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ABSTRACT 

CROSS CALIBRATION AND VALIDATION OF LANDSAT 8 OLI AND SENTINEL 

2A MSI 

M M FARHAD 

2018 

This work describes a proposed radiometric cross calibration between the Landsat 8 

Operational Land Imager (OLI) and Sentinel 2A Multispectral Instrument (MSI) sensors. 

The cross calibration procedure involves i) correction of the MSI data to account for 

spectral band differences with the OLI; and ii) correction of BRDF effects in the data from 

both sensors using a new model accounting for the view zenith/azimuth angles in addition 

to the solar zenith/view angles. Following application of the spectral and BRDF 

corrections, standard least-squares linear regression is used to determine the cross 

calibration gain and offset in each band. Uncertainties related to each step in the proposed 

process are determined, as is the overall uncertainty associated with the complete 

processing sequence. Validation of the proposed cross calibration gains and offsets is 

performed on image data acquired over the Algodones Dunes site. 

In general, the estimated cross calibration offsets in all bands were small, on the order of 

0.0075 or less in magnitude.  The cross calibration gains generally varied less than 1.0% 

from unity; for the Blue and Red bands, the gains varied by approximately -2.5% and -

1.4% from unity, respectively. For a forced zero offset, the estimated gain in all but the 

Blue band changed little; the Blue band gain varied by approximately 1.86% from unity. 

Consequently, cross calibration of the Blue band requires both the gain and nonzero offset. 



xvi 
 

To maintain processing consistency, it is recommended to use the gain and (nonzero) offset 

in all bands. 

Overall, the net uncertainty in the proposed process was estimated to be on the order of 

6.76%, with the largest uncertainty component due to each sensor’s calibration uncertainty, 

on the order of 5% and 3% for the MSI and OLI, respectively. Other significant 

contributions to the uncertainty include:  seasonal changes in solar zenith and azimuth 

angles, on the order of 2.27%; target site non-uniformity, on the order of 1.8%; variability 

in atmospheric water vapor and/or aerosol concentration, on the order of 1.29%; and 

potential shifts in each sensor’s spectral filter central wavelength and/or bandwidth, on the 

order of 0.82% and 0.28%, respectively. 
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Chapter 1     Introduction 

When an Earth-orbiting satellite sensor is launched, a primary concern is to ensure the 

quality and accuracy of its image data throughout its operating lifetime [1].  This requires 

regular monitoring of the sensor’s radiometric and geometric performance and adjusting 

the relevant operating parameters as needed to maintain data accuracy and quality.  In terms 

of radiometric performance, these parameters are the band-averaged gains and offsets that 

convert the image data from DNs to radiance or reflectance values.  The measured values 

are compared to a known, accepted standard in a process known as absolute radiometric 

calibration.  Other radiometric parameters of interest include the relative gains and offsets 

of the sensor’s detectors; these parameters are determined through a process of relative 

radiometric calibration, and are used to remove ‘striping’ and/or ‘banding’ artifacts due to 

differences in detector response. 

Absolute radiometric calibration of a sensor prior to satellite launch determines the initial 

operating gains and offsets.  Due to launch-related stresses and aging of components in the 

space environment [2], the sensor response can degrade over time such that the initial gains 

and offsets may no longer be valid.  Subsequent radiometric calibrations are typically 

performed after launch to monitor the sensor response and adjust the gains/offsets 

accordingly. 

Post-launch calibration can use a variety of “reference” measurements.  Measurements of 

on-board calibration sources such as a solar diffuser panel or black body can be used if 

they are available.  In-situ measurements of surface radiance or reflectance at a calibration 

site on the Earth’s surface can also be used if the required set of measurements exists.  

Another source can be measurements from a well-calibrated sensor imaging a calibration 



2 
 

site on a regular basis; the calibration can be “transferred” from the source sensor to an 

(uncalibrated) sensor of interest through a process of cross calibration.  This calibration 

method has the advantage of not relying on an onboard calibration system, which simplifies 

the sensor design and reduces its overall cost, and it does not rely on in-situ surface 

measurements of sites that are inaccessible due to physical remoteness or local/regional 

political instability.  In general, cross-calibration offers a quick, highly repeatable, and 

inexpensive way to perform reliable radiometric calibration of satellite sensors [3]. 

This thesis proposes a technique to perform reflectance-based cross calibration between 

the Landsat 8 Operational Land Imager (OLI) and Sentinel 2A Multispectral Instrument 

(MSI) sensors, using co-incident pairs of OLI and MSI images acquired over four North 

African Pseudo-Invariant Calibration Sites (PICS) which are Libya 4, Libya 1, Niger 2 and 

Sudan 1. This work also includes some dark targets to incorporate a wide range of TOA 

reflectance value, which are Lake Tahoe and Volcanic site near Libya. Due to the 

unavailability of coincident pairs, some near coincident pairs which are within 3 days have 

been used for the Volcanic site near Libya. The work described in this thesis contributes to 

the ongoing process of “harmonizing” image data from current and future sensors such as 

the MSI with legacy Landsat image data. 

1.1 Cross Calibration 

As mentioned earlier, the cross-calibration method transfers the calibration from a well-

calibrated “reference” sensor to an uncalibrated sensor of interest, as shown in Figure 1.1.  

While any site imaged by both sensors could in principle be used, PICS [4] are considered 

desirable due to their observed temporal, spatial, and spectral stability.  The only 

requirement to enable cross calibration is that both sensors simultaneously (or near-
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simultaneously) image the site, in order to minimize effects from changing atmospheric 

characteristics. 

Cross calibration assumes that both sensors are measuring the same radiances or 

reflectances.  In practice this assumption is seldom valid, as the relative spectral responses 

(RSRs) of the two sensors are not equal.  Any cross calibration technique should take this 

into account by applying band-dependent scaling factors to the uncalibrated sensor data in 

order to spectrally “match” the calibrated sensor data.  A method to derive and apply these 

factors is described in Chapter 3.   

 

Figure 1.1 Generic Cross Calibration Processing Sequence [5]. 

 

Cross calibration can be either radiance-based or reflectance-based.  The following 

equations are used: 

L𝐶𝐴𝐿 = 𝐺𝐿 ∗ L𝑅𝐸𝐹 + 𝐵𝐿                                                                 (1a) 

𝜌𝐶𝐴𝐿 = 𝐺𝜌 ∗ 𝜌𝑅𝐸𝐹 + 𝐵𝜌                                                                 (1b) 
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where GL(Gρ) is the radiance(reflectance) gain, BL(Bρ) is the radiance(reflectance) offset, 

and LREF(ρREF) and LCAL(ρCAL) are the reference and calibrated radiance(reflectance). 

 

1.2 Comparison of MSI and OLI Radiometric Performance 

1.2.1 Sentinel 2A 

The Sentinel 2 mission is part of the European Space Agency’s (ESA) Copernicus program 

[6].  Sentinel 2A offers coverage of the Earth’s land and coastal areas at spatial, spectral 

and radiometric resolutions comparable to those provided by the Landsat 8 mission, with 

a revisit time of 10 days.  The revisit time reduces to 5 days with both satellites in the 

Sentinel 2 series (Sentinel 2A and 2B) operational.  

Sentinel 2A was launched on June 23, 2015, and Sentinel 2B was launched on March 7, 

2017.  Both satellites fly at a mean altitude of approximately 786 km in nearly polar, sun 

synchronous orbits phased 180° apart.  The equatorial crossing of their descending nodes 

occurs at approximately 10:30 AM Mean Local Solar Time (MLST).  The imaged path 

covers a latitude range between 83° N and 56° S. (Sections 1.5.1 and 1.5.2, Sentinel-2 

Users Handbook [7]). 

 

Multi Spectral Instrument (MSI) 

The MSI (Figure 1.2), a push broom sensor, is the sole payload onboard Sentinel 2A. The 

main telescope, a set of three anastigmatic mirrors, directs incident radiation onto two focal 

planes, separated by a dichroic beam splitter [7], that image the Visible/Near Infrared 

(VNIR) and Short-wave Infrared (SWIR) portions of the electromagnetic spectrum.  The 

VNIR focal plane consists of a monolithic CMOS module containing 12 detectors, while 



5 
 

the SWIR focal plane consists of a CMOS read-out circuit containing 12 HgCdTe detectors 

passively cooled to temperatures less than 195° K.  The focal plane detectors are staggered 

such that the resulting cross-track field-of-view (FOV) is approximately 20.6°, 

corresponding to a swath width of approximately 290 km. 

The spatial resolution of MSI image data varies by band.  The visible bands and primary 

NIR band (B2, B3, B4, and B8) are imaged at 10 m resolution.  Three “Red Edge” bands, 

a second NIR band, and two SWIR bands (B5, B6, B7, B8a, B11, and B12) are imaged at 

20 m resolution.  Finally, three “atmospheric” bands (B1, B9, and B10) are imaged at 60 

m resolution [8].  The MSI images data with 12-bit radiometric resolution (0-4095 DN).  

The overall calibration accuracy achieved to date is better than 5%, with efforts underway 

for improvement to better than 3% [6].   

 

Figure 1.2 MSI Configuration, Full Instrument [7]. 

 

1.2.2 Landsat 8 

Landsat 8, launched on February 11, 2013, is the latest in a series of satellites that are part 

of the Landsat mission, which has provided continuous global imaging of the Earth’s 
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surface since its beginning in 1972.  It flies at a nominal mean altitude of approximately 

705 km in a nearly polar, sun synchronous orbit that follows the Worldwide Reference 

System (WRS-2), with a revisit time of 16 days.  The equatorial crossing of the descending 

node occurs at approximately 10:11 AM MLST.   The imaged orbital path covers a latitude 

range between approximately 80° N and 80° S [9].  Unlike the previous Landsat satellites, 

Landsat 8 can maneuver to allow its sensors to acquire off-nadir imaging.  It can also 

maneuver to allow imaging of the Moon. 

 

Operational Land Imager (OLI) 

The OLI (Figure 1.3) is one of two sensors comprising the Landsat 8 payload, the other 

being the Thermal Infrared Sensor (TIRS).  It is a push broom sensor, based on advanced 

concepts and technologies developed for the Earth Observing 1 Advanced Land Imager 

(EO-1 ALI) [10].  These advances allow significantly improved radiometric performance 

over the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) while maintaining overall 

data continuity with the existing Landsat archive. 

 

The OLI’s main telescope consists of four anastigmatic mirrors, which direct incident 

radiation to a focal plane containing 14 modules imaging the VNIR and SWIR portions of 

the electromagnetic spectrum.  These modules are staggered so that the cross-track FOV is 

approximately 15°, corresponding to a swath width of approximately 185 km.  Each 

module contains 494 detectors for the multispectral bands (Si PIN for the VNIR bands, 

HgCdTe for the SWIR bands), and 988 detectors for the panchromatic band (Si PIN) [11].  

The entire focal plane is cooled to temperatures less than 200° K.  Unlike ETM+, OLI does 
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not have a thermal band—TIRS provides thermal band imaging in a spectral range similar 

to ETM+ but split into two bands. 

OLI’s spatial resolution is consistent with that of ETM+.  All multispectral bands acquire 

data with 30 m resolution, while the panchromatic band acquires data with 15 m resolution, 

as shown in Table 1.3.  For thermal band imaging, the ETM+ acquires data at 60 m 

resolution, while TIRS acquires data at 100 m resolution. OLI initially acquires data with 

14-bit radiometric resolution; the final image data, however, are quantized to the 12 least 

significant bits, resulting in a radiometric resolution equal to MSI and significantly greater 

than the 8-bit radiometric resolution in ETM+. 

 
Figure 1.3 OLI Architecture [10]. 

 

 

1.2.3 Side-by-Side Comparison 
Table 1.1 provides a summary comparison between the corresponding OLI and MSI bands 

used in this cross calibration work.MSI bandpasses cover the same spectral regions as OLI 
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bandpasses, they are generally wider in shape.  Note the overlap of MSI Coastal/Aerosol 

and Blue bandpasses. 

 

Band Bandpass (nm) Spatial Resolution 

(m) 

SNR 

OLI MSI OLI MSI OLI MSI 

C/A 433-453 397.3-487.3 30 60 238 129 

Blue 450-515 394.1-590.1 30 10 364 154 

Green 525-600 515.0-605.0 30 10 302 168 

Red 630-680 626.5-702.6 30 10 227 142 

NIR 845-885 831.8-897.8 

(8A) 

30 20 204 72 

SWIR1 1560-

1660 

1470.7-

1756.7 

30 20 265 100 

SWIR2 2100-

2300 

1960.4-

2442.4 

30 20 334 100 

Table 1.1 OLI/MSI Comparison [11], [12]. 

 

 

1.3 Summary 

This chapter has provided an introductory background to the work described in this thesis.  

It has defined the term “cross calibration” as it relates to this thesis, and has provided 

background information regarding the two sensors emphasized in this work.  The next 

chapter will review previous cross calibration efforts of these sensors. 

The contents of this thesis are presented as follows.  Chapter 1 introduces the topic and 

provides a summary comparison of OLI and MSI radiometric performance.  Chapter 2 

briefly reviews previous cross calibration efforts in general, and previous OLI-MSI cross 

calibration in particular.  Chapter 3 presents the steps used in performing the proposed 

cross calibration in greater detail.  Chapter 4 reviews the results obtained from the proposed 

technique.  Finally, Chapter 5 summarizes the thesis work and offers potential directions 

for future research and development of the proposed technique. 
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Chapter 2    Literature Review 

Many techniques have been developed to perform cross calibration between satellite 

sensors, including efforts to calibrate all of the Landsat sensors to the OLI [13]. Research 

has focused on selection of ‘invariant’ calibration sites, methods to adjust for differences 

in spectral response between sensors, and methods to model and correct for BRDF and 

other effects due to differences in viewing geometry and illumination. This chapter 

provides a summary review of the literature describing this research, and briefly compares 

previous methods to the proposed technique described in Chapter 3.  

 

2.1 Calibration Site Selection 

A critical factor in producing a successful cross calibration involves selection of a 

calibration site regularly imaged by the sensors of interest. The site should be as 

temporally, spatially, and spectrally invariant as possible, in order to more easily 

distinguish between potential changes to a sensor’s radiometric response and potential 

changes to the site’s surface and/or atmospheric characteristics. Historically, these sites 

have been in desert regions exhibiting a high degree of uniform surface reflectance, with 

minimal rainfall and cloud cover, and minimal signs of human settlement or other activities 

[14].  

2.1.1 Saharan and Arabian Desert Sites 

The earliest PICS used for cross calibration were identified in areas throughout the Sahara 

Desert in North Africa and the deserts of Saudi Arabia. Rao and Chen (1995) used image 
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data acquired over the southeastern portion of the Libyan desert to i) identify rates of 

response degradation in the visible and NIR channels of the NOAA Advanced Very High 

Resolution Radiometer (AVHRR); and ii) to establish “inter-satellite calibration linkages” 

between the NOAA 7 and 9 AVHRRs and the NOAA 9 and 11 AVHRRs [15]. Their 

analysis emphasized VNIR and thermal image data acquired at satellite zenith angles of 

14° or less and solar zenith angles of 60° or less to minimize BRDF and atmospheric 

effects. They validated their analysis results using image data acquired over the White 

Sands area in New Mexico. Although they derived models to account for intra-sensor 

response degradation and overall cross calibration between pairs of AVHRR sensors, no 

estimate for the uncertainties involved in their approach was presented; such results were 

apparently intended to be provided in subsequent journal papers. 

Cosnefoy, et al (1996) analyzed 20 desert sites in North Africa and Saudi Arabia [16] for 

use in calibration of sensors employing charge-coupled device detectors (e.g. the ADEOS 

POLDER, SPOT-4 Vegetation, EOS MISR, Envisat MERIS, etc). 100 km x 100 km 

regions representing the sites were extracted from cloud-free Meteosat-4 image data in 

order to determine their spatial uniformity. Overall, the estimated spatial variability for 

these sites was within 3%, while the estimated temporal variability was within 2%. They 

concluded that these sites could be used for future satellite calibration. Many of these sites 

are considered among the most temporally stable of calibration sites, and are used for 

calibration purposes.  
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2.1.2 CEOS Recommended PICS and Calibration 

Using image data from the Landsat 7 ETM+ and EO-1 Advanced Land Imager (ALI) 

sensors, Chander, et al (2010) identified the following metrics indicating the usefulness of 

a PICS for calibration [17]: 

 Useable Area 

 Data Availability 

 TOA Reflectance 

 Spatial Uniformity 

 Spectral Stability 

They assessed six candidate sites (Mauritania1, Mauritania2, Algeria3, Libya1, Libya4, 

and Libya5) using the above metrics. The results of their assessment indicate these metrics 

can reliably be used in PICS selection. The Committee on Earth Observation Sciences 

(CEOS) has since adopted them as calibration sites.  

 

These analysis of PICS have been done to pick the appropriate PICS for this cross 

calibration work. Among the twenty CEOS PICS, four of them are considered in this work, 

as they have been used in previous calibration work by the Image Processing Laboratory 

[18]. These PICS are: 

 Libya 1 

 Libya 4 

 Niger 2 

 Sudan 1 
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2.2 SBAF in Cross Calibration 

Two sensors imaging the same region on the Earth will measure different surface radiances 

and reflectances. A significant reason for this difference is due to inherent differences in 

their spectral responses. Correction factors applied to the uncalibrated sensor’s image data, 

called Spectral Band Adjustment Factors (SBAFs), can result in greater equalization of its 

data to the corresponding image data from the calibrated sensor. Research into the 

determination of SBAFs and their effects on cross calibration has been performed. A 

summary of this research is presented in this section. 

Teillet, et al (2004) considered the effects of spectral band differences on cross calibration 

[19]. Their analysis used radiometrically and geometrically corrected image data of the 

Railroad Valley Playa (RRV) acquired by the ETM+, ALI, and Terra MODIS, ASTER, 

and MISR sensors, as their overpass times were within 45 minutes of each other; no BRDF 

or other corrections were applied to the data. Standard radiative transfer codes were used 

to calculate SBAFs for selected regions in the playa, the inputs to the codes consisting of 

each region’s surface reflectance spectra. The results of their analysis indicated that with 

SBAF correction, the calibration accuracy was within 3%.  Based on this analysis, they 

recommended, in general, that SBAFs be used when cross calibrating between sensors.   

Chander, et al (2010) used an average of 108 EO-1 Hyperion hyperspectral profiles of the 

Libya4 PICS, acquired from 2004 to 2009, to determine an SBAF for Terra MODIS, using 

the ETM+ as the calibrated reference sensor [20]. The SBAF was calculated by integrating 

the product of the sensor relative spectral response (RSR) and the Hyperion TOA 

reflectance, then dividing by the integrated sensor RSR, as shown in Eq. (1): 
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𝑆𝐵𝐴𝐹 =
ρλ,(ETM+)

ρλ,(MODIS)
=

∫ ρλ . 𝑅𝑆𝑅λ,(ETM+) 𝑑λ 

∫ 𝑅𝑆𝑅λ,(ETM+) 𝑑λ

∫ ρλ . 𝑅𝑆𝑅λ,(MODIS) 𝑑λ 

∫ 𝑅𝑆𝑅λ,(MODIS) 𝑑λ

                                                                        (1) 

where 

ρλ,(ETM+)= Spectrally banded TOA reflectance of ETM+ (Unitless) 

ρλ,(MODIS)=Spectrally banded TOA reflectance of MODIS (Unitless) 

ρλ=Hyperspectral TOA reflectance profile of the target (Unitless) 

𝑅𝑆𝑅λ=Relative spectral response of the sensor 

Without SBAF correction, the observed Terra MODIS TOA reflectance was at least 16% 

greater than the corresponding ETM+ TOA reflectance in all bands. With SBAF correction, 

the difference was reduced to 6% or less. Greater uncertainties were found in the Blue, 

NIR, and SWIR1 bands.  

In 2013, Chander, et al looked at the effect of SBAF correction derived from different 

hyperspectral data sources on the cross calibration of ETM+ and Terra MODIS using the 

Libya4 PICS as their test site [21]. Specifically, they considered Hyperion and 

SCIAMACHY hyperspectral data. The Hyperion-based SBAF correction resulted in 

reflectance differences of approximately -5.51%, 2.04%, -0.83% and 4.06% in the Blue, 

Green, Red, and NIR bands, respectively. The differences were even lower when 

SCIAMACHY-based SBAF correction was used (-0.62%, 3.26%, 0.09%, and 0.93%, 

respectively). Overall, using the SCIMACHY-based SBAFs tended to produce a more 

consistent cross calibration. 
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2.3 BRDF Correction 

When cross calibrating between sensors, it is highly desirable for them to image a region 

under similar viewing geometry and solar illumination conditions.  Solar illumination and 

potential atmospheric effects can be accounted for if the sensors simultaneously (or near-

simultaneously) image the region. Due to differences in sensor design and operation, and 

depending on the imaged surface, differences in viewing geometry will likely result in the 

introduction of bi-directional reflectance distribution function (BRDF) effects. Research 

into the BRDF issue has resulted in a variety of models and correction approaches. This 

section briefly summarizes this research and its application in the cross calibration process. 

Liu, et al (2004) used a BRDF model based on the solar zenith angle in their cross 

calibration between Terra MODIS and MVIRS [22], using images acquired over the 

Dunhuang site in China. Their model extended the model originally developed by Roujean 

et al (1992) [23], allowing consideration of solar zenith angles greater than 51o. Li’s model 

successfully accounted for the BRDF of AVHRR bands corresponding to selected MVIRS 

bands over terrestrial surfaces. The estimated error due to BRDF effects was found to be 

approximately 2% to 3%. 

Schlapfer, et al (2014) proposed a novel correction method for wide field-of-view (FOV) 

optical scanners based on the solar zenith, view zenith, and relative azimuth angles (i.e. the 

difference between the solar and view azimuth angles) [24]. Their method requires the 

image dataset to contain at least four distinct bands.  It corrects surface cover-dependent 

BRDF effects using observed surface reflectances to “tune” the standard Ross-Thick and 

Li-Sparse BRDF models. The resulting “calibrated” model is then used to correct the angle-

dependent reflectance behavior. The correction algorithm was tested on non SBAF-
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corrected multispectral and airborne hyperspectral image data of areas with and without 

surface vegetation. No specific values regarding the amount of correction were given; they 

asserted that the correction resulted in stable reflectances across all viewing angles.   

Mishra, et al (2014) derived an empirical BRDF model based on the solar zenith and view 

zenith angles of Terra MODIS near-nadir images acquired over the Libya4 PICS [25]. 

Scene-center TOA reflectances from approximately 160 lifetime observations were plotted 

as a function of solar zenith angle for all reflective bands. As an initial “guess” for the 

model form, a simple linear model was fit to the data. Figure 2.1 shows the resulting model 

for the NIR band (band 2).  

 

Figure 2.1 Linear BRDF Model for Libya4 Based on Solar Zenith Angle. 

Their final model was implemented using a linear function of solar zenith angle and a 

quadratic function of view zenith angle. They found that reflectance decreased due to 

BRDF effects, with greater decrease at longer wavelengths; consequently, the SWIR bands 

were found to be most affected. The slope coefficient of model based on linear solar zenith 

angle based model shows an exponential decrement throughout all the wavelength. In 
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addition, reflectances were modeled solely as a quadratic function of view zenith angle. 

They proposed a vicarious calibration model which basically calculates the reflectance 

measured by the sensor un-biasing the BRDF effects.  They compared the difference 

between the model vs. measured TOA reflectance which are within 3% or better for all the 

bands.  

 

2.4 Cross Calibration 

Following application of SBAF and BRDF corrections, the sensors’ measured TOA 

reflectances can be compared more directly. As mentioned earlier, simultaneous (or near 

simultaneous) images are acquired by the sensors in order to minimize atmospheric effects. 

The TOA reflectances of the uncalibrated sensor are typically modeled as a linear function 

of the calibrated sensor’s reflectances. Ideally, the plotted data lie directly on a one-to-one 

line, meaning that the measured reflectances from the sensors are equal. In practice, 

however, some residual deviation is typically observed, which represents a gain and/or 

offset in the uncalibrated sensor. This section briefly reviews various cross calibration 

results. 

 

Lacherade, et al (2013) proposed a cross calibration technique using processed MERIS and 

PARASOL image data acquired over the set of 20 CEOS desert sites and retrieved from 

the French remote sensing database SADE [26]. Instead of applying SBAF correction to 

the uncalibrated sensor data, the uncalibrated sensor’s surface reflectances were derived 

from interpolated and sampled TOA reflectances of the calibrated reference sensor, as 

shown in Figure 2.2.  
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Figure 2 Example of the Computed Surface Reflectance for a CAL, PARASOL, Starting 

from Surface Reflectance Measurements from an REF, MERIS, for the Libya4 Site. 

 

They tested the proposed approach on non BRDF-corrected image data acquired over the 

CEOS Saharan desert sites, and found an approximate 2% difference in the Red and NIR 

bands. Differences of approximately 4% to 6% were observed in the Green and Blue bands, 

respectively. 

 

Mishra, et al (2014) presented radiance- and reflectance-based cross calibration of Landsat 

8 Operational Land Imager (OLI) and ETM+ [27]. Two independent datasets were used in 

the analysis: 

 Simultaneous image pairs acquired at two Saharan desert locations during a two-

day underfly event on March 29-30, 2013.  One location was near the Libya4 PICS 

(WRS2 path 182, rows 42-43); the other was over WRS2 path 198 rows 38-39. 
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 Time series analysis of images acquired over the Libya4 PICS 

Results using both datasets indicate a cross-calibration uncertainty to within 2.5% in all 

bands but NIR, which had an uncertainty of 4% in both approaches. The NIR band results 

are most likely due to differences in each sensor’s RSR--the OLI RSR is narrower, resulting 

in exclusion of a significant absorption feature affecting the ETM+ NIR band. Even with 

the difference in NIR band RSRs, the results were within the required 3% uncertainty for 

OLI and 5% uncertainty for ETM+. 

 

Li, et al (2017) presented a method to cross calibrate the Sentinel 2A MSI and OLI sensors 

[28]. Using OLI as the calibrated sensor, they used Simultaneous Nadir Overpass (SNO) 

scenes acquired just east of the CEOS Algeria3 site. Their analysis included SBAF 

correction but no BRDF correction. Their results are shown in Figure 2.3. 

 

Application of the relevant SBAFs resulted in agreement to within 3% in six of the eight 

corresponding bands. Overall, the MSI Blue band appeared to be the best calibrated, to 

approximately 0.08%.   

Calibration differences on the order of 0.4% were obtained for Green, Red, and NIR bands; 

are slightly higher in the Coastal Aerosol, Blue, Red, and SWIR1 bands, approximately 

equal in Green band, slightly lower in SWIR2 band, and significantly lower in NIR and 

Cirrus bands. 
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Figure 2.3 1-1 Plot of Grid-Cell TOA Reflectances of MSI and OLI. Subplot at Lower 

Right Corner is for Cirrus Band [28]. 

 

Figure 2.4. Differences between OLI and MSI Response Before (open circle) and After 

(closed circle) Cross Calibration [28]. 
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Figure 2.4 shows the resulting improvement after applying the derived cross calibration 

gains to the MSI data. All bands except the Cirrus band improved the agreement to within 

1%; the Cirrus band agreement improved to approximately 2.5%.  

 

2.5 Uncertainty of Cross Calibration 

As with other computations and measurements, each step in the cross calibration process 

introduces a degree of uncertainty to the final result. The sources of uncertainty at each 

step can be identified, and their relative contribution to the final uncertainty can be 

determined. This section briefly considers uncertainty related to cross calibration. 

 

2.5.1 Uncertainty in SBAF 

Chander, et al (2013) determined the inherent uncertainty in cross calibration due to the 

SBAF [29]. Their SBAFs were generated from Monte Carlo simulation of Hyperion and 

SCIAMACHY image data of the Libya4 PICS. Table 1 shows the estimated uncertainties 

in the SBAFs for each corresponding band. Assuming 10 nm spectral resolution for each 

band, the associated uncertainty SBAF uncertainties were approximately 0.05% for Blue 

and Green bands, approximately 0.04% for Red band, and approximately 0.21% for NIR 

band. 

    

Pinto, et al (2016) derived SBAFs for the OLI and CBERS 4 Multispectral Camera, based 

on the corresponding Hyperion image data of the Algodones Dunes and Libya4 PICS, 

using Monte Carlo simulations [30]. The simulation dataset was arbitrarily sampled to 

generate possible SBAF values, and from the sampled values the associated uncertainties 
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were estimated. Their results indicated that the degree of uncertainty is dependent on the 

degree of correlation of the Hyperion reflectance and RSR of both sensors. Assuming 

maximum correlation, the uncertainty was as low as 0.0% in the Green band for Libya 4, 

and as high as 0.87% in the NIR band for Algodones Dunes. Similarly, assuming minimum 

correlation, the uncertainty was as low as 0.48% in the Red band for Libya4, and as high 

as 1.37% in the NIR band for Algodones Dunes.  

 

2.5.2 Other Sources of Uncertainty 

In addition to estimating the SBAF uncertainty, [29] considered uncertainties due to 

differences in spectral resolution, spectral filter shift, geometric misregistration, and 

differences in spatial resolution.  The spectral uncertainty was estimated from the available 

Hyperion and SCIAMACHY image data. The uncertainty due to spectral filter shift was 

estimated to be less than 2.5% in all bands, with the Blue and Green bands exhibiting the 

largest uncertainties. With respect to spatial misregistration, the estimated uncertainty was 

less than 0.35% in all bands.  Finally, with respect to spatial resolution, the estimated 

uncertainty was on the order of 0.1% for all bands.  

 

In a rigorous analysis using Monte Carlo and MODTRAN simulations, Gorrono, et al 

(2017) considered different sources of spectral, spatial, and temporal uncertainties 

affecting cross calibration of the Sentinel 2A MSI [31]. Their reference data source was 

hyperspectral data simulated for the upcoming Traceable Radiometry Underpinning 

Terrestrial and Helio Studies (TRUTHS) sensor. Their sites focused on the La Crau, 

Ascension Island, and Libya4 CEOS sites, representing grassland, oceanic, and desert 
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landcover types, respectively; they also simulated snow cover. They estimated an overall 

uncertainty, for an individual MSI overpass, of approximately 0.4% to 0.5% in the “best” 

bands (i.e. VNIR) and approximately 0.4% to 0.7% in the “worst” bands (i.e. SWIR2).  

Averaging over multiple overpasses of a site, they estimated an overall uncertainty on the 

order of 0.2% for the “best” bands and approximately 0.3% to 0.7% for the “worst” bands. 

These estimates took into account both SBAF and BRDF correction. 

 

2.6 Summary 

This chapter has briefly reviewed research relating to the steps used to perform cross 

calibration between two sensors, and in determining associated uncertainties in some of 

those steps.  The issues that seem to most directly impact the reviewed cross calibration 

work are differences in spectral response between the sensors and BRDF effects at a given 

site due to differences in viewing and solar geometry. 

With the exception of Teillet et al, the reviewed cross calibration approaches tend to use 

SBAFs to account for sensor RSR differences; this thesis work uses SBAF correction as 

well, and will be considered in greater detail in Chapter 3.  No cross calibration approach 

reviewed has used a BRDF model based on the full set of solar and view angles (i.e. solar 

zenith/azimuth and view zenith/azimuth). The cross calibration described in this thesis uses 

such a model, and will be described in greater detail in Chapter 3. In addition, a 

comprehensive uncertainty analysis on the steps required for this cross calibration will be 

performed, and will be described in Chapters 3 and 4. 

In the context of cross calibration between the Sentinel 2A MSI and the OLI, there has 

been a subsequent update, effective December 2017, to the MSI’s Coastal Aerosol and 
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Blue band RSRs. This update effectively renders previous cross calibration in these bands 

invalid. The cross calibration derived for this thesis uses the corrected RSRs for these 

bands. 
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Chapter 3 Methodology 

Overview 

A typical cross calibration analysis can be represented by the following steps. It is assumed 

the cross calibration affects two sensors – the calibrated “reference” sensor, and the 

uncalibrated “target” sensor. The process flow described here can be extended to more than 

three sensors. 

 

 

 

 

 

 

 

 

Fig 3.1 Flow Chart of Cross-Calibration Algorithm. 

The flow chart shown in Fig 3.1 shows the steps of the algorithm, which is described below- 

 Select appropriate region(s) of interest in one or more target sites. 

 Select scene pairs of the target site(s) acquired by the reference and target sensors 

that are as nearly co-incident in time as possible. 

Target Site and ROI 
Selection 

Scene Pair Selection 

SBAF correction 

BRDF modeling and 
Correction 

1 to 1 plot to generate 
Gain and Bias 

Estimation of Uncertainty 
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 Correct the scene data for differences in spectral response. 

 Correct the scene data for differences in solar and viewing geometry. 

 Model the TOA radiance (reflectance) of the target sensor’s scene data as a linear 

function of the TOA radiance (reflectance) of the reference sensor’s scene data. 

This will result in a set of gains and offsets to apply to the target sensor’s data such 

that it will be comparable to the reference sensor’s data. 

 Estimate the overall uncertainty in the estimated gains and offsets. 

For the purposes of this thesis, the cross calibration is a TOA reflectance-based calibration 

of the Sentinel 2A MSI (target sensor) to the OLI (reference sensor).  Additional details 

describing each of the above steps is provided in the following sections.  

 

3.1 Select Appropriate Region(s) of Interest 

The first step in cross calibration consists of selecting appropriate region(s) of interest from 

a target site. For the purposes of this thesis work, candidate target sites are those possessing 

up to 3% temporal and spatial scene uncertainty in all bands. To allow better 

characterization across each sensor’s dynamic range, ‘bright’ and ‘dark’ target sites were 

considered. The bright targets consisted of rectangular regions of interest from the four 

Saharan desert PICS listed in Section 2.1.2 in Chapter 2. The dark targets were rectangular 

regions of interest taken from image data of Lake Tahoe (WRS2 path 43, row 33) and a 

volcanic site near the Libya1 PICS (WRS2 path 184, row 043). The regions of interest were 

chosen sufficiently large enough (> 30 km) to minimize errors relating to image 

misregistration.  
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3.2 Scene pair selection 

Once the appropriate target sites and regions of interest are selected, the corresponding 

scenes are selected. Both sensors had to acquire the scene on the same date (a “co-incident” 

pair), with both overpasses occurring within 30 minutes of each other, in order to minimize 

atmospheric effects; given Landsat 8’s revisit time of 16 days and Sentinel 2A’s revisit 

time of 10 days, opportunities for same-day acquisition by both sensors occur 

approximately every 80 days. Both scenes in a given pair also had to have an estimated 

cloud cover of 10% or less.  

 

3.3 SBAF Calculation and Correction 

As mentioned in the Introduction chapter, differences in sensor RSR will generally result 

in differences in measured radiances and/or reflectances. These differences can be large 

enough to induce a significant error in the final cross calibration result; consequently, these 

differences should be accounted for [32]. As described in [33], SBAFs relating the MSI 

spectral response to the OLI spectral response are calculated and applied to the MSI data. 

For each scene date, the mean  

 

Figure 3.2 Example Spectral Signature and SBAF Representation [34]. 
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hyperspectral reflectance profile of the target ROI is generated from the corresponding 

cloud-free Hyperion image data. The in-band reflectance for each sensor is calculated by 

integrating the portion of the hyperspectral profile (green line in Figure 3.2) contained 

within the sensor RSR bandwidth (red and blue curves in Figure 3.2), then dividing that 

value by the integral of the sensor RSR. The SBAF for the target is the ratio of the reference 

sensor in-band reflectance to the uncalibrated sensor’s in-band reflectance:  

𝑆𝐵𝐴𝐹 =
ρλ,(OLI)

ρλ,(MSI)

=

∫ ρλ . 𝑅𝑆𝑅λ,(OLI) 𝑑λ 

∫ 𝑅𝑆𝑅λ,(OLI) 𝑑λ

∫ ρλ . 𝑅𝑆𝑅λ,(MSI) 𝑑λ 

∫ 𝑅𝑆𝑅λ,(MSI) 𝑑λ

                                                                                               (1) 

where 

ρλ,(MSI) = in-band TOA reflectance of OLI (Unitless) 

ρλ,(OLI) = in-band TOA reflectance of OLI (Unitless) 

ρλ = hyperspectral TOA reflectance profile of the target (Unitless) 

𝑅𝑆𝑅λ = sensor relative spectral response 

The individual SBAFs for each target ROI are then averaged to obtain an overall set of 

SBAFs. The relative spectral response functions for both sensors are given in Chapter 4, 

Section 4.2. 
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3.4 BRDF Modeling and Correction 

When two sensors image a given target at different times, differences in their measured 

radiances and/or reflectances will occur due to i) changes in the solar zenith and azimuth 

angles between the sensor overpasses; and ii) differences in their view zenith and azimuth 

angles. As indicated in Chapter 2, previous cross calibration efforts have typically focused 

primarily on the solar zenith angle when deriving a BRDF correction. A rigorous treatment 

of BRDF effects should account for both solar zenith/azimuth and sensor view 

zenith/azimuth angles, as well as wavelength and surface cover type. This section describes 

a four angle, site-specific BRDF model derived for each band, where the wavelength 

component of BRDF is considered minimal. 

From the set of solar zenith/azimuth and view zenith/azimuth angles in the spherical 

coordinate system (designated here as SZA, SAA, VZA, VAA), a new set of variables (x1, 

y1, x2, y2) are generated through conversion of the angles to plane rectangular coordinates.   

𝑥1 = sin(𝑆𝑍𝐴) ∗ cos(𝑆𝐴𝐴)                                                                                                       (2𝑎) 

𝑦1 = sin(𝑆𝑍𝐴) ∗ sin(𝑆𝐴𝐴)                                                                                                        (2𝑏) 

𝑥2 = sin(𝑉𝑍𝐴) ∗ cos(𝑉𝐴𝐴)                                                                                                     (2𝑐) 

𝑦2 = sin(𝑉𝑍𝐴) ∗ sin(𝑉𝐴𝐴)                                                                                                      (2𝑑) 

 

If modeling was performed with respect to the angles in the original spherical coordinate 

system, the distribution of reflectances would be discontinuous, as shown for the NIR and 

SWIR1 band solar zenith angles in Figures 3.3(a) and 3.3(b), respectively. The conversion 
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effectively spreads the data over the entire range of x1 between [-1, 1], as shown in Figures 

3.4(a) and 3.4(b), respectively. Appendix Figures (A.4), (A.5), (A.6), and (A.7) show the 

reflectance distributions before and after solar and view angle coordinate conversion for 

all bands. 

 

(a) NIR Band 

 

(b) SWIR1 Band 

Figure 3.3 TOA Reflectance Vs Spherical Coordinate Solar Angles. 

 

(a) NIR Band 

 

(b) SWIR1 Band 

Figure 3.4 TOA Reflectance Vs Cartesian Coordinate Converted Solar Angles. 

The transformed coordinates are inputs to a multilinear least-squares model where TOA 

reflectance is treated as the dependent ‘response’ variable and x1, y1, x2, y2 are treated as the 

independent variables. No interaction effects between the various angles are considered 

here. One important thing worth pointing out that the angles are taken as the mean of all 
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the angles inside an ROI for a better understanding of the impact of those angles on 

reflectances rather than taking the scene center angles.  

𝜌𝑚𝑜𝑑𝑒𝑙 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑦1+𝛽3𝑥2+𝛽4𝑦2                                                                         (3) 

where 𝛽0, 𝛽1, 𝛽2, 𝛽3, and 𝛽4 are the model coefficients.  

Once the models have been generated, ‘reference’ solar and sensor view zenith/azimuth 

angles are selected in order to scale the TOA reflectances to a common level. The angles 

are selected by identifying a common set of solar and sensor view angles measured at all 

of the selected sites; to avoid ‘unrealistic’ TOA reflectance estimates, they should be within 

the range of angles used to compute the model parameters. After selecting the reference 

angles and using equations 2(a) – 2(d) to convert them to rectangular coordinates, a 

reference TOA reflectance is calculated from (3). 

ρRef = 𝛽0 + 𝛽1 ∗  𝑥1_𝑅𝑒𝑓 + 𝛽2 ∗ 𝑦1_𝑅𝑒𝑓+𝛽3 ∗ 𝑥2_𝑅𝑒𝑓+𝛽4 ∗ 𝑦2_𝑅𝑒𝑓                                           (4) 

The reference TOA reflectance is then scaled by the ratio of the observed and model 

predicted TOA reflectances to obtain the TOA reflectance applicable to the target site ROI: 

𝜌𝑠𝑖𝑡𝑒 =
𝜌𝑜𝑏𝑠

𝜌𝑚𝑜𝑑𝑒𝑙
× 𝜌𝑅𝑒𝑓                                                                                                                   (5) 

 

3.5 Gain and Offset Calculation 

After BRDF correction, the TOA reflectances from both sensors are now prepared for 

direct comparison. For each co-incident scene pair ROI, the uncalibrated sensor’s TOA 

reflectances are plotted as a function of the calibrated sensor’s TOA reflectances and a 



31 
 

linear least-squares regression is performed in order to determine the cross calibration gain 

and/or offset. In the ideal case where the TOA reflectances from both sensors are equal, all 

values would fall exactly on a 1-to-1 line; in general, the values do not fall exactly on the 

1-to-1 line.  

 

Figure 3.5 One to One Regression Plot of SWIR2 Band TOA Reflectance. 

Figure 3.5 shows a regression plot for the MSI and OLI SWIR2 bands comparing the 

regression fit and the corresponding 1-to-1 line. TOA reflectances from dark and bright 

targets should be included in order to have the regression cover as wide a portion of the 

sensor dynamic range as possible. 

t-tests at the 95% significance level are performed to assess the resulting regression fits.  

In all cases, the ‘null’ hypothesis is that the slope (gain) is 1, versus the ‘alternative’ 

hypothesis that it differs from 1. Similar t-tests are performed, at the 95% significance 

level, to determine whether the intercept (offset) differs from 0. 
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3.6 Uncertainty Analysis 

This section presents the process used to determine the individual uncertainty components 

and the overall cross calibration uncertainty.  Consistent with the uncertainty classification 

proposed in [31], the expected uncertainties can be grouped as follows: 

 Uncertainty in the Spectral Domain 

 Uncertainty in the Spatial Domain 

 Uncertainty in the Temporal Domain 

 

3.6.1 Uncertainty in Spectral Domain 

For the purposes of this thesis, spectral domain uncertainty affects the estimated SBAFs. It 

is associated with the spectral behaviors of the reference and uncalibrated sensors, as well 

as the behavior of the hyperspectral sensor whose data are used in the SBAF estimation. 

One component of this uncertainty is inherent in the pre-launch measurement of the sensor 

RSRs. Another is due to shifts in the spectral filter central wavelength and/or changes in 

filter bandwidth over time in each sensor [34], [35]. A third component is due to the 

interpolation process changing the spectral resolution of the hyperspectral image data. Each 

component is considered in greater detail in the following sections. 

3.6.1.1 Uncertainty in Pre-launch RSR 

Since an end user does not usually have direct access to the pre-launch RSR 

characterization data, the corresponding uncertainty is given in a user guide/handbook 
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provided by the organization responsible for operating the sensor. It can be considered a 

fixed value.  

3.6.1.2 Uncertainty Due to Spectral Filter Changes 

The uncertainty due to center wavelength shift is determined according to the following 

procedure. 

1. Keeping the OLI RSR fixed around its center wavelength, shift the MSI RSR in 

increments of 1 nm to a maximum of 10 nm, towards both shorter and longer 

wavelengths. After each shift, calculate the SBAF according to Equation (1). 

2. Keeping the MSI RSR fixed around its center wavelength, shift the OLI RSR in 

increments of 1 nm to a maximum of 10 nm, towards both shorter and longer 

wavelengths. After each shift, calculate the SBAF according to Equation (1). 

3. For the entire set of SBAFs calculated in steps 1 and 2, determine the average 

estimated SBAF, standard deviation, and uncertainty. Take the uncertainty as the 

ratio of the standard deviation to the mean. 

As described above, the procedure does not explicitly account for shifts in the hyperspectral 

sensor RSR. In fact, these shifts are implicitly accounted for; the uncertainty estimate is 

the same as if the hyperspectral data were shifted in 1 nm increments, keeping both the 

MSI and OLI RSRs fixed at their nominal center wavelengths. 

To find the uncertainty due to bandwidth change, the following procedure is used: 

1. Keeping the OLI RSR bandwidth fixed, narrow and widen the MSI bandwidth in 

increments of 1 nm to a maximum of 5 nm, with the MSI center wavelength fixed 
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at its nominal value.  After each change in bandwidth, calculate the SBAF 

according to Equation (1). 

2. Keeping the MSI RSR bandwidth fixed, narrow and widen the OLI bandwidth in 

increments in 1 nm to a maximum of 5 nm, with the OLI center wavelength fixed 

at its nominal value. After each bandwidth change, calculate the SBAF according 

to Equation (1). 

3. From the set of SBAFs generated in steps 1 and 2, determine the mean SBAF, 

standard deviation, and uncertainty. Take the uncertainty as the ratio of the standard 

deviation to the mean.  

 

3.6.1.3 Uncertainty in Hyperspectral Profile Interpolation 

For the purposes of this thesis, image data from the EO-1 Hyperion sensor are used to 

determine the hyperspectral profile of the target site ROI. The nominal spectral resolution 

of each band is 10 nm. In order to determine the SBAF, the hyperspectral data are linearly 

interpolated to 1 nm spectral resolution. An uncertainty component is introduced through 

this process; the uncertainty is increased in bands that are more sensitive to atmospheric 

absorption. Consistent with the approach described in [36], the uncertainty resulting from 

the interpolation is determined as follows. 

The linear interpolation estimating the value �̂�  at a point x, between the points  x1 and x2,  

is given by 

�̂� = 𝑦1 ×
𝑥 − 𝑥2

𝑥1 − 𝑥2
+ 𝑦2 ×

𝑥 − 𝑥1

𝑥2 − 𝑥1
                                                                                           (11) 
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where x1 and x2 are the two neighboring points of x. i.e., x1≤x≤ x2. 

The uncertainty associated with the estimated �̂� is given by 

𝑢2(�̂�) = (
(𝑥 − 𝑥2)

(𝑥1 − 𝑥2)
)

2

𝑢2(𝑦1) + (
(𝑥 − 𝑥1)

(𝑥2 − 𝑥1)
)

2

𝑢2(𝑦2)                                                      (12) 

where u(y1) and u(y2) are the uncertainties associated with y1 and y2, respectively. 

3.6.2 Uncertainty in Spatial Domain 

Another source of uncertainty in the estimated cross calibration relates to spatial variability. 

Two contributing to this uncertainty are considered in additional detail in this section. 

 Uncertainty due to Geometric Registration Differences 

 Uncertainty due to Differences in Spatial Resolution 

This section considers each of these uncertainty sources in additional detail. 

 

3.6.2.1 Uncertainty Due to Geometric Registration Error 

The estimated position and location of a given ground feature or ROI imaged by a given 

sensor will vary due to variations in the sensor optical path, sensor altitude and orientation 

during the imaging process, and imaging techniques (e.g. variations in scanning time, 

detector sampling, etc). These variations introduce uncertainty in the final geometric 

registration of the feature, and this uncertainty contributes to the overall uncertainty in the 

cross calibration. The procedure used to estimate the uncertainty due to potential geometric 

registration error for a given sensor is described below. The procedure is performed for 

both sensors.  
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1. Calculate the mean TOA reflectance within the optimal ROI at its estimated 

location within the image. 

2. Shift the ROI from its nominal position by 60m, 120m, 180m and 300m. These 

shifts are directed upwards, downwards, to the right, and to the left. After each shift, 

calculate the mean TOA reflectance of the ROI. The corresponding pixels the ROI 

is shifted are given in Table 1 for both sensors. 

Misregis-

tration 

(m) 

Bands 

60m 120m 180m 300m 

OLI 

pixel 

MSI 

pixel 

OLI 

pixel 

MSI 

pixel 

OLI 

pixel 

MSI 

pixel 

OLI 

pixel 

MSI 

pixel 

CA 2 1 4 2 6 3 10 5 

Blue 2 6 4 12 6 18 10 30 

Green 2 6 4 12 6 18 10 30 

Red 2 6 4 12 6 18 10 30 

NIR 2 3 4 6 6 9 10 15 

SWIR1 2 3 4 6 6 9 10 15 

SWIR2 2 3 4 6 6 9 10 15 

Table 3.1 Misregistration and Corresponding Shift in Pixels for OLI and MSI. 

3. From the set of TOA reflectances calculated in steps 1 and 2, determine the mean 

TOA reflectance, standard deviation, and uncertainty. Take the uncertainty as the 

ratio of the standard deviation to the mean TOA reflectance. 
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3.6.2.2 Uncertainty due to Differences in Spatial Resolution 

OLI and MSI differ in their ground sampling distance (GSD) or spatial resolution. The OLI 

has a spatial resolution of 30 m in all bands but the panchromatic band. MSI has a spatial 

resolution of 60 m in the Coastal Aerosol band, 10 m for the Blue, Green, and Red bands, 

and 20 m for the NIR, SWIR1, and SWIR2 bands. OLI image data will need to be re-

sampled to match the MSI resolution (or MSI data will need to be re-sampled to match OLI 

resolution). The re-sampling process has an associated uncertainty that contributes to the 

overall cross calibration uncertainty. This section describes the procedure used to estimate 

this uncertainty component for each target site. The procedure is performed for each 

corresponding band. 

1. Calculate the mean TOA reflectance of the MSI ROI. 

2. Resample the MSI ROI using bilinear interpolation to match the spatial resolution 

of the corresponding pixels in the OLI ROI. 

3. Calculate the mean TOA reflectance in the MSI ROI after resampling. 

4. Determine the % difference in TOA reflectance before and after sampling. 

5. Repeat steps 1-4 to calculate % difference in OLI TOA reflectance before and after 

re-sampling the pixels to match the spatial resolution of the corresponding pixels 

in the MSI ROI. 

6. Estimate the uncertainty for each site as the average of its % differences. 

3.6.2.3 Uncertainty due to Site Non-Uniformity 

To simplify analysis, it is typically assumed that target sites exhibit Lambertian surface 

reflectance characteristics (i.e. the incident electromagnetic energy is reflected equally in 
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all directions). In practice, this seldom, if ever, occurs. In addition, target site surfaces are 

often non-uniform to varying degrees, due to the differing composition of materials found 

on the surface. Consequently, there are uncertainties associated with non-Lambertian 

reflectance behavior and surface non-uniformity. Estimating the uncertainty associated 

with non-Lambertian behavior is beyond the scope of this thesis work.   The uncertainty 

associated with surface non-uniformity, however, can be estimated reasonably 

straightforwardly. This section describes how this uncertainty component is estimated. The 

procedure described below is to be performed for each band, on scenes acquired from the 

bright target PICS. 

1. For an individual cloud free scene, calculate the mean TOA reflectance and 

standard deviation over the ROI for the given target site.  

2. Take the ratio of the standard deviation to the mean TOA reflectance to get the 

spatial uncertainty for the individual scene.  

3. Repeat steps 1 and 2 for all cloud free scenes. 

4. Determine the mean uncertainty of all scenes. 

 

3.6.3 Uncertainty in Temporal Domain 

Differences in overpass times between two sensors imaging the same target site can result 

in differences in atmospheric transmittance seen by each sensor, which introduces 

uncertainty in the final cross calibration. This uncertainty can be divided into two 

components: 

 Uncertainty due to sun angle differences 
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 Uncertainty due to atmospheric changes (e.g. changes in water vapor and/or aerosol 

content) 

For most cross calibration analyses of PICS or other bright target desert sites, the sensor 

overpass times are “close enough” (within 30 minutes at most) that differences in 

atmospheric conditions are minimal and can be ignored; for overpass time differences of 

more than 30 minutes or for dark target sites such as Lake Tahoe, NV, atmospheric effects 

can have greater impact. For the purposes of this thesis, both uncertainty components are 

considered in greater detail. 

 

3.6.3.1 Uncertainty Due to Sun Angle Differences 

The uncertainty associated with sun angle differences is computed as described below. The 

description is given for calculation on a summer date; with appropriate modifications, the 

procedure is also applicable for calculation on a winter date. The analysis is performed for 

each sensor individually. 

1. Select the date in the summer where image data from both sensors have been 

acquired, and the solar zenith angle is at its absolute seasonal minimum (solar 

elevation is at its absolute seasonal maximum). 

2. Vary the overpass times in increments of 30 seconds, up to a maximum difference 

of 30 minutes. For each increment, estimate the solar zenith and solar azimuth 

angles. 

3. Use MODTRAN to determine the corresponding TOA reflectances seen by a sensor 

for each solar zenith angle/azimuth angle pair. The inputs for these MODTRAN 
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runs consist of the sensor RSR and solar angle pair. The MODTRAN runs should 

specify an atmospheric profile appropriate for the season. Other MODTRAN 

parameters should be left at their ‘default’ or standard settings. 

4.  Calculate the mean TOA reflectance, standard deviation and uncertainty. As 

before, take the uncertainty as the ratio of the standard deviation to the mean. 

 

3.6.3.2 Uncertainty Due to Atmospheric Changes 

The procedure used to estimate the uncertainty due to changes in atmospheric conditions 

is described below. For this analysis, the dates selected for the uncertainty analysis 

described in the previous section are used. The analysis is performed for each sensor 

individually. 

1. Keeping the solar zenith and solar azimuth angles fixed with respect to the MSI 

overpass time (as it has the earlier overpass time), generate random samples of the 

water vapor and aerosol optical depth from the corresponding normally distributed 

means and standard deviations, as specified in [37]. 

2. Use MODTRAN to determine the TOA reflectances at the fixed solar 

zenith/azimuth angles and sample water vapor / aerosol optical depths. As before, 

an additional input to each run is the sensor RSR. The atmospheric profile 

appropriate to the season should be specified for each run, and the other 

MODTRAN parameters should be kept at their default or standard settings. 

3. From the set of TOA reflectances, calculate the mean, standard deviation and 

uncertainty. Take the uncertainty as the ratio of the standard deviation to the mean. 
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3.7 Summary 

This chapter has described the proposed cross calibration approach and uncertainty 

analysis. Most of the steps in the proposed approach are consistent with previous cross 

calibration analyses; the analysis uses a straightforward BRDF model that considers all 

solar and sensor view angles, as oppose to the one or two angles considered in previous 

analyses. The results obtained with the proposed approach and estimates of its overall 

uncertainty are presented in Chapter 4. 
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Chapter 4 Result and Discussion 

 
This chapter presents the results of reflectance-based cross calibration of the MSI to the 

OLI.  The results for four Saharan desert PICS are presented first. Cross calibration results 

based on Algodones Dunes data are presented as a validation of the proposed approach.  

 

4.1 Scene Pairs 

Cloud-free images of the Libya1, Libya4, Niger2 and Sudan1 PICS were selected to 

represent bright targets. Similarly, cloud-free images of Lake Tahoe and a volcanic crater 

near the Libya1 PICS were selected to represent dark targets.  A total of 35 scene pairs 

were selected from the sites; 5 scene pairs from the volcanic site were nearly co-incident 

(acquisitions within 3 days of each other). Table 4.1 gives the number of scene pairs 

selected from each target site.  

Site WRS2 Path/Row Number of Scene 

pairs 

Coincident/Near 

Coincident 

Libya 1 187/043 4 Coincident 

Libya 4 181/040 8 Coincident 

Niger 2 188/045 7 Coincident 

Sudan 1 177/045 9 Coincident 

Lake Tahoe 043/033 2 Coincident 

Libya Volcano 184/043 5 Near Coincident 

Table 4.1 Scene Pairs Used for Cross Calibration. 

The ROIs from the sites were identified as “optimal” by previous research [40]. For the 

purposes of this work, an “optimal” ROI contains a rectangular region exhibiting 3% or 

less temporal, spatial, and spectral variability with respect to TOA reflectance. The corner 

coordinates defining these ROIs are given in Appendix 1. 
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4.2 SBAF Calculation 

As mentioned in Chapter 3, SBAFs were calculated for each site such that the MSI response 

was “matched” to the OLI response. The inputs to the SBAF calculations were the band-

specific sensor RSR profiles and overall hyperspectral profiles of the site ROIs acquired 

from Hyperion image data screened for clouds and shadows. For each ROI, the mean TOA 

reflectance and associated standard deviation were calculated for each calibrated Hyperion 

band (196 bands total); TOA reflectances 2.5 standard deviations or more beyond the mean 

reflectance in any band resulted in a Hyperion scene being excluded from the SBAF 

calculations. Profiles of the Libya4 PICS ROI from 383 scenes before and after filtering 

are shown in Figure 4.1. The filtering process resulted in 343 useable scenes for this site. 

 
(a)  

 
(b)  

Figure 4.1 Hyperion Scenes for Libya 4, (a) Before Filter Application, (b) After filter 

Application. 

 

Once the hyperspectral data was cloud screened, a set of SBAFs was calculated for each 

site and for each band. The mean SBAF for each site and band was taken as the 

representative SBAF. Figure 4.2 shows the band-specific distribution of SBAFs derived 

from the 343 hyperspectral profiles shown in Figure 4.1(b). For easier visualization, the 

SBAF histograms were generated using 100 bins. 
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(a) CA Band 

 
(b) Blue Band 

 
(c) Green Band 

 
(d) Red Band 

 
(e) NIR Band 

 
(f) SWIR1 Band 

 
(g) SWIR2 Band 

Figure 4.2 SBAF Distribution for Libya4 PICS for Different Bands. 

 

 

The distributions do not appear to fit a normal distribution in any band, nor do they appear 

to demonstrate consistent features across bands. The distribution appears to be bi-modal in 
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the Coastal Aerosol band; it seems reasonable that bi-modal distributions should be 

observed in the other bands as well, since the scene set includes both summer and winter 

acquisitions. As shown in Table 4.2, the estimated SBAF values in each band are highly 

concentrated about the mean with minimal spread. 

Bands CA Blue Green Red NIR SWIR1 SWIR2 

SBAF 1.0015 0.9594 1.0066 0.9790 0.9996 0.9988 0.9989 

Standard 

Deviation 

0.0001 0.0027 0.0013 0.0010 0.005 0.003 0.007 

Table 4.2 Mean Band-Specific SBAF and Standard deviation. 

Table 4.3 gives the mean band-specific SBAFs for the other sites. The bright target SBAFs 

for the Blue, Green, and Red bands differed the most from 1.0.  This can be seen in the 

RSR comparison shown in Figure 4.3(a), where the RSRs in these bands differed in overall 

shape, center wavelength, and/or bandwidth. Similarly, the bright target SBAFs in the NIR, 

SWIR1, and SWIR2 bands were very close to 1.0; as seen in Figure 4.3(b), the RSRs in 

these bands were very similar in overall shape, center wavelength, and/or bandwidth. The 

dark target SBAFs tended to differ from 1.0 more in all bands, most likely due to lower 

signal levels and/or noise. 

Bands 

Sites 

Scenes 

used 

CA Blue Green Red NIR SWIR1 SWIR2 

Libya 1 81 1.0017 0.9603 1.0217 0.9777 0.999 0.9988 1.0010 

Niger 2 12 1.0016 0.9681 1.0112 0.9794 1.0003 0.9989 1.0002 

Sudan 1 152 1.0015 0.9643 1.0131 0.9793 1.0001 0.9990 1.0003 

Lake 

Tahoe 

25 1.02 1.08 0.982 1.018 1.005 0.998 0.998 

Volcanic 

near 

Libya 

4 1.0015 0.9659 1.0058 0.9800 1.0001 0.9990 0.9981 

Table 4.3 Summary of the SBAF of All Target Sites. 
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(a) 

 

 

 
(b) 

 

Figure 4.3 Relative Spectral Response of OLI (Solid Line) and MSI (Dotted Line). 

 

4.3 BRDF Models and Correction 

As mentioned in Chapter 3, a four angle BRDF model was proposed that projects the solar 

and sensor view angles from a spherical coordinate space to a plane Cartesian coordinate 

space. BRDF corrections were derived from this model and applied to the images in all of 

the bright target scene pairs; there was insufficient cloud-free image data from the dark 
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target sites to run a similar comparison. Table 4.4 compares the OLI TOA reflectance 

uncertainty before and after correction with the four angle model, to the TOA reflectance 

uncertainty before and after correction with linear and quadratic models based on the solar 

zenith angle alone. For the Coastal Aerosol and Blue bands, the proposed four angle model 

provided a similar amount of correction to the linear SZA model and less correction than 

the quadratic SZA model, with little to no overall correction. For longer wavelength bands, 

the four angle model provided a significant amount of correction, but the amount of 

correction was similar to that provided by both SZA models. Overall, based on these 

results, the choice of BRDF model among these candidates would not seem to be critical. 

Bands Before 

Correction 

Correction with 

Linear SZA 

based Model 

Correction with 

Quadratic SZA 

based Model 

Correction with 

4 angle BRDF 

model 

CA 1.5 1.19 1.08 1.19 

Blue 1.25 1.19 1.12 1.15 

Green 1.08 0.93 0.93 0.89 

Red 1.23 0.85 0.84 0.81 

NIR 1.28 0.73 0.69 0.65 

SWIR1 2.08 0.61 0.60 0.58 

SWIR2 2.48 1.91 1.80 1.76 

Table 4.4 Percentage Uncertainty in OLI TOA Reflectance of Libya4 PICS Data Before 

and After BRDF Correction. 
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Figures 4.4(a) – 4.4(g) show the OLI band-specific lifetime temporal trends of the Sudan1 

PICS before and after application of the four angle BRDF correction.  

 
(a) CA Band 

 
(b) Blue Band 

 
(c) Green Band 

 
(d) Red Band 

 
(e) NIR Band 

 
(f) SWIR1 Band 

 
(g) SWIR2 Band 

Figure 4.4 Before and After BRDF Corrected TOA Reflectance of OLI over Sudan1 Site. 
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The correction results are consistent with that observed for the OLI TOA reflectance 

uncertainties – the Coastal Aerosol and Blue bands show little to no correction (with the 

data mostly overlapping), and the longer wavelength bands (especially the NIR, SWIR1 

and SWIR2 bands) show significant correction. 

Figure 4.4 shows an example of the OLI temporal trend before and after BRDF correction 

with the proposed four angles model. In the shorter wavelength bands, as noted above, 

there was little apparent change in the uncertainty; more visually apparent correction 

occurred in the longer wavelength bands, with significant reductions (> 10%) in the 

associated uncertainty. Table 4.5 shows the before and after correction reflectance 

summary of the BRDF process. The after correction uncertainty is lowest for NIR and 

SWIR1 bands, while for CA and Blue bands, there was a negligible amount of correction. 

Rest of the bands shows moderate correction.  

 Before Correction After Correction Change in 

Uncertainty 

in % 

Bands Mean STD Uncertainty 

in % 

Mean STD Uncertainty 

in % 

CA 0.211 0.002 1.11 0.211 0.002 1.09 1.80 

Blue 0.218 0.003 1.13 0.218 0.002 1.05 7.08 

Green 0.299 0.003 1.10 0.299 0.003 1.00 9.09 

Red 0.428 0.006 1.32 0.428 0.005 1.05 20.45 

NIR 0.540 0.007 1.34 0.540 0.004 0.78 41.79 

SWIR1 0.675 0.012 1.70 0.675 0.004 0.64 62.35 

SWIR2 0.583 0.012 2.13 0.583 0.010 1.79 15.96 

Table 4.5 Sudan1 OLI TOA Reflectance’s Before and After Four Angle BRDF Correction. 
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4.3.1 Reference Angle Selection 

For both sensors, a set of ROI-specific solar and view angles were derived for each target 

site, based on the average of the measured pixel-specific sets of angles within the site ROI 

from all of the cloud-free scenes acquired over the site. The averaged sets of ROI angles 

from both sensors were then plotted on a common plot for each site, as shown in Figures 

4.5(a) – 4.5(d) for the Libya1 PICS. From the set of plotted angles, a ‘common’ set of 

reference solar and view angles, applicable to both sensors, was selected to account for 

differences in sensor focal plane geometry and satellite/sensor orientation.  

 
(a) 

  
(b) 

 
(c) 

 
(d) 

Figure 4.5 Plot of different angles over Libya 1 Sentinel 2A (Red Marker), Landsat 8 

(Green Marker) (a) Solar Zenith Angle, (b) View Zenith angle, (c) Solar Azimuth angle 

and (d) View Azimuth angle. 
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A critical constraint guiding the selection process was that the reference angles fall within 

the ranges of observed angles in order to avoid calculation of invalid TOA reflectance 

values. As seen in Figure 4.5(a), a reasonable choice for a reference solar zenith angle is 

on the order of 30°. From Figure 4.5(b), a reasonable reference view zenith angle is 

approximately 3°; even though there is no overlap in the observed view zenith angles from 

each sensor, the range of view angles was quite small (on the order of 3.5°). Similarly, 

Figures 4.5(c) and 4.5(d) suggest reasonable solar and view azimuth angles of 125° and 

10°, respectively. 

 

4.4   Gain and Bias Calculation 

Least-squares linear regression was performed to determine the cross calibration gain and 

offset for each band, with the BRDF-corrected OLI TOA reflectances as the independent 

‘predictor’ variable and the SBAF/BRDF corrected MSI TOA reflectances as the 

dependent ‘response’ variable. The regression data were plotted with the estimated 

regression line and a 1-to-1 line representing an exact match between OLI and MSI TOA 

reflectances.  

 

With the exception of the Blue band, the estimated offsets from the 1-1 line were generally 

quite small, less than 0.002 in magnitude. 
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(a) CA Band 

 
(b) Blue Band 

 
(c) Green Band 

 
(d) Red Band 

 
(e) NIR Band 

 
(f) SWIR Band 

 
(g) SWIR2 Band 

Figure 4.6 Regression Line for the Cross Calibration of OLI and MSI. 
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Bands Coefficient Estimate SE t-stat p value Null Hypothesis 

CA Bias 0.0002 0.0065 0.0240 0.9810 Fail to Reject 

Gain 1.0012 0.0326 30.6686 4.31E-23 Reject 

Blue Bias 0.0092 0.0035 2.6053 0.0145 Reject 

Gain 0.9740 0.0176 55.3842 3.69E-30 Reject 

Green Bias 0.0010 0.0020 0.5090 0.6147 Fail to Reject 

Gain 1.0046 0.0075 133.5984 8.00E-41 Reject 

Red Bias 0.0030 0.0019 1.6214 0.1161 Fail to Reject 

Gain 0.9856 0.0048 206.6281 4.03E-46 Reject 

NIR Bias 0.0016 0.0015 1.0317 0.3110 Fail to Reject 

Gain 0.9923 0.0031 315.9175 2.79E-51 Reject 

SWIR1 Bias 0.0018 0.0019 0.9621 0.3442 Fail to Reject 

Gain 0.9922 0.0031 315.4981 2.89E-51 Reject 

SWIR 2 Bias 0.0011 0.0017 0.6358 0.5301 Fail to Reject 

Gain 1.0051 0.0034 297.3908 1.51E-50 Reject 

Table 4.6 Gain and Bias Statistics of Cross-Calibration Regression of MSI and OLI. 

There does appear to be a slight deviation in the regression slopes from the 1-1 line, 

indicating cross calibration gains different from 1. Table 4.6 presents the results of 

hypothesis tests on the regression slopes and intercepts (gain and offset, respectively) at 

the 95% significance level. There is sufficient statistical evidence to conclude the cross 

calibration gains differ from 1.0, and insufficient statistical evidence to conclude the offsets 

are different from 0 except in case of Blue band. The offset p-value for the Blue band is 

indicating that the offset is different from 0 statistically. 
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(a) CA Band 

 
(b) Blue Band 

  
(c) Green Band 

 
(d) Red Band 

 
(e) NIR Band 

 
(f) SWIR1 Band 

 
(g) SWIR2 Band 

Figure 4.7 Regression Line for the Cross Calibration of OLI and MSI Without Bias. 

Since there was insufficient evidence to justify assuming a nonzero offset (except in the 

Blue band), alternative regressions were performed such that the intercepts were forced to 

pass through 0. Plots of the updated regressions are shown in Figures 4.7(a) – 4.7(g). The 

slope hypothesis tests were re-run, again at the 95% significance level. Table 4.6 presents 
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the results of the updated tests. Clearly, as noted with the full regression hypothesis tests, 

there is sufficient statistical evidence to conclude the cross calibration gains in all bands 

differ from 1.0. 

Bands Estimate of Gain SE t-stat p value Null Hypothesis 

CA 1.0020 0.0052 193.6356 1.11E-46 Reject 

Blue 1.0186 0.0044 231.0527 6.62E-49 Reject 

Green 1.0083 0.0024 415.2936 2.74E-56 Reject 

Red 0.9928 0.0019 528.7881 2.49E-59 Reject 

NIR 0.9952 0.0013 770.6915 4.49E-64 Reject 

SWIR1 0.9949 0.0013 741.2162 1.39E-63 Reject 

SWIR2 1.0070 0.0014 711.2575 4.60E-63 Reject 

Table 4.7 Gain and Bias Statistics of Cross-Calibration Regression of MSI and OLI. 

Table 4.7 shows the percent differences in the estimated gains, using the 0-offset gains as 

the basis for comparison. It is apparent that the shorter wavelengths have larger differences 

in gain than the longer wavelengths. This would be expected as the shorter wavelength 

bands, especially the Blue band, had significantly larger offsets.  

 

4.5 Uncertainty Estimation 

This section presents the results of uncertainty analysis on the estimated cross calibration 

gains. As mentioned in Chapter 3, the overall uncertainty in the estimated gain is 

determined from spectral, spatial, and temporal uncertainties.  

 

4.5.1 Uncertainty in Spectral Domain 

4.5.1.1 Uncertainty Inherent in RSR Measurements 

As mentioned earlier, sensor RSRs are typically measured prior to launch; these 

measurements will have associated uncertainties with them. The RSRs can also change 
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over time due to stresses occurring during launch and component aging. Barsi et al. [38] 

described changes in the OLI RSRs due to cross-talk effects among the bands and their 

effects in the final reflectance values. The uncertainty in radiance due to observed cross-

talk effects between bands was as high as 0.35%, with an uncertainty between the SWIR1 

and SWIR2 bands as high as 0.15%.  

 

The Sentinel 2 data quality report published in February 2018 [39] reported a spectral 

response non uniformity identified in the MSI. The non-uniformity manifests as soft-edged 

darker and brighter stripes near detector module boundaries in the along-track direction. 

The stripes are most apparent in the Green and Vegetation Red Edge bands (Bands 3 and 

5). The maximum uncertainty in the RSR due to this anomaly was estimated as high as 2% 

(when the scene spectrum changes significantly over the detector’s spectral bandwidth); 

the typical uncertainty due to this anomaly was estimated to 1%. 

 

4.5.1.2 Uncertainty Due to Spectral Filter Change 

Figure 4.8 shows the SBAF distribution based on use of an individual Hyperion scene of 

the Libya 4 PICS. Multiple peaks can be observed in the distributions in most bands, as 

seen in Figures 4.8(a) – 4.8(g), suggesting a clustering of SBAF values around a set of 

means. The tails of each cluster appear to overlap into adjacent clusters. The clustering 

may be due to a greater degree of ‘flatness’ in the Hyperion spectrum; when the RSRs are 

shifted, similar values are calculated.  
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(a) CA Band 

 
(b) Blue Band 

 
(c) Green Band 

 
(d) Red Band 

 
(e) NIR Band 

 
(f) SWIR1 Band 

 
(g) SWIR2 Band 

Figure 4.8 Distribution of SBAF After Simulation of SBAF Caused by Spectral Filter 

Shift. 
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Table 4.8 shows the uncertainty across all the bands due to shifts in the spectral filter center 

wavelength. Not surprisingly, the uncertainty tends to be greater in the shorter wavelength 

bands and less in the longer wavelength bands. This is most likely due to the shorter 

wavelengths being more sensitive to absorption features as the center wavelength is shifted.  

Bands CA Blue Green Red NIR SWIR1 SWIR2 

Uncertainty(%) 0.78 0.58 0.82 0.71 0.43 0.14 0.28 

Table 4.8 Bandwise SBAF Uncertainty Due to Spectral Filter Center Wavelength Shift. 

 

4.5.1.3 Uncertainty Due to Spectral Bandwidth Change 

Figures 4.9 (a)-(g) shows the distribution of simulated SBAFs due to changes in spectral 

filter bandwidth affecting both MSI and OLI. In the Coastal Aerosol and Blue bands, the 

SBAF distribution has a tail extending over greater SBAF values, while the other bands 

tend to have tails extending to smaller SBAF values. Table 4.9 shows the bandwidth change 

uncertainty in all bands. The uncertainty is lowest in the Coastal Aerosol band, at 0.01%, 

and largest in the Blue band, at 0.28%. In the Green, Red, NIR, SWIR1 and SWIR2 bands, 

the uncertainties are 0.12%, 0.10%, 0.05%, 0.03%, and 0.07%, respectively. These results 

are consistent with the range of SBAF values in each band – the Coastal Aerosol band had 

the smallest range (app. 0.0005), the Blue band had the largest range (app. 0.018), and the 

other bands had ranges of approx. 0.003 (NIR and SWIR1 bands), 0.004 (SWIR2 band), 

0.007 (Green band), and 0.008 (Red band). In the Blue, Green, and Red bands, the 

differences in sensor RSR profiles are generally greater; smaller changes in bandwidth tend 

to result in larger variation in the SBAF value if the hyperspectral profile is also 

significantly changing within each sensor’s RSR bandwidth.  
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(a) CA Band 

 
(b) Blue Band 

 
(c) Green Band 

 
(d) Red Band 

 
(e) NIR Band 

 
(f) SWIR1 Band 

  
(g) SWIR2 Band 

Figure 4.9 The Distribution of SBAF Due to the Change of Bandwidth. 

 

Bands CA Blue Green Red NIR SWIR1 SWIR2 

Uncertainty(%) 0.01 0.28 0.12 0.10 0.05 0.03 0.07 

Table 4.9 Uncertainty Due to Change of Bandwidth Change of OLI and MSI. 
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4.5.2 Uncertainty in Spatial Domain 
 

Uncertainty estimates due to errors in image registration and sensor spatial resolution are 

presented in this section. Results are presented for MSI scenes acquired over a 

representative bright target site (Libya4 PICS) and dark target site (Lake Tahoe, NV). It 

should be noted that these estimates are based on summary statistics derived from the 

reflectance values of the pixels within the ROI currently used for the given site. 

 

4.5.2.1 Uncertainty due to Image Registration Error  
 

Figures 4.10(a)-(g) show the distribution of mean TOA reflectances due to differences in 

image registration for the Libya4 scene acquired 03/09/2016. Similarly, Figures 4.11(a)-

(g) show the distribution of mean TOA reflectances due to differences in image registration 

error for the Lake Tahoe scene acquired 05/22/2016. 

Table 4.10 gives the corresponding estimated uncertainties due to image registration errors 

for both sites. For the Libya4 PICS, the estimated uncertainties are less than 0.03% in all 

bands. The smallest uncertainty, approx. 0.0078%, is observed in the SWIR2 band, while 

the largest uncertainty, app. 0.026% is observed in the Green band. 

For the Lake Tahoe site, the estimated uncertainties are significantly greater. The smallest 

uncertainty, approx. 0.5%, is observed in the Coastal Aerosol band, while the largest 

uncertainty, app. 1.87%, is observed in the SWIR2 band. These results should not be 

surprising given the overall low signal levels in this part of the scene – the mean for the 

Red, SWIR1 and SWIR2 bands is likely smaller in magnitude than the corresponding 

standard deviation. 
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(a) CA Band 

 
(b) Blue Band 

 
(c) Green Band 

 
(d) Red Band 

 
(e) NIR Band  

(f) SWIR1 Band 

    
(g) SWIR2 Band 

Figure 4.10 Distribution of TOA Reflectances from MSI Scene of Libya4 PICS, 

03/09/2016. 
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(a) CA Band 

 
(b) Blue Band 

 
(c) Green Band 

 
(d) Red Band 

 
(e) NIR Band 

 
(f) SWIR1 Band 

    
(g) SWIR2 Band 

Figure 4.11 Distribution of TOA Reflectances for Lake Tahoe MSI scene, 05/22/2016. 
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Bands Libya 4 Lake Tahoe 

Uncertainty(%) Uncertainty(%) Standard Deviation 

CA 0.0103 0.5034 0.0006 

Blue 0.0145 0.7229 0.0007 

Green 0.0260 0.8562 0.0080 

Red 0.0242 1.5146 0.0015 

NIR 0.0199 0.7357 0.0018 

SWIR1 0.0146 1.6321 0.0033 

SWIR2 0.0078 1.8696 0.0025 

Table 4.10 Uncertainty Due to Image Registration Error of Libya 4 and Lake Tahoe. 

 

4.5.2.2 Uncertainty due to Spatial Resolution Mismatch 
Table 4.11 shows the estimated uncertainties due to spatial resolution differences in MSI 

with respect to OLI, as determined for individual scenes of the Libya4, Libya1, and Niger2 

PICS.  The estimated uncertainties are less than 0.01% in all bands, with slightly larger 

uncertainties in the Blue and Coastal Aerosol bands. For the purposes of this thesis, these 

uncertainty levels can be considered negligible.  

 

 

Bands Uncertainty(%) 

L4 L1 N2 

CA 0.0021 0.0012 0.0060 

Blue 0.0008 0.0009 0.0010 

Green 0.0004 0.0006 0.0001 

Red 0.0002 0.0010 0.0080 

NIR 0.0007 0.0091 0.0017 

SWIR 1 0.0015 0.0014 0.0008 

SWIR 2 0.0009 0.0005 0.0008 

Table 4.11 Uncertainty Due to Spatial Resolution Mismatch. 
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4.5.2.3 Uncertainty due to Site Spatial Non-Uniformity 

Table 4.12 shows the uncertainty due to spatial non-uniformity for the bright target PICS. 

The estimated uncertainty for all sites is within 3%, which is to be expected given that the 

ROI selection criterion was that the total spectral, temporal, and spatial uncertainty was to 

be within 3%.  

Band Libya4 Libya1 Niger2 Sudan1 

CA 1.56 1.77 0.86 0.96 

Blue 1.35 2.22 1.13 1.23 

Green 1.80 1.79 1.30 1.22 

Red 1.36 1.25 1.43 1.29 

NIR 1.54 1.26 1.39 1.26 

SWIR1 1.35 1.26 0.95 0.88 

SWIR2 1.32 1.07 1.07 1.01 

Table 4.12 Uncertainty Due to Site Inhomogeneity. 

 

4.5.3 Uncertainty in Temporal Domain 

 

4.5.3.1 Uncertainty Due to Overpass Time Difference 

To estimate the uncertainty related to overpass time differences, the TOA reflectance of 

the Libya4 PICS was simulated in MODTRAN over varying solar elevation and azimuth 

angles. A ‘summer’ overpass date of 06/22/2017 (DOY 173) and a ‘winter’ overpass date 

of 12/31/2017 (DOY 365) were selected as the simulation dates, as these dates had the 

most extreme solar positions.  The range of overpass times on both dates was set at 30 

minutes, starting at 09:00 AM UTC (app. 5 minutes after the OLI overpass) and ending at 

09:30 AM UTC (app. 12 minutes after the MSI overpass).  An auxiliary MATLAB function 

script was used to estimate the solar position throughout the time range in increments of 

30 seconds. 
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Figure 4.12 shows the reference surface reflectance profile used by MODTRAN to estimate 

TOA reflectance for the Libya4 PICS.  

 

Figure 4.12 Hyperspectral Reference Surface Reflectance Profile. 

Figure 4.13 shows the resulting variation of absolute and relative TOA reflectance over the 

Libya4 PICS on DOY 173. Only the Coastal Aerosol and SWIR2 bands are presented here; 

the remaining bands are shown in Appendix, as the overall pattern of variation is quite 

similar. Figure 4.14 shows the resulting variation of absolute and relative TOA reflectance 

on DOY 365. 

 
(a) CA Band 

 
(b) SWIR2 

Figure 4.13 MODTRAN Simulated TOA Reflectance over Libya4 PICS, 06/22/2017 

(DOY 173). 
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(a) CA Band 

 
(b) SWIR2 

Figure 4.14 MODTRAN Simulated TOA Reflectance over Libya4 PICS, 12/31/2017 

(DOY 365). 

 

All bands but the Coastal Aerosol band show similar variation in TOA reflectance on both 

days. In the Coastal Aerosol band, the TOA reflectance appears to be slightly decreasing 

over time. The results for rest of the bands are shown in Appendix.  

 

Table 4.13 summarizes the worst-case percent difference in TOA reflectance on both dates 

(“worst-case” referring to the difference in TOA reflectance between the simulation 

starting and ending times). On both dates, the estimated percent differences tend to be 

lower in the shorter wavelength bands and higher in the longer wavelength bands. In 

addition, the NIR, SWIR1 and SWIR2 band differences are slightly lower than the Green 

and Red band differences. The percent differences in the Coastal Aerosol and Blue bands 

are significantly lower on DOY 365 as compared to DOY 173, and significantly higher in 

the Green, Red, NIR, SWIR1 and SWIR2 bands. This observed behavior is consistent with 

the results obtained for BRDF correction, as the degree of correction was much less 

significant in the Coastal Aerosol and Blue bands. It can be concluded that effects due to 

varying solar angles are significantly greater in the longer wavelength bands.  
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Bands %Difference@DOY 173 %Difference@DOY 365 

CA 3.15 -0.55 

Blue 3.57 1.09 

Green 4.64 7.00 

Red 4.58 8.00 

NIR 3.92 5.85 

SWIR1 4.01 6.00 

SWIR2 4.40 7.66 

Table 4.13 Highest Percent Difference on DOY 173 and DOY 365. 

The parameters used for this simulation are - 

Latitude=28.8157530 

Longitude=23.3729030 

Altitude=118m 

Summary statistics for the simulated TOA reflectances and the corresponding uncertainties 

are given in Table 4.12. 

 

Bands %Uncertainty 

@DOY 173 

%Uncertainty 

@DOY 365 

CA 0.92 0.17 

Blue 1.04 0.32 

Green 1.34 2.00 

Red 1.32 2.27 

NIR 1.13 1.67 

SWIR1 1.16 1.72 

SWIR2 1.27 2.17 

Table 4.14 Uncertainty in Simulated TOA Reflectance at DOY 173 and 365 over Libya4. 
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(a) CA Band 

 
(b) Blue Band 

 
(c) Green Band 

 
(d) Red Band 

 
(e) NIR Band  

(f) SWIR1 Band 

 
(g) SWIR2 Band 

Figure 4.15 Distribution of Simulated Mean TOA Reflectance, DOY 365. 

From Table 4.14 it can be inferred that the uncertainty is consistent with the uncertainties 

estimated from the non-BRDF corrected reflectances. As might be expected, there appears 

to be a seasonal dependence to the estimated uncertainty. During the summer, the largest 
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uncertainties are observed in the Green and Red bands, followed by the SWIR2 band; 

during the winter, the largest uncertainties are observed in the Red and SWIR2 bands, 

followed by the Green band. In addition, the observed uncertainties in the Coastal Aerosol 

and Blue bands are on the same magnitude on DOY 173 and DOY 365, on the order of 1% 

and around 0.3% respectively.  Again, this behavior supports the observation that changes 

in solar geometry tend to have a greater impact on TOA reflectance at longer wavelengths. 

4.5.3.2 Uncertainty due to Atmospheric Variation 

To estimate the uncertainty due to changes in atmospheric characteristics, additional 

MODTRAN simulations were performed to generate TOA reflectances of the Libya4 

PICS. For these simulations, the overpass time was kept constant at 09:30 AM UTC, but 

the water vapor content and aerosol optical depth were varied. One thousand normally 

distributed random samples of water vapor content were generated from a baseline mean 

value of 2.8 +- 0.7 g/cm2; similarly, one thousand normally distributed random samples 

representing aerosol optical depth were generated with respect to a baseline value of 0.11 

at 550 nm.  The resulting distributions are shown in Figures 4.16(a) and 4.16(b). 

 

(a) 

 

(b) 

Figure 4.16 (a) Generated Random Aerosol Optical Depth at 550nm, (b) Generated 

Random Water Vapor. 
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Figure 4.17 (a)-(g) show the resulting distributions of simulated TOA reflectance at the 

Libya4 PICS, on DOY 173 at 09:30 AM UTC. The distributions in the Coastal Aerosol 

and Blue bands appear to be skewed towards higher reflectance values; the distribution in 

the other bands is close to normal. This is as expected, as the Coastal Aerosol and Blue 

bands are more sensitive to changes in aerosol optical depth. 

 

Table 4.15 shows the uncertainty associated with the simulated TOA reflectances for all 

bands due to atmospheric variation over the Libya4 PICS. Overall, the estimated 

uncertainty is on the order of 0.25% (Blue band) to 1.25% (SWIR2 band). The largest 

uncertainty is found in the SWIR2 band, which is more sensitive to changes in atmospheric 

water vapor content. The uncertainties in the shorter wavelength bands are generally lower; 

the Coastal Aerosol band uncertainty is significantly higher (0.45%) than the Blue band 

uncertainty, as it i) measures lower signal levels overall and ii) is more sensitive to 

atmospheric aerosol content. For the Green, Red, NIR and SWIR1 bands, the estimated 

uncertainties are between approx. 0.49% and 0.82%. 

 

Bands CA Blue Green Red NIR SWIR1 SWIR2 

Uncertainty(%) 0.45 0.25 0.49 0.81 0.82 0.50 1.29 

Table 4.15 Atmospheric Uncertainty Associated with Simulated TOA Reflectances.  
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(a) CA Band 

 
(b) Blue Band 

 
(c) Green Band 

  
(d) Red Band 

 
(e) NIR Band 

 
(f) SWIR1 Band 

 
(g) SWIR2 Band 

Figure 4.17 Simulated Reflectance with Randomly Sampled Water Vapor and Aerosol 

Optcal Depth at 550nm.  
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4.5.4 Summary of Uncertainty Analysis 

Table 4.16 summarizes the worst-case uncertainties of all sources. The final uncertainty 

estimate was calculated using the root sum-of-squares method, under the assumption that 

all sources are independent of one another (i.e. the sources are uncorrelated).  

Domain Source of Uncertainty Uncertainty (%) 

Spectral Measured RSR 1.000 

Spectral Filter shift 0.820 

Spectral Bandwidth Change 0.280 

Spatial Registration Error 0.026 

Spatial resolution Mismatch 0.002 

Site 1.800 

Temporal Overpass Time Difference 2.270 

Atmospheric Variation 1.290 

Sensor MSI Calibration 5.000 

OLI Calibration 3.000 

Total Uncertainty 6.768 

Table 4.16 Summary of all the Uncertainties. 

The calibration uncertainties of the OLI and MSI are 3% and 5% respectively, are the most 

significant contributor to the overall uncertainty. Uncertainties due to atmospheric 

variability, target site non-uniformity, and differences in the measured sensor RSR also 

contributed significantly to the overall uncertainty. Uncertainties due to spatial registration 

errors and spatial resolution mismatch contribute little to the overall uncertainty. 

 

4.6 Validation 

Validation of the estimated cross calibration gains and biases was performed using 61 cloud 

free OLI and 37 cloud free MSI scenes of the Algodones Dunes target site in southeastern 

California, USA (WRS2 path 039, row 037). Summary statistics of the TOA reflectances 

from the Optimal ROI (SDSU IP Lab.) used for the site were analyzed with the parametric 
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2-sample t-test and nonparametric Wilcoxon Rank Sum test. Both parametric and 

nonparametric tests were employed due to lack of confidence in the assumption of a normal 

distribution in the reflectances; the observed distributions were more heavily skewed, with 

the direction of skew depending on the band. 

 

Figures 4.18 (a) – (g) show box plots of each band’s TOA reflectances for both sensors. In 

each figure, the first two box plots show the OLI and MSI reflectances after SBAF 

correction alone; the next two plots show the OLI and MSI reflectances after SBAF and 

BRDF correction; and the final two plots, respectively, show the MSI reflectances after 

application of gain only and application of gain and bias respectively. Box plots of the 

observed reflectance distribution were analyzed because the temporal sampling frequency 

for both sensors was not the same, especially due to exclusion of cloudy scenes. The 

difference in the resulting number of useable scenes for the analysis would adversely bias 

the estimated reflectance means towards a lower uncertainty for the sensor with fewer 

scenes. 

 

As seen in Figure 4.16(a), the OLI TOA reflectance after BRDF correction was slightly 

higher than the corresponding MSI TOA reflectance after SBAF and BRDF correction, 

especially in the Blue and Green bands. After application of either set of gains to the MSI 

reflectances, the differences were decreased by essentially the same amount in both cases. 
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(a) CA Band 

 
(b) Blue Band 

 
(c) Green Band 

  
(d) Red Band 

  
(e) NIR Band 

 
(f) SWIR1 Band 

 
(g) SWIR2 Band 

Figure 4.18 Boxplot of OLI and MSI Reflectance Before and After BRDF Correction, 

MSI After Applying Both set of Gain, Algodones Dunes. 
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In general, although the relative difference between the OLI and MSI reflectance 

distributions was small, application of the cross calibration gains and offsets observably 

improved inter-sensor agreement across all bands.  

 

Statistical tests were performed to quantitatively verify the observed improvement in inter-

sensor agreement. First, the two-sample t test was run assuming the variances in TOA 

reflectance of the sensors are equal after BRDF correction, with an additional, implicit 

assumption that each sensor’s reflectances are normally distributed. The 2 sample t test 

statistic is given by 

𝑡 =
𝑋2
̅̅ ̅ − 𝑋1

̅̅ ̅

𝑆√
1
𝑛1

+
1

𝑛2

 

where the reflectance standard deviations for both sensors are equal to a value S, n1 is the 

number of OLI reflectance measurements, and n2 is number of MSI reflectance 

measurements. The null hypothesis under test is that the reflectance means are equal, 

against the hypothesis that the reflectance means are not equal. The test was performed as 

a two-tailed test at the 95% significance level. 

To check the validity of the t-test results, the Wilcoxon Rank Sum test was performed with 

the same null and alternative hypotheses. The test was also performed at a 95% confidence 

interval. Table 4.14 shows the results obtained from both tests, using both sets of gains to 

perform the cross calibration.  
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Bands Set of Gain 2 sample t test Wilcoxon Rank Sum Test 

Null 

Hypothesis 

p value Null 

Hypothesis 

p value 

CA Gain Fail to 

Reject 

0.3455 Fail to 

Reject 

0.2846 

Gain and 

Bias 
Fail to 

Reject 

0.3176 Fail to 

Reject 

0.2529 

Blue Gain Reject 0.0079 Reject 0.0030 
Gain and 

Bias 
Reject 0.0350 Fail to 

Reject 

0.141 

Green Gain Reject 0.0248 Fail to 

Reject 

0.0933 

Gain and 

Bias 
Reject 0.0284 Fail to 

Reject 

0.1007 

Red Gain Fail to 

Reject 

0.1663 Fail to 

Reject 

0.4076 

Gain and 

Bias 
Fail to 

Reject 

0.4532 Fail to 

Reject 

0.8719 

NIR Gain Reject 0.0010 Reject 0.0015 
Gain and 

Bias 
Reject 0.0043 Reject 0.0080 

SWIR1 Gain Reject 0.0409 Reject 0.0312 
Gain and 

Bias 
Fail to 

Reject 

0.1129 Fail to 

Reject 

0.1007 

SWIR2 Gain Fail to 

Reject 

0.0959 Fail to 

Reject 

0.0877 

Gain and 

Bias 
Fail to 

Reject 

0.1162 Fail to 

Reject 

0.1069 

Table 4.17 Comparison of Statistical Test Results for Cross Calibration Gain Applied to 

MSI Reflectances. 

Based on the test results shown in Table 4.17, the following observations can be made: 

 There was insufficient evidence to indicate differences between OLI and MSI mean 

TOA reflectances in the Coastal Aerosol, Red, and SWIR2 bands. The offset was 

not a statistically significant factor in these bands; the estimated gains were 

essentially equal.   

 There was sufficient evidence to indicate differences between OLI and MSI mean 

TOA reflectances in the NIR band. The difference was more statistically significant 
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when only the gain was applied, as the p-value in this case was significantly smaller 

than the corresponding p-value when gain with offset was applied. This might be 

expected given the outliers in this band’s OLI reflectances. Even so, the differences 

did not appear to be physically significant. 

 For the Green band, there was sufficient evidence to indicate differences between 

OLI and MSI mean TOA reflectances according to the two-sample t test, but 

insufficient evidence to indicate differences according to the Wilcoxon Rank Sum 

test. This should be expected given the apparent non-normality of the OLI 

reflectance distribution. 

 In the Blue band, there was insufficient evidence to indicate differences between 

OLI and MSI mean TOA reflectance according to the Wilcoxon test when gain only 

was used in the cross calibration. According to the two-sample t test and the 

Wilcoxon test when gain with offset was used in the cross calibration, there was 

sufficient evidence to indicate differences. Again, this is likely due to the non-

normal distribution observed for the OLI reflectances. The disagreement in the 

Wilcoxon test results follows from the fact that the cross calibration offset in this 

band was significant. 

 In the SWIR1 band, there was sufficient evidence to indicate differences between 

OLI and MSI mean TOA reflectance when gain only was used in the cross 

calibration, but insufficient evidence to indicate difference when gain with offset 

was used. The evidence for difference in the gain only case was “weak”, i.e. the p-

values were not significantly less than 0.05. This may be explained by the fact that 

the MSI reflectance variance was larger than the corresponding OLI reflectance 
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variance, which violates the assumption of equal variance required by the two-

sample t test. 

 

With the exception of the SWIR1 band, the OLI reflectance variances were larger than the 

corresponding MSI reflectance variances due to the much larger amount of available OLI 

data.  

 

Anomaly 

ID 

Title 02.00 02.01 02.02 02.03 02.04 

Deployed 

11/23/2015 

Deployed 

01/27/2016 

Deployed 

03/31/2016 

Deployed 

05/03/2016 

Deployed 

06/09/2016 

Deployed 

06/15/2016 

3 Incorrect tile 

numbering 

yes           

4 Instrument 

Measurement 

Time MTD 

yes yes yes yes yes yes 

5 Minimum 

Reflectance 

"0" 

yes yes         

6 Detector 

Footprint at 

Equator 

yes yes         

7 Missing 

Physical 

Gains MTD 

yes yes yes yes yes yes 

8 Shifted 

Pixels 

yes, until 

25/01/2016 

          

11 Missing 

Viewing 

Angles MTD 

yes 

(random) 

yes 

(random) 

        

12 Anomalous 

Pixels 

yes yes yes       

15 Strong Mis-

registration 

        yes   

Table 4.18 Sentinel 2A Different Processing Versions and Their Anomalies [41]. 
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While all of the OLI data has been processed to a consistent baseline, the same cannot be 

said of the MSI data. Image data from 2015 were processed to baseline version 2.04, while 

image data from 2017 and 2018 were processed to baseline version 2.05 or 2.06. Depending 

on the kind and amount of change between baseline versions, this could be expected to 

cause or contribute to some discrepancies in the results. Table 4.15 shows the identified 

“anomalies” in the Sentinel 2A MSI image data at different versions and the dates when 

corrections were officially deployed. Clearly, there are major differences between the 

different processing baselines [41].   

The Algodones Dunes site is not currently considered as an appropriate PICS for sensor 

calibration. Its surface characteristics and overall weather conditions are too variable 

compared to the Saharan Desert sites used to generate the cross calibration gains and offsets 

presented in this thesis. After application of the cross calibration gains with offsets, 

however, good agreement between the MSI and OLI reflectance distributions was achieved 

for this site. data for all the bands. 

 

4.7 Summary 

This chapter describes the results obtained the proposed cross calibration procedure. This 

final section summarizes the important results obtained during each stage of the process. 

With the exception of Lake Tahoe, the absolute deviation from a unity SBAF factor for all 

target sites was on the order of 3% to 4% in the Blue band; for Lake Tahoe, the absolute 

deviation from a unity SBAF factor was on the order of 8%. For all target sites, the absolute 

deviation from a unity SBAF factor was on the order of 2% or less in the other bands. 

Smaller absolute deviations from unity SBAF were observed in the longer wavelength 
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bands, which can be explained by the fact that these bands have similar profiles and center 

location in both sensors. 

The proposed 4 angles BRDF correction model appeared to show good potential for 

correction in the longer wavelength bands. Much less potential for correction was observed 

in the shorter wavelength bands. This can be explained by the fact that the Coastal Aerosol 

and Blue bands are more sensitive to changes in atmospheric characteristics than direct 

changes in solar position. 

When cross calibration gains and nonzero offsets are considered, the Blue and Red bands 

exhibited the largest deviations from unity gain, on the order of -2.6% and -1.44%, 

respectively. The Coastal Aerosol band was found to have the largest regression standard 

error and lowest corresponding R2 value for this parameter. With the exception of the Blue 

band, the offset was not found to be statistically significant. When cross calibration gains 

are considered alone (given offsets of zero), the Blue band again exhibited the largest 

deviation from unity gain, on the order of 1.86%.  

 

The largest contribution to the overall cross calibration uncertainty, 6.8%, is due to the 

uncertainty in each sensor’s calibration; for the OLI this uncertainty is on the order of 3%, 

while for the MSI it is on the order of 5%. Temporal uncertainty due to differences in solar 

zenith and azimuth angles caused by the difference in local overpass times is the next 

largest component in the overall uncertainty, on the order of 2.27%. Potential shifts in the 

spectral filter location and/or bandwidth contributed up to 0.82% of the uncertainty in the 

SWIR2 band. The uncertainty due to image registration is within 0.55% across all bands. 
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Finally, the uncertainty due to differences in sensor spatial resolution in all bands is at a 

level that can effectively be ignored. 

 

Overall, both sets of estimated gains were shown to improve the agreement between 

sensors for both PICS sites and sites such as Algodones Dunes in all bands, with the 

possible exception of the NIR band. Given the significance of the offset in the Blue band 

and the generally “better” statistical results, it is recommended that the set of cross 

calibration coefficients for each band include the estimated offset. 

 

It is also recommended, given the relatively small number of data points and apparent 

deviations from a normal reflectance distribution in both sensors, that non-parametric 

methods of inference such as the Wilcoxon test be used when evaluating the efficacy of 

the derived cross calibration coefficients. Such non-parametric tests tend to be more 

resistant to the effects of potential outliers in the reflectance data, as the metric statistics 

are often median-based. 
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Chapter 5  Conclusion 

 

A new cross calibration technique was developed for the Sentinel 2A MSI and Landsat 8 

OLI sensors with the object of increasing data harmonization between them. The cross 

calibration was developed using reflectance data from Saharan Desert PICS and dark 

targets such as Lake Tahoe and the Libyan volcano. Specific uncertainties associated with 

each step of the proposed cross calibration were estimated, as was the overall uncertainty 

associated with the entire process. Finally, the proposed cross calibration was validated 

using image data acquired over the Algodones Dunes site. 

5.1 Process Recommendations 

Based on the results presented in Chapter 4, the following summary recommendations can 

be made regarding the present work: 

 SBAFs should be estimated from as much available hyperspectral image data as 

possible. If too little data are used in the estimation, the resulting mean SBAF and 

associated uncertainty could be skewed towards either extreme. 

 BRDF correction should explicitly be performed as part of the cross calibration 

procedure.  

 For all bands, the offset should be included in the cross calibration calculations. It 

provided better agreement than when the cross calibration gain alone was used, 

and appeared to be required when performing cross calibration in the Blue band. 

Its inclusion would make the cross calibration calculations consistent across all 

bands. Table 5.1 shows the set of recommended cross calibration gains and biases. 
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Bands CA Blue Green Red NIR SWIR1 SWIR2 

Gain 1.0012 0.9740 1.0046 0.9856 0.9923 0.9922 1.0051 

Bias 0.0002 0.0092 0.0010 0.0030 0.0016 0.0018 0.0011 

Table 5.1 Recommended Gain and Bias of Cross Calibration for Each Band. 

 Uncertainties in sensor calibration contributed the most to the overall cross 

calibration uncertainty, on the order of 3% and 5% for the OLI and MSI, 

respectively. Spatial domain uncertainties relating to image registration errors and 

spatial resolution mismatch contributed the least to the overall uncertainty, on the 

order of 0.026% and 0.0002%, respectively. Temporal domain uncertainties due 

to overpass time differences—primarily the seasonal variability in the solar 

azimuth and zenith angles—and atmospheric parameter variation contributed 

significantly to the overall uncertainty, but to a lesser degree than the sensor 

calibration uncertainty. Spectral domain uncertainties due to spectral filter center 

wavelength shift and/or bandwidth change also contributed significantly to the 

overall uncertainty, but, again, to a lesser degree than the sensor calibration 

uncertainty.  

5.2 Direction of Future Work 

Future directions to potentially extend and enhance the cross calibration work presented in 

this thesis include the following: 

 To simplify the cross calibration analysis, atmospheric effects were not explicitly 

taken into account. The use of desert PICS such as Libya4 as bright targets should 

minimize, to a certain extent, atmospheric effects directly over the land surface 

(with the exception of wind-blown sands and dust contributing to the aerosol 
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concentration). However, Libya4 is fairly near a significant water body (the 

Mediterranean Sea) that can contribute a significant degree of water vapor and/or 

aerosol concentration to the local atmosphere. 

 The process to generate SBAFs depends on the availability of reasonably accurate 

hyperspectral profiles of the target. For this thesis, EO-1 Hyperion data were used 

to generate the hyperspectral profiles. This resulted in a restricted selection of 

calibration sites, as Hyperion either did not image them at all or imaged them 

inconsistently. Unfortunately, Hyperion has recently been decommissioned and is 

no longer providing data. Other readily available sources of hyperspectral data will 

need to be considered if cross calibration is to be carried out over time. With other 

sources of hyperspectral data, additional sites may be useable and allow a denser 

sampling across each sensor’s dynamic range. 

 Additional validation can be performed using another site such as Gobabeb, 

Namibia (WRS2 path 79, row 76) where RadCalNet data are also available. This is 

an arid area with minimal cloud cover. Validation sites should also include, if 

possible, vegetation target sites such as LaCrau in France (WRS2 path 196, row 

30), or the Brookings, SD 3M site (WRS2 path 29, row 29). 

  

 

 

 

 



85 
 

References 

[1]     D. L. Helder, B. L. Markham, K. J. Thome, J. A. Barsi, G. Chander and R. Malla, 

"Updated Radiometric Calibration for the Landsat-5 Thematic Mapper Reflective 

Bands," in IEEE Transactions on Geoscience and Remote Sensing, vol. 46, no. 

10, pp. 3309-3325, Oct. 2008. 

[2]     R. Muller, “Calibration and Verification of Remote Sensing Instruments and 

Observations”, in mdpi journal of Remote Sensing, vol 6, pp. 5692-5695, June 

2014. 

[3]     Chandler, G.; Meyer, D. J.; Helder, D. L. "Cross Calibration of the Landsat-7 

ETM+ and EO-1 ALI sensor". IEEE Transactions on Geoscience and Remote 

Sensing. 42, n. 12, p. 2821–2831, 2004. 

[4]     P.M. Teillet, B. L. Markham, Richard R. Irish, " Landsat Cross-Calibration based 

on near    simultaneous imaging of common ground targets" Remote Sensing of 

Environment 102(2006) 264-270. 

[5]     Class lecture of Dr. Cibele Teixera Pinto, EE 790, Spring 2017, Lecture 15.  

[6]     F. Gascon, O. Thépaut et al. "Copernicus Sentinel-2 Calibration and Products 

Validation Status" , Preprints (www.preprints.org) ,NOT PEER-REVIEWED, 

Posted: 19 October 2016,doi:10.20944/preprints201610.0078.v1 

[7]     Sentinel 2 Handbook available at: 

https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook 

[Last accessed: 08-11-2017] 

[8]      https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/resolutions/spatial 

[Last accessed: 08-11-2017] 



86 
 

[9]     https://landsat.gsfc.nasa.gov/the-worldwide-reference-system [Last accessed: 08-

11-2017] 

[10]     Knight, Ed. J., and Geir Kvaran. "Landsat-8 operational land imager design, 

characterization and performance", Remote Sensing 6.11 (2014): 10286-10305. 

[11]      https://earth.esa.int/web/technical-guides/sentinel-2-msi/performance[Last 

accessed: 08-11-2017] 

[12]     J. A. Barsi, K. Lee, G. Kvaran, B. L. Markham and Jeffrey A. Pedelty, "The 

Spectral Response of the Landsat-8 Operational Land Imager", Remote Sensing, 

2014, Vol. 6, pp. 10233 

 [13]     B. L. Markham, and D. L. Helder, "Forty-year calibrated record of earth-

reflected radiance from Landsat: A review," Remote Sensing of Environment, vol. 

122, pp. 30-40, 2012 

[14] D. L. Helder, B. Basnet and D. Morstad “Optimized identification of worldwide 

radiometric pseudo-invariant calibration sites,” Canadian Journal of Remote 

Sensing, vol. 36, pp. 527-539 

[15]     C. Nagaraja Rao and J. Chen, "Inter-satellite calibration linkages for the visible 

and near-infared channels of the Advanced Very High Resolution Radiometer on 

the NOAA-7,-9, and-11 spacecraft," International Journal of Remote Sensing, vol. 

16, pp. 1931-1942, 1995. 

[16]     H. Cosnefroy, M. Leroy, and X. Briottet, "Selection and characterization of 

Saharan and Arabian desert sites for the calibration of optical satellite sensors," 

Remote Sensing of Environment, vol. 58, pp. 101-114, 1996. 



87 
 

[17]      G. Chander, A. Angal, D. L. Helder, N. Mishra, and A. Wu, "Preliminary 

assessment of several parameters to measure and compare usefulness of the 

CEOS reference pseudo-invariant calibration sites," in Remote Sensing, 2010, pp. 

78262L-78262L-12. 

[18]      L. Morstad, D. L. Helder, Dennis, “Use of Pseudo-Invariant Sites for Long-Term 

Sensor Calibration” International Geoscience and Remote Sensing Symposium 

(IGARSS),2008, 1. I-253 . 10.1109/IGARSS.2008.4778841. 

[19]      Philippe M. Teillet, G. Fedosejevs, K. J. Thome, "Spectral band difference effects 

on radiometric cross-calibration between multiple satellite sensors in the Landsat 

solar-reflective spectral domain", Proc. SPIE 5570, Sensors, Systems, and Next-

Generation Satellites VIII, (4 November 2004); doi: 10.1117/12.562709 

[20]     Chander, G. & Mishra, N. & Helder, D. & Aaron, D. & Choi, T. & Angal, A. & 

Xiong, X. (2010), “Use of EO-1 Hyperion data to calculate spectral band 

adjustment factors (SBAF) between the L7 ETM+ and Terra MODIS sensors”, 

International Geoscience and Remote Sensing Symposium (IGARSS). 1667-

1670. 10.1109/IGARSS.2010.5652746. 

[21]     G. Chander, N. Mishra, D. L. Helder, D. B. Aaron, A. Angal, T. Choi, Xiaoxiong 

Xiong, David R. Doelling, "Applications of Spectral Band Adjustment Factors 

(SBAF) for Cross-Calibration", Geoscience and Remote Sensing IEEE 

Transactions on, vol. 51, pp. 1267-1281, 2013, ISSN 0196-2892. 



88 
 

[22]      Liu, JJ, Li, Z, Qiao, YL, Liu, YJ, Zhang, YX (2004), “A new method for cross-

calibration of two satellite sensors”, International Journal of Remote Sensing, 

25(23), 5267-5281. 

 [23]     Roujean, J. L., Leroy, M., and Deschamps, P. Y., 1992, “A bi-directional 

reflectance model of the Earth’s surface for the correction of remote sensing 

data”, Journal of Geophysical Research, 97, 20 455–20 468. 

[24]      Schlapfer, D.; Richter, R.; Feingersh, T., “Operational BRDF Effects Correction 

for Wide-Field-of-View Optical Scanners (BREFCOR)”  IEEE Transactions on 

Geoscience and Remote Sensing, vol. 53, issue 4, pp. 1855-1864. 

[25]     Mishra, N.; Helder, D.; Angal, A.; Choi, J.; Xiong, X., “Absolute Calibration of 

Optical Satellite Sensors Using Libya 4 Pseudo Invariant Calibration 

Site” Remote Sens. 2014, 6, 1327-1346. 

[26]     Lacherade, S.; Fougnie, B.; Henry, P.; Gamet, P., “Cross Calibration Over Desert 

Sites: Description, Methodology, and Operational Implementation” IEEE 

Transactions on Geoscience and Remote Sensing, vol. 51, issue 3, pp. 1098-1113 

 [27]    Mishra, N.; Haque, M.O.; Leigh, L.; Aaron, D.; Helder, D.; Markham, B. 

“Radiometric Cross Calibration of Landsat 8 Operational Land Imager (OLI) 

and Landsat 7 Enhanced Thematic Mapper Plus (ETM+)” . Remote 

Sens. 2014, 6, 12619-12638 

[28]     Li, S., Ganguly, S., Dungan, J.L., Wang, W.L. and Nemani, R.R. (2017) 

“Sentinel-2 MSI Radiometric Characterization and Cross-Calibration with 

Landsat-8 OLI”. Advances in Remote Sensing, 6, 147-159 



89 
 

[29]     Chander, G., D. L. Helder, D. Aaron, N. Mishra, and A. K. Shrestha. 2013. 

“Assessment of Spectral, Misregistration, and Spatial Uncertainties Inherent in 

the Cross-Calibration Study.” IEEE Transactions on Geoscience and Remote 

Sensing 51: 1282–1296. doi:10.1109/TGRS.2012.2228008. 

 [30]    C. T. Pinto, F. J. Ponzoni, R. M. Castro, Larry Leigh, Morakot Kaewmanee, 

David Aaron & Dennis Helder, “Evaluation of the uncertainty in the spectral 

band adjustment factor (SBAF) for cross-calibration using Monte Carlo 

simulation”, Remote Sensing Letters, 7:9, 837-846, DOI: 

10.1080/2150704X.2016.1190474 

[31]    J. Gorroño, A. C. Banks, N. P. Fox, C. Underwood, “Radiometric inter-sensor 

cross-calibration uncertainty using a traceable high accuracy reference 

hyperspectral imager”, ISPRS Journal of Photogrammetry and Remote Sensing, 

pp 393-417 

[32]   Teillet, P. M., et al. "Impacts of spectral band difference effects on radiometric 

cross-calibration between satellite sensors in the solar-reflective spectral 

domain." Remote Sensing of Environment 110.3 (2007): 393-409. 

[33]   G. Chander et al., "Applications of Spectral Band Adjustment Factors (SBAF) for 

Cross-Calibration," in IEEE Transactions on Geoscience and Remote Sensing, 

vol. 51, no. 3, pp. 1267-1281, March 2013. 

[34]   S. K. Chittimalli, "Reflectance Based Calibration and Validation of the Landsat 

Satellite Archive," South Dakota State University- Thesis Dissertation, 2016. 

[35]   Chander, G., D. L. Helder, D. Aaron, N. Mishra, and A. K. Shrestha. 2013. 

“Assessment of Spectral, Misregistration, and Spatial Uncertainties Inherent in 



90 
 

the Cross-Calibration Study.” IEEE Transactions on Geoscience and Remote 

Sensing 51: 1282–1296. doi:10.1109/TGRS.2012.2228008 

[36]   D. R. White, “Propagation of Uncertainty and Comparison of Interpolation 

Schemes”, Int J Thermophys (2017), 38:39, DOI: 10.1007/s10765-016-2174-6 

[37]   Mishra, N.; Haque, M.O.; Leigh, L.; Aaron, D.; Helder, D.; Markham, B.  

“Radiometric Cross Calibration of Landsat 8 Operational Land Imager (OLI) and 

Landsat 7 Enhanced Thematic Mapper Plus (ETM+).” Remote Sens. 2014, 6, 

12619-12638. 

[38]   J. A. Barsi, K. Lee, G. Kvaran, B. L. Markham and J. A. Pedelty, “The Spectral 

response of the Landsat-8 Operational Land Imager”, Remote Sens. 2014, 6, 

10232-10251; doi:10.3390/rs61010232. 

[39]   Sentinel 2 Data Quality Reports, pulished on February 8th, 2018 available at 

https://sentinel.esa.int/documents/247904/685211/Sentinel-2-Data-Quality-

Report [Last Accessed 2/28/2018] 

[40]   Vuppula, Harika, "Normalization of Pseudo-invariant Calibration Sites for 

Increasing the Temporal Resolution and Long-Term Trending" (2017). Theses 

and Dissertations. 2180. https://openprairie.sdstate.edu/etd/2180 

[41]   https://sentinel.esa.int/web/sentinel/missions/sentinel-2/news/-/article/new-

processing-baseline-02-04-for-sentinel-2a-products [Last Accessed: 03/07/2018] 

 

 

 

 



91 
 

Appendix 

ROI and Sentinel 2A footmark over Landsat 8 image: 

 
(a) Libya1 

 
(b) Libya4 

 
(c) Niger2 

 
(d) Sudan1 

 
(e) Lake Tahoe 

 
(f) Volcani site 

Figure A.1 OLI, MSI and ROI position for Target Sites. 
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ROI for Target Sites: 

Target Site WRS2 

Path 

WRS2 

Row 

ROI’s UTM Coordinates in meter 

ULX ULY LRX LRY 

Libya1 187 043 330150 2750850 365070 2716860 

Libya4 181 040 723825 3171375 743805 3149685 

Niger2 188 045 644190 2375910 677670 2350590 

Sudan1 177 045 561570 2405850 584250 2367450 

Lake 

Tahoe 

043 033 751125 4337625 762315 4326405 

Volcanic 

Near Libya 

184 043 775652 2755834 784770 2749872 

Table A.1 UTM Values for ROI Corner Coordinates for Target Sites. 

Uncertainty Due to Overpass Time Difference: 

Variation of Reflectance, DOY 173: 

 
(a) Blue Band 

 
(b) Green Band 

 
(c) Red Band 

 
(d) NIR Band 

 
(e) SWIR1 Band 

Figure A.2 Variation of Reflectance for Overpass Time Difference over Libya4 @DOY 

173 
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Variation of Reflectance, DOY 365: 

 
(a) Blue Band 

 
(b) Green Band 

 
(c) Red Band 

 
(d) NIR Band 

 
(e) SWIR1 Band 

Figure A.3 Variation of Reflectance for Overpass Time Difference over Libya4 @DOY 

365 
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TOA Reflectance Vs Spherical Coordinate Solar Angles 

 

Figure A.4 Reflectance vs Spherical Coordinate Solar Angles 
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TOA Reflectance Vs Converted Cartesian Coordinate Solar Angles 

 

Figure A.5 Reflectance vs Cartesian Coordinate Converted Solar Angles. 
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TOA Reflectance Vs Spherical Coordinate View angles 

 

Figure A.6 Reflectance vs Spherical Coordinate View Angles 
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TOA Reflectance Vs Converted Cartesian Coordinate View angles 

 

Figure A.7 Reflectance vs Cartesian Coordinate Converted Solar Angles. 
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