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ABSTRACT 

DETECTION OF CHANGE POINTS IN PSEUDO-INVARIANT CALIBRATION 

SITES TIME SERIES USING MULTI-SENSOR SATELLITE IMAGERY 

NEHA KHADKA 

2021 

     The remote sensing community has extensively used Pseudo-Invariant Calibration 

Sites (PICS) to monitor the long-term in-flight radiometric calibration of Earth-observing 

satellites. The use of the PICS has an underlying assumption that these sites are invariant 

over time. However, the site’s temporal stability has not been assured in the past. This 

work evaluates the temporal stability of PICS by not only detecting the trend but also 

locating significant shifts (change points) lying behind the time series. A single time 

series was formed using the virtual constellation approach in which multiple sensors data 

were combined for each site to achieve denser temporal coverage and overcome the 

limitation of dependence related to a specific sensor. The sensors used for this work were 

selected based on radiometric calibration uncertainty and availability of the data: 

operational land imager (Landsat-8), enhanced thematic mapper (Landsat-7), moderate 

resolution imaging spectroradiometer (Terra and Aqua), and multispectral instrument 

(Sentinel-2A). An inverse variance weighting method was applied to the Top-of-

Atmosphere (TOA) reflectance time series to reveal the underlying trend. The sequential 

Mann–Kendall test was employed upon the weighted TOA reflectance time-series 

recorded over 20 years to detect abrupt changes for six reflective bands. Statistically 

significant trends and abrupt changes have been detected for all sites, but the magnitude 

of the trends (maximum of 0.215% change in TOA reflectance per year) suggest that 

these sites are not changing substantially over time. Hence, it can be stated that despite 
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minor changes in all evaluated PICS, they can be used for radiometric calibration of 

optical remote sensing sensors. The new approach provides useful results by revealing 

underlying trends and providing a better understanding of PICS' stability.  
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1. INTRODUCTION 

 Satellite remote sensing is used to acquire information related to the Earth's 

resources and to monitor changes that occur in the land surface, coastal and oceanic 

ecosystems. Radiometric calibration of remote sensing sensors is the foundation for using 

its data in a further quantitative application. The complete radiometric calibration of a 

sensor onboard a satellite typically consists of both pre-launch and post-launch 

radiometric calibration. Pre-launch radiometric calibration involves evaluating sensor and 

onboard calibrators in a controlled environment under a variety of operating conditions 

[1]. These onboard calibrators and sensors are characterized and calibrated using the 

Système International (SI) traceable standards to achieve the needed accuracy [2]. 

Nevertheless, once the satellites are launched into space, exposure to ultraviolet radiation 

and other electrical, mechanical, and thermal effects, may degrade their calibration over 

time [3]. In consequence, continuous re-calibration is required during the entire sensor 

lifetime (post-launch calibration).  

Post-launch radiometric calibration of remote sensing sensors can be achieved using 

artificial and natural ground targets on the Earth surface. This technique is known as 

Vicarious Calibration, in which the term "vicarious" refers to calibration methods that are 

conducted without the use of systems that are directly mounted onboard the satellite. 

Pseudo-Invariant Calibration Site (PICS) based calibration is one of the most widely used 

vicarious calibration methods. PICS are regions on the Earth that exhibit minimal change 

over long periods and can be used in three forms of radiometric calibration: (a) long term 

trending of the sensor radiometric gains; (b) cross-calibration; and (c) more recently, 

absolute calibration [4-6]. 
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For instance, Morstad [4] in one of his previous research used PICS to observe the 

accurate trending of satellite instruments. The results indicated the sites' consistency and 

usefulness for long-term trending of the Landsat series, both historically and in the future. 

The Committee on Earth Observation Satellites (CEOS) referenced PICS has also been 

used to evaluate the improvement in the long-term on-orbit radiometric calibration 

stability of the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) [7]. The 

results show excellent calibration stability (long-term drift within 2%) of the MODIS 

sensor. Vuppula [8] used Landsat-8 data from six Saharan desert sites, normalized to the 

Libya-4 reference, and merged the normalized data into a "Super PICS" dataset to 

achieve a high temporal resolution calibration dataset. The resulting uncertainties were 

within the satellite calibration range of 3% for all spectral bands. Previous studies have 

also emphasized the use of PICS for cross-calibration of Landsat-8 OLI and Landsat-7 

ETM+ and analyses of this approach show the uncertainty for all analogous bands of the 

two sensors agree within ±2% [6]. Chander [9] performed cross-calibration of the 

Advanced Land Imager (ALI) with Landsat-7 and MODIS using near-simultaneous 

surface observations based on the image data from areas observed over four desert sites 

(Libya 4, Mauritania 2, Arabia 1, and Sudan 1). Results showed agreement of ALI with 

MODIS and Landsat-7 within 5%. Besides, PICS has been used to assess the 

cross-calibration between Sentinel-2A and Landsat-8 of eight corresponding matching 

spectral bands with Landsat-8 as reference. The cross-calibration results show that seven 

corresponding bands' radiometric differences are consistent to Landsat-8 within 1% or 

better, except on the cirrus band [10]. Similarly, Govaerts [5] did his initial work 

developing an absolute calibration model using PICS with geostationary satellites. 
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Results indicated 3% accuracy for the red and Near Infrared (NIR) band and 6% accuracy 

for other bands, which provided the motivation for the extension of these techniques. 

Helder [11] introduced the concept of an empirical absolute calibration model by 

employing one of the PICS site (Libya 4) as a test site, Terra MODIS as the calibrated 

radiometer, Hyperspectral Observations from Earth Observing (EO-1) Hyperion for the 

spectral signature and used Landsat-7 ETM+ image data for model validation. The model 

showed accuracy within 3% in the visible and 6% in the Short-Wave Infrared (SWIR) 

region, which suggested that absolute calibration using PICS, provided improved on-orbit 

calibration capabilities for satellite sensors. Later, this work was extended using five 

additional Saharan Desert PICS (Egypt 1, Niger 1, Niger 2, Sudan 1 and Libya 1) to 

generate the absolute calibration models for these sites with accuracy and precision 

comparable to or better than Libya 4 model [12].  

 The use of PICS sites for calibration has an underlying assumption that these sites 

are invariant over time. Consequently, any changes detected in lifetime trending of the 

radiometric gain are caused by the sensor response. However, the site's temporal stability 

has not been assured due to the lack of emphasis given to validate the foundational 

assumption. Recently, Tuli [13] developed an explicit assessment of PICS' temporal 

stability and demonstrated a long-term temporal variability in some of the PICS. 

However, the work only addressed the overall temporal stability of PICS without 

indicating when the behavior of the PICS data has changed in the time series. The 

motivation for this study is precisely related to the lack of work involving a finer 

assessment of PICS, specifically, associated with an evaluation of the presence of a 

change point in PICS time series. Change point detection is the method of finding 
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changes in a dataset when a property of the time series changes. It is important to 

emphasize that several studies related to PICS trend analysis have been published, 

however, the possible time where the behavior of PICS data has changed has not yet been 

evaluated. In this context, this work aims to expand the trend analysis of PICS by 

focusing on detecting significant shifts lying behind the PICS time series trend. The sites 

investigated in this work are PICS that are commonly used in calibration analysis at the 

South Dakota State University Image Processing Laboratory (SDSU IPLAB): Libya 1, 

Libya 4, Sudan 1, Egypt 1, Niger 1, and Niger 2. The goal of change point assessments is 

to describe the nature and degree of the known change and to identify a stable dataset 

over a time period and make its use for a successful radiometric calibration. 

To monitor the long-term temporal stability of the PICS, virtual constellation approach 

was implemented. There are currently more than 150 Earth-observing satellites that are 

orbiting the Earth, carrying sensors that measure different sections of the visible, 

microwave, and infrared regions of the electromagnetic spectrum. The increase in the 

number of remote sensing sensors provides the community a unique opportunity to 

combine data sets. Combining data from two or more sensors into a single data set creates 

a “virtual constellation” [14]. According to CEOS, a virtual constellation is a 

"coordinated set of space or ground segment capabilities from different partners that 

focuses on observing a particular parameter or a set of parameters of the Earth system" 

[15]. The three significant advantages of combining data from multiple sensors into a 

single seamless time series are: (a) it increases the temporal resolution of the dataset; (b) 

it overcomes the dependence limitation of the potential trend that exists in any particular 

sensor; and (c) it allows a revealing new understanding of PICS. The multiple sensor data 
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fusion involves reducing the effects of differences in the sensor's radiometric 

performance, such as spectral response and acquisition viewing/illumination geometry. 

The sensors applied in this work are Operational Land Imager (OLI) on-board Landsat-8 

satellite, Enhanced Thematic Mapper (ETM+) on-board Landsat-7, Moderate Resolution 

Imaging Spectroradiometer (MODIS) on-board Terra, MODIS on-board Aqua, and 

Multispectral Instrument (MSI) on-board Sentinel-2A. These sensors are selected based 

on the radiometric calibration uncertainty and availability of the data.  

The paper is structured as follows: Section 2 provides the work methodology along with 

the satellite sensors and the location of the six PICS utilized in this work. It also includes 

the pre-processing steps applied to the satellite sensors imagery to create a virtual 

constellation and the non-parametric statistical tests used for the analysis. Section 3 

presents the results and the interpretation of the results for all six PICS. Section 4 

presents the discussion and, finally, concluding remarks are presented in Section 5. 
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2. MATERIAL AND METHODS 

2.1. Satellite Sensor Overview 

A brief overview of satellite sensors used for this work is described in this 

section. The image data used in this work came from five orbital platforms: Landsat-7, 

Landsat-8, Sentinel-2A, Aqua, and Terra. For implementing the virtual constellation 

approach, it is necessary to combine sensors with similar spectral characteristics to match 

them with minimal processing requirements [16]. Hence, the sensors from different 

orbital platforms used in this work have similar spectral coverage, enabling synergistic 

use. The common spectral bands for the five sensors are denominated blue, green, red, 

NIR, SWIR 1, and SWIR 2. These six spectral bands are listed in Table 1. 

Table 1. Spectral bands of satellite sensors. 

Bandwidth (nm) 

Sensor/Satellite Blue Green Red NIR SWIR 1 SWIR 2 

OLI/Landsat-8 452-12 533-590 636-673 851-879 1567-1651 2107-2294 

ETM+/Landsat-

7 

441-514 519-611 631-692 772-898 1547-1748 2064-2346 

MSI/Sentinel-

2A 

470-524 504-602 649-680 855-875 1569-1658 2113-2286 

MODIS/TERRA 459-479 545-565 620-670 841-876 1628-1652 2105-2155 

MODIS/AQUA 459-479 545-565 620-670 841-876 1628-1652 2105-2155 

2.1.1. Landsat ETM+/OLI 

The Landsat series of sensors have acquired the longest continuous global imagery of the 

Earth's surface. Landsat-8 and Landsat-7 are part of the Landsat series and were launched 

on February 11, 2013, and April 15, 1999. The revisit period of the Operational Land 

Imager (OLI) onboard Landsat-8 is 16 days, which is eight days out of phase with the 
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Enhanced Thematic Mapper plus (ETM+) onboard Landsat-7. OLI is a push broom 

imager that has nine spectral bands covering a 185 km swath width and ETM+ is a 

whiskbroom imager with 8 spectral bands and a 183 km swath width. Both OLI and 

ETM+ have a spatial resolution of 30 m in their multispectral bands. Landsat-7 has a 

local overpass time of 10:30 am, which is close to that of Landsat-8 (i.e., 10:13 am) [17]. 

The ETM+ has an estimated uncertainty of ±5%, and OLI has an estimated post-launch 

calibration uncertainty of 2% and pre-launch calibration uncertainty of approximately 3% 

in reflectance products [18].  

2.1.2. Sentinel MSI 

The Multi-Spectral Instrument (MSI) onboard Sentinel-2A is part of the European Space 

Agency's (ESA, Noordwijk, Netherland) Copernicus program that has been contributing 

Earth remote sensing data since 2015 [19]. It provides images of the entire Earth every 10 

days with spatial resolution varying between 10 m to 60 m for 13 spectral bands. MSI is a 

push broom imager that has a 295km swath width. The orbit is Sun-synchronous at 786 

km altitude with a 10:30 am equatorial crossing time [20]. The data obtained from the 

onboard Multi-Spectral Instrument (MSI) is comparable to other well-calibrated sensors 

such as the OLI. The OLI and MSI showed stable radiometric calibration of 

approximately 2.5% with consistency between matching spectral bands [21]. 

2.1.3. Terra and Aqua MODIS 

The Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua 

satellites is one of the key instruments for the National Aeronautics and Space 

Administration (NASA, Washington DC, USA) Earth Observing System (EOS) 

providing data for more than 20 years [22]. The NASA MODIS Characterization Support 
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Team (MCST) is responsible for on-orbit calibration, characterization, and sensor 

operation. Terra has been collecting imagery since December 18, 1999, and Aqua since 

May 04, 2002. The MODIS sensor is designed to image the Earth in 36 spectral bands 

with a spatial resolution ranging from 250m to 1000m. The instrument is a whiskbroom 

scanner with a wide field of view of 2330km and a view zenith angles up to ±45°. Due to 

the regular assessment of the sensor's on-orbit performance, both Terra and Aqua MODIS 

are viewed as well-calibrated sensors. Terra and Aqua MODIS are also commonly called 

the AM and PM series of satellites because of their equatorial crossing time of 10:20 am 

and 1:30 pm. They can view the entire globe once in every two days [22]. The estimated 

radiometric calibration uncertainties of the MODIS TOA reflectance products are 2% 

[23,24].   

2.2. Study Area 

The sites investigated in this work are the Pseudo-Invariant Calibration Sites located in 

North Africa. These are the six SDSU IPLAB PICS (Libya 4, Niger 1, Sudan 1, Niger 2, 

Egypt 1, and Libya 1) , that demonstrate better temporal stability and have larger areas as 

compared to other CEOS referenced sites [25]. The region identified by the PICS 

Normalization Process (PNP) algorithm developed by the SDSU IPLAB as "optimal" 

regions was used as the region of interest. This region exhibits temporal, spatial, and 

spectral variability of 3% or less [8]. Table 2 shows the corresponding latitude and 

longitude coordinates defining the Region of Interest (ROI) along with the Sentinel 

UTM/WGS84 projection tiles and Landsat Worldwide Reference System 2 (WRS-2) path 

and row. 
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Table 2. Location of study areas, including the WRS-2 Path/Row, UTM/WGS84 Tiles, 

and ROI coordinates. 

PICS 
WRS-2 

Path/Row 
MSI Tile 

Minimum 

Latitude 

Maximum 

Latitude 

Minimum 

Longitude 

Maximum 

Longitude 

Libya 4 181/40 34RGS 28.38 28.81 23.09 23.86 

Niger 1 189/46 32QNH 20.28 20.53 9.19 9.52 

Sudan1 177/45 35QND 21.40 21.75 27.81 27.59 

Niger 2 188/45 32QPJ 21.25 21.47 10.38 10.71 

Egypt 1 179/41 35RMK 26.91 27.13 26.31 26.62 

Libya 1 187/43 33RUH 24.55 24.86 13.32 13.66 

2.3. Image Pre-Processing 

Radiometrically and geometrically corrected standard MSI data product images referred 

to as Level 1C (L1C) are available at the Copernicus Open Access Hub 

(https://scihub.copernicus.eu/ (accessed on 2 October 2020)). Landsat-8 OLI and 

Landsat-7 ETM+ Collection-1 Level-1 data are available at the United States Geological 

Survey (USGS) Earth Explorer website (https://earthexplorer.usgs.gov (accessed on 27 

March 2020)). For the MODIS data, Collection 6.1 image data products for both Terra 

and Aqua can be accessed from MODAPS Web Services 

(https://modwebsrv.modaps.eosdis.nasa.gov/ (accessed on 16 August 2020)). Imagery 

data for the corresponding Sentinel-2A MSI, Landsat-7 ETM+, Landsat-8 OLI, Terra 

MODIS, and Aqua MODIS for the selected PICS were downloaded and later retrieved 

from the existing SDSU IPLAB archive. The pre-processing flowchart of this work is 

shown in Figure 1.  

https://scihub.copernicus.eu/
https://earthexplorer.usgs.gov/
https://modwebsrv.modaps.eosdis.nasa.gov/
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Figure 1. General flowchart for change point detection of PICS. VZA is the View 

Zenith Angle; BRDF is Bidirectional Reflectance Distribution Function; SQMK is 

Sequential Mann–Kendall.  

2.3.1. Conversion to TOA Reflectance 

Landsat Collections Level-1 data product consists of calibrated and quantized scaled 

Digital Numbers (DN) representing the multispectral image data. These reflective band 

DN's were converted into TOA reflectance using the rescaling coefficients from the MTL 

file [26,27]. 
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 ρλ
′ = Mρ ∗ Qcal + Aρ (1) 

where,  ρλ
′  is TOA reflectance without the solar angle correction , Mρ is band-specific 

multiplicative rescaling factor from the metadata,Qcal is quantized and calibrated standard 

product pixel values DN, and  Aρ is band specific additive rescaling factor from the 

metadata. The solar angle correction of the TOA reflectance was calculated by using the 

formula:     

 ρλ =  
ρλ

′

cos(SZA)
    (2) 

where, ρλ is TOA reflectance without the solar angle correction, and SZA is solar zenith 

angle. The conversion of the Sentinel-2A MSI DN's to TOA reflectance was done by 

using a single constant for scaling, which accounts for the exo-atmospheric irradiance, 

Earth–sun distance, and the solar angle cosine correction: 

 ρλ =
DNcal

g
 (3) 

where, DNcal is calibrated DN value (pixel value), and g = 1000 is the scale factor. The 

MODIS image data products were processed to TOA reflectance using the calibration 

parameters from the metadata for the same region of interest used for other sensors at 

their specified spatial resolution. The input calibration parameters' values were 

transformed into the reflectance scales and reflectance offsets by using Equation 4.  

 ρcos (θ)B,T,FS = reflectance_scalesB(SIB,T,FS − reflectance_offsetsB) (4) 

where, ρcos (θ)B,T,FS is reflectance product for reflected solar bands, SIB,T,FS is level 1B 

product scaled integer, andreflectance_scalesB and reflectance_offsetsB are parameters 

deduced from Level 1B calibration parameters. 
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2.3.2. Data Filtering to Remove Cloud, Cloud Shadow, and Large Sensor View 

Angles 

After calculation of the cosine corrected mean TOA reflectance value for the Region of 

Interest (ROI) of each image, filtering was required to obtain cloud and cloud shadow-

free imagery. A quality assessment band is included with Landsat Level-1 data products 

in which each pixel in the Quality Assessment band consists of a decimal value, which 

represents bit-packed combinations of sensor, atmosphere, and surface conditions. Thus, 

the quality assessment band data can be used to filter out the cloud-contaminated pixels 

from ETM+ and OLI imagery. The pixel value of 672 (clear pixels) of the quality 

assessment band was used to form a cloud binary mask for removing cloudy pixels from 

ETM+ imagery and a pixel value of 2720 for OLI imagery [3]. Likewise, for Sentinel, 

cloud mask data from a cloud mask file was used to remove the cloudy pixels for all the 

bands with different spatial resolutions. Some outliers remained in the dataset even after 

applying the cloud mask using the quality assessment band and the cloud mask data. 

Thereby, an empirical sigma (σ) filtering approach was used for identifying outliers. 

Basically, a scene was considered a potential outlier when the mean TOA reflectance 

value of the scene exceeds one sigma (±1σ) threshold. Subsequently, a visual inspection 

was carried out for the images that were considered as a potential outlier. When cloud, 

cloud shadow, or other artifacts were identified during the visual inspection of the image 

within the ROI for any spectral band of an image, the entire scene was discarded from the 

analysis. Figure 2 illustrates a potential identified outlier and the image corresponding to 

the point highlighted by the red circle. As can be seen, the red rectangle represents the 
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ROI on the image, and it contains clouds, therefore this image was discarded from the 

analysis. 

All satellite sensors used in this work had view zenith angles of 7.5 degrees or less except 

MODIS. The Field of View (FOV) of the MODIS sensor is ±49.5°, which can increase 

the BRDF differences between the sensors due to uneven illumination and reflectance. 

Therefore, for MODIS, the scenes having a large view zenith angle (VZA>15̊) were 

excluded from the analysis in order to minimize the BRDF differences between the 

sensors.  

  

                                             (a)                                                (b) 

Figure 2. (a) Graph to illustrate the identification of outlier using 2-sigma standard 

deviation method; and (b) visual inspection of the image considered as a potential outlier. 

2.3.3. Scaling Adjustment Factor (Near Coincident Scene Pairs) 

The five sensors used in this work collect data in similar spectral regions; however, there 

are some differences in the Spectral Response Function (SRF) (see Table 1). These 

differences in SRF between sensors may generate a systematic error during the process of 

combining the data. Consequently, for mitigating the effects of differences in SRF 
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between sensors, a procedure to achieve spectral consistency and to correct the absolute 

difference in the data was employed [13,16]. 

The TOA reflectance generated from ETM+, MODIS, and MSI sensors were scaled to 

match the OLI sensor by applying a Scaling Adjustment Factor (SAF), i.e., the TOA 

reflectance of each sensor was normalized by using the adjustment factor. The SAF was 

calculated by taking the mean ratio of cosine corrected TOA Reflectance values from 

near coincident acquisitions with the OLI (see Equation 5). Near coincident acquisition 

refers to the scenes that are imaged within a maximum acceptable window of days. For 

MODIS and Landsat-7 ETM+, 'near-coincident' refers to the scene pairs that are imaged 

approximately eight days apart as they are eight days out of phase with the OLI. The 

scene pairs that are imaged within the window of four days were used for Sentinel-2A 

since they provide optimal scaling factor with minimum differences in between the 

sensors.  

 SAF =
ρOLI

ρETM+/MSI/MODIS
 (5) 

where, SAF is scaling adjustment factor, ρOLI is mean TOA reflectance from OLI sensor, 

and ρETM+/MSI/MODIS is mean TOA reflectance from ETM+, MSI, or MODIS sensor. 

2.3.4 Bidirectional Reflectance Distribution Function (BRDF) Normalization 

PICS are not perfect Lambertian surfaces, and consequently, directional reflectance 

effects are present in satellite remote sensors reflectance retrievals due to variability in 

the geometry of acquisition, especially in longer wavelength bands. The TOA reflectance 

is dependent on the illumination and the viewing geometry, which vary significantly from 

one acquisition to another. To address the impacts due to the different solar and viewing 
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geometries on the derived TOA reflectance, a Bidirectional Reflectance Distribution 

Function (BRDF) normalization was applied to the dataset. 

Several approaches have been reported in the literature to model the BRDF data. Liu [28] 

employed a BRDF model based only on the solar zenith angle for cross-calibration 

between MODIS and MVIRS. Schlapfer [29] also proposed a normalization method for 

sensors having a wide field of view based on the solar zenith, view zenith, and relative 

azimuth angles (i.e., the difference between the solar and view azimuth angles). 

Likewise, Mishra [25] derived an empirical linear BRDF model based on solar and view 

zenith angles using near nadir images of Terra MODIS over Libya 4. Farhad [30] 

developed a linear BRDF model where the reflectance’s were modeled as a quadratic 

function of view zenith angles. This model was further extended by Kaewmanee [31] 

with quadratic terms for all four angles (solar zenith/azimuth and view zenith/azimuth), 

including the interaction terms. This model provided the best BRDF model 

characterization and the best after normalization uncertainty. For this work, Kaewmanee's 

15 coefficient quadratic model derived from four angles was chosen for BRDF 

normalization (see Equation 6). 

 

ρmodel = β0 + β1Y1
2 + β2X1

2 + β3Y2
2 + β4X2

2  + β5X1Y1 + β6X1Y2  

+ β7X2Y2 + β8X2Y1 + β9Y1Y2 + β10X1X2 + β11X1 + β12Y1

+ β13X2 + β14Y2 

 (6) 

where , β0 ,  β1 ,  β2 ,….are the model coefficients, and Y1, X1, Y2, X2 are Cartesian 

coordinates representing the planar projections of the solar and sensor angles originally 

given in spherical coordinates:  

 Y1 = sin(SZA) × sin(SAA) (7) 
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  X1 = sin(SZA) × cos(SAA)  (8) 

 Y2 = sin(VZA) × sin(VAA) (9) 

 X2 = sin(VZA) × cos(VAA) (10) 

where, SZA is solar zenith angle, SAA is solar azimuth angle, VZA is view zenith angle, 

and VAA is view azimuth angle. The BRDF-normalized TOA reflectance for each sensor 

was calculated using: 

 ρBRDF−normalized =
ρobs

ρmodel
× ρref (11) 

where,  ρobs  is observed mean TOA reflectance from each scene , ρmodel  is model 

predicted TOA reflectance, and  ρref  is TOA reflectance with respect to a set of 

"reference" solar and sensor position angles. For this analysis, the reference SZA, SAA, 

VZA, and VAA angles were chosen by taking the mode of the corresponding SZA, SAA, 

VZA, and VAA angles from all processed scenes. The reference angle chosen for six 

PICS for the normalization procedure is listed in Table 3. 

Table 3. Reference angles for PICS. 

SZA SAA VZA VAA 

38˚ 144˚ 3˚ 103˚ 

In the course of selecting an appropriate TOA reflectance harmonization algorithm for 

the TOA reflectance dataset from five different sensors, the use of a single BRDF model 

worked well in the data by giving a minimum coefficient of variation (lesser amount of 

dispersion around the mean) in the normalized dataset. Although previous work [13] used 

different BRDF models for different sensors for the same site, it is well known that the 

directional effect is a property related to the target. Hence, it would be more reasonable to 

normalize the combined TOA reflectance data using a single BRDF model for a site with 
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a common reference angle rather than using a different BRDF model for different sensors 

data for the same site.  

2.4. Statistical Analysis 

2.4.1. Inverse Variance Weighted Moving Average Method 

Intrinsic in the TOA reflectance data collected over time is some form of random 

variation. Smoothing (or averaging) is a technique applied to time series to reduce the 

effect caused due to random variation in the data. The idea is to remove the noise from 

the data and expose the signal to the underlying trend, seasonal and cyclical components 

in the time series. There are several smoothing techniques, which involve averaging 

methods and exponential smoothing methods. Simple averaging and averaging by 

weights fall under averaging methods, where simple averaging implies taking the average 

of the observations and averaging by weights implies assigning equal or unequal weights 

to all the observations and then averaging them. In this work, weighted moving averages 

were applied, with the weights based on each observation’s uncertainty. Non-parametric 

statistical analyses were applied to the resulting smoothed series [32].  

The method of weighting the TOA reflectance data by uncertainties and applying the 

moving average is referred to as the inverse variance weighted average method. 

Calculating a moving average involves producing a new time series where the values 

comprise the weighted average of observations in the original time series. There is a need 

for weighting the data before applying statistical tests because there may be an 

over-representation of certain characteristics in the dataset. For instance, the test might be 

more biased towards the OLI sensor as we are using OLI as a reference for the scaling 

adjustment. On the other hand, having a larger number of observations than other sensors 
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could also influence the test results. Weighting compensates for biases in the data. The 

moving average technique requires a specific window size, which defines the number of 

original observations used to calculate the moving average value. 

In this work, a moving average with a window size of twelve months with seven days 

shifting was applied to reduce the seasonal effects, smooth out the short-term fluctuations 

in the time series data, and highlight long-term trends. For this application, the weights 

were allocated by making each point's weight inversely proportional to the square of its 

uncertainty [33] (see Equation 13). Hence, data points in the time series with less 

uncertainty are given more weight than data points with higher uncertainty values (see 

Equation 12). 

 

ρweighted =
∑ wiρi

n
i=1

∑ wi
n
i=1

 

 

(12) 

 wi =
1

σtotal
2  (13) 

where, ρi is virtual constellation TOA reflectance time series, wi is weight, and σ is total 

uncertainty associated with each TOA reflectance. The total uncertainty associated with 

each observation of the time series was calculated taking into account four sources of 

uncertainties: (1) spatial uncertainty; (2) BRDF model uncertainty; (3) scaling adjustment 

factor uncertainty; and (4) sensor calibration uncertainty (see Equation 14).  

 σtotal = √σspatial
2 + σBRDF

2 + σSAF
2 + σsensor

2  (14) 

The spatial uncertainty was calculated considering the variation of mean TOA reflectance 

within the ROI. BRDF model uncertainty was evaluated by taking the residual errors 

between the observed and the predicted TOA reflectance. Scaling adjustment factor 
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uncertainty is the ratio of the standard deviation to the mean scaling adjustment factor. 

Lastly, the sensor calibration uncertainties for different sensors used for this work are 

listed in Table 4.  

Table 4. Sensor calibration uncertainty for five different sensors [21,22,25,27,28]. 

Sensors Reflectance Product Uncertainty 

L7- ETM+ 5% 

L8-OLI 2% 

Sentinel 2A 2.5% 

Terra MODIS 2% 

Aqua MODIS 2% 

2.4.2. Statistical Test for Change Point Detection (Sequential Mann–Kendall Test) 

After applying the inverse variance weighting method, change point detection test is 

applied to the dataset. The purpose of the change point detection test is to investigate 

possible dates when the behavior of time series data has changed. The sequential version 

of the Mann–Kendall test [34] is a non-parametric test applied to time-series data to 

detect potential change points. This analysis has been increasingly employed in different 

fields, including finance, aerospace, meteorology, and climate changes. Bisai [35] 

examined the fluctuations of trend and the abrupt change point of atmospheric 

temperature time series in the Kolkata observatory using the sequential Mann–Kendall 

test. Kundu [36] also employed the Mann–Kendall test and Sen's slope estimator to 

determine the annual variability in the meteorological parameters of Western Rajasthan.  

The test uses the ranked values of the original data in the analysis and locates the 

beginning year of the trend. It sets up two series, one progressive u(t)  and another 

retrograde u'(t) by computing the rank values yi  from the original values ( x1 , x2 , 

x3 … . , xn) and the magnitudes of yi (i=1,2,3…,n) are compared with yj(j=1,2,3….,i-1). 
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For each comparison, if yi>yj , they are counted and denoted by ni. The test statistic ti is 

given by: 

 ti = ∑ ni

i

j=1

 (15) 

The distribution of test statistic 𝑡𝑖 has a mean as  

 E(ti) =
i(i − 1)

4
 (16) 

and variance as 

 Var(ti) =
i(i − 1)(2i + 5)

72
 (17) 

The sequential values for the series were calculated for each of the test statistic variables 

𝑡𝑖 using: 

 u(ti) =
ti − E(ti)

√var(ti)
 (18) 

Here, the progressive sequential statistic u(ti) is estimated using the original time series 

( x1 , x2,x3 … . , xn ) whereas the values of a retrograde sequential statistic  u′(ti ) are 

estimated in the same way but starting from the end of the series (xn,xn−1, xn−2 … . , x1). 

The standardized variable u(t) has a zero mean and unit standard deviation and fluctuates 

around zero [37]. When the values of u(ti) (progressive series) and u′(ti) (retrograde 

series) are plotted as a function of time, the intersection point of these curves represents 

the approximate turning point of trend within the time series. When either the progressive 

or retrograde curve exceeds a certain threshold before or after the intersection point, this 

trend turning point (change point) is considered significant at the corresponding level 
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[35]. The threshold value in this study is ±2.58 (99% significance level), with the 

crossing point estimating the year at which the trend begins. 

2.4.3. Statistical Test for Trend Analysis (Mann–Kendall Test) 

The Mann–Kendall test is a non-parametric trend detection technique that tests the null 

hypothesis H0: data are independently and randomly ordered so that there is no 

monotonic trend present against the alternative hypothesis Ha: there is a monotonic trend 

in the data [38,39]. In other words, the Mann–Kendall test analyzes data collected over 

time for consistently monotonic trends (increasing or decreasing trends). 

For this work, the Mann–Kendall test was applied to the same time series using two 

different strategies: (a) by dividing the time series into different regions based on the 

change points detected by the sequential Mann–Kendall test and applying the test in those 

regions to identify the slope magnitude of the trend; and (b) applying the test to the entire 

time series to look into the presence of an overall trend in every band. The mathematical 

theory behind the Mann–Kendall test is that it compares the difference in signs between 

earlier and later data points. The concept is that if a trend is present, the sign values will 

tend to increase or decrease based on the direction of the trend. Let  x1, x2 , x3 … . , xn 

represent n data points where xj represents the data point at time j. The Mann–Kendall 

test statistic is given by: 

 S =  ∑ ∑ sgn(xj − xi)

n

j=i+1

n−1

i=1

 (19) 

where: 

 sgn(xj − xi) =  {

 1 if xj − xi > 0

 0 if xj − xi = 0

−1 if xj − xi < 0

 (20) 
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The initial value of the Mann–Kendall statistic, S, is assumed to be 0, and each data value 

is compared to all the subsequent data values in the ordered time series. If the data value 

from a later time period is higher than the data value of an earlier time period, then S is 

incremented by 1. If the data value from the later time period is lower than the data value 

of the earlier time period, S is decremented by 1. A very high positive value of S 

indicates an increasing trend, and a very low negative value indicates a decreasing trend 

[40]. This test was performed at a 99% significance level.  
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3. RESULTS 

The results obtained at each step of the methodology for Sudan 1 are presented in Section 

3.1 and the summary of results for rest of the sites are presented in Section 3.2. 

3.1. Stability Analysis of Sudan 1 

3.1.1. Scaling Adjustment Factor  

To implement the virtual constellation approach, TOA reflectance data was homogenized 

using the scaling adjustment factor as described in Section 2.3.3. Figure 3 illustrates TOA 

reflectance from the combined satellite sensors over time for Sudan 1 site without (Figure 

3a) and with (Figure 3b) scaling adjustment factor. The offsets seen in Figure 3a caused 

by atmospheric effects, differences in the SRF, and the spectral signature of the ground 

target, of the individual sensors, are reduced after applying the scaling adjustment factor.  

 

(a) 
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(b) 

Figure 3. Temporal trend of before (a) and after (b) scaling adjusted TOA reflectance 

over Sudan 1 site for the combined dataset (ETM+, Terra MODIS, Aqua MODIS, OLI, 

and MSI). 

3.1.2. Bidirectional Reflectance Distribution Function (BRDF) Normalization 

The adjusted TOA reflectance from the combined sensor data was BRDF normalized in 

order to minimize seasonal effects. Figure 4 shows the TOA reflectance predicted by the 

15-coefficient BRDF model explained in Section 2.3.4. The residual error of this model 

was estimated by taking the mean percentage difference between the observed value and 

value predicted by the BRDF model for all the sites, which is presented in Table 5. The 

residual errors are expected to be close to zero when the model is working well for the 

data. From the table, it is evident that the residuals are close to zero except for the blue 

and SWIR 2 band. This might be due to the atmospheric and water absorption features of 

these bands. 
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Figure 4. In red, the TOA reflectance predicted by the BRDF model; and in black, the 

observed TOA reflectance data of virtual constellation over Sudan 1 for blue, green, red, 

NIR, SWIR 1, and SWIR 2 bands. 

Table 5. BRDF model error (residual error) in percentage for all PICS sites in matching 

spectral bands. 

Bands Sudan 1 Libya 4 Egypt 1 Niger 1 Libya 1 Niger 2 

Blue 0.304% 0.259% 0.107% 0.385% 0.398% 0.611% 

Green 0.032% 0.059% -0.017% 0.083% 0.128% 0.281% 

Red -0.113% -0.043% -0.056% -0.045% 0.013% -0.007% 

NIR -0.116% -0.083% -0.055% -0.055% -0.014% -0.056% 

SWIR 1 -0.194% -0.170% -0.055% -0.167% -0.145% -0.120% 

SWIR 2 -0.231% -0.351% -0.092% -0.270% -0.162% -0.261% 

3.1.3. Inverse Variance Weighted Moving Average Method 

Next, the inverse variance weighted moving average method was applied to scaling 

adjusted BRDF normalized TOA reflectance dataset. Table 6 summarizes the total 

average estimated uncertainty considering all four sources of uncertainty mentioned in 

Section 2.4.1. The scaling adjusted BRDF normalized TOA reflectance and the TOA 

reflectance obtained after applying the weighted moving average trends over Sudan 1 are 

shown in Figure 5. The weighted averaged TOA reflectance shows no fluctuations in the 
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dataset and highlights the long-term trends. In addition, the residual seasonality seen in 

the dataset even after BRDF normalization has been minimized. 

Table 6. Total average estimated uncertainty for all PICS sites in matching spectral 

bands. 

Bands Libya 1 Libya 4 Niger 1 Niger 2 Sudan 1 Egypt 1 

Blue 6.21 % 4.89 % 5.43% 5.57 % 4.52 % 4.59 % 

Green 4.95 % 4.85 %  4.24% 4.59 % 4.06 % 4.68 % 

Red 4.34 % 4.87 % 4.00% 4.25% 4.07 % 4.63 % 

NIR 4.47 % 5.07 % 4.06 % 4.33% 4.07 % 4.57 % 

SWIR 1 5.20 % 5.54 % 4.20 % 4.63% 4.25 % 4.63 % 

SWIR 2 5.58 % 6.34 % 4.95 % 5.31% 4.95 % 4.82 % 

 

 

Figure 5. Weighted moving averaged TOA reflectance data of the virtual constellation 

over Sudan 1 for blue, green, red, NIR, SWIR 1, and SWIR 2 bands. 

3.1.4. Sequential Mann–Kendall Test  

The results of the sequential Mann–Kendall (SQMK) test statistic for the virtual 

constellation weighted averaged TOA reflectance dataset of Sudan 1 reveal a statistically 

significant change point. The yearly plots for the progressive series u(ti) and retrograde 



27 

series u′(ti) for each band are shown in Figure 6. The level of significance was set to 

99% (i.e., critical value ±2.58). For the blue band, the progressive and the retrograde 

series intersect four times throughout the time series indicating an abrupt change in the 

years 2007, 2009, 2011, and 2015. For the green band, the change points were detected in 

the year 2001, 2002, 2009 and 2015. Here, 2015 cannot be recognized as a significant 

change point as the associated probability value is lower than the accepted level of 

significance. For the red band, the progressive and the retrograde series cross each other 

twice in the years 2007 and 2009, indicating a significant turning point. The results for 

the NIR and red bands are identical. For the SWIR 1 band, the turning point was 

observed in the years 2002 and 2007. The SQMK result for the SWIR 2 band is also 

similar. The trend and change behavior of band pairs blue and green, red and NIR, and 

SWIR 1 and SWIR 2 are expected to be similar since their frequency range along the 

electromagnetic spectrum to acquire the data are close to each other. Table 7 summarizes 

change points detected by the SQMK test for all six spectral bands for Sudan 1 site. 
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Figure 6. Abrupt change in TOA reflectance data of virtual constellation over Sudan 1 for 

blue, green, red, NIR, SWIR 1, and SWIR 2 bands. 

Table 7. Change point detection by the sequential version of the Mann–Kendall test for 

Sudan 1. 

Bands 

Detected Change Points (Year) 

Remarks 

𝟏𝒔𝒕 2nd 3rd 4th 5th 

Blue 2007* 2009* 2011* 2015* - Significant 

Green 2001* 2002* 2009* 2015 - Significant 

Red 2007* 2009* - - - Significant 

NIR 2007* 2009* - - - Significant 

SWIR 1 2002* 2007* - - - Significant 

SWIR 2 2004* 2007* 2011 2018 2019* Significant 

Note: asterisk (*) indicates significant change points at the 99% confidence level.  

3.1.5. Mann–Kendall Test  

The presence of monotonic trends and their statistical significance was verified using the 

non-parametric Mann–Kendall (MK test) at a significance level of α= 0.01. The MK test 
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was applied to: (a) the entire time series to indicate the long-term trends; and at (b) 

sub-periods based on change-point results to indicate short-term trends. 

The results of the MK test applied to the entire time series to identify a long-term trend is 

presented in Table 8. The test results indicate that there is a presence of long-term 

monotonic trends in all the bands. On the other hand, the test was not able to detect a 

trend in some of the bands (red, NIR, SWIR 1, and SWIR 2) when applied to the 

unweighted TOA reflectance due to the presence of random variation in the dataset. This 

suggests that applying the statistical test to a weighted moving averaged dataset gives an 

advantage of detecting the underlying trend over the unweighted dataset. 

Table 8. Mann–Kendall test results at 0.01 significance level for Sudan 1. 

Bands 

Weighted TOA Reflectance Data Unweighted TOA Reflectance Data 

p-value Decision p-value Decision 

Blue 8.2 × 10−36 Downward Trend 4.3 × 10−16 Downward Trend 

Green 1.4 × 10−9 Downward Trend 1.6 × 10−8 Downward Trend 

Red 2.5 × 10−20 Upward Trend 0.258 No Trend 

NIR 2.1 × 10−31 Upward Trend 0.932 No Trend 

SWIR 1 9.1 × 10−28 Downward Trend 0.036 No Trend 

SWIR 2 1.5 × 10−7 Downward Trend 0.594 No Trend 

For the descriptive analysis of the site's stability, the MK test was applied to the sub-

periods based on the change point results (SQMK test) presented in Section 3.1.4 . Figure 

7 highlights the significant monotonic trends before and after the turning points 

throughout the time series. The points in between the trend line represents the inflection 

point (change points) in the particular band. There is a decreasing trend for the blue band 

from the year 2007 to 2009, an increasing trend from the year 2009 to 2011, and again, a 
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decreasing trend from the year 2011 to 2015, indicating the years 2007, 2009, 2011, and 

2015 as change points. For the green band, the years 2001, 2009, and 2015 were 

identified as abrupt change points with an increasing trend before the year 2009 and a 

decreasing trend after that. The red and the NIR bands for this particular site have a 

change point in the year 2009, with an increasing trend followed by a decreasing trend. 

SWIR 1 band has a downward trend from 2002 to 2007 and an upward trend from 2007 

onwards and the years 2002 and 2007 are the significant change points. The SWIR 2 

band has an upward trend at the beginning of the time series and a downward trend from 

the year 2004 to 2011 and again, upward trend from the year 2011 until 2018. 

 

Figure 7. TOA reflectance data of virtual constellation over Sudan 1 for blue, green, red, 

NIR, SWIR 1, and SWIR 2 bands with fitted trend line before and after turning points. 

3.2. Stability Analysis of Libya 4, Egypt 1, Niger 1, Niger 2 and Libya 1 

The summary of results obtained for Libya 4, Egypt 1, Niger 1, Niger 2 and Libya 1 are 

presented in this section. 
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Figure 8. TOA reflectance data of virtual constellation over Libya 4 for blue, green, red, 

NIR, SWIR 1, and SWIR 2 band with fitted trend lines before and after turning points. 

Table 9. Change point detection by sequential version of the Mann–Kendall test for 

Libya 4. 

Bands Detected Change Points (Year) Remarks 

𝟏𝒔𝒕 2nd 3rd 4th 5th 

Blue 2009* 2013* 2016 2018* - Significant 

Green 2006 2008* 2011* 2013* 2017* Significant 

Red 2006 2008* - - - Significant 

NIR 2006 2008* - - - Significant 

SWIR 1 2012* 2013* - - - Significant 

SWIR 2 2011* 2013* 2017* - - Significant 

Note: asterisk (*) indicates significant change points at the 99% confidence level.  

The MK test results applied to the sub-periods defined by the results of the SQMK test 

are shown in Figure 8. The figure shows the weighted averaged TOA reflectance dataset 

divided into sub-periods over Libya 4 for corresponding bands. These sub-periods are 
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fitted with a significant trend line (α=0.01) based on the MK test results both before and 

after the change points. Figure 8 depicts pronounced upward and downward trends 

occurring at different time periods throughout the entire time series. The MK test 

indicates a significant upward trend followed by a downward trend in the blue band, 

highlighting the actual change points in the years 2009, 2013, and 2018. The green band 

has a similar trend pattern as the blue band, but the upward trend starts one year earlier 

with the change points in the years 2008, 2013, and 2017. Although the slope of these 

trend lines is small ( ~10−04) , the inflection points (where the function changes 

concavity) between these trend lines are statistically significant. The red and the NIR 

bands also indicate an upward trend and a downward trend with the inflection point in the 

year 2008 between these trend lines. The inflection points around the year 2012 for 

SWIR 1 and SWIR 2 can be seen with a downward trend before and upward trend after 

the inflection point. Table 9 summarizes the change points detected by the SQMK test for 

all the six spectral bands for the Libya 4 site.  



33 

 

Figure 9. TOA reflectance data of the virtual constellation over Egypt 1 for blue, green, 

red, NIR, SWIR 1, and SWIR 2 bands with fitted trend lines before and after turning 

points. 

Table 10. Change point detection by the sequential version of the Mann–Kendall test for 

Egypt 1. 

Bands 

Detected Change Points (Year) 

Remarks 

𝟏𝒔𝒕 2nd 3rd 

Blue 2017* 2019* - Significant 

Green 2017* 2019* - Significant 

Red 2006* 2017* 2019 Significant 

NIR 2006* 2017* 2019 Significant 

SWIR 1 2016* 2018 - Significant 

SWIR 2 2016* 2018 - Significant 

Note: asterisk (*) indicates significant change points at the 99% confidence level.  

For Egypt 1, (see Figure 9) there is an increasing trend in the blue and green bands from 

the beginning of the time series, followed by a decreasing trend towards the end of the 

time series. However, the change point is detected at different years (2017 and 2019 
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respectively) for each band. The red and NIR bands have a similar trend, indicating 

change point in the same year (2006, 2016, and 2019). Although the SWIR bands are also 

expected to exhibit a similar trend pattern, the test results show contrasting results for this 

specific site. The decreasing trend is seen at the beginning of the time series until the year 

2016 and an increasing trend after that for SWIR 1 band, whereas there is an increasing 

trend followed by a decreasing trend with the turning point in the year 2016 for SWIR 2 

band. The reason behind the contradiction in the trend result for this band pair might be 

due to the absence of AQUA data (noisy detector) for the SWIR 1 band [41]. Table 10 

summarizes the change points detected by the SQMK test for all the six spectral bands 

for Egypt 1 site. 

 

Figure 10. TOA reflectance data of the virtual constellation over Niger 1 for blue, green, 

red, NIR, SWIR 1, and SWIR 2 bands with fitted trend lines before and after turning 

points. 

Table 11. Change point detection by sequential versions of the Mann–Kendall test for 

Niger 1. 



35 

Bands 

Detected Change Points (Year) 

Remarks 

𝟏𝐬𝐭 𝟐𝐧𝐝 𝟑𝐫𝐝 𝟒𝐭𝐡 𝟓𝐭𝐡 

Blue 2000 2004* 2016 2018 2019 Significant 

Green 2001 2003* - - - Significant 

Red - - - - -  

NIR - - - - -  

SWIR 1 2003* 2004 - - - Significant 

SWIR 2 2000 2001* 2006* 2010* - Significant 

Note: the asterisk (*) indicates significant change points at the 99% confidence level.  

For Niger 1, (see Figure 10), the blue band has a single change point in the year 2004 

with decreasing trend before and an increasing trend after the change point. The change 

point in the green band is also detected in the same year (i.e., 2004), but the trend is only 

seen for a short period (from 2001 to 2003). The red and NIR bands do not have any 

change point throughout the entire time series. For the SWIR 1 band, there is an 

increasing trend until the year 2003 and a decreasing trend until the end of the time 

series. In addition, for SWIR 2 band, there are fluctuations in the trend, indicating a 

significant change point in the year 2010. Table 11 summarizes the change points 

detected by the SQMK test for all the six spectral bands for Niger 1 site. 
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Figure 11. TOA reflectance data of the virtual constellation over Niger 2 for blue, green, 

red, NIR, SWIR 1, and SWIR 2 bands with fitted trend lines before and after turning 

points. 

Table 12. Change point detection by sequential version of the Mann–Kendall test for 

Niger 2. 

Bands 

Detected Change Points (Year) 

Remarks 

𝟏𝐬𝐭 𝟐𝐧𝐝 3rd 4th 5th 6th 

Blue 2002* 2012* 2013 2016 2017 - Significant 

Green 2003* 2004 2010 2012* 2015 2017 Significant 

Red 2002* 2010* 2012* 2014* 2017* 2018* Significant 

NIR 2002* 2010* 2011* 2014* 2017* 2018* Significant 

SWIR 1 2004* 2015* - - - - Significant 

SWIR 2 2015* 2016 - - - - Significant 

Note: asterisk (*) indicates significant change points at the 99% confidence level.  

For Niger 2, (see Figure 11) it is evident that, like other sites, the band pair blue, green 

and red-NIR have similar trend patterns and the same year of change point but different 

trend patterns and same years of the change point for SWIR bands. Table 12 summarizes 
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the change points detected by the SQMK test for all the six spectral bands for the Niger 2 

site. 

 

Figure 12. TOA reflectance data of the virtual constellation over Libya 1 for blue, green, 

red, NIR, SWIR 1, and SWIR 2 bands with fitted trend lines before and after turning 

points. 

Table 13. Change point detection by sequential versions of the Mann–Kendall tests for 

Libya 1. 

Bands 

Detected Change Points (Year) 

Remarks 

𝟏𝐬𝐭 2nd 3rd 4th 5th 

Blue 2011* - - - - Significant 

Green 2008* 2011* - - - Significant 

Red 2001* 2006* 2012* 2018 2019* Significant 

NIR 2001* 2006* 2012* - - Significant 

SWIR 1 2012* 2014* 2017* - - Significant 

SWIR 2 2011* 2012* 2019* - - Significant 

Note: asterisks (*) indicates significant change points at the 99% confidence level.  
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For Libya 1, (see Figure 12) the graph for each band indicates the turning point detected 

by the SQMK test and the trend behavior before and after the turning point. The change 

points and the trend patterns are again similar for the band pairs blue-green, red-NIR, and 

SWIR1-SWIR 2. The change points detected by the SQMK test for all the bands are 

summarized in Table 13. The Mann–Kendall test results for the overall long-term trend 

for Libya 1, Egypt 1, Niger 1, Niger 2 and Libya 1 for all six bands are presented in Table 

14. This analysis provides sufficient statistical evidence to state that there is a long-term 

upward trend in all the bands for Libya 4, Libya 1, and Egypt 1. In contrast, Sudan 1 

PICS data indicates a long-term downward trend in all common bands except for Red and 

NIR bands. Likewise, Niger 1 PICS data indicates a long-term downward trend in all the 

bands except for the blue band, and Niger 2 indicates temporal stability across all the 

bands except for green and SWIR 2 bands. 

Table 14. Summary of Mann–Kendall test results for overall time series for Libya 1, 

Egypt 1, Niger 1, Niger 2 and Libya 1 

Bands P-Value Decision 

Libya 4 

Blue 6.32 × 10−12 Upward Trend 

Green 2.85 × 10−20 Upward Trend 

Red 1.64 × 10−35 Upward Trend 

NIR 3.16 × 10−38 Upward Trend 

SWIR 1 9.94 × 10−39 Upward Trend 

SWIR 2 4.08 × 10−42 Upward Trend 

Egypt 1 

Blue 5.28 × 10−44 Upward Trend 

Green 2.73 × 10−14 Upward Trend 

Red 9.86 × 10−11 Upward Trend 
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NIR 5.25 × 10−11 Upward Trend 

SWIR 1 5.83 × 10−14 Upward Trend 

SWIR 2 4.42 × 10−31 Upward Trend 

Niger 1 

Blue 0.002 No Trend 

Green 5.8 × 10−35 Downward Trend 

Red 3.19 × 10−51 Downward Trend 

NIR 3.4 × 10−61 Downward Trend 

SWIR 1 6.5 × 10−46 Downward Trend 

SWIR 2 1.14 × 10−09 Downward Trend 

Niger 2 

Blue 0.033 No Trend 

Green 3.60 × 10−14 Upward Trend 

Red 0.031 No Trend 

NIR 0.041 No Trend 

SWIR 1 0.532 No Trend 

SWIR 2 4.47 × 10−46 Downward Trend 

Libya 1 

Blue 1.82 × 10−25 Upward Trend 

Green 2.19 × 10−23 Upward Trend 

Red 1.69 × 10−07 Upward Trend 

NIR 2.36 × 10−22 Upward Trend 

SWIR 1 1.48 × 10−22 Upward Trend 

SWIR 2 3.89 × 10−11 Upward Trend 
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4. DISCUSSION 

Taking the advantage of the virtual constellation approach to combine the data 

from multiple sensors into a single time series and separating sensor changes from site 

changes, this work focused on quantifying the temporal variability of six PICS. Based on 

the analysis of the results, it can be inferred that there is a presence of both short-term and 

long-term monotonic trends in the six common reflective bands of five sensors for all six 

evaluated PICS. Table 15 summarizes the long-term reflectance change for all the bands 

over all the six PICS sites. The negative and positive sign in this table indicates a 

monotonic downward and upward trend, respectively. Even though the trend detected are 

statistically significant, the magnitude of the slope is noticeably small ranging from 

0.008%  to 0.215% change in reflectance unit per year. Hence, these trends do not 

suggest that these sites are changing excessively over time. The findings of the current 

study and findings of the previous study by Tuli [13] are different in context of presence 

of long- term trend in some of the sites, which is expected because both the work 

employs different statistical approaches. For example, the result of the previous study 

does not indicate any monotonic trend in six reflective solar bands for Libya 4 and Egypt 

1 whereas; the current study shows that there is a presence of long-term upward trend in 

all the solar reflective bands for Libya 4 and Egypt 1. Likewise, for other sites the current 

study indicates presence of long-term monotonic trend that previous study was unable to 

detect. This implies that the current approach is more robust as weighting the TOA 

reflectance by uncertainty removes the biasness of the statistical test on the data and 

highlights the underlying long-term trend. 
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Table 15. Summary of long-term TOA reflectance change per year (in %) for all 

PICS. 

Bands Sudan 1 Libya 4 Egypt 1 Niger 1 Libya 1 Niger 2 

Blue -0.028% 0.008% 0.042% - 0.019% - 

Green -0.011% 0.013% 0.026% -0.022% 0.015% 0.010% 

Red 0.016% 0.019% 0.019% -0.028% 0.006% - 

NIR 0.019% 0.019% 0.017% -0.029% 0.015% - 

SWIR 1 -0.018% 0.002% 0.015% -0.028% 0.019% - 

SWIR 2 -0.009% 0.039% 0.025% -0.012% 0.011% -0.215% 

The results also provide evidence from a statistical perspective to indicate 

significant change points in all the sites. The change points have wider implication for 

those utilizing the calibration sites as they highlight the dynamic nature of the sites. 

These changes might be atmospheric change, climate change, or changes due to human 

activities. Therefore, the analysis presented here could be extended further to try to find 

out the reason behind the change or relate these changes to an actual physical change 

with the use of independent data and meteorological records. From the results, it is also 

clear that the amount of temporal change throughout the time series varies at different 

sub-periods for different spectral bands, but the results on the trend behavior are broadly 

consistent with the band pairs blue/green, red/NIR, and SWIR1/SWIR 2 in most of the 

sites.  

The findings of this study suggest that, even though some changes are statistically 

significant, they can still be used for radiometric calibration. However, for the 

appropriate use of the PICS data, the user should be careful while implying the change 

observed in the temporal stability of the PICS directly to the sensor response as some 

amount of changes might be coming from the site itself. The magnitude of the trends 

(amount of site change) reported in this work can be useful to reduce the calibration 

uncertainty of the satellite sensors. Another important aspect to take into consideration is 
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the stability requirement of the PICS for each of the satellite sensor missions. For 

example, the maximum amount of temporal change detected in all the sites was 0.215% 

per year for Niger 2. This magnitude of change increases with the increase in length of 

time of change. In 10 years’ time, the magnitude of the change becomes 2.15%, which is 

less than the stated mission requirement (i.e., 5% calibration uncertainty) for Landsat-7 

ETM+; therefore, the site change may be neglected. Nevertheless, some sensors 

demonstrate finer calibration uncertainty. The radiometric accuracy of sensor Traceable 

Radiometry Underpinning Terrestrial and Helio Studies (TRUTHS) is 0.3% [42]. In this 

case, the observed temporal change in 10 years would be 3%, which cannot be 

overlooked, and the site cannot be considered as a viable source of radiometric 

calibration.  

In summary, this analysis seems to improve the understanding of the stability of 

PICS by locating the change point and revealing the underlying trend that previous study 

methods were incapable of detecting. It also has outlined the importance of quantifying 

the temporal stability of PICS, showing that temporal invariance of the site cannot be 

assumed. This paper may serve as a reference for the calibration engineers who intend to 

use PICS for the radiometric calibration and performance monitoring of the satellite 

sensors in the future.   
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5. CONCLUSION 

Pseudo-invariant calibration sites have been widely used over the last decades for the 

regular monitoring of the radiometric performance of the Earth-observing satellite 

sensors. PICS are the regions on the Earth's surface that are assumed to exhibit minimal 

change over a long period. Historically, any change observed in the temporal stability of 

the PICS was directly implied to the change that occurred due to the sensor response. 

However, this assumption has not been assessed extensively in the past. The present 

study utilizes the virtual constellation approach to form a long-term TOA reflectance time 

series from five different satellite sensors (Landsat-8 OLI, Landsat-7 ETM+, Sentinel-2A 

MSI, Terra MODIS, and Aqua MODIS) over six different PICS sites (Libya 4, Sudan 1, 

Niger 1, Niger 2, Libya 1 and Egypt 1). The underlying trend and the locations where the 

behavior of PICS data has changed in this time series were identified using the statistical 

sequential Mann–Kendall test. Finally, the change point determined by the sequential 

Mann–Kendall test was used to detect short-term trends by applying the Mann–Kendall 

test to sub-periods of the time series. The results show that the magnitude of weighted 

averaged TOA reflectance trends for Sudan 1, Libya 4, Egypt 1, Niger 1, and Libya 1 

over 20 years are small changing no more than 0.042% per year even though they are 

statistically significant. For Niger 2, there is a maximum change of 0.215% reflectance 

unit per year for the SWIR 2 band compared to all other sites that have been evaluated.  

The proposed algorithm provides useful results for identifying the stable dataset over a 

time period to its usefulness for radiometric calibration. It is important to highlight that 

this approach can be used to detect change points not only for the selected PICS but also 

for any time-series data that is used by the remote sensing community. Therefore, the 
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analysis presented here could be further extended to determine the temporal stability of 

other CEOS recommended PICS, extended PICS, and even satellite sensors.  
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