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Abstract—Robotic-assisted minimally invasive surgeries have gained a lot of popularity over conventional procedures as they offer
many benefits to both surgeons and patients. Nonetheless, they still suffer from some limitations that affect their outcome. One of them
is the lack of force feedback which restricts the surgeon’s sense of touch and might reduce precision during a procedure. To overcome
this limitation, we propose a novel force estimation approach that combines a vision based solution with supervised learning to
estimate the applied force and provide the surgeon with a suitable representation of it. The proposed solution starts with extracting the
geometry of motion of the heart’s surface by minimizing an energy functional to recover its 3D deformable structure. A deep network,
based on a LSTM-RNN architecture, is then used to learn the relationship between the extracted visual-geometric information and the
applied force, and to find accurate mapping between the two. Our proposed force estimation solution avoids the drawbacks usually
associated with force sensing devices, such as biocompatibility and integration issues.

Index Terms—Force Estimation, deep networks, visual deformation, computer-assisted surgery
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1 INTRODUCTION

ROBOTIC-Assisted Minimally Invasive Surgery (RAMIS)
emerged from the need to address some deficiencies as-

sociated with traditional Minimally Invasive Surgery (MIS)
and open procedures [1]. The revolutionary technologies
utilized by RAMIS systems provide motion scaling and
tremor filtering which stabilize the instruments and improve
surgery precision [1], [2]. Furthermore, the added degrees of
freedom in the tool tip enhances surgeons’ dexterity and re-
sults in better clinical outcomes [2]. The small incisions used
in RAMIS allow reducing the amount of blood loss during
surgery, minimizing trauma to the body, and improving
cosmetic results. Patients who undergo RAMIS experience
less post-operative pain, faster recovery, and lower mortality
and morbidity events [3], [4].

Despite all the benefits offered by RAMIS, current com-
mercially available systems suffer from one major limitation
which is the lack of force feedback [4], [5]. This feature
is of huge importance since it increases surgeon-patient
transparency [6] and allows more natural interaction with
delicate tissues, as in the case of the heart (Fig. 1). Without
force feedback information, surgeons have no means of
knowing how much force is applied to the tissue, which
could complicate the surgical task, increase its completion
time and, what is worst, result in irreversible injuries [7],
[8]. Furthermore, dealing with the absence of this primary
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Fig. 1. (A) shows tool-tissue interaction during Robotic-Assisted Surgery
which lack force feedback that informs the surgeon about how much
force is applied. (B) shows the observable displacements after applying
a force, which we obtain using a sensorless approach that relies, in part,
on computing the 3D shape of the tissue over time.

sense of touch creates a higher mental workout for surgeons
and might be a hazardous source of distraction [9]. For these
reasons, numerous researchers have dedicated significant
efforts to address the problem of force feedback. However,
up to date it is still considered an open problem [10].

In the search for solutions for the lack of force feedback,
some researchers have focused their efforts toward devel-
oping force sensing devices (FSDs) [11], [12], [13]. These
devices can be placed either inside or outside the patient’s
body. When placed outside, the devices are attached to the
robot or its instruments and offer indirect sensing. With this
option, the devices measure not only the instrument-tissue
interaction forces but also irrelevant force data given by the
external/internal surgical environment. Removal of these
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Fig. 2. Flowchart of our approach for estimating applied forces in surgical robotic systems. We first propose a visual approach based on minimizing
an energy functional to compute the deformation structure over time. Then, deformation information, together with the geometry of motion, are used
as input to an artificial neural network architecture which accurately estimates the applied force.

undesirable measurements is not possible due to hysteresis
and because they greatly depend on ambiguous starting
conditions [14].

Alternatively, FSDs can offer direct sensing if they are
placed close or on the tip of the instrument inside the
patient’s body. However, the internal location of the sensor
introduces numerous problems, including: biocompatibility
and sterilization constrains; long-term stability; adaption
to surgical tool; size and high cost [15], [16]. All these
limitations put severe restrictions to the adoption of FSDs
in real surgical environments. Therefore, the use of FSDs
can be replaced by Force Sensory Substitution (FSS) in
which physical properties of the environment are sensed
using an alternate sensing modality. In our case, estimating
force information through an alternative sensory channel
can substitute the use of FSDs. The potential benefits of
FSS for force feedback in teleoperation tasks were first
explored by Massimino and Sheridan [17]. In that work,
they demonstrated that the use of sensory substitution of-
fers a significant advantage over procedures without force
feedback, and eliminates instabilities often associated with
FSDs.

When force sensory substitution is used, force feedback
can be transmitted to the surgeon through other sensory
modalities, specifically auditory, vibrotactile or visual feed-
back, which provide the surgeon with a representation of the
forces he/she is applying with the robotic telemanipulators.
In the case of auditory, changes in force are represented
as sound signals, like beeps for example. However, some
studies have demonstrated that additional sounds during
procedures, coming from the medical team or monitors in
the operating room, are unavoidable and may interfere with
the auditory feedback [7]. Additionally, continuous sounds
during long procedures can be a source of discomfort
and/or annoyance to the surgeon.

Alternatively, vibrotactile sensory substitution ap-
proaches rely on vibration cues to convey information about
touched objects. According to the literature, different works
have been reported using this sensory substitution. Some
examples can be seen in [18]. From one side, they proved

that vibration information is preferred over not having
any feedback, in most of the cases, over short periods
of time. Nonetheless, vibrotactile feedback offers limited
information as it is complicated to convey both force di-
rection and magnitude at the same time due to the high-
frequency fluctuations in force and displacement [19], [20],
[21]. Moreover, vibrotactile feedback has the drawback of
being uncomfortable for the surgeon if used for a long
period of time [22].

Visual feedback on the other hand is considered a
promising sensory substitution suitable for clinical adop-
tion [14]. With this alternative, surgeons perceive force in-
formation via visual cues of tool-tissue interaction. Various
studies have investigated the feasibility of visual feedback
on conveying force information for surgeons while per-
forming delicate tasks. Investigation results show improved
performance among novice surgeons and decreased incon-
sistencies [14], [23]. Out of the different FSS modalities, in
this work we chose visual feedback as it has proven to offer
more advantages than other alternatives. Moreover, the use
of visual information has been proven to be very reliable for
force estimation as all RAMIS settings include a videoscopic
view of the operation. Thereby, in order to avoid using force
sensors, we can employ the available visual information of
the tool-tissue interaction and relate it to the applied force.

In this paper we propose a new approach to estimate
the applied forces during RAMIS interventions (see Fig. 2).
Our approach uses visual-geometric information, in which
tissue deformation is computed by minimizing an energy
function while geometric data are provided by the robot.
Then, this information is used in a learning system that finds
the nonlinear relationship between the given data and use
it to estimate the applied force. The proposed approach has
the benefits of eliminating the need of add-on sensors which
require biocompatibility studies and knowing in advance
the physical properties of the deformable tissue.

1.1 Related Work

Vision-based force estimation can incorporate explicit
knowledge of the mechanical properties of the tissues. How-
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Fig. 3. The 3-dimensional tissue surface is reconstructed from the
projections of homologous points on the left and right lattices defined
for each stereo-pair image.

ever, this requires both complex calculation and adaptation
to each tissue. To avoid these drawbacks, knowledge about
the tissue properties can be learned implicitly from the data.
This makes the system more suitable for real-time solutions
since the learning can be optimized for faster computation.

The viability of using visual information to estimate the
applied forces has been demonstrated in different scenarios.
In 2D, Greminger et al. in [24] used Direchlet to Neu-
mann map to estimate the force distribution applied to a
deformable object for microassembly and biomanipulation.
Authors measured the displacement field of the contour of
the object and then used a template matching based on
linear elasticity equations. Similarly, authors in [25] modeled
the deformation by introducing contour information of the
object, together with its mechanical properties, into the
boundary element method. Then, deformation data was
used to compute the applied forces by means of a capaci-
tance matrix. The disadvantage of this proposal is the need
of a prior knowledge of the object’s material properties.

The concept of virtual template for computing the de-
formation of the object, using monocular images, was pre-
sented in [26]. In that work, authors assumed that the
surface of the object is a smooth function with local de-
formation. Then, they used a strain-stress relation together
with the penetration depth to estimate the force. Authors
in [27] applied a mesh-based model to characterize the de-
formation based on stereo-endoscopic images. Afterwards,
a spring-damper system was used to compute interaction
forces. Authors in [28] attempted to improve the realism of
visual and haptic feedback in a cell injection system by us-
ing a 3D nonlinear mass-spring-damper model. The model
parameters were identified using offline Finite Element
Method (FEM) simulations and the biomembrane geometry
deformation was reconstructed using snakes based visual
tracking. However, as shown in [29], the use of mass-spring
models offers limited accuracy, and the FEM-based parame-
ters computation requires additional modeling efforts.

More recently, some researchers have investigated the
use of soft computing to improve the accuracy of the force

estimation. Authors in [30] computed the applied force
using a 2-layers feedforward network incorporated into a
deformable template matching algorithm. The deformable
template was an iterative computation of the object’s edge,
using Canny’s method. Karimirad et al. in [31] used a
feedforward Artificial Neural Network to estimate the force
applied to cells during micromanipulation. The neural net-
work was trained on geometric features of the cells, in-
cluding deformation, orientation, and size. These features
were extracted using various image processing techniques
under different known force conditions. Two different hy-
brid intelligent systems were proposed in [32] to model
the tool-tissue force in laparoscopic surgery: an adaptive
coevolutionary fuzzy inference system, and an adaptive
neuro-fuzzy inference system. Both systems were trained
on three different geometric features extracted from a 2D
simulated deformable model: angle and depth of maxi-
mum deformation and width of displacement constraint.
Nonetheless, experiments in both works, [31] and [32], were
only conducted in 2D space.

In our previous work [33], an energy minimization
strategy was applied to compute a deformation structure
from the acquired stereo image sequences. The deforma-
tion structure, along with geometric data from the robotic
manipulator, was used as an input to a Recurrent Neu-
ral Network (RNN) which was trained using the adapted
Levenberg-Marquardt method. A modification of the RNN
architecture was presented in [34], in which three main
states: local delay, global delay, and no delay, were defined.
With the aim of increasing previous system accuracy, in
a recent work [35] we used a Long-Short Term Memory
RNN (LSTM-RNN) architecture. This LSTM-RNN allowed
preserving information for a longer period of time, which
enforced constant error flow.

Unlike our previous works, in this paper we introduce
a modification of our vision approach which takes into ac-
count complex behavior of the deformation structure. More-
over, we reduce complexity and accelerate the performance
of our deep network by doing dimensionality reduction
to keep only features relevant to force. We also introduce
some modifications to the network architecture in order to
stabilize force estimation and find the best trade-off between
accuracy and computation time.

2 NEURO-RECURRENT-VISION APPROACH

The force estimation strategy proposed in this work is
part of the robotic surgical system shown in Fig. 2. In
a general RAMIS setting, a surgeon controls the robotic
manipulator through a teleoperation control unit that scales
and transforms the given commands into relative motion.
A stereo pair camera is used to track this motion and feed
the image sequences to the vision-based module, which is
the first part of our estimation strategy. This module uses
the acquired visual information to retrieve the deformation
observed on the tissue surface after applying a force. The
structure deformation information, along with the geometry
of motion given by the robotic manipulator, are given as
input to the second module, which is the neural approach. In
this module, a Long-Short Term Memory - Recurrent Neural
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Network (LSTM-RNN) is trained to analyze the given infor-
mation and map it into an accurate force estimation. As a
final step, the estimated force is validated against the real
force measurement given by a robotic sensor attached to the
surgical tool for training and validation purposes.

In the remainder of this section our approach is ex-
plained in details. Subsection 2.1 describes how a 3D defor-
mation map is reconstructed from the visual information us-
ing an energy minimization functional. This is followed by a
description of the supervised recurrent learning method that
constructs an accurate estimation model that maps both the
visual and geometric information into force.

2.1 3D Deformable Shape Recovery

The first part of our solution for estimating the applied
force is the computation of the deformation structure, as
shown in Fig. 2. In this work, 3D shape recovery is accom-
plished by minimizing an energy functional reformulated
using the l2-regularized optimization class. Moreover, in
order to reduce the computational time, we parametrize
the changes produced on the tissue surface using a set
of linearly independent vectors. In the remainder of this
section, we present a formulation that allows recovering the
deformation produced when a force is applied on the tissue
surface over time.

Let us assume that Itl : ΩIl → R2 and Itr : ΩIr → R2

are the left and right image views from a stereo pair image
acquired at each instant time t, where ΩIr and ΩIr are their
corresponding domains. Since during a medical procedure
the surgeon is interested only in the region to be repaired,
for example a vein, computational cost can be reduced by
defining a region of interest (ROI).

Definition 1. A m-dimensional lattice is the Z−linear span
of a set of k linearly independent vectors in Rm.

Since human beings perceive the world as a 3D represen-
tation, and taking Definition 1, we handle the specified ROI
using a 3D lattice. Let Ll : Ω′Il ⊆ ΩIl and Lr : Ω′Ir ⊆ ΩIr

be 2D lattices defined at each image view respectively.
Then, the 3D lattice is computed from the projections of
the corresponding lattice points on Îl ⊆ Il and Îr ⊆ Ir
(see Fig. 3). Let P be the result of such correspondences
and v be the number of lattice points, Pv ∈ P where
Pv = (y1, ..., ym) ∈ Rm. Considering that initially lattice
points are evenly spaced, then the changes produced on the
tissue surface, over time, are computed by minimizing the
total energy, Et, such that the optimal P can be found using
the following equation:

Et(P) =EΦ(̂Itl(Γ(x; P) + x), Îtr(x))+

γEΨ(Γ(x; P)) + EΛ(x; P)
(1)

where EΦ is the discrepancy measure term, EΨ denotes the
penalization term used to obtain a plausible transformation,
γ ∈ R+ is the parameter that controls the quality of the data
fit, EΛ gives a constraint to preserve shape, x is a vector
containing the coordinates, and Γ is the deformation model.

The deformation model is an essential factor that defines
how fast and accurate the approach is. In order to find
a compromise between computational cost and accuracy,

we characterize the lattice points using the tensor prod-
uct of b-splines as they demand low running time, allow
multiresolution, have optimal mathematical properties and
keep affine invariance [36]. Moreover, and despite that there
are different deformation models that are widely used in
medical applications, b-splines have the additional advan-
tage of being able to handle complex deformations. The
deformation model is defined as follows:

Definition 2. Let Γ be the characterization of P over time
and consider ξ(·) as the basis spline function of degree
n at d-dimensional space. Then, the lattice points be-
haviour is given by:

Γ(x; P) =
n∑

j1=0

...
n∑

jd=0

contol points︷ ︸︸ ︷
Pj1,...,jd

d∏
k=1

ξk(xk)︸ ︷︷ ︸
tensor product

(2)

In particular, we use the cubic basis splines expressed as:

ξ0(x) = (1− x)3/6 ξ1(x) = (4 + 3x3 − 6x2)/6

ξ2(x) = (1− 3x3 − 3x2 + 3x)/6 ξ3(x) = x3/6
(3)

In order to achieve a robust and efficient solution, in
this work, we use the l2-regularized optimization class
(‖·‖2L2(Ω′)). We selected this class because it offers many ad-
vantages including: it is differentiable, strictly convex, offers
a unique solution, and works well with smooth data [37].

We now turn to reformulate the energy functional de-
fined in Eq. 1. The discrepancy term, EΦ, is computed
using the sum of squared differences method. This was
selected because it has a low computational cost and offers
an optimal result when images are acquired with the same
sensor, as it is in our case. But due to its sensitivity to
changes of intensity, we carried out a normalization process.
Moreover, since this is an ill-posed problem, in the sense
of Hadamard [38], it is necessary to have a penalization
term to restrict the solution space and impose stability to
the energy functional defined in Eq. 1. Thus, to obtain a
well-posed problem we rewrite the penalization term EΨ

using Tikhonov regularizer. Finally, we add a soft constraint
for volume-preserving mappings (incompressibility). Let S
be the number of overlapping pixels. Taking previous state-
ments, Eq. 1 results in:

Êt(P) = ‖EΦ‖2L2︸ ︷︷ ︸
discrepancy

+ γ‖EΨ‖2L2︸ ︷︷ ︸
penalization

+ ‖EΛ‖2L2︸ ︷︷ ︸
constraint

=
1

S

(∫
x∈Ω′

‖Îtl(Γ(x; P) + x)− Îtr(x)‖2dx

+γ
d∑

i=1

∫
x∈Ω′

‖∇Γi(x; P)‖2dx +

∫
x∈Ω′

‖EΛ(x; P)‖2dx
)

(4)
In search of practicality and efficiency, we use a

discretize-then-optimize process. Strictly speaking, after
defining the continuous optimal energy functional, we
transform it into a standard optimization problem by dis-
cretizing the original one. Now, in order to have a standard
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Fig. 4. Specular highlights cause major tracking disturbance. We deal
with this issue using a real-time detection and inpainting approach that
accurately recovers a specular-free image.

optimization problem, discretization of Eq. 4 is expressed
as:

Êt(P) =
1

S

(∑
x∈Ω′

‖Îtl(Γ(x; P) + x)− Îtr(x)‖2

+γ
d∑

i=1

∑
x∈Ω′

‖∇Γi(x; P)‖2 +
∑
x∈Ω′

‖EΛ(x; P)‖2
)
(5)

where the soft constraint EΛ(x; P) = det(∇Γ(x; P)).

2.1.1 Robust 3D Shape Recovery
During the process of recovering the temporal 3D de-
formable structure, different factors can affect the perfor-
mance of the visual approach. Therefore, in order to increase
robustness of our solution, we handle potential sources of
error as we want to accurately reconstruct the deformable
surface. One source of error that might affect the reconstruc-
tion precision is the specular highlight regions that appear
on the surface of the heart. These bright spots appear on
surfaces with high reflectivity and occlude the underlying
visual information causing uncertainty in the tracked ROI.
To eliminate this artifact, we integrate our previous work
related to detection and removal of specular highlights in
which a hybrid detection technique, based on saturation and
intensity color attributes and Wavelet Transform Modulus
Maxima, was used to detect the affected regions accurately.
We then correct the detected regions using a dynamic search
based inpainting that smoothly propagates pixel informa-
tion from the surrounding area (see Fig. 4). The solution
was optimized to process the acquired images in real time
(for more details see [39]).

Another potential source of error when tracking the
surface deformation is the partial occlusion of the tracked
region of interest (ROI). Occlusion makes the tracking pro-
cess more challenging and could cause tracking failure as
the algorithm will not have enough information about the
occluded part of the surface. In RAMIS settings, the tracked
ROI may be partially occluded for a short period of time,
by a surgical tool or blood, which might hide useful infor-
mation about the surface and affect the tracking precision
(see Fig. 5). This source of error needs to be eliminated as
precision is an essential factor in medical applications.

The energy functional given in Eqs. (4) and (5) so far
does not reduce the influence of outliers, i.e. an error can be
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Fig. 5. Surgical tool can partially occlude the tracked region of interest
which affects the 3D shape recovery over time (Left side). Right side
shows a side view of occluded lattice regions from different viewpoints.

produced when a partial-occlusion appears. In order to deal
with this issue, we reformulate the total energy including a
least-squares estimator, called M-estimator, defined as:
Definition 3. The M-estimation process substitutes the

minimization of
∑

i r2
i , where r is the residual error,

with
∑

i ρ(ri), where ρ is a specific function called M-
estimator.

Thus, the idea is to include an M-estimator in our energy
functional, described in Eq. 5, for penalizing the largest
residual errors. The new total energy, Ět , is expressed as:

Ět(P) =
1

S

(∑
x∈Ω′

ρ(̂Itl(Γ(x; P) + x)− Îtr(x))

+γ
d∑

i=1

∑
x∈Ω′

(Γi(x; P))2 +
∑
x∈Ω′

(EΛ(x; P))2

) (6)

We use the robust Huber’s M-estimator [40] for ρ in which
c is a positive tuning constant and ρ is expressed as:

ρhuber(x) =

{
1
2x

2 if |x| ≤ c
c|x| − 1

2c
2 otherwise

(7)

Once the total energy, Ět, is defined, we turn to finding
the optimal value, P, at each time instant t. To do that,
we use the Levenberg-Marquardt (LM) method [41], [42].
LM combines the stability of the gradient descent and the
fast convergence of the Gauss-Newton. LM makes use of
a damping parameter, δ, in order to switch between the
gradient descent and the Gauss-Newton. When δ is small,
it acts as Gauss-Newton with the difference that it uses a
trust-region with radius ∆h instead of a line search. While δ
is large, it performs as gradient descent. So, search direction,
dh, at iteration h is computed as follows:

(Jᵀ
hJh + δI)dh = −Jᵀrh δ > 0

dh(δ) = −(Jᵀ
hJh + δI)−1Jᵀ

hrh
(8)

where J is the Jacobian, r is the residual vector, and I is the
identity matrix.
Observation 1. The optimization process was restricted

with a maximum of 25 iterations, achieving a trade-off
between accuracy and computational speed.

It is worth mentioning that the lattice used for the
3D shape recovery is as well used for knowing when the
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Fig. 6. Part A shows all the variables that can be extracted during a robotic-assisted surgery (total of 50). Nonetheless, only a subset of this large
feature space is relevant and it needs to be identified to improve the supervised learning process. To achieve dimensionality reduction, we used
Pearson correlation test and plot B shows the subset of the most correlated features. We can see that the most dominant ones are in the Z direction
because in the sample dataset that we picked to illustrate the correlation results, the force was mainly applied in that direction.

robotic manipulator gets in-touch with the tissue. For this,
we used as a reference the control points defined in the
lattice and start data acquisition when we measure the first
displacement at any of those points.

2.2 Force Estimation Strategy

Once the 3D deformable shape is accurately recovered, the
second module in our proposed solution for force estimation
is a deep network based on an LSTM-RNN architecture.
Our goal is to utilize the deformation information that we
extracted from the recovered 3D deformable structure to
estimate the force applied to the tissue surface. We first
start by describing the dimensionality reduction approach
to reduce the complexity of the model. This is followed by
a detailed description of the design of the long-short term
memory recurrent network architecture that we utilize to
map the visual and geometric information into an accurate
force measure.

2.2.1 Reduction of Dimensionality

In this work, we use the geometry of motion of the robotic
manipulator along with the structure deformation in all di-
rections to train our Neural Network architecture. This gives
us a complex and large set of input data to work with, which
directly affects the training time and complexity of the
NN. One common pre-processing approach that can help
reducing the NN training time is dimensionality reduction,
which attempts to eliminate redundant and insignificant
information by selecting a subset of relevant features for
use in model construction. Besides speeding up training,
reducing the dimensionality of the dataset before presenting
it to the neural network can improve its performance and
prevent overfitting which is a common problem that occurs
during neural networks training. Overfitting happens when
we have an excessively complex model with too many
parameters relative to observations. By reducing dataset
complexity, the NN will avoid learning insignificant details
and only valuable information will be used for training.
Moreover, by avoiding overfitting, the learned NN can be
generalized to new datasets and have a better predictive
performance.

Many dimensionality reduction techniques are available
and capable of efficiently reducing the set of variables
without a significant loss of information. One common
technique is the correlation-based feature selection which
evaluates subsets of features to determine the strength of
the relationship of each feature with the response variable,
in our case the applied force. In this work, we use Pearson
product-moment correlation coefficient, %, to measure the
linear correlation between each of the input features and the
applied force. The Pearson correlation coefficient analyzes
how much the variation in one variable affects the variation
in another and is defined as:

%X,Y =

∑
(X − X̄)(X − Ȳ )√∑

(X − X̄)2
√∑

(Y − Ȳ )2
(9)

where X represents the input features, Y is the force mea-
sure, and X̄ and Ȳ are their mean values. The correlation co-
efficient % is between -1 and 1 where a value of 1 or -1 means
perfect positive or negative correlation respectively. Out of
the many datasets we collected during our experimentation,
we examined one in which force was mainly applied in the
Z direction. Fig. 6-(A) shows the complete feature space, a
total of 50 features, while Fig. 6-(B) shows the features with
the highest correlation to the force. The position and rotation
come from the geometry of motion while the deformation
is from the 3D surface reconstruction using our proposed
approach. We also show the torque that is acquired as used
as ground truth. The plot shows the absolute value of Eq. 9
with coefficients >= 0.4. This observation indicates that it
is feasible to reduce the dimensionality of the feature space
to include only those with high correlations to force.

2.2.2 Supervised Recurrent Learning
In this subsection, we describe our soft computing based
force estimation strategy. Particularly, we use Artificial Neu-
ral Networks (ANNs) to find the relationship between the
inputs (visual and geometric information) and the force,
more specifically Recurrent Neural Network (RNN). Un-
like conventional networks, the layers in RNNs introduce
memory by having feedback connections between their
units, which enables dynamic temporal processing instead
of a hierarchical one. Moreover, RNNs can be viewed as



7

Output 

Input 

Cell1 Cell8

Hidden Layer (units)

Forget
Gate

t

O

t

cS
t

O
CEC

)(

t

kO
1

O
t

k

1
O

t

k

)(

Peephole 
Connections

SINGLE
CELL BLOCK

Output
Gate

Input
Gate

Central 
Unit

t

uO

t

hO

t

lO

Output

Hidden Layer

Input

Cell8Cell1

t

netO

1a A

1k K

1l L

t

kO

t

lO



1i I

1
O

t

k

1
O

t

k

Forget
Gate

t

O

t

cS
t

O
CEC

)(

t

kO
1

O
t

k

1
O

t

k

)(

SINGLE
CELL BLOCK

Peephole 
Connections Output

Gate

Input
Gate

Central 
Unit

t

uO

t

hO

t

lO

Forget
Gate

t

O

t

cS
t

O
CEC

)(

t

kO
1

O
t

k

1
O

t

k

)(

SINGLE
CELL BLOCK

Peephole 
Connections Output

Gate

Input
Gate

Central 
Unit

t

uO

t

hO

t

lO

Output (L4)

Hidden Layer  (L2) 

Input  (L1)

CellKCell1

1k K

1l L

t

kO

t

lO



1i I

1
O

t

k
1

O
t

k

(A) (B) (C)

(A) (B)

(C)

(L3)

t

kOy

Output (L3)

Hidden Layer  (L1) 

Input  

CellKCell1

1k K

1l L

t

kO

t

lO



1i I

1
O

t

k
1

O
t

k

(L2)

t

kO y

(A)

Forget
Gate

t

O

t

cS
t

O
CEC

)(

t

kO
1

O
t

k

1
O

t

k

)(

SINGLE
CELL BLOCK

Peephole 
Connections Output

Gate

Input
Gate

Central 
Unit

t

uO

t

hO

t

lO

(B)

(C)

Output 

Input 

Cell1 Cell8

Hidden Layer (units)

Forget
Gate

t

O

t

cS
t

O
CEC

)(

t

kO
1

O
t

k

1
O

t

k

)(

Peephole 
Connections

SINGLE
CELL BLOCK

Output
Gate

Input
Gate

Central
Unit

t

uO

t

hO

t

lO

Output

Hidden Layer

Input

Cell8Cell1

t

netO

1a A

1k K

1l L

t

kO

t

lO



1i I

1
O

t

k

1
O

t

k

Forget
Gate

t

O

t

cS
t

O
CEC

)(

t

kO
1

O
t

k

1
O

t

k

)(

SINGLE
CELL BLOCK

Peephole 
Connections Output

Gate

Input
Gate

Central
Unit

t

uO

t

hO

t

lO

Forget
Gate

t

O

t

cS
t

O
CEC

)(

t

kO
1

O
t

k

1
O

t

k

)(

SINGLE
CELL BLOCK

Peephole 
Connections Output

Gate

Input
Gate

Central
Unit

t

uO

t

hO

t

lO

Output (L4)

Hidden Layer  (L2)

Input  (L1)

CellKCell1

1k K

1l L

t

kO

t

lO



1i I

1
O

t

k
1

O
t

k

(A) (B) (C)

(A) (B)

(C)

(L3)

t

kOy

Output (L3)

Hidden Layer (L1)

Input  

CellKCell1

1k K

1l L

t

kO

t

lO



1i I

1
O

t

k
1

O
t

k

(L2)

t

kO y

(A)

Forget
Gate

t

O

t

cS
t

O
CEC

)(

t

kO
1

O
t

k

1
O

t

k

)(

SINGLE
CELL BLOCK

Peephole 
Connections Output

Gate

Input
Gate

Central
Unit

t

uO

t

hO

t

lO

(B)

(C)

Cells overtime Zoom-in views

(C)

Fig. 7. In order to estimate the applied force, we used an architecture based on LSTM-RNN (part A) which combines basic units with cells. Part
B shows a single cell block in detail and shows that each of the cells is composed of a set of units that enforce constant error flow which helps
stabilizing force estimation over time. Additionally, part C shows an illustration of the hidden layer with 10 cells over time.

deep networks when folded out in time [43], and have the
advantages of handling noise-contaminated data and cre-
ating complex input-output relationship. Nevertheless, the
vanishing gradients problem, where error-signals exhibit
exponential decay as they are back-propagated through
time, has a direct impact on the performance of RNNs [44].
In this work, we utilize LSTM to overcome this problem and
improve the accuracy of force estimation in RAMIS.

LSTM are specially designed to store and retrieve in-
formation over long periods of time and enforce constant
error flow by using specialized units, called cells. An LSTM
layer has one or more recurrently connected memory cells
composed of a central unit, and specialized input, out-
put, and forget gates. The input and output gates are
multiplicative units that protect the memory content from
perturbations. On the other hand, the forget gates release
irrelevant information by resetting the memory cell when
the information stored there is not useful anymore [44].
These three gates have access to the central unit through
peephole connections. The learning process is defined as:

Definition 4. Given a set of N training samples in the form
of input-output pairs {(x1, y1), ..., (xN, yN)}, where x is
a feature vector and y is its corresponding target value,
supervised learning finds a function f : X → Y that
maps the input space, X, to the output space, Y, and
works well on unseen inputs x.

Our architecture, as illustrated in Fig. 7, is composed of
two types of hidden layers: with basic units (Layer 1) and
memory cells (Layer 2). Following the notation presented
in Fig. 7-(A), let ξ be the input vector with I inputs, L the
number of units, and K the number of cells with C memory
cells in each block. Let w and b denote the weights and
the bias respectively, and φ the activation function, which in
this case is the log-sigmoid function (a.k.a logistic function).
Then, the outputs, Ot

l , are computed as follows:

Ot
l = φ(

∑I

i=1
wilξ

t
i + bl) for l = 1, ...,L (10)

Each output of Layer 2, Ot
k, is defined by the relation of

a set of units, as depicted in Fig. 7-(B). Consider ~, ℘ and
= as the input, output and forget gates, their corresponding
outputs are defined as:

Ot
~ = φ(

∑L

l=1
wl~O

t
l +

∑K

k=1
wk~O

t−1
k +

∑C

c=1
wc~S

t−1
c )

Ot
℘ = φ(

∑L

l=1
wl℘Ot

l +
∑K

k=1
wk℘Ot−1

k +
∑C

c=1
wc℘St

c)

Ot
= = φ(

∑L

l=1
wl=Ot

l +
∑K

k=1
wk=Ot−1

k +
∑C

c=1
wc=St−1

c )

(11)
Continuing with the notation presented in Fig. 7-(B), the
output of the unit Ot

u and the memory cell state St
c are

obtained as follows:

Ot
u = φ(

∑L

l=1
wl~O

t
l +

∑K

k=1
wkuOt−1

k )

St
c = Ot

=St−1
c + Ot

~O
t
u

(12)

using Eqs. 11 and 12, we can describe the output of each cell
as:

Ot
k = Ot

℘φ(St
c) for k = 1, ...,K (13)

Finally, the output of the network, Ot
y , is given by:

Ot
y = φ(

∑K

k=1
wkyO

t
k + by) for y = 1, 2, 3 (14)

where the output units are the force in X,Y and Z direc-
tions. Using this LSTM-RNN based architecture, the vanish-
ing gradient problem is solved. Thus, a gradient-based algo-
rithm can be used. In this work, we apply Backpropagation
Through Time (BPTT), which unfolds the network over time
by replicating the network and sharing the weights.
Observation 2. Notice that the learning process is carried

out offline since its goal is to find the optimal parameters.
Once the adjusting parameters (weights) are found, they
are used in our system in real-time.

Taking into account observation 2, the training process
for the deep network (Fig. 7-(C)) is performed once to learn
the optimal parameters and the mapping function from the
input to the output space. Once the network is trained, it
can be used for estimating the applied forces in real time
systems without the need of carrying out the training pro-
cess for each subject. This is based on the fact that, according
to [45], [46], generic material properties of the human heart
tissue can be modeled and, in consequence, these properties
can be learned using the LSTM-RNN architecture then gen-
eralize the model across subjects. The proposed approach
can be generalized to handle other tissues, requiring only a
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Fig. 8. The realistic surgical setting, with typical RAMIS surgical setup,
used to obtain the two ex-vivo datasets. The force sensor is used to
obtain the ground truth to validate our estimation.

single training run in order to obtain the mapping function
for the new tissue. The user of the system can then select the
desired function during the real time procedure or can even
choose to train a function that can handle different tissue
types.

3 EXPERIMENTAL RESULTS

This section describes in detail the experimentations that we
conducted to validate the accuracy of the proposed solution.

3.1 Data Description
To evaluate our proposal, we used both in-vivo and ex-vivo
datasets (see Fig. 10-(A)).

The in-vivo dataset [47] is from a porcine and exhibits
tissue deformation, due to tool interaction, and was used
to evaluate our deformation approach. This sequence is
composed of stereo-pair images of size 720x288 recording
during a period of 450 sec.

Moreover, we acquired the ex-vivo datasets using the
experimental setup showed in Fig. 8. It is composed of a
stereo camera, a set of robot manipulators (Stäubli RX60B),
and an ATI Gamma SI-32-2 force sensor which we used
to acquire a ground truth for the applied force in order to
compare it with our estimation. We obtained two stereo-pair
images sequences of size 640x480 recording during 2100 sec.

As for the ex-vivo datasets, we used two artificial hearts
made of ECOFLEX 0030, which has mechanical properties
similar to those of human tissues, to imitate variations
between two different subjects. From a technical point of
view ECOFLEX material allows comparing our approach
with other research since it is widely used and considered
a standard material for experimentation in clinical environ-
ments (e.g. [48], [49], [50]). Moreover, ECOFLEX facilitates
the continuous experimentations avoiding at the same time
hygienic issues.

It is noteworthy that during the acquisition of our ex-
vivo datasets we did not take the dynamics of the heart into
consideration. However, it will be included in a future work.
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Fig. 9. Illustration of the palpation and exploration surgical tasks used to
test the efficiency of our solution.

3.2 Tasks Description

The datasets described in Subsection 3.1 were acquired by
doing general inspection through palpation over the tissue
and region of interest while varying three main factors over
time: position, orientation, and illumination. An illustration
of palpation actions can be seen in Fig. 9.

General palpation is necessary during different clini-
cal activities such as tumor detection, tissue cutting, and
needle-based procedures; it is an actuation very represen-
tative for this study. Palpation is relevant for RAMIS since
during procedures, surgeons perform different tasks part of
which is to avoid penetration of the tissue and control the
applied force.

3.3 Evaluation Scheme

Our evaluation scheme is divided into two parts. The first
part uses an in-vivo dataset to evaluate the following:

• Inspection of the displacement field: and Fig. 10-(B);
• Careful comparison of the residual error of our de-

formation approach: Table 1;
• Visual and numerical prove of the potential of our

variational framework with in-vivo datasets: Fig 10-
(A)/(B) and Table 1;

In the second part, we used our two ex-vivo datasets
with a provided ground truth and performed the following
evaluations:

• Visual examination of the displacement field: Fig. 10-
(C);

• Convergence of our energy functional (Eq. 4): Fig.
10-(D);

• Comparison between the estimated and real dis-
placement at contact point: Fig. 10-(E);

• Associated strength between the real and estimated
force: Fig. 11;

• Statistical analysis of adaptability of our force esti-
mation strategy: Table 2.

• Comparison between the real and estimated forces in
the(X,Y,Z) directions: Fig. 12;

• Stability over longer periods of time of our proposal
for estimating the interaction forces: Fig. 13;
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Fig. 10. Part (A) shows the raw data of the three different datasets used to evaluate our proposal (one in-vivo and two ex-vivo). Tissue deformation
that result from applying a force at different time instants is illustrated in parts (B) and (C) along with the recovered 3D deformable structure using
our proposed visual approach. The convergence plot at part (D) shows the number of iterations it took to get the results at (C). Finally, plots at part
(E) show a comparison between the computed displacement (at contact point) in X,Y,Z directions against the reference measurements given by the
geometry of motion of the robot from dataset II. The zoom-in views demonstrate the high estimation accuracy of our approach even during complex
deformation as it can capture small (I-II) and large displacements (III). It also eliminates the noise in the geometry of motion as shown in (IV).

3.4 Results and Discussion

In order to prove the benefits of our proposal, in this
subsection, we offer detailed evaluation of both our visual-
based and force estimation approaches.

3.4.1 Visual-based Approach

We evaluated the performance of our visual-based approach
using dataset I-II (see Fig. 10-(A)). First, Fig. 10-(B)/(C) show
tissue deformation that results from applying force and
illustrates the recovered 3D deformation structure, bounded

by our defined grid, over some time instants where darker
shades of red represent more intense deformation at contact
point. The plots clearly show pleasant visual results of the
deformation field with both in-vivo and ex-vivo data.

We then took the results from the in-vivo data, Fig. 10-
(B), and offer a quantitative analysis of our energy func-
tional (Eq. 4). The results are reported in Table 1 in which
Exp. 1 and Exp. 2 show that without penalization given
by the M-estimator and the two regularizers (Eqs. 6-7), the
residuum was about 0.1348 and 0.2657 respectively.
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Fig. 11. These linear regression plots show the associated strength
between the real (target) and estimated force (output) measurements of
both training and test datasets. In both sets, the points fit a line showing
a tight relationship between the measurements and demonstrating the
accuracy of the force estimation.

TABLE 1
Residual Error evaluation of our deformation approach

Exps. Energy Functional (Eq. 4) Minimum
1 EΦ without ρhuber , EΨ = 0, EΛ = 0 0.2657
2 EΦ with ρhuber , EΨ = 0, EΛ = 0 0.1348
3 EΦ with ρhuber , EΨ, EΛ = 0 1.7896e−03

4 EΦ with ρhuber , EΨ, EΛ 3.1584e−05

Comparing that to Exp. 3, we can see that including
Tikhonov regularizer resulted in a minima in the order
of magnitude 10−3; while adding a volume preserving
term, as in Exp. 4, clearly offered the best minima in the
order of magnitude 10−5. With this, we conclude that the
combination between the ρhuber with the two regularizers
offered a significant difference in order of magnitude.

From the results of Fig. 10-(C), we analyzed both the
convergence of our functional and the accuracy of the com-
puted deformation. The plot at Fig. 10-(D) shows that the
minimization of our functional, on different frames, needed
less than 25 iterations to get the minima. For this reason, we
limited the number of iterations according to Observation 1.

Moreover, by acquiring the geometry of motion from
the robotic manipulator, we were able to have a ground
truth reference at least for the contact point between the
tool and the tissue. So in order to evaluate the accuracy of
our computed deformation, we compared the displacement
value at contact point in X, Y, and Z directions against the
reference measurements given by the geometry of motion.
The plot at Fig. 10-(E) shows that comparison and the zoom-
in views, together with a root-mean-square error (RMSE)
smaller than 1mm in all directions, demonstrate the accu-
racy of our computed measurements even during complex
deformation. Furthermore, our visual approach was even
able to deal with the mechanical issues that usually exist in
the geometry of motion and eliminate the noise as shown
in view (IV). This supports the good accuracy and fast
convergence of our proposed visual-based approach.

3.4.2 Force Estimation Approach

The ultimate goal of this work is to estimate the applied
force in RAMIS scenarios accurately over time. Therefore,
we conducted large number of tests to validate our complete
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Fig. 12. Plots in top part show the real force measures, in X,Y and Z
directions, and those estimated by our approach. Bottom plots illustrate
the RMSE results in all directions.

TABLE 2
Statistical nonparamatric analysis of our proposal to estimate the

applied forces. It takes into consideration the ex-vivo datasets and the
real measure.

Input
Values Direction p-value

Null
Hypothsesis

Real and Dataset II
(ex-vivo data)

x 0.8105
h=0y 0.8026

z 0.7598

Real and Dataset III
(ex-vivo data)

x 0.8654
h=0y 0.8287

z 0.8045

neuro-recurrent-vision solution against the ground truth of
the force provided with the ex-vivo datasets.

To validate the accuracy of our LSTM-RNN approach,
we tested the associated strength between the estimated and
actual forces, and the regression plots in Fig. 11 show that
our model is very accurate as there is a strong correlation
between the two measures. The red dashed lines in the
plots show the ideal solution while the straight black lines
are the best linear regression fit between the target and
the output. The tight relationship is clear in both training
and test dataset as they reported R-values of 0.99 and 0.98
respectively.

It is worth mentioning that our force estimation model
was trained once using dataset II, but then the optimal
parameters were tested on the two artificial hearts that
have slightly different mechanical properties (Dataset II and
Dataset III). The results show that our model adapted well
to the two dataset and prove that it was able to handle small
variations across subjects.

In order to support the previous statement, we ran a
statistical analysis on the force estimated on both dataset II
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Fig. 13. Stability criteria is shown in these plots using the ex-vivo datasets where the estimated and real force measures are plotted at different time
intervals of a longer period of time.

and III and the corresponding ground truth. More specif-
ically, we used the nonparametric Wilcoxon rank sum test
to answer the question of whether there is a statistical
significant difference between the two estimated forces. The
results at Table 2 show that the null hypothesis was not
rejected at p < 0.05 of significance level. This, together
with the big p-value for the three directions (X,Y,Z), led us
to conclude that there is no significant difference between
the two groups which support our proposal in the sense of
adaptability to different subjects.

The accuracy of our solution is further validated by
the top plots shown in Fig. 12 in which we compared the
estimated force (test data) against the real one in the (X,Y,Z)
directions and the results show that the measurements ares
very close to each other. We also show the RMSE results
at the bottom plots in which the error remained less than
0.03N with a concentration of values much lower than 0.02
N in all directions.

Furthermore, we demonstrate the stability of our solu-
tion over time by inspecting the results of both datasets at
different time intervals (see Fig. 13). The zoom-in views
show comparison of the force measures as given by the
force sensor, our previous RNN solution [34], and our newly
proposed LSTM-RNN solution. As we can see, the added
cells with the LSTM architecture improve the accuracy of
the results and bring the force measure closer to the actual
one. Furthermore, the results we obtained from the LSTM-
RNN tend to be more stable, and with no error decay, during
long periods of time when compared to those obtained
employing only the RNN as it is clear in the last time
interval. Based on the results obtained in our evaluation
scheme, we report an average RMSE of 0.02 N for all our
experiments.

4 CONCLUSION

In RAMIS, surgeons perform delicate procedures remotely
through robotic manipulators without directly interacting
with the patients. As a result, they lack force feedback
that informs them about how much force the surgical tool
is applying to the tissue. While force sensing devices are
able to provide that information, their size and cost, along

with biocompatibility concerns, prevent them from being
fully integrated into the surgical environment. The force
sensory substitution approach presented in this work offers
a feasible alternative that overcomes the sensors limitations
and could potentially improve the precision of RAMIS. The
proposed approach combines a computationally efficient
visual shape recovery approach with an accurate LSTM-
RNN based force estimation model.

By minimizing an optimized energy functional, we were
able to recover the 3D deformable structure of the region
of interest over time. We ensured the robustness of our
shape recovery approach by handling sources of errors and
outliers that exist in real surgical environments such as
occlusions and uncertainties. Furthermore, we utilized the
learning power of deep network by using a LSTM-RNN
to relate the extracted visual-geometric information to an
accurate force estimation. We obtained a trade-off between
computational time and accuracy of our deep network by
reducing the complexity of the input space and only consid-
ering features with high correlation to force.

The experimental results presented in section 3 verify
that vision-based techniques combined with supervised
learning provide a feasible and accurate estimate of the
applied forces without using force sensors. Experiments
included various datasets, in-vivo and ex-vivo, and the
computed and estimated results were validated against the
ground truth obtained from the robotic manipulator and
the force sensor. The advantages of this approach include
robustness, accuracy, and stability over long periods of
time. This methodology would allow surgeons performing
RAMIS to have force feedback and would increase the
transparency of interaction with the patient without using
force sensors.

Moreover, our solution promises to be useful in robotic-
assisted surgery as well as in different situations in which
to know the applied force make a difference in the results,
including: detection and prevention of diseases or abnormal
behaviour (e.g. [51]), needle-based procedures (e.g. [52]),
microsurgery (e.g. [53]) and knot tying (e.g. [54]). Thus,
this approach can be extrapolated in the above-mentioned
situations avoiding in this way the space restrictions, bio-
compatibility issues and cost of the design new minutarized
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force sensors.
As mentioned earlier, the goal of this work is to prove

the feasibility of combining visual information with deep
network to estimate the applied forces during robotic-
assisted surgeries. However, when we talk about haptics
technology in RAMIS settings, we have to consider two
questions. One is how to acquire the significant information,
which we talked here in this paper offering an efficient force
estimation approach, and the other is how to transmit that
information to the surgeon. In other words, how to display
the estimated forces to the surgeon? While the first question
was tackled in this paper, the second one is part of our future
work in which we will use virtual reality to provide an
efficient way to display the estimated force to the surgeon.
Once the feedback to the surgeon is provided, then we will
carry out a clinical oriented study and compare it against
other alternatives.
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