normalization-based adaptation. As

shown in (6.3), by only updating the whitening part, the orthogonal part Utr

inWtr is maintained inWn. It is also pointed out in [104] that the orthogonal

part Utr is kept constant across sessions if and only if

Xte = CR
− 1

2
tr Xtr (6.4)

where C is an arbitrary symmetric positive definite matrix, and Xtr and

Xte correspond to EEG data from the test session and the training session,
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respectively. The virtue of adapting W by normalization lies in the fact that

the estimation of Rte can be assessed without the labels of the data of the

test session as

Wn = WtrR
1
2
trR
− 1

2
te (6.5)

6.1.2 From Discriminative Subspace to Feature Space

Each column uj of the orthogonal part U in W = UTP can be regarded as a

subspace. The vectors that correspond to the largest and smallest eigenval-

ues in (2.7) to (2.9) are the most discriminative subspaces. In this section,

we investigate the relationship between the discriminative subspace and the

features space. In other words, how the change of the discriminative sub-

spaces influence that of the feature space. Given W in (2.10), the covariance

matrix after the projection can be rewritten as

Λi = WX i(X i)TW T

= (P TU)TX i(X i)TP TU

= UTPX i(X i)TP TU (6.6)

Σi is used to denote the covariance matrix of trial i after whitening as

Σi = PX i(X i)TP T (6.7)

Apply eigenvalue decomposition to Σi so that

Σi = U iV iU iT (6.8)
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6.1. Problem Formulation

where U i is a matrix containing the eigenvectors of Σi as columns, and V i

is a diagonal matrix containing the eigenvalues of Σi as diagonal elements.

Thus, the covariance matrix after projection can be rewritten as

Λi = UTU iV iU iTU (6.9)

Then, the j-th feature of trial i corresponding to the j-th spatial filter in W

(2.10) becomes

fij =
nc∑
m=1

vimu
T
j u

i
mu

i
m

T
uj (6.10)

where uj is the j-th column of U , uim is the m-th column of U i, and vim is

the m-th diagonal element of V i. Suppose trial i belongs to class +, and

let f̄+j be the mean of the j-th feature of class +. As shown in (2.2)-(2.10),

f̄+j = λ+
j , while it can be also written in the following form

f̄+j =
nc∑
m=1

λju
T
j u

i
mu

i
m

T
uj

= λju
T
j uju

T
j uj (6.11)

The distance between fij and f̄+j is

fij − f̄+j = uTj (λjuju
T
j −

nc∑
m=1

vimu
i
mu

i
m

T
)uj (6.12)

After the whitening, the range of eigenvalues λj and vm, should be between

0 and 1, and subsequently the differences between λj and vim would be very
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small, which means

fij − f̄+j ≈ uTj (
nc∑
m=1

vm(uim + uj)(u
i
m − uj)T )uj

∝
nc∑
m=1

vim < uj, u
i
m > (6.13)

From (6.13), we can see that the nonstationarity of the features is related

to the nonstationarity of U . To be specific, the larger the angle between uj

and uim, m = 1, ..., nc, the larger the distance between the features. By only

updating the whitening part, the orthogonal part Utr in Wtr is maintained

in the normalization approach. For the test data from a different session,

the covariances matrices Rte could be very different from R+ and R− that

are estimated using the training data, so that U i could be very different

from U . Thus, large < uj, u
i
m > would induce inseparable test features, and

only adapting the whitening part Ptr in Wtr could not be effective enough

for feature extraction. Moreover, to address the adaptation issue for a more

general case, i.e., the asymmetric transformation case, it is necessary to adapt

the discriminative subspaces for the test data. Based on this motivation, the

objective of this work is to develop the adaption method that updates U in

the projection matrix.
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6.2 Spatial Filter Adaptation through Subspace

Tracking

6.2.1 Preliminary of Divergence-Based CSP

To make this chapter self-contained, the divergence-based CSP is introduced

in this section. It is proved in [77] that spatial filters W in CSP project

the EEG data into subspaces where the KL-divergence between the data

distributions from two classes is maximized. Thus, the objective function of

the divergence-based CSP (divCSP) with regularization is in the form of

L0 = (µ− 1)D̃kl(WR+W T ||WR−W T ) + µ∆ (6.14)

where R+/− ∈ Rnc×nc is the average covariance matrix in (2.1). D̃kl is the

symmetric KL-divergence, and with the KL-divergence defined in (3.25) it is

defined as

D̃kl(N 0||N 1) = Dkl(N 0||N 1) +Dkl(N 1||N 0) (6.15)

In (6.14), D̃kl(W
TR+W ||W TR−W ) is the objective function of CSP in the

form of symmetric KL-divergence, ∆ is the regularization term, and µ is the

regularization parameter. The solution of minimizing (6.14) with µ = 0 is

equivalent to that of (2.10). ∆ is also based on the KL-divergence and it is

defined according to the type of nonstationarity to be minimized, e.g.,

∆ =
∑
c=+,−

1

|Qc|
∑
i∈Qc

Dkl(WRiW T ||WRcW T ) (6.16)
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(6.16) is an example of the regularization term representing within-class non-

stationarity, which measures the average divergence between the trials and

mean data distribution for each class separately. By replacing the diver-

gence term in (6.16) with different measurements, we can choose to penalize

different types of nonstationarity, such as cross-subject nonstationarity or

cross-session nonstationarity.

The major challenge is adapting discriminative subspaces for the test data

while keeping the feature spaces consistent from session to session. To solve

this problem, in this work, we propose a novel adaptation approach based on

the divergence framework (6.14), the advantage of which lies in the fact that

it can measure the distribution divergence in different subspaces. Therefore,

the cross-session change can be taken into consideration by searching a new

discriminative subspace for test data, while the subspace for training data

remains the same. The formulation of the objective function in the proposed

adaptation approach will be introduced in the next section.

6.2.2 Subspace Tracking

To ensure that the test features are in the same space with the classifier, we

propose the following objective function for adaptation

L = (µ− 1)Lcsp + µ∆ (6.17)

where

Lcsp =
1

2
D̃kl(WteR

+
teW

T
te ||WtrR

−
trW

T
tr) +

1

2
D̃kl(WteR

−
teW

T
te ||WtrR

+
trW

T
tr) (6.18)
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∆ =
1

2
Dkl(WteR

+
teW

T
te ||WtrR

+
trW

T
tr) +

1

2
Dkl(WteR

−
teW

T
te ||WtrR

−
trW

T
tr) (6.19)

Instead of measuring the distribution divergence between two classes us-

ing the test data, the distribution divergence between the test data and

training data is formulated in (6.18) and (6.18). In this way, inter-class and

within-class divergence between the test data in the adapted subspaces and

the training data in the original subspaces could be maximized and mini-

mized, respectively. This is to guarantee that the classifier trained by train-

ing features could be effective for the test features. Given Pte, the covariance

matrix of test data after whitening is

Σ
+/−
te = PteR

+/−
te P T

te (6.20)

Note that for the adaptation without test labels, R+/−
te could be estimated

using the predicted labels, while Pte is calculated without predicted or true

test labels under the assumption of balanced dataset. Since r pairs of spatial

filters will be used for feature extraction, based on (6.20), (6.17)-(6.18) could

be rewritten as

L(U) = (µ− 1)Lcsp(U) + µ∆(U) (6.21)

Lcsp(U) =
1

2
D̃kl(I

T
d U

TΣ+
teUId||WR−trW

T )

+
1

2
D̃kl(I

T
d U

TΣ−teUId||WR+
trW

T ) (6.22)

∆(U) =
1

2
Dkl(I

T
d U

TΣ+
teUId||WR+

trW
T ) +

1

2
Dkl(I

T
d U

TΣ−teUId||WR−trW
T ) (6.23)
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where Id ∈ Rd×nc is the identity matrix truncated to the first d columns with

d = 2r as the number of spatial filters.

6.2.3 Semi-Supervised Gradient Descent Searching

To solve (6.21), we adopt a subspace searching approach based on a gradi-

ent descent on the manifold of orthogonal matrices [77, 126]. In the training

stage, the subspace searching can be performed with labels and stopped upon

the convergence of the loss function L0. For the adaptation without test la-

bels, convergence of the loss function L could be problematic if the predicted

labels are used. Adaptation until the convergence of L is prone to perfor-

mance drops caused by incorrect predicted labels. To avoid these problems

owing to semi-supervised learning, in the proposed adaptation design, the ob-

jective function used to update U is calculated based on a subset of available

test trials. Let

R
+/−
te,b =

1

|Q+/−
te,b |

∑
i∈Q+/−

te,b

Ri (6.24)

Σ
+/−
te,b = PteR

+/−
te,b P

T
te (6.25)

where Q+/−
te,b denotes a subset of available test data for adaptation. By re-

placing Σ
+/−
te with Σ

+/−
te,b in (6.21) to (6.23), we can obtain the function for

adaptation, which is denoted as Lb. Therefore, the adapted orthogonal ma-

trix is

Ute = arg min
U
Lb(U) (6.26)
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During the gradient descent search, the loss function is also evaluated based

on (6.21) to (6.23) using all available test trials at each iteration step, which

is denoted by L(U). Stopping the iteration depends on the changes in both

Lb(U) and L(U). In particular, the search is stopped if

L(Uk+1) > L(Uk) (6.27)

where Uk is the orthogonal matrix U at the k-th step. By using (6.27), some

of the trials used to evaluate the change of loss function are independent

of the adaptation. Details of the semi-supervised adaptation is summarised

in Algorithm 4. After Ute is obtained, the projection matrix Wte can be

calculated as

Wte = UT
tePte (6.28)

6.3 Experimental Study

6.3.1 Experiment Set-Up and Data Description

Please refer to Section 3.4.1.

6.3.2 Data Processing and Feature Extraction

First, we train a CSP model and the Naive Bayesian ParzenWindow (NBPW)

classifier with the training data as in [80, 68]. Then, as described in Section

6.2, with the predicted labels of a batch of the test data from the new session,

the projection matrix Wte is calculated and applied to test data for feature
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Algorithm 4 Subspace searching based on gradient descent
Input: training data and adaptation data;
Output: Ute.
begin

Compute Pte;
Initialize U0 = Utr;
while k < nk do

Compute the gradient matrix M of Lb(Uk) with respect to Uk;
Compute

H =

(
0 M
−MT 0

)
(6.29)

Let tu = [0.95, 0.96, ..., 0.910].
Determine the optimal step size

t̂u = arg min
tu
Lb(exp(tuH)Uk) (6.30)

Update the rotation matrix

Uk+1 = exp(t̂uH)Uk (6.31)

Compute δ = L(Uk+1)− L(Uk);
Compute δb = Lb(Uk+1)− Lb(Uk);
if δ > 0 or |δb| < ζ (ζ is a small preset value) then

break.
end
k=k+1;

end
Ute = U .

end
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extraction. The number of the pairs of spatial filters r = 3, which means

that the dimension of the subspace used d = 6. Finally, test features are

classified by the classifier trained by the training data. In this work, we use

the first 1/5 of the test data as adaptation batch and the remaining 4/5 as

the evaluation batch. The subset of the adaptation trials , Q+/−
te,b , used to cal-

culate Lb(U) is chosen as 50% of the adaptation trials with higher posterior

probabilities for each class given by the NBPW classifier. nk is set to 100.

6.3.3 Numerical Study

In this section, we investigate how the change of the discriminative subspace

influences the feature distribution. In order to visualize the discriminative

subspace, we select only 3 channels, C3, Cz, and C4, which are known as

the 3 most discriminative channels for motor imagery EEG classification

[30]. We select subject 8 from the dataset introduced in Section 6.3, whose

training classification based on only C3, Cz, and C4 is the best among all

the subjects. Then, we calculate the whitening matrix P ∈ R3×3, U ∈ R3×3,

and projection matrix W ∈ R3×3 using (2.1)-(2.10). By listing the diagonal

elements of Λ+ in an ascending order (2.11), the first column, u1, and the last

column, u3, of U correspond to the spatial filters maximizing the variance

of the EEG signals of class - and class +, respectively. Therefore, the most

discriminative feature pair comprising f1 and f3 is used. The 2D-feature

distribution is shown in Figure 6.1, where the features from class + and class

- are presented by triangles and circles, respectively. And the mean of each

class is presented by a solid triangle/circle. The line representing x = y is

denoted in a dashed line for referencee.
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Figure 6.1: An example of 2D feature distribution using channels C3, C4 and
Cz, where the features from class + and class - are presented by triangles
and circles, respectively. And the mean of each class is presented by a solid
triangle/circle.
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The subspaces u1, u2, and u3 are illustrated in Figure 6.2. Then, we

rotate the subspace U i around the axis with the direction of um, m ∈ {1, 2, 3}

by an angle θ, and the rotation matrix is denoted as Rt(θ, um). Details of

calculating Rt(θ, um) can be found in Appendix A.6. An example of rotating

U around u2 with θ = 0, π
30
, π

15
, ..., π

6
is given in Figure 6.2 by the intermediate

colors from blue/red to yellow/pink.
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Figure 6.2: The subspaces u1, u2, and u3 in U . An example of rotating U
around u2 with θ = 0, π

30
, π

15
, ..., π

6
is given by the intermediate colors from

blue/red to yellow/pink.

Replacing U i in (6.9) with Rt(θ, um)U i, we can obtain the j-th feature of

trial i with U i rotated around um by θ as

fij(θ, um) = uTj (Rt(θ, um)U i)V i(Rt(θ, um)U i)Tuj (6.32)
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The distributions of fij(θ, um) with m = 1, 2, 3 are shown respectively in

Figures 6.3 to 6.5. For a clearer presentation, only the mean features (solid

points) and the covariances of features (ellipses) are shown in Figures 6.3

to 6.5. And rotation angle θ = 0, π
12
, π

6
..., π

2
is presented by intermediate

colors from red/blue (θ = 0) to pink/yellow (θ = π
2
). As shown in Figures

6.3 and 6.5, when the axis of the rotation is the same as the direction of

a discriminative subspace, i.e., u1 or u3, the feature corresponding to this

direction will not be affected by the rotation. In this case, if the classifier

could be rotated appropriately, the features could still be classified. In other

words, it can be seen from Figure 6.3 or 6.5 that, when θ = π
2
, the ideal

classifier becomes a vertical or horizontal line, which means that only the

feature dimension corresponding to the rotation axis is still discriminative.

However, when the axis of the rotation is the same as the direction of u2,

it is impossible to achieve the same classification accuracy by modifying the

classifier, as shown in Figure 6.4. In particular, when θ = π
4
, the feature

distributions of the two classes are completely overlapped by each other.

In the case shown in Figures 6.1 to 6.5, the features without any rotation

can be regarded as the training data, while the test features are the features

after rotation due to the nonstationarity. The objective of this work can be

regarded as finding an adapted projection matrixWr(θ, u) = UTR−1
t (θ, um)P

so that the adapted feature

fia,j(θ, um)

= uTj R
−1
t (θ, um)Rt(θ, um)U iV i(U i)TRT

t (θ, um)R−Tt (θ, um)uj

= fij(θ, um)|θ=0 (6.33)
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Figure 6.3: Change of the distributions of fj(θ, u1) with θ. The discrimination
of the feature dimension f1 is not affected by the rotation. The ideal classifier
becomes a vertical line when θ = π

2
.
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Figure 6.4: Change of the distributions of fj(θ, u2) with θ. Both feature
dimensions are affected by the rotation. It is impossible to achieve the same
classification accuracy by changing the classifier only.
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Figure 6.5: Change of the distributions of fj(θ, u3) with θ. The discrimination
of the feature dimension f3 is not affected by the rotation. The ideal classifier
becomes a horizontal line when θ = π

2
.
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When (6.33) holds, the classifier trained by the features without rotation

could be equally effective for the features after rotation with projection ma-

trix properly adapted, which is the goal we want to achieve for adaptation.

In this numerical study, we only show the feature distribution change

with the rotation around the axis parallel to the direction of either one of

the discriminative subspaces. In real cases, neither the rotation axis nor the

angle is available, and rotation would be more complicated. For example,

the direction of the rotation axis would be a combination of um, such as∑
m=1,2,3 gmum, where gm is the scalar coefficient. Therefore, it is difficult

to find out Wr in the form of Wr(θ, u) = UTR−1
t (θ, um)P explicitly, so we

propose the method in Section 6.2 to search the discriminative subspace of

the projection matrix.

6.3.4 Classification Results

Figure 6.6 summarizes the results of the proposed adaptation method, de-

noted byWte, compared with the adaptation method based on normalization

without updating the orthogonal part in the projection matrix, denoted by

Wn as in (6.3). Note that all classification accuracies are based on the eval-

uation batch. As shown by Figure 6.6, for most of the subjects the proposed

adaptation method yields improvements with very few drops compared to

the normalization approach in [104]. Besides, the average accuracy of the

proposed method using Wte is 67.42%, which is higher than that of using

Wn, i.e., 66.41%.

The changes in Lb and L with respect to the iteration number k are shown

in Figures 6.7 and 6.8, respectively. And the change in classification accuracy
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Figure 6.6: Accuracy comparison. The average accuracy of the proposed
method using Wte is 67.42%, which is higher than that of using Wn, i.e.,
66.41%.
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Figure 6.7: Change in Lb with respect to iteration number k.
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Figure 6.8: Change in L with respect to iteration number k.
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Figure 6.9: Change in classification accuracy with respect to the iteration
number k. The x-axis represents the value of k, and the y-axis represents
classification accuracy. Acca and Acce represent the classification accuracies
of adaptation batch and evaluation batch, respectively, and the baselines of
the normalization approach are denoted by dotted-dashed lines.
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with respect to the iteration number k is shown in Figure 6.9. In Figure 6.7,

Lb decreases with respect to k until the convergence at k = 40. And in Figure

6.8, L decreases with respect to k first and then increases after k = 7. In

Figure 6.9, for the evaluation batch, the classification accuracies first increase

and then decrease, and for the adaptation batch, the classification accuracies

decrease more significantly after k = 7. If the adaptation is stopped upon the

convergence of Lb, the classification accuracy of neither batch is optimal. As

illustrated in Figure 6.8, L decreases first and begins to increase from k = 7,

which means that the adaptation could no longer benefit the unselected trial

after k = 7. Thus, in the proposed method, the adaptation is stopped

when Lk > Lk−1, i.e., k = 7 in this case. As shown in Figure 6.9, the

classification accuracies when k = 7 of both batches are higher than that

when k = 40, i.e., the convergence of Lb. This shows the effectiveness of the

stop criterion in the proposed adaptation design. As shown in Figure 6.6,

the proposed method fails to improve the performance for some subjects. To

investigate the underlying reason, we perform similar analysis of the change

in the loss function and the classification accuracy for the subjects with little

improvement in performance. We find that for subjects 10, 11 and 15 the

adaptation is stopped at the very beginning of the iteration, which yields

results very similar to the baseline. A possible reason for subjects 10 and 11

is that the classification accuracy of the adaptation batch is similar to that

obtained purely by chance. Hence, with very few correctly predicted labels

it is difficult to find a right adaptation direction and the iteration stops at

the beginning. The good side of this result is that the adaptation toward a

wrong direction is avoided. In our future work, we would focus on solving

this problem with a better searching strategy.
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6.4 Conclusion

To address the nonstationarity issue for a more general case, the shift of

the discriminative subspaces should be investigated. In particular, the influ-

ence of such a shift on the feature space has been analyzed theoretically and

investigated by a numerical study. To solve the problem of nonstationary

discriminative subspaces, this study investigates the feasibility of updating

the spatial filters by adapting the discriminative subspaces for test data. The

adaptation is facilitated by the gradient searching on the manifold of orthog-

onal matrices based on the divergence-based framework in a semi-supervised

manner. In this way, the orthogonal part could be adapted together with

the update of the whitening part in the spatial filters, and the cross-session

data variation with the asymmetric data transformation could be taken into

consideration. To account for the risk in the semi-supervised learning, the

adaptation trials are divided into two subsets. Only one subset is used to

obtain the adaptation direction, while the search is stopped by the change of

loss function of all adaptation trials. The advantage of this cross-validation-

like design is to have independent validation of the adaptation and to avoid

possible over-fitting. Experimental studies show that the proposed method

further enhances the BCI performance compared to the normalization adap-

tation approach.
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Chapter 7

Conclusion and Future Work

In this chapter, the results of the research work are summarised, and the

major contributions of this work are highlighted, following which suggestions

for future work are presented.

7.1 Conclusion

The thesis has investigated modelling and classification of motor imagery

EEG for BCI. Model generalization has been studied with the discriminative

learning of propagation and spatial pattern, and ensemble learning of spatial

filters presented.

(i) Conventional spatial filter design based on instant mixing model is not

capable of describing complex dynamics such as neuronal propagation,

as accumulating neuroscience findings suggest that cooperation of mul-

tiple brain regions is involved in motor imagery. To take the causal

relationship during motor imagery into consideration, in Chapter 3,

we propose a novel discriminative algorithm for joint learning of prop-

agation and spatial pattern with an iterative optimization approach.

In particular, a convolutive model is used to describe the relationship

between source signals and scalp EEG. Experimental studies validated
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the effectiveness of the proposed discriminative learning of propaga-

tion and spatial pattern analysis. Moreover, the oscillatory background

noise related to ongoing activity has been analyzed by comparing the

proposed model and the MVAR model in the frequency space. Based

on KL-divergence measurements, we find that nonstationarity of the

EEG data can be reduced by the proposed method, which confirms our

analysis of background noise reduction.

(ii) As shown in the background noise analysis, the nonstationarity inherent

in EEG signals poses a big challenge for modelling EEG in BCI. Biased

estimates of covariance matrices would lead to the ineffectiveness of the

spatial filters. To overcome this problem, an ensemble learning of spa-

tial filter design has been proposed to improve the feature extraction

model in Chapter 4. The mismatch between data and model is evalu-

ated using features, and samples that are more likely to be misclassified

are selected. Multiple spatial filters are constructed based on different

groups of samples, and the final projection matrix for feature extrac-

tion is designed as a weighted summation of different spatial filters.

In this way, the biased estimates as well as the sample discrepancies

can be taken into consideration. The experimental results showed the

improved classification accuracy of the proposed method. Significant

improvements for the subjects with relatively poorer BCI performance

indicate the effectiveness of the ensemble learning of spatial filter.

Moreover, considering significant cross-session data variation, model adap-

tation methods are developed, by building a novel data-model mismatch met-

ric without test labels and searching discriminative subspace for test data on
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a manifold.

(i) Since session-to-session nonstationarity could be very significant, it is

necessary for the computational model obtained from the calibration

session to adapt to the data for BCI-based rehabilitation. The key

challenge for adapting the computational model is how to construct a

metric that measures the mismatch between test data and the model

obtained from training data, especially when the labels of the test data

are not available. To address this problem, in Chapter 5, we construct a

metric that measures this data-model mismatch, which is used to guide

the adaptation toward reducing the data-model mismatch. Since it is

difficult to achieve the residual error minimization and the discrimina-

tion objective simultaneously, we propose a two-step approach where

the residual error is estimated in the first step and then combined with

the discrimination objective function in a regularized manner. Experi-

mental results showed that the quantified mismatch was closely related

to the classification accuracy, thus validating the proposed metric in

measuring the data-model mismatch. The classification results also

showed that the proposed adaptation framework reduced the feature

distribution shift, increased the separability of the test features, and

yielded higher classification accuracies compared with other regular-

ization or adaptation methods.

(ii) As discussed in Section 2.1, the projection matrix in CSP consists of

a whitening part and an orthogonal part, which can be deemed as

the discriminative subspace for EEG data. There exist methods that

adapt the projection matrix by re-estimating the whitening part, the
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effectiveness of which is subject to whether the session-to-session data

transformation of the two class is symmetric. In Chapter 6, we show

that the effectiveness of the projection matrix closely relates to the

consistence of discriminative subspace. Following the theoretical anal-

ysis, a discriminative subspace tracking method is introduced for model

adaptation. In particular, the adaptation based on the searching on a

manifold of orthogonal matrices is proposed to update the discrimina-

tive subspace, i.e., the orthogonal part in the projection matrix, so that

the adaptation for a more general case, i.e., asymmetric transformation,

could be addressed. To avoid possible problems arising from the semi-

supervised learning, a cross-validation-based loss function is proposed

to evaluate the adaption direction. Experimental results showed that

compared to the normalization methods proposed in [104] the proposed

adaptation method with discriminative subspace tracking could further

enhance the classification results. Moreover, by analyzing the change

in classification accuracy and loss function, the cross-validation-based

loss function can stop the adaptation from wrong directions.

7.2 Limitations and Future Work

In this section, we discuss the limitations of our work and suggest topics for

further investigation.

(i) The work in Chapter 3 focuses on modelling the motor imagery EEG

using a convolutive model to describe the neuronal propagation dynam-

ics, while the features extracted by the model are ERD/ERS features.

However, the generation of the ERD/ERS in relation to the connectiv-
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ity pattern is not fully explored. For example, it is not clear whether

the ERD/ERS of single sources causes the propagation or the prop-

agation involved in the oscillatory signals generates the ERD/ERS.

By studying the role that connectivity plays in ERD/ERS, we could

have a better understanding of the ERD/ERS generation for further

enhancing the model generalization. Similarly, discriminative learning

of connectivity related features could be investigated by studying the

relationship between ERD/ERS effects and connectivity.

(ii) As shown in the numerical study in Chapter 6, after whitening, the

change of the discriminative subspaces of two classes are related to

each other. In other words, as the session-to-session shift of the dis-

criminative subspaces is bias-like on manifolds, it could be learnt more

efficiently in an unsupervised manner. The current semi-supervised

adaptation strategies that treat each class independently fail to fully

utilize this property. New methods should be developed to find a more

effective way of variation tracking.

(iii) The proposed methods have addressed the feature extraction issue, as

the feature extraction model is crucial to the classification error, e.g.,

Bayes error in [76]. However, the relationship between the nonsta-

tionarity in EEG and the classification error has not been established

rigorously. In particular, discriminative subspaces could be used to

model the distribution of the covariance matrices on manifolds. In the

future work, it is necessary to perform rigorous theoretical analysis on

the distribution of the discriminative subspaces on manifolds, and its

relationship with the Bayes error of feature classification.
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(iv) The proposed methods have addressed the nonstationarity problem

from the perspective of computational models, while the generation of

the nonstationarity has not been fully understood yet. With increas-

ing interest of studying the resting state EEG, more neurophysiological

knowledge of the nonstationarity inherent in EEG could be used as prior

knowledge for computational model design. Thus, in the future work,

experiments to understand nonstationarity from the neurophysiologi-

cal perspective could be conducted as a basis of robust computational

model design.
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Appendix

A.1 Experiment Set-Up

EEGs from 27 channels were obtained using Nuamps EEG acquisition hard-

ware with monopolar Ag/AgCl electrodes channels. The scalp map of the 27

channels being used is shown in Figure A.1. The sampling rate was 250 Hz

with a resolution of 22 bits for the voltage range of ± 130 mV. A bandpass

filter of 0.05 to 40 Hz was set in the acquisition hardware.
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Figure A.1: Scalp map of the 27 channels.

The length of each trial was 12s, including 2s of preparatory segment, 4s

of visual cue, and 6s of resting, which is shown in Figure A.2. During the

153



Chapter A. Appendix

EEG recording process, the subjects were asked to avoid physical movement

and minimize eye blinking.
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Figure A.2: Time segmentation of one trial.
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Instantaneous Model with Connected Sources

A.2 Relations Between the Convolutive Model

and the Instantaneous Model with Con-

nected Sources

Based on the model in [116] and [111],X(t) can be assumed to be generated as

a linear instantaneous mixture of source signal S(t), with the mixing matrix

Φ0, i.e.,

X(t) = Φ0S(t) (A.1)

Assume that S(t) follows an MVAR model as below

S(t) =
∑
τ

Bs(τ)S(t− τ) + ε(t) (A.2)

whereBs(τ) is the coefficient matrix of the MVARmodel and it represents the

connectivity between sources [108, 109]. From (A.1), the innovation process

ε(t) can be written as

ε(t) = Φ−1
0 X(t)−

∑
τ

Bs(τ)Φ−1
0 X(t− τ) (A.3)

=
∑
τ

B̂s(τ)X(t− τ)

where

B̂s(τ) =

 Φ−1
0 , τ = 0;

−Bs(τ)Φ−1
0 , τ > 0.

(A.4)

Equation (A.3) shows the equivalence between the MVAR model and the
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convolutive model in [112, 115], with the innovation process ε(t) correspond-

ing to the underlying convolutive sources. As the objective in [116] and

[111] is connectivity analysis, the estimation of Bs(τ) and Φ0 is based on the

non-Gaussianity assumption of ε(t). In the proposed model, S(t) represents

the discriminative sources related to ERD/ERS, and thus the estimation of

the FIR matrix Â(τ) in (3.10) and spatial filter w is based on maximiz-

ing the variance difference between the two classes. With the discrimina-

tive objective, it is preferable to apply the convolutive model to impose the

variance difference as the prior information of the source. Moreover, since

the two models are equivalent, it is also possible to build a discriminative

model based on the instantaneous mixing model with connected sources in

(A.1) and (A.2). In the future work, we would like to explore possible dis-

criminative learning approaches to study the connectivity that contains class

information.

156



A.3. Tensor-Related Notations and Basic Definitions

A.3 Tensor-Related Notations and Basic Defi-

nitions

Definition 1. Tensor: a tensor, also known as a N th-order tensor, a mul-

tidimensional array, a N-way or a N-mode, is an element of the tensor

product of N vector spaces, which is a higher-order generalization of a vec-

tor (first-order tensor) and a matrix (second-order tensor), denoted as A ∈

RI1×I2×...×IN , where N is the order of A. An element of A is denoted by

ai1,i2,...,iN , 1 ≤ i ≤ In, n = 1, ..., N .

Definition 2. Tensor Slice: a tensor slice is a two-dimensional section (frag-

ment) of a tensor, obtained by fixing all indices except for two indices.

Definition 3. Unfolding: the n-mode unfolding of tensor A ∈ RI1×I2×...×IN

is denoted by A(n). More specifically, a tensor element (i1, i2, ..., iN) maps

onto a matrix element (in, j), where

j = 1 +
∑
p6=n

(ip − 1)Jp,

Jp =


1, if p = 1 or

if p = 2 and n = 1;∏p−1
m 6=n Im, otherwise.

(A.5)

Definition 4. n-Mode Product: the n-mode product of a tensor A ∈ RI1×I2×...×IN

and a matrix U ∈ RJn×In, denoted by A×nU , is a tensor in RI1×I2×...×In−1×Jn×In+1×...×IN
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given by

(A×n U)i1,i2,...,in−1,jn,in+1,...,iN =
In∑
in=1

ai1,i2,...,iN , ujn,in (A.6)

Remark 1. Given a tensor A ∈ RI1×I2×...×IN , and two matrices, F ∈ RJn×In

and G ∈ RJm×Im, one has (A×nF )×mG = (A×mG)×nF = A×nF ×mG.

Definition 5. Khatri-Rao Product: For two matrices A = [a1, a2, ..., aJ ] ∈

RJA×J and B = [b1, b2, ..., bJ ] ∈ RJB×J with the same number of columns J ,

their Khatri-Rao product, denoted as �, performs the following operation:

A�B = [vec(b1a
T
1 ), ..., vec(bJa

T
J )] ∈ RJAJB×J (A.7)

Remark 2. Given a tensor A ∈ RI1×I2×...×IN and a sequence of matrices

Un ∈ RIn×Jn, n = 1, 2, ..., N , their multiplication A ×1 U
1 ×2 U

2... ×N UN

satisfies

A×1 U
1 ×2 U

2...×N UN = UnA(n)[U
N � UN−1...Un+1 � Un−1...U1] (A.8)
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A.4 Derivation of the Update Equations in Al-

gorithm 3

Let JE = ||E||2F and E(3) be the mode-3 unfolding of E . Then, (5.3) becomes

E(3) = R(3) − Λd(V � V )T (A.9)

Substituting (A.9) into JE, we have

JE = tr[R(3)R
T
(3) − 2R(3)(V � V )ΛT

d + Λd(V � V )T (V � V )ΛT
d ] (A.10)

Differentiating (A.10) with respective to ΛT
d , we obtain

δJE = tr[−2R(3)(V � V )δΛT
d + δΛd(V � V )T (V � V )ΛT

d

+Λd(V � V )T (V � V )δΛT
d ]

= tr[−2R(3)(V � V )δΛT
d + 2Λd(V � V )T (V � V )δΛT

d ]

= tr[2(Λd(V � V )T −R(3))(V � V )δΛT
d ] (A.11)

By setting δJE = 0, we obtain

Λd = R(3){(V � V )T}† (A.12)

which is equivalent to (9) in Algorithm 3. Similarly, by substituting the

mode-2 unfolding of E into JE, we can obtain the update equation for V , i.e.,

(8) in Algorithm 3.
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A.5 Comparison of Different “Flipping” Meth-

ods

As pointed out in [125, 77], the “flipping” method fails to capture relevant

nonstationarity in certain cases, which is shown by the following example:

Σ̄+ =

 0.9 0.15

0.15 0.1

 ,
Σ+,1 =

 0.9 0.05

0.05 0.1

 ,
Σ+,2 =

 0.9 0.25

0.25 0.1

 (A.13)

Suppose that Σ̄+ is the average covariance matrix of class +, and Σ+,1 and

Σ+,2 are covariance matrices of two trials. To extract the nonstationarity

between trials, let ∆i = Σi − Σ̄ and ∆i ∈ RM×M . Then, the penalty matrix

in sCSP with “flipping” is

F(∆) =
1

2

2∑
i=1

F(Σ+,i − Σ̄+) =

 0.1 0

0 0.1

 (A.14)

Thus, the nonstationarity of the off-diagonal elements cannot be penalized.

To further investigate this problem, let the eigen-decomposition of ∆i be

∆i = U iDiU iT (A.15)
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where U i = [ui1, . . . ,uiM ] are the eigenvectors and D = diag(dm), m =

1, 2, ...,M , is the diagonal matrix containing corresponding eigenvalues.

Then, the penalty term before “flipping” is

w∆iwT = w

(
M∑
m=1

dimu
i
m(uim)T

)
wT

=
M∑
m=1

dimwu
i
m(uim)TwT

=
M∑
m=1

dim

M∑
p=1

M∑
q=1

uimpu
i
mqwpwq (A.16)

where uimp or uimq is the p-th or the q-th element in uim. The penalty term

after “flipping” is

wF(∆i)wT =
M∑
i=m

|dm|
M∑
p=1

M∑
q=1

umpumqwpwq (A.17)

The reason why the “flipping” method fails to penalize relevant nonstatioary

elements is that by only taking absolute value of eigenvalue dm some coef-

ficients umpumq would cancel each other. In the example in (A.13), assume

that ∆1 = Σ+,1 − Σ̄+ with ∆1 = U1D1U1T , where

U1 =

 −0.707 −0.707

−0.707 0.707

 , D1 =

 −0.1 0

0 0.1

 (A.18)

Then, we have

wF(∆)wT = | − 0.1|(0.5w2
1 + 0.1w1w2 + 0.5w2

2)

+|0.1|(0.5w2
1 − 0.1w1w2 + 0.5w2

2) (A.19)
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where the coefficient of w1w2 is 0 after taking absolute value of eigenvalues.

To avoid this, uipuiq should be set to be positive if it is not, as below

wF∗(∆)wT =
M∑
i=m

|dm|
M∑
p=1

M∑
q=1

|umpumq|wpwq

≥ wF(∆)wT

≥ |w∆wT | (A.20)

which is equivalent to (5.13).
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A.6 Rotation Matrix in 3D-Space

In 3D-space, the matrix for a rotation by an angle of θ about the axis in the

direction of u ∈ R3×1 is given by Rt ∈ R3×1, i.e.,

Rt =


Rt,11 Rt,12 Rt,13

Rt,21 Rt,22 Rt,23

Rt,31 Rt,32 Rt,33

 (A.21)

where

Rt,11 = cos θ + u2
1(1− cos θ), Rt,12 = u1u2(1− cos θ)− u3 sin θ,

Rt,13 = u1u3(1− cos θ) + u2 sin θ, Rt,23 = u2u1(1− cos θ) + u3 sin θ,

Rt,22 = cos θ + u2
2j(1− cos θ), Rt,23 = u2u3(1− cos θ)− u1 sin θ,

Rt,31 = u3u1(1− cos θ)− u2 sin θ, Rt,32 = u3u2(1− cos θ) + u1 sin θ,

Rt,33 = cos θ + u2
3(1− cos θ)

with um, m ∈ {1, 2, 3} as the m-th element of u.
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