688 research outputs found

    Classification of North Africa for Use as an Extended Pseudo Invariant Calibration Sites (Epics) for Radiometric Calibration and Stability Monitoring of Optical Satellite Sensors

    Get PDF
    An increasing number of Earth-observing satellite sensors are being launched to meet the insatiable demand for timely and accurate data to help the understanding of the Earth’s complex systems and to monitor significant changes to them. The quality of data recorded by these sensors is a primary concern, as it critically depends on accurate radiometric calibration for each sensor. Pseudo Invariant Calibration Sites (PICS) have been extensively used for radiometric calibration and temporal stability monitoring of optical satellite sensors. Due to limited knowledge about the radiometric stability of North Africa, only a limited number of sites in the region are used for this purpose. This work presents an automated approach to classify North Africa for its potential use as an extended PICS (EPICS) covering vast portions of the continent. An unsupervised classification algorithm identified 19 “clusters” representing distinct land surface types; three clusters were identified with spatial uncertainties within approximately 5% in the shorter wavelength bands and 3% in the longer wavelength bands. A key advantage of the cluster approach is that large numbers of pixels are aggregated into contiguous homogeneous regions sufficiently distributed across the continent to allow multiple imaging opportunities per day, as opposed to imaging a typical PICS once during the sensor’s revisit period. In addition, this work proposes a technique to generate a representative hyperspectral profile for these clusters, as the hyperspectral profile of these identified clusters are mandatory in order to utilize them for performing cross-calibration of optical satellite sensors. The technique was used to generate the profile for the cluster containing the largest number of aggregated pixels. The resulting profile was found to have temporal uncertainties within 5% across all the spectral regions. Overall, this technique shows great potential for generation of representative hyperspectral profiles for any North African cluster, which could allow the use of the entire North Africa Saharan region as an extended PICS (EPICS) dataset for sensor cross-calibration. Furthermore, this work investigates the performance of extended pseudo-invariant calibration sites (EPICS) in cross-calibration for one of Shrestha’s clusters, Cluster 13, by comparing its results to those obtained from a traditional PICS-based cross-calibration. The use of EPICS clusters can significantly increase the number of cross-calibration opportunities within a much shorter time period. The cross-calibration gain ratio estimated using a cluster-based approach had a similar accuracy to the cross-calibration gain derived from region of interest (ROI)-based approaches. The cluster-based cross-calibration gain ratio is consistent within approximately 2% of the ROI-based cross-calibration gain ratio for all bands except for the coastal and shortwave-infrared (SWIR) 2 bands. These results show that image data from any region within Cluster 13 can be used for sensor crosscalibration. Eventually, North Africa can be used a continental scale PICS

    Observations and Recommendations for the Calibration of Landsat 8 OLI and Sentinel 2 MSI for Improved Data Interoperability

    Get PDF
    Combining data from multiple sensors into a single seamless time series, also known as data interoperability, has the potential for unlocking new understanding of how the Earth functions as a system. However, our ability to produce these advanced data sets is hampered by the differences in design and function of the various optical remote-sensing satellite systems. A key factor is the impact that calibration of these instruments has on data interoperability. To address this issue, a workshop with a panel of experts was convened in conjunction with the Pecora 20 conference to focus on data interoperability between Landsat and the Sentinel 2 sensors. Four major areas of recommendation were the outcome of the workshop. The first was to improve communications between satellite agencies and the remote-sensing community. The second was to adopt a collections-based approach to processing the data. As expected, a third recommendation was to improve calibration methodologies in several specific areas. Lastly, and the most ambitious of the four, was to develop a comprehensive process for validating surface reflectance products produced from the data sets. Collectively, these recommendations have significant potential for improving satellite sensor calibration in a focused manner that can directly catalyze efforts to develop data that are closer to being seamlessly interoperable

    Cross Calibration and Validation of Landsat 8 OLI and Sentinel 2A MSI

    Get PDF
    This work describes a proposed radiometric cross calibration between the Landsat 8 Operational Land Imager (OLI) and Sentinel 2A Multispectral Instrument (MSI) sensors. The cross calibration procedure involves i) correction of the MSI data to account for spectral band differences with the OLI; and ii) correction of BRDF effects in the data from both sensors using a new model accounting for the view zenith/azimuth angles in addition to the solar zenith/view angles. Following application of the spectral and BRDF corrections, standard least-squares linear regression is used to determine the cross calibration gain and offset in each band. Uncertainties related to each step in the proposed process are determined, as is the overall uncertainty associated with the complete processing sequence. Validation of the proposed cross calibration gains and offsets is performed on image data acquired over the Algodones Dunes site. In general, the estimated cross calibration offsets in all bands were small, on the order of 0.0075 or less in magnitude. The cross calibration gains generally varied less than 1.0% from unity; for the Blue and Red bands, the gains varied by approximately -2.5% and - 1.4% from unity, respectively. For a forced zero offset, the estimated gain in all but the Blue band changed little; the Blue band gain varied by approximately 1.86% from unity. Consequently, cross calibration of the Blue band requires both the gain and nonzero offset. To maintain processing consistency, it is recommended to use the gain and (nonzero) offset in all bands. Overall, the net uncertainty in the proposed process was estimated to be on the order of 6.76%, with the largest uncertainty component due to each sensor’s calibration uncertainty, on the order of 5% and 3% for the MSI and OLI, respectively. Other significant contributions to the uncertainty include: seasonal changes in solar zenith and azimuth angles, on the order of 2.27%; target site non-uniformity, on the order of 1.8%; variability in atmospheric water vapor and/or aerosol concentration, on the order of 1.29%; and potential shifts in each sensor’s spectral filter central wavelength and/or bandwidth, on the order of 0.82% and 0.28%, respectively

    Extended Pseudo Invariant Calibration Site-Based Trend-To-Trend Cross-Calibration of Optical Satellite Sensors

    Get PDF
    Satellite sensors have been extremely useful and are in massive demand in the understanding of the Earth’s surface and monitoring of changes. For quantitative analysis and acquiring consistent measurements, absolute radiometric calibration is necessary. The most common vicarious approach of radiometric calibration is cross-calibration, which helps to tie all the sensors to a common radiometric scale for consistent measurement. One of the traditional methods of cross-calibration is performed using temporally and spectrally stable pseudo-invariant calibration sites (PICS). This technique is limited by adequate cloud-free acquisitions for cross-calibration which would require a longer time to study the differences in sensor measurements. To address the limitation of traditional PICS-based approaches and to increase the cross-calibration opportunity for quickly achieving highquality results, the approach is based on using extended pseudo invariant calibration sites (EPICS) over North Africa. With the EPICS-based approach, the area of extent of the cross-calibration site covers a large portion of the North African continent. With targets this large, any sensor should overpass some portion of PICS near-daily, allowing for evaluation of sensor-to-sensor performance with much greater frequency. By using these near-daily measurements, trends of the sensor’s performance are then used to evaluate sensor-to-sensor daily cross-calibration. With the use of the proposed methodology, the dataset for cross-calibration is increased by an order of magnitude compared to traditional approaches, resulting in the differences between any two sensors being detected within a much shorter time. Using this new trend in trend cross-calibration approaches, gains were evaluated for Landsat 7/8 and Sentinel 2A/B, with the results showing that the sensors are calibrated within 2.5% (within less than 8% uncertainty) or better for all sensor pairs, which is consistent with what the traditional PICS-based approach detects. The proposed crosscalibration technique is useful to cross-calibrate any two sensors without the requirement of any coincident or near-coincident scene pairs, while still achieving results similar to traditional approaches in a short time

    The Development of Dark Hyperspectral Absolute Calibration Model Using Extended Pseudo Invariant Calibration Sites at a Global Scale: Dark EPICS-Global

    Get PDF
    This research aimed to develop a novel dark hyperspectral absolute calibration (DAHAC) model using stable dark targets of Global Cluster - 36 (GC-36), one of the clusters from 300 Class Global Classification. The stable dark sites were identified from GC-36 called Dark EPICS-Global covering the surface types viz; dark rock, volcanic area, and dark sand. The Dark EPICS-Global shows a temporal variation of 0.02 unit reflectance. This work uses the Landsat-8 (L8) Operational Land Imager (OLI) , Sentinel-2A (S2A) Multispectral Instrument (MSI) , and Earth Observing One (EO-1) Hyperion data for the DAHAC model development, where well-calibrated L8 and S2A are used as the reference sensors while EO-1 Hyperion with 10 nm spectral resolution is used as a hyperspectral library. The dark hyperspectral dataset (DaHD) is generated by combining the normalized hyperspectral profile of L8 and S2A for the DAHAC model development. The DAHAC model developed in this study takes into account the solar zenith and azimuth angles as well as the view zenith and azimuth angles in Cartesian coordinates form. This model is capable of predicting TOA reflectance in all existing spectral bands of any sensor. The DAHAC model was then validated with Landsat-7 (L7) , Landsat-9 (L9) , and Sentinel-2B (S2B) satellites from their launch dates to March 2022. These satellite sensors vary in terms of their spectral resolution, equatorial crossing time, spatial resolution, etc. The comparison between the DAHAC model and satellite measurements shows accuracy within 0.01 unit reflectance across overall spectral bands. The proposed DAHAC model uncertainty level is determined using Monte Carlo Simulation and found to be 0.04 and 0.05 unit reflectance for VNIR and SWIR channels, respectively. The DAHAC model double ratio is used as a tool to perform the inter-comparison between two satellites. The sensor inter-comparison results for L8 and L9 shows a 2% difference and 1% for S2A and S2B across all spectral bands

    Evaluation of an Extended PICS (EPICS) for Calibration and Stability Monitoring of Optical Satellite Sensors

    Get PDF
    Pseudo Invariant Calibration Sites (PICS) have been increasingly used as an independent data source for on-orbit radiometric calibration and stability monitoring of optical satellite sensors. Generally, this would be a small region of land that is extremely stable in time and space, predominantly found in North Africa. Use of these small regions, referred to as traditional PICS, can be limited by: i) the spatial extent of an individual Region of Interest (ROI) and/or site; ii) and the frequency of how often the site can be acquired, based on orbital patterns and cloud cover at the site, both impacting the time required to construct a richly populated temporal dataset. This paper uses a new class of continental scaled PICS clusters (also known as Extended PICS or EPICS), to demonstrate their capability in increasing temporal frequency of the calibration time series which ultimately allows calibration and stability assessment at a much finer scale compared to the traditional PICSbased method while also reducing any single location’s potential impact to the overall assessment. The use of EPICS as a calibration site was evaluated using data from Landsat- 8 Operational Land Imager (OLI), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Sentinel-2A&B Multispectral Instrument (MSI) images at their full spatial resolutions. Initial analysis suggests that EPICS, at its full potential and with nominal cloud consideration, can significantly decrease the temporal revisit interval of moderate resolution sensors to as much as of 0.33 day (3 collects/day). A traditional PICS is expected to have a temporal uncertainty (defined as the ratio of temporal standard deviation and temporal mean) of 2-5% for TOA reflectance. Over the same time period EPICS produced a temporal uncertainty of 3%. But the advantage to be leveraged is the ability to detect sensor change quicker due to the denser dataset and reduce the impact of any potential ‘local’ changes. Moreover, this approach can be extended to any on-orbit sensor. An initial attempt to quantify the minimum detectable change (a threshold slope value which must be exceeded by the reflectance trend to be considered statistically significant) suggests that the use of EPICS can decrease the time period up to approximately half of that found using traditional PICS-based approach

    New sensors benchmark report on Sentinel-2A

    Get PDF
    Geometric benchmarking for Sentinel-A2 sensor over Maussane test site for CAP purposesJRC.H.6-Digital Earth and Reference Dat

    Detection of Change Points in Pseudo-Invariant Calibration Sites Time Series Using Multi-Sensor Satellite Imagery

    Get PDF
    The remote sensing community has extensively used Pseudo-Invariant Calibration Sites (PICS) to monitor the long-term in-flight radiometric calibration of Earth-observing satellites. The use of the PICS has an underlying assumption that these sites are invariant over time. However, the site’s temporal stability has not been assured in the past. This work evaluates the temporal stability of PICS by not only detecting the trend but also locating significant shifts (change points) lying behind the time series. A single time series was formed using the virtual constellation approach in which multiple sensors data were combined for each site to achieve denser temporal coverage and overcome the limitation of dependence related to a specific sensor. The sensors used for this work were selected based on radiometric calibration uncertainty and availability of the data: operational land imager (Landsat-8), enhanced thematic mapper (Landsat-7), moderate resolution imaging spectroradiometer (Terra and Aqua), and multispectral instrument (Sentinel-2A). An inverse variance weighting method was applied to the Top-of- Atmosphere (TOA) reflectance time series to reveal the underlying trend. The sequential Mann–Kendall test was employed upon the weighted TOA reflectance time-series recorded over 20 years to detect abrupt changes for six reflective bands. Statistically significant trends and abrupt changes have been detected for all sites, but the magnitude of the trends (maximum of 0.215% change in TOA reflectance per year) suggest that these sites are not changing substantially over time. Hence, it can be stated that despite minor changes in all evaluated PICS, they can be used for radiometric calibration of optical remote sensing sensors. The new approach provides useful results by revealing underlying trends and providing a better understanding of PICS\u27 stability

    Hyperspectral Empirical Absolute Calibration Model Using Libya 4 Pseudo-Invariant Calibration Site

    Get PDF
    The objective of this paper is to find an empirical hyperspectral absolute calibration model using Libya 4 pseudo-invariant calibration site (PICS). The approach involves using the Landsat 8 (L8) Operational Land Imager (OLI) as the reference radiometer and using Earth Observing One (EO-1) Hyperion, with a spectral resolution of 10 nm as a hyperspectral source. This model utilizes data from a region of interest (ROI) in an “optimal region” of 3% temporal, spatial, and spectral stability within the Libya 4 PICS. It uses an improved, simple, empirical, hyperspectral Bidirectional Reflectance Distribution function (BRDF) model accounting for four angles: solar zenith and azimuth, and view zenith and azimuth angles. This model can perform absolute calibration in 1 nm spectral resolution by predicting TOA reflectance in all existing spectral bands of the sensors. The resultant model was validated with image data acquired from satellite sensors such as Landsat 7, Sentinel 2A, and Sentinel 2B, Terra MODIS, Aqua MODIS, from their launch date to 2020. These satellite sensors differ in terms of the width of their spectral band-pass, overpass time, off-nadir viewing capabilities, spatial resolution, and temporal revisit time, etc. The result demonstrates the efficacy of the proposed model has an accuracy of the order of 3% with a precision of about 3% for the nadir viewing sensors (with view zenith angle up to 5°) used in the study. For the off-nadir viewing satellites with view zenith angle up to 20°, it can have an estimated accuracy of 6% and precision of 4%
    corecore