1,988 research outputs found

    Fruit Tree Responses to Water Stress: Automated Physiological Measurements and Rootstock Responses

    Get PDF
    New orchard plantings utilize trees grafted to dwarfing rootstocks planted close together to facilitate larger harvests. These dwarfing rootstocks have not been comprehensively studied for their ability to withstand drought. This is of special importance in the Intermountain West which has limited rainfall. Additionally, orchard growers face competition for water from a growing population and increased uncertainty in rainfall from climate change. My research examined the use of dendrometers, which measure changes in trunk diameter, and sap flow sensors, which measure how quickly sap moves, as methods to inform growers about tree water status. I also used a weighing lysimeter system to measure tree water use in four different rootstocks as they were subjected to drought. In a field study, I placed dendrometers and sap flow sensors in a high-density apple orchard. As the trees progressed through the season and put on fruit the responses from the sensors changed. By separating data from the sap flow sensors and dendrometers into seasons, their ability to predict tree water status improved. I found that overall dendrometers would be the best way to automate measurements of tree water status. In my first rootstock trial I examined responses of peach trees grown from seeds from an orchard maintained by Navajo farmers in South Western Utah, and a commercially available rootstock. I found that the Navajo peach trees put on more growth than the commercial trees despite drought, which suggests that they may be useful for rootstock development. In my second rootstock trial I examine the commercially available Krymsk® 5 and 6 series dwarfing cherry rootstocks for responses to drought. I found that the Krymsk® 6 rootstocks had higher rates of transpiration and used water faster than the Krymsk® 5 allowing them to put on growth quickly even during drought. Krymsk® 5 rootstocks have a lower percentage of their biomass in their roots which may have helped to conserve water

    Methods to assess grapevine water status: a review

    Get PDF
    Mestrado em Engenharia de Viticultura e Enologia (Double degree) / Instituto Superior de Agronomia. Universidade de Lisboa / Faculdade de Ciências. Universidade do PortoViticulture and wine industry are important economic resources for many countries, represented in a wide range of extremely diverse climates all over the world and highly affected by global climate change at different scales. The global warming is the main cause of water sources reduction due to an altered precipitation pattern; this means a reduction in sources of supply and an increase in water demand from crops especially in Mediterranean regions. The high impact of irrigation in grapevine berry quality and yield makes the development of plant water status monitoring systems an essential issue in the context of sustainable viticulture. Knowledge of the physiological responses of the crop and the development of suitable water status monitoring systems are the main prerequisites for proper irrigation management, in order to mitigate climate change effects. This review aims to provide a state-of-the-art summary of the most important literature on grapevine water status assessment for monitoring and adapting vineyard management strategies to production goals in view of global warming. In this work mainly plant-based methods are reviewed, their advantages and drawbacks are discussed. In this work some factors influencing water relations and effects of severe water stress on grapevine are also reported. The main plant-based methods for irrigation scheduling, including those based on direct or indirect measurement of plant water status and those based on plant physiological responses to drought, are outlined and evaluated. New technologies approaches that belong to the field of precision viticulture are also described, which could offer the integration of heterogeneous information collected in the vineyard at different spatial and temporal resolutions. These new approaches offer new synergies to overcome the limitations inherent to plant water status measurement techniques obtained directly or indirectly. The potential of plant-based systems for automated irrigation control using various scheduling techniques is also discussedN/

    Heat-pulse measurements of sap flow in olives for automating irrigation: tests, root flow and diagnostics of water stress

    Get PDF
    26 páginas, 10 figuras, 1 tabla, 32 referencias.-- [email protected] compensation heat-pulse method for measuring sap flow is tested here in olive trees (Olea europaea L.). We describe a rigorous three-way examination of the robustness of the technique for this species, and examine the potential of the technique for an automatic control of the irrigation system. Two tests were carried out using heat-pulse gear inserted into the stem of 12-year-old ‘Manzanilla’ olive trees. One test used forced-flow through a stem section, and the other involved measured water uptake by an excised tree. The measured sap flow in these two tests was in agreement with calculations from heat-pulse velocities when using a standard ‘wound correction’ to account for the presence of the probes and the disruption to the sap flow. Thus, this technique for monitoring transpiration can, we feel, be used with confidence in olives. The third experiment was carried out in the field, where we analysed sap flow data from two 29- year-old olive trees—one tree was under regular drip irrigation and the other was from dry-farming conditions. We use measurements of sap flow in the trunk to examine the hydraulic functioning of the tree, and to explore some diagnostics of water stress. Our heat-pulse measurements in the irrigated olive tree exhibited a profile of sap flow that was weighted towards the outer xylem of the tree trunk while the water-stressed trees in the field showed a profile of sap flow weighted towards the centre of the trunk. The loss of hydraulic functioning in the outermost section of the vascular system, as a result of water stress, we consider to be due both to stomatal control and to embolisms in the xylem vessels. The fourth experiment was also carried out in the field, in which sap flow measurements were made at three locations in the trunk as well as in two roots of another 29-year-old olive tree. The soil explored by each root, on opposite sides of the trunk, was differentially wetted by separate irrigation of each side. Our data showed that the surface roots were able to absorb water immediately after wetting, despite a reasonably prolonged period of moderate drought. Root activity quickly shifted to the regions where the soil had been wetted. A root in dry soil exhibited no flow at night, whereas sap flows of about 0.02 l h 1 were measured around midnight in the root drawing water from the wetter soil. Our observations suggest that the hydraulic behaviour of the trunk and surface roots might be used as a diagnostic of the onset, or severity, of water stress. Here there is not the imperative to replicate, for the prime goal is not transpiration estimation. Rather interpretation of the diurnal dynamics is used to infer the onset, or severity of water stress. The compensation heat-pulse seems a suitable technique for automatically controlling the irrigation system of olives, and probably other trees, based either on the estimation of the short-time dynamics of transpiration, or on changes in the hydraulic behaviour of the trees.The Comisión Interministerial de Ciencia y Tecnología of the Spanish Ministry of Education and Science financial support this project.Peer reviewe

    Water uptake and transport in lianas and co-occurring trees of a seasonally dry tropical forest

    Get PDF
    Water uptake and transport were studied in eight liana species in a seasonally dry tropical forest on Barro Colorado Island, Panama. Stable hydrogen isotope composition (δD) of xylem and soil water, soil volumetric water content (θv), and basal sap flow were measured during the 1997 and 1998 dry seasons. Sap flow of several neighboring trees was measured to assess differences between lianas and trees in magnitudes and patterns of daily sap flow. Little seasonal change in θv was observed at 90–120 cm depth in both years. Mean soil water δD during the dry season was −19‰ at 0–30 cm, −34‰ at 30–60 cm, and −50‰ at 90–120 cm. Average values of xylem δD among the liana species ranged from –28‰ to –44‰ during the middle of the dry season, suggesting that water uptake was restricted to intermediate soil layers (30–60 cm). By the end of the dry season, all species exhibited more negative xylem δD values (–41‰ to –62‰), suggesting that they shifted to deeper water sources. Maximum sap flux density in co-occurring lianas and trees were comparable at similar stem diameter (DBH). Furthermore, lianas and trees conformed to the same linear relationship between daily sap flow and DBH. Our observations that lianas tap shallow sources of soil water at the beginning of the dry season and that sap flow is similar in lianas and trees of equivalent stem diameter do not support the common assumptions that lianas rely primarily on deep soil water and that they have higher rates of sap flow than co-occurring trees of similar stem size

    Continuous monitoring of tree responses to climate change for smart forestry: a cybernetic web of trees

    Get PDF
    6openBothTrees are long-lived organisms that contribute to forest development over centuries and beyond. However, trees are vulnerable to increasing natural and anthropic disturbances. Spatially distributed, continuous data are required to predict mortality risk and impact on the fate of forest ecosystems. In order to enable monitoring over sensitive and often remote forest areas that cannot be patrolled regularly, early warning tools/platforms of mortality risk need to be established across regions. Although remote sensing tools are good at detecting change once it has occurred, early warning tools require ecophysiological information that is more easily collected from single trees on the ground. Here, we discuss the requirements for developing and implementing such a treebased platform to collect and transmit ecophysiological forest observations and environmental measurements from representative forest sites, where the goals are to identify and to monitor ecological tipping points for rapid forest decline. Long-term monitoring of forest research plots will contribute to better understanding of disturbance and the conditions that precede it. International networks of these sites will provide a regional view of susceptibility and impacts and would play an important role in ground-truthing remotely sensed data.openTognetti, Roberto; Valentini, Riccardo; Belelli Marchesini, Luca; Gianelle, Damiano; Panzacchi, Pietro; Marshall, John D.Tognetti, R.; Valentini, R.; Belelli Marchesini, L.; Gianelle, D.; Panzacchi, P.; Marshall, J.D

    Partitioning of evapotranspiration and its relation to carbon dioxide exchange in a Chihuahuan Desert shrubland

    Get PDF
    Key to evaluating the consequences of woody plant encroachment on water and carbon cycling in semiarid ecosystems is a mechanistic understanding of how biological and non-biological processes influence water loss to the atmosphere. To better understand how precipitation is partitioned into the components of evapotranspiration (bare-soil evaporation and plant transpiration) and their relationship to plant uptake of carbon dioxide (CO2) as well as ecosystem respiratory efflux, we measured whole plant transpiration, evapotranspiration, and CO2 fluxes over the course of a growing season at a semiarid Chihuahuan Desert shrubland site in south-eastern Arizona. Whole plant transpiration was measured using the heat balance sap-flow method, while evapotranspiration and net ecosystem exchange (NEE) of CO2 were quantified using the Bowen ratio technique

    Heat-pulse measurements of sap flow in olives for automating irrigation: tests, root flow and diagnostics of water stress

    Get PDF
    26 páginas, 10 figuras, 1 tabla, 32 referencias.-- [email protected] compensation heat-pulse method for measuring sap flow is tested here in olive trees (Olea europaea L.). We describe a rigorous three-way examination of the robustness of the technique for this species, and examine the potential of the technique for an automatic control of the irrigation system. Two tests were carried out using heat-pulse gear inserted into the stem of 12-year-old ‘Manzanilla’ olive trees. One test used forced-flow through a stem section, and the other involved measured water uptake by an excised tree. The measured sap flow in these two tests was in agreement with calculations from heat-pulse velocities when using a standard ‘wound correction’ to account for the presence of the probes and the disruption to the sap flow. Thus, this technique for monitoring transpiration can, we feel, be used with confidence in olives. The third experiment was carried out in the field, where we analysed sap flow data from two 29- year-old olive trees—one tree was under regular drip irrigation and the other was from dry-farming conditions. We use measurements of sap flow in the trunk to examine the hydraulic functioning of the tree, and to explore some diagnostics of water stress. Our heat-pulse measurements in the irrigated olive tree exhibited a profile of sap flow that was weighted towards the outer xylem of the tree trunk while the water-stressed trees in the field showed a profile of sap flow weighted towards the centre of the trunk. The loss of hydraulic functioning in the outermost section of the vascular system, as a result of water stress, we consider to be due both to stomatal control and to embolisms in the xylem vessels. The fourth experiment was also carried out in the field, in which sap flow measurements were made at three locations in the trunk as well as in two roots of another 29-year-old olive tree. The soil explored by each root, on opposite sides of the trunk, was differentially wetted by separate irrigation of each side. Our data showed that the surface roots were able to absorb water immediately after wetting, despite a reasonably prolonged period of moderate drought. Root activity quickly shifted to the regions where the soil had been wetted. A root in dry soil exhibited no flow at night, whereas sap flows of about 0.02 l h 1 were measured around midnight in the root drawing water from the wetter soil. Our observations suggest that the hydraulic behaviour of the trunk and surface roots might be used as a diagnostic of the onset, or severity, of water stress. Here there is not the imperative to replicate, for the prime goal is not transpiration estimation. Rather interpretation of the diurnal dynamics is used to infer the onset, or severity of water stress. The compensation heat-pulse seems a suitable technique for automatically controlling the irrigation system of olives, and probably other trees, based either on the estimation of the short-time dynamics of transpiration, or on changes in the hydraulic behaviour of the trees.The Comisión Interministerial de Ciencia y Tecnología of the Spanish Ministry of Education and Science financial support this project.Peer reviewe

    Practices on the Watershed Hydrological Experimental System Reconciling Deterministic and Stochastic Subjects Based on the System Complexity: 2. Practice and Test

    Get PDF
    This is the second of a two-part series on the watershed hydrological experimental system (WHES) aimed at practice and test of it at Chuzhou Hydrology Laboratory. It constitutes both natural and artificial entities of different scales, within which two typical main subjects are reviewed here. First is a natural watershed Nandadish, which is subjected to be a Critical Zone Experimental Block, under manipulation strategy of constrain complexity to compare with the pure natural watersheds, it is the controlled-natural as we termed. Second is an artificial catchment Hydrohill, under the strategy of add complexity to compare with the simple artificial lysimeters, it is the artificial-natural as we termed. The constructions and instrumentations of these experimental catchments are reviewed, especially their renovation version during recent years after a long abandonment. Some results get during the operation of Chuzhou WHES are outlined here as well

    Sap Flow Sensors: Construction, Quality Control and Comparison

    Get PDF
    This work provides a design for two types of sensors, based on the thermal dissipation and heat ratio methods of sap flow calculation, for moderate to large scale deployments for the purpose of monitoring tree transpiration. These designs include a procedure for making these sensors, a quality control method for the final products, and a complete list of components with vendors and pricing information. Both sensor designs were field tested alongside a commercial sap flow sensor to assess their performance and show the importance for quality controlling the sensor outputs. Results show that for roughly 2% of the cost of commercial sensors, self-made sap flow sensors can provide acceptable estimates of the sap flow measurements compared to the commercial sensors

    Evapotranspiration Rates of Riparian Forests, Platte River, Nebraska, 2002–06

    Get PDF
    Evapotranspiration (ET) in riparian areas is a poorly understood component of the regional water balance in the Platte River Basin, where competing demands have resulted in water shortages in the ground-water/surface-water system. From April 2002 through March 2006, the U.S. Geological Survey, Nebraska Platte River Cooperative Hydrology Study Group, and Central Platte Natural Resources District conducted a micrometeorological study of water and energy balances at two sites in central Nebraska near Odessa and Gothenburg to improve understanding of ET rates and factors affecting them in Platte River riparian forests. A secondary objective of the study was to constrain estimates of ground-water use by riparian vegetation to satisfy ET consumptive demands, a useful input to regional ground-water flow models. Both study sites are located on large islands within the Platte River characterized by a cottonwood-dominated forest canopy on primarily sandy alluvium. Although both sites are typical of riparian forests along the Platte River in Nebraska, the Odessa understory is dominated by deciduous shrubs, whereas the Gothenburg understory is dominated by eastern redcedars. Additionally, seasonal ground-water levels fluctuated more at Odessa than at Gothenburg. The study period of April 2002 through March 2006 encompassed precipitation conditions ranging from dry to wet. This study characterized the components of the water balance in the riparian zone of each site. ET was evaluated from eddy-covariance sensors installed on towers above the forest canopy at a height of 26.1 meters. Precipitation was measured both above and below the forest canopy. A series of sensors measured soil-moisture availability within the unsaturated zone in two different vertical profiles at each site. Changes in ground-water altitude were evaluated from piezometers. The areal footprint represented in the water balance extended up to 800 meters from each tower. During the study, ET was less variable than precipitation. Annual ET fluctuated about 7 percent from the 4-year mean, ranging from about 514 to 586 millimeters per year (551 on average) at the Odessa site and 535 to 616 millimeters per year (575 on average) at the Gothenburg site. Conversely, annual precipitation fluctuated by about 35 percent from the 4-year mean, ranging from 429 to 844 millimeters per year at Odessa and 359 to 791 millimeters per year at Gothenburg. Of this precipitation, 14 to 15 percent was intercepted by the forest canopy before it could infiltrate into the soil. For the 4-year period, annual ground-water recharge from the riparian measurement zone averaged 76 and 13 millimeters at Odessa and Gothenburg, respectively, to satisfy the water balance at each site. This indicates that, from an annual perspective, ground-water reductions caused by ET may be minimal. This effect varied somewhat and primarily was affected by fluctuations in precipitation. Ground-water discharge occurred during the driest study year (2002), whereas ground-water recharge occurred from 2003 to 2005. These results do not exclude ground water as an important source of water to riparian vegetation—especially to phreatophytes that have the capability of directly using water from the saturated zone—during periods of high ET in the summer, particularly during periods of lower than normal precipitation. However, the calculations indicate that, on an annual (or longer) net-flux basis, ground-water use by riparian forests is likely to be balanced by periods of recharge from excess precipitation at other times of the year. In contrast to more arid settings, where scientific literature indicates that ground water may supply a large fraction of the water used for ET by riparian vegetation, precipitation along the Platte River of Nebraska was great enough—and generally greater than ET—that most or all of the annual ET demand was satisfied by available precipitation. Crop coefficients developed for 15-day and monthly periods from the measured data predicted ET within 3.5 percent of actual annual ET; however, daily ET was underpredicted on days of increased ET and overpredicted on days of low ET. These crop coefficients can be used to extrapolate riparian-forest ET along the Platte River in conjunction with atmospheric data from other climate stations in central Nebraska. Regression models of simple and multiple-linear relations between explanatory variables and ET indicated that the relation of ET to environmental factors was different on days with precipitation than on dry days. At Odessa, ET was affected by vapor-pressure deficit, solar radiation, leaf-area index, and depth to water regardless of precipitation conditions, but was also affected by air temperature on days without precipitation, suggesting energy limitations on ET on days without precipitation. At Gothenburg, ET was always a function of vapor-pressure deficit, solar radiation, and leaf-area index, but, as with Odessa, air temperature also became important on days without precipitation. Despite depths to ground water of less than 2 meters and phreatophytic vegetation, measured ET was substantially less than potential ET (based on the modified Penman method), consistent with plant-stomatal regulation of ET in response to environmental and meteorological factors. Although annual ET rates generally were similar, the two sites exhibited different intraannual soil-moisture regimes that had a corresponding effect on ET and vegetation vigor. Smaller seasonal declines in ground-water levels and a lack of understory shrubs at the Gothenburg site as compared to the Odessa site may explain why Gothenburg ET was comparatively greater later in the summer and was not dependent on depth to water (as identified by the multiple-linear regression model). These differences also may explain why, during years of increased precipitation, ET rates increased at Odessa but not at Gothenburg
    • …
    corecore