7 research outputs found

    Turn-by-wire: Computationally mediated physical fabrication

    Get PDF
    Advances in digital fabrication have simultaneously created new capabilities while reinforcing outdated workflows that constrain how, and by whom, these fabrication tools are used. In this paper, we investigate how a new class of hybrid-controlled machines can collaborate with novice and expert users alike to yield a more lucid making experience. We demonstrate these ideas through our system, Turn-by-Wire. By combining the capabilities of a traditional lathe with haptic input controllers that modulate both position and force, we detail a series of novel interaction metaphors that invite a more fluid making process spanning digital, model-centric, computer control, and embodied, adaptive, human control. We evaluate our system through a user study and discuss how these concepts generalize to other fabrication tools

    Towards retrieving force feedback in robotic-assisted surgery: a supervised neuro-recurrent-vision approach

    Get PDF
    Robotic-assisted minimally invasive surgeries have gained a lot of popularity over conventional procedures as they offer many benefits to both surgeons and patients. Nonetheless, they still suffer from some limitations that affect their outcome. One of them is the lack of force feedback which restricts the surgeon's sense of touch and might reduce precision during a procedure. To overcome this limitation, we propose a novel force estimation approach that combines a vision based solution with supervised learning to estimate the applied force and provide the surgeon with a suitable representation of it. The proposed solution starts with extracting the geometry of motion of the heart's surface by minimizing an energy functional to recover its 3D deformable structure. A deep network, based on a LSTM-RNN architecture, is then used to learn the relationship between the extracted visual-geometric information and the applied force, and to find accurate mapping between the two. Our proposed force estimation solution avoids the drawbacks usually associated with force sensing devices, such as biocompatibility and integration issues. We evaluate our approach on phantom and realistic tissues in which we report an average root-mean square error of 0.02 N.Peer ReviewedPostprint (author's final draft

    Switching in Feedforward Control of Grip Force During Tool-Mediated Interaction With Elastic Force Fields

    Get PDF
    Switched systems are common in artificial control systems. Here, we suggest that the brain adopts a switched feedforward control of grip forces during manipulation of objects. We measured how participants modulated grip force when interacting with soft and rigid virtual objects when stiffness varied continuously between trials. We identified a sudden phase transition between two forms of feedforward control that differed in the timing of the synchronization between the anticipated load force and the applied grip force. The switch occurred several trials after a threshold stiffness level in the range 100–200 N/m. These results suggest that in the control of grip force, the brain acts as a switching control system. This opens new research questions as to the nature of the discrete state variables that drive the switching

    Sensory translation between audition and vision

    Get PDF
    Across the millennia, and across a range of disciplines, there has been a widespread desire to connect, or translate between, the senses in a manner that is meaningful, rather than arbitrary. Early examples were often inspired by the vivid, yet mostly idiosyncratic, crossmodal matches expressed by synaesthetes, often exploited for aesthetic purposes by writers, artists, and composers. A separate approach comes from those academic commentators who have attempted to translate between structurally similar dimensions of perceptual experience (such as pitch and colour). However, neither approach has succeeded in delivering consensually agreed crossmodal matches. As such, an alternative approach to sensory translation is needed. In this narrative historical review, focusing on the translation between audition and vision, we attempt to shed light on the topic by addressing the following three questions: (1) How is the topic of sensory translation related to synaesthesia, multisensory integration, and crossmodal associations? (2) Are there common processing mechanisms across the senses that can help to guarantee the success of sensory translation, or, rather, is mapping among the senses mediated by allegedly universal (e.g., amodal) stimulus dimensions? (3) Is the term 'translation' in the context of cross-sensory mappings used metaphorically or literally? Given the general mechanisms and concepts discussed throughout the review, the answers we come to regarding the nature of audio-visual translation are likely to apply to the translation between other perhaps less-frequently studied modality pairings as well
    corecore