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ABSTRACT 

EVALUATION OF AN EXTENDED PICS (EPICS) FOR CALIBRATION AND 

STABILITY MONITORING OF OPTICAL SATELLITE SENSORS 

MD NAHID HASAN 

2019 

Pseudo Invariant Calibration Sites (PICS) have been increasingly used as an independent 

data source for on-orbit radiometric calibration and stability monitoring of optical satellite 

sensors. Generally, this would be a small region of land that is extremely stable in time and 

space, predominantly found in North Africa. Use of these small regions, referred to as 

traditional PICS, can be limited by: i) the spatial extent of an individual Region of Interest 

(ROI) and/or site; ii) and the frequency of how often the site can be acquired, based on 

orbital patterns and cloud cover at the site, both impacting the time required to construct a 

richly populated temporal dataset. This paper uses a new class of continental scaled PICS 

clusters (also known as Extended PICS or EPICS), to demonstrate their capability in 

increasing temporal frequency of the calibration time series which ultimately allows 

calibration and stability assessment at a much finer scale compared to the traditional PICS-

based method while also reducing any single location’s potential impact to the overall 

assessment. The use of EPICS as a calibration site was evaluated using data from Landsat-

8 Operational Land Imager (OLI), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), 

and Sentinel-2A&B Multispectral Instrument (MSI) images at their full spatial resolutions. 

Initial analysis suggests that EPICS, at its full potential and with nominal cloud 

consideration, can significantly decrease the temporal revisit interval of moderate 



xi 

 

resolution sensors to as much as of 0.33 day (3 collects/day). A traditional PICS is expected 

to have a temporal uncertainty (defined as the ratio of temporal standard deviation and 

temporal mean) of 2-5% for TOA reflectance. Over the same time period EPICS produced 

a temporal uncertainty of 3%. But the advantage to be leveraged is the ability to detect 

sensor change quicker due to the denser dataset and reduce the impact of any potential 

‘local’ changes. Moreover, this approach can be extended to any on-orbit sensor. An initial 

attempt to quantify the minimum detectable change (a threshold slope value which must 

be exceeded by the reflectance trend to be considered statistically significant) suggests that 

the use of EPICS can decrease the time period up to approximately half of that found using 

traditional PICS-based approach. 
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1. Introduction 

Earth observing satellite sensors data have played a crucial role in studies of the 

Earth’s surface and monitoring its changes. However, their data can only be used if they 

are well calibrated. Satellite sensor calibration is typically performed prior to launch 

and at selected periods throughout its mission lifetime after launch. Post-launch 

calibration can be performed in two distinct ways. First, using data from a National 

Institute of Standards and Technology (NIST)-traceable onboard source such as a solar 

diffuser or lamp system; Second, by use of a vicarious method performed through an 

analysis of images acquired over selected calibration targets. Since onboard calibrators 

are placed on the same sensor platform, they are also prone to the effects of harsh 

conditions in the space environment. Additionally, they can significantly add to the 

build and operating costs of the sensor mission. For these reasons, many satellite 

sensors (small-sats in particular) do not include on-board calibration support. Thus, 

external sources, such as image data acquired over Pseudo Invariant Calibration Sites 

(PICS), are used for satellite sensor calibration.   

PICS are locations on the Earth surface which are homogeneous in nature and 

extremely stable over time. Many of these stable regions have been found throughout 

the Sahara Desert in North Africa [1–7]. Some PICS are smaller in size, useful only for 

sensors possessing high spatial resolution. Many PICS, however, extend over regions 

of 100 km or more in size, making them useful for multiple sensors with low to 

moderate spatial resolution.  

Chander et al. [8] used Libya-4 for monitoring the on-orbit stability of Terra 

MODIS & Landsat-7 ETM+, and reported that their radiometric responses decreased 

less than 0.4% per year. Markham et al. [9] used PICS to assess ETM+ stability and 
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found similar results, estimating a change of less than 0.5% per year. In a separate 

analysis, Markham et al. [10] assessed Landsat8 OLI stability using Libya-4, Libya-1, 

and Egypt-1 PICS data, and reported no observable changes in its response, to within 

the estimated uncertainty in the measurement procedure. Bhatt et al. [11] studied 

calibration stability of the Visible Infrared Imaging Radiometer Suite (VIIRS) 

reflective solar bands using the Libya-4 desert. Their study found that the short period 

of VIIRS and target variability limited the minimum detectable trends to ±0.6%/yr for 

most visible bands, and ±2.5%/yr for short wave bands. Again, Wu et al. [12] used 

Libya-4 to track the calibration performance of the VIIRS reflective solar bands, and 

estimated their stability to within 1%. Angal et al. [13,14] used images of the Sonoran 

desert to characterize Terra MODIS and ETM+ reflectance trends, and compared the 

results to the trend data derived from Libya-4. They found that the lifetime TOA 

reflectance’s for both sensors were changing no more than 0.1% per year in most bands 

(the exceptions were the ETM+ Blue band and MODIS Blue band) 

Looking at traditional PICS, where sensor revisit patterns are limited (e.g. 16 days 

for Landsat sensors assuming consecutive cloud-free acquisitions) and, in some case, 

for short-term sensor mission lifetimes, there may be insufficient image data acquired 

over these sites to construct representative time series datasets, particularly during their 

early years of operation, when degradation tends to be the highest. In addition, smaller 

areas within an individual site may not truly be spatially stable, potentially resulting in 

false detection of drift in a sensor’s radiometric response. 

Efforts have been made to extend the traditional PICS concept to include larger 

areas that allow for higher frequency imaging. Tabassum [15] generated a list of 10 

candidate invariant regions for each Landsat-8 OLI band, based on analysis of temporal 

and spatial uniformity across the continent of North Africa. Rather than specifically 
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defined small rectangular regions of interest (ROIs), her regions were defined with 

respect to complex polygon boundaries forming contiguous areas representing 

“invariant” pixels. However, issues relating to the inclusion of “variant” pixels within 

an “invariant” region and/or exclusion of “invariant” pixels were not adequately 

addressed in her initial algorithm, and most of the identified regions were not common 

across all image bands. In addition, the question of potential imaging frequency was 

not addressed. 

Vuppula [16] presented a new technique known as the “PICS Normalization 

Process” (PNP) that combines OLI observations of multiple PICS into a single time 

series dataset with greater temporal resolution. She used the OLI data from six PICS 

(Libya-1, Libya-4, Sudan-1, Niger-1, Niger-2, and Egypt-1) and normalized them to 

Libya-4. The temporal resolution was increased to approximately 4 to 5 days compared 

to the 16 day OLI revisit time. Unfortunately, this combination method could not 

guarantee the generation of a dataset with daily or nearly daily acquisitions. 

In their paper, Shrestha et al. [17] wanted to identify “optimal” regions that were 

common across all image bands. They used an unsupervised classification technique to 

generate a set of 19 classes or “clusters” of spectrally similar OLI image pixels of North 

Africa based on cloud-free image data filtered for 5% or less temporal uniformity. Each 

of these clusters can be considered as an “extended” Pseudo Invariant Calibration Site 

(EPICS). One of the resulting clusters, Cluster 13, was found to possess a spectral 

response similar to Libya-4, and it contained a significant number of pixels forming 

relatively large contiguous regions across North Africa; this demonstrated great 

potential to ensure higher frequency imaging. However, their analysis required 

downsampling the image data to 300 m spatial resolution, and their results could not be 

validated with respect to the full resolution image data. In addition, potential BRDF 
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effects were not addressed when generating the spatial and temporal statistics from 

original cluster data.  

The main purpose of this analysis is to demonstrate the EPICS potential to detect 

sensor change quicker than traditional PICS via a more temporally rich dataset. Results 

of this study show that moderate resolution sensors, such as the Landsat 8 OLI, may 

acquire cloud-free images of Cluster 13 regions once every 1.4 days (using limited and 

cloud-free scenes only), in contrast to the 18-20 days on average cloud free revisit cycle 

found over a typical traditional PICS. Although EPICS provided significant 

improvements in the temporal density of the calibration time series, the resulting 

analysis showed that the Cluster 13 EPICS exhibited less than 3% uncertainty in its 

mean temporal TOA reflectance. Using the high density time series, it will be shown 

that the same period of OLI data over EPICS can provide lower statistically significant 

minimum detectable trends although Cluster 13 temporal uncertainty is typically found 

to have uncertainty values which are 1%~2% higher compared to traditional PICS. 

Native Landsat 8 OLI, Landsat 7 ETM+, Sentinel 2A&B MSI image data were 

used to estimate the overall temporal and spatial variation in radiometric measurements 

over a major Cluster 13 sub-region (~40% of total area covered by Cluster 13 pixels). 

In addition, OLI data from Clusters 1, 3, 4, 16, and 19 were analyzed to evaluate sensors 

across their wider operating dynamic range. 

The paper is presented as follows: Section 1 provides a brief review of the topic 

and previous research performed in this area. Section 2 describes the dataset, mask 

generation process and application approach in greater detail. Section 3 presents 

produced results and critical analysis of the results when this process is applied to a 

number of different sensors. Finally, Section 5 offers some concluding remarks. 
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2. Methodology 

2.1. SDSU Processed Google Earth Engine (GEE) Derived Data and Mosaic of North 

Africa 

In order to develop an EPICS, Shrestha et al. [17] used GEE [18], which utilizes 

Google’s worldwide processing and storage resources to archive and process freely 

available image data [19] from Landsat and other satellite sensors, to produce the 

analysis dataset in their initial stage of work. Inside the GEE environment, OLI was 

chosen as it has an established calibration accuracy within 3% [10,20]. Temporally 

filtered and down sampled statistics image datasets (collection of 25 band Image 

containing the pixel wise temporal mean, temporal standard deviation, temporal 

uncertainty and the number of valid pixels used to generate those statistics) for the 

VNIR, SWIR, and Cirrus multispectral bands were retrieved from GEE as 1° latitude 

by 1° longitude georeferenced chip files. The chips were locally mosaicked into a 

continental scale, 300m spatial resolution image of North Africa that covered an area 

between 36°N to 15°N latitude and 18°W to 35°E longitude. A detailed explanation on 

the development of the analysis dataset can be found in [17]. This work will take 

advantage of the already developed EPICS to evaluate its usability for calibration and 

stability monitoring.  

2.2. Classification Map of North Africa 

As mentioned in the introduction section, Shrestha’s unsupervised classification 

algorithm ran on the cloud-screened and temporally filtered mosaic image (mentioned 

in Section 2.1) identified 19 distinct clusters of spectrally similar surface cover. Figure 
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1 shows a map of the identified clusters and their distribution throughout North Africa. 

The bright green pixels represent Cluster 13.  

 

Figure 1. North Africa cluster map. 

2.3. Cluster 13 as EPICS Candidate Cluster 

Shrestha’s original Cluster 13 was found to have an estimated spatial uncertainty 

(i.e. the ratio of spatial standard deviation to spatial mean of the mosaic filtered pixels) 

within 3% in all but the Coastal/Aerosol and Blue bands, which had estimated spatial 

uncertainties within 5%. Table 1 provides the estimated mean TOA reflectance, spatial 

uncertainty and average temporal uncertainty of Cluster 13 calculated from the 300m 

resolution mosaic filtered cluster pixels. Although in the original algorithm the 

maximum temporal filtering threshold was set at 5%, the unsupervised classification 

algorithm by Shrestha resulted in less than 3.35% temporal uncertainty across all bands 

for Cluster 13. The detailed process for determining the uncertainty values will be found 

in [17]. In addition, Cluster 13 contains a large number of pixels which are aggregated 

into contiguous regions. Due to its greater degree of pixel aggregation, larger pixel 



                                                                                                                                        7

  

 

counts, and lower temporal and spatial variability in TOA reflectance measurements, 

EPICS analyses described in this paper focused on this particular cluster. 

Table 1. Mean TOA reflectance and uncertainty of Cluster 13 (Initial 

analysis found in [17]). 

 

Bands 

Coastal Blue Green Red NIR SWIR1 

SWIR

2 

Mean TOA reflectance 0.23 0.25 0.34 0.48 0.59 0.69 0.60 

Average Temporal Unc. (%) 2.48 2.55 2.22 2.25 2.20 2.36 3.34 

Spatial Uncertainty (%) 4.59 4.8 3.08 2.71 2.11 1.78 2.62 

2.4. Cluster 13 Boundary Delineation  

To create a more portable and easily distributable vector version of the Cluster 13 

map, and to make the intermediate process more generic in nature, latitude and 

longitude coordinates for each Cluster 13 pixel were extracted from the cloud-screened 

and temporally filtered mosaic image. For the pixels that aggregated together, 

boundaries where computed, where regions that only contained single pixel were 

considered too small and filtered out of the remaining process. Then the coordinates for 

the boundaries were written as polygon vertex coordinates to a Keyhole Markup 

Language (KML) shape files, through the use of GDAL (Geospatial Data Abstraction 

Library) software which is released by Open Source Geospatial Foundation [21] 

2.5. Creation of Cluster 13 Zone-Specific Masks  

To aid and speed up the retrieval of Cluster 13 TOA reflectances from native 

resolution satellite images, raster masks were created using the boundaries defined in 
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the KML vector file which matched up with the sensor’s specific spatial resolution. The 

masks where generated at UTM-zone size, which was to improve efficiency of 

processing. This section describes the mask creation procedure in greater detail. 

First, the KML polygon lat/lon coordinates were converted to binary masks whose 

pixels were registered to the corresponding UTM map projection coordinates; the 

resulting geo-referenced masks possessed a spatial resolution matching, in this case, the 

30 meter resolution Landsat images. Images potentially crossing multiple UTM zone 

boundaries were accounted for by oversizing the mask dimensions by 1.5°, which also 

resulted in more efficient processing. This procedure is applicable for any sensor as 

long as the masks are generated to match the sensor’s spatial resolution. Figure 2 shows 

two Cluster 13 pixel masks generated with respect to UTM zones 29 and 34, which are 

shown in grey. The red outlines indicate the cluster region boundaries, the white pixels 

inside the mask correspond to valid Cluster 13 pixels, and the blue parallelograms 

represent the footprint of Landsat WRS2 path/rows (considered in additional detail 

Figure 2. Cluster 13 pixel masks for UTM zones 29 (shaded region on left) 

and 34 (shaded region on right). 
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in Section 3). In total, seven masks were needed to represent the entire Cluster 13 region 

across North Africa, with each mask covering an area of approximately 2,500,000 km2. 

2.6. Application of Cluster 13 Zone-Specific Masks  

The generated Cluster 13 zone specific masks from previous section and quality 

control/assessment masks (which flags each pixel as clear, clouds, water/snow/ice, fill, 

etc. and are generally provided with satellite scenes), were applied to each image, and 

all resultant good pixels were collected. The spatial mean and spatial standard deviation 

of TOA reflectances were calculated using all the good Cluster 13 pixels of all the 

scenes available in the local archive (which is a local cache of all good images from 

Landsat and Sentinel mission, containing less than 5% cloud cover). The process was 

applied to the all available cloud screened OLI, ETM+, MSI-A (Multispectral Imager 

of Sentinel 2A), and MSI-B (Multispectral Imager of Sentinel 2B) images. This process 

created an effective time series of mean TOA reflectance with spatial uncertainties 

associated with every data point. Temporal mean and temporal uncertainty values were 

calculated from the time series for evaluation of sensor specific Cluster 13 performance. 

The average values of corresponding pixel-based sensor view and solar angle geometry 

were also extracted from each image and stored for later use in BRDF correction. A 

portion of example UTM zone sized mask (UTM Zone 34) is shown in the bigger frame 

of Figure 3a where white pixels represent Cluster 13 pixels. The smaller frame overlaid 

on top of Figure 3a is a Landsat 8 OLI Band 1 scene from WRS-2 Path/Row-181/40. 

This shows how the UTM zone mask is applied on the satellite imagery. In this case, 

the Landsat-8 scene is ready to be masked out by the Cluster 13 pixel mask and QA 

band. Figure 3b shows a filtered TOA reflectance image (magnification applied for 
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better visual representation) for the Coastal/Aerosol band image where the gray level 

pixels correspond to valid Cluster 13 TOA reflectance pixels. 

 
 

Figure 3. (a) Portion of Cluster 13 pixel mask overlaid on OLI Image (UTM 

Zone 34, WRS-2 Path/Row 181/40) (Left); (b) Masked TOA reflectance 

image, Coastal/Aerosol band (Right). 

2.7. Additional Data Filtering 

Original Cluster 13 [17] was generated from the filtered 300 m spatial resolution 

mosaic, with the summary statistics in all input data constrained to a maximum of 5% 

temporal uncertainty. Table 1 shows that the resulting spatial uncertainties of Cluster 

13 across all bands are all within 5%. Consequently, the spatial uncertainty in the native 

resolution image statistics after application of the georeferenced zonal pixel masks was 

also expected to be within 5%. So, if an individual data point in a particular band of the 

Cluster 13 time series dataset exhibited an estimated spatial uncertainty above the 5% 

threshold, or the data point appeared to deviate significantly from the overall TOA 

reflectance trend, the corresponding source image was considered “suspect” with 

respect to clouds/shadows or other conditions not identified in the Quality Assessment 
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(QA) band filtering. The image was then inspected visually; if a previously unidentified 

cloud/shadow or other artifact was observed, the entire scene’s statistics were excluded 

from further processing.  

2.8. Development of Cluster-Based EPICS BRDF Model 

The Cluster 13 time series trends from the different sensors exhibit variability in 

the TOA measurements, especially in the longer wavelength bands. Several factors can 

affect this variability including seasonal atmospheric aerosol/water vapor changes. The 

most significant contributor to this seasonal variation is BRDF effects [22] due mainly 

to solar position change. The angular dependencies were normalized using the 

procedure described below. 

Image products for the sensors analyzed in this work include information of per-

pixel values of the solar and sensor zenith and azimuth angles (For Landsat-8 OLI, per 

pixel angle band information are in the metadata). Recall from Section 2.6, the 

georeferenced pixel masks used to generate the Cluster 13 reflectance statistics were 

also applied to the associated per-pixel angle images to calculate average values for 

corresponding sensor viewing and solar zenith and azimuth angles. This information 

was then used to develop a four-angle model which is based on Farhad’s [23] procedure. 

As the modeling and manipulation of data using computer software (MATLAB) favors 

the use of Cartesian co-ordinate system and the sensor view and solar angles in the 

angle band image are given with respect to a three-dimensional spherical coordinate 

system, the first step in his model generation was to project the angles into a two-

dimensional Cartesian coordinate space. Kaewmanee [24] extended Farhad’s linear 

model with quadratic terms for both solar zenith and solar azimuth angles, including an 

additional potential interaction term between them. For the purposes of this analysis, 
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Kaewmanee’s approach has been further extended by including all possible interaction 

terms between the sensor view and solar angles and quadratic terms for the sensor view 

angles. 

A full second-order model was selected to represent a cluster-specific BRDF effect 

with respect to the transformed zenith and azimuth angles for both solar and view 

geometries: 

𝜌𝑚𝑜𝑑𝑒𝑙 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑦1 + 𝛽3𝑥2 + 𝛽4𝑦2 + 𝛽5𝑥1𝑦1 + 𝛽6𝑥1𝑥2 + 𝛽7𝑥1𝑦2 + 𝛽8𝑦1𝑥2 +

𝛽9𝑦1𝑦2 + 𝛽10𝑥2𝑦2 + 𝛽11𝑥1
2 + 𝛽12𝑦1

2 + 𝛽13𝑥2
2 + 𝛽14𝑦2

2  
(1) 

where 𝜌𝑚𝑜𝑑𝑒𝑙  is the model predicted TOA reflectance, 𝛽0−14  are the model 

coefficients, and x1, y1, x2 y2 are the Cartesian coordinates representing the planar 

projections of the solar and sensor view angles originally given in spherical coordinates 

 𝑥1 = 𝑠𝑖𝑛(𝑆𝑍𝐴) × 𝑐𝑜𝑠(𝑆𝐴𝐴)                                (2)                                                    

  𝑦1 = 𝑠𝑖𝑛(𝑆𝑍𝐴) × 𝑠𝑖𝑛(𝑆𝐴𝐴)                                (3)                                                     

                               𝑥2 = 𝑠𝑖𝑛(𝑉𝑍𝐴) × 𝑐𝑜𝑠(𝑆𝐴𝐴)                               (4)                        

                                        𝑦2 = 𝑠𝑖𝑛(𝑉𝑍𝐴) × 𝑠𝑖𝑛(𝑆𝐴𝐴)                               (5)                         

where SZA, SAA, VZA, and VAA are the solar zenith/azimuth and sensor viewing zenith 

and azimuth angles, respectively. 

All terms were assumed to be required for effective characterization, as a cluster 

can contain pixels from widely separated regions possessing distinct, and generally 

unknown, BRDF characteristics. It has been found that, some terms in the above model 

presented by Equation (1) becomes insignificant (based on P-values in the regression 

analysis at 0.05 significance level) which changes from band to band. But, each term in 

the model equation was significant for at least one band. So, all terms were kept in the 

model for making the model generic to widely distributed cluster pixels across all 
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bands. The BRDF-normalized TOA reflectance (𝜌𝐵𝑅𝐷𝐹−𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑) for each sensor was 

then determined as follows:  

    𝜌𝐵𝑅𝐷𝐹−𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =
𝜌𝑜𝑏𝑠

𝜌𝑚𝑜𝑑𝑒𝑙
× 𝜌𝑟𝑒𝑓          (6) 

Here, 𝜌𝑜𝑏𝑠 is the observed mean TOA reflectance from each scene and 𝜌𝑚𝑜𝑑𝑒𝑙 is 

the model predicted TOA reflectance. For this analysis, 𝜌𝑟𝑒𝑓 was set to the mean TOA 

reflectance of the respective time series.  

3. Results and Discussion 

3.1. Cluster 13 Imaging Frequency 

The WRS-2 path/row map and Cluster 13 KML vertex information were overlaid 

on a Google Earth map of North Africa in order to determine the portions of image data 

contained within (or “intersecting”) the cluster regions. This information was compared 

to the Landsat-8 acquisition schedule to determine when the images were acquired 

within the 16-day revisit period; this provided an estimate of the frequency at which the 

OLI imaged the cluster. With respect to Landsat-8, 25 WRS-2 paths covered the entire 

Cluster 13 region, potentially resulting in multiple image acquisitions per day. Thus, 

this ensures a theoretical better than daily revisit frequency (assuming zero cloudy 

scenes) of OLI over Cluster 13. Table 2 shows the paths intersecting Cluster 13 on each 

day of the OLI’s revisit cycle. During days 2, 5, 6, 7, 9, 12, 14, 15, and 16 multiple 

paths intersect the cluster. In addition, some of the paths have multiple rows intersecting 

the cluster, which could provide alternate cloud-free acquisitions for a given day and 

maintain (or even enhance) the temporal resolution of any time series dataset. However, 

image data from WRS-2 paths 177, 178, 189, and 190 had fewer pixels in their 

intersecting regions; while these paths might not be considered sufficiently useable for 
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calibration of low resolution sensors, they could still be used for moderate to high 

resolution sensor calibration. A little deeper look on the table reveals that a total of 87 

WRS-2 path/row pairs intersect Cluster 13. Considering no cloud filtering, which is 

also the best possible case, it can be estimated that the Cluster 13 can be imaged by a 

moderate resolution sensor with a revisit period of approximately 0.18 (~16/87) day. 

Again, considering nominal assessments of cloud cover on average 3 out of 10 scenes 

are rejected, it can then be estimated that Cluster 13 can be imaged by a moderate 

resolution sensor with a revisit period of 0.33 day (approximately 3 collects per day). 

This huge improvement of temporal revisit can lead to several important applications 

such as quicker sensor evaluation, calibration and stability monitoring in a finer scale. 

Table 2. Path coverage of Cluster 13 and optimized WRS-2 path/row pairs. 

Day of 

Landsat 

cycle 

Path 

coverage 

of Cluster 

13 

Optimized 

Path/Row 

Site 

number  

Assign-

ment 

Pixel 

Count 

in 

Million 

Area 

in km2 

Additional path/row 

intersection 

1 190 190/43 11 0.50 454 Not Found 

2 181,197 181/40 4 17.90 16114 

181/41,181/42,181/43,181/4

8, 197/46,197/47, 197/48 

3 188 188/47 9 5.57 5017 188/46, 188/48 

4 179 179/41 2 8.39 7548 

179/40,179/42,179/44,179/4

7,179 /48 

5 186,202 186/47 7 8.06 7250 

186/47,186/48,186/49,202/4

6,202/47 

6 177,193 193/37 14 4.49 4040 

177/40,177/41,177/42,177/4

4, 177/45, 177/46 
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7 184,200 200/47 16 2.60 2337 

184/40, 184/41, 184/42, 

184/46, 184/47, 184/49, 

200/48 

8 191 191/37 12 2.56 2301 Not Found 

9 182,198 182/40 5 18.47 16620 

182/42,182/43,182/49,198/4

6,198/47, 198/48 

10 189 189/46 10 0.38 339 

189/43, 189/44, 

189/45,189/47 

11 180 180/40 3 7.98 7186 180/41, 180/42, 180/44 

12 187,203 187/47 8 9.21 8285 

187/42, 187/46, 187/48, 

187/49, 203/45, 203/46, 

203/47 

13 178 178/47 1 8.21 7393 

178/40, 178/41, 178/42, 

178/43 

14 185,201 185/47 6 8.73 7858 

185/44, 

185/45,185/46,185/48, 

185/49, 201/46,201/47 

15 192,176 192/37 13 5.55 4999 176/42 

16 183,199 199/46 15 5.55 4993 

183/40, 

183/41,183/42,183/43, 

183/49, 199/47,199/48 

3.2. Cluster Optimization 

In order to minimize local processing and storage demands, one WRS-2 path/row 

pair was selected for each Landsat cycle day, such that the image contained the largest 

number of Cluster 13 pixels. Based on these criteria, nine paths were excluded from the 

initial analysis. In addition to the set of useable paths/rows on each cycle day, Table 2 

shows the resulting single path/row for each cycle day, the corresponding geographic 
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area (in km2) covered by the path/row image, and the total intersecting Cluster 13 region 

pixel count. The individual path/rows represent the selected “optimized” path/row 

(shown in the purple boxes in Figure 2 covering approximately 40% of the total Cluster 

13 area). Furthermore, Table 2 shows the additional path/row pairs that could be used 

if a cloud-free acquisition of the optimized path/row area was not available. In this 

paper, additional path/rows were not considered due to storage limitation and 

processing optimization. Table 2 also assigns a site number label to each optimized 

path/row pairs for flexibility of further use. Starting from East and going through the 

west of North Africa, ‘site 1’ label is assigned to path/row-178/47 and ‘site 16’ label is 

assigned to the path/row-200/47. Rest of the optimized path/rows were also assigned 

site numbers accordingly. 

3.3. Traditional PICS vs. EPICS 

Figure 4 shows the temporal trend comparison of Cluster 13 (using optimized sites) and 

Libya-4. A large portion of Libya-4 interests with Cluster 13, therefore it was chosen 

for this comparison and it is one of the most widely used PICS. For this work, a CNES 

(National Centre for Space Studies) recommended Libya-4 ROI (70% of the ROI lies 

within Cluster 13) was used, as shown in Figure 5a. The red rectangle inside the 

Landsat-8 OLI scene from WRS-2 path/row-181/40 shows the extent of the ROI and 

the grid values over the Landsat scene gives geographic lat/lon extent of the Landsat 

scene and the ROI.  
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Figure 4. TOA reflectance trend from (a) Libya-4 ROI (Left); (b) Cluster 13 

without any further cloud screening and correction (Right). 

The key advantage of cluster-based calibration method is the ability to perform 

daily/near daily evaluation of a sensor’s stability and calibration. In Figure 4, 1434 

cloud-free OLI scenes of Cluster 13 (using optimized path/rows), acquired since launch 

to August 2018, were used to generate Cluster 13 TOA reflectance time series. The 

time series reveals that (for the limited data set) Cluster 13 can provide two calibration 

points in every 3 days (~1.4 per day). But, within the same period, traditional PICS 

provided only 108 cloud-free scenes generating only 1 calibration point in every 19 

days. For better visual observation, the numbers of calibration points were compared 

between Cluster 13 and Libya 4 in a six-month period as shown in Figure 5b. Libya-4 

guaranteed 10 cloud free acquisitions whereas Cluster 13 provided 131 cloud-free 

scenes in the same time period. This increase (by a factor of approximately 13) in 

calibration points provides an excellent possibility to detect sensor drift quicker and 

with more sensitivity than traditional PICS. Visually from Figure 4, the mean TOA 

reflectance levels and the temporal variability ranges look very similar. For 
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quantification purpose, Table 3 shows the temporal mean, temporal uncertainty and 

average spatial uncertainty values associated with Cluster 13 and Libya-4. The relative 

(a)  (b)  

Figure 5. (a) Libya-4 CNES ROI (Red rectangle) over WRS-2 path-row 

181/40 image from Landsat 8 (Left). (b) Improvement of temporal revisit 

period using EPICS over traditional Libya-4 PICS (Right). 

difference (with respect to Libya-4) between temporal mean of Libya-4 and Cluster 13 

ranges from 0.17% (SWIR2) to 3.3% (Red). The temporal uncertainty values associated 

with the mean values from both Cluster 13 and Libya-4 also do not differ more than 

0.01% to 0.06% across all bands. Again, considering the temporal uncertainty values 

from both Cluster 13 and Libya-4, it can be shown that the mean values for both Cluster 

13 and Libya-4 lie within their uncertainty ranges. These similarities imply that the 

behavior of EPICS is consistent with the behavior of traditional PICS i.e. Libya-4. 

However, the spatial uncertainty of Cluster 13 is higher than the spatial uncertainty of 

Libya-4. This is expected as Libya-4 was chosen specifically to reduce variability by 

finding a “very” homogenous region, where as Cluster 13, allowed for more variation 

(5% spatial uncertainty criterion that was set in the Shrestha’s classification [17]), in 

order to achieve greater spatial extent. Some of the extra spatial uncertainties are also 
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due to the variation of solar and view geometry within the individual scenes in the 

current cluster-based analysis. 

Table 3. Custer 13 vs. Libya-4 temporal and spatial characteristics without 

BRDF correction. 

 Bands CA Blue Green Red NIR 

SWIR

1 

SWIR

2 

Cluster 13 

statistics 

(without 

BRDF 

correction) 

 

Mean TOA 

reflectance 

0.228 0.244 0.340 

0.47

4 

0.59

0 

0.680 0.594 

Temporal 

uncertainty (%) 

3.07 2.60 1.85 1.88 1.99 2.72 3.29 

Average spatial 

uncertainty (%) 

4.50 4.96 4.35 4.06 4.09 4.00 4.21 

Libya-4 ROI 

statistics 

(without 

BRDF 

correction) 

Mean TOA 

reflectance 

0.231 0.248 0.337 

0.45

9 

0.58

2 

0.672 0.593 

Temporal 

uncertainty (%) 

3.04 2.56 1.86 1.94 2.02 2.76 3.30 

Average spatial 

uncertainty (%) 

0.68 0.87 1.02 1.09 1.16 1.15 1.17 

3.4. Cluster 13 Region Similarity 

Recall that clustering algorithm mentioned in [17] ensured spectral similarity of 

Cluster 13 pixels to within a temporal and spatial uncertainty of 5% (mentioned in 

Section 2.3). An analysis was performed to determine whether images from the 

individual optimized path/rows exhibited similar spectral behavior within the initial 

uncertainty. For this analysis, cloud-free images of the optimized path/row regions were 

processed as described in Section 2.6 to determine the summary statistics (temporal 
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mean, temporal uncertainty, and average spatial uncertainty) for the valid Cluster 13 

pixels. The TOA reflectance information from each path/row pair for each cycle day 

was normalized for BRDF effects as described in Section 2.8, then checked to ensure 

overall spectral similarity to within 5% uncertainty. 

Figure 6 a–g show the resulting plot of each path/row’s temporal mean 

reflectances, temporal standard deviations and average spatial standard deviations for 

all the bands. For the purposes of this analysis, the “site” label on each plot’s horizontal 

axis is a short-hand notation representing the “optimized” path/row as indicated in 

Table 2. The estimated temporal standard deviation and total standard deviation due to 

combined spatial and temporal uncertainty are represented by error bars with smaller 

and larger caps, respectively. For this analysis, the total uncertainty estimate assumes 

independence between the temporal and spatial uncertainties:  

𝑢𝑡𝑜𝑡𝑎𝑙 = √𝑢𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙
2 + 𝑢𝑎𝑣𝑔 𝑠𝑝𝑎𝑡𝑖𝑎𝑙

2  (7) 

where utotal is the propagated uncertainty due to temporal and spatial uncertainty, 

utemporal is the temporal uncertainty and uavg spatial is the corresponding mean spatial 

uncertainty. Figure 6 a–g reveal that most of the site’s total standard deviation lies 

within ±5% of the overall Cluster 13 mean TOA reflectance. However, site 5 in Figure 

6a,b and site 12 & 13 in Figure 6f reveal that the deviation of these site’s mean 

reflectance from Cluster 13 mean is closer to 5%. It means that their contribution to 

Cluster 13 temporal variability is higher than other sites. This phenomenon suggests 

that if one of those sites is specifically selected for Cluster 13 behavior estimation, it 

could underestimate or overestimate the Cluster 13 mean behavior. These relative 

higher deviations of some site’s mean TOA reflectance compared to Cluster 13 mean 

raises the question “How many random sites within Cluster 13 are required for 



                                                                                                                                        21

  

 

calibration and stability assessment of a sensor?” An answer to this question is 

presented in the next section.  

 

(a) 

 

(b) 

(c) (d) 

 

(e) 

 

(f) 
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(g) 

Figure 6.  Mean temporal TOA reflectance values (with associated total 

standard deviations) of 16 individual Cluster 13 WRS-2 Path/Row(s). 

3.5. Expected Behavior of Random Cluster 13 Location 

As mentioned earlier, classification algorithm from [17] used to identify the 

various clusters assumes all data points within a given cluster exhibit the same general 

spectral behavior. Assuming this spectral similarity, any randomly chosen location 

within a cluster should, in principle, be able to serve as a source of a representative 

dataset for the entire cluster. An analysis to test this hypothesis was performed using 

image data acquired over the 16 sites (recall from Table 2 that “site” is used to indicate 

the optimized Cluster 13 WRS-2 path/row area imaged on a given cycle day), with the 

goal of determining the minimum number of sites required to achieve a specified 

uncertainty in the estimated mean reflectance. 

Time series (TS) reflectance datasets, corrected for BRDF effects as described in 

Section 2.8, were generated for each site. The overall mean TOA reflectance was 

calculated using all possible distinct combinations of multiple sites (i.e. the overall 

mean TOA reflectance of the time series for two distinct sites, three distinct sites etc). 
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16 individual time series’ were created separately for 16 optimized sites where each 

time series has a distinct temporal mean TOA reflectance value. From this pool of 16 

“temporal mean” values for “16 optimized sites”, first, one site combination was 

considered which produced 16C1 = 16 different combinations. Similarly, two site 

combination produced 16C2 = 120 combinations and three site combinations produced 

16C3 = 560. This process was repeated for rest of the combinations up to 16 sites 

considering at once which created 16C16 = 1 combination (this combination is essentially 

the representative of Cluster 13 considered here). The generic formula used here is the  

 

 

 

Figure 7. Procedure to create analysis dataset for determining expected behavior 

of random Cluster 13 location. 

combination formula i.e., nCr where n is number of “temporal mean values” in the pool 

and  r is the  number of “sites/time series considered at once”. For each possible time 

series combination, the mean TOA reflectance was calculated. Distribution of mean 

TS of site 1  TS of site 2  TS of site 1  TS of site 3  TS of site 

15  

TS of site 

16  

ρ
1+2

 (mean TOA reflectance 

of site 1&2 combined)  

ρ
1+3

 (mean TOA reflectance 

of site 1&3 combined)  

ρ
15+16

 (mean TOA 

reflectance of site 15&16 

combined)  

ρ 
2 distinct sites combined at once

 (mean of distribution of ρ
 1+2,

 ρ
 1+3,

 ρ
 1+4

…….. ρ
 15+16

)
 

σ
2 distinct sites combined at once

 (spread of the ρ
 2 distinct sites combined at once

) 

 

Distribution of mean TOA 

reflectance for a particular 

number of site combined at 

once (2 distinct sites in this 

case) 

…… 

…… 
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TOA reflectance’s was then constructed from the individual time series combination 

means, as shown in Figure 7, where combinations of two distinct sites are presented as 

an example. 

For further example, Figures 8a,b present the distribution of reflectance means for 

the Coastal/Aerosol band. In this case, eight distinct sites providing 12870(16C8) distinct 

means and three distinct sites generating 560(16C3) distinct means were used to create 

the sampling distributions. The mean values and standard deviations of the distributions 

are represented by a solid circular symbol and associated horizontal error-bars 

respectively. In Figure 8a where eight sites were considered at once, the mean of the 

distribution is 0.2275 and 1 sigma standard deviation is 0.0012 which produces an 

uncertainty (standard deviation divided by mean value) of 0.5363%. Again, looking at 

the Cluster 13 temporal mean for this band (~0.2276) suggests that this distribution can 

predict Cluster 13 mean TOA reflectance within 0.0439 % of Cluster 13 mean and with 

an associated uncertainty of 0.5363 %. Similarly, Figure 8b suggests that using only  

  

Figure 8. Histogram of the mean distribution of CA band when (a) eight distinct 

sites were considered at once (Left) and (b) three distinct sites were considered at 

once (Right). 
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three sites will give a prediction of same TOA reflectance but with a higher uncertainty 

value of 1.11 % (distribution mean = 0.2275, standard deviation = 0.0025). Taking all 

the site combinations, looking at the distribution means of all bands and comparing 

with cluster mean values, it has been observed that the reduction in uncertainty is 

exponential with the increase of number of sites used to estimate Cluster 13 behavior.  

Figure 9 shows the estimated reflectance difference (i.e. distribution mean – 

Cluster 13 mean) for all bands, as a function of the number of distinct sites used to 

calculate the distribution mean. The numbers inside the parentheses at the horizontal 

axis label gives an average pixel count used by the considered number of sites. The 

error-bars represent the estimated standard deviation of the distribution means. As 

might be expected, using more distinct sites to represent the entire Cluster 13 region 

tends to decrease the uncertainty in the estimated reflectance mean. The envelope 

created by each band’s standard deviation bars tend to decrease exponentially with the 

increasing number of sites, meaning that increasing the number of sites increases the 

likelihood of reaching the Cluster 13 TOA reflectance level in an exponential manner.   

 

 Figure 9. Average expected behavior of randomly selected site from Cluster 13. 
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Looking at the 3-site combination in x-axis of Figure 9, the absolute differences for 

all bands tend to reach zero and the distribution standard deviations are all within ±0.01 

reflectance unit. This case is mentioned in the previous paragraph which produces an 

uncertainty of ~1%. It suggests that prediction of the Cluster 13 TOA reflectance’s 

within 1% uncertainty is possible using only three sites. Again, from Table 4, it is 

predictable that using single site will provide the highest uncertainty (the worst-case 

scenario) which is around 2% across coastal and blue bands. All these results suggest 

that the Cluster 13 mean TOA reflectance can be estimated within an uncertainty of 

maximum 2% using only one site and within 1% uncertainty using only three sites 

leaving a choice to trade-off between accuracy and number of sites selection. 

Table 4. Distribution mean and uncertainty for worst case scenario (single 

location). 

 CA Blue Green Red NIR SWIR1 SWIR2 

Distribution mean 0.227 0.244 0.34 0.475 0.591 0.68 0.593 

Distribution uncertainty (%) 2.03 2.07 0.92 1.75 0.86 1.56 1.34 

3.6. Validation 

As mentioned in the Introduction section, Shrestha’s original clusters were 

generated from the GEE derived Landsat OLI dataset which- i) lacked BRDF correction 

for Sun and sensor geometry variations; and ii) required down sampling the original 

image data to 300 m resolution, so Cluster 13 temporal trending was evaluated using 

OLI, Landsat-7 ETM+, and Sentinel 2A/2B MSI image data at their native spatial 

resolutions, including BRDF correction as needed. Figure 10 shows the cluster-level 

temporal trend for all OLI bands after applying the BRDF correction described in 

Section 2.8.  
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Figure 10. OLI lifetime TOA reflectance trend of Cluster 13. 

The corresponding statistics are presented in Table 5. Additionally, temporal mean 

values, temporal uncertainty values and temporal revisit intervals are also mentioned at 

the top portion of the figure. The temporal uncertainties of Cluster 13 lie within 3% 

across all the bands which suggests that Cluster 13 is as stable as traditional PICS sites 

while offering much larger ROI which also results in minimal infuse for any specific 

localized land change or variability. Some of the bands such as Green, NIR, and SWIR1 

bands are extremely stable - less than 1.5 %. Again, some seasonality is still left in the 

SWIR2 channel producing relatively higher temporal uncertainty compared to its 

nearby longer wavelength bands which needs to be further investigated. Overall, 

temporal uncertainties from the optimized path/row pairs are less than the Cluster 13 

temporal uncertainties predicted from [17] (also shown in Table 1) except for 

Coastal/Aerosol and Blue bands. This reduction in uncertainty values was expected 

because the BRDF effects in longer wavelengths were minimized in the trending 

showed in Figure 10 whereas corresponding values from [17] lacked this compensation. 
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Table 5. Mean OLI (L8) TOA reflectance of Cluster 13 optimized path/rows 

by band, derived from 30m image data. 

 Bands 

 CA Blue Green Red NIR SWIR1 SWIR2 

Mean TOA reflectance 0.22 0.244 0.340 0.474 0.591 0.681 0.595 

Temporal Uncertainty (%) 2.74 2.68 1.47 2.18 1.23 1.69 2.53 

Average Spatial Uncertainty 

(%) 

4.50 4.96 4.35 4.06 4.09 4.00 4.21 

 

The dataset for classification of North Africa was derived using Landsat 8 OLI 

images. So, Sentinel 2A MSI, Sentinel 2B MSI, and Landsat 7 ETM+ were used for 

independent validation of the Cluster 13 reflectance statistics. Sentinel 2A MSI and 

Sentinel 2B MSI image tiles were selected such that a significant portion of the 

optimized WRS2 path/rows were included within it, as listed in Table 6. Similarly, 

Landsat 7 ETM+ scenes were also selected by optimizing its intersection with Cluster 

13 (i.e. same as OLI). But, only nine path/rows of Landsat 7 ETM+ were selected due 

to data storage limitations. The spectral differences between the Landsat OLI, Sentinel 

2A MSI, Sentinel 2B MSI, and Landsat 7 ETM+ were compensated by applying 

spectral adjustment factor (SBAF) to Sentinel and Landsat 7 data sets. The SBAF 

correction process can be found in [25]. This compensation was done to ensure a better 

comparison between the Cluster 13 TOA reflectance measurements from different 

sensors. 
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Table 6. Path/row images (OLI, ETM+) and tile images (MSI-A, MSI-B) 

used for validation. 

Optimized 

path/row 

pairs with 

respect to  

OLI 

Optimized 

path/row pairs 

used for 

validation with 

respect to ETM+ 

Optimized 

Sentinel 

2A/2B MSI 

tile ID 

Optimized 

path/row 

pairs with 

respect to OLI 

Optimized 

path/row 

pairs used 

for 

validation 

with respect 

to ETM+ 

Sentinel 

2A/2B MSI 

tile ID 

200/47 Not Used 29QNA 187/47 Same as OLI 32QRF 

199/46 Not Used 29QRC 186/47 Same as OLI 33QUA 

193/37 Not Used 32SKB 185/47 Same as OLI 33QWA 

192/37 Not Used 32SLB 182/40 Same as OLI 34RFT 

191/37 Not Used 32SMB 181/40 Same as OLI 34RGS 

190/43 Not Used 32QNM 180/40 Same as OLI 35RLN 

189/46 Same as OLI 32QPH 179/41 Same as OLI 35RMK 

188/47 Not Used 32QPG 178/47 Same as OLI 35QLA 

 

Figure 11 compares the estimated temporal means and associated standard 

deviations between initial Cluster 13 temporal statistics from [17] and Cluster 13 

temporal statistics derived from Landsat 8 OLI, Sentinel 2A MSI, Sentinel 2B MSI, 

and Landsat 7 ETM+. The results shown here assume common bands across all sensors; 

the ETM+ does not have a corresponding Coastal/Aerosol band. The common bands 

across Landsat OLI and Sentinel 2A and 2B MSI bands can be found in [26]. The mean 

TOA reflectance from Shrestha’s initial Cluster 13 analysis is represented by the black 

solid line and its 5% uncertainty range is represented by the dashed black line as shown 

in Figure 11. Additionally, temporal uncertainty associated with each measurement is 
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also mentioned at the bottom of each sensor’s measurement. Looking at the four 

different sensors, they behave consistently across all the bands. The temporal mean 

values are all within their uncertainties. Uncertainty values of Coastal/Aerosol and Blue 

band are around 3% across all sensors, which are mostly due to atmospheric scattering. 

Green, Red, NIR and SWIR1 channels show ~2% (or less) uncertainty compared to the 

original uncertainty ranges mentioned in [17]. The comparing sensors produce less 

uncertainty values in these bands due to application of BRDF correction. Again, 

compared to their longer wavelength counterparts, SWIR2 channel uncertainty values 

were little higher (close to 3%) due to their water vapor absorption feature which was 

not properly characterized and corrected. However, the estimated temporal 

uncertainties associated with the TOA reflectance measurements were all within ±3% 

in all bands across all sensors which imply that Cluster 13 temporal behavior is similar 

irrespective to the different sensors. 

  

(a) 

 

(b) 
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(c) 

 

(d) 

 

(e)  

 

(f) 

 

(g) 

 

Figure 11. Validation of Cluster 13 mean temporal TOA reflectance values 

using OLI, Sentinel 2A/2B MSI, and ETM+ Sensors. 
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3.7. Extension of Dynamic Range Using Lower Reflectance Clusters 

The 19 clusters from Shrestha’s analysis have their own distinct spectral signatures 

which provide a wide dynamic range for sensor calibration especially at longer 

wavelengths as shown in Figure 12.  

 

Figure 12. Dynamic ranges of clusters found by Shrestha’s analysis. 

Cluster 2 and Cluster 4 are the brightest and darkest respectively. A brief analysis 

of Cluster 1, 3, 4, 16, and 19 was done in order to increase the dynamic range of cluster-

based sensor calibration. The detailed analysis of all the clusters is out of the scope of 

this paper. From these selected clusters, the temporal trend of the darkest cluster, 

Cluster 4, is presented in Figure 13. The Figure shows that the reflectance levels are in 

between 0.177 and 0.38 for all bands. Table 7 summarizes mean TOA reflectances with 

standard deviation and uncertainty of Cluster 4 optimized path/rows by band, derived 

from OLI data. Despite being the darkest cluster, it has temporal uncertainty less than 

8% for visible bands and even better uncertainty, i.e. less than 5%, for the infrared 

bands. Because of having lower signal levels from this cluster, the relative uncertainty 
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measure might not reflect the true impression of the behavior of this dark cluster as 

dividing the standard deviation by a very small mean TOA reflectance values tend to 

produce a larger uncertainty value. So, absolute standard deviation numbers were also 

included in the Table for a better understanding of this cluster’s behavior. It reveals 

that the standard deviation values are in between around 0.011~0.016 which are 

assumed to be relatively low considering this cluster is darkest one and found in the 

desert. So, despite being the darkest cluster across North Africa, Cluster 4 can also be 

considered as a stable EPICS and can be used for calibration purposes. 

 

Figure 13. Temporal trending of OLI over Cluster 4. 

Table 7. Mean TOA Reflectance with Standard Deviation and Uncertainty of 

Cluster 4 optimized path/rows by band, derived from 30m image data. 

Bands CA Blue Green Red NIR 

SWIR

1 

SWIR

2 

Mean 0.181 0.177 0.204 0.262 0.314 0.380 0.326 

Temporal Standard Deviation  0.011 0.013 0.015 0.015 0.0118 0.0145 0.0122 
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Temporal Uncertainty (%) 6.2% 7.3% 7.59% 5.97% 3.76% 3.82% 3.75% 

 

It has been observed that not only all the found clusters are widely distributed 

across North Africa, but also they are temporally and spatially stable which makes them 

eligible for stability monitoring of satellite sensors over a wide dynamic range. For 

optimizing data storage, only 16 paths and rows of Cluster 4 were used. Using those 16 

path/row pairs, Cluster 4 can be observed approximately twice in 3 days. However, if 

all the path/row pairs are used to their full potential, this cluster can also be observed 

more than once a day. It means that this cluster has also daily or near daily calibration 

opportunity. Another interesting fact about the found clusters is that, some path/row 

pairs include more than one cluster regions within their single; For example, path/row 

176/46 and 185/42 contain regions of Cluster 1, 3, 16, and 19 which can be very useful 

for calibrating the sensors that image limited regions of the Earth only. This allows such 

type of sensors to look at a single location and calibrate for a wider dynamic range.  

3.8. Increase of Sensitivity to Detect Change in the Sensor 

This section describes how the temporally rich dataset from Cluster 13 can help to 

detect “sensor change” quicker than traditional PICS. Due to the harsh environment in 

space, sensor response often decays with time and the reflectance trend starts to produce 

nonzero slope. Because of temporal variability present in the time series, the magnitude 

of the slope needs to exceed a certain minimum value, which is determined by 

computing the statistically significant minimum detectable trend. 

The following equation in Weatherhead et al. [27,28] allows estimation of the 

required number of years (N) to detect a trend of magnitude 𝑚 at the 95% confidence 

level and with 50% probability:  
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N = (
2σ𝑁

|𝑚|
√

1 + ∅

1 − ∅
)

2/3

 (8) 

where, σ𝑁 is month-to-month variability and ∅ is the 1-month lag autocorrelation in 

the time series. This equation can also be used to estimate minimum detectable trend 

when N (in years) is given as input. However, it was necessary to make sure that the 

units of σ𝑁 and 𝑚 are the same in the equation.  

Using this equation, Bhat et al. [11] found that the minimum detectable trend values 

are of the order 1%~3% while using Libya-4 data. Their study was conducted on VIIRS 

visible & SWIR band observations limited from February 2013 to October 2013. 

For this paper, minimum detectable trends for both a one year period and the total 

period of the analysis data (Launch-August 2018; total 5.39 years) were estimated using 

the Equation (8). To comply with the equation requirements, the original TOA 

reflectance time series (both Cluster 13 and Libya-4) were converted to monthly 

observations by averaging the BRDF corrected TOA reflectance’s over each month. As 

mentioned in [27,28], σ𝑁   in the above equation was expressed as month to month 

variability (in percentage) by dividing the overall standard deviation of the monthly 

averaged TOA reflectance’s by the overall mean values. Similarly, N is computed in 

terms of years by dividing the total number of months by 12. One-month lag 

autocorrelation coefficient calculation process is described as following. 

Autocorrelation (also known as serial correlation) is a statistical method which is 

widely used in time series analysis to detect non randomness in a dataset by measuring 

the correlation of a signal with a delayed copy of itself. It is often expressed as a 

function (autocorrelation function) of the time lag between the two copies of signal. 

Mathematically, the autocorrelation function measures the correlation between 𝑦𝑡 and 
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𝑦𝑡+𝑘, where k = 0, 1, 2, ... K are time lags and 𝑦𝑡 is a stochastic process. According to 

[29], the autocorrelation 𝑟𝑘 for lag k is: 

𝑟𝑘 =
𝑐𝑘

𝑐0
  (9) 

where, 𝑐𝑘 is the estimate of the autocovariance and 𝑐0 is the sample variance defined 

as 

𝑐𝑘 =
1

𝑁
∑ (𝑦𝑡 − 𝑦)(𝑦𝑡+𝑘 − 𝑦)𝑁−𝑘

𝑡=1   (10) 

𝑐0 =
1

𝑁
∑ (𝑦𝑡 − 𝑦)2𝑁

𝑡=1   (11) 

In the above equations 𝑦 is the the sample mean of the time series defined as: 

𝑦 =
1

𝑁
∑ 𝑦𝑡

𝑁
𝑡=1   (12) 

and, N is the number of observations present. As both Cluster 13 and Libya-4 time 

series is converted to a monthly sampled time series, the autocorrelation at lag k=1 is 

the one-month lag autocorrelation.  

Table 8 shows minimum detectable trends of OLI for both EPICS and traditional 

PICS. For every band the cluster-based approach produced a lower amount of minimum 

detectable trends. For example, when 1-year observation data from both Libya-4 and 

Cluster 13 is available, Libya-4 produced a minimum detectable trend value of 

3.17%/yr in Green band while Cluster 13 produced a value of 1.33%. This is a 

substantial increase of sensitivity in drift detection. However, the minimum detectable 

trend values of SWIR2 band shows less improvement compared to other bands. It is 

more likely due to uncompensated seasonal noise present in this channel. Estimated 

minimum detectable trend for full time frame (5.4 years) from Table 8 reveals that 

although the observation years were increased to 5.4 times, the decrease in minimum 

detectable trend is around 12 times. The exponential increase of the sensitivity of drift 
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detection with the time can be attributed to the Equation (8) which depends on natural 

variability, autocorrelation and observation period of the time series dataset.  

Table 8. Estimated minimum detectable trend comparison between EPICS and 

traditional PICS. 

 Bands  CA Blue Green Red NIR SWIR1 SWIR2 

Minimum 

detectable 

trend of 

OLI 

(%/yr) 

 

1 year - Libya-4 3.62 4.01 3.17 3.77 2.77 2.04 4.65 

1 year - Cluster 13 2.31 2.50 1.33 2.33 1.36 1.65 4.28 

5.4 years - Libya-4 0.29 0.32 0.25 0.30 0.22 0.16 0.37 

5.4 years - Cluster 13 0.18 0.20 0.11 0.19 0.11 0.13 0.34 

 

Although Cluster 13 (16 path/row limited) temporal variabilities are on the order 

of 2.7% and Libya-4 CNES uncertainties are of 1% (except SWIR2~2%), the increase 

of temporal density allowed the Cluster-based method to produce more sensitivity in 

sensor change detection. However, due to autocorrelation in both Cluster 13 and Libya-

4 datasets the minimum detectable trend often produces larger values indicating that 

one might have to wait for several years to detect even a unit percentage of change in 

the sensor performance using PICS/EPICS based approach. For example, it has been 

found that an unit percent change in Coastal Aerosol band can be detected in 2.35 years 

using Libya-4 data whereas Cluster 13 can detect the same change in 1.74 years; This 

values decreases to 1.22 years (Cluster 13) and 1.97 years (Libya-4) for NIR band due 

to less temporal variations present in the BRDF corrected dataset. A similar decrease is 

also observed for green channel. 
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Table 9 shows the estimate of time required using Cluster 13 to detect the same 

amount of minimum trend estimated from OLI data over Libya-4 CNES ROI. It shows 

that the limited Cluster-13 can detect the same amount of trend in about half a year 

faster (Green band) compared to Libya 4 CNES ROI(1 year time frame). Referring to 

Figure 10, it is visible that the temporal trend of green band after BRDF correction has 

very less temporal variation while the SWIR2 channel has the largest variations. As the 

Equation (8) used to calculate minimum detectable trend also depends on the variability 

of time series, Green band takes less amount of time and the SWIR2 channel shows less 

improvement using Cluster based method. 

Table 9. Trend detection time improvement by EPICS compared to Libya-4. 

 CA Blue Green Red NIR 

SWIR

1 

SWIR

2 

Time required(years) for Cluster-13 

to detect 1 year equivalent Libya-4 

trend 

0.74 0.73 0.56 0.72 0.62 0.86 0.96 

Time required(years) for Cluster-13 

to detect 5.4 years equivalent Libya-

4 trend 

3.99 3.94 3.02 3.91 3.36 4.67 5.01 

 

4. Summary and Conclusion 

This paper focuses on the application of EPICS (Cluster) for stability monitoring 

of optical satellite sensors. EPICS provides a significant improvement of the temporal 

revisit period of calibration time series in contrast to the temporal revisit period offered 
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by traditional PICS with similar or 1%~2% higher temporal uncertainties depending on 

bands. One of the clusters, Cluster 13 (using limited regions and cloud-free scenes 

only), offers temporal revisit period of potentially as good as 1.4 days for Landsat 8 

OLI in contrast to an average of every 18-20 days obtained from traditional PICS. By 

using all the regions of Cluster 13 and a nominal cloud consideration (~around 30% 

scene rejection due to cloud cover) a temporal revisit period of 0.33 day (~three cloud 

free collects everyday) can be obtained by a moderate resolution sensor. Furthermore, 

for the sensors having a wide field of view, Cluster 13 can offer even less than this 

revisit period. This improvement in the temporal revisit period resulted in better 

(depending on bands the increase in sensitivity as large as ~2 times) sensitivity of drift 

detection.  

The temporal uncertainty of Cluster 13 was analyzed and validated using Landsat 

8 OLI, Landsat 7 ETM+, Sentinel 2A MSI, and Sentinel 2B MSI. All sensors agree that 

Cluster 13 is temporally stable within 3%. However, spatial uncertainty of Cluster 13 

is around 5% which is slightly more variation than that of traditional PICS. This extra 

spatial variation is pronounced due to its large spatial extent across the continent. Even 

though Cluster 13 with its hugely extended target size has spatial uncertainty of 5%, 

still the goal of matching traditional PICS temporal uncertainty is achieved. The near 

daily/daily calibration opportunity and increased sensitivity of change detection 

outweighs traditional PICS based methods, while also reducing the impact of a single 

location “change”. 

This paper also suggests that a single random location from Cluster 13 can be a 

representative of the whole Cluster 13 with 2% uncertainty. This uncertainty value 

becomes smaller exponentially with the increase of chosen locations. A typical decrease 

of uncertainty values to 1% using only 3 sites has been observed while mean values 
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estimated by 3 sites differs no more than 0.0439% of Cluster 13 mean TOA reflectance 

values. This suggests that the Cluster 13 mean TOA reflectance can be estimated within 

a specified uncertainty using fewer number of sites that is tunable to achieve desired 

accuracy. 

The analysis in this work is more focused on Cluster 13 as it has better spatial 

uncertainty across all the bands and widely distributed across North Africa. But there 

are other clusters, such as Cluster 1, 3, 4, 16, and 19, which have spatial uncertainty 

and distribution across North Africa comparable with Cluster 13. Initial results showed 

that these clusters also offer nearly daily acquisition as Cluster 13. These clusters 

possess a similar potential to be used for EPICS based sensor calibration within their 

specified uncertainty. The darkest of the found clusters, Cluster 4 has temporal TOA 

reflectance mean values ranging from 0.177-0.380 with absolute standard deviation 

values ranging from 0.011~0.0016. This generates temporal uncertainty values ranging 

from 5%~8% which are the highest values among the considered clusters and can be 

useful for calibration purposes considering the intensity level of this cluster. 

Furthermore, these clusters have different intensity levels which can help to perform 

radiometric calibration and stability monitoring of any satellite sensors in a wider 

dynamic range.  

This paper showed that EPICS allows daily or near daily calibration and stability 

monitoring. EPICS offers up to two times (this number varies from band to band) better 

sensitivity in drift estimation than traditional PICS even with its continental extent. The 

proposed technique can be powerful for evaluating sensor performance in less time, 

especially for sensors with shorter lifespans and limited spatial coverage. Surprisingly, 

EPICS achieves all this improvement while offering less than 3% temporal variability 

in its reflectance time series. 
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