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ABSTRACT 

EXTENDED PSEUDO INVARIANT CALIBRATION SITES-BASED TREND-TO- 

TREND CROSS CALIBRATION OF OPTICAL SATELLITE SENSORS 

PRATHANA KHAKUREL 

2021 

Satellite sensors have been extremely useful and are in massive demand in the 

understanding of the Earth’s surface and monitoring of changes. For quantitative analysis 

and acquiring consistent measurements, absolute radiometric calibration is necessary. The 

most common vicarious approach of radiometric calibration is cross-calibration, which 

helps to tie all the sensors to a common radiometric scale for consistent measurement. One 

of the traditional methods of cross-calibration is performed using temporally and spectrally 

stable pseudo-invariant calibration sites (PICS). This technique is limited by adequate 

cloud-free acquisitions for cross-calibration which would require a longer time to study the 

differences in sensor measurements. To address the limitation of traditional PICS-based 

approaches and to increase the cross-calibration opportunity for quickly achieving high-

quality results, the approach is based on using extended pseudo invariant calibration sites 

(EPICS) over North Africa. With the EPICS-based approach, the area of extent of the 

cross-calibration site covers a large portion of the North African continent. With targets 

this large, any sensor should overpass some portion of PICS near-daily, allowing for 

evaluation of sensor-to-sensor performance with much greater frequency. By using these 

near-daily measurements, trends of the sensor’s performance are then used to evaluate 

sensor-to-sensor daily cross-calibration. With the use of the proposed methodology, the 

dataset for cross-calibration is increased by an order of magnitude compared to traditional 
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approaches, resulting in the differences between any two sensors being detected within a 

much shorter time. Using this new trend in trend cross-calibration approaches, gains were 

evaluated for Landsat 7/8 and Sentinel 2A/B, with the results showing that the sensors are 

calibrated within 2.5% (within less than 8% uncertainty) or better for all sensor pairs, which 

is consistent with what the traditional PICS-based approach detects. The proposed cross-

calibration technique is useful to cross-calibrate any two sensors without the requirement 

of any coincident or near-coincident scene pairs, while still achieving results similar to 

traditional approaches in a short time.  
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1. INTRODUCTION 

A large number of satellites have been launched to observe and study the Earth’s 

surface. As life on orbit goes on, these satellites are affected by the degradation process 

throughout their operational life due to mechanical stress, cosmic and ultraviolet radiation, 

outgassing, etc. [1,2]. This degradation of the satellite’s performance impacts the pre-

launch radiometric calibration of the satellite, which also continues to change over time. 

Consequently, to acquire accurate and consistent measurements for quantitative analysis 

and monitoring of the Earth from satellite imagery, continuous monitoring of radiometric 

calibration is crucial. Various approaches have been performed to obtain the calibration 

parameters after the satellite is launched. One standard approach is the use of an on-board 

calibrator (OBC) device, which uses the on-board sources, such as lamps and solar 

diffusers, that directly provide a signal to the sensor to obtain frequent sensor calibration 

in flights [3]. Since not all the instruments are equipped with on-board sources, and even 

the ones with the built-in capabilities need monitoring, vicarious calibration is vitally 

important. A post-launch calibration technique, called vicarious calibration, utilizes 

locations on the Earth that are used as a reference source for monitoring and evaluating the 

satellite sensor’s calibration [3]. This technique can be achieved through reflectance, 

radiance, or irradiance-based approaches of in-situ measurements and modelling-based 

approaches such as Rayleigh, deep convective clouds (DCC), deserts, etc. [4]. 

Measurements from stable and predictable Pseudo-Invariant Calibration Sites (PICS) are 

most widely used to achieve vi-carious calibration [5]. 

The most widely used vicarious calibration method is the technique referred to as 

cross-calibration, in which the calibration of a reference sensor is transferred to another 
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less well calibrated sensor. This is done using a common ground target (coincident or near 

coincident) scene pairs acquired by two sensors. The following sections explain the 

requirements of the cross-calibration along with the limitations of the globally accepted 

traditional cross-calibration approach in detail, providing insights into the new approach to 

cross-calibration. This paper is organized as follows. In the first section a brief overview 

about the topic was given. Section 2 shows the methodology, materials, methods, and the 

data processing performed for this analysis. Section 3 contains the results and the 

discussion of this extended classification, Section 4 shows a validation using the Libya4 

Centre National d'Etudes Spatiales Region of Interest (Libya4 CNES ROI), and Section 5 

shows the conclusions of this analysis.  

1.1. Cross-Calibration and Its Requirements 

As mentioned earlier, cross-calibration is a process that transfers the calibration of 

a well-calibrated sensor to an uncalibrated sensor. To establish consistency between 

different sensor measurements and to tie them into a common radiometric scale, cross-

calibration is a critical step [6]. The basic “ideal” requirement of cross-calibration is that 

two sensors should observe the same target at the same time with the same viewing 

geometry. Even if the sensors achieve these criteria, the response of the sensor can be 

significantly different because of the difference in their relative spectral responses (RSRs). 

These differences between the RSR must be characterized, for which a hyperspectral 

profile is needed; a potential source of hyperspectral data is Hyperion [6,7]. 

1.2. PICS-Based Cross-Calibration of Sensors 

For an ideal cross-calibration, any spot on the globe observed by both satellites at 

the same time, and same-view geometry can be used. Since most of the surface of the Earth 
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is not stable enough for calibration, and it is very rare for two satellites to observe the same 

target at the same time with the same angle, the angular differences between these two 

sensors in the viewing and solar geometry should be corrected. If the cross-calibration 

needs to be performed using the same target observed by two sensors on different days, 

then the target should be a very stable site in all spatial, temporal and spectral aspects, or 

there must be a way to correct the variabilities of the site over time. A site that matches 

these criteria is referred to as PICS because they are spatially uniform, spectrally stable, 

and time-invariant terrestrial sites that are used to monitor the long-term radiometric 

calibration of optical satellite sensors. Twenty desert sites, 100x100 𝑘𝑚2 in size, were 

selected by Cosnefroy et al. [5] in North Africa and Saudi Arabia, which were then 

revisited, and the relevant nature of sites after 20 years was shown by Bacour et al. [8]. The 

Committee on Earth Observation Satellites (CEOS) has endorsed six sites, namely, Algeria 

3, Algeria 5, Libya 1, Libya 4, and Mauritania 1 and 2, among the selected sites, as the 

most suitable sites for calibration. An automated approach of identifying stable locations 

on Earth’s surface has also been developed, which found six sites in the Sahara Desert and 

Middle East with the temporal uncertainty range of 2% in all channels and 3% in the SWIR 

channel [9]. Bacour et al. have also suggested four new sites in Algeria, Sudan, Arabia, 

and Namibia to be considered for future implementation. PICS have been commonly used 

for the cross-calibration of two sensors, based on a “scene to scene” comparison where a 

region of interest (ROI) is chosen. In this approach, coincident or near-coincident scene 

pairs for the two sensors to be cross-calibrated are acquired, their RSR is matched and the 

cross-calibration is performed. The near coincident pairs are usually the scene pairs that 

are 3 days apart, as, within this short temporal period, the Earth’s surface properties are not 
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considered to be changed and affected by the atmosphere. The Libya 4 Centre National 

d’Etudes Spatiales (CNES) ROI has been shown to be stable over a six-day span by Barsi 

et al. [10], and hence this Libya 4 ROI scene, acquired by two sensors within six days, can 

be considered as near-coincident acquisition for cross-calibration. 

1.3. Limitations of PICS-Based Approach 

While the PICS-based approach allows us to expand cross-calibration to include 

not only coincident, but also near-coincident, there are still some limitations. As the PICS-

based approach is based on a comparison of the same scene (coincident/near-coincident 

scene pairs) acquired by the sensors from the PICS’ ROI, one of the main constraints of 

this approach is in finding an adequate number of these scene pairs for effective calibration. 

The two sensors used for cross-calibration have their own revisit cycle and, due to this, 

with both the sensors capturing the same target without the cloud cover, it would take 

several years to obtain a usable dataset for calibration. Cross-calibration of Landsat 7 

Enhanced Thematic Mapper Plus (ETM+) and Terra Moderate Resolution Imaging 

Spectroradiometer (MODIS) was performed by Chander et al. [6] using Libya 4 with nine 

coincident acquisitions (30 min apart) in a five-year time period. Farhad [11] obtained only 

eight coincident scene pairs in three years to cross-calibrate Landsat 8 Operational Land 

Manager (OLI) and Sentinel 2A Multispectral Instrument (MSI). Cross-calibration using a 

single coincident scene pair can also be performed, as described by Pinto et al. [12], where 

OLI and the China-Brazil Earth Resources Satellite (CBERS)-4 Multispectral Camera 

(MUXCAM) and Wide-Field Imager (WFI) were cross-calibrated using a single scene pair 

(within 26 min apart). However, better calibration with fewer errors can be achieved with 

a larger number of datasets [13]. 
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1.4. The New Approach of Cluster-Based Cross-Calibration 

In order to obtain more data, the PICS needs to be larger, so that they are acquired 

more frequently by the satellite within its revisit period. For this, Vuppula [14] combined 

multiple PICS’ images from Landsat 8 into a single dataset called “Super PICS” and 

increased the data frequency by three or four times using a technique of “PICS 

Normalization Process”. Shrestha et al. [15] identified 19 distinct regions, “clusters,” with 

similar spectral characteristics across North Africa, which potentially provide cloud-free 

imaging on a nearly daily basis. Shrestha et al. [16] used “Cluster 13,” which also includes 

Libya 4, to cross-calibrate Landsat 8 and Sentinel 2A with the data acquired in a year, 

where they found 11 coincident cloud-free scene pairs and 108 near-coincident 

acquisitions. Cross-calibration using Libya 4 was also performed, where only four 

coincident scene pairs were obtained. Cluster-based cross-calibration, therefore, increases 

the opportunities for cross-calibration, consistent with the traditional PICS-based approach 

[16]. 

A new approach to performing a daily evaluation of sensor-to-sensor performance 

using these continental-scale clusters is described in this paper. Daily coincident/near 

coincident acquisitions of the two sensors are obtained, which are used to identify the 

trends to evaluate their daily cross-calibration performance, also capturing their variability 

at different timepoints. The cross-calibration obtained using the trends of the two sensors 

is again validated with the traditional PICS-based approach. This analysis is performed for 

different sets of sensors, including Landsat 8, Sentinel 2A, Sentinel 2B, and Landsat 7. 

Cross-calibration for all the sensor’s combinations is performed, and the results for a few 

of the combinations are compared with the traditional cross-calibration approach. 
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This paper is structured as follows. Section 1 gives a basic overview of the topic. 

Section 2 gives the description of the sensors used. Section 3 describes the methodology 

for the analysis. Section 4 shows the results of the new approach and analyzes the results 

obtained. Section 5 validates the new trend-to-trend cluster-based approach with the 

traditional PICS-based cross-calibration approach. Section 6 discusses the results, and the 

future aspects of the research and Section 7 concludes the analysis. 
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2. SENSOR DESCRIPTIONS 

Landsat series and Sentinel MSI sensors have been acquiring long-term data for 

many years and have been frequently used for calibration purposes. Cross-calibration of 

each possible sensor pair was performed from the set of four sensors of the satellite Landsat 

8, Landsat 7, and Sentinel 2 mission, which are briefly described in this section. A 

comparison of all the sensors used for this work has been shown in Table 1 as a summary. 

2.1. Landsat 8 OLI 

Landsat 8, launched on 11 February 2013, is a satellite consisting of the operation-

al land imager (OLI) and the thermal infrared sensor (TIRS) instruments. It is located at an 

altitude of 705 km on a sun-synchronous orbit, and completes its orbital cycle every 16 

days. The OLI measures solar reflectance at spatial resolutions of 30 m in eight spectral 

bands, and at the spatial resolution of 15m in the panchromatic band. All focal planes 

containing over 69,000 detectors are spread through 14 separate modules as designed in its 

push broom architecture, enabling it to image a large swath of 185 km corresponding to a 

field of view of 15 degrees [17,18]. 

2.2. Landsat 7 ETM+ 

The Landsat-7-enhanced thematic mapper plus (ETM+) has been acquiring imag-

es since April 1999. It also images Earth with a repeating cycle of 16 days in eight spectral 

bands, seven bands with a spatial resolution of 30 m, and the panchromatic band with a 

resolution of 15 m [19]. Landsat 7 has had a problem with the scan line corrector (SLC) 

since May 2003, causing scenes collected since then to have wedge-shaped data gaps [20]. 
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2.3. Sentinel 2A/2B MSI 

Sentinel 2 mission is a constellation of two satellites phased at 180 degrees to each 

other and placed at an altitude of 786 km in a sun-synchronous orbit. Sentinel 2A, launched 

on 23 June 2015, and 2B, launched on 7 March 2017, consists of a multispectral instrument 

(MSI) which is a push-broom sensor, measuring solar reflectance across 13 spectral bands 

with spatial resolutions 10 m, 20m, and 60 m. The two sensors together complete one 

rotation of the Earth in 5 days. The MSI focal plane detectors are spread across 12 separate 

modules, allowing it to image a 290 km swath width at 20.6◦ field of view [21,22]. 

Table 1. Comparison of Landsat enhanced thematic mapper plus (ETM)+, Landsat 
operational land manager (OLI) and Sentinel multispectral imaging (MSI) 

 

 

 

 

 

Charactersctic\Sensor Landsat ETM+ Landsat OLI MSI 

Number of Bands 

8 

(1 pan, 6 

multispectral, 1 

thermal) 

10 

(1 pan, 6 

multispectral, 1 

thermal) 

13 

(All multispectral) 

Spatial Resolution (m) 

15, 30, 60 

(pan, multispectral, 

thermal) 

15, 30, 100 

(pan, multispectral, 

thermal) 

10, 20, 60 

(All multispectral) 

Swath width (km) 183 183 290 

Orbit altitude (km) 705 705 786 

Equatorial crossing time 10:00–10:15 10:00–10:15 10:30 

Revisit frequency (days) 16 16 10 
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3. METHODOLOGY 

 A new method of cross-calibration using cluster has been proposed in this paper, 

and this section explains the overall process followed for this approach. A comparison of 

this extended pseudo invariant site (EPICS)-based approach of cross-calibration was also 

done with the traditionally accepted PICS-based approach, for which an EPICS location 

comparable to a PICS location was selected. After the selection of the cluster, the data 

observed for the same cluster through various satellites were processed for outlier removal 

and correction and cross-calibration was achieved, described in the following sections. 

3.1. EPICS Selection 

Among the 19 distinct clusters identified by performing an unsupervised 

classification of North Africa, Cluster 13 was selected for the cluster-based cross-

calibration [15]. As Cluster 13 is widely distributed across North Africa, it allows the 

satellite to cover the area on a nearly daily basis, limiting the impact of any one portion of 

the globe, and therefore increasing the number of scene pairs acquired for the sensors. This 

cluster is comparatively more contiguous, exhibiting a spatial uncertainty of less than 5% 

across all bands, and also includes Libya 4 and Egypt1 PICS sites, which provide greater 

hyperspectral data used for compensating the spectral response differences in the sensors. 

Kaewmanee [23] also used these sites to perform cross-calibration of sensors for the 

traditional PICS-based approach, which makes it more reasonable to choose Cluster 13 to 

compare the results of the two approaches of cross-calibration. Shrestha’s Classification 

was further evaluated by Hasan et al. [24], using Landsat 8 OLI, Landsat 7 ETM+, Sentinel 

2A, and Sentinel 2B MSI sensors’ data, which showed that, with the 16 world reference 

system-2(WRS-2) Path/Row(s) intersecting Cluster 13 across North Africa, Landsat was 
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able to acquire daily cloud-free acquisitions. These 16 path/row(s) data were stable and 

comparable to the traditional PICS, which meant that the pixels within these paths/row(s) 

were considered. Out of 16 path/row(s), data from path/row 178/47 were discarded since 

this site is affected by storms and showed instability in the acquired images. Cluster 13 

pixels over North Africa for the remaining 15 paths/rows, along with the footprints of 

Landsat 8 and Sentinel 2A, are shown in Figure 1. 

 

 
Figure 1. Cluster 13 pixels across North Africa. The red color represents Cluster 13 

pixels, the yellow box represents Sentinel image footprint and the images lying on the 

Cluster 13 pixels are the Landsat 8 images for 15 path/row(s). 

 

3.2. Process 

After the selection of the cluster, the data of the selected cluster from two sensors 

for cross-calibration were acquired and filtered for cloud pixels. Digital Number (DN) values 

given by Landsat and the TOA reflectance form Sentinel Level 1 product data were 

converted and scaled, respectively, to obtain the top of atmosphere (TOA) reflectance values 

for each sensor. One of two sensors was selected as a reference sensor for calibrating the 
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other one and the spectral response of these two sensors was matched by calculating the 

spectral band adjustment factor (SBAF) and applying it on the sensor that needs to be 

calibrated. After the SBAF correction, both the sensors were normalized to minimize the 

bidirectional reflectance distribution function (BRDF) effect, and the data trend for both the 

sensor was determined and the cross-calibration gain was estimated, which is described as 

follows.  

3.2.1. Cloud Filtering and Outlier Removal 

The OLI and ETM+ image data were acquired and the image with more than 40% 

cloudy and shadowed pixels was discarded for further analysis, similar for the MSI 

(Sentinel2A and Sentinel 2B) image data. For Landsat 7 and Landsat 8, band quality 

assessment (BQA) data were used to create a binary mask to filter out the outliers and, for 

Sentinel data, a binary cloud mask was implemented for each resolution. Few im-ages which 

behaved as outliers were further filtered by visual inspection. Out of the 16 path/row(s) 

suggested by Hasan [24], path/row 178/47 was discarded, as images for this path/row 

showed persistent storms. The Cluster 13 zone-specific binary masks were created, as 

explained by Hasan, and the pixels of the filtered image scene that did not lie on Cluster 13 

pixels within the selected 15 path/row(s) were excluded. 

3.2.2. Conversion of Image Data to TOA Reflectance 

The digital number of the OLI and ETM+ image data were converted to TOA 

reflectance using the rescaling coefficients obtained in the metadata file, as given by 

Equation (1) 

 

𝜌𝜆 =
𝑀𝜌 × 𝑄𝑐𝑎𝑙 + 𝐴𝜌 

𝑐𝑜𝑠(𝛳𝑆𝑍𝐴)
 (1) 
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where 𝜌𝜆 is the Landsat level 1 product TOA reflectance with solar zenith angle cosine 

correction; 𝑀𝜌  and 𝐴𝜌  are the band-specific multiplicative and additive scaling factors, 

respectively, obtained from the metadata file ; 𝑄𝑐𝑎𝑙 is the quantized and calibrated standard 

product pixel value (DN); and 𝛳𝑆𝑍𝐴 is the solar zenith angle per pixel, as extracted from 

the associated product solar angle band. 

Similarly, the reflectance for filtered MSI image was calculated by using Equation 

(2) 

 

where  𝜌𝜆 is the MSI level1 product TOA reflectance, 𝑄𝑐𝑎𝑙 is the quantized and calibrated 

standard product pixel value (DN), and k is the reflectance scaling factor (quantization 

value) obtained from the metadata file. 

3.2.3. Estimation of Spectral Band Adjustment Factor 

Each of the sensors has a different spectral response, which needs to be 

compensated by some factor so that the reflectance of any of the two sensors can be 

compared with each other. The compensating factor for cross-calibration is described in 

this section. 

The satellite sensors used for cross-calibration have different spectral responses 

even when the sensors look at the same target through similar spectral regions. These 

differences in spectral response can contribute to a systematic band offset when cross-

calibration is performed. Therefore, compensation for these differences should be 

accounted for in better cross-calibration, for which we require prior knowledge of the 

 𝜌𝜆 =
𝑄𝑐𝑎𝑙

𝑘
  (2) 
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spectral signature of the target.  This compensating factor is known as the spectral band 

adjustment factor (SBAF), which considers the spectral profile of the target and the relative 

spectral response (RSR) of the sensor [6]. 

In this work, six different combinations of cross-calibration were used. For each 

combination, one sensor was chosen as a “reference” sensor, which was assumed to be 

well-calibrated, and another as a sensor “to be calibrated”. The SBAF was applied to the 

latter sensor to match its spectral response with the response of the reference sensor, and 

is given by 

 

where 𝜌𝜆(𝑟𝑒𝑓) and 𝜌𝜆(𝑐𝑎𝑙)  are, respectively, the simulated TOA reflectances for the 

reference sensor and the sensor to be calibrated; 𝜌𝜆ℎ is the hyperspectral profile of the 

surface; and 𝑅𝑆𝑅𝜆(𝑟𝑒𝑓) and 𝑅𝑆𝑅𝜆(𝑐𝑎𝑙)  is the relative spectral response of the reference 

sensor and the sensor to be calibrated. 

The simulated TOA reflectance was obtained by integrating the RSR of the 

multispectral sensor with the hyperspectral profile of the target at each sampled 

wavelength, as shown in Equation (3). 

The TOA reflectance of the sensor to be calibrated was converted to the corresponding 

reflectance of the reference sensor using Equation (4) 

𝑆𝐵𝐴𝐹 =  
𝜌𝜆(𝑟𝑒𝑓) 

𝜌𝜆(𝑐𝑎𝑙) 
=  

∫ 𝜌𝜆ℎ 𝑅𝑆𝑅𝜆(𝑟𝑒𝑓) 𝑑𝜆 

∫ 𝑅𝑆𝑅𝜆(𝑟𝑒𝑓) 𝑑𝜆 

∫ 𝜌𝜆ℎ 𝑅𝑆𝑅𝜆(𝑐𝑎𝑙) 𝑑𝜆 

∫ 𝑅𝑆𝑅𝜆(𝑐𝑎𝑙) 𝑑𝜆 

 (3) 

𝜌′𝜆 (𝑐𝑎𝑙) =  𝜌𝜆  × 𝑆𝐵𝐴𝐹 (4) 
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where 𝜌′𝜆 (𝑐𝑎𝑙) is the TOA reflectance of the sensor to be calibrated which is equivalent to 

the TOA reflectance of the reference sensor, and 𝜌𝜆 is the original TOA reflectance of the 

sensor to be calibrated. 

The spectral profile of the target is derived from EO-1 Hyperion hyperspectral data 

acquired from United States Geological Survey (USGS) EarthExplorer 

(https://earthexplorer.usgs.gov) over Cluster 13, and pixels containing more than 10 

percent of cloud pixels are discarded, along with the images with a 5 degree look angle or 

greater, as described by Shrestha et al. [25]. A total of 213 hyperspectral images were 

obtained and were drift-corrected, along with absolute gain and bias correction [26]. Figure 

2 shows the hyperspectral profiles extracted from Hyperion to estimate the hyperspectral 

profile of Cluster 13, where the yellow dots represent the mean hyperspectral signature.

 

Figure 2. Hyperspectral Data of Cluster 13. The vertical dashed lines represent the 

wavelength ranges of Coastal Aerosol, Blue, Green, Red, NIR, SWIR 1, and SWIR 2 

bands. 
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The SBAF corrected data were further normalized using the 15 coefficients quadratic 

model derived from four angles, which were also used to normalize the TOA reflectance 

of all the sensors, as described in the next section. 

3.2.4. Bidirectional Reflectance Distribution Function Normalization 

The TOA reflectance of the Earth’s surface varies with respect to the solar and viewing 

geometry as the surface of the Earth is non-Lambertian in nature. This effect is referred to 

as the Bidirectional Reflectance Distribution Function (BRDF) effect, which is contributed 

by the solar position that changes significantly over the season. The effect also increases 

as the field of view of the sensor increases and can also occur due to variations in 

orientation between the multiple sensors imaging the same target with the same solar 

position. Although OLI, ETM+, and MSI, with a narrower field of view, have lesser BRDF 

effects, this needs to be normalized for further analysis. 

An absolute calibration BRDF model deriving linear and quadratic functions of the solar 

zenith angle was developed [27] using Libya 4. To fully account for the complexity of the 

BRDF effects, the BRDF model was developed including all the four angles as derived by 

Farhad et al. [28] This model converts the view and solar angles from a spherical coordinate 

basis to a linear Cartesian basis and obtains a TOA reflectance of the surface as a 

continuous function of independent variables. Kaewmanee [29] further extended the model 

developed by Farhad et al., using the interaction term, which characterized the BRDF 

model well, with better uncertainty after normalization. This 15-coefficient quadratic 

model has been used for this work, which is given by Equation (5) 

 𝜌𝑚𝑜𝑑𝑒𝑙 = 𝛽0 + 𝛽1𝑌1
2 + 𝛽2𝑋1

2 + 𝛽3𝑌2
2 + 𝛽4𝑋2

2  + 𝛽5𝑋1𝑌1 + 𝛽6𝑋1𝑌2  + 𝛽7𝑋2𝑌2

+ 𝛽8𝑋2𝑌1 + 𝛽9𝑌1𝑌2 + 𝛽10𝑋1𝑋2 + 𝛽11𝑋1 + 𝛽12𝑌1 + 𝛽13𝑋2 + 𝛽14𝑌2 
(5) 
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where 𝛽0, 𝛽1, 𝛽2, …. are the model coefficients. Y1, X1, Y2, X2 are Cartesian coordinates 

representing the planar projections of the solar and sensor angles originally given in 

spherical coordinates 

 

where SZA, SAA, VZA, and VAA are the solar zenith, solar azimuth, view zenith, and 

view azimuth angles, respectively. The BRDF-normalized TOA reflectance for each sensor 

was calculated using Equation (10) 

 

  

Here, 𝜌𝑜𝑏𝑠is the observed mean TOA reflectance from each scene. 𝜌𝑚𝑜𝑑𝑒𝑙 is the model-

predicted TOA reflectance, and 𝜌𝑟𝑒𝑓 is the TOA reflectance with respect to a set of 

“reference” solar and sensor position angles; for this analysis, the reference SZA, SAA, 

VZA, and VAA angles were chosen from the common geometry of all the sensors. 

 

3.2.5. Data Smoothening and Trend Identification Using Modified Savitzky-Golay Fil-

ter 

The proposed approach aims to utilize the cluster to understand the differences between 

the two sensors acquiring the data on a day-to-day basis. For this, the trend line of the data 

was determined after all the correction and normalization processes by applying the 

modified Savitzky–Golay filter. The Savitzky–Golay filter is a time-domain technique of 

 Y1 = sin(SZA) ∗ sin(SAA) (6) 

  X1 = sin(SZA) ∗ cos(SAA)  (7) 

 Y2 = sin(VZA) ∗ sin(VAA) (8) 

 X2 = sin(VZA) ∗ cos(VAA) (9) 

𝜌𝐵𝑅𝐷𝐹−𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝜌𝑜𝑏𝑠

𝜌𝑚𝑜𝑑𝑒𝑙
× 𝜌𝑟𝑒𝑓 (10) 
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data smoothing by low-pass filtering proposed by Savitzky and Golay, which is based on 

local least-squares polynomial approximation [30]. The polynomial function is given by  

Equation (11) 

where n is the degree of the polynomial and c is the set of coefficients. The filter fits a 

polynomial to the sets of data in a specified window and produces an output which is the 

value of the polynomial in the central point of the window. For the next point, the window 

shifts by one day, and the process is repeated. 

A moving window size of 60 days and polynomial fit of order 3 was chosen for this 

work, as it gave the best approximation of the data trend over time. The overall trend of 

the TOA reflectance of each sensor was determined and changes in trend and shifts in 

momentum were observed. The Savitzky–Golay filter has the peak preservation property 

and generates the data trend which helps to examine the patterns of the data throughout the 

specific period. Thus, the obtained trends were used to calculate the cross-calibration gain 

of the two sensors, as explained in the next step. 

3.2.6. Trend-to-Trend Cross-Calibration Gain 

When the measurements of two sensors corrected for SBAF and BRDF were obtained, 

the sensor calibration difference was evaluated using the sensor trends, which are simply 

obtained as the trend ratio of the two sensors, as given by Equation (12) 

𝐺𝑎𝑖𝑛𝑋𝑐𝑎𝑙(𝑖) =  
𝜌𝜆1(𝑖)

∗

𝜌𝜆2(𝑖)
∗   (12) 

where 𝐺𝑎𝑖𝑛𝑋𝑐𝑎𝑙(𝑖)  is the cross-calibration gain for 𝑖𝑡ℎ  day, 𝜌𝜆1(𝑖)
∗  and 𝜌𝜆2(𝑖)

∗ are TOA 

reflectance for 𝑖𝑡ℎday after the application of the modified Savitzky–Golay filter. 

 

𝑓(𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 … 𝑐n𝑥𝑛 (11) 
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3.2.7. Uncertainty Analysis 

The cross-calibration accuracy of two sensors can be influenced by several sources of 

uncertainty acquired from the inherent variability in the sensors and data itself, or from the 

process and techniques involved in the measurement. This step accounts for these various 

sources of uncertainty for effective cross-calibration. For this analysis, uncertainty 

associated with variability of site and sensor over time, SBAF uncertainty, and BRDF 

uncertainty were considered as the primary sources of uncertainty. This section shows the 

process used to determine each source of uncertainty. 

For the temporal uncertainty (𝜎𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙
2 ), the temporal variability of the site and the 

temporal drift of the sensor were considered. The standard deviation of the mean TOA 

reflectance of each scene from each path/row was calculated for OLI and ETM+ sensors, 

and also for each tile of MSI images. The temporal uncertainty was then estimated as the 

mean of the obtained standard deviation for each sensor. 

To calculate the uncertainty due to the non-uniformity of the site (variability between 

WRS path/row within Cluster 13), also known as the spatial uncertainty, the temporal 

standard deviation of the whole cluster (𝜎𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑐𝑙𝑢𝑠𝑡𝑒𝑟
2 )    data was calculated, which 

would consist of the temporal component as well as the spatial variability (𝜎𝑠𝑝𝑎𝑡𝑖𝑎𝑙
2 ) of the 

site. The temporal component ( 𝜎𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙
2 ) from this calculated standard deviation 

(𝜎𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑐𝑙𝑢𝑠𝑡𝑒𝑟
2 ) was excluded, as shown in Equation (13). 

𝜎𝑠𝑝𝑎𝑡𝑖𝑎𝑙
2 =  √𝜎𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑐𝑙𝑢𝑠𝑡𝑒𝑟

2 − 𝜎𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙
2  (13) 

The uncertainty that occurred due to the BRDF model applied on the dataset for 

normalization was also considered, which is the root mean square error (RMSE) of the 
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model to predict the surface. The difference between the measured TOA reflectance and 

the TOA reflectance predicted by the model is the BRDF error, as given by Equation (14). 

The BRDF error was calculated for each datapoint, and then the root mean square of these 

errors was estimated as the BRDF uncertainty. 

𝐵𝑅𝐷𝐹𝑒𝑟𝑟𝑜𝑟 =  𝜌𝑜𝑏𝑠 − 𝜌𝑚𝑜𝑑𝑒𝑙 (14) 

 

Here, 𝜌𝑜𝑏𝑠is the observed mean TOA reflectance from each scene. 𝜌𝑚𝑜𝑑𝑒𝑙 is the model-

predicted TOA reflectance. 

The SBAF uncertainty was determined by calculating the standard deviation of 213 

SBAF values derived from the hyperspectral data of Cluster 13. 

The overall uncertainty of the gain, including the calibration uncertainty (𝜎𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛
2 ) 

of each sensor, was calculated by using Equation (15), and each source of uncertainty 

calculated for the sensor pairs is further discussed in Section 4.4. 

 

 

 

 

 

 

 

σ𝑡𝑜𝑡𝑎𝑙 = √σ𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙
2 + σ𝑠𝑝𝑎𝑡𝑖𝑎l

2 + σ𝑆𝐵𝐴𝐹
2 + σ𝐵𝑅𝐷𝐹

2 + σ𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛
2  (15) 
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4. RESULTS 

 This section shows the result of each step explained in the methodology. Cross-

calibration of each pair of the sensor was performed and is shown here. First, this compares 

the SBAF values derived for each pair of cross-calibration and shows how SBAF 

significantly adjusts the two sensor’s RSR mismatch. Then, the outcome of the 

implementation of the full BRDF model is discussed. Then, the following subsection shows 

the trends identified with the implementation of the modified Savitzky–Golay filter to 

cross-calibrate the two sensors. Finally, it gives the summary of the cross-calibration gains 

for each pair of sensors, along with the uncertainty associated with the cross-calibration 

gains. 

4.1. Spectral Band Adjustment Factor for Cluster 13 

Sets of SBAFs were estimated from 213 hyperspectral profiles derived from Cluster 

13, and the average SBAF estimated for each pair of the sensors is as shown in Figure 3. 

The SBAF values shown are the compensating factor for all the sensors to be calibrated 

according to the reference sensor. 

                 

Figure 3. Spectral Band Adjustment Factors derived from the hyperspectral profile of 

Cluster 13 for each sensor pair (error bars represents the standard deviation at k = 2. The 

sensor in the numerator is the reference sensor for each combination). 
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The SBAFs values derived for MSI-A and MSI-B are closer to unity, since the 

relative spectral response of these sensors is very similar, as seen in Figure 4. There is a 

small deviation of about 1.3% for the SWIR 2 band because there is a relative shift in the 

RSR of MSI-A and MSI-B sensors for SWIR 2 bands when compared to the other bands. 

Similarly, the SBAF values obtained for Landsat 8 OLI paired with Sentinel 2A exhibited 

similar SBAF values when compared to the SBAF for OLI and MSI-B pair, since the RSR 

mismatch of MSI A and MSI B with OLI is similar for the corresponding bands. It can be 

observed from the RSR plot for Landsat 8 OLI and Sentinel MSI that the blue, green, and 

red bands have a relative shift in RSR, because of which the SBAF for these two bands 

highly deviates from the unity, which is within 3%. A larger deviation from unity is 

observed for the pair involving the Landsat 7 ETM+ sensor. When comparing the RSR of 

Landsat 8 OLI sensor and Landsat 7 ETM+ sensor, for NIR, SWIR1 and SWIR 2 channel, 

the spectral response of ETM+ is significantly wider than the OLI sensor. The RSR of 

ETM+ is wider when compared to all the other remaining sensors, which contributed the 

SBAF values highly deviating from one.  This high deviation is observed in the NIR band, 

which is within 9% for all the sensor pairs with Landsat 7. Additionally, the error bars for 

these bands are larger because of the RSR shift and width mismatch of RSR between the 

two sensors. 

The calculated SBAF was applied to all the corresponding sensors that were to be 

calibrated, to match them with their respective reference sensor. As an example, the SBAF-

corrected mean TOA reflectance of Landsat 7, to match it with Sentinel 2A, is shown in 

Figure 5. The observed mean TOA reflectance of Landsat 7 represented by the blue symbol 

slightly deviates from the observed TOA reflectance of Sentinel 2A, which is represented 
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by the black symbol. Particularly, when comparing this to the NIR band, the mean TOA 

reflectance of Landsat 7 does not cross the error bars of the mean TOA reflectance of 

Sentinel 2A and differs by 0.05 reflectance units. Similarly, there is a difference in the 

SWIR 2 band by 0.02 reflectance units. These differences are due to the RSR mismatch of 

the two sensors, which is compensated by SBAF. After the SBAF correction, the mean 

TOA reflectance of Landsat 7 represented by red dots is similar to the TOA reflectance of 

Sentinel 2A. The mean values are within the error bars, which shows that the RSR 

mismatch has been compensated by the implementation of the spectral band adjustment 

factor. 

                

Figure 4. Relative Spectral Response (RSR) of Landsat 7 ETM+, Landsat 8 OLI, Sentinel 

2A MSI, Sentinel 2B MSI and the derived hyperspectral profile of Cluster 13. 
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Figure 5. Comparison of TOA reflectance of Landsat 7 before and after the SBAF 

correction for the cross-calibration combination of Sentinel 2A and Landsat 7. (The error 

bars represent the standard deviation, k = 2). 

 

 

4.2. BRDF Normalization of the TOA Reflectance of the Sensor 

Since the directional effect is related to the target, a single BRDF model was used 

to predict Cluster 13. For this, a set of common reference angles was selected in such a 

way that the TOA reflectance of the sensors is scaled to a common level. Thus, the selected 

reference solar zenith, solar azimuth, view zenith, and view azimuth angles are 

30° ,  130° ,  3°  and 1 05° respectively. These angles were used to determine the polar 

projections of the view and solar angles to calculate the reference reflectance of the dataset. 

Similarly, the model-predicted TOA reflectance was calculated using the angles of the 

corresponding scene. Figure 6 demonstrates an example of the BRDF model, predicting 

the TOA reflectance where the BRDF model predicting the TOA reflectance of the Sentinel 

2A for the NIR band is shown. It can be seen from the figure that the model predicts the 

data well, with the mean residual error of −0.0672%. For all the sensor data, the model 

predicted the nature of the target well, with a residual errors very close to zero. 
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Figure 6. Comparison of the observed top of atmosphere (TOA) reflectance and the TOA 

reflectance predicted by the BRDF model. 

 

After the generation of the model, the BRDF-normalized TOA reflectance was 

obtained by scaling the reference reflectance. Figure 7 shows how the directional effects 

of the site were improved after applying the model on the data by comparing the observed 

TOA reflectance and the normalized TOA reflectance for Sentinel 2A, the NIR band. It 

can be observed from the figure that the seasonal pattern of the TOA reflectance of Sentinel 

is more stable after normalization. 

 

Figure 7. Comparison of the observed TOA reflectance and the bidirectional reflectance 

distribution function (BRDF)-normalized TOA reflectance of Sentinel 2A. 

 

4.3. Data Trend Identification with Daily Coincident Acquisitions 

Figures 8 and 9 show the TOA reflectance of daily coincident observation obtained 

from Landsat 8 and Sentinel 2A for the red band, which is represented by red dots. These 

data represent the trend line detected by the Savitzky–Golay filter and the data interpolated 
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every day throughout the 5 years. The detected trend follows the correct-ed TOA 

reflectance data of Landsat 8 and Sentinel 2A, represented by the black dots. With the 

proper window size of 60 and the polynomial order of 3, some of the outliers have been 

filtered out, maintaining the original trend of the data. 

 

Figure 8. Landsat 8 trend with the daily acquisition (red dots represent the trend line 

detected by the Savitzky–Golay filter applied on the black dots, which is the BRDF-

normalized TOA reflectance of Landsat 8). 

 

             

Figure 9. Sentinel 2A trend with the daily acquisition (red dots represent the trend line 

detected by the Savitzky–Golay filter applied on the black dots, which is the spectral band 

adjusted factor (SBAF)-corrected and BRDF-normalized TOA reflectance of Sentinel 2A). 

 

 

Figure 10 shows a comparison of the trends of Landsat 8 and Sentinel 2A for all 

the bands. Since Sentinel 2A accounted for the compensation of RSR mismatch with 

Landsat 8 after SBAF correction, the TOA reflectance of the two sensors is expected to be 

similar for the same target. 
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As expected, TOA reflectance for both of the sensors follows a similar pattern, and 

they also lie on top of each other, especially in coastal aerosol, green and NIR band. 

Landsat 8 and Sentinel 2A are believed to be well-calibrated sensors and, therefore, an 

excellent agreement can be seen between these two sensor’s data trends. The best 

agreement is seen in the green band, where the TOA reflectance of the two sensors lies 

approximately within 0.2%. 

Even after the application of the smoothing filter, and using the methodology on a 

day-to-day basis, some data spreads are detected in the trend line because of the lower 

amount of data contained within the specified window for interpolation. Few outliers 

within the sliding window contributed to some high and low peaks in the trend. This can 

be seen more clearly in the SWIR 2 channel in the middle of every year, for both of the 

sensors, where the trend line has a low peak because of the few low datapoints within the 

Savitzky–Golay window. There are variations in the order of 2 to 3 reflectance units 

observed throughout the year on the cluster, which are captured by both the sensors. 

Therefore, the two sensors are closely tracking each other using data from a different 

portion of the continent. 

Similar trends were captured with the use of a modified Savitzky–Golay filter for 

all the sensors, and for all the bands. The trends of all the sensors were then used to detect 

the differences between the sensor pairs. 
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Figure 10. Comparison of Landsat 8 OLI and Sentinel 2A MSI TOA reflectance trend. 

4.4. Cross-Calibration Gain with Their Uncertainties 

The instantaneous ratio of the trends in the sensor data was obtained for each pair 

of OLI, ETM+, and MSI sensors, and the obtained values are shown in this section. The 

cross-calibration gain for different combinations of sensors is estimated, which is shown 

in Figures 11–16. The cross-calibration gain is centered around one, and the sensors for 

each pair agree to better than 2.5% for all the bands. Landsat 8 and Sentinel 2A were 

considered as highly calibrated sensors and, with this approach, the difference between 
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these two sensors is found to be within 1% for all the bands. Similarly, the difference 

between the twin satellite sensors MSI-A and MSI-B is found to be with-in 1%, since these 

two sensors are identical sensors orbiting in the same orbit. The cross-calibration results of 

Landsat 8 and Sentinel 2B show that these two sensors agree to better than 1% in all the 

bands, except for the blue band, which is around 2%. Furthermore, the cross-calibration of 

the ETM+ sensor with the other three sensors shows agreement within 2.5%. 

          

Figure 11. The trend-to-trend cross-calibration gain of Landsat 8 OLI and Sentinel 2A MSI. 

The shaded region is the uncertainty for individual bands. 

 

 

Figure 12. The trend-to-trend cross-calibration gain of Sentinel 2A MSI and Sentinel 2B 

MSI. The shaded region is the uncertainty for individual bands. 
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Figure 13. The trend-to-trend cross-calibration gain of Landsat 8 OLI and Sentinel 2B MSI. 

The shaded region is the uncertainty for individual bands. 

 

 

Figure 14. The trend-to-trend cross-calibration gain of Landsat 8 OLI and Landsat 7 ETM+. 

The shaded region is the uncertainty for individual band. 
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Figure 15. The trend-to-trend cross-calibration gain of Sentinel 2A MSI and Landsat 7 

ETM+. The shaded region is the uncertainty for individual bands. 

 

 

Figure 16. The trend-to-trend cross-calibration gain of Sentinel 2B MSI and Landsat 7 

ETM+. The shaded region is the uncertainty for individual bands. 

 

The shaded region on the graphs shows the uncertainty for each band. As mentioned 

earlier, different sources of uncertainty were computed and, as an example, the sources of 

uncertainty calculated for the cross-calibration of Landsat 8 and Sentinel 2A are shown in 

Table 2. For this cross-calibration pair, the major contributor to the type A uncertainty is 

the BRDF model uncertainty, which is around 3.5% for the coastal aerosol and blue band. 
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Since BRDF normalization primarily considers the ground-level effects, the changes in the 

sky are not modeled as well; thus, normalization is not as effective in the blue channel 

contributing to the larger uncertainty source in these channels. This case is similar to all 

the other sensor pairs. The uncertainty in the SBAF values is lower, no more than 0.3%. 

The temporal and the spatial uncertainty of the cluster is similar for all the sensor pairs. 

The temporal uncertainty changes with the temporal standard deviation of the sensor for 

other cross-calibration pairs. The overall uncertainty is also affected by the calibration 

uncertainty for each cross-calibration pair. For OLI and MSI-A pair, the total uncertainty 

was within 6%. 

Table 2. Sources of uncertainty for the cross-calibration of Landsat 8 and Sentinel 
2A. 

Sources of Uncertainty Type 
Bands 

CA Blue Green Red NIR SWIR1 SWIR2 

Temporal uncertainty (%) 

A 

2.04 1.96 1.39 1.46 1.01 1.16 2.58 

Spatial uncertainty (%) 2.70 2.74 1.26 1.76 0.87 1.88 1.43 

SBAF uncertainty (%) 0.01 0.29 0.28 0.11 0.05 0.03 0.09 

BRDF uncertainty (%) 3.40 3.39 1.87 2.28 1.33 2.29 2.98 

MSI calibration uncertainty (%) 
B 

2.5 2.5 2.5 2.5 2.5 2.5 2.5 

OLI calibration uncertainty (%) 2 2 2 2 2 2 2 

Total (%)  5.77 5.76 4.18 4.56 3.72 4.52 5.28 

 

Similarly, for other sensor combinations, the highest uncertainty is observed in 

shorter wavelengths, which were within 6–8%. The uncertainty for the cross-calibration of 

Landsat 7 is higher because of the calibration uncertainty of Land-sat 7, which is around 

5% [31]. Additionally, the SWIR channel has a higher uncertainty, similar to the shorter 

wavelength bands, since the TOA reflectance for the two sensors varies in these bands. 

NIR band has the lowest uncertainty among all the bands for all the combinations, which 

range from 3 to 7%. The gain, along with their uncertainties, are summarized in Table 3. 
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Table 3. The trend-to-trend cross-calibration summary. 

Cross  

Calibration 
Bands CA Blue Green Red NIR SWIR1 SWIR2 

L8 vs. S2A 
Gain 1.0005 1.0123 1.0029 0.9968 1.0005 1.0111 1.0116 

Uncertainty (%) 5.77 5.76 4.18 4.56 3.72 4.52 5.28 

L8 vs. S2B 
Gain 0.9970 0.9805 0.9933 0.9993 1.0055 1.0074 1.0096 

Uncertainty (%) 5.77 5.76 4.18 4.56 3.72 4.52 5.28 

S2A vs. S2B 
Gain 1.0109 1.0042 1.0042 1.0105 1.0115 1.0029 1.0072 

Uncertainty (%) 5.95 5.99 4.83 4.75 4.21 4.86 6.33 

L8 vs. L7 
Gain - 1.0007 1.0092 1.0206 1.0070 1.0322 1.0009 

Uncertainty (%) - 7.20 6.01 6.29 5.92 6.35 6.87 

S2A vs. L7 
Gain - 0.9902 1.0072 1.0231 1.0064 1.0209 0.9906 

Uncertainty (%) - 7.41 6.50 6.44 6.25 6.60 7.70 

S2B vs. L7 
Gain - 0.9847 1.0032 1.0146 0.9956 1.0176 0.9838 

Uncertainty (%) - 7.36 6.50 6.44 6.26 6.66 7.66 

 

 

Despite the larger uncertainties, the overall cross-calibration gain is within an 

accuracy of 2.5%. Additionally, the ratio of the trends of the data from a different portion 

of North Africa shows the differences in the satellite, not the differences which contributed 

to looking at different parts of the continent, since the variations in the sites are captured 

by both the sensors.  
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5. VALIDATION OF THE NEW CLUSTER-BASED APPROACH 

This section validates the new approach of the trend-to-trend cross-calibration by 

comparing this approach with the traditionally accepted PICS-based cross-calibration. The 

cross-calibration of Landsat 8 and Sentinel 2A was shown as an example, since these 

sensors are highly effective for data interoperability. Kaewmanee [23] performed the cross-

calibration of Landsat 8 and Sentinel 2A using Libya 4 CNES ROI, with coincident and 

near-coincident scene pairs deriving the hyperspectral profile of Libya 4 without 

considering the drift and bias correction of the Hyperion data. For the validation purpose, 

this work utilizes the result of the traditional PICS-based approach per-formed by 

Kaewmanee after updating the hyperspectral data using the same Libya 4 CNES ROI, 

comparing it with the new cluster-based approach. The results of the traditional PICS used 

for the comparison are obtained via communication with the author. 

For the cross-calibration of Landsat 8 and Sentinel 2A, the data from both the satellite 

were considered, since the launch of Sentinel 2A. The total number of cloud-free 

acquisitions obtained for Landsat 8 was 1142 and for sentinel 2A was 1582. The TOA 

reflectance of each sensor was determined and the SBAF was calculated for MSI, 

considering Landsat 8 as the reference sensor for the cross-calibration..  

5.1. Spectral Band Adjustment Factor for Libya 4 ROI and Cluster 13 
 

For the PICS-based approach using Libya 4, sets of SBAF were derived using 360 

hyperspectral data profiles, and, for Cluster 13, sets of SBAFs were estimated from 213 

hyperspectral profiles. Since Libya 4 is a part of Cluster 13, similar results of the 

hyperspectral profile are expected. Therefore, SBAF values retrieved from similar hyper-
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spectral profiles are also expected to be similar. The average SBAF estimated for both for 

both approaches is shown in Figure 17.   

 

Figure 17. Spectral Band Adjustment Factor (SBAF) for Sentinel 2A MSI for Libya 4 

ROI and Cluster 13 (error bars represent the standard deviation, k = 2). 

 

The SBAFs derived from the hyperspectral signature of Libya 4 and Cluster 13 are 

similar to each other. The SBAF values of coastal aerosol, NIR, SWIR1, and SWIR2 bands 

are close to 1, since their RSRs are similar to each other. For blue, green, and red bands, a 

relative shift in RSR can be observed, meaning that the SBAF for these two bands highly 

deviates from unity. Comparing the SBAF obtained from Libya 4 ROI and Cluster 13, the 

SBAF values are equal for all the bands, except for the blue and green band, where the 

observed differences in the two approaches are around 0.37% and 0.30%. These differences 

could be due to the differences in the hyperspectral profile of Libya 4 ROI and Cluster 13, 

and also due to the width difference of the RSR. Addition-ally, the error bars for blue, 

green, and red bands are larger because of the RSR shift and width mismatch of RSR 

between the two sensors. The coefficient of variation of red bands is similar for both Cluster 
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13 and Libya 4, which was approximately 1.11%, whereas, for the green band, the 

coefficient of variation for Cluster 13 is 0.29%, and for Libya 4 ROI was 0.2%. 

5.2. Cluster-Based Trend-To-Trend Cross-Calibration vs. Traditional PICS-Based 

Cross-Calibration Gain along with the Associated Uncertainty 

 

Using the trend of the TOA reflectance of the two sensors, as shown in Figure 10, 

the cross-calibration gain was calculated as the ratio of the OLI TOA reflectance trend to 

the MSI TOA reflectance trend. The obtained gain values are shown in Figure 18. Since 

Libya 4 is included within Cluster 13, the cluster-based trend-to-trend cross-calibration 

gain ratio is similar to the PICS-based coincident scene pair approach. The gain values 

derived from the traditional PICS-based cross-calibration seem to have more stability 

throughout time. Additionally, the uncertainty of Libya 4 is less than that of Cluster 13, 

which causes lower scatteredness in the gain derived from Libya 4. However, the cross-

calibration gain seems to follow a similar pattern, lying on top of each other. The cross-

calibration gain for blue, green, red, and NIR band has gain values near unity, since the 

TOA reflectance of the two sensors for these bands have a better agreement. The cross-

calibration gain derived from Libya 4 and Cluster 13 are also equal for the green, red, and 

NIR bands and lies inside the uncertainty range. The relative difference between the gain 

derived from Libya 4 and Cluster 13 is larger in the coastal aerosol and blue band, which 

is approximately within 2%. 

The sources of uncertainty were defined for the calculation of the cross-calibration 

gain, as discussed earlier in Section 4.4, and the gain obtained with the traditional approach 

of cross-calibration, was compared, as shown in Figure 18. The summary of type A and 

type B uncertainties sources for the cross-calibration of Landsat 8 and Sentinel 2A is shown 

in Table 2. The type A uncertainty source includes the temporal, spatial, BRDF, and SBAF 
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uncertainty, and the type B uncertainty is the calibration uncertainties associated with the 

sensors. The calibration uncertainties of OLI and MSI are 2% [18] and 2.5% [10], 

respectively, which are the major contributors to the final un-certainty. The total 

uncertainty calculated for the cross-calibration between OLI and MSI-A sensor is within 

5.8% for all the bands. 

Figure 19 shows the mean cross-calibration gain ratio and the associated standard 

deviation derived for the previous and current approach to cross-calibration. The mean 

cross-calibration for the trend-to-trend approach was calculated by taking an average of the 

blue data in Figure 18 and, for the Libya 4 coincident scene, pairs approaching the mean 

cross-calibration gain were calculated by taking the average of the red datapoints in Figure 

18. The black data in Figure 19 were derived by Farhad et al. [28] for the cross-calibration 

of OLI and MSI sensors using PICS, where the error bars represent the uncertainty derived, 

which is approximately 6.8%. For ideal cross-calibration, the value of the cross-calibration 

gain ratio is expected to be unity. However, for some bands, the cross-calibration ratios 

deviate from unity due to various factors, such as the uncertainties associated with SBAF 

correction, BRDF normalization, sensor instability, and the atmosphere. As a whole, both 

approaches showed the consistent estimation of the cross-calibration ratios, since the error 

bars cross the mean values. The cross-calibration gain derived from Cluster 13 shows 

higher uncertainties than the Libya 4 ROI-derived cross-calibration gain. Since Farhad et 

al. also derived the cross-calibration gain, combining various PICS locations, the 

uncertainty is much larger than the other two cross-calibration ratios. The uncertainty from 

the cluster-based approach has a larger uncertainty in the coastal aerosol and blue band, 

which is approximately 6%, and has the lowest uncertainty for the NIR band, which is 



37 

within 4%. The SWIR channel has a larger uncertainty for both approaches, since the TOA 

reflectance of Landsat 8 and Sentinel 2A has more variation in these channels. 

These cross-calibration results show a comparison of traditional and current approaches 

to the cross-calibration of Landsat 8 and Sentinel 2A, which exhibited consistent results, 

within 2%, and the gains derived from Libya 4 ROI and Cluster 13 are very close to each 

other. Coincident scene pairs of Landsat 8 and Sentinel 2A were used for the traditional 

cross-calibration, which shows that traditional cross-calibration is achieved well with the 

coincident scenes. Considering the higher uncertainties of the cluster-based approach, both 

the previous and the proposed methods provide consistent results of cross-calibration and 

they are statistically equal. 
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Figure 18. Comparison of Landsat 8 and Sentinel 2A MSI cross-calibration gain ratio with 

cluster and PICS-based approach. 
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Figure 19. Cross-calibration gains comparison of Landsat 8 OLI and Sentinel 2A MSI 

using a traditional ROI-based approach and the cluster-based approach. (Blue and black 

bars represents the uncertainty and the red bar is the associated standard deviation at k = 

2). 

 

Similarly, sensor pairs that are out-of-phase and unable to achieve coincident scene 

pairs can be cross-calibrated using near-coincident scene pairs [8]. To compare the current 

approach with the traditional cross-calibration using near-coincident scene pairs, the 

comparison of cross-calibration results of Sentinel 2A and Sentinel 2B was also made, as 

shown in Figure 20. The cross-calibration gain obtained with the scene pairs of Libya 4 

ROI (5 days apart) from the MSI-A sensor and MSI-B sensor is represented by the red dots 

and the cross-calibration gain, with the cluster-based trend-to-trend approach represented 

by the blue dots. The red data, from the traditional PICS approach, were obtained via 

personal communication with the author [23]. The black line represents the cross-

calibration result obtained by Charlotte Revel et al. [32], with the cross-calibration over 

desert sites. Comparing the mean values of all the three approaches, it can be seen that the 

mean values of the previous cross-calibration lie within the uncertainty range of the 

proposed Cluster 13-based approach. From the graph, it can be observed that the gain 
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obtained from near coincident scene pairs has more variability than the one where 

coincident scene pairs were used. However, results obtained from the new trend-to-trend 

approach with cluster showed consistent results with the near-coincident scene pair 

approach for the cross-calibration of Sentinel 2A and Sentinel 2B, which is within 1% for 

all the bands and 2.5% for the coastal aerosol band. This shows the major advantage of the 

proposed approach when it comes to cross-calibrating two sensors that cannot acquire 

coincident scenes. 
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Figure 20. Comparison of Sentinel 2A and Sentinel 2B MSI cross-calibration gain ratio 

with cluster and PICS-based approach 
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6. DISCUSSION 

 The cross-calibration of satellites is performed to provide accurate and consistent 

results between multiple sensors over the land surface. It plays an important role in putting 

sensors into a common radiometric level for mission continuity and interoperability [6]. 

Traditionally, coincident scene/near-coincident scene pairs from various PICS locations 

have been used to cross-calibrate any two sensors. This PICS-based approach can possibly 

obtain Landsat 8 and Sentinel 2A coincident acquisitions every 80 days, because of the 

difference in the respective satellite orbital patterns [22]. Among the few available 

locations on Earth, Libya 4 can provide these acquisitions. For cross-calibration based on 

the coincident scene pair approach of Landsat 8 and Sentinel 2A, only 15 coincident scene 

pairs were acquired over 5 years. Shrestha et al. [16] used clusters to increase the frequency 

of datasets used for cross-calibration and obtained only 11 coincident scene pairs in a year. 

With this trend-to-trend cross-calibration approach, applying the Savitzky-Golay filter and 

interpolating it each day, for a period ranging 2015 to 2020, 1815 daily coincident scene 

pairs were obtained, and the differences between Landsat 8 and Sentinel 2A were better 

observed at a frequency greater than 80 days. Therefore, within a shorter period, trend-to-

trend cross-calibration helps in understanding the sensor’s differences, making it possible 

to detect and correct these changes in a shorter time frame. This method is highly useful 

when calibrating a newly launched satellite whose calibration needs to be done within a 

shorter calibration time, and where enough coincident or near-coincident scene pairs 

cannot be achieved within the calibration period. 

The Savitzky–Golay filter was used to determine the trend of the TOA reflectance of 

Cluster 13 for this work, which seems to predict the trend more accurately if there are 

enough data within the Savitzky–Golay window span. Missing data or data gaps in the 



43 

TOA reflectance could produce more spreads and variations in the detected trend. In Figure 

20, a spread of about 0.08 reflectance can be observed in SWIR 2 band since, for Sentinel 

2B, there were only four datapoints within the 60 days window, which produced the high 

data spread at around the end of the year 2019. Additionally, the analysis is based on the 

time domain filter, which can be further analyzed with different techniques of time-domain 

and frequency-domain filtering processes. Even more accurate and real trends can be 

identified with better smoothing filters. 

The proposed technique of cross-calibration showed that the cross-calibration results of 

Landsat 8 and Sentinel 2A are within 1% and consistent with the results obtained from 

Libya 4 CNES ROI using coincident scenes. From Figure 20, it can be observed that the 

gain obtained from near-coincident scene pairs has more variability than the one where 

coincident scene pairs were used. However, results obtained from the new trend-to-trend 

approach with cluster showed consistent results for the cross-calibration of Sentinel 2A 

and Sentinel 2B. The result is within 2% when com-pared to the traditional Libya 4 ROI 

cross-calibration results. This shows the major advantage of the proposed system when it 

comes to cross-calibrating two sensors whose coincident scene pairs cannot be achieved. 
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7. CONCLUSIONS 

 Since Cluster 13 provides higher temporally frequent sets of data for the cross-

calibration of two sensors, the proposed trend-to-trend cross-calibration technique further 

amplifies this opportunity. The purpose of this EPICS-based trend-to-trend cross-

calibration is to illustrate the technique of using the cluster to cross-calibrate two satellite 

sensors without needing coincident or near-coincident acquisitions. The obtained results 

have been shown and compared to the previously accepted approach, which showed 

consistent and statistically equal results. Out of all the other bands for all the combinations 

of sensors for cross-calibration, the NIR band showed a better agreement when compared 

to the coincident, near-coincident scene pair approach, which was within 1%. Maximum 

offsets were observed in coastal aerosol, blue and SWIR1 channels, and were within 2.5%. 

The uncertainties in these bands were higher, which was mostly due to the spatial 

uncertainty of Cluster 13, the calibration uncertainty, and the BRDF effects’ uncertainty. 

However, the overall cross-calibration is comparable to the traditional approach. 
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