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The contributions of skin stretch and kinesthetic information to static
weight perception

Femke E. van Beek, Member, IEEE, Raymond J. King, Casey Brown, and Massimiliano Di Luca, Member, IEEE

Abstract— In this study, we examined the contributions of
kinesthetic and skin stretch cues, in isolation and together, to the
static perception of weight. In two psychophysical experiments,
we asked participants either to detect on which hand a weight
was presented or to compare between two weight cues. Two
closed-loop controlled haptic devices were used to present
weights with a precision of 0.05g to an end-effector held in
a pinch grasp. Our results show that combining skin stretch
and kinesthetic information leads to better weight detection
thresholds than presenting uni-sensory cues does. For supra-
threshold stimuli, Weber fractions ranged from 22-44%. Kines-
thetic information was less reliable for lighter weights, while
both sources of information were equally reliable for weights up
to 300g. Our data for lighter weights complied with an Optimal
Integration model, while for heavier weights, measurements
were closer to predictions from a Sensory Capture model.
The difference might be accounted for by the presence of
correlated noise across the two cues with heavier weights,
which would affect model predictions such that all our data
could be explained through an Optimal Integration model. Our
experiments provide device-independent measures that can be
used to inform, for instance, skin stretch device design.

I. INTRODUCTION

Weight perception has been a topic of scientific enquiry
since the origin of the field of psychophysics. Numerous
researchers have measured the precision and accuracy of
weight perception in various tasks, as can be seen in a
review by Jones [1]. Various attempts have been made to
disentangle the contributions of the two primary sources
of information in haptic weight perception: kinesthetic and
tactile [2]. Kinesthetic mechanoreceptors encode information
on the state of muscles, tendons, and joints, while the four
tactile mechanoreceptors respond to deformations of the skin.
It has proven difficult, however, to analyze the contributions
of the two sources of information in isolation. One of the
limitations has been the absence of a device that allows
for independent control of kinesthetic and tactile cues. In
this experiment, we used a closed-loop controlled haptic
device to render weight with a precision of 0.05g. The
device simulated the static weight of a virtual object held
in a stationary pinch grasp by exerting force on the end-
effector held between the fingers. This approach allowed
us to separate kinesthetic weight cues from tactile ones.
For tactile information specifically, the major cue in such
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an interaction is most likely tangential deformation (i.e.,
shearing) of the skin on the fingertips [3]. Throughout this
paper, we will refer to this type of information as skin stretch.

We are interested in skin stretch because of numerous
recent attempts to simulate virtual object weight using this
cue (e.g., [3]). Only a few studies assessed the contribution
of both skin stretch and kinesthetic information to providing
the sensation of weight [4]–[6]. One of the limitations of
these types of studies is that the magnitude of skin stretch
stimulation is often either not reported in units of mass,
or it is not continuously monitored. Therefore, the results
obtained in these papers cannot be generalized and can only
be replicated using the specific devices described in the
papers. Giachritsis et al. mitigated this problem by using real
weights to assess the precision of both types of information
[6]. To separate the cues, they used thimbles to eliminate
tactile information and a hand rest to reduce kinesthetic
contributions. Their results suggest that skin stretch and
kinesthetic cues are integrated when assessing the weight of
a real object. Although their method has merit, the use of real
weights introduces confounding factors, such as the influence
of different lifting styles on the magnitude of inertial forces
and the limits in stimulus range imposed by having to
manufacture each stimulus. Therefore, we used an approach
similar to Giachritsis et al. [6], but we used carefully-
controlled virtual weights with a slow onset and offset, and
asked participants to not move their hands during weight
presentation. This allowed us to study (static) perception of
weight without inertia.

In Experiment 1, we investigated the detection perfor-
mance for the single and combined cues, whereas in Ex-
periment 2, we studied the supra-threshold precision of
weight discrimination for the single and combined cues. We
compared our observed data to two candidate models, since
finding an underlying model would allow us to make predic-
tions about stimuli that were not tested in this experiment. We
tested an Optimal Integration model [7], which shows how
the means and variances of cues can be pooled, and a Sensory
Capture model, in which the most reliable modality is the
only one that is represented in the multi-sensory percept [8].
Together, these results provide device-independent guidelines
for rendering weight of virtual objects through one or both
types of information.



Fig. 1. Overview of the setup and the three experimental conditions. a) Overview of the entire setup, showing the arm supports, hand rests, thimbles, and
haptic devices. The participant is experiencing condition K with his right hand and condition T with his left hand. b) Close-up of the kinesthetic condition
(K), in which the participant’s elbow is supported while he actively holds up his forearm and hand. The custom-fitted thimbles attenuate tactile information.
c) Close-up of the tactile condition (T), in which the participant’s elbow and forearm are supported, and his thumb and index finger are resting on a padded
finger rest, while holding the end-effector with his bare fingers. In this condition, kinesthetic information is attenuated. d) Close-up of the combined cue
condition (KT), in which the participant holds the end-effector with his bare fingers and only his elbow is supported.

MATERIAL AND METHODS

Participants

In Exp.1, 10 participants performed the study, 8 males
and 2 females. Three additional participants completed the
experiment, but due to technical issues their data sets were
not recorded correctly and could not be used. The partici-
pants were 34±5 years old (mean±standard deviation), and
all were right handed. In Exp.2, 19 participants performed the
study, 6 males and 13 females. Two additional participants
completed the experiment, but their data was not analyzed as
their performance never exceeded chance level. The partici-
pants were 35±10 years old, and 17 were right handed. All
participants gave written informed consent prior to taking
part, were naive to the purpose of the experiment, and were
compensated for their time. None of them had any history
of neurological disorders. All experiments were approved by
WIRB, and were carried out in accordance with the relevant
guidelines and regulations.

Experimental setup

For both experiments, we used a setup comprised of
two 3-DoF haptic devices (Omega 3.0, ForceDimension,
customized in a similar way as discussed in [9]), each
equipped with two 6-axis force-torque sensors at the end-
effector (Nano17, ATI) to allow closed-loop control of the
rendered stimuli. The precision of force rendering was 0.05g
once the system had reached target force level. Participants
held the custom end-effectors of the Omega in a pinch
grasp between their thumbs and index fingers. The force-
torque sensors were placed directly underneath the aluminum
finger plates. The movement and force data from both force
feedback devices were recorded throughout the experiment.
Three conditions were used, see Fig. 1 for an overview of the
setup and conditions. The first was kinesthetic only (K): a
uni-sensory condition in which participants wore the custom
thimbles to ensure that the majority of the tactile weight
information was removed. A variety of 3D printed thimbles
with different thumb angles were used to ensure that each
participant could comfortably hold the end effector. The
thimbles were padded with participant-adjustable foam to
ensure a tight fit on all finger sizes. In this way, the thimbles

provided pressure around the fingers, which prevented the
skin from stretching and thus removed most of the task-
relevant tactile information. Participants rested their elbows
on a support, while holding up their forearms and hands.
The second was tactile only (T): a uni-sensory condition
in which participants rested their elbows and forearms on
a support, while resting their thumbs and index fingers
on a padded finger rest, such that most of the kinesthetic
information was removed. The third was kinesthetic-tactile
(KT): a multi-sensory condition in which participants held
the device with bare fingers, while their arm posture was
the same as in condition K. Throughout the experiment,
participants wore headphones playing white noise to cancel
any possible auditory cues. They were asked to provide
their responses using foot pedals. In Exp.1, they wore
custom glasses that prevented them from seeing their hands.
In Exp.2, participants wore a head-mounted display (Rift,
Oculus VR) for this purpose. Visual information, presented
on a screen (Exp.1) or the HMD (Exp.2), was used to guide
participants to the center of the workspace. As soon as
participants reached the starting position, which was always
the same, visual feedback was removed and the trial started.

Protocol

The participants’ task was to hold the instrumented end-
effectors of the two haptic devices as stationary as possible
and to compare the sensation of weight between their two
hands. A 2-alternative forced choice (2AFC) task was used,
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so participants had to choose which side was perceived to
be heavier and indicate this using foot pedals. The stimuli
comprised only downward forces, and no inertial effects
were rendered in response to participants’ movements. For
an illustration of the protocol, see Fig. 2. Each cue was
initiated with a linear increase (3s in Exp.1, 2s in Exp.2).
Once the first stimulus reached the stationary force level, the
second stimulus was ramped up 0.5±0.05 s (mean±standard
deviation) after. One second after the second force stimulus
had reached its constant level, participants were prompted
for a response by a sound. They were instructed to keep
their hands as steady as possible and to base their perception
on the stationary force level. Both forces remained constant
until participants provided a response, after which they were
ramped down (1s). By staggering the ramp-up force while
keeping the ramp time constant, participants could neither
use the ramp time nor directly compare the ramp slope as an
indication of the final force magnitude. In Exp.1, a slower
ramp was used to eliminate any additional cues about the
presence of a stimulus.

In Exp.1, we measured force detection thresholds for the 3
different cue types. The experiment consisted of 3 blocks and
took about 1 hour in total. Each block consisted of measuring
the threshold of a single cue, by presenting a force cue on
one hand only, and asking participants to indicate which hand
received a cue. The stimuli were weights of 10, 20, 30, 40,
50, 60, 80, or 100g. The side at which the force was applied
was pseudo-randomized. Each stimulus pair was repeated 12
times, resulting in 96 trials per condition.

In Exp.2, we measured supra-threshold precision (JND)
of weight perception for the 3 different cue types. The
experiment consisted of 9 blocks and took about 3 hours,
divided over 3 one-hour sessions. Each block consisted of
measuring the perceptual precision of a single cue type.
The same type of cue was presented to each hand, and
participants were asked to indicate which hand received the
heavier cue, at 3 reference weights: 100, 200, and 300g. The
comparison stimuli deviated from the reference weight by
±8, 16, 24, or 32%. The side at which the reference weight
was applied was pseudo-randomized. Each stimulus pair was
repeated 12 times, resulting in 96 trials per reference weight.

In both experiments, the order of the force cues was ran-
domized and the order of reference and comparison stimulus
was counterbalanced. The order of the blocked conditions
was counterbalanced between participants. At the start of all
experiments, 12 familiarization trials were performed.

Statistical analyses

For all experiments, we calculated the proportion with
which the comparison stimulus was chosen as being the
heavier stimulus, as a function of the weight of the com-
parison stimulus. A psychometric function (see Fig. 3 for a
typical example) was fitted to the proportion of responses of
each participant and condition by using the maximum likeli-
hood procedure provided in the Palamedes toolbox [10]. In
Exp.1, the PSE was fitted, while in Exp.2 it was constrained
to be at the reference weight. In both experiments, the slope
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Fig. 3. Example data and fits. a) The detection threshold (Exp.1) is the
weight at which the proportion of responses was 0.84 in the fit. b) The
JND (Exp.2) is the difference between the weight at which the proportion
of responses was 0.84 in the fit and the reference weight.

was fitted as a free parameter, and the lapse rate was fitted
in the range [0,0.05]. The guess rate was set to 0.5 in Exp.1,
while it was constrained to be the same as the lapse rate
in Exp.2. In Exp.1, we calculated the detection threshold by
determining the weight at which the proportion of responses
was 0.84. In Exp.2, we used the difference between the
weight at which the proportion of responses was 0.84 and
the reference weight for assessing the JND. To determine
the goodness-of-fit of the psychometric curves, the model
used to fit the data was compared to a “saturated” model
in 1000 simulations. For a more detailed description of this
procedure, see Kingdom and Prins [11]. A goodness-of-fit
of less than 0.05 was considered to be an outlier, and was
removed from the analysis.

For predicting multi-sensory performance using the Opti-
mal Integration and Sensory Capture models, measured uni-
sensory data were used. For the Optimal Integration model,
predictions of detection thresholds were made using the
Pythagorean Theorem [12]:

d′KT =
√
d′2K + d′2T (1)

for which d′-values were calculated from the response pro-
portions using the Palamedes toolbox. For predicting multi-
sensory JNDs, the following equation was used [7] (which is
equivalent to the optimal Weighted Summation model [8]):

JNDKT =

√
JND2

K JND2
T

JND2
K + JND2

T

(2)

Thus, using the Optimal Integration model, the multi-sensory
condition is always predicted to have less noise than any of
the uni-sensory conditions. For predicting detection thresh-
olds and JNDs using the Sensory Capture model, the best
performing uni-sensory conditions were used for each par-
ticipant and reference weight [8].

Parameteric and Bayesian repeated measures ANOVAs
were performed on the DTs and JNDs, to test the effect
of condition and reference weight. If the sphericity criterion
was not met, Greenhouse-Geisser correction was used. When
appropriate, Bonferroni-corrected post-hoc tests, t-tests and



0

20

40

60
D

et
ec

tio
n 

th
re

sh
ol

d 
[g

]

100 g 200 g 300 g
Reference weight [g]

0

10

20

30

40

50

W
eb

er
 fr

ac
tio

n 
[%

]

K
T
KT

a) b)

Fig. 4. Detection thresholds and JNDs for conditions K, T, and KT in
colored bars, with error bars representing standard error of the mean. a)
Detection thresholds for Exp.1. b) Weber fractions for Exp.2. Note that the
kinesthetic condition does not perform very well for light weights.

Wilcoxon signed-rank tests were performed. All t-test results
employed two-tailed probabilities. For ANOVAs and t-tests,
an α level of 0.05 was used. For Bayesian statistics, BF01

were used, which represents the degree to which the data
supports a hypothesis (i.e., the presence of a main effect)
[13]. A BF01 < 0.067 (BF01 > 3) is considered strong
evidence that the main effect is present (absent).

Movement data were analyzed by calculating the differ-
ence between the lowest and highest vertical position of
the end effector on each trial. Force data were analyzed
by calculating the average sum of the inward force exerted
on the index and thumb force sensor, thus representing the
average squeeze force exerted during the trials. To assess
the effect of weight on movement and force data, linear
regressions with intercept and slope were calculated for each
participant, condition, and experiment.

II. RESULTS

In Exp.1, we measured weight detection thresholds for
conditions K (kinesthetic cues only), T (tactile cues only),
and KT (both kinesthetic and tactile cues present), as shown
in Fig. 4a. Two of the 30 psychometric curves were discarded
for not meeting the goodness-of-fit criterion. The resulting
thresholds were 55±6g for K, 42±6g for T, and 32±5g for
KT (mean±standard error). A one-way repeated measures
ANOVA on the measured thresholds showed a significant
effect of condition, with F2,14 = 13, p <0.001, η2p = 0.65,
BF01 = 0.021. Bonferroni-corrected posthoc tests show that
the KT condition differed significantly from the K condition
(t8 = 4.7, p = 0.007), whereas the other conditions did
not differ significantly from each other (KT and T: t7 =
2.7, p = 0.083; K and T: t8 = 2.5, p = 0.11). The threshold
for KT predicted from modeling was 31±5g for Optimal
Integration and 43±5g for K for Sensory Capture, as shown
in 5. Two paired samples t-tests, with Bonferroni-corrected
αs of 0.025, showed that KT measurements did not differ
from predictions of the Optimal Integration model (t7 =
−0.37, p = 0.72, BF01 = 2.8), while they did differ from the
Sensory Capture ones (t8 = 3.1, p = 0.015, BF01 = 0.21).

In Exp.2, we measured discrimination thresholds for
supra-threshold stimuli in conditions K, T, and KT, by asking
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Fig. 5. Correlations between measured multi-sensory thresholds and
predictions from the Optimal Integration model (magenta triangles) and
Sensory Capture model (cyan squares). For Exp.1, The Optimal Integration
model seems to capture measured data well, while participants performed
better than predictions of the Sensory Capture model. For Exp.2, the
measured thresholds are worse (i.e., higher) than the ones predicted from
Optimal Integration for 100 and 200g, while the Sensory Capture model
performs better at modeling data for these weights.

participants which hand received the heavier cue. Both hands
received the same type of cue, and a range of test stimuli
were compared to reference stimuli of 100, 200, and 300g.
The JNDs for the three reference weights and the three
conditions are shown in Fig. 4b, with five of the 171 fits
being discarded because of not meeting the goodness-of-
fit criterion. A two-way repeated measures ANOVA on the
measured JNDs with the within-subjects factors ‘condition’
and ‘reference weight’ showed a significant effect of both
weight (F2,26 = 13, p < 0.001, η2p = 0.51, BF01 < 0.0067)
and condition (F2,26 = 4.5, p = 0.021, η2p = 0.26, BF01 =
0.048). The interaction effect was significant too (F4,52 =
2.7, p = 0.040, η2p = 0.17, BF12 = 1.2). Bonferroni-
corrected posthoc testing of the ‘weight’ and ‘condition’
factors showed that 100g differs from 200g and 300g (100
to 200: t = 3.4, p = 0.005; 100 to 300: t = 4.8, p < 0.001),
while 200g and 300g do no differ significantly from each
other (t = 2.0, p = 0.15). Conditions K and KT differ
significantly (t = 3.2, p = 0.008), while the others do not (K
and T: t = 0.94, p > 0.99; KT and T: t = 2.2p = 0.099). To
test the Optimal Integration and Sensory Capture models (see
Fig. 5), two separate repeated measures ANOVAs were per-
formed, in which the measured and predicted KT thresholds
were compared, while using weight as the second ‘within-
subject’ factor. Bonferroni-correction was used to adjust α to
0.025. The measured thresholds differed significantly from
the ones predicted from Optimal Integration (F1,13 = 27, p <
0.001, η2p = 0.67, BF01 < 0.0067), while they did not differ
significantly predictions from the Sensory Capture model
(F1,15 = 0.028, p = 0.87, η2p = 0.002, BF01 = 4.6).

Both the grip force data (Fig. 6a) and the movement data
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Fig. 6. Median force and position data across all experiments (different line styles and markers) and conditions (different colors), with error bars indicating
±1 standard error. a) Grip force data, representing the mean squeeze force between thumb and index finger per trial. For smaller weights, participants
exerted the largest grip forces in condition K, which was probably caused by wearing the thimbles. Data from literature (ref1 in solid black [14]) indicate
that the grip force modulation in conditions T and KT resembles that observed for real objects with comparable material properties. b) Movement data,
representing the downward movement per trial. For condition T, expected vertical movements based on finger impedance measurements from literature (ref2
in solid black [15]) match the measured movements closely. Thus, very little movement beyond that caused by skin stretch was present in that condition.

(Fig. 6b) show a gradual increase with presented weight,
which is confirmed by their slopes being significantly greater
than 0 in a Wilcoxon signed-rank test (W83 = 3570, p <
0.001, BF01 < 0.067 for force, W83 = 3570, p < 0.001,
BF01 < 0.067 for movement). To provide a reference for the
amount of hand movement present, we selected data from
literature from users statically holding a silk-padded object
[14] (required grip force for holding a hard object depends
on its material properties, and our end effectors had a smooth
aluminum surface). The comparison data, plotted in Fig. 6a,
suggest that grip forces for conditions without thimbles are in
the range expected from literature, while they are higher for
the lighter weights in condition K. To compare movements
measured in condition T to skin stretch data from literature,
we used finger pad impedance data from Pataky et al. [15].
The authors show that finger pad stiffness depends on grip
force, so we calculated expected stiffnesses and resulting
predicted movements from measured grip forces, which align
well with measured movements in condition T (Fig. 6b).

DISCUSSION
We investigated the contribution of skin stretch and kines-

thetic cues to the perception of static weight up to 300g. Our
experiments provide device-independent measures of detec-
tion thresholds and Just Noticeable Differences for both types
of information alone, and for their combination. Combining
cues led to better weight detection thresholds than presenting
uni-sensory cues did. Weber fractions ranged from 22 to
44% for supra-threshold stimuli. Kinesthetic information was
generally less reliable for lighter weights, whereas for heavier
weights up to 300g the two cues were roughly equally
reliable. These results can be used as guidelines for designing
skin-stretch devices for presenting weight to users.

To assess the validity of our experimental setup, we
investigate the degree to which our setup was able to
present tactile and kinesthetic weight cues, separately and
in conjunction. We used a a force onset ramp that was much
slower than lifting an object in a natural setting. Moreover,
participants were required to maintain a static posture, while

one of the most salient cues for weight perception is inertia,
which is why the Exploratory Procedure for judging weight
is moving an object up and down [16]. We restricted our
experiment to static weight with a slow force increase for two
reasons. Firstly, we wanted to be able to distinguish between
the perception of static weight and of inertia, since they
likely both influence the final percept of weight. Secondly,
limiting kinesthetic stimulation is even harder in a dynamic
task, since that would require a grounded finger rest that
would move along with the participant’s movements. The
slow force increase was helpful to ensure participants kept
their hands as static as possible in the kinesthetic condition.

The question now remains to which degree the static
weight presentation might be unnatural, which could have
affected the experience and thus the external validity of the
results. Although we cannot be certain of the participants’
subjective experience, we can look at signatures that imply
‘normal’ behaviour. Such a signature is the tight coupling
between lifting force and grip force, which is present in
normal lifting of objects, and also in static holding of weights
[14], [17]. Our grip force data (Fig. 6a) highlights an increase
with presented weight, and are comparable to grip force
data from literature [14]. Grip forces were higher in the K
condition, probably due to the thimbles, but we still see the
modulation of grip force with presented weight, which all
points to participants showing natural behaviour.

Furthermore, we can assess how well we separated kines-
thetic from tactile cues. For the K condition, the custom
thimbles with participant-specific padding were tight-fitting,
so the skin was unable to move and pressure was exerted
around the finger constantly, which was unrelated to the
presented force. For the T condition, we can compare our
movement data to literature. Fig. 6b shows a good agreement
between measured movements in our T condition and predic-
tions from literature [15]. These data from literature represent
impedance measurements when constraining the finger up to
the Proximal Interphalangeal joint, so very little movement
beyond skin stretch was present when stretching the fingertip



tangentially. This suggests that the most important cue in our
T condition was indeed skin stretch.

The thresholds in our study are worse than those reported
in literature. In Exp.1, the DT in our KT condition (which
is closest to ‘natural’ weight presentation) was 32g, while
literature reports thresholds as low as 10g [18], [19]. In
Exp.2, our Weber fractions for the KT condition were 20-
30%, while literature reports a range between ∼9-13% for
unconstrained lifting of real objects, which is ∼1.5 times
worse for static perception of real objects placed in the hands
[1]. Giachritsis et al. [6] reports JNDs of 15-25% for active
lifting of real objects. These differences are probably due
to the absence of inertial cues in our experiment, which
resembles a very slow placement of a real object on a
stationary hand. Thus, our result show that even in a static
situation, the force ramp caused by placing a weight on a
user’s hand is an important cue for weight perception.

Research in experimental settings similar to ours [4] sug-
gests that tactile information is more precise than kinesthetic
for smaller weights, while for weights of 300g and heavier,
tactile sensitivity is greatly reduced and kinesthetic informa-
tion becomes the more reliable source. We observe similar
trends in our data, but we do not see the massive deterioration
of tactile sensitivity at higher weights. The authors attribute
the deterioration to saturation of the tactile stimulus, meaning
they believed they approached the limit of skin stretch sen-
sation for the finger pad. However, their skin stretch device
did not deliver force-controlled stimuli, so we cannot tell if
their tactile 300g cue reflected a physical 300g weight cue.
Additionally, the finger pad is unlikely to approach its stretch
limit at 300g, as work on the shear properties of the finger
pad shows increasing displacements with increasing force up
to 5mm at 5N (510g) [15], which agrees with the movements
in our T condition being ∼4mm for 400g. Thus, the tactile
sensation of the finger pad not being fully saturated at 300g
is in agreement with the material properties of the finger
pad, and the results in Minamizawa et al. could be due to
device limitations. This slight discrepancy between literature
and our results actually indicates the importance of obtaining
device-independent measures of perceptual performance.

Our measured detection thresholds match predictions from
the Optimal Integration model, whereas results of JNDs are
more in line with predictions from the Sensory Capture
model. It seems unlikely that participants change the way
they integrate information when the weight range changes.
Our results cannot conclusively resolve this paradox, but
an alternative hypothesis is that our sensory inputs were
corrupted by correlated noise, which is known to reduce the
benefits of Optimal Integration [20]. Given that both types
of information were provided by the same device, rendering
noise would be present in both cues. Increasing the rendered
force leads to more instability in haptic systems [21], and
thus correlated noise is likely to only have a noticeable
influence for weights well above detection threshold. Thus,
we propose that Optimal Integration of skin stretch and
kinesthetic information was present in both experiments, but
the benefit of integration was reduced for heavier supra-

threshold stimuli.
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